1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h> /* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28
29 #include <asm/local.h>
30
31 static void update_pages_handler(struct work_struct *work);
32
33 /*
34 * The ring buffer header is special. We must manually up keep it.
35 */
ring_buffer_print_entry_header(struct trace_seq * s)36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38 trace_seq_puts(s, "# compressed entry header\n");
39 trace_seq_puts(s, "\ttype_len : 5 bits\n");
40 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
41 trace_seq_puts(s, "\tarray : 32 bits\n");
42 trace_seq_putc(s, '\n');
43 trace_seq_printf(s, "\tpadding : type == %d\n",
44 RINGBUF_TYPE_PADDING);
45 trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 RINGBUF_TYPE_TIME_EXTEND);
47 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 RINGBUF_TYPE_TIME_STAMP);
49 trace_seq_printf(s, "\tdata max type_len == %d\n",
50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51
52 return !trace_seq_has_overflowed(s);
53 }
54
55 /*
56 * The ring buffer is made up of a list of pages. A separate list of pages is
57 * allocated for each CPU. A writer may only write to a buffer that is
58 * associated with the CPU it is currently executing on. A reader may read
59 * from any per cpu buffer.
60 *
61 * The reader is special. For each per cpu buffer, the reader has its own
62 * reader page. When a reader has read the entire reader page, this reader
63 * page is swapped with another page in the ring buffer.
64 *
65 * Now, as long as the writer is off the reader page, the reader can do what
66 * ever it wants with that page. The writer will never write to that page
67 * again (as long as it is out of the ring buffer).
68 *
69 * Here's some silly ASCII art.
70 *
71 * +------+
72 * |reader| RING BUFFER
73 * |page |
74 * +------+ +---+ +---+ +---+
75 * | |-->| |-->| |
76 * +---+ +---+ +---+
77 * ^ |
78 * | |
79 * +---------------+
80 *
81 *
82 * +------+
83 * |reader| RING BUFFER
84 * |page |------------------v
85 * +------+ +---+ +---+ +---+
86 * | |-->| |-->| |
87 * +---+ +---+ +---+
88 * ^ |
89 * | |
90 * +---------------+
91 *
92 *
93 * +------+
94 * |reader| RING BUFFER
95 * |page |------------------v
96 * +------+ +---+ +---+ +---+
97 * ^ | |-->| |-->| |
98 * | +---+ +---+ +---+
99 * | |
100 * | |
101 * +------------------------------+
102 *
103 *
104 * +------+
105 * |buffer| RING BUFFER
106 * |page |------------------v
107 * +------+ +---+ +---+ +---+
108 * ^ | | | |-->| |
109 * | New +---+ +---+ +---+
110 * | Reader------^ |
111 * | page |
112 * +------------------------------+
113 *
114 *
115 * After we make this swap, the reader can hand this page off to the splice
116 * code and be done with it. It can even allocate a new page if it needs to
117 * and swap that into the ring buffer.
118 *
119 * We will be using cmpxchg soon to make all this lockless.
120 *
121 */
122
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF (1 << 20)
125
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT 4U
130 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
132
133 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
134 # define RB_FORCE_8BYTE_ALIGNMENT 0
135 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
136 #else
137 # define RB_FORCE_8BYTE_ALIGNMENT 1
138 # define RB_ARCH_ALIGNMENT 8U
139 #endif
140
141 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
142
143 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
144 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
145
146 enum {
147 RB_LEN_TIME_EXTEND = 8,
148 RB_LEN_TIME_STAMP = 8,
149 };
150
151 #define skip_time_extend(event) \
152 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
153
154 #define extended_time(event) \
155 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
156
rb_null_event(struct ring_buffer_event * event)157 static inline int rb_null_event(struct ring_buffer_event *event)
158 {
159 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
160 }
161
rb_event_set_padding(struct ring_buffer_event * event)162 static void rb_event_set_padding(struct ring_buffer_event *event)
163 {
164 /* padding has a NULL time_delta */
165 event->type_len = RINGBUF_TYPE_PADDING;
166 event->time_delta = 0;
167 }
168
169 static unsigned
rb_event_data_length(struct ring_buffer_event * event)170 rb_event_data_length(struct ring_buffer_event *event)
171 {
172 unsigned length;
173
174 if (event->type_len)
175 length = event->type_len * RB_ALIGNMENT;
176 else
177 length = event->array[0];
178 return length + RB_EVNT_HDR_SIZE;
179 }
180
181 /*
182 * Return the length of the given event. Will return
183 * the length of the time extend if the event is a
184 * time extend.
185 */
186 static inline unsigned
rb_event_length(struct ring_buffer_event * event)187 rb_event_length(struct ring_buffer_event *event)
188 {
189 switch (event->type_len) {
190 case RINGBUF_TYPE_PADDING:
191 if (rb_null_event(event))
192 /* undefined */
193 return -1;
194 return event->array[0] + RB_EVNT_HDR_SIZE;
195
196 case RINGBUF_TYPE_TIME_EXTEND:
197 return RB_LEN_TIME_EXTEND;
198
199 case RINGBUF_TYPE_TIME_STAMP:
200 return RB_LEN_TIME_STAMP;
201
202 case RINGBUF_TYPE_DATA:
203 return rb_event_data_length(event);
204 default:
205 WARN_ON_ONCE(1);
206 }
207 /* not hit */
208 return 0;
209 }
210
211 /*
212 * Return total length of time extend and data,
213 * or just the event length for all other events.
214 */
215 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)216 rb_event_ts_length(struct ring_buffer_event *event)
217 {
218 unsigned len = 0;
219
220 if (extended_time(event)) {
221 /* time extends include the data event after it */
222 len = RB_LEN_TIME_EXTEND;
223 event = skip_time_extend(event);
224 }
225 return len + rb_event_length(event);
226 }
227
228 /**
229 * ring_buffer_event_length - return the length of the event
230 * @event: the event to get the length of
231 *
232 * Returns the size of the data load of a data event.
233 * If the event is something other than a data event, it
234 * returns the size of the event itself. With the exception
235 * of a TIME EXTEND, where it still returns the size of the
236 * data load of the data event after it.
237 */
ring_buffer_event_length(struct ring_buffer_event * event)238 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
239 {
240 unsigned length;
241
242 if (extended_time(event))
243 event = skip_time_extend(event);
244
245 length = rb_event_length(event);
246 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
247 return length;
248 length -= RB_EVNT_HDR_SIZE;
249 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
250 length -= sizeof(event->array[0]);
251 return length;
252 }
253 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
254
255 /* inline for ring buffer fast paths */
256 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)257 rb_event_data(struct ring_buffer_event *event)
258 {
259 if (extended_time(event))
260 event = skip_time_extend(event);
261 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
262 /* If length is in len field, then array[0] has the data */
263 if (event->type_len)
264 return (void *)&event->array[0];
265 /* Otherwise length is in array[0] and array[1] has the data */
266 return (void *)&event->array[1];
267 }
268
269 /**
270 * ring_buffer_event_data - return the data of the event
271 * @event: the event to get the data from
272 */
ring_buffer_event_data(struct ring_buffer_event * event)273 void *ring_buffer_event_data(struct ring_buffer_event *event)
274 {
275 return rb_event_data(event);
276 }
277 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
278
279 #define for_each_buffer_cpu(buffer, cpu) \
280 for_each_cpu(cpu, buffer->cpumask)
281
282 #define for_each_online_buffer_cpu(buffer, cpu) \
283 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
284
285 #define TS_SHIFT 27
286 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
287 #define TS_DELTA_TEST (~TS_MASK)
288
289 /**
290 * ring_buffer_event_time_stamp - return the event's extended timestamp
291 * @event: the event to get the timestamp of
292 *
293 * Returns the extended timestamp associated with a data event.
294 * An extended time_stamp is a 64-bit timestamp represented
295 * internally in a special way that makes the best use of space
296 * contained within a ring buffer event. This function decodes
297 * it and maps it to a straight u64 value.
298 */
ring_buffer_event_time_stamp(struct ring_buffer_event * event)299 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
300 {
301 u64 ts;
302
303 ts = event->array[0];
304 ts <<= TS_SHIFT;
305 ts += event->time_delta;
306
307 return ts;
308 }
309
310 /* Flag when events were overwritten */
311 #define RB_MISSED_EVENTS (1 << 31)
312 /* Missed count stored at end */
313 #define RB_MISSED_STORED (1 << 30)
314
315 struct buffer_data_page {
316 u64 time_stamp; /* page time stamp */
317 local_t commit; /* write committed index */
318 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
319 };
320
321 /*
322 * Note, the buffer_page list must be first. The buffer pages
323 * are allocated in cache lines, which means that each buffer
324 * page will be at the beginning of a cache line, and thus
325 * the least significant bits will be zero. We use this to
326 * add flags in the list struct pointers, to make the ring buffer
327 * lockless.
328 */
329 struct buffer_page {
330 struct list_head list; /* list of buffer pages */
331 local_t write; /* index for next write */
332 unsigned read; /* index for next read */
333 local_t entries; /* entries on this page */
334 unsigned long real_end; /* real end of data */
335 struct buffer_data_page *page; /* Actual data page */
336 };
337
338 /*
339 * The buffer page counters, write and entries, must be reset
340 * atomically when crossing page boundaries. To synchronize this
341 * update, two counters are inserted into the number. One is
342 * the actual counter for the write position or count on the page.
343 *
344 * The other is a counter of updaters. Before an update happens
345 * the update partition of the counter is incremented. This will
346 * allow the updater to update the counter atomically.
347 *
348 * The counter is 20 bits, and the state data is 12.
349 */
350 #define RB_WRITE_MASK 0xfffff
351 #define RB_WRITE_INTCNT (1 << 20)
352
rb_init_page(struct buffer_data_page * bpage)353 static void rb_init_page(struct buffer_data_page *bpage)
354 {
355 local_set(&bpage->commit, 0);
356 }
357
rb_page_commit(struct buffer_page * bpage)358 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
359 {
360 return local_read(&bpage->page->commit);
361 }
362
free_buffer_page(struct buffer_page * bpage)363 static void free_buffer_page(struct buffer_page *bpage)
364 {
365 free_page((unsigned long)bpage->page);
366 kfree(bpage);
367 }
368
369 /*
370 * We need to fit the time_stamp delta into 27 bits.
371 */
test_time_stamp(u64 delta)372 static inline int test_time_stamp(u64 delta)
373 {
374 if (delta & TS_DELTA_TEST)
375 return 1;
376 return 0;
377 }
378
379 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
380
381 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
382 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
383
ring_buffer_print_page_header(struct trace_seq * s)384 int ring_buffer_print_page_header(struct trace_seq *s)
385 {
386 struct buffer_data_page field;
387
388 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
389 "offset:0;\tsize:%u;\tsigned:%u;\n",
390 (unsigned int)sizeof(field.time_stamp),
391 (unsigned int)is_signed_type(u64));
392
393 trace_seq_printf(s, "\tfield: local_t commit;\t"
394 "offset:%u;\tsize:%u;\tsigned:%u;\n",
395 (unsigned int)offsetof(typeof(field), commit),
396 (unsigned int)sizeof(field.commit),
397 (unsigned int)is_signed_type(long));
398
399 trace_seq_printf(s, "\tfield: int overwrite;\t"
400 "offset:%u;\tsize:%u;\tsigned:%u;\n",
401 (unsigned int)offsetof(typeof(field), commit),
402 1,
403 (unsigned int)is_signed_type(long));
404
405 trace_seq_printf(s, "\tfield: char data;\t"
406 "offset:%u;\tsize:%u;\tsigned:%u;\n",
407 (unsigned int)offsetof(typeof(field), data),
408 (unsigned int)BUF_PAGE_SIZE,
409 (unsigned int)is_signed_type(char));
410
411 return !trace_seq_has_overflowed(s);
412 }
413
414 struct rb_irq_work {
415 struct irq_work work;
416 wait_queue_head_t waiters;
417 wait_queue_head_t full_waiters;
418 long wait_index;
419 bool waiters_pending;
420 bool full_waiters_pending;
421 bool wakeup_full;
422 };
423
424 /*
425 * Structure to hold event state and handle nested events.
426 */
427 struct rb_event_info {
428 u64 ts;
429 u64 delta;
430 u64 before;
431 u64 after;
432 unsigned long length;
433 struct buffer_page *tail_page;
434 int add_timestamp;
435 };
436
437 /*
438 * Used for the add_timestamp
439 * NONE
440 * EXTEND - wants a time extend
441 * ABSOLUTE - the buffer requests all events to have absolute time stamps
442 * FORCE - force a full time stamp.
443 */
444 enum {
445 RB_ADD_STAMP_NONE = 0,
446 RB_ADD_STAMP_EXTEND = BIT(1),
447 RB_ADD_STAMP_ABSOLUTE = BIT(2),
448 RB_ADD_STAMP_FORCE = BIT(3)
449 };
450 /*
451 * Used for which event context the event is in.
452 * TRANSITION = 0
453 * NMI = 1
454 * IRQ = 2
455 * SOFTIRQ = 3
456 * NORMAL = 4
457 *
458 * See trace_recursive_lock() comment below for more details.
459 */
460 enum {
461 RB_CTX_TRANSITION,
462 RB_CTX_NMI,
463 RB_CTX_IRQ,
464 RB_CTX_SOFTIRQ,
465 RB_CTX_NORMAL,
466 RB_CTX_MAX
467 };
468
469 #if BITS_PER_LONG == 32
470 #define RB_TIME_32
471 #endif
472
473 /* To test on 64 bit machines */
474 //#define RB_TIME_32
475
476 #ifdef RB_TIME_32
477
478 struct rb_time_struct {
479 local_t cnt;
480 local_t top;
481 local_t bottom;
482 };
483 #else
484 #include <asm/local64.h>
485 struct rb_time_struct {
486 local64_t time;
487 };
488 #endif
489 typedef struct rb_time_struct rb_time_t;
490
491 /*
492 * head_page == tail_page && head == tail then buffer is empty.
493 */
494 struct ring_buffer_per_cpu {
495 int cpu;
496 atomic_t record_disabled;
497 atomic_t resize_disabled;
498 struct trace_buffer *buffer;
499 raw_spinlock_t reader_lock; /* serialize readers */
500 arch_spinlock_t lock;
501 struct lock_class_key lock_key;
502 struct buffer_data_page *free_page;
503 unsigned long nr_pages;
504 unsigned int current_context;
505 struct list_head *pages;
506 struct buffer_page *head_page; /* read from head */
507 struct buffer_page *tail_page; /* write to tail */
508 struct buffer_page *commit_page; /* committed pages */
509 struct buffer_page *reader_page;
510 unsigned long lost_events;
511 unsigned long last_overrun;
512 unsigned long nest;
513 local_t entries_bytes;
514 local_t entries;
515 local_t overrun;
516 local_t commit_overrun;
517 local_t dropped_events;
518 local_t committing;
519 local_t commits;
520 local_t pages_touched;
521 local_t pages_lost;
522 local_t pages_read;
523 long last_pages_touch;
524 size_t shortest_full;
525 unsigned long read;
526 unsigned long read_bytes;
527 rb_time_t write_stamp;
528 rb_time_t before_stamp;
529 u64 read_stamp;
530 /* pages removed since last reset */
531 unsigned long pages_removed;
532 /* ring buffer pages to update, > 0 to add, < 0 to remove */
533 long nr_pages_to_update;
534 struct list_head new_pages; /* new pages to add */
535 struct work_struct update_pages_work;
536 struct completion update_done;
537
538 struct rb_irq_work irq_work;
539 };
540
541 struct trace_buffer {
542 unsigned flags;
543 int cpus;
544 atomic_t record_disabled;
545 atomic_t resizing;
546 cpumask_var_t cpumask;
547
548 struct lock_class_key *reader_lock_key;
549
550 struct mutex mutex;
551
552 struct ring_buffer_per_cpu **buffers;
553
554 struct hlist_node node;
555 u64 (*clock)(void);
556
557 struct rb_irq_work irq_work;
558 bool time_stamp_abs;
559 };
560
561 struct ring_buffer_iter {
562 struct ring_buffer_per_cpu *cpu_buffer;
563 unsigned long head;
564 unsigned long next_event;
565 struct buffer_page *head_page;
566 struct buffer_page *cache_reader_page;
567 unsigned long cache_read;
568 unsigned long cache_pages_removed;
569 u64 read_stamp;
570 u64 page_stamp;
571 struct ring_buffer_event *event;
572 int missed_events;
573 };
574
575 #ifdef RB_TIME_32
576
577 /*
578 * On 32 bit machines, local64_t is very expensive. As the ring
579 * buffer doesn't need all the features of a true 64 bit atomic,
580 * on 32 bit, it uses these functions (64 still uses local64_t).
581 *
582 * For the ring buffer, 64 bit required operations for the time is
583 * the following:
584 *
585 * - Only need 59 bits (uses 60 to make it even).
586 * - Reads may fail if it interrupted a modification of the time stamp.
587 * It will succeed if it did not interrupt another write even if
588 * the read itself is interrupted by a write.
589 * It returns whether it was successful or not.
590 *
591 * - Writes always succeed and will overwrite other writes and writes
592 * that were done by events interrupting the current write.
593 *
594 * - A write followed by a read of the same time stamp will always succeed,
595 * but may not contain the same value.
596 *
597 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
598 * Other than that, it acts like a normal cmpxchg.
599 *
600 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
601 * (bottom being the least significant 30 bits of the 60 bit time stamp).
602 *
603 * The two most significant bits of each half holds a 2 bit counter (0-3).
604 * Each update will increment this counter by one.
605 * When reading the top and bottom, if the two counter bits match then the
606 * top and bottom together make a valid 60 bit number.
607 */
608 #define RB_TIME_SHIFT 30
609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
610
rb_time_cnt(unsigned long val)611 static inline int rb_time_cnt(unsigned long val)
612 {
613 return (val >> RB_TIME_SHIFT) & 3;
614 }
615
rb_time_val(unsigned long top,unsigned long bottom)616 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
617 {
618 u64 val;
619
620 val = top & RB_TIME_VAL_MASK;
621 val <<= RB_TIME_SHIFT;
622 val |= bottom & RB_TIME_VAL_MASK;
623
624 return val;
625 }
626
__rb_time_read(rb_time_t * t,u64 * ret,unsigned long * cnt)627 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
628 {
629 unsigned long top, bottom;
630 unsigned long c;
631
632 /*
633 * If the read is interrupted by a write, then the cnt will
634 * be different. Loop until both top and bottom have been read
635 * without interruption.
636 */
637 do {
638 c = local_read(&t->cnt);
639 top = local_read(&t->top);
640 bottom = local_read(&t->bottom);
641 } while (c != local_read(&t->cnt));
642
643 *cnt = rb_time_cnt(top);
644
645 /* If top and bottom counts don't match, this interrupted a write */
646 if (*cnt != rb_time_cnt(bottom))
647 return false;
648
649 *ret = rb_time_val(top, bottom);
650 return true;
651 }
652
rb_time_read(rb_time_t * t,u64 * ret)653 static bool rb_time_read(rb_time_t *t, u64 *ret)
654 {
655 unsigned long cnt;
656
657 return __rb_time_read(t, ret, &cnt);
658 }
659
rb_time_val_cnt(unsigned long val,unsigned long cnt)660 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
661 {
662 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
663 }
664
rb_time_split(u64 val,unsigned long * top,unsigned long * bottom)665 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
666 {
667 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
668 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
669 }
670
rb_time_val_set(local_t * t,unsigned long val,unsigned long cnt)671 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
672 {
673 val = rb_time_val_cnt(val, cnt);
674 local_set(t, val);
675 }
676
rb_time_set(rb_time_t * t,u64 val)677 static void rb_time_set(rb_time_t *t, u64 val)
678 {
679 unsigned long cnt, top, bottom;
680
681 rb_time_split(val, &top, &bottom);
682
683 /* Writes always succeed with a valid number even if it gets interrupted. */
684 do {
685 cnt = local_inc_return(&t->cnt);
686 rb_time_val_set(&t->top, top, cnt);
687 rb_time_val_set(&t->bottom, bottom, cnt);
688 } while (cnt != local_read(&t->cnt));
689 }
690
691 static inline bool
rb_time_read_cmpxchg(local_t * l,unsigned long expect,unsigned long set)692 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
693 {
694 unsigned long ret;
695
696 ret = local_cmpxchg(l, expect, set);
697 return ret == expect;
698 }
699
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)700 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
701 {
702 unsigned long cnt, top, bottom;
703 unsigned long cnt2, top2, bottom2;
704 u64 val;
705
706 /* Any interruptions in this function should cause a failure */
707 cnt = local_read(&t->cnt);
708
709 /* The cmpxchg always fails if it interrupted an update */
710 if (!__rb_time_read(t, &val, &cnt2))
711 return false;
712
713 if (val != expect)
714 return false;
715
716 if ((cnt & 3) != cnt2)
717 return false;
718
719 cnt2 = cnt + 1;
720
721 rb_time_split(val, &top, &bottom);
722 top = rb_time_val_cnt(top, cnt);
723 bottom = rb_time_val_cnt(bottom, cnt);
724
725 rb_time_split(set, &top2, &bottom2);
726 top2 = rb_time_val_cnt(top2, cnt2);
727 bottom2 = rb_time_val_cnt(bottom2, cnt2);
728
729 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
730 return false;
731 if (!rb_time_read_cmpxchg(&t->top, top, top2))
732 return false;
733 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
734 return false;
735 return true;
736 }
737
738 #else /* 64 bits */
739
740 /* local64_t always succeeds */
741
rb_time_read(rb_time_t * t,u64 * ret)742 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
743 {
744 *ret = local64_read(&t->time);
745 return true;
746 }
rb_time_set(rb_time_t * t,u64 val)747 static void rb_time_set(rb_time_t *t, u64 val)
748 {
749 local64_set(&t->time, val);
750 }
751
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)752 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
753 {
754 u64 val;
755 val = local64_cmpxchg(&t->time, expect, set);
756 return val == expect;
757 }
758 #endif
759
760 /**
761 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
762 * @buffer: The ring_buffer to get the number of pages from
763 * @cpu: The cpu of the ring_buffer to get the number of pages from
764 *
765 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
766 */
ring_buffer_nr_pages(struct trace_buffer * buffer,int cpu)767 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
768 {
769 return buffer->buffers[cpu]->nr_pages;
770 }
771
772 /**
773 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
774 * @buffer: The ring_buffer to get the number of pages from
775 * @cpu: The cpu of the ring_buffer to get the number of pages from
776 *
777 * Returns the number of pages that have content in the ring buffer.
778 */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)779 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
780 {
781 size_t read;
782 size_t lost;
783 size_t cnt;
784
785 read = local_read(&buffer->buffers[cpu]->pages_read);
786 lost = local_read(&buffer->buffers[cpu]->pages_lost);
787 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
788
789 if (WARN_ON_ONCE(cnt < lost))
790 return 0;
791
792 cnt -= lost;
793
794 /* The reader can read an empty page, but not more than that */
795 if (cnt < read) {
796 WARN_ON_ONCE(read > cnt + 1);
797 return 0;
798 }
799
800 return cnt - read;
801 }
802
full_hit(struct trace_buffer * buffer,int cpu,int full)803 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
804 {
805 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
806 size_t nr_pages;
807 size_t dirty;
808
809 nr_pages = cpu_buffer->nr_pages;
810 if (!nr_pages || !full)
811 return true;
812
813 /*
814 * Add one as dirty will never equal nr_pages, as the sub-buffer
815 * that the writer is on is not counted as dirty.
816 * This is needed if "buffer_percent" is set to 100.
817 */
818 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
819
820 return (dirty * 100) >= (full * nr_pages);
821 }
822
823 /*
824 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
825 *
826 * Schedules a delayed work to wake up any task that is blocked on the
827 * ring buffer waiters queue.
828 */
rb_wake_up_waiters(struct irq_work * work)829 static void rb_wake_up_waiters(struct irq_work *work)
830 {
831 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
832
833 wake_up_all(&rbwork->waiters);
834 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
835 rbwork->wakeup_full = false;
836 rbwork->full_waiters_pending = false;
837 wake_up_all(&rbwork->full_waiters);
838 }
839 }
840
841 /**
842 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
843 * @buffer: The ring buffer to wake waiters on
844 *
845 * In the case of a file that represents a ring buffer is closing,
846 * it is prudent to wake up any waiters that are on this.
847 */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)848 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
849 {
850 struct ring_buffer_per_cpu *cpu_buffer;
851 struct rb_irq_work *rbwork;
852
853 if (cpu == RING_BUFFER_ALL_CPUS) {
854
855 /* Wake up individual ones too. One level recursion */
856 for_each_buffer_cpu(buffer, cpu)
857 ring_buffer_wake_waiters(buffer, cpu);
858
859 rbwork = &buffer->irq_work;
860 } else {
861 cpu_buffer = buffer->buffers[cpu];
862 rbwork = &cpu_buffer->irq_work;
863 }
864
865 rbwork->wait_index++;
866 /* make sure the waiters see the new index */
867 smp_wmb();
868
869 /* This can be called in any context */
870 irq_work_queue(&rbwork->work);
871 }
872
873 /**
874 * ring_buffer_wait - wait for input to the ring buffer
875 * @buffer: buffer to wait on
876 * @cpu: the cpu buffer to wait on
877 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
878 *
879 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
880 * as data is added to any of the @buffer's cpu buffers. Otherwise
881 * it will wait for data to be added to a specific cpu buffer.
882 */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full)883 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
884 {
885 struct ring_buffer_per_cpu *cpu_buffer;
886 DEFINE_WAIT(wait);
887 struct rb_irq_work *work;
888 long wait_index;
889 int ret = 0;
890
891 /*
892 * Depending on what the caller is waiting for, either any
893 * data in any cpu buffer, or a specific buffer, put the
894 * caller on the appropriate wait queue.
895 */
896 if (cpu == RING_BUFFER_ALL_CPUS) {
897 work = &buffer->irq_work;
898 /* Full only makes sense on per cpu reads */
899 full = 0;
900 } else {
901 if (!cpumask_test_cpu(cpu, buffer->cpumask))
902 return -ENODEV;
903 cpu_buffer = buffer->buffers[cpu];
904 work = &cpu_buffer->irq_work;
905 }
906
907 wait_index = READ_ONCE(work->wait_index);
908
909 while (true) {
910 if (full)
911 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
912 else
913 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
914
915 /*
916 * The events can happen in critical sections where
917 * checking a work queue can cause deadlocks.
918 * After adding a task to the queue, this flag is set
919 * only to notify events to try to wake up the queue
920 * using irq_work.
921 *
922 * We don't clear it even if the buffer is no longer
923 * empty. The flag only causes the next event to run
924 * irq_work to do the work queue wake up. The worse
925 * that can happen if we race with !trace_empty() is that
926 * an event will cause an irq_work to try to wake up
927 * an empty queue.
928 *
929 * There's no reason to protect this flag either, as
930 * the work queue and irq_work logic will do the necessary
931 * synchronization for the wake ups. The only thing
932 * that is necessary is that the wake up happens after
933 * a task has been queued. It's OK for spurious wake ups.
934 */
935 if (full)
936 work->full_waiters_pending = true;
937 else
938 work->waiters_pending = true;
939
940 if (signal_pending(current)) {
941 ret = -EINTR;
942 break;
943 }
944
945 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
946 break;
947
948 if (cpu != RING_BUFFER_ALL_CPUS &&
949 !ring_buffer_empty_cpu(buffer, cpu)) {
950 unsigned long flags;
951 bool pagebusy;
952 bool done;
953
954 if (!full)
955 break;
956
957 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
958 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
959 done = !pagebusy && full_hit(buffer, cpu, full);
960
961 if (!cpu_buffer->shortest_full ||
962 cpu_buffer->shortest_full > full)
963 cpu_buffer->shortest_full = full;
964 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
965 if (done)
966 break;
967 }
968
969 schedule();
970
971 /* Make sure to see the new wait index */
972 smp_rmb();
973 if (wait_index != work->wait_index)
974 break;
975 }
976
977 if (full)
978 finish_wait(&work->full_waiters, &wait);
979 else
980 finish_wait(&work->waiters, &wait);
981
982 return ret;
983 }
984
985 /**
986 * ring_buffer_poll_wait - poll on buffer input
987 * @buffer: buffer to wait on
988 * @cpu: the cpu buffer to wait on
989 * @filp: the file descriptor
990 * @poll_table: The poll descriptor
991 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
992 *
993 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
994 * as data is added to any of the @buffer's cpu buffers. Otherwise
995 * it will wait for data to be added to a specific cpu buffer.
996 *
997 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
998 * zero otherwise.
999 */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1000 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1001 struct file *filp, poll_table *poll_table, int full)
1002 {
1003 struct ring_buffer_per_cpu *cpu_buffer;
1004 struct rb_irq_work *work;
1005
1006 if (cpu == RING_BUFFER_ALL_CPUS) {
1007 work = &buffer->irq_work;
1008 full = 0;
1009 } else {
1010 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1011 return -EINVAL;
1012
1013 cpu_buffer = buffer->buffers[cpu];
1014 work = &cpu_buffer->irq_work;
1015 }
1016
1017 if (full) {
1018 poll_wait(filp, &work->full_waiters, poll_table);
1019 work->full_waiters_pending = true;
1020 if (!cpu_buffer->shortest_full ||
1021 cpu_buffer->shortest_full > full)
1022 cpu_buffer->shortest_full = full;
1023 } else {
1024 poll_wait(filp, &work->waiters, poll_table);
1025 work->waiters_pending = true;
1026 }
1027
1028 /*
1029 * There's a tight race between setting the waiters_pending and
1030 * checking if the ring buffer is empty. Once the waiters_pending bit
1031 * is set, the next event will wake the task up, but we can get stuck
1032 * if there's only a single event in.
1033 *
1034 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1035 * but adding a memory barrier to all events will cause too much of a
1036 * performance hit in the fast path. We only need a memory barrier when
1037 * the buffer goes from empty to having content. But as this race is
1038 * extremely small, and it's not a problem if another event comes in, we
1039 * will fix it later.
1040 */
1041 smp_mb();
1042
1043 if (full)
1044 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1045
1046 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1047 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1048 return EPOLLIN | EPOLLRDNORM;
1049 return 0;
1050 }
1051
1052 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1053 #define RB_WARN_ON(b, cond) \
1054 ({ \
1055 int _____ret = unlikely(cond); \
1056 if (_____ret) { \
1057 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1058 struct ring_buffer_per_cpu *__b = \
1059 (void *)b; \
1060 atomic_inc(&__b->buffer->record_disabled); \
1061 } else \
1062 atomic_inc(&b->record_disabled); \
1063 WARN_ON(1); \
1064 } \
1065 _____ret; \
1066 })
1067
1068 /* Up this if you want to test the TIME_EXTENTS and normalization */
1069 #define DEBUG_SHIFT 0
1070
rb_time_stamp(struct trace_buffer * buffer)1071 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1072 {
1073 u64 ts;
1074
1075 /* Skip retpolines :-( */
1076 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1077 ts = trace_clock_local();
1078 else
1079 ts = buffer->clock();
1080
1081 /* shift to debug/test normalization and TIME_EXTENTS */
1082 return ts << DEBUG_SHIFT;
1083 }
1084
ring_buffer_time_stamp(struct trace_buffer * buffer,int cpu)1085 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
1086 {
1087 u64 time;
1088
1089 preempt_disable_notrace();
1090 time = rb_time_stamp(buffer);
1091 preempt_enable_notrace();
1092
1093 return time;
1094 }
1095 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1096
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1097 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1098 int cpu, u64 *ts)
1099 {
1100 /* Just stupid testing the normalize function and deltas */
1101 *ts >>= DEBUG_SHIFT;
1102 }
1103 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1104
1105 /*
1106 * Making the ring buffer lockless makes things tricky.
1107 * Although writes only happen on the CPU that they are on,
1108 * and they only need to worry about interrupts. Reads can
1109 * happen on any CPU.
1110 *
1111 * The reader page is always off the ring buffer, but when the
1112 * reader finishes with a page, it needs to swap its page with
1113 * a new one from the buffer. The reader needs to take from
1114 * the head (writes go to the tail). But if a writer is in overwrite
1115 * mode and wraps, it must push the head page forward.
1116 *
1117 * Here lies the problem.
1118 *
1119 * The reader must be careful to replace only the head page, and
1120 * not another one. As described at the top of the file in the
1121 * ASCII art, the reader sets its old page to point to the next
1122 * page after head. It then sets the page after head to point to
1123 * the old reader page. But if the writer moves the head page
1124 * during this operation, the reader could end up with the tail.
1125 *
1126 * We use cmpxchg to help prevent this race. We also do something
1127 * special with the page before head. We set the LSB to 1.
1128 *
1129 * When the writer must push the page forward, it will clear the
1130 * bit that points to the head page, move the head, and then set
1131 * the bit that points to the new head page.
1132 *
1133 * We also don't want an interrupt coming in and moving the head
1134 * page on another writer. Thus we use the second LSB to catch
1135 * that too. Thus:
1136 *
1137 * head->list->prev->next bit 1 bit 0
1138 * ------- -------
1139 * Normal page 0 0
1140 * Points to head page 0 1
1141 * New head page 1 0
1142 *
1143 * Note we can not trust the prev pointer of the head page, because:
1144 *
1145 * +----+ +-----+ +-----+
1146 * | |------>| T |---X--->| N |
1147 * | |<------| | | |
1148 * +----+ +-----+ +-----+
1149 * ^ ^ |
1150 * | +-----+ | |
1151 * +----------| R |----------+ |
1152 * | |<-----------+
1153 * +-----+
1154 *
1155 * Key: ---X--> HEAD flag set in pointer
1156 * T Tail page
1157 * R Reader page
1158 * N Next page
1159 *
1160 * (see __rb_reserve_next() to see where this happens)
1161 *
1162 * What the above shows is that the reader just swapped out
1163 * the reader page with a page in the buffer, but before it
1164 * could make the new header point back to the new page added
1165 * it was preempted by a writer. The writer moved forward onto
1166 * the new page added by the reader and is about to move forward
1167 * again.
1168 *
1169 * You can see, it is legitimate for the previous pointer of
1170 * the head (or any page) not to point back to itself. But only
1171 * temporarily.
1172 */
1173
1174 #define RB_PAGE_NORMAL 0UL
1175 #define RB_PAGE_HEAD 1UL
1176 #define RB_PAGE_UPDATE 2UL
1177
1178
1179 #define RB_FLAG_MASK 3UL
1180
1181 /* PAGE_MOVED is not part of the mask */
1182 #define RB_PAGE_MOVED 4UL
1183
1184 /*
1185 * rb_list_head - remove any bit
1186 */
rb_list_head(struct list_head * list)1187 static struct list_head *rb_list_head(struct list_head *list)
1188 {
1189 unsigned long val = (unsigned long)list;
1190
1191 return (struct list_head *)(val & ~RB_FLAG_MASK);
1192 }
1193
1194 /*
1195 * rb_is_head_page - test if the given page is the head page
1196 *
1197 * Because the reader may move the head_page pointer, we can
1198 * not trust what the head page is (it may be pointing to
1199 * the reader page). But if the next page is a header page,
1200 * its flags will be non zero.
1201 */
1202 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)1203 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1204 struct buffer_page *page, struct list_head *list)
1205 {
1206 unsigned long val;
1207
1208 val = (unsigned long)list->next;
1209
1210 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1211 return RB_PAGE_MOVED;
1212
1213 return val & RB_FLAG_MASK;
1214 }
1215
1216 /*
1217 * rb_is_reader_page
1218 *
1219 * The unique thing about the reader page, is that, if the
1220 * writer is ever on it, the previous pointer never points
1221 * back to the reader page.
1222 */
rb_is_reader_page(struct buffer_page * page)1223 static bool rb_is_reader_page(struct buffer_page *page)
1224 {
1225 struct list_head *list = page->list.prev;
1226
1227 return rb_list_head(list->next) != &page->list;
1228 }
1229
1230 /*
1231 * rb_set_list_to_head - set a list_head to be pointing to head.
1232 */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1233 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1234 struct list_head *list)
1235 {
1236 unsigned long *ptr;
1237
1238 ptr = (unsigned long *)&list->next;
1239 *ptr |= RB_PAGE_HEAD;
1240 *ptr &= ~RB_PAGE_UPDATE;
1241 }
1242
1243 /*
1244 * rb_head_page_activate - sets up head page
1245 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1246 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1247 {
1248 struct buffer_page *head;
1249
1250 head = cpu_buffer->head_page;
1251 if (!head)
1252 return;
1253
1254 /*
1255 * Set the previous list pointer to have the HEAD flag.
1256 */
1257 rb_set_list_to_head(cpu_buffer, head->list.prev);
1258 }
1259
rb_list_head_clear(struct list_head * list)1260 static void rb_list_head_clear(struct list_head *list)
1261 {
1262 unsigned long *ptr = (unsigned long *)&list->next;
1263
1264 *ptr &= ~RB_FLAG_MASK;
1265 }
1266
1267 /*
1268 * rb_head_page_deactivate - clears head page ptr (for free list)
1269 */
1270 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1271 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1272 {
1273 struct list_head *hd;
1274
1275 /* Go through the whole list and clear any pointers found. */
1276 rb_list_head_clear(cpu_buffer->pages);
1277
1278 list_for_each(hd, cpu_buffer->pages)
1279 rb_list_head_clear(hd);
1280 }
1281
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1282 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1283 struct buffer_page *head,
1284 struct buffer_page *prev,
1285 int old_flag, int new_flag)
1286 {
1287 struct list_head *list;
1288 unsigned long val = (unsigned long)&head->list;
1289 unsigned long ret;
1290
1291 list = &prev->list;
1292
1293 val &= ~RB_FLAG_MASK;
1294
1295 ret = cmpxchg((unsigned long *)&list->next,
1296 val | old_flag, val | new_flag);
1297
1298 /* check if the reader took the page */
1299 if ((ret & ~RB_FLAG_MASK) != val)
1300 return RB_PAGE_MOVED;
1301
1302 return ret & RB_FLAG_MASK;
1303 }
1304
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1305 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1306 struct buffer_page *head,
1307 struct buffer_page *prev,
1308 int old_flag)
1309 {
1310 return rb_head_page_set(cpu_buffer, head, prev,
1311 old_flag, RB_PAGE_UPDATE);
1312 }
1313
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1314 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1315 struct buffer_page *head,
1316 struct buffer_page *prev,
1317 int old_flag)
1318 {
1319 return rb_head_page_set(cpu_buffer, head, prev,
1320 old_flag, RB_PAGE_HEAD);
1321 }
1322
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1323 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1324 struct buffer_page *head,
1325 struct buffer_page *prev,
1326 int old_flag)
1327 {
1328 return rb_head_page_set(cpu_buffer, head, prev,
1329 old_flag, RB_PAGE_NORMAL);
1330 }
1331
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)1332 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1333 struct buffer_page **bpage)
1334 {
1335 struct list_head *p = rb_list_head((*bpage)->list.next);
1336
1337 *bpage = list_entry(p, struct buffer_page, list);
1338 }
1339
1340 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1341 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1342 {
1343 struct buffer_page *head;
1344 struct buffer_page *page;
1345 struct list_head *list;
1346 int i;
1347
1348 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1349 return NULL;
1350
1351 /* sanity check */
1352 list = cpu_buffer->pages;
1353 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1354 return NULL;
1355
1356 page = head = cpu_buffer->head_page;
1357 /*
1358 * It is possible that the writer moves the header behind
1359 * where we started, and we miss in one loop.
1360 * A second loop should grab the header, but we'll do
1361 * three loops just because I'm paranoid.
1362 */
1363 for (i = 0; i < 3; i++) {
1364 do {
1365 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1366 cpu_buffer->head_page = page;
1367 return page;
1368 }
1369 rb_inc_page(cpu_buffer, &page);
1370 } while (page != head);
1371 }
1372
1373 RB_WARN_ON(cpu_buffer, 1);
1374
1375 return NULL;
1376 }
1377
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1378 static int rb_head_page_replace(struct buffer_page *old,
1379 struct buffer_page *new)
1380 {
1381 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1382 unsigned long val;
1383 unsigned long ret;
1384
1385 val = *ptr & ~RB_FLAG_MASK;
1386 val |= RB_PAGE_HEAD;
1387
1388 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1389
1390 return ret == val;
1391 }
1392
1393 /*
1394 * rb_tail_page_update - move the tail page forward
1395 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1396 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1397 struct buffer_page *tail_page,
1398 struct buffer_page *next_page)
1399 {
1400 unsigned long old_entries;
1401 unsigned long old_write;
1402
1403 /*
1404 * The tail page now needs to be moved forward.
1405 *
1406 * We need to reset the tail page, but without messing
1407 * with possible erasing of data brought in by interrupts
1408 * that have moved the tail page and are currently on it.
1409 *
1410 * We add a counter to the write field to denote this.
1411 */
1412 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1413 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1414
1415 local_inc(&cpu_buffer->pages_touched);
1416 /*
1417 * Just make sure we have seen our old_write and synchronize
1418 * with any interrupts that come in.
1419 */
1420 barrier();
1421
1422 /*
1423 * If the tail page is still the same as what we think
1424 * it is, then it is up to us to update the tail
1425 * pointer.
1426 */
1427 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1428 /* Zero the write counter */
1429 unsigned long val = old_write & ~RB_WRITE_MASK;
1430 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1431
1432 /*
1433 * This will only succeed if an interrupt did
1434 * not come in and change it. In which case, we
1435 * do not want to modify it.
1436 *
1437 * We add (void) to let the compiler know that we do not care
1438 * about the return value of these functions. We use the
1439 * cmpxchg to only update if an interrupt did not already
1440 * do it for us. If the cmpxchg fails, we don't care.
1441 */
1442 (void)local_cmpxchg(&next_page->write, old_write, val);
1443 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1444
1445 /*
1446 * No need to worry about races with clearing out the commit.
1447 * it only can increment when a commit takes place. But that
1448 * only happens in the outer most nested commit.
1449 */
1450 local_set(&next_page->page->commit, 0);
1451
1452 /* Again, either we update tail_page or an interrupt does */
1453 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1454 }
1455 }
1456
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1457 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1458 struct buffer_page *bpage)
1459 {
1460 unsigned long val = (unsigned long)bpage;
1461
1462 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1463 return 1;
1464
1465 return 0;
1466 }
1467
1468 /**
1469 * rb_check_pages - integrity check of buffer pages
1470 * @cpu_buffer: CPU buffer with pages to test
1471 *
1472 * As a safety measure we check to make sure the data pages have not
1473 * been corrupted.
1474 *
1475 * Callers of this function need to guarantee that the list of pages doesn't get
1476 * modified during the check. In particular, if it's possible that the function
1477 * is invoked with concurrent readers which can swap in a new reader page then
1478 * the caller should take cpu_buffer->reader_lock.
1479 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1480 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1481 {
1482 struct list_head *head = rb_list_head(cpu_buffer->pages);
1483 struct list_head *tmp;
1484
1485 if (RB_WARN_ON(cpu_buffer,
1486 rb_list_head(rb_list_head(head->next)->prev) != head))
1487 return -1;
1488
1489 if (RB_WARN_ON(cpu_buffer,
1490 rb_list_head(rb_list_head(head->prev)->next) != head))
1491 return -1;
1492
1493 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1494 if (RB_WARN_ON(cpu_buffer,
1495 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1496 return -1;
1497
1498 if (RB_WARN_ON(cpu_buffer,
1499 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1500 return -1;
1501 }
1502
1503 return 0;
1504 }
1505
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1506 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1507 {
1508 struct buffer_page *bpage, *tmp;
1509 bool user_thread = current->mm != NULL;
1510 gfp_t mflags;
1511 long i;
1512
1513 /*
1514 * Check if the available memory is there first.
1515 * Note, si_mem_available() only gives us a rough estimate of available
1516 * memory. It may not be accurate. But we don't care, we just want
1517 * to prevent doing any allocation when it is obvious that it is
1518 * not going to succeed.
1519 */
1520 i = si_mem_available();
1521 if (i < nr_pages)
1522 return -ENOMEM;
1523
1524 /*
1525 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1526 * gracefully without invoking oom-killer and the system is not
1527 * destabilized.
1528 */
1529 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1530
1531 /*
1532 * If a user thread allocates too much, and si_mem_available()
1533 * reports there's enough memory, even though there is not.
1534 * Make sure the OOM killer kills this thread. This can happen
1535 * even with RETRY_MAYFAIL because another task may be doing
1536 * an allocation after this task has taken all memory.
1537 * This is the task the OOM killer needs to take out during this
1538 * loop, even if it was triggered by an allocation somewhere else.
1539 */
1540 if (user_thread)
1541 set_current_oom_origin();
1542 for (i = 0; i < nr_pages; i++) {
1543 struct page *page;
1544
1545 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1546 mflags, cpu_to_node(cpu));
1547 if (!bpage)
1548 goto free_pages;
1549
1550 list_add(&bpage->list, pages);
1551
1552 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1553 if (!page)
1554 goto free_pages;
1555 bpage->page = page_address(page);
1556 rb_init_page(bpage->page);
1557
1558 if (user_thread && fatal_signal_pending(current))
1559 goto free_pages;
1560 }
1561 if (user_thread)
1562 clear_current_oom_origin();
1563
1564 return 0;
1565
1566 free_pages:
1567 list_for_each_entry_safe(bpage, tmp, pages, list) {
1568 list_del_init(&bpage->list);
1569 free_buffer_page(bpage);
1570 }
1571 if (user_thread)
1572 clear_current_oom_origin();
1573
1574 return -ENOMEM;
1575 }
1576
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1577 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1578 unsigned long nr_pages)
1579 {
1580 LIST_HEAD(pages);
1581
1582 WARN_ON(!nr_pages);
1583
1584 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1585 return -ENOMEM;
1586
1587 /*
1588 * The ring buffer page list is a circular list that does not
1589 * start and end with a list head. All page list items point to
1590 * other pages.
1591 */
1592 cpu_buffer->pages = pages.next;
1593 list_del(&pages);
1594
1595 cpu_buffer->nr_pages = nr_pages;
1596
1597 rb_check_pages(cpu_buffer);
1598
1599 return 0;
1600 }
1601
1602 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)1603 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1604 {
1605 struct ring_buffer_per_cpu *cpu_buffer;
1606 struct buffer_page *bpage;
1607 struct page *page;
1608 int ret;
1609
1610 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1611 GFP_KERNEL, cpu_to_node(cpu));
1612 if (!cpu_buffer)
1613 return NULL;
1614
1615 cpu_buffer->cpu = cpu;
1616 cpu_buffer->buffer = buffer;
1617 raw_spin_lock_init(&cpu_buffer->reader_lock);
1618 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1619 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1620 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1621 init_completion(&cpu_buffer->update_done);
1622 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1623 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1624 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1625
1626 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1627 GFP_KERNEL, cpu_to_node(cpu));
1628 if (!bpage)
1629 goto fail_free_buffer;
1630
1631 rb_check_bpage(cpu_buffer, bpage);
1632
1633 cpu_buffer->reader_page = bpage;
1634 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1635 if (!page)
1636 goto fail_free_reader;
1637 bpage->page = page_address(page);
1638 rb_init_page(bpage->page);
1639
1640 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1641 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1642
1643 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1644 if (ret < 0)
1645 goto fail_free_reader;
1646
1647 cpu_buffer->head_page
1648 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1649 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1650
1651 rb_head_page_activate(cpu_buffer);
1652
1653 return cpu_buffer;
1654
1655 fail_free_reader:
1656 free_buffer_page(cpu_buffer->reader_page);
1657
1658 fail_free_buffer:
1659 kfree(cpu_buffer);
1660 return NULL;
1661 }
1662
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1663 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1664 {
1665 struct list_head *head = cpu_buffer->pages;
1666 struct buffer_page *bpage, *tmp;
1667
1668 irq_work_sync(&cpu_buffer->irq_work.work);
1669
1670 free_buffer_page(cpu_buffer->reader_page);
1671
1672 if (head) {
1673 rb_head_page_deactivate(cpu_buffer);
1674
1675 list_for_each_entry_safe(bpage, tmp, head, list) {
1676 list_del_init(&bpage->list);
1677 free_buffer_page(bpage);
1678 }
1679 bpage = list_entry(head, struct buffer_page, list);
1680 free_buffer_page(bpage);
1681 }
1682
1683 free_page((unsigned long)cpu_buffer->free_page);
1684
1685 kfree(cpu_buffer);
1686 }
1687
1688 /**
1689 * __ring_buffer_alloc - allocate a new ring_buffer
1690 * @size: the size in bytes per cpu that is needed.
1691 * @flags: attributes to set for the ring buffer.
1692 * @key: ring buffer reader_lock_key.
1693 *
1694 * Currently the only flag that is available is the RB_FL_OVERWRITE
1695 * flag. This flag means that the buffer will overwrite old data
1696 * when the buffer wraps. If this flag is not set, the buffer will
1697 * drop data when the tail hits the head.
1698 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1699 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1700 struct lock_class_key *key)
1701 {
1702 struct trace_buffer *buffer;
1703 long nr_pages;
1704 int bsize;
1705 int cpu;
1706 int ret;
1707
1708 /* keep it in its own cache line */
1709 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1710 GFP_KERNEL);
1711 if (!buffer)
1712 return NULL;
1713
1714 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1715 goto fail_free_buffer;
1716
1717 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1718 buffer->flags = flags;
1719 buffer->clock = trace_clock_local;
1720 buffer->reader_lock_key = key;
1721
1722 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1723 init_waitqueue_head(&buffer->irq_work.waiters);
1724
1725 /* need at least two pages */
1726 if (nr_pages < 2)
1727 nr_pages = 2;
1728
1729 buffer->cpus = nr_cpu_ids;
1730
1731 bsize = sizeof(void *) * nr_cpu_ids;
1732 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1733 GFP_KERNEL);
1734 if (!buffer->buffers)
1735 goto fail_free_cpumask;
1736
1737 cpu = raw_smp_processor_id();
1738 cpumask_set_cpu(cpu, buffer->cpumask);
1739 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1740 if (!buffer->buffers[cpu])
1741 goto fail_free_buffers;
1742
1743 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1744 if (ret < 0)
1745 goto fail_free_buffers;
1746
1747 mutex_init(&buffer->mutex);
1748
1749 return buffer;
1750
1751 fail_free_buffers:
1752 for_each_buffer_cpu(buffer, cpu) {
1753 if (buffer->buffers[cpu])
1754 rb_free_cpu_buffer(buffer->buffers[cpu]);
1755 }
1756 kfree(buffer->buffers);
1757
1758 fail_free_cpumask:
1759 free_cpumask_var(buffer->cpumask);
1760
1761 fail_free_buffer:
1762 kfree(buffer);
1763 return NULL;
1764 }
1765 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1766
1767 /**
1768 * ring_buffer_free - free a ring buffer.
1769 * @buffer: the buffer to free.
1770 */
1771 void
ring_buffer_free(struct trace_buffer * buffer)1772 ring_buffer_free(struct trace_buffer *buffer)
1773 {
1774 int cpu;
1775
1776 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1777
1778 irq_work_sync(&buffer->irq_work.work);
1779
1780 for_each_buffer_cpu(buffer, cpu)
1781 rb_free_cpu_buffer(buffer->buffers[cpu]);
1782
1783 kfree(buffer->buffers);
1784 free_cpumask_var(buffer->cpumask);
1785
1786 kfree(buffer);
1787 }
1788 EXPORT_SYMBOL_GPL(ring_buffer_free);
1789
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))1790 void ring_buffer_set_clock(struct trace_buffer *buffer,
1791 u64 (*clock)(void))
1792 {
1793 buffer->clock = clock;
1794 }
1795
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)1796 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1797 {
1798 buffer->time_stamp_abs = abs;
1799 }
1800
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)1801 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1802 {
1803 return buffer->time_stamp_abs;
1804 }
1805
1806 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1807
rb_page_entries(struct buffer_page * bpage)1808 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1809 {
1810 return local_read(&bpage->entries) & RB_WRITE_MASK;
1811 }
1812
rb_page_write(struct buffer_page * bpage)1813 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1814 {
1815 return local_read(&bpage->write) & RB_WRITE_MASK;
1816 }
1817
1818 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1819 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1820 {
1821 struct list_head *tail_page, *to_remove, *next_page;
1822 struct buffer_page *to_remove_page, *tmp_iter_page;
1823 struct buffer_page *last_page, *first_page;
1824 unsigned long nr_removed;
1825 unsigned long head_bit;
1826 int page_entries;
1827
1828 head_bit = 0;
1829
1830 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1831 atomic_inc(&cpu_buffer->record_disabled);
1832 /*
1833 * We don't race with the readers since we have acquired the reader
1834 * lock. We also don't race with writers after disabling recording.
1835 * This makes it easy to figure out the first and the last page to be
1836 * removed from the list. We unlink all the pages in between including
1837 * the first and last pages. This is done in a busy loop so that we
1838 * lose the least number of traces.
1839 * The pages are freed after we restart recording and unlock readers.
1840 */
1841 tail_page = &cpu_buffer->tail_page->list;
1842
1843 /*
1844 * tail page might be on reader page, we remove the next page
1845 * from the ring buffer
1846 */
1847 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1848 tail_page = rb_list_head(tail_page->next);
1849 to_remove = tail_page;
1850
1851 /* start of pages to remove */
1852 first_page = list_entry(rb_list_head(to_remove->next),
1853 struct buffer_page, list);
1854
1855 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1856 to_remove = rb_list_head(to_remove)->next;
1857 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1858 }
1859 /* Read iterators need to reset themselves when some pages removed */
1860 cpu_buffer->pages_removed += nr_removed;
1861
1862 next_page = rb_list_head(to_remove)->next;
1863
1864 /*
1865 * Now we remove all pages between tail_page and next_page.
1866 * Make sure that we have head_bit value preserved for the
1867 * next page
1868 */
1869 tail_page->next = (struct list_head *)((unsigned long)next_page |
1870 head_bit);
1871 next_page = rb_list_head(next_page);
1872 next_page->prev = tail_page;
1873
1874 /* make sure pages points to a valid page in the ring buffer */
1875 cpu_buffer->pages = next_page;
1876
1877 /* update head page */
1878 if (head_bit)
1879 cpu_buffer->head_page = list_entry(next_page,
1880 struct buffer_page, list);
1881
1882 /* pages are removed, resume tracing and then free the pages */
1883 atomic_dec(&cpu_buffer->record_disabled);
1884 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1885
1886 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1887
1888 /* last buffer page to remove */
1889 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1890 list);
1891 tmp_iter_page = first_page;
1892
1893 do {
1894 cond_resched();
1895
1896 to_remove_page = tmp_iter_page;
1897 rb_inc_page(cpu_buffer, &tmp_iter_page);
1898
1899 /* update the counters */
1900 page_entries = rb_page_entries(to_remove_page);
1901 if (page_entries) {
1902 /*
1903 * If something was added to this page, it was full
1904 * since it is not the tail page. So we deduct the
1905 * bytes consumed in ring buffer from here.
1906 * Increment overrun to account for the lost events.
1907 */
1908 local_add(page_entries, &cpu_buffer->overrun);
1909 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1910 local_inc(&cpu_buffer->pages_lost);
1911 }
1912
1913 /*
1914 * We have already removed references to this list item, just
1915 * free up the buffer_page and its page
1916 */
1917 free_buffer_page(to_remove_page);
1918 nr_removed--;
1919
1920 } while (to_remove_page != last_page);
1921
1922 RB_WARN_ON(cpu_buffer, nr_removed);
1923
1924 return nr_removed == 0;
1925 }
1926
1927 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1928 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1929 {
1930 struct list_head *pages = &cpu_buffer->new_pages;
1931 int retries, success;
1932
1933 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1934 /*
1935 * We are holding the reader lock, so the reader page won't be swapped
1936 * in the ring buffer. Now we are racing with the writer trying to
1937 * move head page and the tail page.
1938 * We are going to adapt the reader page update process where:
1939 * 1. We first splice the start and end of list of new pages between
1940 * the head page and its previous page.
1941 * 2. We cmpxchg the prev_page->next to point from head page to the
1942 * start of new pages list.
1943 * 3. Finally, we update the head->prev to the end of new list.
1944 *
1945 * We will try this process 10 times, to make sure that we don't keep
1946 * spinning.
1947 */
1948 retries = 10;
1949 success = 0;
1950 while (retries--) {
1951 struct list_head *head_page, *prev_page, *r;
1952 struct list_head *last_page, *first_page;
1953 struct list_head *head_page_with_bit;
1954
1955 head_page = &rb_set_head_page(cpu_buffer)->list;
1956 if (!head_page)
1957 break;
1958 prev_page = head_page->prev;
1959
1960 first_page = pages->next;
1961 last_page = pages->prev;
1962
1963 head_page_with_bit = (struct list_head *)
1964 ((unsigned long)head_page | RB_PAGE_HEAD);
1965
1966 last_page->next = head_page_with_bit;
1967 first_page->prev = prev_page;
1968
1969 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1970
1971 if (r == head_page_with_bit) {
1972 /*
1973 * yay, we replaced the page pointer to our new list,
1974 * now, we just have to update to head page's prev
1975 * pointer to point to end of list
1976 */
1977 head_page->prev = last_page;
1978 success = 1;
1979 break;
1980 }
1981 }
1982
1983 if (success)
1984 INIT_LIST_HEAD(pages);
1985 /*
1986 * If we weren't successful in adding in new pages, warn and stop
1987 * tracing
1988 */
1989 RB_WARN_ON(cpu_buffer, !success);
1990 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1991
1992 /* free pages if they weren't inserted */
1993 if (!success) {
1994 struct buffer_page *bpage, *tmp;
1995 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1996 list) {
1997 list_del_init(&bpage->list);
1998 free_buffer_page(bpage);
1999 }
2000 }
2001 return success;
2002 }
2003
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2004 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2005 {
2006 int success;
2007
2008 if (cpu_buffer->nr_pages_to_update > 0)
2009 success = rb_insert_pages(cpu_buffer);
2010 else
2011 success = rb_remove_pages(cpu_buffer,
2012 -cpu_buffer->nr_pages_to_update);
2013
2014 if (success)
2015 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2016 }
2017
update_pages_handler(struct work_struct * work)2018 static void update_pages_handler(struct work_struct *work)
2019 {
2020 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2021 struct ring_buffer_per_cpu, update_pages_work);
2022 rb_update_pages(cpu_buffer);
2023 complete(&cpu_buffer->update_done);
2024 }
2025
2026 /**
2027 * ring_buffer_resize - resize the ring buffer
2028 * @buffer: the buffer to resize.
2029 * @size: the new size.
2030 * @cpu_id: the cpu buffer to resize
2031 *
2032 * Minimum size is 2 * BUF_PAGE_SIZE.
2033 *
2034 * Returns 0 on success and < 0 on failure.
2035 */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2036 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2037 int cpu_id)
2038 {
2039 struct ring_buffer_per_cpu *cpu_buffer;
2040 unsigned long nr_pages;
2041 int cpu, err;
2042
2043 /*
2044 * Always succeed at resizing a non-existent buffer:
2045 */
2046 if (!buffer)
2047 return 0;
2048
2049 /* Make sure the requested buffer exists */
2050 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2051 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2052 return 0;
2053
2054 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2055
2056 /* we need a minimum of two pages */
2057 if (nr_pages < 2)
2058 nr_pages = 2;
2059
2060 size = nr_pages * BUF_PAGE_SIZE;
2061
2062 /* prevent another thread from changing buffer sizes */
2063 mutex_lock(&buffer->mutex);
2064 atomic_inc(&buffer->resizing);
2065
2066 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2067 /*
2068 * Don't succeed if resizing is disabled, as a reader might be
2069 * manipulating the ring buffer and is expecting a sane state while
2070 * this is true.
2071 */
2072 for_each_buffer_cpu(buffer, cpu) {
2073 cpu_buffer = buffer->buffers[cpu];
2074 if (atomic_read(&cpu_buffer->resize_disabled)) {
2075 err = -EBUSY;
2076 goto out_err_unlock;
2077 }
2078 }
2079
2080 /* calculate the pages to update */
2081 for_each_buffer_cpu(buffer, cpu) {
2082 cpu_buffer = buffer->buffers[cpu];
2083
2084 cpu_buffer->nr_pages_to_update = nr_pages -
2085 cpu_buffer->nr_pages;
2086 /*
2087 * nothing more to do for removing pages or no update
2088 */
2089 if (cpu_buffer->nr_pages_to_update <= 0)
2090 continue;
2091 /*
2092 * to add pages, make sure all new pages can be
2093 * allocated without receiving ENOMEM
2094 */
2095 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2096 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2097 &cpu_buffer->new_pages, cpu)) {
2098 /* not enough memory for new pages */
2099 err = -ENOMEM;
2100 goto out_err;
2101 }
2102
2103 cond_resched();
2104 }
2105
2106 get_online_cpus();
2107 /*
2108 * Fire off all the required work handlers
2109 * We can't schedule on offline CPUs, but it's not necessary
2110 * since we can change their buffer sizes without any race.
2111 */
2112 for_each_buffer_cpu(buffer, cpu) {
2113 cpu_buffer = buffer->buffers[cpu];
2114 if (!cpu_buffer->nr_pages_to_update)
2115 continue;
2116
2117 /* Can't run something on an offline CPU. */
2118 if (!cpu_online(cpu)) {
2119 rb_update_pages(cpu_buffer);
2120 cpu_buffer->nr_pages_to_update = 0;
2121 } else {
2122 schedule_work_on(cpu,
2123 &cpu_buffer->update_pages_work);
2124 }
2125 }
2126
2127 /* wait for all the updates to complete */
2128 for_each_buffer_cpu(buffer, cpu) {
2129 cpu_buffer = buffer->buffers[cpu];
2130 if (!cpu_buffer->nr_pages_to_update)
2131 continue;
2132
2133 if (cpu_online(cpu))
2134 wait_for_completion(&cpu_buffer->update_done);
2135 cpu_buffer->nr_pages_to_update = 0;
2136 }
2137
2138 put_online_cpus();
2139 } else {
2140 /* Make sure this CPU has been initialized */
2141 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2142 goto out;
2143
2144 cpu_buffer = buffer->buffers[cpu_id];
2145
2146 if (nr_pages == cpu_buffer->nr_pages)
2147 goto out;
2148
2149 /*
2150 * Don't succeed if resizing is disabled, as a reader might be
2151 * manipulating the ring buffer and is expecting a sane state while
2152 * this is true.
2153 */
2154 if (atomic_read(&cpu_buffer->resize_disabled)) {
2155 err = -EBUSY;
2156 goto out_err_unlock;
2157 }
2158
2159 cpu_buffer->nr_pages_to_update = nr_pages -
2160 cpu_buffer->nr_pages;
2161
2162 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2163 if (cpu_buffer->nr_pages_to_update > 0 &&
2164 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2165 &cpu_buffer->new_pages, cpu_id)) {
2166 err = -ENOMEM;
2167 goto out_err;
2168 }
2169
2170 get_online_cpus();
2171
2172 /* Can't run something on an offline CPU. */
2173 if (!cpu_online(cpu_id))
2174 rb_update_pages(cpu_buffer);
2175 else {
2176 schedule_work_on(cpu_id,
2177 &cpu_buffer->update_pages_work);
2178 wait_for_completion(&cpu_buffer->update_done);
2179 }
2180
2181 cpu_buffer->nr_pages_to_update = 0;
2182 put_online_cpus();
2183 }
2184
2185 out:
2186 /*
2187 * The ring buffer resize can happen with the ring buffer
2188 * enabled, so that the update disturbs the tracing as little
2189 * as possible. But if the buffer is disabled, we do not need
2190 * to worry about that, and we can take the time to verify
2191 * that the buffer is not corrupt.
2192 */
2193 if (atomic_read(&buffer->record_disabled)) {
2194 atomic_inc(&buffer->record_disabled);
2195 /*
2196 * Even though the buffer was disabled, we must make sure
2197 * that it is truly disabled before calling rb_check_pages.
2198 * There could have been a race between checking
2199 * record_disable and incrementing it.
2200 */
2201 synchronize_rcu();
2202 for_each_buffer_cpu(buffer, cpu) {
2203 unsigned long flags;
2204
2205 cpu_buffer = buffer->buffers[cpu];
2206 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2207 rb_check_pages(cpu_buffer);
2208 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2209 }
2210 atomic_dec(&buffer->record_disabled);
2211 }
2212
2213 atomic_dec(&buffer->resizing);
2214 mutex_unlock(&buffer->mutex);
2215 return 0;
2216
2217 out_err:
2218 for_each_buffer_cpu(buffer, cpu) {
2219 struct buffer_page *bpage, *tmp;
2220
2221 cpu_buffer = buffer->buffers[cpu];
2222 cpu_buffer->nr_pages_to_update = 0;
2223
2224 if (list_empty(&cpu_buffer->new_pages))
2225 continue;
2226
2227 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2228 list) {
2229 list_del_init(&bpage->list);
2230 free_buffer_page(bpage);
2231 }
2232 }
2233 out_err_unlock:
2234 atomic_dec(&buffer->resizing);
2235 mutex_unlock(&buffer->mutex);
2236 return err;
2237 }
2238 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2239
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2240 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2241 {
2242 mutex_lock(&buffer->mutex);
2243 if (val)
2244 buffer->flags |= RB_FL_OVERWRITE;
2245 else
2246 buffer->flags &= ~RB_FL_OVERWRITE;
2247 mutex_unlock(&buffer->mutex);
2248 }
2249 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2250
__rb_page_index(struct buffer_page * bpage,unsigned index)2251 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2252 {
2253 return bpage->page->data + index;
2254 }
2255
2256 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)2257 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2258 {
2259 return __rb_page_index(cpu_buffer->reader_page,
2260 cpu_buffer->reader_page->read);
2261 }
2262
2263 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)2264 rb_iter_head_event(struct ring_buffer_iter *iter)
2265 {
2266 struct ring_buffer_event *event;
2267 struct buffer_page *iter_head_page = iter->head_page;
2268 unsigned long commit;
2269 unsigned length;
2270
2271 if (iter->head != iter->next_event)
2272 return iter->event;
2273
2274 /*
2275 * When the writer goes across pages, it issues a cmpxchg which
2276 * is a mb(), which will synchronize with the rmb here.
2277 * (see rb_tail_page_update() and __rb_reserve_next())
2278 */
2279 commit = rb_page_commit(iter_head_page);
2280 smp_rmb();
2281
2282 /* An event needs to be at least 8 bytes in size */
2283 if (iter->head > commit - 8)
2284 goto reset;
2285
2286 event = __rb_page_index(iter_head_page, iter->head);
2287 length = rb_event_length(event);
2288
2289 /*
2290 * READ_ONCE() doesn't work on functions and we don't want the
2291 * compiler doing any crazy optimizations with length.
2292 */
2293 barrier();
2294
2295 if ((iter->head + length) > commit || length > BUF_PAGE_SIZE)
2296 /* Writer corrupted the read? */
2297 goto reset;
2298
2299 memcpy(iter->event, event, length);
2300 /*
2301 * If the page stamp is still the same after this rmb() then the
2302 * event was safely copied without the writer entering the page.
2303 */
2304 smp_rmb();
2305
2306 /* Make sure the page didn't change since we read this */
2307 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2308 commit > rb_page_commit(iter_head_page))
2309 goto reset;
2310
2311 iter->next_event = iter->head + length;
2312 return iter->event;
2313 reset:
2314 /* Reset to the beginning */
2315 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2316 iter->head = 0;
2317 iter->next_event = 0;
2318 iter->missed_events = 1;
2319 return NULL;
2320 }
2321
2322 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)2323 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2324 {
2325 return rb_page_commit(bpage);
2326 }
2327
2328 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)2329 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2330 {
2331 return rb_page_commit(cpu_buffer->commit_page);
2332 }
2333
2334 static __always_inline unsigned
rb_event_index(struct ring_buffer_event * event)2335 rb_event_index(struct ring_buffer_event *event)
2336 {
2337 unsigned long addr = (unsigned long)event;
2338
2339 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2340 }
2341
rb_inc_iter(struct ring_buffer_iter * iter)2342 static void rb_inc_iter(struct ring_buffer_iter *iter)
2343 {
2344 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2345
2346 /*
2347 * The iterator could be on the reader page (it starts there).
2348 * But the head could have moved, since the reader was
2349 * found. Check for this case and assign the iterator
2350 * to the head page instead of next.
2351 */
2352 if (iter->head_page == cpu_buffer->reader_page)
2353 iter->head_page = rb_set_head_page(cpu_buffer);
2354 else
2355 rb_inc_page(cpu_buffer, &iter->head_page);
2356
2357 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2358 iter->head = 0;
2359 iter->next_event = 0;
2360 }
2361
2362 /*
2363 * rb_handle_head_page - writer hit the head page
2364 *
2365 * Returns: +1 to retry page
2366 * 0 to continue
2367 * -1 on error
2368 */
2369 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2370 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2371 struct buffer_page *tail_page,
2372 struct buffer_page *next_page)
2373 {
2374 struct buffer_page *new_head;
2375 int entries;
2376 int type;
2377 int ret;
2378
2379 entries = rb_page_entries(next_page);
2380
2381 /*
2382 * The hard part is here. We need to move the head
2383 * forward, and protect against both readers on
2384 * other CPUs and writers coming in via interrupts.
2385 */
2386 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2387 RB_PAGE_HEAD);
2388
2389 /*
2390 * type can be one of four:
2391 * NORMAL - an interrupt already moved it for us
2392 * HEAD - we are the first to get here.
2393 * UPDATE - we are the interrupt interrupting
2394 * a current move.
2395 * MOVED - a reader on another CPU moved the next
2396 * pointer to its reader page. Give up
2397 * and try again.
2398 */
2399
2400 switch (type) {
2401 case RB_PAGE_HEAD:
2402 /*
2403 * We changed the head to UPDATE, thus
2404 * it is our responsibility to update
2405 * the counters.
2406 */
2407 local_add(entries, &cpu_buffer->overrun);
2408 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2409 local_inc(&cpu_buffer->pages_lost);
2410
2411 /*
2412 * The entries will be zeroed out when we move the
2413 * tail page.
2414 */
2415
2416 /* still more to do */
2417 break;
2418
2419 case RB_PAGE_UPDATE:
2420 /*
2421 * This is an interrupt that interrupt the
2422 * previous update. Still more to do.
2423 */
2424 break;
2425 case RB_PAGE_NORMAL:
2426 /*
2427 * An interrupt came in before the update
2428 * and processed this for us.
2429 * Nothing left to do.
2430 */
2431 return 1;
2432 case RB_PAGE_MOVED:
2433 /*
2434 * The reader is on another CPU and just did
2435 * a swap with our next_page.
2436 * Try again.
2437 */
2438 return 1;
2439 default:
2440 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2441 return -1;
2442 }
2443
2444 /*
2445 * Now that we are here, the old head pointer is
2446 * set to UPDATE. This will keep the reader from
2447 * swapping the head page with the reader page.
2448 * The reader (on another CPU) will spin till
2449 * we are finished.
2450 *
2451 * We just need to protect against interrupts
2452 * doing the job. We will set the next pointer
2453 * to HEAD. After that, we set the old pointer
2454 * to NORMAL, but only if it was HEAD before.
2455 * otherwise we are an interrupt, and only
2456 * want the outer most commit to reset it.
2457 */
2458 new_head = next_page;
2459 rb_inc_page(cpu_buffer, &new_head);
2460
2461 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2462 RB_PAGE_NORMAL);
2463
2464 /*
2465 * Valid returns are:
2466 * HEAD - an interrupt came in and already set it.
2467 * NORMAL - One of two things:
2468 * 1) We really set it.
2469 * 2) A bunch of interrupts came in and moved
2470 * the page forward again.
2471 */
2472 switch (ret) {
2473 case RB_PAGE_HEAD:
2474 case RB_PAGE_NORMAL:
2475 /* OK */
2476 break;
2477 default:
2478 RB_WARN_ON(cpu_buffer, 1);
2479 return -1;
2480 }
2481
2482 /*
2483 * It is possible that an interrupt came in,
2484 * set the head up, then more interrupts came in
2485 * and moved it again. When we get back here,
2486 * the page would have been set to NORMAL but we
2487 * just set it back to HEAD.
2488 *
2489 * How do you detect this? Well, if that happened
2490 * the tail page would have moved.
2491 */
2492 if (ret == RB_PAGE_NORMAL) {
2493 struct buffer_page *buffer_tail_page;
2494
2495 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2496 /*
2497 * If the tail had moved passed next, then we need
2498 * to reset the pointer.
2499 */
2500 if (buffer_tail_page != tail_page &&
2501 buffer_tail_page != next_page)
2502 rb_head_page_set_normal(cpu_buffer, new_head,
2503 next_page,
2504 RB_PAGE_HEAD);
2505 }
2506
2507 /*
2508 * If this was the outer most commit (the one that
2509 * changed the original pointer from HEAD to UPDATE),
2510 * then it is up to us to reset it to NORMAL.
2511 */
2512 if (type == RB_PAGE_HEAD) {
2513 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2514 tail_page,
2515 RB_PAGE_UPDATE);
2516 if (RB_WARN_ON(cpu_buffer,
2517 ret != RB_PAGE_UPDATE))
2518 return -1;
2519 }
2520
2521 return 0;
2522 }
2523
2524 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2525 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2526 unsigned long tail, struct rb_event_info *info)
2527 {
2528 struct buffer_page *tail_page = info->tail_page;
2529 struct ring_buffer_event *event;
2530 unsigned long length = info->length;
2531
2532 /*
2533 * Only the event that crossed the page boundary
2534 * must fill the old tail_page with padding.
2535 */
2536 if (tail >= BUF_PAGE_SIZE) {
2537 /*
2538 * If the page was filled, then we still need
2539 * to update the real_end. Reset it to zero
2540 * and the reader will ignore it.
2541 */
2542 if (tail == BUF_PAGE_SIZE)
2543 tail_page->real_end = 0;
2544
2545 local_sub(length, &tail_page->write);
2546 return;
2547 }
2548
2549 event = __rb_page_index(tail_page, tail);
2550
2551 /*
2552 * Save the original length to the meta data.
2553 * This will be used by the reader to add lost event
2554 * counter.
2555 */
2556 tail_page->real_end = tail;
2557
2558 /*
2559 * If this event is bigger than the minimum size, then
2560 * we need to be careful that we don't subtract the
2561 * write counter enough to allow another writer to slip
2562 * in on this page.
2563 * We put in a discarded commit instead, to make sure
2564 * that this space is not used again, and this space will
2565 * not be accounted into 'entries_bytes'.
2566 *
2567 * If we are less than the minimum size, we don't need to
2568 * worry about it.
2569 */
2570 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2571 /* No room for any events */
2572
2573 /* Mark the rest of the page with padding */
2574 rb_event_set_padding(event);
2575
2576 /* Make sure the padding is visible before the write update */
2577 smp_wmb();
2578
2579 /* Set the write back to the previous setting */
2580 local_sub(length, &tail_page->write);
2581 return;
2582 }
2583
2584 /* Put in a discarded event */
2585 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2586 event->type_len = RINGBUF_TYPE_PADDING;
2587 /* time delta must be non zero */
2588 event->time_delta = 1;
2589
2590 /* account for padding bytes */
2591 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2592
2593 /* Make sure the padding is visible before the tail_page->write update */
2594 smp_wmb();
2595
2596 /* Set write to end of buffer */
2597 length = (tail + length) - BUF_PAGE_SIZE;
2598 local_sub(length, &tail_page->write);
2599 }
2600
2601 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2602
2603 /*
2604 * This is the slow path, force gcc not to inline it.
2605 */
2606 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2607 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2608 unsigned long tail, struct rb_event_info *info)
2609 {
2610 struct buffer_page *tail_page = info->tail_page;
2611 struct buffer_page *commit_page = cpu_buffer->commit_page;
2612 struct trace_buffer *buffer = cpu_buffer->buffer;
2613 struct buffer_page *next_page;
2614 int ret;
2615
2616 next_page = tail_page;
2617
2618 rb_inc_page(cpu_buffer, &next_page);
2619
2620 /*
2621 * If for some reason, we had an interrupt storm that made
2622 * it all the way around the buffer, bail, and warn
2623 * about it.
2624 */
2625 if (unlikely(next_page == commit_page)) {
2626 local_inc(&cpu_buffer->commit_overrun);
2627 goto out_reset;
2628 }
2629
2630 /*
2631 * This is where the fun begins!
2632 *
2633 * We are fighting against races between a reader that
2634 * could be on another CPU trying to swap its reader
2635 * page with the buffer head.
2636 *
2637 * We are also fighting against interrupts coming in and
2638 * moving the head or tail on us as well.
2639 *
2640 * If the next page is the head page then we have filled
2641 * the buffer, unless the commit page is still on the
2642 * reader page.
2643 */
2644 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2645
2646 /*
2647 * If the commit is not on the reader page, then
2648 * move the header page.
2649 */
2650 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2651 /*
2652 * If we are not in overwrite mode,
2653 * this is easy, just stop here.
2654 */
2655 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2656 local_inc(&cpu_buffer->dropped_events);
2657 goto out_reset;
2658 }
2659
2660 ret = rb_handle_head_page(cpu_buffer,
2661 tail_page,
2662 next_page);
2663 if (ret < 0)
2664 goto out_reset;
2665 if (ret)
2666 goto out_again;
2667 } else {
2668 /*
2669 * We need to be careful here too. The
2670 * commit page could still be on the reader
2671 * page. We could have a small buffer, and
2672 * have filled up the buffer with events
2673 * from interrupts and such, and wrapped.
2674 *
2675 * Note, if the tail page is also the on the
2676 * reader_page, we let it move out.
2677 */
2678 if (unlikely((cpu_buffer->commit_page !=
2679 cpu_buffer->tail_page) &&
2680 (cpu_buffer->commit_page ==
2681 cpu_buffer->reader_page))) {
2682 local_inc(&cpu_buffer->commit_overrun);
2683 goto out_reset;
2684 }
2685 }
2686 }
2687
2688 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2689
2690 out_again:
2691
2692 rb_reset_tail(cpu_buffer, tail, info);
2693
2694 /* Commit what we have for now. */
2695 rb_end_commit(cpu_buffer);
2696 /* rb_end_commit() decs committing */
2697 local_inc(&cpu_buffer->committing);
2698
2699 /* fail and let the caller try again */
2700 return ERR_PTR(-EAGAIN);
2701
2702 out_reset:
2703 /* reset write */
2704 rb_reset_tail(cpu_buffer, tail, info);
2705
2706 return NULL;
2707 }
2708
2709 /* Slow path */
2710 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta,bool abs)2711 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2712 {
2713 if (abs)
2714 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2715 else
2716 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2717
2718 /* Not the first event on the page, or not delta? */
2719 if (abs || rb_event_index(event)) {
2720 event->time_delta = delta & TS_MASK;
2721 event->array[0] = delta >> TS_SHIFT;
2722 } else {
2723 /* nope, just zero it */
2724 event->time_delta = 0;
2725 event->array[0] = 0;
2726 }
2727
2728 return skip_time_extend(event);
2729 }
2730
2731 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2732 struct ring_buffer_event *event);
2733
2734 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2735 static inline bool sched_clock_stable(void)
2736 {
2737 return true;
2738 }
2739 #endif
2740
2741 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2742 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2743 struct rb_event_info *info)
2744 {
2745 u64 write_stamp;
2746
2747 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2748 (unsigned long long)info->delta,
2749 (unsigned long long)info->ts,
2750 (unsigned long long)info->before,
2751 (unsigned long long)info->after,
2752 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2753 sched_clock_stable() ? "" :
2754 "If you just came from a suspend/resume,\n"
2755 "please switch to the trace global clock:\n"
2756 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2757 "or add trace_clock=global to the kernel command line\n");
2758 }
2759
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)2760 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2761 struct ring_buffer_event **event,
2762 struct rb_event_info *info,
2763 u64 *delta,
2764 unsigned int *length)
2765 {
2766 bool abs = info->add_timestamp &
2767 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2768
2769 if (unlikely(info->delta > (1ULL << 59))) {
2770 /* did the clock go backwards */
2771 if (info->before == info->after && info->before > info->ts) {
2772 /* not interrupted */
2773 static int once;
2774
2775 /*
2776 * This is possible with a recalibrating of the TSC.
2777 * Do not produce a call stack, but just report it.
2778 */
2779 if (!once) {
2780 once++;
2781 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2782 info->before, info->ts);
2783 }
2784 } else
2785 rb_check_timestamp(cpu_buffer, info);
2786 if (!abs)
2787 info->delta = 0;
2788 }
2789 *event = rb_add_time_stamp(*event, info->delta, abs);
2790 *length -= RB_LEN_TIME_EXTEND;
2791 *delta = 0;
2792 }
2793
2794 /**
2795 * rb_update_event - update event type and data
2796 * @cpu_buffer: The per cpu buffer of the @event
2797 * @event: the event to update
2798 * @info: The info to update the @event with (contains length and delta)
2799 *
2800 * Update the type and data fields of the @event. The length
2801 * is the actual size that is written to the ring buffer,
2802 * and with this, we can determine what to place into the
2803 * data field.
2804 */
2805 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2806 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2807 struct ring_buffer_event *event,
2808 struct rb_event_info *info)
2809 {
2810 unsigned length = info->length;
2811 u64 delta = info->delta;
2812
2813 /*
2814 * If we need to add a timestamp, then we
2815 * add it to the start of the reserved space.
2816 */
2817 if (unlikely(info->add_timestamp))
2818 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2819
2820 event->time_delta = delta;
2821 length -= RB_EVNT_HDR_SIZE;
2822 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2823 event->type_len = 0;
2824 event->array[0] = length;
2825 } else
2826 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2827 }
2828
rb_calculate_event_length(unsigned length)2829 static unsigned rb_calculate_event_length(unsigned length)
2830 {
2831 struct ring_buffer_event event; /* Used only for sizeof array */
2832
2833 /* zero length can cause confusions */
2834 if (!length)
2835 length++;
2836
2837 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2838 length += sizeof(event.array[0]);
2839
2840 length += RB_EVNT_HDR_SIZE;
2841 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2842
2843 /*
2844 * In case the time delta is larger than the 27 bits for it
2845 * in the header, we need to add a timestamp. If another
2846 * event comes in when trying to discard this one to increase
2847 * the length, then the timestamp will be added in the allocated
2848 * space of this event. If length is bigger than the size needed
2849 * for the TIME_EXTEND, then padding has to be used. The events
2850 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2851 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2852 * As length is a multiple of 4, we only need to worry if it
2853 * is 12 (RB_LEN_TIME_EXTEND + 4).
2854 */
2855 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2856 length += RB_ALIGNMENT;
2857
2858 return length;
2859 }
2860
2861 static __always_inline bool
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2862 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2863 struct ring_buffer_event *event)
2864 {
2865 unsigned long addr = (unsigned long)event;
2866 unsigned long index;
2867
2868 index = rb_event_index(event);
2869 addr &= PAGE_MASK;
2870
2871 return cpu_buffer->commit_page->page == (void *)addr &&
2872 rb_commit_index(cpu_buffer) == index;
2873 }
2874
rb_time_delta(struct ring_buffer_event * event)2875 static u64 rb_time_delta(struct ring_buffer_event *event)
2876 {
2877 switch (event->type_len) {
2878 case RINGBUF_TYPE_PADDING:
2879 return 0;
2880
2881 case RINGBUF_TYPE_TIME_EXTEND:
2882 return ring_buffer_event_time_stamp(event);
2883
2884 case RINGBUF_TYPE_TIME_STAMP:
2885 return 0;
2886
2887 case RINGBUF_TYPE_DATA:
2888 return event->time_delta;
2889 default:
2890 return 0;
2891 }
2892 }
2893
2894 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2895 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2896 struct ring_buffer_event *event)
2897 {
2898 unsigned long new_index, old_index;
2899 struct buffer_page *bpage;
2900 unsigned long index;
2901 unsigned long addr;
2902 u64 write_stamp;
2903 u64 delta;
2904
2905 new_index = rb_event_index(event);
2906 old_index = new_index + rb_event_ts_length(event);
2907 addr = (unsigned long)event;
2908 addr &= PAGE_MASK;
2909
2910 bpage = READ_ONCE(cpu_buffer->tail_page);
2911
2912 delta = rb_time_delta(event);
2913
2914 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2915 return 0;
2916
2917 /* Make sure the write stamp is read before testing the location */
2918 barrier();
2919
2920 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2921 unsigned long write_mask =
2922 local_read(&bpage->write) & ~RB_WRITE_MASK;
2923 unsigned long event_length = rb_event_length(event);
2924
2925 /*
2926 * For the before_stamp to be different than the write_stamp
2927 * to make sure that the next event adds an absolute
2928 * value and does not rely on the saved write stamp, which
2929 * is now going to be bogus.
2930 */
2931 rb_time_set(&cpu_buffer->before_stamp, 0);
2932
2933 /* Something came in, can't discard */
2934 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2935 write_stamp, write_stamp - delta))
2936 return 0;
2937
2938 /*
2939 * If an event were to come in now, it would see that the
2940 * write_stamp and the before_stamp are different, and assume
2941 * that this event just added itself before updating
2942 * the write stamp. The interrupting event will fix the
2943 * write stamp for us, and use the before stamp as its delta.
2944 */
2945
2946 /*
2947 * This is on the tail page. It is possible that
2948 * a write could come in and move the tail page
2949 * and write to the next page. That is fine
2950 * because we just shorten what is on this page.
2951 */
2952 old_index += write_mask;
2953 new_index += write_mask;
2954 index = local_cmpxchg(&bpage->write, old_index, new_index);
2955 if (index == old_index) {
2956 /* update counters */
2957 local_sub(event_length, &cpu_buffer->entries_bytes);
2958 return 1;
2959 }
2960 }
2961
2962 /* could not discard */
2963 return 0;
2964 }
2965
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2966 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2967 {
2968 local_inc(&cpu_buffer->committing);
2969 local_inc(&cpu_buffer->commits);
2970 }
2971
2972 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)2973 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2974 {
2975 unsigned long max_count;
2976
2977 /*
2978 * We only race with interrupts and NMIs on this CPU.
2979 * If we own the commit event, then we can commit
2980 * all others that interrupted us, since the interruptions
2981 * are in stack format (they finish before they come
2982 * back to us). This allows us to do a simple loop to
2983 * assign the commit to the tail.
2984 */
2985 again:
2986 max_count = cpu_buffer->nr_pages * 100;
2987
2988 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2989 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2990 return;
2991 if (RB_WARN_ON(cpu_buffer,
2992 rb_is_reader_page(cpu_buffer->tail_page)))
2993 return;
2994 /*
2995 * No need for a memory barrier here, as the update
2996 * of the tail_page did it for this page.
2997 */
2998 local_set(&cpu_buffer->commit_page->page->commit,
2999 rb_page_write(cpu_buffer->commit_page));
3000 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
3001 /* add barrier to keep gcc from optimizing too much */
3002 barrier();
3003 }
3004 while (rb_commit_index(cpu_buffer) !=
3005 rb_page_write(cpu_buffer->commit_page)) {
3006
3007 /* Make sure the readers see the content of what is committed. */
3008 smp_wmb();
3009 local_set(&cpu_buffer->commit_page->page->commit,
3010 rb_page_write(cpu_buffer->commit_page));
3011 RB_WARN_ON(cpu_buffer,
3012 local_read(&cpu_buffer->commit_page->page->commit) &
3013 ~RB_WRITE_MASK);
3014 barrier();
3015 }
3016
3017 /* again, keep gcc from optimizing */
3018 barrier();
3019
3020 /*
3021 * If an interrupt came in just after the first while loop
3022 * and pushed the tail page forward, we will be left with
3023 * a dangling commit that will never go forward.
3024 */
3025 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3026 goto again;
3027 }
3028
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3029 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3030 {
3031 unsigned long commits;
3032
3033 if (RB_WARN_ON(cpu_buffer,
3034 !local_read(&cpu_buffer->committing)))
3035 return;
3036
3037 again:
3038 commits = local_read(&cpu_buffer->commits);
3039 /* synchronize with interrupts */
3040 barrier();
3041 if (local_read(&cpu_buffer->committing) == 1)
3042 rb_set_commit_to_write(cpu_buffer);
3043
3044 local_dec(&cpu_buffer->committing);
3045
3046 /* synchronize with interrupts */
3047 barrier();
3048
3049 /*
3050 * Need to account for interrupts coming in between the
3051 * updating of the commit page and the clearing of the
3052 * committing counter.
3053 */
3054 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3055 !local_read(&cpu_buffer->committing)) {
3056 local_inc(&cpu_buffer->committing);
3057 goto again;
3058 }
3059 }
3060
rb_event_discard(struct ring_buffer_event * event)3061 static inline void rb_event_discard(struct ring_buffer_event *event)
3062 {
3063 if (extended_time(event))
3064 event = skip_time_extend(event);
3065
3066 /* array[0] holds the actual length for the discarded event */
3067 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3068 event->type_len = RINGBUF_TYPE_PADDING;
3069 /* time delta must be non zero */
3070 if (!event->time_delta)
3071 event->time_delta = 1;
3072 }
3073
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3074 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3075 struct ring_buffer_event *event)
3076 {
3077 local_inc(&cpu_buffer->entries);
3078 rb_end_commit(cpu_buffer);
3079 }
3080
3081 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3082 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3083 {
3084 if (buffer->irq_work.waiters_pending) {
3085 buffer->irq_work.waiters_pending = false;
3086 /* irq_work_queue() supplies it's own memory barriers */
3087 irq_work_queue(&buffer->irq_work.work);
3088 }
3089
3090 if (cpu_buffer->irq_work.waiters_pending) {
3091 cpu_buffer->irq_work.waiters_pending = false;
3092 /* irq_work_queue() supplies it's own memory barriers */
3093 irq_work_queue(&cpu_buffer->irq_work.work);
3094 }
3095
3096 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3097 return;
3098
3099 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3100 return;
3101
3102 if (!cpu_buffer->irq_work.full_waiters_pending)
3103 return;
3104
3105 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3106
3107 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3108 return;
3109
3110 cpu_buffer->irq_work.wakeup_full = true;
3111 cpu_buffer->irq_work.full_waiters_pending = false;
3112 /* irq_work_queue() supplies it's own memory barriers */
3113 irq_work_queue(&cpu_buffer->irq_work.work);
3114 }
3115
3116 /*
3117 * The lock and unlock are done within a preempt disable section.
3118 * The current_context per_cpu variable can only be modified
3119 * by the current task between lock and unlock. But it can
3120 * be modified more than once via an interrupt. To pass this
3121 * information from the lock to the unlock without having to
3122 * access the 'in_interrupt()' functions again (which do show
3123 * a bit of overhead in something as critical as function tracing,
3124 * we use a bitmask trick.
3125 *
3126 * bit 1 = NMI context
3127 * bit 2 = IRQ context
3128 * bit 3 = SoftIRQ context
3129 * bit 4 = normal context.
3130 *
3131 * This works because this is the order of contexts that can
3132 * preempt other contexts. A SoftIRQ never preempts an IRQ
3133 * context.
3134 *
3135 * When the context is determined, the corresponding bit is
3136 * checked and set (if it was set, then a recursion of that context
3137 * happened).
3138 *
3139 * On unlock, we need to clear this bit. To do so, just subtract
3140 * 1 from the current_context and AND it to itself.
3141 *
3142 * (binary)
3143 * 101 - 1 = 100
3144 * 101 & 100 = 100 (clearing bit zero)
3145 *
3146 * 1010 - 1 = 1001
3147 * 1010 & 1001 = 1000 (clearing bit 1)
3148 *
3149 * The least significant bit can be cleared this way, and it
3150 * just so happens that it is the same bit corresponding to
3151 * the current context.
3152 *
3153 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3154 * is set when a recursion is detected at the current context, and if
3155 * the TRANSITION bit is already set, it will fail the recursion.
3156 * This is needed because there's a lag between the changing of
3157 * interrupt context and updating the preempt count. In this case,
3158 * a false positive will be found. To handle this, one extra recursion
3159 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3160 * bit is already set, then it is considered a recursion and the function
3161 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3162 *
3163 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3164 * to be cleared. Even if it wasn't the context that set it. That is,
3165 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3166 * is called before preempt_count() is updated, since the check will
3167 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3168 * NMI then comes in, it will set the NMI bit, but when the NMI code
3169 * does the trace_recursive_unlock() it will clear the TRANSTION bit
3170 * and leave the NMI bit set. But this is fine, because the interrupt
3171 * code that set the TRANSITION bit will then clear the NMI bit when it
3172 * calls trace_recursive_unlock(). If another NMI comes in, it will
3173 * set the TRANSITION bit and continue.
3174 *
3175 * Note: The TRANSITION bit only handles a single transition between context.
3176 */
3177
3178 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3179 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3180 {
3181 unsigned int val = cpu_buffer->current_context;
3182 unsigned long pc = preempt_count();
3183 int bit;
3184
3185 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3186 bit = RB_CTX_NORMAL;
3187 else
3188 bit = pc & NMI_MASK ? RB_CTX_NMI :
3189 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3190
3191 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3192 /*
3193 * It is possible that this was called by transitioning
3194 * between interrupt context, and preempt_count() has not
3195 * been updated yet. In this case, use the TRANSITION bit.
3196 */
3197 bit = RB_CTX_TRANSITION;
3198 if (val & (1 << (bit + cpu_buffer->nest)))
3199 return 1;
3200 }
3201
3202 val |= (1 << (bit + cpu_buffer->nest));
3203 cpu_buffer->current_context = val;
3204
3205 return 0;
3206 }
3207
3208 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3209 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3210 {
3211 cpu_buffer->current_context &=
3212 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3213 }
3214
3215 /* The recursive locking above uses 5 bits */
3216 #define NESTED_BITS 5
3217
3218 /**
3219 * ring_buffer_nest_start - Allow to trace while nested
3220 * @buffer: The ring buffer to modify
3221 *
3222 * The ring buffer has a safety mechanism to prevent recursion.
3223 * But there may be a case where a trace needs to be done while
3224 * tracing something else. In this case, calling this function
3225 * will allow this function to nest within a currently active
3226 * ring_buffer_lock_reserve().
3227 *
3228 * Call this function before calling another ring_buffer_lock_reserve() and
3229 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3230 */
ring_buffer_nest_start(struct trace_buffer * buffer)3231 void ring_buffer_nest_start(struct trace_buffer *buffer)
3232 {
3233 struct ring_buffer_per_cpu *cpu_buffer;
3234 int cpu;
3235
3236 /* Enabled by ring_buffer_nest_end() */
3237 preempt_disable_notrace();
3238 cpu = raw_smp_processor_id();
3239 cpu_buffer = buffer->buffers[cpu];
3240 /* This is the shift value for the above recursive locking */
3241 cpu_buffer->nest += NESTED_BITS;
3242 }
3243
3244 /**
3245 * ring_buffer_nest_end - Allow to trace while nested
3246 * @buffer: The ring buffer to modify
3247 *
3248 * Must be called after ring_buffer_nest_start() and after the
3249 * ring_buffer_unlock_commit().
3250 */
ring_buffer_nest_end(struct trace_buffer * buffer)3251 void ring_buffer_nest_end(struct trace_buffer *buffer)
3252 {
3253 struct ring_buffer_per_cpu *cpu_buffer;
3254 int cpu;
3255
3256 /* disabled by ring_buffer_nest_start() */
3257 cpu = raw_smp_processor_id();
3258 cpu_buffer = buffer->buffers[cpu];
3259 /* This is the shift value for the above recursive locking */
3260 cpu_buffer->nest -= NESTED_BITS;
3261 preempt_enable_notrace();
3262 }
3263
3264 /**
3265 * ring_buffer_unlock_commit - commit a reserved
3266 * @buffer: The buffer to commit to
3267 * @event: The event pointer to commit.
3268 *
3269 * This commits the data to the ring buffer, and releases any locks held.
3270 *
3271 * Must be paired with ring_buffer_lock_reserve.
3272 */
ring_buffer_unlock_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3273 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3274 struct ring_buffer_event *event)
3275 {
3276 struct ring_buffer_per_cpu *cpu_buffer;
3277 int cpu = raw_smp_processor_id();
3278
3279 cpu_buffer = buffer->buffers[cpu];
3280
3281 rb_commit(cpu_buffer, event);
3282
3283 rb_wakeups(buffer, cpu_buffer);
3284
3285 trace_recursive_unlock(cpu_buffer);
3286
3287 preempt_enable_notrace();
3288
3289 return 0;
3290 }
3291 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3292
3293 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3294 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3295 struct rb_event_info *info)
3296 {
3297 struct ring_buffer_event *event;
3298 struct buffer_page *tail_page;
3299 unsigned long tail, write, w;
3300 bool a_ok;
3301 bool b_ok;
3302
3303 /* Don't let the compiler play games with cpu_buffer->tail_page */
3304 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3305
3306 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3307 barrier();
3308 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3309 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3310 barrier();
3311 info->ts = rb_time_stamp(cpu_buffer->buffer);
3312
3313 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3314 info->delta = info->ts;
3315 } else {
3316 /*
3317 * If interrupting an event time update, we may need an
3318 * absolute timestamp.
3319 * Don't bother if this is the start of a new page (w == 0).
3320 */
3321 if (!w) {
3322 /* Use the sub-buffer timestamp */
3323 info->delta = 0;
3324 } else if (unlikely(!a_ok || !b_ok || info->before != info->after)) {
3325 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3326 info->length += RB_LEN_TIME_EXTEND;
3327 } else {
3328 info->delta = info->ts - info->after;
3329 if (unlikely(test_time_stamp(info->delta))) {
3330 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3331 info->length += RB_LEN_TIME_EXTEND;
3332 }
3333 }
3334 }
3335
3336 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
3337
3338 /*C*/ write = local_add_return(info->length, &tail_page->write);
3339
3340 /* set write to only the index of the write */
3341 write &= RB_WRITE_MASK;
3342
3343 tail = write - info->length;
3344
3345 /* See if we shot pass the end of this buffer page */
3346 if (unlikely(write > BUF_PAGE_SIZE)) {
3347 /* before and after may now different, fix it up*/
3348 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3349 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3350 if (a_ok && b_ok && info->before != info->after)
3351 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3352 info->before, info->after);
3353 return rb_move_tail(cpu_buffer, tail, info);
3354 }
3355
3356 if (likely(tail == w)) {
3357 u64 save_before;
3358 bool s_ok;
3359
3360 /* Nothing interrupted us between A and C */
3361 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
3362 barrier();
3363 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3364 RB_WARN_ON(cpu_buffer, !s_ok);
3365 if (likely(!(info->add_timestamp &
3366 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3367 /* This did not interrupt any time update */
3368 info->delta = info->ts - info->after;
3369 else
3370 /* Just use full timestamp for inerrupting event */
3371 info->delta = info->ts;
3372 barrier();
3373 if (unlikely(info->ts != save_before)) {
3374 /* SLOW PATH - Interrupted between C and E */
3375
3376 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3377 RB_WARN_ON(cpu_buffer, !a_ok);
3378
3379 /* Write stamp must only go forward */
3380 if (save_before > info->after) {
3381 /*
3382 * We do not care about the result, only that
3383 * it gets updated atomically.
3384 */
3385 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3386 info->after, save_before);
3387 }
3388 }
3389 } else {
3390 u64 ts;
3391 /* SLOW PATH - Interrupted between A and C */
3392 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3393 /* Was interrupted before here, write_stamp must be valid */
3394 RB_WARN_ON(cpu_buffer, !a_ok);
3395 ts = rb_time_stamp(cpu_buffer->buffer);
3396 barrier();
3397 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3398 info->after < ts &&
3399 rb_time_cmpxchg(&cpu_buffer->write_stamp,
3400 info->after, ts)) {
3401 /* Nothing came after this event between C and E */
3402 info->delta = ts - info->after;
3403 info->ts = ts;
3404 } else {
3405 /*
3406 * Interrupted beween C and E:
3407 * Lost the previous events time stamp. Just set the
3408 * delta to zero, and this will be the same time as
3409 * the event this event interrupted. And the events that
3410 * came after this will still be correct (as they would
3411 * have built their delta on the previous event.
3412 */
3413 info->delta = 0;
3414 }
3415 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3416 }
3417
3418 /*
3419 * If this is the first commit on the page, then it has the same
3420 * timestamp as the page itself.
3421 */
3422 if (unlikely(!tail && !(info->add_timestamp &
3423 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3424 info->delta = 0;
3425
3426 /* We reserved something on the buffer */
3427
3428 event = __rb_page_index(tail_page, tail);
3429 rb_update_event(cpu_buffer, event, info);
3430
3431 local_inc(&tail_page->entries);
3432
3433 /*
3434 * If this is the first commit on the page, then update
3435 * its timestamp.
3436 */
3437 if (unlikely(!tail))
3438 tail_page->page->time_stamp = info->ts;
3439
3440 /* account for these added bytes */
3441 local_add(info->length, &cpu_buffer->entries_bytes);
3442
3443 return event;
3444 }
3445
3446 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)3447 rb_reserve_next_event(struct trace_buffer *buffer,
3448 struct ring_buffer_per_cpu *cpu_buffer,
3449 unsigned long length)
3450 {
3451 struct ring_buffer_event *event;
3452 struct rb_event_info info;
3453 int nr_loops = 0;
3454 int add_ts_default;
3455
3456 /* ring buffer does cmpxchg, make sure it is safe in NMI context */
3457 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3458 (unlikely(in_nmi()))) {
3459 return NULL;
3460 }
3461
3462 rb_start_commit(cpu_buffer);
3463 /* The commit page can not change after this */
3464
3465 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3466 /*
3467 * Due to the ability to swap a cpu buffer from a buffer
3468 * it is possible it was swapped before we committed.
3469 * (committing stops a swap). We check for it here and
3470 * if it happened, we have to fail the write.
3471 */
3472 barrier();
3473 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3474 local_dec(&cpu_buffer->committing);
3475 local_dec(&cpu_buffer->commits);
3476 return NULL;
3477 }
3478 #endif
3479
3480 info.length = rb_calculate_event_length(length);
3481
3482 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3483 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3484 info.length += RB_LEN_TIME_EXTEND;
3485 if (info.length > BUF_MAX_DATA_SIZE)
3486 goto out_fail;
3487 } else {
3488 add_ts_default = RB_ADD_STAMP_NONE;
3489 }
3490
3491 again:
3492 info.add_timestamp = add_ts_default;
3493 info.delta = 0;
3494
3495 /*
3496 * We allow for interrupts to reenter here and do a trace.
3497 * If one does, it will cause this original code to loop
3498 * back here. Even with heavy interrupts happening, this
3499 * should only happen a few times in a row. If this happens
3500 * 1000 times in a row, there must be either an interrupt
3501 * storm or we have something buggy.
3502 * Bail!
3503 */
3504 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3505 goto out_fail;
3506
3507 event = __rb_reserve_next(cpu_buffer, &info);
3508
3509 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3510 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3511 info.length -= RB_LEN_TIME_EXTEND;
3512 goto again;
3513 }
3514
3515 if (likely(event))
3516 return event;
3517 out_fail:
3518 rb_end_commit(cpu_buffer);
3519 return NULL;
3520 }
3521
3522 /**
3523 * ring_buffer_lock_reserve - reserve a part of the buffer
3524 * @buffer: the ring buffer to reserve from
3525 * @length: the length of the data to reserve (excluding event header)
3526 *
3527 * Returns a reserved event on the ring buffer to copy directly to.
3528 * The user of this interface will need to get the body to write into
3529 * and can use the ring_buffer_event_data() interface.
3530 *
3531 * The length is the length of the data needed, not the event length
3532 * which also includes the event header.
3533 *
3534 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3535 * If NULL is returned, then nothing has been allocated or locked.
3536 */
3537 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)3538 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3539 {
3540 struct ring_buffer_per_cpu *cpu_buffer;
3541 struct ring_buffer_event *event;
3542 int cpu;
3543
3544 /* If we are tracing schedule, we don't want to recurse */
3545 preempt_disable_notrace();
3546
3547 if (unlikely(atomic_read(&buffer->record_disabled)))
3548 goto out;
3549
3550 cpu = raw_smp_processor_id();
3551
3552 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3553 goto out;
3554
3555 cpu_buffer = buffer->buffers[cpu];
3556
3557 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3558 goto out;
3559
3560 if (unlikely(length > BUF_MAX_DATA_SIZE))
3561 goto out;
3562
3563 if (unlikely(trace_recursive_lock(cpu_buffer)))
3564 goto out;
3565
3566 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3567 if (!event)
3568 goto out_unlock;
3569
3570 return event;
3571
3572 out_unlock:
3573 trace_recursive_unlock(cpu_buffer);
3574 out:
3575 preempt_enable_notrace();
3576 return NULL;
3577 }
3578 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3579
3580 /*
3581 * Decrement the entries to the page that an event is on.
3582 * The event does not even need to exist, only the pointer
3583 * to the page it is on. This may only be called before the commit
3584 * takes place.
3585 */
3586 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3587 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3588 struct ring_buffer_event *event)
3589 {
3590 unsigned long addr = (unsigned long)event;
3591 struct buffer_page *bpage = cpu_buffer->commit_page;
3592 struct buffer_page *start;
3593
3594 addr &= PAGE_MASK;
3595
3596 /* Do the likely case first */
3597 if (likely(bpage->page == (void *)addr)) {
3598 local_dec(&bpage->entries);
3599 return;
3600 }
3601
3602 /*
3603 * Because the commit page may be on the reader page we
3604 * start with the next page and check the end loop there.
3605 */
3606 rb_inc_page(cpu_buffer, &bpage);
3607 start = bpage;
3608 do {
3609 if (bpage->page == (void *)addr) {
3610 local_dec(&bpage->entries);
3611 return;
3612 }
3613 rb_inc_page(cpu_buffer, &bpage);
3614 } while (bpage != start);
3615
3616 /* commit not part of this buffer?? */
3617 RB_WARN_ON(cpu_buffer, 1);
3618 }
3619
3620 /**
3621 * ring_buffer_commit_discard - discard an event that has not been committed
3622 * @buffer: the ring buffer
3623 * @event: non committed event to discard
3624 *
3625 * Sometimes an event that is in the ring buffer needs to be ignored.
3626 * This function lets the user discard an event in the ring buffer
3627 * and then that event will not be read later.
3628 *
3629 * This function only works if it is called before the item has been
3630 * committed. It will try to free the event from the ring buffer
3631 * if another event has not been added behind it.
3632 *
3633 * If another event has been added behind it, it will set the event
3634 * up as discarded, and perform the commit.
3635 *
3636 * If this function is called, do not call ring_buffer_unlock_commit on
3637 * the event.
3638 */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3639 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3640 struct ring_buffer_event *event)
3641 {
3642 struct ring_buffer_per_cpu *cpu_buffer;
3643 int cpu;
3644
3645 /* The event is discarded regardless */
3646 rb_event_discard(event);
3647
3648 cpu = smp_processor_id();
3649 cpu_buffer = buffer->buffers[cpu];
3650
3651 /*
3652 * This must only be called if the event has not been
3653 * committed yet. Thus we can assume that preemption
3654 * is still disabled.
3655 */
3656 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3657
3658 rb_decrement_entry(cpu_buffer, event);
3659 if (rb_try_to_discard(cpu_buffer, event))
3660 goto out;
3661
3662 out:
3663 rb_end_commit(cpu_buffer);
3664
3665 trace_recursive_unlock(cpu_buffer);
3666
3667 preempt_enable_notrace();
3668
3669 }
3670 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3671
3672 /**
3673 * ring_buffer_write - write data to the buffer without reserving
3674 * @buffer: The ring buffer to write to.
3675 * @length: The length of the data being written (excluding the event header)
3676 * @data: The data to write to the buffer.
3677 *
3678 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3679 * one function. If you already have the data to write to the buffer, it
3680 * may be easier to simply call this function.
3681 *
3682 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3683 * and not the length of the event which would hold the header.
3684 */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)3685 int ring_buffer_write(struct trace_buffer *buffer,
3686 unsigned long length,
3687 void *data)
3688 {
3689 struct ring_buffer_per_cpu *cpu_buffer;
3690 struct ring_buffer_event *event;
3691 void *body;
3692 int ret = -EBUSY;
3693 int cpu;
3694
3695 preempt_disable_notrace();
3696
3697 if (atomic_read(&buffer->record_disabled))
3698 goto out;
3699
3700 cpu = raw_smp_processor_id();
3701
3702 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3703 goto out;
3704
3705 cpu_buffer = buffer->buffers[cpu];
3706
3707 if (atomic_read(&cpu_buffer->record_disabled))
3708 goto out;
3709
3710 if (length > BUF_MAX_DATA_SIZE)
3711 goto out;
3712
3713 if (unlikely(trace_recursive_lock(cpu_buffer)))
3714 goto out;
3715
3716 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3717 if (!event)
3718 goto out_unlock;
3719
3720 body = rb_event_data(event);
3721
3722 memcpy(body, data, length);
3723
3724 rb_commit(cpu_buffer, event);
3725
3726 rb_wakeups(buffer, cpu_buffer);
3727
3728 ret = 0;
3729
3730 out_unlock:
3731 trace_recursive_unlock(cpu_buffer);
3732
3733 out:
3734 preempt_enable_notrace();
3735
3736 return ret;
3737 }
3738 EXPORT_SYMBOL_GPL(ring_buffer_write);
3739
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3740 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3741 {
3742 struct buffer_page *reader = cpu_buffer->reader_page;
3743 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3744 struct buffer_page *commit = cpu_buffer->commit_page;
3745
3746 /* In case of error, head will be NULL */
3747 if (unlikely(!head))
3748 return true;
3749
3750 /* Reader should exhaust content in reader page */
3751 if (reader->read != rb_page_commit(reader))
3752 return false;
3753
3754 /*
3755 * If writers are committing on the reader page, knowing all
3756 * committed content has been read, the ring buffer is empty.
3757 */
3758 if (commit == reader)
3759 return true;
3760
3761 /*
3762 * If writers are committing on a page other than reader page
3763 * and head page, there should always be content to read.
3764 */
3765 if (commit != head)
3766 return false;
3767
3768 /*
3769 * Writers are committing on the head page, we just need
3770 * to care about there're committed data, and the reader will
3771 * swap reader page with head page when it is to read data.
3772 */
3773 return rb_page_commit(commit) == 0;
3774 }
3775
3776 /**
3777 * ring_buffer_record_disable - stop all writes into the buffer
3778 * @buffer: The ring buffer to stop writes to.
3779 *
3780 * This prevents all writes to the buffer. Any attempt to write
3781 * to the buffer after this will fail and return NULL.
3782 *
3783 * The caller should call synchronize_rcu() after this.
3784 */
ring_buffer_record_disable(struct trace_buffer * buffer)3785 void ring_buffer_record_disable(struct trace_buffer *buffer)
3786 {
3787 atomic_inc(&buffer->record_disabled);
3788 }
3789 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3790
3791 /**
3792 * ring_buffer_record_enable - enable writes to the buffer
3793 * @buffer: The ring buffer to enable writes
3794 *
3795 * Note, multiple disables will need the same number of enables
3796 * to truly enable the writing (much like preempt_disable).
3797 */
ring_buffer_record_enable(struct trace_buffer * buffer)3798 void ring_buffer_record_enable(struct trace_buffer *buffer)
3799 {
3800 atomic_dec(&buffer->record_disabled);
3801 }
3802 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3803
3804 /**
3805 * ring_buffer_record_off - stop all writes into the buffer
3806 * @buffer: The ring buffer to stop writes to.
3807 *
3808 * This prevents all writes to the buffer. Any attempt to write
3809 * to the buffer after this will fail and return NULL.
3810 *
3811 * This is different than ring_buffer_record_disable() as
3812 * it works like an on/off switch, where as the disable() version
3813 * must be paired with a enable().
3814 */
ring_buffer_record_off(struct trace_buffer * buffer)3815 void ring_buffer_record_off(struct trace_buffer *buffer)
3816 {
3817 unsigned int rd;
3818 unsigned int new_rd;
3819
3820 do {
3821 rd = atomic_read(&buffer->record_disabled);
3822 new_rd = rd | RB_BUFFER_OFF;
3823 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3824 }
3825 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3826
3827 /**
3828 * ring_buffer_record_on - restart writes into the buffer
3829 * @buffer: The ring buffer to start writes to.
3830 *
3831 * This enables all writes to the buffer that was disabled by
3832 * ring_buffer_record_off().
3833 *
3834 * This is different than ring_buffer_record_enable() as
3835 * it works like an on/off switch, where as the enable() version
3836 * must be paired with a disable().
3837 */
ring_buffer_record_on(struct trace_buffer * buffer)3838 void ring_buffer_record_on(struct trace_buffer *buffer)
3839 {
3840 unsigned int rd;
3841 unsigned int new_rd;
3842
3843 do {
3844 rd = atomic_read(&buffer->record_disabled);
3845 new_rd = rd & ~RB_BUFFER_OFF;
3846 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3847 }
3848 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3849
3850 /**
3851 * ring_buffer_record_is_on - return true if the ring buffer can write
3852 * @buffer: The ring buffer to see if write is enabled
3853 *
3854 * Returns true if the ring buffer is in a state that it accepts writes.
3855 */
ring_buffer_record_is_on(struct trace_buffer * buffer)3856 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3857 {
3858 return !atomic_read(&buffer->record_disabled);
3859 }
3860
3861 /**
3862 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3863 * @buffer: The ring buffer to see if write is set enabled
3864 *
3865 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3866 * Note that this does NOT mean it is in a writable state.
3867 *
3868 * It may return true when the ring buffer has been disabled by
3869 * ring_buffer_record_disable(), as that is a temporary disabling of
3870 * the ring buffer.
3871 */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)3872 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3873 {
3874 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3875 }
3876
3877 /**
3878 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3879 * @buffer: The ring buffer to stop writes to.
3880 * @cpu: The CPU buffer to stop
3881 *
3882 * This prevents all writes to the buffer. Any attempt to write
3883 * to the buffer after this will fail and return NULL.
3884 *
3885 * The caller should call synchronize_rcu() after this.
3886 */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)3887 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3888 {
3889 struct ring_buffer_per_cpu *cpu_buffer;
3890
3891 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3892 return;
3893
3894 cpu_buffer = buffer->buffers[cpu];
3895 atomic_inc(&cpu_buffer->record_disabled);
3896 }
3897 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3898
3899 /**
3900 * ring_buffer_record_enable_cpu - enable writes to the buffer
3901 * @buffer: The ring buffer to enable writes
3902 * @cpu: The CPU to enable.
3903 *
3904 * Note, multiple disables will need the same number of enables
3905 * to truly enable the writing (much like preempt_disable).
3906 */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)3907 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3908 {
3909 struct ring_buffer_per_cpu *cpu_buffer;
3910
3911 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3912 return;
3913
3914 cpu_buffer = buffer->buffers[cpu];
3915 atomic_dec(&cpu_buffer->record_disabled);
3916 }
3917 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3918
3919 /*
3920 * The total entries in the ring buffer is the running counter
3921 * of entries entered into the ring buffer, minus the sum of
3922 * the entries read from the ring buffer and the number of
3923 * entries that were overwritten.
3924 */
3925 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3926 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3927 {
3928 return local_read(&cpu_buffer->entries) -
3929 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3930 }
3931
3932 /**
3933 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3934 * @buffer: The ring buffer
3935 * @cpu: The per CPU buffer to read from.
3936 */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)3937 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3938 {
3939 unsigned long flags;
3940 struct ring_buffer_per_cpu *cpu_buffer;
3941 struct buffer_page *bpage;
3942 u64 ret = 0;
3943
3944 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3945 return 0;
3946
3947 cpu_buffer = buffer->buffers[cpu];
3948 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3949 /*
3950 * if the tail is on reader_page, oldest time stamp is on the reader
3951 * page
3952 */
3953 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3954 bpage = cpu_buffer->reader_page;
3955 else
3956 bpage = rb_set_head_page(cpu_buffer);
3957 if (bpage)
3958 ret = bpage->page->time_stamp;
3959 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3960
3961 return ret;
3962 }
3963 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3964
3965 /**
3966 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
3967 * @buffer: The ring buffer
3968 * @cpu: The per CPU buffer to read from.
3969 */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)3970 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3971 {
3972 struct ring_buffer_per_cpu *cpu_buffer;
3973 unsigned long ret;
3974
3975 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3976 return 0;
3977
3978 cpu_buffer = buffer->buffers[cpu];
3979 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3980
3981 return ret;
3982 }
3983 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3984
3985 /**
3986 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3987 * @buffer: The ring buffer
3988 * @cpu: The per CPU buffer to get the entries from.
3989 */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)3990 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3991 {
3992 struct ring_buffer_per_cpu *cpu_buffer;
3993
3994 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3995 return 0;
3996
3997 cpu_buffer = buffer->buffers[cpu];
3998
3999 return rb_num_of_entries(cpu_buffer);
4000 }
4001 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4002
4003 /**
4004 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4005 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4006 * @buffer: The ring buffer
4007 * @cpu: The per CPU buffer to get the number of overruns from
4008 */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)4009 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4010 {
4011 struct ring_buffer_per_cpu *cpu_buffer;
4012 unsigned long ret;
4013
4014 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4015 return 0;
4016
4017 cpu_buffer = buffer->buffers[cpu];
4018 ret = local_read(&cpu_buffer->overrun);
4019
4020 return ret;
4021 }
4022 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4023
4024 /**
4025 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4026 * commits failing due to the buffer wrapping around while there are uncommitted
4027 * events, such as during an interrupt storm.
4028 * @buffer: The ring buffer
4029 * @cpu: The per CPU buffer to get the number of overruns from
4030 */
4031 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)4032 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4033 {
4034 struct ring_buffer_per_cpu *cpu_buffer;
4035 unsigned long ret;
4036
4037 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4038 return 0;
4039
4040 cpu_buffer = buffer->buffers[cpu];
4041 ret = local_read(&cpu_buffer->commit_overrun);
4042
4043 return ret;
4044 }
4045 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4046
4047 /**
4048 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4049 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4050 * @buffer: The ring buffer
4051 * @cpu: The per CPU buffer to get the number of overruns from
4052 */
4053 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)4054 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4055 {
4056 struct ring_buffer_per_cpu *cpu_buffer;
4057 unsigned long ret;
4058
4059 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4060 return 0;
4061
4062 cpu_buffer = buffer->buffers[cpu];
4063 ret = local_read(&cpu_buffer->dropped_events);
4064
4065 return ret;
4066 }
4067 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4068
4069 /**
4070 * ring_buffer_read_events_cpu - get the number of events successfully read
4071 * @buffer: The ring buffer
4072 * @cpu: The per CPU buffer to get the number of events read
4073 */
4074 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)4075 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4076 {
4077 struct ring_buffer_per_cpu *cpu_buffer;
4078
4079 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4080 return 0;
4081
4082 cpu_buffer = buffer->buffers[cpu];
4083 return cpu_buffer->read;
4084 }
4085 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4086
4087 /**
4088 * ring_buffer_entries - get the number of entries in a buffer
4089 * @buffer: The ring buffer
4090 *
4091 * Returns the total number of entries in the ring buffer
4092 * (all CPU entries)
4093 */
ring_buffer_entries(struct trace_buffer * buffer)4094 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4095 {
4096 struct ring_buffer_per_cpu *cpu_buffer;
4097 unsigned long entries = 0;
4098 int cpu;
4099
4100 /* if you care about this being correct, lock the buffer */
4101 for_each_buffer_cpu(buffer, cpu) {
4102 cpu_buffer = buffer->buffers[cpu];
4103 entries += rb_num_of_entries(cpu_buffer);
4104 }
4105
4106 return entries;
4107 }
4108 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4109
4110 /**
4111 * ring_buffer_overruns - get the number of overruns in buffer
4112 * @buffer: The ring buffer
4113 *
4114 * Returns the total number of overruns in the ring buffer
4115 * (all CPU entries)
4116 */
ring_buffer_overruns(struct trace_buffer * buffer)4117 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4118 {
4119 struct ring_buffer_per_cpu *cpu_buffer;
4120 unsigned long overruns = 0;
4121 int cpu;
4122
4123 /* if you care about this being correct, lock the buffer */
4124 for_each_buffer_cpu(buffer, cpu) {
4125 cpu_buffer = buffer->buffers[cpu];
4126 overruns += local_read(&cpu_buffer->overrun);
4127 }
4128
4129 return overruns;
4130 }
4131 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4132
rb_iter_reset(struct ring_buffer_iter * iter)4133 static void rb_iter_reset(struct ring_buffer_iter *iter)
4134 {
4135 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4136
4137 /* Iterator usage is expected to have record disabled */
4138 iter->head_page = cpu_buffer->reader_page;
4139 iter->head = cpu_buffer->reader_page->read;
4140 iter->next_event = iter->head;
4141
4142 iter->cache_reader_page = iter->head_page;
4143 iter->cache_read = cpu_buffer->read;
4144 iter->cache_pages_removed = cpu_buffer->pages_removed;
4145
4146 if (iter->head) {
4147 iter->read_stamp = cpu_buffer->read_stamp;
4148 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4149 } else {
4150 iter->read_stamp = iter->head_page->page->time_stamp;
4151 iter->page_stamp = iter->read_stamp;
4152 }
4153 }
4154
4155 /**
4156 * ring_buffer_iter_reset - reset an iterator
4157 * @iter: The iterator to reset
4158 *
4159 * Resets the iterator, so that it will start from the beginning
4160 * again.
4161 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)4162 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4163 {
4164 struct ring_buffer_per_cpu *cpu_buffer;
4165 unsigned long flags;
4166
4167 if (!iter)
4168 return;
4169
4170 cpu_buffer = iter->cpu_buffer;
4171
4172 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4173 rb_iter_reset(iter);
4174 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4175 }
4176 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4177
4178 /**
4179 * ring_buffer_iter_empty - check if an iterator has no more to read
4180 * @iter: The iterator to check
4181 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)4182 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4183 {
4184 struct ring_buffer_per_cpu *cpu_buffer;
4185 struct buffer_page *reader;
4186 struct buffer_page *head_page;
4187 struct buffer_page *commit_page;
4188 struct buffer_page *curr_commit_page;
4189 unsigned commit;
4190 u64 curr_commit_ts;
4191 u64 commit_ts;
4192
4193 cpu_buffer = iter->cpu_buffer;
4194 reader = cpu_buffer->reader_page;
4195 head_page = cpu_buffer->head_page;
4196 commit_page = cpu_buffer->commit_page;
4197 commit_ts = commit_page->page->time_stamp;
4198
4199 /*
4200 * When the writer goes across pages, it issues a cmpxchg which
4201 * is a mb(), which will synchronize with the rmb here.
4202 * (see rb_tail_page_update())
4203 */
4204 smp_rmb();
4205 commit = rb_page_commit(commit_page);
4206 /* We want to make sure that the commit page doesn't change */
4207 smp_rmb();
4208
4209 /* Make sure commit page didn't change */
4210 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4211 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4212
4213 /* If the commit page changed, then there's more data */
4214 if (curr_commit_page != commit_page ||
4215 curr_commit_ts != commit_ts)
4216 return 0;
4217
4218 /* Still racy, as it may return a false positive, but that's OK */
4219 return ((iter->head_page == commit_page && iter->head >= commit) ||
4220 (iter->head_page == reader && commit_page == head_page &&
4221 head_page->read == commit &&
4222 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4223 }
4224 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4225
4226 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4227 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4228 struct ring_buffer_event *event)
4229 {
4230 u64 delta;
4231
4232 switch (event->type_len) {
4233 case RINGBUF_TYPE_PADDING:
4234 return;
4235
4236 case RINGBUF_TYPE_TIME_EXTEND:
4237 delta = ring_buffer_event_time_stamp(event);
4238 cpu_buffer->read_stamp += delta;
4239 return;
4240
4241 case RINGBUF_TYPE_TIME_STAMP:
4242 delta = ring_buffer_event_time_stamp(event);
4243 cpu_buffer->read_stamp = delta;
4244 return;
4245
4246 case RINGBUF_TYPE_DATA:
4247 cpu_buffer->read_stamp += event->time_delta;
4248 return;
4249
4250 default:
4251 RB_WARN_ON(cpu_buffer, 1);
4252 }
4253 return;
4254 }
4255
4256 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)4257 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4258 struct ring_buffer_event *event)
4259 {
4260 u64 delta;
4261
4262 switch (event->type_len) {
4263 case RINGBUF_TYPE_PADDING:
4264 return;
4265
4266 case RINGBUF_TYPE_TIME_EXTEND:
4267 delta = ring_buffer_event_time_stamp(event);
4268 iter->read_stamp += delta;
4269 return;
4270
4271 case RINGBUF_TYPE_TIME_STAMP:
4272 delta = ring_buffer_event_time_stamp(event);
4273 iter->read_stamp = delta;
4274 return;
4275
4276 case RINGBUF_TYPE_DATA:
4277 iter->read_stamp += event->time_delta;
4278 return;
4279
4280 default:
4281 RB_WARN_ON(iter->cpu_buffer, 1);
4282 }
4283 return;
4284 }
4285
4286 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)4287 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4288 {
4289 struct buffer_page *reader = NULL;
4290 unsigned long overwrite;
4291 unsigned long flags;
4292 int nr_loops = 0;
4293 int ret;
4294
4295 local_irq_save(flags);
4296 arch_spin_lock(&cpu_buffer->lock);
4297
4298 again:
4299 /*
4300 * This should normally only loop twice. But because the
4301 * start of the reader inserts an empty page, it causes
4302 * a case where we will loop three times. There should be no
4303 * reason to loop four times (that I know of).
4304 */
4305 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4306 reader = NULL;
4307 goto out;
4308 }
4309
4310 reader = cpu_buffer->reader_page;
4311
4312 /* If there's more to read, return this page */
4313 if (cpu_buffer->reader_page->read < rb_page_size(reader))
4314 goto out;
4315
4316 /* Never should we have an index greater than the size */
4317 if (RB_WARN_ON(cpu_buffer,
4318 cpu_buffer->reader_page->read > rb_page_size(reader)))
4319 goto out;
4320
4321 /* check if we caught up to the tail */
4322 reader = NULL;
4323 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4324 goto out;
4325
4326 /* Don't bother swapping if the ring buffer is empty */
4327 if (rb_num_of_entries(cpu_buffer) == 0)
4328 goto out;
4329
4330 /*
4331 * Reset the reader page to size zero.
4332 */
4333 local_set(&cpu_buffer->reader_page->write, 0);
4334 local_set(&cpu_buffer->reader_page->entries, 0);
4335 local_set(&cpu_buffer->reader_page->page->commit, 0);
4336 cpu_buffer->reader_page->real_end = 0;
4337
4338 spin:
4339 /*
4340 * Splice the empty reader page into the list around the head.
4341 */
4342 reader = rb_set_head_page(cpu_buffer);
4343 if (!reader)
4344 goto out;
4345 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4346 cpu_buffer->reader_page->list.prev = reader->list.prev;
4347
4348 /*
4349 * cpu_buffer->pages just needs to point to the buffer, it
4350 * has no specific buffer page to point to. Lets move it out
4351 * of our way so we don't accidentally swap it.
4352 */
4353 cpu_buffer->pages = reader->list.prev;
4354
4355 /* The reader page will be pointing to the new head */
4356 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4357
4358 /*
4359 * We want to make sure we read the overruns after we set up our
4360 * pointers to the next object. The writer side does a
4361 * cmpxchg to cross pages which acts as the mb on the writer
4362 * side. Note, the reader will constantly fail the swap
4363 * while the writer is updating the pointers, so this
4364 * guarantees that the overwrite recorded here is the one we
4365 * want to compare with the last_overrun.
4366 */
4367 smp_mb();
4368 overwrite = local_read(&(cpu_buffer->overrun));
4369
4370 /*
4371 * Here's the tricky part.
4372 *
4373 * We need to move the pointer past the header page.
4374 * But we can only do that if a writer is not currently
4375 * moving it. The page before the header page has the
4376 * flag bit '1' set if it is pointing to the page we want.
4377 * but if the writer is in the process of moving it
4378 * than it will be '2' or already moved '0'.
4379 */
4380
4381 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4382
4383 /*
4384 * If we did not convert it, then we must try again.
4385 */
4386 if (!ret)
4387 goto spin;
4388
4389 /*
4390 * Yay! We succeeded in replacing the page.
4391 *
4392 * Now make the new head point back to the reader page.
4393 */
4394 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4395 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4396
4397 local_inc(&cpu_buffer->pages_read);
4398
4399 /* Finally update the reader page to the new head */
4400 cpu_buffer->reader_page = reader;
4401 cpu_buffer->reader_page->read = 0;
4402
4403 if (overwrite != cpu_buffer->last_overrun) {
4404 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4405 cpu_buffer->last_overrun = overwrite;
4406 }
4407
4408 goto again;
4409
4410 out:
4411 /* Update the read_stamp on the first event */
4412 if (reader && reader->read == 0)
4413 cpu_buffer->read_stamp = reader->page->time_stamp;
4414
4415 arch_spin_unlock(&cpu_buffer->lock);
4416 local_irq_restore(flags);
4417
4418 /*
4419 * The writer has preempt disable, wait for it. But not forever
4420 * Although, 1 second is pretty much "forever"
4421 */
4422 #define USECS_WAIT 1000000
4423 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4424 /* If the write is past the end of page, a writer is still updating it */
4425 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4426 break;
4427
4428 udelay(1);
4429
4430 /* Get the latest version of the reader write value */
4431 smp_rmb();
4432 }
4433
4434 /* The writer is not moving forward? Something is wrong */
4435 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4436 reader = NULL;
4437
4438 /*
4439 * Make sure we see any padding after the write update
4440 * (see rb_reset_tail()).
4441 *
4442 * In addition, a writer may be writing on the reader page
4443 * if the page has not been fully filled, so the read barrier
4444 * is also needed to make sure we see the content of what is
4445 * committed by the writer (see rb_set_commit_to_write()).
4446 */
4447 smp_rmb();
4448
4449
4450 return reader;
4451 }
4452
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)4453 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4454 {
4455 struct ring_buffer_event *event;
4456 struct buffer_page *reader;
4457 unsigned length;
4458
4459 reader = rb_get_reader_page(cpu_buffer);
4460
4461 /* This function should not be called when buffer is empty */
4462 if (RB_WARN_ON(cpu_buffer, !reader))
4463 return;
4464
4465 event = rb_reader_event(cpu_buffer);
4466
4467 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4468 cpu_buffer->read++;
4469
4470 rb_update_read_stamp(cpu_buffer, event);
4471
4472 length = rb_event_length(event);
4473 cpu_buffer->reader_page->read += length;
4474 cpu_buffer->read_bytes += length;
4475 }
4476
rb_advance_iter(struct ring_buffer_iter * iter)4477 static void rb_advance_iter(struct ring_buffer_iter *iter)
4478 {
4479 struct ring_buffer_per_cpu *cpu_buffer;
4480
4481 cpu_buffer = iter->cpu_buffer;
4482
4483 /* If head == next_event then we need to jump to the next event */
4484 if (iter->head == iter->next_event) {
4485 /* If the event gets overwritten again, there's nothing to do */
4486 if (rb_iter_head_event(iter) == NULL)
4487 return;
4488 }
4489
4490 iter->head = iter->next_event;
4491
4492 /*
4493 * Check if we are at the end of the buffer.
4494 */
4495 if (iter->next_event >= rb_page_size(iter->head_page)) {
4496 /* discarded commits can make the page empty */
4497 if (iter->head_page == cpu_buffer->commit_page)
4498 return;
4499 rb_inc_iter(iter);
4500 return;
4501 }
4502
4503 rb_update_iter_read_stamp(iter, iter->event);
4504 }
4505
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)4506 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4507 {
4508 return cpu_buffer->lost_events;
4509 }
4510
4511 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)4512 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4513 unsigned long *lost_events)
4514 {
4515 struct ring_buffer_event *event;
4516 struct buffer_page *reader;
4517 int nr_loops = 0;
4518
4519 if (ts)
4520 *ts = 0;
4521 again:
4522 /*
4523 * We repeat when a time extend is encountered.
4524 * Since the time extend is always attached to a data event,
4525 * we should never loop more than once.
4526 * (We never hit the following condition more than twice).
4527 */
4528 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4529 return NULL;
4530
4531 reader = rb_get_reader_page(cpu_buffer);
4532 if (!reader)
4533 return NULL;
4534
4535 event = rb_reader_event(cpu_buffer);
4536
4537 switch (event->type_len) {
4538 case RINGBUF_TYPE_PADDING:
4539 if (rb_null_event(event))
4540 RB_WARN_ON(cpu_buffer, 1);
4541 /*
4542 * Because the writer could be discarding every
4543 * event it creates (which would probably be bad)
4544 * if we were to go back to "again" then we may never
4545 * catch up, and will trigger the warn on, or lock
4546 * the box. Return the padding, and we will release
4547 * the current locks, and try again.
4548 */
4549 return event;
4550
4551 case RINGBUF_TYPE_TIME_EXTEND:
4552 /* Internal data, OK to advance */
4553 rb_advance_reader(cpu_buffer);
4554 goto again;
4555
4556 case RINGBUF_TYPE_TIME_STAMP:
4557 if (ts) {
4558 *ts = ring_buffer_event_time_stamp(event);
4559 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4560 cpu_buffer->cpu, ts);
4561 }
4562 /* Internal data, OK to advance */
4563 rb_advance_reader(cpu_buffer);
4564 goto again;
4565
4566 case RINGBUF_TYPE_DATA:
4567 if (ts && !(*ts)) {
4568 *ts = cpu_buffer->read_stamp + event->time_delta;
4569 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4570 cpu_buffer->cpu, ts);
4571 }
4572 if (lost_events)
4573 *lost_events = rb_lost_events(cpu_buffer);
4574 return event;
4575
4576 default:
4577 RB_WARN_ON(cpu_buffer, 1);
4578 }
4579
4580 return NULL;
4581 }
4582 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4583
4584 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4585 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4586 {
4587 struct trace_buffer *buffer;
4588 struct ring_buffer_per_cpu *cpu_buffer;
4589 struct ring_buffer_event *event;
4590 int nr_loops = 0;
4591
4592 if (ts)
4593 *ts = 0;
4594
4595 cpu_buffer = iter->cpu_buffer;
4596 buffer = cpu_buffer->buffer;
4597
4598 /*
4599 * Check if someone performed a consuming read to the buffer
4600 * or removed some pages from the buffer. In these cases,
4601 * iterator was invalidated and we need to reset it.
4602 */
4603 if (unlikely(iter->cache_read != cpu_buffer->read ||
4604 iter->cache_reader_page != cpu_buffer->reader_page ||
4605 iter->cache_pages_removed != cpu_buffer->pages_removed))
4606 rb_iter_reset(iter);
4607
4608 again:
4609 if (ring_buffer_iter_empty(iter))
4610 return NULL;
4611
4612 /*
4613 * As the writer can mess with what the iterator is trying
4614 * to read, just give up if we fail to get an event after
4615 * three tries. The iterator is not as reliable when reading
4616 * the ring buffer with an active write as the consumer is.
4617 * Do not warn if the three failures is reached.
4618 */
4619 if (++nr_loops > 3)
4620 return NULL;
4621
4622 if (rb_per_cpu_empty(cpu_buffer))
4623 return NULL;
4624
4625 if (iter->head >= rb_page_size(iter->head_page)) {
4626 rb_inc_iter(iter);
4627 goto again;
4628 }
4629
4630 event = rb_iter_head_event(iter);
4631 if (!event)
4632 goto again;
4633
4634 switch (event->type_len) {
4635 case RINGBUF_TYPE_PADDING:
4636 if (rb_null_event(event)) {
4637 rb_inc_iter(iter);
4638 goto again;
4639 }
4640 rb_advance_iter(iter);
4641 return event;
4642
4643 case RINGBUF_TYPE_TIME_EXTEND:
4644 /* Internal data, OK to advance */
4645 rb_advance_iter(iter);
4646 goto again;
4647
4648 case RINGBUF_TYPE_TIME_STAMP:
4649 if (ts) {
4650 *ts = ring_buffer_event_time_stamp(event);
4651 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4652 cpu_buffer->cpu, ts);
4653 }
4654 /* Internal data, OK to advance */
4655 rb_advance_iter(iter);
4656 goto again;
4657
4658 case RINGBUF_TYPE_DATA:
4659 if (ts && !(*ts)) {
4660 *ts = iter->read_stamp + event->time_delta;
4661 ring_buffer_normalize_time_stamp(buffer,
4662 cpu_buffer->cpu, ts);
4663 }
4664 return event;
4665
4666 default:
4667 RB_WARN_ON(cpu_buffer, 1);
4668 }
4669
4670 return NULL;
4671 }
4672 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4673
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)4674 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4675 {
4676 if (likely(!in_nmi())) {
4677 raw_spin_lock(&cpu_buffer->reader_lock);
4678 return true;
4679 }
4680
4681 /*
4682 * If an NMI die dumps out the content of the ring buffer
4683 * trylock must be used to prevent a deadlock if the NMI
4684 * preempted a task that holds the ring buffer locks. If
4685 * we get the lock then all is fine, if not, then continue
4686 * to do the read, but this can corrupt the ring buffer,
4687 * so it must be permanently disabled from future writes.
4688 * Reading from NMI is a oneshot deal.
4689 */
4690 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4691 return true;
4692
4693 /* Continue without locking, but disable the ring buffer */
4694 atomic_inc(&cpu_buffer->record_disabled);
4695 return false;
4696 }
4697
4698 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)4699 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4700 {
4701 if (likely(locked))
4702 raw_spin_unlock(&cpu_buffer->reader_lock);
4703 return;
4704 }
4705
4706 /**
4707 * ring_buffer_peek - peek at the next event to be read
4708 * @buffer: The ring buffer to read
4709 * @cpu: The cpu to peak at
4710 * @ts: The timestamp counter of this event.
4711 * @lost_events: a variable to store if events were lost (may be NULL)
4712 *
4713 * This will return the event that will be read next, but does
4714 * not consume the data.
4715 */
4716 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4717 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4718 unsigned long *lost_events)
4719 {
4720 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4721 struct ring_buffer_event *event;
4722 unsigned long flags;
4723 bool dolock;
4724
4725 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4726 return NULL;
4727
4728 again:
4729 local_irq_save(flags);
4730 dolock = rb_reader_lock(cpu_buffer);
4731 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4732 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4733 rb_advance_reader(cpu_buffer);
4734 rb_reader_unlock(cpu_buffer, dolock);
4735 local_irq_restore(flags);
4736
4737 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4738 goto again;
4739
4740 return event;
4741 }
4742
4743 /** ring_buffer_iter_dropped - report if there are dropped events
4744 * @iter: The ring buffer iterator
4745 *
4746 * Returns true if there was dropped events since the last peek.
4747 */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)4748 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4749 {
4750 bool ret = iter->missed_events != 0;
4751
4752 iter->missed_events = 0;
4753 return ret;
4754 }
4755 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4756
4757 /**
4758 * ring_buffer_iter_peek - peek at the next event to be read
4759 * @iter: The ring buffer iterator
4760 * @ts: The timestamp counter of this event.
4761 *
4762 * This will return the event that will be read next, but does
4763 * not increment the iterator.
4764 */
4765 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4766 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4767 {
4768 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4769 struct ring_buffer_event *event;
4770 unsigned long flags;
4771
4772 again:
4773 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4774 event = rb_iter_peek(iter, ts);
4775 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4776
4777 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4778 goto again;
4779
4780 return event;
4781 }
4782
4783 /**
4784 * ring_buffer_consume - return an event and consume it
4785 * @buffer: The ring buffer to get the next event from
4786 * @cpu: the cpu to read the buffer from
4787 * @ts: a variable to store the timestamp (may be NULL)
4788 * @lost_events: a variable to store if events were lost (may be NULL)
4789 *
4790 * Returns the next event in the ring buffer, and that event is consumed.
4791 * Meaning, that sequential reads will keep returning a different event,
4792 * and eventually empty the ring buffer if the producer is slower.
4793 */
4794 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4795 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4796 unsigned long *lost_events)
4797 {
4798 struct ring_buffer_per_cpu *cpu_buffer;
4799 struct ring_buffer_event *event = NULL;
4800 unsigned long flags;
4801 bool dolock;
4802
4803 again:
4804 /* might be called in atomic */
4805 preempt_disable();
4806
4807 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4808 goto out;
4809
4810 cpu_buffer = buffer->buffers[cpu];
4811 local_irq_save(flags);
4812 dolock = rb_reader_lock(cpu_buffer);
4813
4814 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4815 if (event) {
4816 cpu_buffer->lost_events = 0;
4817 rb_advance_reader(cpu_buffer);
4818 }
4819
4820 rb_reader_unlock(cpu_buffer, dolock);
4821 local_irq_restore(flags);
4822
4823 out:
4824 preempt_enable();
4825
4826 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4827 goto again;
4828
4829 return event;
4830 }
4831 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4832
4833 /**
4834 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4835 * @buffer: The ring buffer to read from
4836 * @cpu: The cpu buffer to iterate over
4837 * @flags: gfp flags to use for memory allocation
4838 *
4839 * This performs the initial preparations necessary to iterate
4840 * through the buffer. Memory is allocated, buffer recording
4841 * is disabled, and the iterator pointer is returned to the caller.
4842 *
4843 * Disabling buffer recording prevents the reading from being
4844 * corrupted. This is not a consuming read, so a producer is not
4845 * expected.
4846 *
4847 * After a sequence of ring_buffer_read_prepare calls, the user is
4848 * expected to make at least one call to ring_buffer_read_prepare_sync.
4849 * Afterwards, ring_buffer_read_start is invoked to get things going
4850 * for real.
4851 *
4852 * This overall must be paired with ring_buffer_read_finish.
4853 */
4854 struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)4855 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4856 {
4857 struct ring_buffer_per_cpu *cpu_buffer;
4858 struct ring_buffer_iter *iter;
4859
4860 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4861 return NULL;
4862
4863 iter = kzalloc(sizeof(*iter), flags);
4864 if (!iter)
4865 return NULL;
4866
4867 /* Holds the entire event: data and meta data */
4868 iter->event = kmalloc(BUF_PAGE_SIZE, flags);
4869 if (!iter->event) {
4870 kfree(iter);
4871 return NULL;
4872 }
4873
4874 cpu_buffer = buffer->buffers[cpu];
4875
4876 iter->cpu_buffer = cpu_buffer;
4877
4878 atomic_inc(&cpu_buffer->resize_disabled);
4879
4880 return iter;
4881 }
4882 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4883
4884 /**
4885 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4886 *
4887 * All previously invoked ring_buffer_read_prepare calls to prepare
4888 * iterators will be synchronized. Afterwards, read_buffer_read_start
4889 * calls on those iterators are allowed.
4890 */
4891 void
ring_buffer_read_prepare_sync(void)4892 ring_buffer_read_prepare_sync(void)
4893 {
4894 synchronize_rcu();
4895 }
4896 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4897
4898 /**
4899 * ring_buffer_read_start - start a non consuming read of the buffer
4900 * @iter: The iterator returned by ring_buffer_read_prepare
4901 *
4902 * This finalizes the startup of an iteration through the buffer.
4903 * The iterator comes from a call to ring_buffer_read_prepare and
4904 * an intervening ring_buffer_read_prepare_sync must have been
4905 * performed.
4906 *
4907 * Must be paired with ring_buffer_read_finish.
4908 */
4909 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4910 ring_buffer_read_start(struct ring_buffer_iter *iter)
4911 {
4912 struct ring_buffer_per_cpu *cpu_buffer;
4913 unsigned long flags;
4914
4915 if (!iter)
4916 return;
4917
4918 cpu_buffer = iter->cpu_buffer;
4919
4920 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4921 arch_spin_lock(&cpu_buffer->lock);
4922 rb_iter_reset(iter);
4923 arch_spin_unlock(&cpu_buffer->lock);
4924 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4925 }
4926 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4927
4928 /**
4929 * ring_buffer_read_finish - finish reading the iterator of the buffer
4930 * @iter: The iterator retrieved by ring_buffer_start
4931 *
4932 * This re-enables the recording to the buffer, and frees the
4933 * iterator.
4934 */
4935 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4936 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4937 {
4938 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4939 unsigned long flags;
4940
4941 /*
4942 * Ring buffer is disabled from recording, here's a good place
4943 * to check the integrity of the ring buffer.
4944 * Must prevent readers from trying to read, as the check
4945 * clears the HEAD page and readers require it.
4946 */
4947 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4948 rb_check_pages(cpu_buffer);
4949 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4950
4951 atomic_dec(&cpu_buffer->resize_disabled);
4952 kfree(iter->event);
4953 kfree(iter);
4954 }
4955 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4956
4957 /**
4958 * ring_buffer_iter_advance - advance the iterator to the next location
4959 * @iter: The ring buffer iterator
4960 *
4961 * Move the location of the iterator such that the next read will
4962 * be the next location of the iterator.
4963 */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)4964 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4965 {
4966 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4967 unsigned long flags;
4968
4969 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4970
4971 rb_advance_iter(iter);
4972
4973 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4974 }
4975 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4976
4977 /**
4978 * ring_buffer_size - return the size of the ring buffer (in bytes)
4979 * @buffer: The ring buffer.
4980 * @cpu: The CPU to get ring buffer size from.
4981 */
ring_buffer_size(struct trace_buffer * buffer,int cpu)4982 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4983 {
4984 /*
4985 * Earlier, this method returned
4986 * BUF_PAGE_SIZE * buffer->nr_pages
4987 * Since the nr_pages field is now removed, we have converted this to
4988 * return the per cpu buffer value.
4989 */
4990 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4991 return 0;
4992
4993 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4994 }
4995 EXPORT_SYMBOL_GPL(ring_buffer_size);
4996
rb_clear_buffer_page(struct buffer_page * page)4997 static void rb_clear_buffer_page(struct buffer_page *page)
4998 {
4999 local_set(&page->write, 0);
5000 local_set(&page->entries, 0);
5001 rb_init_page(page->page);
5002 page->read = 0;
5003 }
5004
5005 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)5006 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5007 {
5008 struct buffer_page *page;
5009
5010 rb_head_page_deactivate(cpu_buffer);
5011
5012 cpu_buffer->head_page
5013 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5014 rb_clear_buffer_page(cpu_buffer->head_page);
5015 list_for_each_entry(page, cpu_buffer->pages, list) {
5016 rb_clear_buffer_page(page);
5017 }
5018
5019 cpu_buffer->tail_page = cpu_buffer->head_page;
5020 cpu_buffer->commit_page = cpu_buffer->head_page;
5021
5022 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5023 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5024 rb_clear_buffer_page(cpu_buffer->reader_page);
5025
5026 local_set(&cpu_buffer->entries_bytes, 0);
5027 local_set(&cpu_buffer->overrun, 0);
5028 local_set(&cpu_buffer->commit_overrun, 0);
5029 local_set(&cpu_buffer->dropped_events, 0);
5030 local_set(&cpu_buffer->entries, 0);
5031 local_set(&cpu_buffer->committing, 0);
5032 local_set(&cpu_buffer->commits, 0);
5033 local_set(&cpu_buffer->pages_touched, 0);
5034 local_set(&cpu_buffer->pages_lost, 0);
5035 local_set(&cpu_buffer->pages_read, 0);
5036 cpu_buffer->last_pages_touch = 0;
5037 cpu_buffer->shortest_full = 0;
5038 cpu_buffer->read = 0;
5039 cpu_buffer->read_bytes = 0;
5040
5041 rb_time_set(&cpu_buffer->write_stamp, 0);
5042 rb_time_set(&cpu_buffer->before_stamp, 0);
5043
5044 cpu_buffer->lost_events = 0;
5045 cpu_buffer->last_overrun = 0;
5046
5047 rb_head_page_activate(cpu_buffer);
5048 cpu_buffer->pages_removed = 0;
5049 }
5050
5051 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)5052 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5053 {
5054 unsigned long flags;
5055
5056 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5057
5058 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5059 goto out;
5060
5061 arch_spin_lock(&cpu_buffer->lock);
5062
5063 rb_reset_cpu(cpu_buffer);
5064
5065 arch_spin_unlock(&cpu_buffer->lock);
5066
5067 out:
5068 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5069 }
5070
5071 /**
5072 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5073 * @buffer: The ring buffer to reset a per cpu buffer of
5074 * @cpu: The CPU buffer to be reset
5075 */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)5076 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5077 {
5078 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5079
5080 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5081 return;
5082
5083 /* prevent another thread from changing buffer sizes */
5084 mutex_lock(&buffer->mutex);
5085
5086 atomic_inc(&cpu_buffer->resize_disabled);
5087 atomic_inc(&cpu_buffer->record_disabled);
5088
5089 /* Make sure all commits have finished */
5090 synchronize_rcu();
5091
5092 reset_disabled_cpu_buffer(cpu_buffer);
5093
5094 atomic_dec(&cpu_buffer->record_disabled);
5095 atomic_dec(&cpu_buffer->resize_disabled);
5096
5097 mutex_unlock(&buffer->mutex);
5098 }
5099 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5100
5101 /* Flag to ensure proper resetting of atomic variables */
5102 #define RESET_BIT (1 << 30)
5103
5104 /**
5105 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5106 * @buffer: The ring buffer to reset a per cpu buffer of
5107 * @cpu: The CPU buffer to be reset
5108 */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)5109 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5110 {
5111 struct ring_buffer_per_cpu *cpu_buffer;
5112 int cpu;
5113
5114 /* prevent another thread from changing buffer sizes */
5115 mutex_lock(&buffer->mutex);
5116
5117 for_each_online_buffer_cpu(buffer, cpu) {
5118 cpu_buffer = buffer->buffers[cpu];
5119
5120 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5121 atomic_inc(&cpu_buffer->record_disabled);
5122 }
5123
5124 /* Make sure all commits have finished */
5125 synchronize_rcu();
5126
5127 for_each_buffer_cpu(buffer, cpu) {
5128 cpu_buffer = buffer->buffers[cpu];
5129
5130 /*
5131 * If a CPU came online during the synchronize_rcu(), then
5132 * ignore it.
5133 */
5134 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5135 continue;
5136
5137 reset_disabled_cpu_buffer(cpu_buffer);
5138
5139 atomic_dec(&cpu_buffer->record_disabled);
5140 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5141 }
5142
5143 mutex_unlock(&buffer->mutex);
5144 }
5145
5146 /**
5147 * ring_buffer_reset - reset a ring buffer
5148 * @buffer: The ring buffer to reset all cpu buffers
5149 */
ring_buffer_reset(struct trace_buffer * buffer)5150 void ring_buffer_reset(struct trace_buffer *buffer)
5151 {
5152 struct ring_buffer_per_cpu *cpu_buffer;
5153 int cpu;
5154
5155 /* prevent another thread from changing buffer sizes */
5156 mutex_lock(&buffer->mutex);
5157
5158 for_each_buffer_cpu(buffer, cpu) {
5159 cpu_buffer = buffer->buffers[cpu];
5160
5161 atomic_inc(&cpu_buffer->resize_disabled);
5162 atomic_inc(&cpu_buffer->record_disabled);
5163 }
5164
5165 /* Make sure all commits have finished */
5166 synchronize_rcu();
5167
5168 for_each_buffer_cpu(buffer, cpu) {
5169 cpu_buffer = buffer->buffers[cpu];
5170
5171 reset_disabled_cpu_buffer(cpu_buffer);
5172
5173 atomic_dec(&cpu_buffer->record_disabled);
5174 atomic_dec(&cpu_buffer->resize_disabled);
5175 }
5176
5177 mutex_unlock(&buffer->mutex);
5178 }
5179 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5180
5181 /**
5182 * rind_buffer_empty - is the ring buffer empty?
5183 * @buffer: The ring buffer to test
5184 */
ring_buffer_empty(struct trace_buffer * buffer)5185 bool ring_buffer_empty(struct trace_buffer *buffer)
5186 {
5187 struct ring_buffer_per_cpu *cpu_buffer;
5188 unsigned long flags;
5189 bool dolock;
5190 int cpu;
5191 int ret;
5192
5193 /* yes this is racy, but if you don't like the race, lock the buffer */
5194 for_each_buffer_cpu(buffer, cpu) {
5195 cpu_buffer = buffer->buffers[cpu];
5196 local_irq_save(flags);
5197 dolock = rb_reader_lock(cpu_buffer);
5198 ret = rb_per_cpu_empty(cpu_buffer);
5199 rb_reader_unlock(cpu_buffer, dolock);
5200 local_irq_restore(flags);
5201
5202 if (!ret)
5203 return false;
5204 }
5205
5206 return true;
5207 }
5208 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5209
5210 /**
5211 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5212 * @buffer: The ring buffer
5213 * @cpu: The CPU buffer to test
5214 */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)5215 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5216 {
5217 struct ring_buffer_per_cpu *cpu_buffer;
5218 unsigned long flags;
5219 bool dolock;
5220 int ret;
5221
5222 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5223 return true;
5224
5225 cpu_buffer = buffer->buffers[cpu];
5226 local_irq_save(flags);
5227 dolock = rb_reader_lock(cpu_buffer);
5228 ret = rb_per_cpu_empty(cpu_buffer);
5229 rb_reader_unlock(cpu_buffer, dolock);
5230 local_irq_restore(flags);
5231
5232 return ret;
5233 }
5234 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5235
5236 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5237 /**
5238 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5239 * @buffer_a: One buffer to swap with
5240 * @buffer_b: The other buffer to swap with
5241 * @cpu: the CPU of the buffers to swap
5242 *
5243 * This function is useful for tracers that want to take a "snapshot"
5244 * of a CPU buffer and has another back up buffer lying around.
5245 * it is expected that the tracer handles the cpu buffer not being
5246 * used at the moment.
5247 */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)5248 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5249 struct trace_buffer *buffer_b, int cpu)
5250 {
5251 struct ring_buffer_per_cpu *cpu_buffer_a;
5252 struct ring_buffer_per_cpu *cpu_buffer_b;
5253 int ret = -EINVAL;
5254
5255 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5256 !cpumask_test_cpu(cpu, buffer_b->cpumask))
5257 goto out;
5258
5259 cpu_buffer_a = buffer_a->buffers[cpu];
5260 cpu_buffer_b = buffer_b->buffers[cpu];
5261
5262 /* At least make sure the two buffers are somewhat the same */
5263 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5264 goto out;
5265
5266 ret = -EAGAIN;
5267
5268 if (atomic_read(&buffer_a->record_disabled))
5269 goto out;
5270
5271 if (atomic_read(&buffer_b->record_disabled))
5272 goto out;
5273
5274 if (atomic_read(&cpu_buffer_a->record_disabled))
5275 goto out;
5276
5277 if (atomic_read(&cpu_buffer_b->record_disabled))
5278 goto out;
5279
5280 /*
5281 * We can't do a synchronize_rcu here because this
5282 * function can be called in atomic context.
5283 * Normally this will be called from the same CPU as cpu.
5284 * If not it's up to the caller to protect this.
5285 */
5286 atomic_inc(&cpu_buffer_a->record_disabled);
5287 atomic_inc(&cpu_buffer_b->record_disabled);
5288
5289 ret = -EBUSY;
5290 if (local_read(&cpu_buffer_a->committing))
5291 goto out_dec;
5292 if (local_read(&cpu_buffer_b->committing))
5293 goto out_dec;
5294
5295 /*
5296 * When resize is in progress, we cannot swap it because
5297 * it will mess the state of the cpu buffer.
5298 */
5299 if (atomic_read(&buffer_a->resizing))
5300 goto out_dec;
5301 if (atomic_read(&buffer_b->resizing))
5302 goto out_dec;
5303
5304 buffer_a->buffers[cpu] = cpu_buffer_b;
5305 buffer_b->buffers[cpu] = cpu_buffer_a;
5306
5307 cpu_buffer_b->buffer = buffer_a;
5308 cpu_buffer_a->buffer = buffer_b;
5309
5310 ret = 0;
5311
5312 out_dec:
5313 atomic_dec(&cpu_buffer_a->record_disabled);
5314 atomic_dec(&cpu_buffer_b->record_disabled);
5315 out:
5316 return ret;
5317 }
5318 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5319 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5320
5321 /**
5322 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5323 * @buffer: the buffer to allocate for.
5324 * @cpu: the cpu buffer to allocate.
5325 *
5326 * This function is used in conjunction with ring_buffer_read_page.
5327 * When reading a full page from the ring buffer, these functions
5328 * can be used to speed up the process. The calling function should
5329 * allocate a few pages first with this function. Then when it
5330 * needs to get pages from the ring buffer, it passes the result
5331 * of this function into ring_buffer_read_page, which will swap
5332 * the page that was allocated, with the read page of the buffer.
5333 *
5334 * Returns:
5335 * The page allocated, or ERR_PTR
5336 */
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)5337 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5338 {
5339 struct ring_buffer_per_cpu *cpu_buffer;
5340 struct buffer_data_page *bpage = NULL;
5341 unsigned long flags;
5342 struct page *page;
5343
5344 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5345 return ERR_PTR(-ENODEV);
5346
5347 cpu_buffer = buffer->buffers[cpu];
5348 local_irq_save(flags);
5349 arch_spin_lock(&cpu_buffer->lock);
5350
5351 if (cpu_buffer->free_page) {
5352 bpage = cpu_buffer->free_page;
5353 cpu_buffer->free_page = NULL;
5354 }
5355
5356 arch_spin_unlock(&cpu_buffer->lock);
5357 local_irq_restore(flags);
5358
5359 if (bpage)
5360 goto out;
5361
5362 page = alloc_pages_node(cpu_to_node(cpu),
5363 GFP_KERNEL | __GFP_NORETRY, 0);
5364 if (!page)
5365 return ERR_PTR(-ENOMEM);
5366
5367 bpage = page_address(page);
5368
5369 out:
5370 rb_init_page(bpage);
5371
5372 return bpage;
5373 }
5374 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5375
5376 /**
5377 * ring_buffer_free_read_page - free an allocated read page
5378 * @buffer: the buffer the page was allocate for
5379 * @cpu: the cpu buffer the page came from
5380 * @data: the page to free
5381 *
5382 * Free a page allocated from ring_buffer_alloc_read_page.
5383 */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,void * data)5384 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5385 {
5386 struct ring_buffer_per_cpu *cpu_buffer;
5387 struct buffer_data_page *bpage = data;
5388 struct page *page = virt_to_page(bpage);
5389 unsigned long flags;
5390
5391 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5392 return;
5393
5394 cpu_buffer = buffer->buffers[cpu];
5395
5396 /* If the page is still in use someplace else, we can't reuse it */
5397 if (page_ref_count(page) > 1)
5398 goto out;
5399
5400 local_irq_save(flags);
5401 arch_spin_lock(&cpu_buffer->lock);
5402
5403 if (!cpu_buffer->free_page) {
5404 cpu_buffer->free_page = bpage;
5405 bpage = NULL;
5406 }
5407
5408 arch_spin_unlock(&cpu_buffer->lock);
5409 local_irq_restore(flags);
5410
5411 out:
5412 free_page((unsigned long)bpage);
5413 }
5414 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5415
5416 /**
5417 * ring_buffer_read_page - extract a page from the ring buffer
5418 * @buffer: buffer to extract from
5419 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5420 * @len: amount to extract
5421 * @cpu: the cpu of the buffer to extract
5422 * @full: should the extraction only happen when the page is full.
5423 *
5424 * This function will pull out a page from the ring buffer and consume it.
5425 * @data_page must be the address of the variable that was returned
5426 * from ring_buffer_alloc_read_page. This is because the page might be used
5427 * to swap with a page in the ring buffer.
5428 *
5429 * for example:
5430 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
5431 * if (IS_ERR(rpage))
5432 * return PTR_ERR(rpage);
5433 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5434 * if (ret >= 0)
5435 * process_page(rpage, ret);
5436 *
5437 * When @full is set, the function will not return true unless
5438 * the writer is off the reader page.
5439 *
5440 * Note: it is up to the calling functions to handle sleeps and wakeups.
5441 * The ring buffer can be used anywhere in the kernel and can not
5442 * blindly call wake_up. The layer that uses the ring buffer must be
5443 * responsible for that.
5444 *
5445 * Returns:
5446 * >=0 if data has been transferred, returns the offset of consumed data.
5447 * <0 if no data has been transferred.
5448 */
ring_buffer_read_page(struct trace_buffer * buffer,void ** data_page,size_t len,int cpu,int full)5449 int ring_buffer_read_page(struct trace_buffer *buffer,
5450 void **data_page, size_t len, int cpu, int full)
5451 {
5452 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5453 struct ring_buffer_event *event;
5454 struct buffer_data_page *bpage;
5455 struct buffer_page *reader;
5456 unsigned long missed_events;
5457 unsigned long flags;
5458 unsigned int commit;
5459 unsigned int read;
5460 u64 save_timestamp;
5461 int ret = -1;
5462
5463 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5464 goto out;
5465
5466 /*
5467 * If len is not big enough to hold the page header, then
5468 * we can not copy anything.
5469 */
5470 if (len <= BUF_PAGE_HDR_SIZE)
5471 goto out;
5472
5473 len -= BUF_PAGE_HDR_SIZE;
5474
5475 if (!data_page)
5476 goto out;
5477
5478 bpage = *data_page;
5479 if (!bpage)
5480 goto out;
5481
5482 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5483
5484 reader = rb_get_reader_page(cpu_buffer);
5485 if (!reader)
5486 goto out_unlock;
5487
5488 event = rb_reader_event(cpu_buffer);
5489
5490 read = reader->read;
5491 commit = rb_page_commit(reader);
5492
5493 /* Check if any events were dropped */
5494 missed_events = cpu_buffer->lost_events;
5495
5496 /*
5497 * If this page has been partially read or
5498 * if len is not big enough to read the rest of the page or
5499 * a writer is still on the page, then
5500 * we must copy the data from the page to the buffer.
5501 * Otherwise, we can simply swap the page with the one passed in.
5502 */
5503 if (read || (len < (commit - read)) ||
5504 cpu_buffer->reader_page == cpu_buffer->commit_page) {
5505 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5506 unsigned int rpos = read;
5507 unsigned int pos = 0;
5508 unsigned int size;
5509
5510 /*
5511 * If a full page is expected, this can still be returned
5512 * if there's been a previous partial read and the
5513 * rest of the page can be read and the commit page is off
5514 * the reader page.
5515 */
5516 if (full &&
5517 (!read || (len < (commit - read)) ||
5518 cpu_buffer->reader_page == cpu_buffer->commit_page))
5519 goto out_unlock;
5520
5521 if (len > (commit - read))
5522 len = (commit - read);
5523
5524 /* Always keep the time extend and data together */
5525 size = rb_event_ts_length(event);
5526
5527 if (len < size)
5528 goto out_unlock;
5529
5530 /* save the current timestamp, since the user will need it */
5531 save_timestamp = cpu_buffer->read_stamp;
5532
5533 /* Need to copy one event at a time */
5534 do {
5535 /* We need the size of one event, because
5536 * rb_advance_reader only advances by one event,
5537 * whereas rb_event_ts_length may include the size of
5538 * one or two events.
5539 * We have already ensured there's enough space if this
5540 * is a time extend. */
5541 size = rb_event_length(event);
5542 memcpy(bpage->data + pos, rpage->data + rpos, size);
5543
5544 len -= size;
5545
5546 rb_advance_reader(cpu_buffer);
5547 rpos = reader->read;
5548 pos += size;
5549
5550 if (rpos >= commit)
5551 break;
5552
5553 event = rb_reader_event(cpu_buffer);
5554 /* Always keep the time extend and data together */
5555 size = rb_event_ts_length(event);
5556 } while (len >= size);
5557
5558 /* update bpage */
5559 local_set(&bpage->commit, pos);
5560 bpage->time_stamp = save_timestamp;
5561
5562 /* we copied everything to the beginning */
5563 read = 0;
5564 } else {
5565 /* update the entry counter */
5566 cpu_buffer->read += rb_page_entries(reader);
5567 cpu_buffer->read_bytes += rb_page_commit(reader);
5568
5569 /* swap the pages */
5570 rb_init_page(bpage);
5571 bpage = reader->page;
5572 reader->page = *data_page;
5573 local_set(&reader->write, 0);
5574 local_set(&reader->entries, 0);
5575 reader->read = 0;
5576 *data_page = bpage;
5577
5578 /*
5579 * Use the real_end for the data size,
5580 * This gives us a chance to store the lost events
5581 * on the page.
5582 */
5583 if (reader->real_end)
5584 local_set(&bpage->commit, reader->real_end);
5585 }
5586 ret = read;
5587
5588 cpu_buffer->lost_events = 0;
5589
5590 commit = local_read(&bpage->commit);
5591 /*
5592 * Set a flag in the commit field if we lost events
5593 */
5594 if (missed_events) {
5595 /* If there is room at the end of the page to save the
5596 * missed events, then record it there.
5597 */
5598 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5599 memcpy(&bpage->data[commit], &missed_events,
5600 sizeof(missed_events));
5601 local_add(RB_MISSED_STORED, &bpage->commit);
5602 commit += sizeof(missed_events);
5603 }
5604 local_add(RB_MISSED_EVENTS, &bpage->commit);
5605 }
5606
5607 /*
5608 * This page may be off to user land. Zero it out here.
5609 */
5610 if (commit < BUF_PAGE_SIZE)
5611 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5612
5613 out_unlock:
5614 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5615
5616 out:
5617 return ret;
5618 }
5619 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5620
5621 /*
5622 * We only allocate new buffers, never free them if the CPU goes down.
5623 * If we were to free the buffer, then the user would lose any trace that was in
5624 * the buffer.
5625 */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)5626 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5627 {
5628 struct trace_buffer *buffer;
5629 long nr_pages_same;
5630 int cpu_i;
5631 unsigned long nr_pages;
5632
5633 buffer = container_of(node, struct trace_buffer, node);
5634 if (cpumask_test_cpu(cpu, buffer->cpumask))
5635 return 0;
5636
5637 nr_pages = 0;
5638 nr_pages_same = 1;
5639 /* check if all cpu sizes are same */
5640 for_each_buffer_cpu(buffer, cpu_i) {
5641 /* fill in the size from first enabled cpu */
5642 if (nr_pages == 0)
5643 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5644 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5645 nr_pages_same = 0;
5646 break;
5647 }
5648 }
5649 /* allocate minimum pages, user can later expand it */
5650 if (!nr_pages_same)
5651 nr_pages = 2;
5652 buffer->buffers[cpu] =
5653 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5654 if (!buffer->buffers[cpu]) {
5655 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5656 cpu);
5657 return -ENOMEM;
5658 }
5659 smp_wmb();
5660 cpumask_set_cpu(cpu, buffer->cpumask);
5661 return 0;
5662 }
5663
5664 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5665 /*
5666 * This is a basic integrity check of the ring buffer.
5667 * Late in the boot cycle this test will run when configured in.
5668 * It will kick off a thread per CPU that will go into a loop
5669 * writing to the per cpu ring buffer various sizes of data.
5670 * Some of the data will be large items, some small.
5671 *
5672 * Another thread is created that goes into a spin, sending out
5673 * IPIs to the other CPUs to also write into the ring buffer.
5674 * this is to test the nesting ability of the buffer.
5675 *
5676 * Basic stats are recorded and reported. If something in the
5677 * ring buffer should happen that's not expected, a big warning
5678 * is displayed and all ring buffers are disabled.
5679 */
5680 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5681
5682 struct rb_test_data {
5683 struct trace_buffer *buffer;
5684 unsigned long events;
5685 unsigned long bytes_written;
5686 unsigned long bytes_alloc;
5687 unsigned long bytes_dropped;
5688 unsigned long events_nested;
5689 unsigned long bytes_written_nested;
5690 unsigned long bytes_alloc_nested;
5691 unsigned long bytes_dropped_nested;
5692 int min_size_nested;
5693 int max_size_nested;
5694 int max_size;
5695 int min_size;
5696 int cpu;
5697 int cnt;
5698 };
5699
5700 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5701
5702 /* 1 meg per cpu */
5703 #define RB_TEST_BUFFER_SIZE 1048576
5704
5705 static char rb_string[] __initdata =
5706 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5707 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5708 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5709
5710 static bool rb_test_started __initdata;
5711
5712 struct rb_item {
5713 int size;
5714 char str[];
5715 };
5716
rb_write_something(struct rb_test_data * data,bool nested)5717 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5718 {
5719 struct ring_buffer_event *event;
5720 struct rb_item *item;
5721 bool started;
5722 int event_len;
5723 int size;
5724 int len;
5725 int cnt;
5726
5727 /* Have nested writes different that what is written */
5728 cnt = data->cnt + (nested ? 27 : 0);
5729
5730 /* Multiply cnt by ~e, to make some unique increment */
5731 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5732
5733 len = size + sizeof(struct rb_item);
5734
5735 started = rb_test_started;
5736 /* read rb_test_started before checking buffer enabled */
5737 smp_rmb();
5738
5739 event = ring_buffer_lock_reserve(data->buffer, len);
5740 if (!event) {
5741 /* Ignore dropped events before test starts. */
5742 if (started) {
5743 if (nested)
5744 data->bytes_dropped += len;
5745 else
5746 data->bytes_dropped_nested += len;
5747 }
5748 return len;
5749 }
5750
5751 event_len = ring_buffer_event_length(event);
5752
5753 if (RB_WARN_ON(data->buffer, event_len < len))
5754 goto out;
5755
5756 item = ring_buffer_event_data(event);
5757 item->size = size;
5758 memcpy(item->str, rb_string, size);
5759
5760 if (nested) {
5761 data->bytes_alloc_nested += event_len;
5762 data->bytes_written_nested += len;
5763 data->events_nested++;
5764 if (!data->min_size_nested || len < data->min_size_nested)
5765 data->min_size_nested = len;
5766 if (len > data->max_size_nested)
5767 data->max_size_nested = len;
5768 } else {
5769 data->bytes_alloc += event_len;
5770 data->bytes_written += len;
5771 data->events++;
5772 if (!data->min_size || len < data->min_size)
5773 data->max_size = len;
5774 if (len > data->max_size)
5775 data->max_size = len;
5776 }
5777
5778 out:
5779 ring_buffer_unlock_commit(data->buffer, event);
5780
5781 return 0;
5782 }
5783
rb_test(void * arg)5784 static __init int rb_test(void *arg)
5785 {
5786 struct rb_test_data *data = arg;
5787
5788 while (!kthread_should_stop()) {
5789 rb_write_something(data, false);
5790 data->cnt++;
5791
5792 set_current_state(TASK_INTERRUPTIBLE);
5793 /* Now sleep between a min of 100-300us and a max of 1ms */
5794 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5795 }
5796
5797 return 0;
5798 }
5799
rb_ipi(void * ignore)5800 static __init void rb_ipi(void *ignore)
5801 {
5802 struct rb_test_data *data;
5803 int cpu = smp_processor_id();
5804
5805 data = &rb_data[cpu];
5806 rb_write_something(data, true);
5807 }
5808
rb_hammer_test(void * arg)5809 static __init int rb_hammer_test(void *arg)
5810 {
5811 while (!kthread_should_stop()) {
5812
5813 /* Send an IPI to all cpus to write data! */
5814 smp_call_function(rb_ipi, NULL, 1);
5815 /* No sleep, but for non preempt, let others run */
5816 schedule();
5817 }
5818
5819 return 0;
5820 }
5821
test_ringbuffer(void)5822 static __init int test_ringbuffer(void)
5823 {
5824 struct task_struct *rb_hammer;
5825 struct trace_buffer *buffer;
5826 int cpu;
5827 int ret = 0;
5828
5829 if (security_locked_down(LOCKDOWN_TRACEFS)) {
5830 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5831 return 0;
5832 }
5833
5834 pr_info("Running ring buffer tests...\n");
5835
5836 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5837 if (WARN_ON(!buffer))
5838 return 0;
5839
5840 /* Disable buffer so that threads can't write to it yet */
5841 ring_buffer_record_off(buffer);
5842
5843 for_each_online_cpu(cpu) {
5844 rb_data[cpu].buffer = buffer;
5845 rb_data[cpu].cpu = cpu;
5846 rb_data[cpu].cnt = cpu;
5847 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5848 "rbtester/%d", cpu);
5849 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5850 pr_cont("FAILED\n");
5851 ret = PTR_ERR(rb_threads[cpu]);
5852 goto out_free;
5853 }
5854
5855 kthread_bind(rb_threads[cpu], cpu);
5856 wake_up_process(rb_threads[cpu]);
5857 }
5858
5859 /* Now create the rb hammer! */
5860 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5861 if (WARN_ON(IS_ERR(rb_hammer))) {
5862 pr_cont("FAILED\n");
5863 ret = PTR_ERR(rb_hammer);
5864 goto out_free;
5865 }
5866
5867 ring_buffer_record_on(buffer);
5868 /*
5869 * Show buffer is enabled before setting rb_test_started.
5870 * Yes there's a small race window where events could be
5871 * dropped and the thread wont catch it. But when a ring
5872 * buffer gets enabled, there will always be some kind of
5873 * delay before other CPUs see it. Thus, we don't care about
5874 * those dropped events. We care about events dropped after
5875 * the threads see that the buffer is active.
5876 */
5877 smp_wmb();
5878 rb_test_started = true;
5879
5880 set_current_state(TASK_INTERRUPTIBLE);
5881 /* Just run for 10 seconds */;
5882 schedule_timeout(10 * HZ);
5883
5884 kthread_stop(rb_hammer);
5885
5886 out_free:
5887 for_each_online_cpu(cpu) {
5888 if (!rb_threads[cpu])
5889 break;
5890 kthread_stop(rb_threads[cpu]);
5891 }
5892 if (ret) {
5893 ring_buffer_free(buffer);
5894 return ret;
5895 }
5896
5897 /* Report! */
5898 pr_info("finished\n");
5899 for_each_online_cpu(cpu) {
5900 struct ring_buffer_event *event;
5901 struct rb_test_data *data = &rb_data[cpu];
5902 struct rb_item *item;
5903 unsigned long total_events;
5904 unsigned long total_dropped;
5905 unsigned long total_written;
5906 unsigned long total_alloc;
5907 unsigned long total_read = 0;
5908 unsigned long total_size = 0;
5909 unsigned long total_len = 0;
5910 unsigned long total_lost = 0;
5911 unsigned long lost;
5912 int big_event_size;
5913 int small_event_size;
5914
5915 ret = -1;
5916
5917 total_events = data->events + data->events_nested;
5918 total_written = data->bytes_written + data->bytes_written_nested;
5919 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5920 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5921
5922 big_event_size = data->max_size + data->max_size_nested;
5923 small_event_size = data->min_size + data->min_size_nested;
5924
5925 pr_info("CPU %d:\n", cpu);
5926 pr_info(" events: %ld\n", total_events);
5927 pr_info(" dropped bytes: %ld\n", total_dropped);
5928 pr_info(" alloced bytes: %ld\n", total_alloc);
5929 pr_info(" written bytes: %ld\n", total_written);
5930 pr_info(" biggest event: %d\n", big_event_size);
5931 pr_info(" smallest event: %d\n", small_event_size);
5932
5933 if (RB_WARN_ON(buffer, total_dropped))
5934 break;
5935
5936 ret = 0;
5937
5938 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5939 total_lost += lost;
5940 item = ring_buffer_event_data(event);
5941 total_len += ring_buffer_event_length(event);
5942 total_size += item->size + sizeof(struct rb_item);
5943 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5944 pr_info("FAILED!\n");
5945 pr_info("buffer had: %.*s\n", item->size, item->str);
5946 pr_info("expected: %.*s\n", item->size, rb_string);
5947 RB_WARN_ON(buffer, 1);
5948 ret = -1;
5949 break;
5950 }
5951 total_read++;
5952 }
5953 if (ret)
5954 break;
5955
5956 ret = -1;
5957
5958 pr_info(" read events: %ld\n", total_read);
5959 pr_info(" lost events: %ld\n", total_lost);
5960 pr_info(" total events: %ld\n", total_lost + total_read);
5961 pr_info(" recorded len bytes: %ld\n", total_len);
5962 pr_info(" recorded size bytes: %ld\n", total_size);
5963 if (total_lost)
5964 pr_info(" With dropped events, record len and size may not match\n"
5965 " alloced and written from above\n");
5966 if (!total_lost) {
5967 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5968 total_size != total_written))
5969 break;
5970 }
5971 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5972 break;
5973
5974 ret = 0;
5975 }
5976 if (!ret)
5977 pr_info("Ring buffer PASSED!\n");
5978
5979 ring_buffer_free(buffer);
5980 return 0;
5981 }
5982
5983 late_initcall(test_ringbuffer);
5984 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5985