1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux INET6 implementation
4 * Forwarding Information Database
5 *
6 * Authors:
7 * Pedro Roque <roque@di.fc.ul.pt>
8 *
9 * Changes:
10 * Yuji SEKIYA @USAGI: Support default route on router node;
11 * remove ip6_null_entry from the top of
12 * routing table.
13 * Ville Nuorvala: Fixed routing subtrees.
14 */
15
16 #define pr_fmt(fmt) "IPv6: " fmt
17
18 #include <linux/errno.h>
19 #include <linux/types.h>
20 #include <linux/net.h>
21 #include <linux/route.h>
22 #include <linux/netdevice.h>
23 #include <linux/in6.h>
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/slab.h>
27
28 #include <net/ip.h>
29 #include <net/ipv6.h>
30 #include <net/ndisc.h>
31 #include <net/addrconf.h>
32 #include <net/lwtunnel.h>
33 #include <net/fib_notifier.h>
34
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37
38 static struct kmem_cache *fib6_node_kmem __read_mostly;
39
40 struct fib6_cleaner {
41 struct fib6_walker w;
42 struct net *net;
43 int (*func)(struct fib6_info *, void *arg);
44 int sernum;
45 void *arg;
46 bool skip_notify;
47 };
48
49 #ifdef CONFIG_IPV6_SUBTREES
50 #define FWS_INIT FWS_S
51 #else
52 #define FWS_INIT FWS_L
53 #endif
54
55 static struct fib6_info *fib6_find_prefix(struct net *net,
56 struct fib6_table *table,
57 struct fib6_node *fn);
58 static struct fib6_node *fib6_repair_tree(struct net *net,
59 struct fib6_table *table,
60 struct fib6_node *fn);
61 static int fib6_walk(struct net *net, struct fib6_walker *w);
62 static int fib6_walk_continue(struct fib6_walker *w);
63
64 /*
65 * A routing update causes an increase of the serial number on the
66 * affected subtree. This allows for cached routes to be asynchronously
67 * tested when modifications are made to the destination cache as a
68 * result of redirects, path MTU changes, etc.
69 */
70
71 static void fib6_gc_timer_cb(struct timer_list *t);
72
73 #define FOR_WALKERS(net, w) \
74 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
75
fib6_walker_link(struct net * net,struct fib6_walker * w)76 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
77 {
78 write_lock_bh(&net->ipv6.fib6_walker_lock);
79 list_add(&w->lh, &net->ipv6.fib6_walkers);
80 write_unlock_bh(&net->ipv6.fib6_walker_lock);
81 }
82
fib6_walker_unlink(struct net * net,struct fib6_walker * w)83 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
84 {
85 write_lock_bh(&net->ipv6.fib6_walker_lock);
86 list_del(&w->lh);
87 write_unlock_bh(&net->ipv6.fib6_walker_lock);
88 }
89
fib6_new_sernum(struct net * net)90 static int fib6_new_sernum(struct net *net)
91 {
92 int new, old;
93
94 do {
95 old = atomic_read(&net->ipv6.fib6_sernum);
96 new = old < INT_MAX ? old + 1 : 1;
97 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
98 old, new) != old);
99 return new;
100 }
101
102 enum {
103 FIB6_NO_SERNUM_CHANGE = 0,
104 };
105
fib6_update_sernum(struct net * net,struct fib6_info * f6i)106 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
107 {
108 struct fib6_node *fn;
109
110 fn = rcu_dereference_protected(f6i->fib6_node,
111 lockdep_is_held(&f6i->fib6_table->tb6_lock));
112 if (fn)
113 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
114 }
115
116 /*
117 * Auxiliary address test functions for the radix tree.
118 *
119 * These assume a 32bit processor (although it will work on
120 * 64bit processors)
121 */
122
123 /*
124 * test bit
125 */
126 #if defined(__LITTLE_ENDIAN)
127 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
128 #else
129 # define BITOP_BE32_SWIZZLE 0
130 #endif
131
addr_bit_set(const void * token,int fn_bit)132 static __be32 addr_bit_set(const void *token, int fn_bit)
133 {
134 const __be32 *addr = token;
135 /*
136 * Here,
137 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
138 * is optimized version of
139 * htonl(1 << ((~fn_bit)&0x1F))
140 * See include/asm-generic/bitops/le.h.
141 */
142 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143 addr[fn_bit >> 5];
144 }
145
fib6_info_alloc(gfp_t gfp_flags,bool with_fib6_nh)146 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
147 {
148 struct fib6_info *f6i;
149 size_t sz = sizeof(*f6i);
150
151 if (with_fib6_nh)
152 sz += sizeof(struct fib6_nh);
153
154 f6i = kzalloc(sz, gfp_flags);
155 if (!f6i)
156 return NULL;
157
158 /* fib6_siblings is a union with nh_list, so this initializes both */
159 INIT_LIST_HEAD(&f6i->fib6_siblings);
160 refcount_set(&f6i->fib6_ref, 1);
161
162 return f6i;
163 }
164
fib6_info_destroy_rcu(struct rcu_head * head)165 void fib6_info_destroy_rcu(struct rcu_head *head)
166 {
167 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
168
169 WARN_ON(f6i->fib6_node);
170
171 if (f6i->nh)
172 nexthop_put(f6i->nh);
173 else
174 fib6_nh_release(f6i->fib6_nh);
175
176 ip_fib_metrics_put(f6i->fib6_metrics);
177 kfree(f6i);
178 }
179 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
180
node_alloc(struct net * net)181 static struct fib6_node *node_alloc(struct net *net)
182 {
183 struct fib6_node *fn;
184
185 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
186 if (fn)
187 net->ipv6.rt6_stats->fib_nodes++;
188
189 return fn;
190 }
191
node_free_immediate(struct net * net,struct fib6_node * fn)192 static void node_free_immediate(struct net *net, struct fib6_node *fn)
193 {
194 kmem_cache_free(fib6_node_kmem, fn);
195 net->ipv6.rt6_stats->fib_nodes--;
196 }
197
node_free_rcu(struct rcu_head * head)198 static void node_free_rcu(struct rcu_head *head)
199 {
200 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
201
202 kmem_cache_free(fib6_node_kmem, fn);
203 }
204
node_free(struct net * net,struct fib6_node * fn)205 static void node_free(struct net *net, struct fib6_node *fn)
206 {
207 call_rcu(&fn->rcu, node_free_rcu);
208 net->ipv6.rt6_stats->fib_nodes--;
209 }
210
fib6_free_table(struct fib6_table * table)211 static void fib6_free_table(struct fib6_table *table)
212 {
213 inetpeer_invalidate_tree(&table->tb6_peers);
214 kfree(table);
215 }
216
fib6_link_table(struct net * net,struct fib6_table * tb)217 static void fib6_link_table(struct net *net, struct fib6_table *tb)
218 {
219 unsigned int h;
220
221 /*
222 * Initialize table lock at a single place to give lockdep a key,
223 * tables aren't visible prior to being linked to the list.
224 */
225 spin_lock_init(&tb->tb6_lock);
226 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
227
228 /*
229 * No protection necessary, this is the only list mutatation
230 * operation, tables never disappear once they exist.
231 */
232 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
233 }
234
235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
236
fib6_alloc_table(struct net * net,u32 id)237 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
238 {
239 struct fib6_table *table;
240
241 table = kzalloc(sizeof(*table), GFP_ATOMIC);
242 if (table) {
243 table->tb6_id = id;
244 rcu_assign_pointer(table->tb6_root.leaf,
245 net->ipv6.fib6_null_entry);
246 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
247 inet_peer_base_init(&table->tb6_peers);
248 }
249
250 return table;
251 }
252
fib6_new_table(struct net * net,u32 id)253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 struct fib6_table *tb;
256
257 if (id == 0)
258 id = RT6_TABLE_MAIN;
259 tb = fib6_get_table(net, id);
260 if (tb)
261 return tb;
262
263 tb = fib6_alloc_table(net, id);
264 if (tb)
265 fib6_link_table(net, tb);
266
267 return tb;
268 }
269 EXPORT_SYMBOL_GPL(fib6_new_table);
270
fib6_get_table(struct net * net,u32 id)271 struct fib6_table *fib6_get_table(struct net *net, u32 id)
272 {
273 struct fib6_table *tb;
274 struct hlist_head *head;
275 unsigned int h;
276
277 if (id == 0)
278 id = RT6_TABLE_MAIN;
279 h = id & (FIB6_TABLE_HASHSZ - 1);
280 rcu_read_lock();
281 head = &net->ipv6.fib_table_hash[h];
282 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
283 if (tb->tb6_id == id) {
284 rcu_read_unlock();
285 return tb;
286 }
287 }
288 rcu_read_unlock();
289
290 return NULL;
291 }
292 EXPORT_SYMBOL_GPL(fib6_get_table);
293
fib6_tables_init(struct net * net)294 static void __net_init fib6_tables_init(struct net *net)
295 {
296 fib6_link_table(net, net->ipv6.fib6_main_tbl);
297 fib6_link_table(net, net->ipv6.fib6_local_tbl);
298 }
299 #else
300
fib6_new_table(struct net * net,u32 id)301 struct fib6_table *fib6_new_table(struct net *net, u32 id)
302 {
303 return fib6_get_table(net, id);
304 }
305
fib6_get_table(struct net * net,u32 id)306 struct fib6_table *fib6_get_table(struct net *net, u32 id)
307 {
308 return net->ipv6.fib6_main_tbl;
309 }
310
fib6_rule_lookup(struct net * net,struct flowi6 * fl6,const struct sk_buff * skb,int flags,pol_lookup_t lookup)311 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
312 const struct sk_buff *skb,
313 int flags, pol_lookup_t lookup)
314 {
315 struct rt6_info *rt;
316
317 rt = pol_lookup_func(lookup,
318 net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
319 if (rt->dst.error == -EAGAIN) {
320 ip6_rt_put_flags(rt, flags);
321 rt = net->ipv6.ip6_null_entry;
322 if (!(flags & RT6_LOOKUP_F_DST_NOREF))
323 dst_hold(&rt->dst);
324 }
325
326 return &rt->dst;
327 }
328
329 /* called with rcu lock held; no reference taken on fib6_info */
fib6_lookup(struct net * net,int oif,struct flowi6 * fl6,struct fib6_result * res,int flags)330 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
331 struct fib6_result *res, int flags)
332 {
333 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
334 res, flags);
335 }
336
fib6_tables_init(struct net * net)337 static void __net_init fib6_tables_init(struct net *net)
338 {
339 fib6_link_table(net, net->ipv6.fib6_main_tbl);
340 }
341
342 #endif
343
fib6_tables_seq_read(struct net * net)344 unsigned int fib6_tables_seq_read(struct net *net)
345 {
346 unsigned int h, fib_seq = 0;
347
348 rcu_read_lock();
349 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
350 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
351 struct fib6_table *tb;
352
353 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
354 fib_seq += tb->fib_seq;
355 }
356 rcu_read_unlock();
357
358 return fib_seq;
359 }
360
call_fib6_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)361 static int call_fib6_entry_notifier(struct notifier_block *nb,
362 enum fib_event_type event_type,
363 struct fib6_info *rt,
364 struct netlink_ext_ack *extack)
365 {
366 struct fib6_entry_notifier_info info = {
367 .info.extack = extack,
368 .rt = rt,
369 };
370
371 return call_fib6_notifier(nb, event_type, &info.info);
372 }
373
call_fib6_multipath_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)374 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
375 enum fib_event_type event_type,
376 struct fib6_info *rt,
377 unsigned int nsiblings,
378 struct netlink_ext_ack *extack)
379 {
380 struct fib6_entry_notifier_info info = {
381 .info.extack = extack,
382 .rt = rt,
383 .nsiblings = nsiblings,
384 };
385
386 return call_fib6_notifier(nb, event_type, &info.info);
387 }
388
call_fib6_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)389 int call_fib6_entry_notifiers(struct net *net,
390 enum fib_event_type event_type,
391 struct fib6_info *rt,
392 struct netlink_ext_ack *extack)
393 {
394 struct fib6_entry_notifier_info info = {
395 .info.extack = extack,
396 .rt = rt,
397 };
398
399 rt->fib6_table->fib_seq++;
400 return call_fib6_notifiers(net, event_type, &info.info);
401 }
402
call_fib6_multipath_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)403 int call_fib6_multipath_entry_notifiers(struct net *net,
404 enum fib_event_type event_type,
405 struct fib6_info *rt,
406 unsigned int nsiblings,
407 struct netlink_ext_ack *extack)
408 {
409 struct fib6_entry_notifier_info info = {
410 .info.extack = extack,
411 .rt = rt,
412 .nsiblings = nsiblings,
413 };
414
415 rt->fib6_table->fib_seq++;
416 return call_fib6_notifiers(net, event_type, &info.info);
417 }
418
call_fib6_entry_notifiers_replace(struct net * net,struct fib6_info * rt)419 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
420 {
421 struct fib6_entry_notifier_info info = {
422 .rt = rt,
423 .nsiblings = rt->fib6_nsiblings,
424 };
425
426 rt->fib6_table->fib_seq++;
427 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
428 }
429
430 struct fib6_dump_arg {
431 struct net *net;
432 struct notifier_block *nb;
433 struct netlink_ext_ack *extack;
434 };
435
fib6_rt_dump(struct fib6_info * rt,struct fib6_dump_arg * arg)436 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
437 {
438 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
439 int err;
440
441 if (!rt || rt == arg->net->ipv6.fib6_null_entry)
442 return 0;
443
444 if (rt->fib6_nsiblings)
445 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
446 rt,
447 rt->fib6_nsiblings,
448 arg->extack);
449 else
450 err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
451 arg->extack);
452
453 return err;
454 }
455
fib6_node_dump(struct fib6_walker * w)456 static int fib6_node_dump(struct fib6_walker *w)
457 {
458 int err;
459
460 err = fib6_rt_dump(w->leaf, w->args);
461 w->leaf = NULL;
462 return err;
463 }
464
fib6_table_dump(struct net * net,struct fib6_table * tb,struct fib6_walker * w)465 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
466 struct fib6_walker *w)
467 {
468 int err;
469
470 w->root = &tb->tb6_root;
471 spin_lock_bh(&tb->tb6_lock);
472 err = fib6_walk(net, w);
473 spin_unlock_bh(&tb->tb6_lock);
474 return err;
475 }
476
477 /* Called with rcu_read_lock() */
fib6_tables_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)478 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
479 struct netlink_ext_ack *extack)
480 {
481 struct fib6_dump_arg arg;
482 struct fib6_walker *w;
483 unsigned int h;
484 int err = 0;
485
486 w = kzalloc(sizeof(*w), GFP_ATOMIC);
487 if (!w)
488 return -ENOMEM;
489
490 w->func = fib6_node_dump;
491 arg.net = net;
492 arg.nb = nb;
493 arg.extack = extack;
494 w->args = &arg;
495
496 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
497 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
498 struct fib6_table *tb;
499
500 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
501 err = fib6_table_dump(net, tb, w);
502 if (err)
503 goto out;
504 }
505 }
506
507 out:
508 kfree(w);
509
510 /* The tree traversal function should never return a positive value. */
511 return err > 0 ? -EINVAL : err;
512 }
513
fib6_dump_node(struct fib6_walker * w)514 static int fib6_dump_node(struct fib6_walker *w)
515 {
516 int res;
517 struct fib6_info *rt;
518
519 for_each_fib6_walker_rt(w) {
520 res = rt6_dump_route(rt, w->args, w->skip_in_node);
521 if (res >= 0) {
522 /* Frame is full, suspend walking */
523 w->leaf = rt;
524
525 /* We'll restart from this node, so if some routes were
526 * already dumped, skip them next time.
527 */
528 w->skip_in_node += res;
529
530 return 1;
531 }
532 w->skip_in_node = 0;
533
534 /* Multipath routes are dumped in one route with the
535 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
536 * last sibling of this route (no need to dump the
537 * sibling routes again)
538 */
539 if (rt->fib6_nsiblings)
540 rt = list_last_entry(&rt->fib6_siblings,
541 struct fib6_info,
542 fib6_siblings);
543 }
544 w->leaf = NULL;
545 return 0;
546 }
547
fib6_dump_end(struct netlink_callback * cb)548 static void fib6_dump_end(struct netlink_callback *cb)
549 {
550 struct net *net = sock_net(cb->skb->sk);
551 struct fib6_walker *w = (void *)cb->args[2];
552
553 if (w) {
554 if (cb->args[4]) {
555 cb->args[4] = 0;
556 fib6_walker_unlink(net, w);
557 }
558 cb->args[2] = 0;
559 kfree(w);
560 }
561 cb->done = (void *)cb->args[3];
562 cb->args[1] = 3;
563 }
564
fib6_dump_done(struct netlink_callback * cb)565 static int fib6_dump_done(struct netlink_callback *cb)
566 {
567 fib6_dump_end(cb);
568 return cb->done ? cb->done(cb) : 0;
569 }
570
fib6_dump_table(struct fib6_table * table,struct sk_buff * skb,struct netlink_callback * cb)571 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
572 struct netlink_callback *cb)
573 {
574 struct net *net = sock_net(skb->sk);
575 struct fib6_walker *w;
576 int res;
577
578 w = (void *)cb->args[2];
579 w->root = &table->tb6_root;
580
581 if (cb->args[4] == 0) {
582 w->count = 0;
583 w->skip = 0;
584 w->skip_in_node = 0;
585
586 spin_lock_bh(&table->tb6_lock);
587 res = fib6_walk(net, w);
588 spin_unlock_bh(&table->tb6_lock);
589 if (res > 0) {
590 cb->args[4] = 1;
591 cb->args[5] = READ_ONCE(w->root->fn_sernum);
592 }
593 } else {
594 int sernum = READ_ONCE(w->root->fn_sernum);
595 if (cb->args[5] != sernum) {
596 /* Begin at the root if the tree changed */
597 cb->args[5] = sernum;
598 w->state = FWS_INIT;
599 w->node = w->root;
600 w->skip = w->count;
601 w->skip_in_node = 0;
602 } else
603 w->skip = 0;
604
605 spin_lock_bh(&table->tb6_lock);
606 res = fib6_walk_continue(w);
607 spin_unlock_bh(&table->tb6_lock);
608 if (res <= 0) {
609 fib6_walker_unlink(net, w);
610 cb->args[4] = 0;
611 }
612 }
613
614 return res;
615 }
616
inet6_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)617 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
618 {
619 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
620 .filter.dump_routes = true };
621 const struct nlmsghdr *nlh = cb->nlh;
622 struct net *net = sock_net(skb->sk);
623 unsigned int h, s_h;
624 unsigned int e = 0, s_e;
625 struct fib6_walker *w;
626 struct fib6_table *tb;
627 struct hlist_head *head;
628 int res = 0;
629
630 if (cb->strict_check) {
631 int err;
632
633 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
634 if (err < 0)
635 return err;
636 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
637 struct rtmsg *rtm = nlmsg_data(nlh);
638
639 if (rtm->rtm_flags & RTM_F_PREFIX)
640 arg.filter.flags = RTM_F_PREFIX;
641 }
642
643 w = (void *)cb->args[2];
644 if (!w) {
645 /* New dump:
646 *
647 * 1. allocate and initialize walker.
648 */
649 w = kzalloc(sizeof(*w), GFP_ATOMIC);
650 if (!w)
651 return -ENOMEM;
652 w->func = fib6_dump_node;
653 cb->args[2] = (long)w;
654
655 /* 2. hook callback destructor.
656 */
657 cb->args[3] = (long)cb->done;
658 cb->done = fib6_dump_done;
659
660 }
661
662 arg.skb = skb;
663 arg.cb = cb;
664 arg.net = net;
665 w->args = &arg;
666
667 if (arg.filter.table_id) {
668 tb = fib6_get_table(net, arg.filter.table_id);
669 if (!tb) {
670 if (rtnl_msg_family(cb->nlh) != PF_INET6)
671 goto out;
672
673 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
674 return -ENOENT;
675 }
676
677 if (!cb->args[0]) {
678 res = fib6_dump_table(tb, skb, cb);
679 if (!res)
680 cb->args[0] = 1;
681 }
682 goto out;
683 }
684
685 s_h = cb->args[0];
686 s_e = cb->args[1];
687
688 rcu_read_lock();
689 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
690 e = 0;
691 head = &net->ipv6.fib_table_hash[h];
692 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
693 if (e < s_e)
694 goto next;
695 res = fib6_dump_table(tb, skb, cb);
696 if (res != 0)
697 goto out_unlock;
698 next:
699 e++;
700 }
701 }
702 out_unlock:
703 rcu_read_unlock();
704 cb->args[1] = e;
705 cb->args[0] = h;
706 out:
707 res = res < 0 ? res : skb->len;
708 if (res <= 0)
709 fib6_dump_end(cb);
710 return res;
711 }
712
fib6_metric_set(struct fib6_info * f6i,int metric,u32 val)713 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
714 {
715 if (!f6i)
716 return;
717
718 if (f6i->fib6_metrics == &dst_default_metrics) {
719 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
720
721 if (!p)
722 return;
723
724 refcount_set(&p->refcnt, 1);
725 f6i->fib6_metrics = p;
726 }
727
728 f6i->fib6_metrics->metrics[metric - 1] = val;
729 }
730
731 /*
732 * Routing Table
733 *
734 * return the appropriate node for a routing tree "add" operation
735 * by either creating and inserting or by returning an existing
736 * node.
737 */
738
fib6_add_1(struct net * net,struct fib6_table * table,struct fib6_node * root,struct in6_addr * addr,int plen,int offset,int allow_create,int replace_required,struct netlink_ext_ack * extack)739 static struct fib6_node *fib6_add_1(struct net *net,
740 struct fib6_table *table,
741 struct fib6_node *root,
742 struct in6_addr *addr, int plen,
743 int offset, int allow_create,
744 int replace_required,
745 struct netlink_ext_ack *extack)
746 {
747 struct fib6_node *fn, *in, *ln;
748 struct fib6_node *pn = NULL;
749 struct rt6key *key;
750 int bit;
751 __be32 dir = 0;
752
753 RT6_TRACE("fib6_add_1\n");
754
755 /* insert node in tree */
756
757 fn = root;
758
759 do {
760 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
761 lockdep_is_held(&table->tb6_lock));
762 key = (struct rt6key *)((u8 *)leaf + offset);
763
764 /*
765 * Prefix match
766 */
767 if (plen < fn->fn_bit ||
768 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
769 if (!allow_create) {
770 if (replace_required) {
771 NL_SET_ERR_MSG(extack,
772 "Can not replace route - no match found");
773 pr_warn("Can't replace route, no match found\n");
774 return ERR_PTR(-ENOENT);
775 }
776 pr_warn("NLM_F_CREATE should be set when creating new route\n");
777 }
778 goto insert_above;
779 }
780
781 /*
782 * Exact match ?
783 */
784
785 if (plen == fn->fn_bit) {
786 /* clean up an intermediate node */
787 if (!(fn->fn_flags & RTN_RTINFO)) {
788 RCU_INIT_POINTER(fn->leaf, NULL);
789 fib6_info_release(leaf);
790 /* remove null_entry in the root node */
791 } else if (fn->fn_flags & RTN_TL_ROOT &&
792 rcu_access_pointer(fn->leaf) ==
793 net->ipv6.fib6_null_entry) {
794 RCU_INIT_POINTER(fn->leaf, NULL);
795 }
796
797 return fn;
798 }
799
800 /*
801 * We have more bits to go
802 */
803
804 /* Try to walk down on tree. */
805 dir = addr_bit_set(addr, fn->fn_bit);
806 pn = fn;
807 fn = dir ?
808 rcu_dereference_protected(fn->right,
809 lockdep_is_held(&table->tb6_lock)) :
810 rcu_dereference_protected(fn->left,
811 lockdep_is_held(&table->tb6_lock));
812 } while (fn);
813
814 if (!allow_create) {
815 /* We should not create new node because
816 * NLM_F_REPLACE was specified without NLM_F_CREATE
817 * I assume it is safe to require NLM_F_CREATE when
818 * REPLACE flag is used! Later we may want to remove the
819 * check for replace_required, because according
820 * to netlink specification, NLM_F_CREATE
821 * MUST be specified if new route is created.
822 * That would keep IPv6 consistent with IPv4
823 */
824 if (replace_required) {
825 NL_SET_ERR_MSG(extack,
826 "Can not replace route - no match found");
827 pr_warn("Can't replace route, no match found\n");
828 return ERR_PTR(-ENOENT);
829 }
830 pr_warn("NLM_F_CREATE should be set when creating new route\n");
831 }
832 /*
833 * We walked to the bottom of tree.
834 * Create new leaf node without children.
835 */
836
837 ln = node_alloc(net);
838
839 if (!ln)
840 return ERR_PTR(-ENOMEM);
841 ln->fn_bit = plen;
842 RCU_INIT_POINTER(ln->parent, pn);
843
844 if (dir)
845 rcu_assign_pointer(pn->right, ln);
846 else
847 rcu_assign_pointer(pn->left, ln);
848
849 return ln;
850
851
852 insert_above:
853 /*
854 * split since we don't have a common prefix anymore or
855 * we have a less significant route.
856 * we've to insert an intermediate node on the list
857 * this new node will point to the one we need to create
858 * and the current
859 */
860
861 pn = rcu_dereference_protected(fn->parent,
862 lockdep_is_held(&table->tb6_lock));
863
864 /* find 1st bit in difference between the 2 addrs.
865
866 See comment in __ipv6_addr_diff: bit may be an invalid value,
867 but if it is >= plen, the value is ignored in any case.
868 */
869
870 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
871
872 /*
873 * (intermediate)[in]
874 * / \
875 * (new leaf node)[ln] (old node)[fn]
876 */
877 if (plen > bit) {
878 in = node_alloc(net);
879 ln = node_alloc(net);
880
881 if (!in || !ln) {
882 if (in)
883 node_free_immediate(net, in);
884 if (ln)
885 node_free_immediate(net, ln);
886 return ERR_PTR(-ENOMEM);
887 }
888
889 /*
890 * new intermediate node.
891 * RTN_RTINFO will
892 * be off since that an address that chooses one of
893 * the branches would not match less specific routes
894 * in the other branch
895 */
896
897 in->fn_bit = bit;
898
899 RCU_INIT_POINTER(in->parent, pn);
900 in->leaf = fn->leaf;
901 fib6_info_hold(rcu_dereference_protected(in->leaf,
902 lockdep_is_held(&table->tb6_lock)));
903
904 /* update parent pointer */
905 if (dir)
906 rcu_assign_pointer(pn->right, in);
907 else
908 rcu_assign_pointer(pn->left, in);
909
910 ln->fn_bit = plen;
911
912 RCU_INIT_POINTER(ln->parent, in);
913 rcu_assign_pointer(fn->parent, in);
914
915 if (addr_bit_set(addr, bit)) {
916 rcu_assign_pointer(in->right, ln);
917 rcu_assign_pointer(in->left, fn);
918 } else {
919 rcu_assign_pointer(in->left, ln);
920 rcu_assign_pointer(in->right, fn);
921 }
922 } else { /* plen <= bit */
923
924 /*
925 * (new leaf node)[ln]
926 * / \
927 * (old node)[fn] NULL
928 */
929
930 ln = node_alloc(net);
931
932 if (!ln)
933 return ERR_PTR(-ENOMEM);
934
935 ln->fn_bit = plen;
936
937 RCU_INIT_POINTER(ln->parent, pn);
938
939 if (addr_bit_set(&key->addr, plen))
940 RCU_INIT_POINTER(ln->right, fn);
941 else
942 RCU_INIT_POINTER(ln->left, fn);
943
944 rcu_assign_pointer(fn->parent, ln);
945
946 if (dir)
947 rcu_assign_pointer(pn->right, ln);
948 else
949 rcu_assign_pointer(pn->left, ln);
950 }
951 return ln;
952 }
953
__fib6_drop_pcpu_from(struct fib6_nh * fib6_nh,const struct fib6_info * match,const struct fib6_table * table)954 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
955 const struct fib6_info *match,
956 const struct fib6_table *table)
957 {
958 int cpu;
959
960 if (!fib6_nh->rt6i_pcpu)
961 return;
962
963 /* release the reference to this fib entry from
964 * all of its cached pcpu routes
965 */
966 for_each_possible_cpu(cpu) {
967 struct rt6_info **ppcpu_rt;
968 struct rt6_info *pcpu_rt;
969
970 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
971 pcpu_rt = *ppcpu_rt;
972
973 /* only dropping the 'from' reference if the cached route
974 * is using 'match'. The cached pcpu_rt->from only changes
975 * from a fib6_info to NULL (ip6_dst_destroy); it can never
976 * change from one fib6_info reference to another
977 */
978 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
979 struct fib6_info *from;
980
981 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
982 fib6_info_release(from);
983 }
984 }
985 }
986
987 struct fib6_nh_pcpu_arg {
988 struct fib6_info *from;
989 const struct fib6_table *table;
990 };
991
fib6_nh_drop_pcpu_from(struct fib6_nh * nh,void * _arg)992 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
993 {
994 struct fib6_nh_pcpu_arg *arg = _arg;
995
996 __fib6_drop_pcpu_from(nh, arg->from, arg->table);
997 return 0;
998 }
999
fib6_drop_pcpu_from(struct fib6_info * f6i,const struct fib6_table * table)1000 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1001 const struct fib6_table *table)
1002 {
1003 /* Make sure rt6_make_pcpu_route() wont add other percpu routes
1004 * while we are cleaning them here.
1005 */
1006 f6i->fib6_destroying = 1;
1007 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1008
1009 if (f6i->nh) {
1010 struct fib6_nh_pcpu_arg arg = {
1011 .from = f6i,
1012 .table = table
1013 };
1014
1015 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1016 &arg);
1017 } else {
1018 struct fib6_nh *fib6_nh;
1019
1020 fib6_nh = f6i->fib6_nh;
1021 __fib6_drop_pcpu_from(fib6_nh, f6i, table);
1022 }
1023 }
1024
fib6_purge_rt(struct fib6_info * rt,struct fib6_node * fn,struct net * net)1025 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1026 struct net *net)
1027 {
1028 struct fib6_table *table = rt->fib6_table;
1029
1030 /* Flush all cached dst in exception table */
1031 rt6_flush_exceptions(rt);
1032 fib6_drop_pcpu_from(rt, table);
1033
1034 if (rt->nh && !list_empty(&rt->nh_list))
1035 list_del_init(&rt->nh_list);
1036
1037 if (refcount_read(&rt->fib6_ref) != 1) {
1038 /* This route is used as dummy address holder in some split
1039 * nodes. It is not leaked, but it still holds other resources,
1040 * which must be released in time. So, scan ascendant nodes
1041 * and replace dummy references to this route with references
1042 * to still alive ones.
1043 */
1044 while (fn) {
1045 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1046 lockdep_is_held(&table->tb6_lock));
1047 struct fib6_info *new_leaf;
1048 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1049 new_leaf = fib6_find_prefix(net, table, fn);
1050 fib6_info_hold(new_leaf);
1051
1052 rcu_assign_pointer(fn->leaf, new_leaf);
1053 fib6_info_release(rt);
1054 }
1055 fn = rcu_dereference_protected(fn->parent,
1056 lockdep_is_held(&table->tb6_lock));
1057 }
1058 }
1059 }
1060
1061 /*
1062 * Insert routing information in a node.
1063 */
1064
fib6_add_rt2node(struct fib6_node * fn,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1065 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1066 struct nl_info *info,
1067 struct netlink_ext_ack *extack)
1068 {
1069 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1070 lockdep_is_held(&rt->fib6_table->tb6_lock));
1071 struct fib6_info *iter = NULL;
1072 struct fib6_info __rcu **ins;
1073 struct fib6_info __rcu **fallback_ins = NULL;
1074 int replace = (info->nlh &&
1075 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1076 int add = (!info->nlh ||
1077 (info->nlh->nlmsg_flags & NLM_F_CREATE));
1078 int found = 0;
1079 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1080 bool notify_sibling_rt = false;
1081 u16 nlflags = NLM_F_EXCL;
1082 int err;
1083
1084 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1085 nlflags |= NLM_F_APPEND;
1086
1087 ins = &fn->leaf;
1088
1089 for (iter = leaf; iter;
1090 iter = rcu_dereference_protected(iter->fib6_next,
1091 lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1092 /*
1093 * Search for duplicates
1094 */
1095
1096 if (iter->fib6_metric == rt->fib6_metric) {
1097 /*
1098 * Same priority level
1099 */
1100 if (info->nlh &&
1101 (info->nlh->nlmsg_flags & NLM_F_EXCL))
1102 return -EEXIST;
1103
1104 nlflags &= ~NLM_F_EXCL;
1105 if (replace) {
1106 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1107 found++;
1108 break;
1109 }
1110 fallback_ins = fallback_ins ?: ins;
1111 goto next_iter;
1112 }
1113
1114 if (rt6_duplicate_nexthop(iter, rt)) {
1115 if (rt->fib6_nsiblings)
1116 rt->fib6_nsiblings = 0;
1117 if (!(iter->fib6_flags & RTF_EXPIRES))
1118 return -EEXIST;
1119 if (!(rt->fib6_flags & RTF_EXPIRES))
1120 fib6_clean_expires(iter);
1121 else
1122 fib6_set_expires(iter, rt->expires);
1123
1124 if (rt->fib6_pmtu)
1125 fib6_metric_set(iter, RTAX_MTU,
1126 rt->fib6_pmtu);
1127 return -EEXIST;
1128 }
1129 /* If we have the same destination and the same metric,
1130 * but not the same gateway, then the route we try to
1131 * add is sibling to this route, increment our counter
1132 * of siblings, and later we will add our route to the
1133 * list.
1134 * Only static routes (which don't have flag
1135 * RTF_EXPIRES) are used for ECMPv6.
1136 *
1137 * To avoid long list, we only had siblings if the
1138 * route have a gateway.
1139 */
1140 if (rt_can_ecmp &&
1141 rt6_qualify_for_ecmp(iter))
1142 rt->fib6_nsiblings++;
1143 }
1144
1145 if (iter->fib6_metric > rt->fib6_metric)
1146 break;
1147
1148 next_iter:
1149 ins = &iter->fib6_next;
1150 }
1151
1152 if (fallback_ins && !found) {
1153 /* No matching route with same ecmp-able-ness found, replace
1154 * first matching route
1155 */
1156 ins = fallback_ins;
1157 iter = rcu_dereference_protected(*ins,
1158 lockdep_is_held(&rt->fib6_table->tb6_lock));
1159 found++;
1160 }
1161
1162 /* Reset round-robin state, if necessary */
1163 if (ins == &fn->leaf)
1164 fn->rr_ptr = NULL;
1165
1166 /* Link this route to others same route. */
1167 if (rt->fib6_nsiblings) {
1168 unsigned int fib6_nsiblings;
1169 struct fib6_info *sibling, *temp_sibling;
1170
1171 /* Find the first route that have the same metric */
1172 sibling = leaf;
1173 notify_sibling_rt = true;
1174 while (sibling) {
1175 if (sibling->fib6_metric == rt->fib6_metric &&
1176 rt6_qualify_for_ecmp(sibling)) {
1177 list_add_tail(&rt->fib6_siblings,
1178 &sibling->fib6_siblings);
1179 break;
1180 }
1181 sibling = rcu_dereference_protected(sibling->fib6_next,
1182 lockdep_is_held(&rt->fib6_table->tb6_lock));
1183 notify_sibling_rt = false;
1184 }
1185 /* For each sibling in the list, increment the counter of
1186 * siblings. BUG() if counters does not match, list of siblings
1187 * is broken!
1188 */
1189 fib6_nsiblings = 0;
1190 list_for_each_entry_safe(sibling, temp_sibling,
1191 &rt->fib6_siblings, fib6_siblings) {
1192 sibling->fib6_nsiblings++;
1193 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1194 fib6_nsiblings++;
1195 }
1196 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1197 rt6_multipath_rebalance(temp_sibling);
1198 }
1199
1200 /*
1201 * insert node
1202 */
1203 if (!replace) {
1204 if (!add)
1205 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1206
1207 add:
1208 nlflags |= NLM_F_CREATE;
1209
1210 /* The route should only be notified if it is the first
1211 * route in the node or if it is added as a sibling
1212 * route to the first route in the node.
1213 */
1214 if (!info->skip_notify_kernel &&
1215 (notify_sibling_rt || ins == &fn->leaf)) {
1216 enum fib_event_type fib_event;
1217
1218 if (notify_sibling_rt)
1219 fib_event = FIB_EVENT_ENTRY_APPEND;
1220 else
1221 fib_event = FIB_EVENT_ENTRY_REPLACE;
1222 err = call_fib6_entry_notifiers(info->nl_net,
1223 fib_event, rt,
1224 extack);
1225 if (err) {
1226 struct fib6_info *sibling, *next_sibling;
1227
1228 /* If the route has siblings, then it first
1229 * needs to be unlinked from them.
1230 */
1231 if (!rt->fib6_nsiblings)
1232 return err;
1233
1234 list_for_each_entry_safe(sibling, next_sibling,
1235 &rt->fib6_siblings,
1236 fib6_siblings)
1237 sibling->fib6_nsiblings--;
1238 rt->fib6_nsiblings = 0;
1239 list_del_init(&rt->fib6_siblings);
1240 rt6_multipath_rebalance(next_sibling);
1241 return err;
1242 }
1243 }
1244
1245 rcu_assign_pointer(rt->fib6_next, iter);
1246 fib6_info_hold(rt);
1247 rcu_assign_pointer(rt->fib6_node, fn);
1248 rcu_assign_pointer(*ins, rt);
1249 if (!info->skip_notify)
1250 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1251 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1252
1253 if (!(fn->fn_flags & RTN_RTINFO)) {
1254 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1255 fn->fn_flags |= RTN_RTINFO;
1256 }
1257
1258 } else {
1259 int nsiblings;
1260
1261 if (!found) {
1262 if (add)
1263 goto add;
1264 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1265 return -ENOENT;
1266 }
1267
1268 if (!info->skip_notify_kernel && ins == &fn->leaf) {
1269 err = call_fib6_entry_notifiers(info->nl_net,
1270 FIB_EVENT_ENTRY_REPLACE,
1271 rt, extack);
1272 if (err)
1273 return err;
1274 }
1275
1276 fib6_info_hold(rt);
1277 rcu_assign_pointer(rt->fib6_node, fn);
1278 rt->fib6_next = iter->fib6_next;
1279 rcu_assign_pointer(*ins, rt);
1280 if (!info->skip_notify)
1281 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1282 if (!(fn->fn_flags & RTN_RTINFO)) {
1283 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1284 fn->fn_flags |= RTN_RTINFO;
1285 }
1286 nsiblings = iter->fib6_nsiblings;
1287 iter->fib6_node = NULL;
1288 fib6_purge_rt(iter, fn, info->nl_net);
1289 if (rcu_access_pointer(fn->rr_ptr) == iter)
1290 fn->rr_ptr = NULL;
1291 fib6_info_release(iter);
1292
1293 if (nsiblings) {
1294 /* Replacing an ECMP route, remove all siblings */
1295 ins = &rt->fib6_next;
1296 iter = rcu_dereference_protected(*ins,
1297 lockdep_is_held(&rt->fib6_table->tb6_lock));
1298 while (iter) {
1299 if (iter->fib6_metric > rt->fib6_metric)
1300 break;
1301 if (rt6_qualify_for_ecmp(iter)) {
1302 *ins = iter->fib6_next;
1303 iter->fib6_node = NULL;
1304 fib6_purge_rt(iter, fn, info->nl_net);
1305 if (rcu_access_pointer(fn->rr_ptr) == iter)
1306 fn->rr_ptr = NULL;
1307 fib6_info_release(iter);
1308 nsiblings--;
1309 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1310 } else {
1311 ins = &iter->fib6_next;
1312 }
1313 iter = rcu_dereference_protected(*ins,
1314 lockdep_is_held(&rt->fib6_table->tb6_lock));
1315 }
1316 WARN_ON(nsiblings != 0);
1317 }
1318 }
1319
1320 return 0;
1321 }
1322
fib6_start_gc(struct net * net,struct fib6_info * rt)1323 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1324 {
1325 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1326 (rt->fib6_flags & RTF_EXPIRES))
1327 mod_timer(&net->ipv6.ip6_fib_timer,
1328 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1329 }
1330
fib6_force_start_gc(struct net * net)1331 void fib6_force_start_gc(struct net *net)
1332 {
1333 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1334 mod_timer(&net->ipv6.ip6_fib_timer,
1335 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1336 }
1337
__fib6_update_sernum_upto_root(struct fib6_info * rt,int sernum)1338 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1339 int sernum)
1340 {
1341 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1342 lockdep_is_held(&rt->fib6_table->tb6_lock));
1343
1344 /* paired with smp_rmb() in rt6_get_cookie_safe() */
1345 smp_wmb();
1346 while (fn) {
1347 WRITE_ONCE(fn->fn_sernum, sernum);
1348 fn = rcu_dereference_protected(fn->parent,
1349 lockdep_is_held(&rt->fib6_table->tb6_lock));
1350 }
1351 }
1352
fib6_update_sernum_upto_root(struct net * net,struct fib6_info * rt)1353 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1354 {
1355 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1356 }
1357
1358 /* allow ipv4 to update sernum via ipv6_stub */
fib6_update_sernum_stub(struct net * net,struct fib6_info * f6i)1359 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1360 {
1361 spin_lock_bh(&f6i->fib6_table->tb6_lock);
1362 fib6_update_sernum_upto_root(net, f6i);
1363 spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1364 }
1365
1366 /*
1367 * Add routing information to the routing tree.
1368 * <destination addr>/<source addr>
1369 * with source addr info in sub-trees
1370 * Need to own table->tb6_lock
1371 */
1372
fib6_add(struct fib6_node * root,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1373 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1374 struct nl_info *info, struct netlink_ext_ack *extack)
1375 {
1376 struct fib6_table *table = rt->fib6_table;
1377 struct fib6_node *fn, *pn = NULL;
1378 int err = -ENOMEM;
1379 int allow_create = 1;
1380 int replace_required = 0;
1381
1382 if (info->nlh) {
1383 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1384 allow_create = 0;
1385 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1386 replace_required = 1;
1387 }
1388 if (!allow_create && !replace_required)
1389 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1390
1391 fn = fib6_add_1(info->nl_net, table, root,
1392 &rt->fib6_dst.addr, rt->fib6_dst.plen,
1393 offsetof(struct fib6_info, fib6_dst), allow_create,
1394 replace_required, extack);
1395 if (IS_ERR(fn)) {
1396 err = PTR_ERR(fn);
1397 fn = NULL;
1398 goto out;
1399 }
1400
1401 pn = fn;
1402
1403 #ifdef CONFIG_IPV6_SUBTREES
1404 if (rt->fib6_src.plen) {
1405 struct fib6_node *sn;
1406
1407 if (!rcu_access_pointer(fn->subtree)) {
1408 struct fib6_node *sfn;
1409
1410 /*
1411 * Create subtree.
1412 *
1413 * fn[main tree]
1414 * |
1415 * sfn[subtree root]
1416 * \
1417 * sn[new leaf node]
1418 */
1419
1420 /* Create subtree root node */
1421 sfn = node_alloc(info->nl_net);
1422 if (!sfn)
1423 goto failure;
1424
1425 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1426 rcu_assign_pointer(sfn->leaf,
1427 info->nl_net->ipv6.fib6_null_entry);
1428 sfn->fn_flags = RTN_ROOT;
1429
1430 /* Now add the first leaf node to new subtree */
1431
1432 sn = fib6_add_1(info->nl_net, table, sfn,
1433 &rt->fib6_src.addr, rt->fib6_src.plen,
1434 offsetof(struct fib6_info, fib6_src),
1435 allow_create, replace_required, extack);
1436
1437 if (IS_ERR(sn)) {
1438 /* If it is failed, discard just allocated
1439 root, and then (in failure) stale node
1440 in main tree.
1441 */
1442 node_free_immediate(info->nl_net, sfn);
1443 err = PTR_ERR(sn);
1444 goto failure;
1445 }
1446
1447 /* Now link new subtree to main tree */
1448 rcu_assign_pointer(sfn->parent, fn);
1449 rcu_assign_pointer(fn->subtree, sfn);
1450 } else {
1451 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1452 &rt->fib6_src.addr, rt->fib6_src.plen,
1453 offsetof(struct fib6_info, fib6_src),
1454 allow_create, replace_required, extack);
1455
1456 if (IS_ERR(sn)) {
1457 err = PTR_ERR(sn);
1458 goto failure;
1459 }
1460 }
1461
1462 if (!rcu_access_pointer(fn->leaf)) {
1463 if (fn->fn_flags & RTN_TL_ROOT) {
1464 /* put back null_entry for root node */
1465 rcu_assign_pointer(fn->leaf,
1466 info->nl_net->ipv6.fib6_null_entry);
1467 } else {
1468 fib6_info_hold(rt);
1469 rcu_assign_pointer(fn->leaf, rt);
1470 }
1471 }
1472 fn = sn;
1473 }
1474 #endif
1475
1476 err = fib6_add_rt2node(fn, rt, info, extack);
1477 if (!err) {
1478 if (rt->nh)
1479 list_add(&rt->nh_list, &rt->nh->f6i_list);
1480 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1481 fib6_start_gc(info->nl_net, rt);
1482 }
1483
1484 out:
1485 if (err) {
1486 #ifdef CONFIG_IPV6_SUBTREES
1487 /*
1488 * If fib6_add_1 has cleared the old leaf pointer in the
1489 * super-tree leaf node we have to find a new one for it.
1490 */
1491 if (pn != fn) {
1492 struct fib6_info *pn_leaf =
1493 rcu_dereference_protected(pn->leaf,
1494 lockdep_is_held(&table->tb6_lock));
1495 if (pn_leaf == rt) {
1496 pn_leaf = NULL;
1497 RCU_INIT_POINTER(pn->leaf, NULL);
1498 fib6_info_release(rt);
1499 }
1500 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1501 pn_leaf = fib6_find_prefix(info->nl_net, table,
1502 pn);
1503 if (!pn_leaf)
1504 pn_leaf =
1505 info->nl_net->ipv6.fib6_null_entry;
1506 fib6_info_hold(pn_leaf);
1507 rcu_assign_pointer(pn->leaf, pn_leaf);
1508 }
1509 }
1510 #endif
1511 goto failure;
1512 } else if (fib6_requires_src(rt)) {
1513 fib6_routes_require_src_inc(info->nl_net);
1514 }
1515 return err;
1516
1517 failure:
1518 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1519 * 1. fn is an intermediate node and we failed to add the new
1520 * route to it in both subtree creation failure and fib6_add_rt2node()
1521 * failure case.
1522 * 2. fn is the root node in the table and we fail to add the first
1523 * default route to it.
1524 */
1525 if (fn &&
1526 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1527 (fn->fn_flags & RTN_TL_ROOT &&
1528 !rcu_access_pointer(fn->leaf))))
1529 fib6_repair_tree(info->nl_net, table, fn);
1530 return err;
1531 }
1532
1533 /*
1534 * Routing tree lookup
1535 *
1536 */
1537
1538 struct lookup_args {
1539 int offset; /* key offset on fib6_info */
1540 const struct in6_addr *addr; /* search key */
1541 };
1542
fib6_node_lookup_1(struct fib6_node * root,struct lookup_args * args)1543 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1544 struct lookup_args *args)
1545 {
1546 struct fib6_node *fn;
1547 __be32 dir;
1548
1549 if (unlikely(args->offset == 0))
1550 return NULL;
1551
1552 /*
1553 * Descend on a tree
1554 */
1555
1556 fn = root;
1557
1558 for (;;) {
1559 struct fib6_node *next;
1560
1561 dir = addr_bit_set(args->addr, fn->fn_bit);
1562
1563 next = dir ? rcu_dereference(fn->right) :
1564 rcu_dereference(fn->left);
1565
1566 if (next) {
1567 fn = next;
1568 continue;
1569 }
1570 break;
1571 }
1572
1573 while (fn) {
1574 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1575
1576 if (subtree || fn->fn_flags & RTN_RTINFO) {
1577 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1578 struct rt6key *key;
1579
1580 if (!leaf)
1581 goto backtrack;
1582
1583 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1584
1585 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1586 #ifdef CONFIG_IPV6_SUBTREES
1587 if (subtree) {
1588 struct fib6_node *sfn;
1589 sfn = fib6_node_lookup_1(subtree,
1590 args + 1);
1591 if (!sfn)
1592 goto backtrack;
1593 fn = sfn;
1594 }
1595 #endif
1596 if (fn->fn_flags & RTN_RTINFO)
1597 return fn;
1598 }
1599 }
1600 backtrack:
1601 if (fn->fn_flags & RTN_ROOT)
1602 break;
1603
1604 fn = rcu_dereference(fn->parent);
1605 }
1606
1607 return NULL;
1608 }
1609
1610 /* called with rcu_read_lock() held
1611 */
fib6_node_lookup(struct fib6_node * root,const struct in6_addr * daddr,const struct in6_addr * saddr)1612 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1613 const struct in6_addr *daddr,
1614 const struct in6_addr *saddr)
1615 {
1616 struct fib6_node *fn;
1617 struct lookup_args args[] = {
1618 {
1619 .offset = offsetof(struct fib6_info, fib6_dst),
1620 .addr = daddr,
1621 },
1622 #ifdef CONFIG_IPV6_SUBTREES
1623 {
1624 .offset = offsetof(struct fib6_info, fib6_src),
1625 .addr = saddr,
1626 },
1627 #endif
1628 {
1629 .offset = 0, /* sentinel */
1630 }
1631 };
1632
1633 fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1634 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1635 fn = root;
1636
1637 return fn;
1638 }
1639
1640 /*
1641 * Get node with specified destination prefix (and source prefix,
1642 * if subtrees are used)
1643 * exact_match == true means we try to find fn with exact match of
1644 * the passed in prefix addr
1645 * exact_match == false means we try to find fn with longest prefix
1646 * match of the passed in prefix addr. This is useful for finding fn
1647 * for cached route as it will be stored in the exception table under
1648 * the node with longest prefix length.
1649 */
1650
1651
fib6_locate_1(struct fib6_node * root,const struct in6_addr * addr,int plen,int offset,bool exact_match)1652 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1653 const struct in6_addr *addr,
1654 int plen, int offset,
1655 bool exact_match)
1656 {
1657 struct fib6_node *fn, *prev = NULL;
1658
1659 for (fn = root; fn ; ) {
1660 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1661 struct rt6key *key;
1662
1663 /* This node is being deleted */
1664 if (!leaf) {
1665 if (plen <= fn->fn_bit)
1666 goto out;
1667 else
1668 goto next;
1669 }
1670
1671 key = (struct rt6key *)((u8 *)leaf + offset);
1672
1673 /*
1674 * Prefix match
1675 */
1676 if (plen < fn->fn_bit ||
1677 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1678 goto out;
1679
1680 if (plen == fn->fn_bit)
1681 return fn;
1682
1683 if (fn->fn_flags & RTN_RTINFO)
1684 prev = fn;
1685
1686 next:
1687 /*
1688 * We have more bits to go
1689 */
1690 if (addr_bit_set(addr, fn->fn_bit))
1691 fn = rcu_dereference(fn->right);
1692 else
1693 fn = rcu_dereference(fn->left);
1694 }
1695 out:
1696 if (exact_match)
1697 return NULL;
1698 else
1699 return prev;
1700 }
1701
fib6_locate(struct fib6_node * root,const struct in6_addr * daddr,int dst_len,const struct in6_addr * saddr,int src_len,bool exact_match)1702 struct fib6_node *fib6_locate(struct fib6_node *root,
1703 const struct in6_addr *daddr, int dst_len,
1704 const struct in6_addr *saddr, int src_len,
1705 bool exact_match)
1706 {
1707 struct fib6_node *fn;
1708
1709 fn = fib6_locate_1(root, daddr, dst_len,
1710 offsetof(struct fib6_info, fib6_dst),
1711 exact_match);
1712
1713 #ifdef CONFIG_IPV6_SUBTREES
1714 if (src_len) {
1715 WARN_ON(saddr == NULL);
1716 if (fn) {
1717 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1718
1719 if (subtree) {
1720 fn = fib6_locate_1(subtree, saddr, src_len,
1721 offsetof(struct fib6_info, fib6_src),
1722 exact_match);
1723 }
1724 }
1725 }
1726 #endif
1727
1728 if (fn && fn->fn_flags & RTN_RTINFO)
1729 return fn;
1730
1731 return NULL;
1732 }
1733
1734
1735 /*
1736 * Deletion
1737 *
1738 */
1739
fib6_find_prefix(struct net * net,struct fib6_table * table,struct fib6_node * fn)1740 static struct fib6_info *fib6_find_prefix(struct net *net,
1741 struct fib6_table *table,
1742 struct fib6_node *fn)
1743 {
1744 struct fib6_node *child_left, *child_right;
1745
1746 if (fn->fn_flags & RTN_ROOT)
1747 return net->ipv6.fib6_null_entry;
1748
1749 while (fn) {
1750 child_left = rcu_dereference_protected(fn->left,
1751 lockdep_is_held(&table->tb6_lock));
1752 child_right = rcu_dereference_protected(fn->right,
1753 lockdep_is_held(&table->tb6_lock));
1754 if (child_left)
1755 return rcu_dereference_protected(child_left->leaf,
1756 lockdep_is_held(&table->tb6_lock));
1757 if (child_right)
1758 return rcu_dereference_protected(child_right->leaf,
1759 lockdep_is_held(&table->tb6_lock));
1760
1761 fn = FIB6_SUBTREE(fn);
1762 }
1763 return NULL;
1764 }
1765
1766 /*
1767 * Called to trim the tree of intermediate nodes when possible. "fn"
1768 * is the node we want to try and remove.
1769 * Need to own table->tb6_lock
1770 */
1771
fib6_repair_tree(struct net * net,struct fib6_table * table,struct fib6_node * fn)1772 static struct fib6_node *fib6_repair_tree(struct net *net,
1773 struct fib6_table *table,
1774 struct fib6_node *fn)
1775 {
1776 int children;
1777 int nstate;
1778 struct fib6_node *child;
1779 struct fib6_walker *w;
1780 int iter = 0;
1781
1782 /* Set fn->leaf to null_entry for root node. */
1783 if (fn->fn_flags & RTN_TL_ROOT) {
1784 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1785 return fn;
1786 }
1787
1788 for (;;) {
1789 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1790 lockdep_is_held(&table->tb6_lock));
1791 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1792 lockdep_is_held(&table->tb6_lock));
1793 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1794 lockdep_is_held(&table->tb6_lock));
1795 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1796 lockdep_is_held(&table->tb6_lock));
1797 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1798 lockdep_is_held(&table->tb6_lock));
1799 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1800 lockdep_is_held(&table->tb6_lock));
1801 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1802 lockdep_is_held(&table->tb6_lock));
1803 struct fib6_info *new_fn_leaf;
1804
1805 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1806 iter++;
1807
1808 WARN_ON(fn->fn_flags & RTN_RTINFO);
1809 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1810 WARN_ON(fn_leaf);
1811
1812 children = 0;
1813 child = NULL;
1814 if (fn_r) {
1815 child = fn_r;
1816 children |= 1;
1817 }
1818 if (fn_l) {
1819 child = fn_l;
1820 children |= 2;
1821 }
1822
1823 if (children == 3 || FIB6_SUBTREE(fn)
1824 #ifdef CONFIG_IPV6_SUBTREES
1825 /* Subtree root (i.e. fn) may have one child */
1826 || (children && fn->fn_flags & RTN_ROOT)
1827 #endif
1828 ) {
1829 new_fn_leaf = fib6_find_prefix(net, table, fn);
1830 #if RT6_DEBUG >= 2
1831 if (!new_fn_leaf) {
1832 WARN_ON(!new_fn_leaf);
1833 new_fn_leaf = net->ipv6.fib6_null_entry;
1834 }
1835 #endif
1836 fib6_info_hold(new_fn_leaf);
1837 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1838 return pn;
1839 }
1840
1841 #ifdef CONFIG_IPV6_SUBTREES
1842 if (FIB6_SUBTREE(pn) == fn) {
1843 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1844 RCU_INIT_POINTER(pn->subtree, NULL);
1845 nstate = FWS_L;
1846 } else {
1847 WARN_ON(fn->fn_flags & RTN_ROOT);
1848 #endif
1849 if (pn_r == fn)
1850 rcu_assign_pointer(pn->right, child);
1851 else if (pn_l == fn)
1852 rcu_assign_pointer(pn->left, child);
1853 #if RT6_DEBUG >= 2
1854 else
1855 WARN_ON(1);
1856 #endif
1857 if (child)
1858 rcu_assign_pointer(child->parent, pn);
1859 nstate = FWS_R;
1860 #ifdef CONFIG_IPV6_SUBTREES
1861 }
1862 #endif
1863
1864 read_lock(&net->ipv6.fib6_walker_lock);
1865 FOR_WALKERS(net, w) {
1866 if (!child) {
1867 if (w->node == fn) {
1868 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1869 w->node = pn;
1870 w->state = nstate;
1871 }
1872 } else {
1873 if (w->node == fn) {
1874 w->node = child;
1875 if (children&2) {
1876 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1877 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1878 } else {
1879 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1880 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1881 }
1882 }
1883 }
1884 }
1885 read_unlock(&net->ipv6.fib6_walker_lock);
1886
1887 node_free(net, fn);
1888 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1889 return pn;
1890
1891 RCU_INIT_POINTER(pn->leaf, NULL);
1892 fib6_info_release(pn_leaf);
1893 fn = pn;
1894 }
1895 }
1896
fib6_del_route(struct fib6_table * table,struct fib6_node * fn,struct fib6_info __rcu ** rtp,struct nl_info * info)1897 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1898 struct fib6_info __rcu **rtp, struct nl_info *info)
1899 {
1900 struct fib6_info *leaf, *replace_rt = NULL;
1901 struct fib6_walker *w;
1902 struct fib6_info *rt = rcu_dereference_protected(*rtp,
1903 lockdep_is_held(&table->tb6_lock));
1904 struct net *net = info->nl_net;
1905 bool notify_del = false;
1906
1907 RT6_TRACE("fib6_del_route\n");
1908
1909 /* If the deleted route is the first in the node and it is not part of
1910 * a multipath route, then we need to replace it with the next route
1911 * in the node, if exists.
1912 */
1913 leaf = rcu_dereference_protected(fn->leaf,
1914 lockdep_is_held(&table->tb6_lock));
1915 if (leaf == rt && !rt->fib6_nsiblings) {
1916 if (rcu_access_pointer(rt->fib6_next))
1917 replace_rt = rcu_dereference_protected(rt->fib6_next,
1918 lockdep_is_held(&table->tb6_lock));
1919 else
1920 notify_del = true;
1921 }
1922
1923 /* Unlink it */
1924 *rtp = rt->fib6_next;
1925 rt->fib6_node = NULL;
1926 net->ipv6.rt6_stats->fib_rt_entries--;
1927 net->ipv6.rt6_stats->fib_discarded_routes++;
1928
1929 /* Reset round-robin state, if necessary */
1930 if (rcu_access_pointer(fn->rr_ptr) == rt)
1931 fn->rr_ptr = NULL;
1932
1933 /* Remove this entry from other siblings */
1934 if (rt->fib6_nsiblings) {
1935 struct fib6_info *sibling, *next_sibling;
1936
1937 /* The route is deleted from a multipath route. If this
1938 * multipath route is the first route in the node, then we need
1939 * to emit a delete notification. Otherwise, we need to skip
1940 * the notification.
1941 */
1942 if (rt->fib6_metric == leaf->fib6_metric &&
1943 rt6_qualify_for_ecmp(leaf))
1944 notify_del = true;
1945 list_for_each_entry_safe(sibling, next_sibling,
1946 &rt->fib6_siblings, fib6_siblings)
1947 sibling->fib6_nsiblings--;
1948 rt->fib6_nsiblings = 0;
1949 list_del_init(&rt->fib6_siblings);
1950 rt6_multipath_rebalance(next_sibling);
1951 }
1952
1953 /* Adjust walkers */
1954 read_lock(&net->ipv6.fib6_walker_lock);
1955 FOR_WALKERS(net, w) {
1956 if (w->state == FWS_C && w->leaf == rt) {
1957 RT6_TRACE("walker %p adjusted by delroute\n", w);
1958 w->leaf = rcu_dereference_protected(rt->fib6_next,
1959 lockdep_is_held(&table->tb6_lock));
1960 if (!w->leaf)
1961 w->state = FWS_U;
1962 }
1963 }
1964 read_unlock(&net->ipv6.fib6_walker_lock);
1965
1966 /* If it was last route, call fib6_repair_tree() to:
1967 * 1. For root node, put back null_entry as how the table was created.
1968 * 2. For other nodes, expunge its radix tree node.
1969 */
1970 if (!rcu_access_pointer(fn->leaf)) {
1971 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1972 fn->fn_flags &= ~RTN_RTINFO;
1973 net->ipv6.rt6_stats->fib_route_nodes--;
1974 }
1975 fn = fib6_repair_tree(net, table, fn);
1976 }
1977
1978 fib6_purge_rt(rt, fn, net);
1979
1980 if (!info->skip_notify_kernel) {
1981 if (notify_del)
1982 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1983 rt, NULL);
1984 else if (replace_rt)
1985 call_fib6_entry_notifiers_replace(net, replace_rt);
1986 }
1987 if (!info->skip_notify)
1988 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1989
1990 fib6_info_release(rt);
1991 }
1992
1993 /* Need to own table->tb6_lock */
fib6_del(struct fib6_info * rt,struct nl_info * info)1994 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1995 {
1996 struct net *net = info->nl_net;
1997 struct fib6_info __rcu **rtp;
1998 struct fib6_info __rcu **rtp_next;
1999 struct fib6_table *table;
2000 struct fib6_node *fn;
2001
2002 if (rt == net->ipv6.fib6_null_entry)
2003 return -ENOENT;
2004
2005 table = rt->fib6_table;
2006 fn = rcu_dereference_protected(rt->fib6_node,
2007 lockdep_is_held(&table->tb6_lock));
2008 if (!fn)
2009 return -ENOENT;
2010
2011 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2012
2013 /*
2014 * Walk the leaf entries looking for ourself
2015 */
2016
2017 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2018 struct fib6_info *cur = rcu_dereference_protected(*rtp,
2019 lockdep_is_held(&table->tb6_lock));
2020 if (rt == cur) {
2021 if (fib6_requires_src(cur))
2022 fib6_routes_require_src_dec(info->nl_net);
2023 fib6_del_route(table, fn, rtp, info);
2024 return 0;
2025 }
2026 rtp_next = &cur->fib6_next;
2027 }
2028 return -ENOENT;
2029 }
2030
2031 /*
2032 * Tree traversal function.
2033 *
2034 * Certainly, it is not interrupt safe.
2035 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2036 * It means, that we can modify tree during walking
2037 * and use this function for garbage collection, clone pruning,
2038 * cleaning tree when a device goes down etc. etc.
2039 *
2040 * It guarantees that every node will be traversed,
2041 * and that it will be traversed only once.
2042 *
2043 * Callback function w->func may return:
2044 * 0 -> continue walking.
2045 * positive value -> walking is suspended (used by tree dumps,
2046 * and probably by gc, if it will be split to several slices)
2047 * negative value -> terminate walking.
2048 *
2049 * The function itself returns:
2050 * 0 -> walk is complete.
2051 * >0 -> walk is incomplete (i.e. suspended)
2052 * <0 -> walk is terminated by an error.
2053 *
2054 * This function is called with tb6_lock held.
2055 */
2056
fib6_walk_continue(struct fib6_walker * w)2057 static int fib6_walk_continue(struct fib6_walker *w)
2058 {
2059 struct fib6_node *fn, *pn, *left, *right;
2060
2061 /* w->root should always be table->tb6_root */
2062 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2063
2064 for (;;) {
2065 fn = w->node;
2066 if (!fn)
2067 return 0;
2068
2069 switch (w->state) {
2070 #ifdef CONFIG_IPV6_SUBTREES
2071 case FWS_S:
2072 if (FIB6_SUBTREE(fn)) {
2073 w->node = FIB6_SUBTREE(fn);
2074 continue;
2075 }
2076 w->state = FWS_L;
2077 fallthrough;
2078 #endif
2079 case FWS_L:
2080 left = rcu_dereference_protected(fn->left, 1);
2081 if (left) {
2082 w->node = left;
2083 w->state = FWS_INIT;
2084 continue;
2085 }
2086 w->state = FWS_R;
2087 fallthrough;
2088 case FWS_R:
2089 right = rcu_dereference_protected(fn->right, 1);
2090 if (right) {
2091 w->node = right;
2092 w->state = FWS_INIT;
2093 continue;
2094 }
2095 w->state = FWS_C;
2096 w->leaf = rcu_dereference_protected(fn->leaf, 1);
2097 fallthrough;
2098 case FWS_C:
2099 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2100 int err;
2101
2102 if (w->skip) {
2103 w->skip--;
2104 goto skip;
2105 }
2106
2107 err = w->func(w);
2108 if (err)
2109 return err;
2110
2111 w->count++;
2112 continue;
2113 }
2114 skip:
2115 w->state = FWS_U;
2116 fallthrough;
2117 case FWS_U:
2118 if (fn == w->root)
2119 return 0;
2120 pn = rcu_dereference_protected(fn->parent, 1);
2121 left = rcu_dereference_protected(pn->left, 1);
2122 right = rcu_dereference_protected(pn->right, 1);
2123 w->node = pn;
2124 #ifdef CONFIG_IPV6_SUBTREES
2125 if (FIB6_SUBTREE(pn) == fn) {
2126 WARN_ON(!(fn->fn_flags & RTN_ROOT));
2127 w->state = FWS_L;
2128 continue;
2129 }
2130 #endif
2131 if (left == fn) {
2132 w->state = FWS_R;
2133 continue;
2134 }
2135 if (right == fn) {
2136 w->state = FWS_C;
2137 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2138 continue;
2139 }
2140 #if RT6_DEBUG >= 2
2141 WARN_ON(1);
2142 #endif
2143 }
2144 }
2145 }
2146
fib6_walk(struct net * net,struct fib6_walker * w)2147 static int fib6_walk(struct net *net, struct fib6_walker *w)
2148 {
2149 int res;
2150
2151 w->state = FWS_INIT;
2152 w->node = w->root;
2153
2154 fib6_walker_link(net, w);
2155 res = fib6_walk_continue(w);
2156 if (res <= 0)
2157 fib6_walker_unlink(net, w);
2158 return res;
2159 }
2160
fib6_clean_node(struct fib6_walker * w)2161 static int fib6_clean_node(struct fib6_walker *w)
2162 {
2163 int res;
2164 struct fib6_info *rt;
2165 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2166 struct nl_info info = {
2167 .nl_net = c->net,
2168 .skip_notify = c->skip_notify,
2169 };
2170
2171 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2172 READ_ONCE(w->node->fn_sernum) != c->sernum)
2173 WRITE_ONCE(w->node->fn_sernum, c->sernum);
2174
2175 if (!c->func) {
2176 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2177 w->leaf = NULL;
2178 return 0;
2179 }
2180
2181 for_each_fib6_walker_rt(w) {
2182 res = c->func(rt, c->arg);
2183 if (res == -1) {
2184 w->leaf = rt;
2185 res = fib6_del(rt, &info);
2186 if (res) {
2187 #if RT6_DEBUG >= 2
2188 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2189 __func__, rt,
2190 rcu_access_pointer(rt->fib6_node),
2191 res);
2192 #endif
2193 continue;
2194 }
2195 return 0;
2196 } else if (res == -2) {
2197 if (WARN_ON(!rt->fib6_nsiblings))
2198 continue;
2199 rt = list_last_entry(&rt->fib6_siblings,
2200 struct fib6_info, fib6_siblings);
2201 continue;
2202 }
2203 WARN_ON(res != 0);
2204 }
2205 w->leaf = rt;
2206 return 0;
2207 }
2208
2209 /*
2210 * Convenient frontend to tree walker.
2211 *
2212 * func is called on each route.
2213 * It may return -2 -> skip multipath route.
2214 * -1 -> delete this route.
2215 * 0 -> continue walking
2216 */
2217
fib6_clean_tree(struct net * net,struct fib6_node * root,int (* func)(struct fib6_info *,void * arg),int sernum,void * arg,bool skip_notify)2218 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2219 int (*func)(struct fib6_info *, void *arg),
2220 int sernum, void *arg, bool skip_notify)
2221 {
2222 struct fib6_cleaner c;
2223
2224 c.w.root = root;
2225 c.w.func = fib6_clean_node;
2226 c.w.count = 0;
2227 c.w.skip = 0;
2228 c.w.skip_in_node = 0;
2229 c.func = func;
2230 c.sernum = sernum;
2231 c.arg = arg;
2232 c.net = net;
2233 c.skip_notify = skip_notify;
2234
2235 fib6_walk(net, &c.w);
2236 }
2237
__fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),int sernum,void * arg,bool skip_notify)2238 static void __fib6_clean_all(struct net *net,
2239 int (*func)(struct fib6_info *, void *),
2240 int sernum, void *arg, bool skip_notify)
2241 {
2242 struct fib6_table *table;
2243 struct hlist_head *head;
2244 unsigned int h;
2245
2246 rcu_read_lock();
2247 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2248 head = &net->ipv6.fib_table_hash[h];
2249 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2250 spin_lock_bh(&table->tb6_lock);
2251 fib6_clean_tree(net, &table->tb6_root,
2252 func, sernum, arg, skip_notify);
2253 spin_unlock_bh(&table->tb6_lock);
2254 }
2255 }
2256 rcu_read_unlock();
2257 }
2258
fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2259 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2260 void *arg)
2261 {
2262 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2263 }
2264
fib6_clean_all_skip_notify(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2265 void fib6_clean_all_skip_notify(struct net *net,
2266 int (*func)(struct fib6_info *, void *),
2267 void *arg)
2268 {
2269 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2270 }
2271
fib6_flush_trees(struct net * net)2272 static void fib6_flush_trees(struct net *net)
2273 {
2274 int new_sernum = fib6_new_sernum(net);
2275
2276 __fib6_clean_all(net, NULL, new_sernum, NULL, false);
2277 }
2278
2279 /*
2280 * Garbage collection
2281 */
2282
fib6_age(struct fib6_info * rt,void * arg)2283 static int fib6_age(struct fib6_info *rt, void *arg)
2284 {
2285 struct fib6_gc_args *gc_args = arg;
2286 unsigned long now = jiffies;
2287
2288 /*
2289 * check addrconf expiration here.
2290 * Routes are expired even if they are in use.
2291 */
2292
2293 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2294 if (time_after(now, rt->expires)) {
2295 RT6_TRACE("expiring %p\n", rt);
2296 return -1;
2297 }
2298 gc_args->more++;
2299 }
2300
2301 /* Also age clones in the exception table.
2302 * Note, that clones are aged out
2303 * only if they are not in use now.
2304 */
2305 rt6_age_exceptions(rt, gc_args, now);
2306
2307 return 0;
2308 }
2309
fib6_run_gc(unsigned long expires,struct net * net,bool force)2310 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2311 {
2312 struct fib6_gc_args gc_args;
2313 unsigned long now;
2314
2315 if (force) {
2316 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2317 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2318 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2319 return;
2320 }
2321 gc_args.timeout = expires ? (int)expires :
2322 net->ipv6.sysctl.ip6_rt_gc_interval;
2323 gc_args.more = 0;
2324
2325 fib6_clean_all(net, fib6_age, &gc_args);
2326 now = jiffies;
2327 net->ipv6.ip6_rt_last_gc = now;
2328
2329 if (gc_args.more)
2330 mod_timer(&net->ipv6.ip6_fib_timer,
2331 round_jiffies(now
2332 + net->ipv6.sysctl.ip6_rt_gc_interval));
2333 else
2334 del_timer(&net->ipv6.ip6_fib_timer);
2335 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2336 }
2337
fib6_gc_timer_cb(struct timer_list * t)2338 static void fib6_gc_timer_cb(struct timer_list *t)
2339 {
2340 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2341
2342 fib6_run_gc(0, arg, true);
2343 }
2344
fib6_net_init(struct net * net)2345 static int __net_init fib6_net_init(struct net *net)
2346 {
2347 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2348 int err;
2349
2350 err = fib6_notifier_init(net);
2351 if (err)
2352 return err;
2353
2354 spin_lock_init(&net->ipv6.fib6_gc_lock);
2355 rwlock_init(&net->ipv6.fib6_walker_lock);
2356 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2357 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2358
2359 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2360 if (!net->ipv6.rt6_stats)
2361 goto out_timer;
2362
2363 /* Avoid false sharing : Use at least a full cache line */
2364 size = max_t(size_t, size, L1_CACHE_BYTES);
2365
2366 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2367 if (!net->ipv6.fib_table_hash)
2368 goto out_rt6_stats;
2369
2370 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2371 GFP_KERNEL);
2372 if (!net->ipv6.fib6_main_tbl)
2373 goto out_fib_table_hash;
2374
2375 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2376 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2377 net->ipv6.fib6_null_entry);
2378 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2379 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2380 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2381
2382 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2383 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2384 GFP_KERNEL);
2385 if (!net->ipv6.fib6_local_tbl)
2386 goto out_fib6_main_tbl;
2387 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2388 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2389 net->ipv6.fib6_null_entry);
2390 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2391 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2392 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2393 #endif
2394 fib6_tables_init(net);
2395
2396 return 0;
2397
2398 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2399 out_fib6_main_tbl:
2400 kfree(net->ipv6.fib6_main_tbl);
2401 #endif
2402 out_fib_table_hash:
2403 kfree(net->ipv6.fib_table_hash);
2404 out_rt6_stats:
2405 kfree(net->ipv6.rt6_stats);
2406 out_timer:
2407 fib6_notifier_exit(net);
2408 return -ENOMEM;
2409 }
2410
fib6_net_exit(struct net * net)2411 static void fib6_net_exit(struct net *net)
2412 {
2413 unsigned int i;
2414
2415 del_timer_sync(&net->ipv6.ip6_fib_timer);
2416
2417 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2418 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2419 struct hlist_node *tmp;
2420 struct fib6_table *tb;
2421
2422 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2423 hlist_del(&tb->tb6_hlist);
2424 fib6_free_table(tb);
2425 }
2426 }
2427
2428 kfree(net->ipv6.fib_table_hash);
2429 kfree(net->ipv6.rt6_stats);
2430 fib6_notifier_exit(net);
2431 }
2432
2433 static struct pernet_operations fib6_net_ops = {
2434 .init = fib6_net_init,
2435 .exit = fib6_net_exit,
2436 };
2437
fib6_init(void)2438 int __init fib6_init(void)
2439 {
2440 int ret = -ENOMEM;
2441
2442 fib6_node_kmem = kmem_cache_create("fib6_nodes",
2443 sizeof(struct fib6_node),
2444 0, SLAB_HWCACHE_ALIGN,
2445 NULL);
2446 if (!fib6_node_kmem)
2447 goto out;
2448
2449 ret = register_pernet_subsys(&fib6_net_ops);
2450 if (ret)
2451 goto out_kmem_cache_create;
2452
2453 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2454 inet6_dump_fib, 0);
2455 if (ret)
2456 goto out_unregister_subsys;
2457
2458 __fib6_flush_trees = fib6_flush_trees;
2459 out:
2460 return ret;
2461
2462 out_unregister_subsys:
2463 unregister_pernet_subsys(&fib6_net_ops);
2464 out_kmem_cache_create:
2465 kmem_cache_destroy(fib6_node_kmem);
2466 goto out;
2467 }
2468
fib6_gc_cleanup(void)2469 void fib6_gc_cleanup(void)
2470 {
2471 unregister_pernet_subsys(&fib6_net_ops);
2472 kmem_cache_destroy(fib6_node_kmem);
2473 }
2474
2475 #ifdef CONFIG_PROC_FS
ipv6_route_native_seq_show(struct seq_file * seq,void * v)2476 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2477 {
2478 struct fib6_info *rt = v;
2479 struct ipv6_route_iter *iter = seq->private;
2480 struct fib6_nh *fib6_nh = rt->fib6_nh;
2481 unsigned int flags = rt->fib6_flags;
2482 const struct net_device *dev;
2483
2484 if (rt->nh)
2485 fib6_nh = nexthop_fib6_nh_bh(rt->nh);
2486
2487 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2488
2489 #ifdef CONFIG_IPV6_SUBTREES
2490 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2491 #else
2492 seq_puts(seq, "00000000000000000000000000000000 00 ");
2493 #endif
2494 if (fib6_nh->fib_nh_gw_family) {
2495 flags |= RTF_GATEWAY;
2496 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2497 } else {
2498 seq_puts(seq, "00000000000000000000000000000000");
2499 }
2500
2501 dev = fib6_nh->fib_nh_dev;
2502 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2503 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2504 flags, dev ? dev->name : "");
2505 iter->w.leaf = NULL;
2506 return 0;
2507 }
2508
ipv6_route_yield(struct fib6_walker * w)2509 static int ipv6_route_yield(struct fib6_walker *w)
2510 {
2511 struct ipv6_route_iter *iter = w->args;
2512
2513 if (!iter->skip)
2514 return 1;
2515
2516 do {
2517 iter->w.leaf = rcu_dereference_protected(
2518 iter->w.leaf->fib6_next,
2519 lockdep_is_held(&iter->tbl->tb6_lock));
2520 iter->skip--;
2521 if (!iter->skip && iter->w.leaf)
2522 return 1;
2523 } while (iter->w.leaf);
2524
2525 return 0;
2526 }
2527
ipv6_route_seq_setup_walk(struct ipv6_route_iter * iter,struct net * net)2528 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2529 struct net *net)
2530 {
2531 memset(&iter->w, 0, sizeof(iter->w));
2532 iter->w.func = ipv6_route_yield;
2533 iter->w.root = &iter->tbl->tb6_root;
2534 iter->w.state = FWS_INIT;
2535 iter->w.node = iter->w.root;
2536 iter->w.args = iter;
2537 iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2538 INIT_LIST_HEAD(&iter->w.lh);
2539 fib6_walker_link(net, &iter->w);
2540 }
2541
ipv6_route_seq_next_table(struct fib6_table * tbl,struct net * net)2542 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2543 struct net *net)
2544 {
2545 unsigned int h;
2546 struct hlist_node *node;
2547
2548 if (tbl) {
2549 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2550 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2551 } else {
2552 h = 0;
2553 node = NULL;
2554 }
2555
2556 while (!node && h < FIB6_TABLE_HASHSZ) {
2557 node = rcu_dereference_bh(
2558 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2559 }
2560 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2561 }
2562
ipv6_route_check_sernum(struct ipv6_route_iter * iter)2563 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2564 {
2565 int sernum = READ_ONCE(iter->w.root->fn_sernum);
2566
2567 if (iter->sernum != sernum) {
2568 iter->sernum = sernum;
2569 iter->w.state = FWS_INIT;
2570 iter->w.node = iter->w.root;
2571 WARN_ON(iter->w.skip);
2572 iter->w.skip = iter->w.count;
2573 }
2574 }
2575
ipv6_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2576 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2577 {
2578 int r;
2579 struct fib6_info *n;
2580 struct net *net = seq_file_net(seq);
2581 struct ipv6_route_iter *iter = seq->private;
2582
2583 ++(*pos);
2584 if (!v)
2585 goto iter_table;
2586
2587 n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2588 if (n)
2589 return n;
2590
2591 iter_table:
2592 ipv6_route_check_sernum(iter);
2593 spin_lock_bh(&iter->tbl->tb6_lock);
2594 r = fib6_walk_continue(&iter->w);
2595 spin_unlock_bh(&iter->tbl->tb6_lock);
2596 if (r > 0) {
2597 return iter->w.leaf;
2598 } else if (r < 0) {
2599 fib6_walker_unlink(net, &iter->w);
2600 return NULL;
2601 }
2602 fib6_walker_unlink(net, &iter->w);
2603
2604 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2605 if (!iter->tbl)
2606 return NULL;
2607
2608 ipv6_route_seq_setup_walk(iter, net);
2609 goto iter_table;
2610 }
2611
ipv6_route_seq_start(struct seq_file * seq,loff_t * pos)2612 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2613 __acquires(RCU_BH)
2614 {
2615 struct net *net = seq_file_net(seq);
2616 struct ipv6_route_iter *iter = seq->private;
2617
2618 rcu_read_lock_bh();
2619 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2620 iter->skip = *pos;
2621
2622 if (iter->tbl) {
2623 loff_t p = 0;
2624
2625 ipv6_route_seq_setup_walk(iter, net);
2626 return ipv6_route_seq_next(seq, NULL, &p);
2627 } else {
2628 return NULL;
2629 }
2630 }
2631
ipv6_route_iter_active(struct ipv6_route_iter * iter)2632 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2633 {
2634 struct fib6_walker *w = &iter->w;
2635 return w->node && !(w->state == FWS_U && w->node == w->root);
2636 }
2637
ipv6_route_native_seq_stop(struct seq_file * seq,void * v)2638 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2639 __releases(RCU_BH)
2640 {
2641 struct net *net = seq_file_net(seq);
2642 struct ipv6_route_iter *iter = seq->private;
2643
2644 if (ipv6_route_iter_active(iter))
2645 fib6_walker_unlink(net, &iter->w);
2646
2647 rcu_read_unlock_bh();
2648 }
2649
2650 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
ipv6_route_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,void * v)2651 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2652 struct bpf_iter_meta *meta,
2653 void *v)
2654 {
2655 struct bpf_iter__ipv6_route ctx;
2656
2657 ctx.meta = meta;
2658 ctx.rt = v;
2659 return bpf_iter_run_prog(prog, &ctx);
2660 }
2661
ipv6_route_seq_show(struct seq_file * seq,void * v)2662 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2663 {
2664 struct ipv6_route_iter *iter = seq->private;
2665 struct bpf_iter_meta meta;
2666 struct bpf_prog *prog;
2667 int ret;
2668
2669 meta.seq = seq;
2670 prog = bpf_iter_get_info(&meta, false);
2671 if (!prog)
2672 return ipv6_route_native_seq_show(seq, v);
2673
2674 ret = ipv6_route_prog_seq_show(prog, &meta, v);
2675 iter->w.leaf = NULL;
2676
2677 return ret;
2678 }
2679
ipv6_route_seq_stop(struct seq_file * seq,void * v)2680 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2681 {
2682 struct bpf_iter_meta meta;
2683 struct bpf_prog *prog;
2684
2685 if (!v) {
2686 meta.seq = seq;
2687 prog = bpf_iter_get_info(&meta, true);
2688 if (prog)
2689 (void)ipv6_route_prog_seq_show(prog, &meta, v);
2690 }
2691
2692 ipv6_route_native_seq_stop(seq, v);
2693 }
2694 #else
ipv6_route_seq_show(struct seq_file * seq,void * v)2695 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2696 {
2697 return ipv6_route_native_seq_show(seq, v);
2698 }
2699
ipv6_route_seq_stop(struct seq_file * seq,void * v)2700 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2701 {
2702 ipv6_route_native_seq_stop(seq, v);
2703 }
2704 #endif
2705
2706 const struct seq_operations ipv6_route_seq_ops = {
2707 .start = ipv6_route_seq_start,
2708 .next = ipv6_route_seq_next,
2709 .stop = ipv6_route_seq_stop,
2710 .show = ipv6_route_seq_show
2711 };
2712 #endif /* CONFIG_PROC_FS */
2713