1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31
32 #include "base.h"
33 #include "power/power.h"
34
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
sysfs_deprecated_setup(char * arg)41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47
48 /* Device links support. */
49 static LIST_HEAD(wait_for_suppliers);
50 static DEFINE_MUTEX(wfs_lock);
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static unsigned int defer_fw_devlink_count;
54 static LIST_HEAD(deferred_fw_devlink);
55 static DEFINE_MUTEX(defer_fw_devlink_lock);
56 static bool fw_devlink_is_permissive(void);
57
58 #ifdef CONFIG_SRCU
59 static DEFINE_MUTEX(device_links_lock);
60 DEFINE_STATIC_SRCU(device_links_srcu);
61
device_links_write_lock(void)62 static inline void device_links_write_lock(void)
63 {
64 mutex_lock(&device_links_lock);
65 }
66
device_links_write_unlock(void)67 static inline void device_links_write_unlock(void)
68 {
69 mutex_unlock(&device_links_lock);
70 }
71
device_links_read_lock(void)72 int device_links_read_lock(void) __acquires(&device_links_srcu)
73 {
74 return srcu_read_lock(&device_links_srcu);
75 }
76
device_links_read_unlock(int idx)77 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
78 {
79 srcu_read_unlock(&device_links_srcu, idx);
80 }
81
device_links_read_lock_held(void)82 int device_links_read_lock_held(void)
83 {
84 return srcu_read_lock_held(&device_links_srcu);
85 }
86
device_link_synchronize_removal(void)87 static void device_link_synchronize_removal(void)
88 {
89 synchronize_srcu(&device_links_srcu);
90 }
91 #else /* !CONFIG_SRCU */
92 static DECLARE_RWSEM(device_links_lock);
93
device_links_write_lock(void)94 static inline void device_links_write_lock(void)
95 {
96 down_write(&device_links_lock);
97 }
98
device_links_write_unlock(void)99 static inline void device_links_write_unlock(void)
100 {
101 up_write(&device_links_lock);
102 }
103
device_links_read_lock(void)104 int device_links_read_lock(void)
105 {
106 down_read(&device_links_lock);
107 return 0;
108 }
109
device_links_read_unlock(int not_used)110 void device_links_read_unlock(int not_used)
111 {
112 up_read(&device_links_lock);
113 }
114
115 #ifdef CONFIG_DEBUG_LOCK_ALLOC
device_links_read_lock_held(void)116 int device_links_read_lock_held(void)
117 {
118 return lockdep_is_held(&device_links_lock);
119 }
120 #endif
121
device_link_synchronize_removal(void)122 static inline void device_link_synchronize_removal(void)
123 {
124 }
125 #endif /* !CONFIG_SRCU */
126
device_is_ancestor(struct device * dev,struct device * target)127 static bool device_is_ancestor(struct device *dev, struct device *target)
128 {
129 while (target->parent) {
130 target = target->parent;
131 if (dev == target)
132 return true;
133 }
134 return false;
135 }
136
137 /**
138 * device_is_dependent - Check if one device depends on another one
139 * @dev: Device to check dependencies for.
140 * @target: Device to check against.
141 *
142 * Check if @target depends on @dev or any device dependent on it (its child or
143 * its consumer etc). Return 1 if that is the case or 0 otherwise.
144 */
device_is_dependent(struct device * dev,void * target)145 int device_is_dependent(struct device *dev, void *target)
146 {
147 struct device_link *link;
148 int ret;
149
150 /*
151 * The "ancestors" check is needed to catch the case when the target
152 * device has not been completely initialized yet and it is still
153 * missing from the list of children of its parent device.
154 */
155 if (dev == target || device_is_ancestor(dev, target))
156 return 1;
157
158 ret = device_for_each_child(dev, target, device_is_dependent);
159 if (ret)
160 return ret;
161
162 list_for_each_entry(link, &dev->links.consumers, s_node) {
163 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
164 continue;
165
166 if (link->consumer == target)
167 return 1;
168
169 ret = device_is_dependent(link->consumer, target);
170 if (ret)
171 break;
172 }
173 return ret;
174 }
175
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)176 static void device_link_init_status(struct device_link *link,
177 struct device *consumer,
178 struct device *supplier)
179 {
180 switch (supplier->links.status) {
181 case DL_DEV_PROBING:
182 switch (consumer->links.status) {
183 case DL_DEV_PROBING:
184 /*
185 * A consumer driver can create a link to a supplier
186 * that has not completed its probing yet as long as it
187 * knows that the supplier is already functional (for
188 * example, it has just acquired some resources from the
189 * supplier).
190 */
191 link->status = DL_STATE_CONSUMER_PROBE;
192 break;
193 default:
194 link->status = DL_STATE_DORMANT;
195 break;
196 }
197 break;
198 case DL_DEV_DRIVER_BOUND:
199 switch (consumer->links.status) {
200 case DL_DEV_PROBING:
201 link->status = DL_STATE_CONSUMER_PROBE;
202 break;
203 case DL_DEV_DRIVER_BOUND:
204 link->status = DL_STATE_ACTIVE;
205 break;
206 default:
207 link->status = DL_STATE_AVAILABLE;
208 break;
209 }
210 break;
211 case DL_DEV_UNBINDING:
212 link->status = DL_STATE_SUPPLIER_UNBIND;
213 break;
214 default:
215 link->status = DL_STATE_DORMANT;
216 break;
217 }
218 }
219
device_reorder_to_tail(struct device * dev,void * not_used)220 static int device_reorder_to_tail(struct device *dev, void *not_used)
221 {
222 struct device_link *link;
223
224 /*
225 * Devices that have not been registered yet will be put to the ends
226 * of the lists during the registration, so skip them here.
227 */
228 if (device_is_registered(dev))
229 devices_kset_move_last(dev);
230
231 if (device_pm_initialized(dev))
232 device_pm_move_last(dev);
233
234 device_for_each_child(dev, NULL, device_reorder_to_tail);
235 list_for_each_entry(link, &dev->links.consumers, s_node) {
236 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
237 continue;
238 device_reorder_to_tail(link->consumer, NULL);
239 }
240
241 return 0;
242 }
243
244 /**
245 * device_pm_move_to_tail - Move set of devices to the end of device lists
246 * @dev: Device to move
247 *
248 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
249 *
250 * It moves the @dev along with all of its children and all of its consumers
251 * to the ends of the device_kset and dpm_list, recursively.
252 */
device_pm_move_to_tail(struct device * dev)253 void device_pm_move_to_tail(struct device *dev)
254 {
255 int idx;
256
257 idx = device_links_read_lock();
258 device_pm_lock();
259 device_reorder_to_tail(dev, NULL);
260 device_pm_unlock();
261 device_links_read_unlock(idx);
262 }
263
264 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
265
status_show(struct device * dev,struct device_attribute * attr,char * buf)266 static ssize_t status_show(struct device *dev,
267 struct device_attribute *attr, char *buf)
268 {
269 const char *output;
270
271 switch (to_devlink(dev)->status) {
272 case DL_STATE_NONE:
273 output = "not tracked";
274 break;
275 case DL_STATE_DORMANT:
276 output = "dormant";
277 break;
278 case DL_STATE_AVAILABLE:
279 output = "available";
280 break;
281 case DL_STATE_CONSUMER_PROBE:
282 output = "consumer probing";
283 break;
284 case DL_STATE_ACTIVE:
285 output = "active";
286 break;
287 case DL_STATE_SUPPLIER_UNBIND:
288 output = "supplier unbinding";
289 break;
290 default:
291 output = "unknown";
292 break;
293 }
294
295 return sysfs_emit(buf, "%s\n", output);
296 }
297 static DEVICE_ATTR_RO(status);
298
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)299 static ssize_t auto_remove_on_show(struct device *dev,
300 struct device_attribute *attr, char *buf)
301 {
302 struct device_link *link = to_devlink(dev);
303 const char *output;
304
305 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
306 output = "supplier unbind";
307 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
308 output = "consumer unbind";
309 else
310 output = "never";
311
312 return sysfs_emit(buf, "%s\n", output);
313 }
314 static DEVICE_ATTR_RO(auto_remove_on);
315
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)316 static ssize_t runtime_pm_show(struct device *dev,
317 struct device_attribute *attr, char *buf)
318 {
319 struct device_link *link = to_devlink(dev);
320
321 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
322 }
323 static DEVICE_ATTR_RO(runtime_pm);
324
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)325 static ssize_t sync_state_only_show(struct device *dev,
326 struct device_attribute *attr, char *buf)
327 {
328 struct device_link *link = to_devlink(dev);
329
330 return sysfs_emit(buf, "%d\n",
331 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
332 }
333 static DEVICE_ATTR_RO(sync_state_only);
334
335 static struct attribute *devlink_attrs[] = {
336 &dev_attr_status.attr,
337 &dev_attr_auto_remove_on.attr,
338 &dev_attr_runtime_pm.attr,
339 &dev_attr_sync_state_only.attr,
340 NULL,
341 };
342 ATTRIBUTE_GROUPS(devlink);
343
device_link_release_fn(struct work_struct * work)344 static void device_link_release_fn(struct work_struct *work)
345 {
346 struct device_link *link = container_of(work, struct device_link, rm_work);
347
348 /* Ensure that all references to the link object have been dropped. */
349 device_link_synchronize_removal();
350
351 pm_runtime_release_supplier(link);
352 pm_request_idle(link->supplier);
353
354 put_device(link->consumer);
355 put_device(link->supplier);
356 kfree(link);
357 }
358
devlink_dev_release(struct device * dev)359 static void devlink_dev_release(struct device *dev)
360 {
361 struct device_link *link = to_devlink(dev);
362
363 INIT_WORK(&link->rm_work, device_link_release_fn);
364 /*
365 * It may take a while to complete this work because of the SRCU
366 * synchronization in device_link_release_fn() and if the consumer or
367 * supplier devices get deleted when it runs, so put it into the "long"
368 * workqueue.
369 */
370 queue_work(system_long_wq, &link->rm_work);
371 }
372
373 static struct class devlink_class = {
374 .name = "devlink",
375 .owner = THIS_MODULE,
376 .dev_groups = devlink_groups,
377 .dev_release = devlink_dev_release,
378 };
379
devlink_add_symlinks(struct device * dev,struct class_interface * class_intf)380 static int devlink_add_symlinks(struct device *dev,
381 struct class_interface *class_intf)
382 {
383 int ret;
384 size_t len;
385 struct device_link *link = to_devlink(dev);
386 struct device *sup = link->supplier;
387 struct device *con = link->consumer;
388 char *buf;
389
390 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
391 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
392 len += strlen(":");
393 len += strlen("supplier:") + 1;
394 buf = kzalloc(len, GFP_KERNEL);
395 if (!buf)
396 return -ENOMEM;
397
398 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
399 if (ret)
400 goto out;
401
402 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
403 if (ret)
404 goto err_con;
405
406 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
407 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
408 if (ret)
409 goto err_con_dev;
410
411 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
412 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
413 if (ret)
414 goto err_sup_dev;
415
416 goto out;
417
418 err_sup_dev:
419 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
420 sysfs_remove_link(&sup->kobj, buf);
421 err_con_dev:
422 sysfs_remove_link(&link->link_dev.kobj, "consumer");
423 err_con:
424 sysfs_remove_link(&link->link_dev.kobj, "supplier");
425 out:
426 kfree(buf);
427 return ret;
428 }
429
devlink_remove_symlinks(struct device * dev,struct class_interface * class_intf)430 static void devlink_remove_symlinks(struct device *dev,
431 struct class_interface *class_intf)
432 {
433 struct device_link *link = to_devlink(dev);
434 size_t len;
435 struct device *sup = link->supplier;
436 struct device *con = link->consumer;
437 char *buf;
438
439 sysfs_remove_link(&link->link_dev.kobj, "consumer");
440 sysfs_remove_link(&link->link_dev.kobj, "supplier");
441
442 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
443 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
444 len += strlen(":");
445 len += strlen("supplier:") + 1;
446 buf = kzalloc(len, GFP_KERNEL);
447 if (!buf) {
448 WARN(1, "Unable to properly free device link symlinks!\n");
449 return;
450 }
451
452 if (device_is_registered(con)) {
453 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
454 sysfs_remove_link(&con->kobj, buf);
455 }
456 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
457 sysfs_remove_link(&sup->kobj, buf);
458 kfree(buf);
459 }
460
461 static struct class_interface devlink_class_intf = {
462 .class = &devlink_class,
463 .add_dev = devlink_add_symlinks,
464 .remove_dev = devlink_remove_symlinks,
465 };
466
devlink_class_init(void)467 static int __init devlink_class_init(void)
468 {
469 int ret;
470
471 ret = class_register(&devlink_class);
472 if (ret)
473 return ret;
474
475 ret = class_interface_register(&devlink_class_intf);
476 if (ret)
477 class_unregister(&devlink_class);
478
479 return ret;
480 }
481 postcore_initcall(devlink_class_init);
482
483 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
484 DL_FLAG_AUTOREMOVE_SUPPLIER | \
485 DL_FLAG_AUTOPROBE_CONSUMER | \
486 DL_FLAG_SYNC_STATE_ONLY)
487
488 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
489 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
490
491 /**
492 * device_link_add - Create a link between two devices.
493 * @consumer: Consumer end of the link.
494 * @supplier: Supplier end of the link.
495 * @flags: Link flags.
496 *
497 * The caller is responsible for the proper synchronization of the link creation
498 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
499 * runtime PM framework to take the link into account. Second, if the
500 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
501 * be forced into the active metastate and reference-counted upon the creation
502 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
503 * ignored.
504 *
505 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
506 * expected to release the link returned by it directly with the help of either
507 * device_link_del() or device_link_remove().
508 *
509 * If that flag is not set, however, the caller of this function is handing the
510 * management of the link over to the driver core entirely and its return value
511 * can only be used to check whether or not the link is present. In that case,
512 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
513 * flags can be used to indicate to the driver core when the link can be safely
514 * deleted. Namely, setting one of them in @flags indicates to the driver core
515 * that the link is not going to be used (by the given caller of this function)
516 * after unbinding the consumer or supplier driver, respectively, from its
517 * device, so the link can be deleted at that point. If none of them is set,
518 * the link will be maintained until one of the devices pointed to by it (either
519 * the consumer or the supplier) is unregistered.
520 *
521 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
522 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
523 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
524 * be used to request the driver core to automaticall probe for a consmer
525 * driver after successfully binding a driver to the supplier device.
526 *
527 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
528 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
529 * the same time is invalid and will cause NULL to be returned upfront.
530 * However, if a device link between the given @consumer and @supplier pair
531 * exists already when this function is called for them, the existing link will
532 * be returned regardless of its current type and status (the link's flags may
533 * be modified then). The caller of this function is then expected to treat
534 * the link as though it has just been created, so (in particular) if
535 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
536 * explicitly when not needed any more (as stated above).
537 *
538 * A side effect of the link creation is re-ordering of dpm_list and the
539 * devices_kset list by moving the consumer device and all devices depending
540 * on it to the ends of these lists (that does not happen to devices that have
541 * not been registered when this function is called).
542 *
543 * The supplier device is required to be registered when this function is called
544 * and NULL will be returned if that is not the case. The consumer device need
545 * not be registered, however.
546 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)547 struct device_link *device_link_add(struct device *consumer,
548 struct device *supplier, u32 flags)
549 {
550 struct device_link *link;
551
552 if (!consumer || !supplier || consumer == supplier ||
553 flags & ~DL_ADD_VALID_FLAGS ||
554 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
555 (flags & DL_FLAG_SYNC_STATE_ONLY &&
556 flags != DL_FLAG_SYNC_STATE_ONLY) ||
557 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
558 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
559 DL_FLAG_AUTOREMOVE_SUPPLIER)))
560 return NULL;
561
562 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
563 if (pm_runtime_get_sync(supplier) < 0) {
564 pm_runtime_put_noidle(supplier);
565 return NULL;
566 }
567 }
568
569 if (!(flags & DL_FLAG_STATELESS))
570 flags |= DL_FLAG_MANAGED;
571
572 device_links_write_lock();
573 device_pm_lock();
574
575 /*
576 * If the supplier has not been fully registered yet or there is a
577 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
578 * the supplier already in the graph, return NULL. If the link is a
579 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
580 * because it only affects sync_state() callbacks.
581 */
582 if (!device_pm_initialized(supplier)
583 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
584 device_is_dependent(consumer, supplier))) {
585 link = NULL;
586 goto out;
587 }
588
589 /*
590 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
591 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
592 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
593 */
594 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
595 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
596
597 list_for_each_entry(link, &supplier->links.consumers, s_node) {
598 if (link->consumer != consumer)
599 continue;
600
601 if (flags & DL_FLAG_PM_RUNTIME) {
602 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
603 pm_runtime_new_link(consumer);
604 link->flags |= DL_FLAG_PM_RUNTIME;
605 }
606 if (flags & DL_FLAG_RPM_ACTIVE)
607 refcount_inc(&link->rpm_active);
608 }
609
610 if (flags & DL_FLAG_STATELESS) {
611 kref_get(&link->kref);
612 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
613 !(link->flags & DL_FLAG_STATELESS)) {
614 link->flags |= DL_FLAG_STATELESS;
615 goto reorder;
616 } else {
617 link->flags |= DL_FLAG_STATELESS;
618 goto out;
619 }
620 }
621
622 /*
623 * If the life time of the link following from the new flags is
624 * longer than indicated by the flags of the existing link,
625 * update the existing link to stay around longer.
626 */
627 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
628 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
629 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
630 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
631 }
632 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
633 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
634 DL_FLAG_AUTOREMOVE_SUPPLIER);
635 }
636 if (!(link->flags & DL_FLAG_MANAGED)) {
637 kref_get(&link->kref);
638 link->flags |= DL_FLAG_MANAGED;
639 device_link_init_status(link, consumer, supplier);
640 }
641 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
642 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
643 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
644 goto reorder;
645 }
646
647 goto out;
648 }
649
650 link = kzalloc(sizeof(*link), GFP_KERNEL);
651 if (!link)
652 goto out;
653
654 refcount_set(&link->rpm_active, 1);
655
656 get_device(supplier);
657 link->supplier = supplier;
658 INIT_LIST_HEAD(&link->s_node);
659 get_device(consumer);
660 link->consumer = consumer;
661 INIT_LIST_HEAD(&link->c_node);
662 link->flags = flags;
663 kref_init(&link->kref);
664
665 link->link_dev.class = &devlink_class;
666 device_set_pm_not_required(&link->link_dev);
667 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
668 dev_bus_name(supplier), dev_name(supplier),
669 dev_bus_name(consumer), dev_name(consumer));
670 if (device_register(&link->link_dev)) {
671 put_device(&link->link_dev);
672 link = NULL;
673 goto out;
674 }
675
676 if (flags & DL_FLAG_PM_RUNTIME) {
677 if (flags & DL_FLAG_RPM_ACTIVE)
678 refcount_inc(&link->rpm_active);
679
680 pm_runtime_new_link(consumer);
681 }
682
683 /* Determine the initial link state. */
684 if (flags & DL_FLAG_STATELESS)
685 link->status = DL_STATE_NONE;
686 else
687 device_link_init_status(link, consumer, supplier);
688
689 /*
690 * Some callers expect the link creation during consumer driver probe to
691 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
692 */
693 if (link->status == DL_STATE_CONSUMER_PROBE &&
694 flags & DL_FLAG_PM_RUNTIME)
695 pm_runtime_resume(supplier);
696
697 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
698 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
699
700 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
701 dev_dbg(consumer,
702 "Linked as a sync state only consumer to %s\n",
703 dev_name(supplier));
704 goto out;
705 }
706
707 reorder:
708 /*
709 * Move the consumer and all of the devices depending on it to the end
710 * of dpm_list and the devices_kset list.
711 *
712 * It is necessary to hold dpm_list locked throughout all that or else
713 * we may end up suspending with a wrong ordering of it.
714 */
715 device_reorder_to_tail(consumer, NULL);
716
717 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
718
719 out:
720 device_pm_unlock();
721 device_links_write_unlock();
722
723 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
724 pm_runtime_put(supplier);
725
726 return link;
727 }
728 EXPORT_SYMBOL_GPL(device_link_add);
729
730 /**
731 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
732 * @consumer: Consumer device
733 *
734 * Marks the @consumer device as waiting for suppliers to become available by
735 * adding it to the wait_for_suppliers list. The consumer device will never be
736 * probed until it's removed from the wait_for_suppliers list.
737 *
738 * The caller is responsible for adding the links to the supplier devices once
739 * they are available and removing the @consumer device from the
740 * wait_for_suppliers list once links to all the suppliers have been created.
741 *
742 * This function is NOT meant to be called from the probe function of the
743 * consumer but rather from code that creates/adds the consumer device.
744 */
device_link_wait_for_supplier(struct device * consumer,bool need_for_probe)745 static void device_link_wait_for_supplier(struct device *consumer,
746 bool need_for_probe)
747 {
748 mutex_lock(&wfs_lock);
749 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
750 consumer->links.need_for_probe = need_for_probe;
751 mutex_unlock(&wfs_lock);
752 }
753
device_link_wait_for_mandatory_supplier(struct device * consumer)754 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
755 {
756 device_link_wait_for_supplier(consumer, true);
757 }
758
device_link_wait_for_optional_supplier(struct device * consumer)759 static void device_link_wait_for_optional_supplier(struct device *consumer)
760 {
761 device_link_wait_for_supplier(consumer, false);
762 }
763
764 /**
765 * device_link_add_missing_supplier_links - Add links from consumer devices to
766 * supplier devices, leaving any
767 * consumer with inactive suppliers on
768 * the wait_for_suppliers list
769 *
770 * Loops through all consumers waiting on suppliers and tries to add all their
771 * supplier links. If that succeeds, the consumer device is removed from
772 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
773 * list. Devices left on the wait_for_suppliers list will not be probed.
774 *
775 * The fwnode add_links callback is expected to return 0 if it has found and
776 * added all the supplier links for the consumer device. It should return an
777 * error if it isn't able to do so.
778 *
779 * The caller of device_link_wait_for_supplier() is expected to call this once
780 * it's aware of potential suppliers becoming available.
781 */
device_link_add_missing_supplier_links(void)782 static void device_link_add_missing_supplier_links(void)
783 {
784 struct device *dev, *tmp;
785
786 mutex_lock(&wfs_lock);
787 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
788 links.needs_suppliers) {
789 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
790 if (!ret)
791 list_del_init(&dev->links.needs_suppliers);
792 else if (ret != -ENODEV || fw_devlink_is_permissive())
793 dev->links.need_for_probe = false;
794 }
795 mutex_unlock(&wfs_lock);
796 }
797
798 #ifdef CONFIG_SRCU
__device_link_del(struct kref * kref)799 static void __device_link_del(struct kref *kref)
800 {
801 struct device_link *link = container_of(kref, struct device_link, kref);
802
803 dev_dbg(link->consumer, "Dropping the link to %s\n",
804 dev_name(link->supplier));
805
806 pm_runtime_drop_link(link);
807
808 list_del_rcu(&link->s_node);
809 list_del_rcu(&link->c_node);
810 device_unregister(&link->link_dev);
811 }
812 #else /* !CONFIG_SRCU */
__device_link_del(struct kref * kref)813 static void __device_link_del(struct kref *kref)
814 {
815 struct device_link *link = container_of(kref, struct device_link, kref);
816
817 dev_info(link->consumer, "Dropping the link to %s\n",
818 dev_name(link->supplier));
819
820 pm_runtime_drop_link(link);
821
822 list_del(&link->s_node);
823 list_del(&link->c_node);
824 device_unregister(&link->link_dev);
825 }
826 #endif /* !CONFIG_SRCU */
827
device_link_put_kref(struct device_link * link)828 static void device_link_put_kref(struct device_link *link)
829 {
830 if (link->flags & DL_FLAG_STATELESS)
831 kref_put(&link->kref, __device_link_del);
832 else
833 WARN(1, "Unable to drop a managed device link reference\n");
834 }
835
836 /**
837 * device_link_del - Delete a stateless link between two devices.
838 * @link: Device link to delete.
839 *
840 * The caller must ensure proper synchronization of this function with runtime
841 * PM. If the link was added multiple times, it needs to be deleted as often.
842 * Care is required for hotplugged devices: Their links are purged on removal
843 * and calling device_link_del() is then no longer allowed.
844 */
device_link_del(struct device_link * link)845 void device_link_del(struct device_link *link)
846 {
847 device_links_write_lock();
848 device_link_put_kref(link);
849 device_links_write_unlock();
850 }
851 EXPORT_SYMBOL_GPL(device_link_del);
852
853 /**
854 * device_link_remove - Delete a stateless link between two devices.
855 * @consumer: Consumer end of the link.
856 * @supplier: Supplier end of the link.
857 *
858 * The caller must ensure proper synchronization of this function with runtime
859 * PM.
860 */
device_link_remove(void * consumer,struct device * supplier)861 void device_link_remove(void *consumer, struct device *supplier)
862 {
863 struct device_link *link;
864
865 if (WARN_ON(consumer == supplier))
866 return;
867
868 device_links_write_lock();
869
870 list_for_each_entry(link, &supplier->links.consumers, s_node) {
871 if (link->consumer == consumer) {
872 device_link_put_kref(link);
873 break;
874 }
875 }
876
877 device_links_write_unlock();
878 }
879 EXPORT_SYMBOL_GPL(device_link_remove);
880
device_links_missing_supplier(struct device * dev)881 static void device_links_missing_supplier(struct device *dev)
882 {
883 struct device_link *link;
884
885 list_for_each_entry(link, &dev->links.suppliers, c_node) {
886 if (link->status != DL_STATE_CONSUMER_PROBE)
887 continue;
888
889 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
890 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
891 } else {
892 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
893 WRITE_ONCE(link->status, DL_STATE_DORMANT);
894 }
895 }
896 }
897
898 /**
899 * device_links_check_suppliers - Check presence of supplier drivers.
900 * @dev: Consumer device.
901 *
902 * Check links from this device to any suppliers. Walk the list of the device's
903 * links to suppliers and see if all of them are available. If not, simply
904 * return -EPROBE_DEFER.
905 *
906 * We need to guarantee that the supplier will not go away after the check has
907 * been positive here. It only can go away in __device_release_driver() and
908 * that function checks the device's links to consumers. This means we need to
909 * mark the link as "consumer probe in progress" to make the supplier removal
910 * wait for us to complete (or bad things may happen).
911 *
912 * Links without the DL_FLAG_MANAGED flag set are ignored.
913 */
device_links_check_suppliers(struct device * dev)914 int device_links_check_suppliers(struct device *dev)
915 {
916 struct device_link *link;
917 int ret = 0;
918
919 /*
920 * Device waiting for supplier to become available is not allowed to
921 * probe.
922 */
923 mutex_lock(&wfs_lock);
924 if (!list_empty(&dev->links.needs_suppliers) &&
925 dev->links.need_for_probe) {
926 mutex_unlock(&wfs_lock);
927 return -EPROBE_DEFER;
928 }
929 mutex_unlock(&wfs_lock);
930
931 device_links_write_lock();
932
933 list_for_each_entry(link, &dev->links.suppliers, c_node) {
934 if (!(link->flags & DL_FLAG_MANAGED))
935 continue;
936
937 if (link->status != DL_STATE_AVAILABLE &&
938 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
939 device_links_missing_supplier(dev);
940 ret = -EPROBE_DEFER;
941 break;
942 }
943 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
944 }
945 dev->links.status = DL_DEV_PROBING;
946
947 device_links_write_unlock();
948 return ret;
949 }
950
951 /**
952 * __device_links_queue_sync_state - Queue a device for sync_state() callback
953 * @dev: Device to call sync_state() on
954 * @list: List head to queue the @dev on
955 *
956 * Queues a device for a sync_state() callback when the device links write lock
957 * isn't held. This allows the sync_state() execution flow to use device links
958 * APIs. The caller must ensure this function is called with
959 * device_links_write_lock() held.
960 *
961 * This function does a get_device() to make sure the device is not freed while
962 * on this list.
963 *
964 * So the caller must also ensure that device_links_flush_sync_list() is called
965 * as soon as the caller releases device_links_write_lock(). This is necessary
966 * to make sure the sync_state() is called in a timely fashion and the
967 * put_device() is called on this device.
968 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)969 static void __device_links_queue_sync_state(struct device *dev,
970 struct list_head *list)
971 {
972 struct device_link *link;
973
974 if (!dev_has_sync_state(dev))
975 return;
976 if (dev->state_synced)
977 return;
978
979 list_for_each_entry(link, &dev->links.consumers, s_node) {
980 if (!(link->flags & DL_FLAG_MANAGED))
981 continue;
982 if (link->status != DL_STATE_ACTIVE)
983 return;
984 }
985
986 /*
987 * Set the flag here to avoid adding the same device to a list more
988 * than once. This can happen if new consumers get added to the device
989 * and probed before the list is flushed.
990 */
991 dev->state_synced = true;
992
993 if (WARN_ON(!list_empty(&dev->links.defer_hook)))
994 return;
995
996 get_device(dev);
997 list_add_tail(&dev->links.defer_hook, list);
998 }
999
1000 /**
1001 * device_links_flush_sync_list - Call sync_state() on a list of devices
1002 * @list: List of devices to call sync_state() on
1003 * @dont_lock_dev: Device for which lock is already held by the caller
1004 *
1005 * Calls sync_state() on all the devices that have been queued for it. This
1006 * function is used in conjunction with __device_links_queue_sync_state(). The
1007 * @dont_lock_dev parameter is useful when this function is called from a
1008 * context where a device lock is already held.
1009 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1010 static void device_links_flush_sync_list(struct list_head *list,
1011 struct device *dont_lock_dev)
1012 {
1013 struct device *dev, *tmp;
1014
1015 list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
1016 list_del_init(&dev->links.defer_hook);
1017
1018 if (dev != dont_lock_dev)
1019 device_lock(dev);
1020
1021 if (dev->bus->sync_state)
1022 dev->bus->sync_state(dev);
1023 else if (dev->driver && dev->driver->sync_state)
1024 dev->driver->sync_state(dev);
1025
1026 if (dev != dont_lock_dev)
1027 device_unlock(dev);
1028
1029 put_device(dev);
1030 }
1031 }
1032
device_links_supplier_sync_state_pause(void)1033 void device_links_supplier_sync_state_pause(void)
1034 {
1035 device_links_write_lock();
1036 defer_sync_state_count++;
1037 device_links_write_unlock();
1038 }
1039
device_links_supplier_sync_state_resume(void)1040 void device_links_supplier_sync_state_resume(void)
1041 {
1042 struct device *dev, *tmp;
1043 LIST_HEAD(sync_list);
1044
1045 device_links_write_lock();
1046 if (!defer_sync_state_count) {
1047 WARN(true, "Unmatched sync_state pause/resume!");
1048 goto out;
1049 }
1050 defer_sync_state_count--;
1051 if (defer_sync_state_count)
1052 goto out;
1053
1054 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1055 /*
1056 * Delete from deferred_sync list before queuing it to
1057 * sync_list because defer_hook is used for both lists.
1058 */
1059 list_del_init(&dev->links.defer_hook);
1060 __device_links_queue_sync_state(dev, &sync_list);
1061 }
1062 out:
1063 device_links_write_unlock();
1064
1065 device_links_flush_sync_list(&sync_list, NULL);
1066 }
1067
sync_state_resume_initcall(void)1068 static int sync_state_resume_initcall(void)
1069 {
1070 device_links_supplier_sync_state_resume();
1071 return 0;
1072 }
1073 late_initcall(sync_state_resume_initcall);
1074
__device_links_supplier_defer_sync(struct device * sup)1075 static void __device_links_supplier_defer_sync(struct device *sup)
1076 {
1077 if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1078 list_add_tail(&sup->links.defer_hook, &deferred_sync);
1079 }
1080
device_link_drop_managed(struct device_link * link)1081 static void device_link_drop_managed(struct device_link *link)
1082 {
1083 link->flags &= ~DL_FLAG_MANAGED;
1084 WRITE_ONCE(link->status, DL_STATE_NONE);
1085 kref_put(&link->kref, __device_link_del);
1086 }
1087
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1088 static ssize_t waiting_for_supplier_show(struct device *dev,
1089 struct device_attribute *attr,
1090 char *buf)
1091 {
1092 bool val;
1093
1094 device_lock(dev);
1095 mutex_lock(&wfs_lock);
1096 val = !list_empty(&dev->links.needs_suppliers)
1097 && dev->links.need_for_probe;
1098 mutex_unlock(&wfs_lock);
1099 device_unlock(dev);
1100 return sysfs_emit(buf, "%u\n", val);
1101 }
1102 static DEVICE_ATTR_RO(waiting_for_supplier);
1103
1104 /**
1105 * device_links_driver_bound - Update device links after probing its driver.
1106 * @dev: Device to update the links for.
1107 *
1108 * The probe has been successful, so update links from this device to any
1109 * consumers by changing their status to "available".
1110 *
1111 * Also change the status of @dev's links to suppliers to "active".
1112 *
1113 * Links without the DL_FLAG_MANAGED flag set are ignored.
1114 */
device_links_driver_bound(struct device * dev)1115 void device_links_driver_bound(struct device *dev)
1116 {
1117 struct device_link *link, *ln;
1118 LIST_HEAD(sync_list);
1119
1120 /*
1121 * If a device probes successfully, it's expected to have created all
1122 * the device links it needs to or make new device links as it needs
1123 * them. So, it no longer needs to wait on any suppliers.
1124 */
1125 mutex_lock(&wfs_lock);
1126 list_del_init(&dev->links.needs_suppliers);
1127 mutex_unlock(&wfs_lock);
1128 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1129
1130 device_links_write_lock();
1131
1132 list_for_each_entry(link, &dev->links.consumers, s_node) {
1133 if (!(link->flags & DL_FLAG_MANAGED))
1134 continue;
1135
1136 /*
1137 * Links created during consumer probe may be in the "consumer
1138 * probe" state to start with if the supplier is still probing
1139 * when they are created and they may become "active" if the
1140 * consumer probe returns first. Skip them here.
1141 */
1142 if (link->status == DL_STATE_CONSUMER_PROBE ||
1143 link->status == DL_STATE_ACTIVE)
1144 continue;
1145
1146 WARN_ON(link->status != DL_STATE_DORMANT);
1147 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1148
1149 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1150 driver_deferred_probe_add(link->consumer);
1151 }
1152
1153 if (defer_sync_state_count)
1154 __device_links_supplier_defer_sync(dev);
1155 else
1156 __device_links_queue_sync_state(dev, &sync_list);
1157
1158 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1159 struct device *supplier;
1160
1161 if (!(link->flags & DL_FLAG_MANAGED))
1162 continue;
1163
1164 supplier = link->supplier;
1165 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1166 /*
1167 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1168 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1169 * save to drop the managed link completely.
1170 */
1171 device_link_drop_managed(link);
1172 } else {
1173 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1174 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1175 }
1176
1177 /*
1178 * This needs to be done even for the deleted
1179 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1180 * device link that was preventing the supplier from getting a
1181 * sync_state() call.
1182 */
1183 if (defer_sync_state_count)
1184 __device_links_supplier_defer_sync(supplier);
1185 else
1186 __device_links_queue_sync_state(supplier, &sync_list);
1187 }
1188
1189 dev->links.status = DL_DEV_DRIVER_BOUND;
1190
1191 device_links_write_unlock();
1192
1193 device_links_flush_sync_list(&sync_list, dev);
1194 }
1195
1196 /**
1197 * __device_links_no_driver - Update links of a device without a driver.
1198 * @dev: Device without a drvier.
1199 *
1200 * Delete all non-persistent links from this device to any suppliers.
1201 *
1202 * Persistent links stay around, but their status is changed to "available",
1203 * unless they already are in the "supplier unbind in progress" state in which
1204 * case they need not be updated.
1205 *
1206 * Links without the DL_FLAG_MANAGED flag set are ignored.
1207 */
__device_links_no_driver(struct device * dev)1208 static void __device_links_no_driver(struct device *dev)
1209 {
1210 struct device_link *link, *ln;
1211
1212 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1213 if (!(link->flags & DL_FLAG_MANAGED))
1214 continue;
1215
1216 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1217 device_link_drop_managed(link);
1218 continue;
1219 }
1220
1221 if (link->status != DL_STATE_CONSUMER_PROBE &&
1222 link->status != DL_STATE_ACTIVE)
1223 continue;
1224
1225 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1226 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1227 } else {
1228 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1229 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1230 }
1231 }
1232
1233 dev->links.status = DL_DEV_NO_DRIVER;
1234 }
1235
1236 /**
1237 * device_links_no_driver - Update links after failing driver probe.
1238 * @dev: Device whose driver has just failed to probe.
1239 *
1240 * Clean up leftover links to consumers for @dev and invoke
1241 * %__device_links_no_driver() to update links to suppliers for it as
1242 * appropriate.
1243 *
1244 * Links without the DL_FLAG_MANAGED flag set are ignored.
1245 */
device_links_no_driver(struct device * dev)1246 void device_links_no_driver(struct device *dev)
1247 {
1248 struct device_link *link;
1249
1250 device_links_write_lock();
1251
1252 list_for_each_entry(link, &dev->links.consumers, s_node) {
1253 if (!(link->flags & DL_FLAG_MANAGED))
1254 continue;
1255
1256 /*
1257 * The probe has failed, so if the status of the link is
1258 * "consumer probe" or "active", it must have been added by
1259 * a probing consumer while this device was still probing.
1260 * Change its state to "dormant", as it represents a valid
1261 * relationship, but it is not functionally meaningful.
1262 */
1263 if (link->status == DL_STATE_CONSUMER_PROBE ||
1264 link->status == DL_STATE_ACTIVE)
1265 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1266 }
1267
1268 __device_links_no_driver(dev);
1269
1270 device_links_write_unlock();
1271 }
1272
1273 /**
1274 * device_links_driver_cleanup - Update links after driver removal.
1275 * @dev: Device whose driver has just gone away.
1276 *
1277 * Update links to consumers for @dev by changing their status to "dormant" and
1278 * invoke %__device_links_no_driver() to update links to suppliers for it as
1279 * appropriate.
1280 *
1281 * Links without the DL_FLAG_MANAGED flag set are ignored.
1282 */
device_links_driver_cleanup(struct device * dev)1283 void device_links_driver_cleanup(struct device *dev)
1284 {
1285 struct device_link *link, *ln;
1286
1287 device_links_write_lock();
1288
1289 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1290 if (!(link->flags & DL_FLAG_MANAGED))
1291 continue;
1292
1293 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1294 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1295
1296 /*
1297 * autoremove the links between this @dev and its consumer
1298 * devices that are not active, i.e. where the link state
1299 * has moved to DL_STATE_SUPPLIER_UNBIND.
1300 */
1301 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1302 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1303 device_link_drop_managed(link);
1304
1305 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1306 }
1307
1308 list_del_init(&dev->links.defer_hook);
1309 __device_links_no_driver(dev);
1310
1311 device_links_write_unlock();
1312 }
1313
1314 /**
1315 * device_links_busy - Check if there are any busy links to consumers.
1316 * @dev: Device to check.
1317 *
1318 * Check each consumer of the device and return 'true' if its link's status
1319 * is one of "consumer probe" or "active" (meaning that the given consumer is
1320 * probing right now or its driver is present). Otherwise, change the link
1321 * state to "supplier unbind" to prevent the consumer from being probed
1322 * successfully going forward.
1323 *
1324 * Return 'false' if there are no probing or active consumers.
1325 *
1326 * Links without the DL_FLAG_MANAGED flag set are ignored.
1327 */
device_links_busy(struct device * dev)1328 bool device_links_busy(struct device *dev)
1329 {
1330 struct device_link *link;
1331 bool ret = false;
1332
1333 device_links_write_lock();
1334
1335 list_for_each_entry(link, &dev->links.consumers, s_node) {
1336 if (!(link->flags & DL_FLAG_MANAGED))
1337 continue;
1338
1339 if (link->status == DL_STATE_CONSUMER_PROBE
1340 || link->status == DL_STATE_ACTIVE) {
1341 ret = true;
1342 break;
1343 }
1344 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1345 }
1346
1347 dev->links.status = DL_DEV_UNBINDING;
1348
1349 device_links_write_unlock();
1350 return ret;
1351 }
1352
1353 /**
1354 * device_links_unbind_consumers - Force unbind consumers of the given device.
1355 * @dev: Device to unbind the consumers of.
1356 *
1357 * Walk the list of links to consumers for @dev and if any of them is in the
1358 * "consumer probe" state, wait for all device probes in progress to complete
1359 * and start over.
1360 *
1361 * If that's not the case, change the status of the link to "supplier unbind"
1362 * and check if the link was in the "active" state. If so, force the consumer
1363 * driver to unbind and start over (the consumer will not re-probe as we have
1364 * changed the state of the link already).
1365 *
1366 * Links without the DL_FLAG_MANAGED flag set are ignored.
1367 */
device_links_unbind_consumers(struct device * dev)1368 void device_links_unbind_consumers(struct device *dev)
1369 {
1370 struct device_link *link;
1371
1372 start:
1373 device_links_write_lock();
1374
1375 list_for_each_entry(link, &dev->links.consumers, s_node) {
1376 enum device_link_state status;
1377
1378 if (!(link->flags & DL_FLAG_MANAGED) ||
1379 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1380 continue;
1381
1382 status = link->status;
1383 if (status == DL_STATE_CONSUMER_PROBE) {
1384 device_links_write_unlock();
1385
1386 wait_for_device_probe();
1387 goto start;
1388 }
1389 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1390 if (status == DL_STATE_ACTIVE) {
1391 struct device *consumer = link->consumer;
1392
1393 get_device(consumer);
1394
1395 device_links_write_unlock();
1396
1397 device_release_driver_internal(consumer, NULL,
1398 consumer->parent);
1399 put_device(consumer);
1400 goto start;
1401 }
1402 }
1403
1404 device_links_write_unlock();
1405 }
1406
1407 /**
1408 * device_links_purge - Delete existing links to other devices.
1409 * @dev: Target device.
1410 */
device_links_purge(struct device * dev)1411 static void device_links_purge(struct device *dev)
1412 {
1413 struct device_link *link, *ln;
1414
1415 if (dev->class == &devlink_class)
1416 return;
1417
1418 mutex_lock(&wfs_lock);
1419 list_del_init(&dev->links.needs_suppliers);
1420 mutex_unlock(&wfs_lock);
1421
1422 /*
1423 * Delete all of the remaining links from this device to any other
1424 * devices (either consumers or suppliers).
1425 */
1426 device_links_write_lock();
1427
1428 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1429 WARN_ON(link->status == DL_STATE_ACTIVE);
1430 __device_link_del(&link->kref);
1431 }
1432
1433 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1434 WARN_ON(link->status != DL_STATE_DORMANT &&
1435 link->status != DL_STATE_NONE);
1436 __device_link_del(&link->kref);
1437 }
1438
1439 device_links_write_unlock();
1440 }
1441
1442 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
fw_devlink_setup(char * arg)1443 static int __init fw_devlink_setup(char *arg)
1444 {
1445 if (!arg)
1446 return -EINVAL;
1447
1448 if (strcmp(arg, "off") == 0) {
1449 fw_devlink_flags = 0;
1450 } else if (strcmp(arg, "permissive") == 0) {
1451 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1452 } else if (strcmp(arg, "on") == 0) {
1453 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1454 } else if (strcmp(arg, "rpm") == 0) {
1455 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1456 DL_FLAG_PM_RUNTIME;
1457 }
1458 return 0;
1459 }
1460 early_param("fw_devlink", fw_devlink_setup);
1461
fw_devlink_get_flags(void)1462 u32 fw_devlink_get_flags(void)
1463 {
1464 return fw_devlink_flags;
1465 }
1466
fw_devlink_is_permissive(void)1467 static bool fw_devlink_is_permissive(void)
1468 {
1469 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1470 }
1471
fw_devlink_link_device(struct device * dev)1472 static void fw_devlink_link_device(struct device *dev)
1473 {
1474 int fw_ret;
1475
1476 if (!fw_devlink_flags)
1477 return;
1478
1479 mutex_lock(&defer_fw_devlink_lock);
1480 if (!defer_fw_devlink_count)
1481 device_link_add_missing_supplier_links();
1482
1483 /*
1484 * The device's fwnode not having add_links() doesn't affect if other
1485 * consumers can find this device as a supplier. So, this check is
1486 * intentionally placed after device_link_add_missing_supplier_links().
1487 */
1488 if (!fwnode_has_op(dev->fwnode, add_links))
1489 goto out;
1490
1491 /*
1492 * If fw_devlink is being deferred, assume all devices have mandatory
1493 * suppliers they need to link to later. Then, when the fw_devlink is
1494 * resumed, all these devices will get a chance to try and link to any
1495 * suppliers they have.
1496 */
1497 if (!defer_fw_devlink_count) {
1498 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1499 if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1500 fw_ret = -EAGAIN;
1501 } else {
1502 fw_ret = -ENODEV;
1503 /*
1504 * defer_hook is not used to add device to deferred_sync list
1505 * until device is bound. Since deferred fw devlink also blocks
1506 * probing, same list hook can be used for deferred_fw_devlink.
1507 */
1508 list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1509 }
1510
1511 if (fw_ret == -ENODEV)
1512 device_link_wait_for_mandatory_supplier(dev);
1513 else if (fw_ret)
1514 device_link_wait_for_optional_supplier(dev);
1515
1516 out:
1517 mutex_unlock(&defer_fw_devlink_lock);
1518 }
1519
1520 /**
1521 * fw_devlink_pause - Pause parsing of fwnode to create device links
1522 *
1523 * Calling this function defers any fwnode parsing to create device links until
1524 * fw_devlink_resume() is called. Both these functions are ref counted and the
1525 * caller needs to match the calls.
1526 *
1527 * While fw_devlink is paused:
1528 * - Any device that is added won't have its fwnode parsed to create device
1529 * links.
1530 * - The probe of the device will also be deferred during this period.
1531 * - Any devices that were already added, but waiting for suppliers won't be
1532 * able to link to newly added devices.
1533 *
1534 * Once fw_devlink_resume():
1535 * - All the fwnodes that was not parsed will be parsed.
1536 * - All the devices that were deferred probing will be reattempted if they
1537 * aren't waiting for any more suppliers.
1538 *
1539 * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1540 * when a lot of devices that need to link to each other are added in a short
1541 * interval of time. For example, adding all the top level devices in a system.
1542 *
1543 * For example, if N devices are added and:
1544 * - All the consumers are added before their suppliers
1545 * - All the suppliers of the N devices are part of the N devices
1546 *
1547 * Then:
1548 *
1549 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1550 * will only need one parsing of its fwnode because it is guaranteed to find
1551 * all the supplier devices already registered and ready to link to. It won't
1552 * have to do another pass later to find one or more suppliers it couldn't
1553 * find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1554 * parses.
1555 *
1556 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1557 * end up doing O(N^2) parses of fwnodes because every device that's added is
1558 * guaranteed to trigger a parse of the fwnode of every device added before
1559 * it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1560 * device is parsed, all it descendant devices might need to have their
1561 * fwnodes parsed too (even if the devices themselves aren't added).
1562 */
fw_devlink_pause(void)1563 void fw_devlink_pause(void)
1564 {
1565 mutex_lock(&defer_fw_devlink_lock);
1566 defer_fw_devlink_count++;
1567 mutex_unlock(&defer_fw_devlink_lock);
1568 }
1569
1570 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1571 *
1572 * This function is used in conjunction with fw_devlink_pause() and is ref
1573 * counted. See documentation for fw_devlink_pause() for more details.
1574 */
fw_devlink_resume(void)1575 void fw_devlink_resume(void)
1576 {
1577 struct device *dev, *tmp;
1578 LIST_HEAD(probe_list);
1579
1580 mutex_lock(&defer_fw_devlink_lock);
1581 if (!defer_fw_devlink_count) {
1582 WARN(true, "Unmatched fw_devlink pause/resume!");
1583 goto out;
1584 }
1585
1586 defer_fw_devlink_count--;
1587 if (defer_fw_devlink_count)
1588 goto out;
1589
1590 device_link_add_missing_supplier_links();
1591 list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1592 out:
1593 mutex_unlock(&defer_fw_devlink_lock);
1594
1595 /*
1596 * bus_probe_device() can cause new devices to get added and they'll
1597 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1598 * the defer_fw_devlink_lock.
1599 */
1600 list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1601 list_del_init(&dev->links.defer_hook);
1602 bus_probe_device(dev);
1603 }
1604 }
1605 /* Device links support end. */
1606
1607 int (*platform_notify)(struct device *dev) = NULL;
1608 int (*platform_notify_remove)(struct device *dev) = NULL;
1609 static struct kobject *dev_kobj;
1610 struct kobject *sysfs_dev_char_kobj;
1611 struct kobject *sysfs_dev_block_kobj;
1612
1613 static DEFINE_MUTEX(device_hotplug_lock);
1614
lock_device_hotplug(void)1615 void lock_device_hotplug(void)
1616 {
1617 mutex_lock(&device_hotplug_lock);
1618 }
1619
unlock_device_hotplug(void)1620 void unlock_device_hotplug(void)
1621 {
1622 mutex_unlock(&device_hotplug_lock);
1623 }
1624
lock_device_hotplug_sysfs(void)1625 int lock_device_hotplug_sysfs(void)
1626 {
1627 if (mutex_trylock(&device_hotplug_lock))
1628 return 0;
1629
1630 /* Avoid busy looping (5 ms of sleep should do). */
1631 msleep(5);
1632 return restart_syscall();
1633 }
1634
1635 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)1636 static inline int device_is_not_partition(struct device *dev)
1637 {
1638 return !(dev->type == &part_type);
1639 }
1640 #else
device_is_not_partition(struct device * dev)1641 static inline int device_is_not_partition(struct device *dev)
1642 {
1643 return 1;
1644 }
1645 #endif
1646
1647 static int
device_platform_notify(struct device * dev,enum kobject_action action)1648 device_platform_notify(struct device *dev, enum kobject_action action)
1649 {
1650 int ret;
1651
1652 ret = acpi_platform_notify(dev, action);
1653 if (ret)
1654 return ret;
1655
1656 ret = software_node_notify(dev, action);
1657 if (ret)
1658 return ret;
1659
1660 if (platform_notify && action == KOBJ_ADD)
1661 platform_notify(dev);
1662 else if (platform_notify_remove && action == KOBJ_REMOVE)
1663 platform_notify_remove(dev);
1664 return 0;
1665 }
1666
1667 /**
1668 * dev_driver_string - Return a device's driver name, if at all possible
1669 * @dev: struct device to get the name of
1670 *
1671 * Will return the device's driver's name if it is bound to a device. If
1672 * the device is not bound to a driver, it will return the name of the bus
1673 * it is attached to. If it is not attached to a bus either, an empty
1674 * string will be returned.
1675 */
dev_driver_string(const struct device * dev)1676 const char *dev_driver_string(const struct device *dev)
1677 {
1678 struct device_driver *drv;
1679
1680 /* dev->driver can change to NULL underneath us because of unbinding,
1681 * so be careful about accessing it. dev->bus and dev->class should
1682 * never change once they are set, so they don't need special care.
1683 */
1684 drv = READ_ONCE(dev->driver);
1685 return drv ? drv->name : dev_bus_name(dev);
1686 }
1687 EXPORT_SYMBOL(dev_driver_string);
1688
1689 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1690
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1691 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1692 char *buf)
1693 {
1694 struct device_attribute *dev_attr = to_dev_attr(attr);
1695 struct device *dev = kobj_to_dev(kobj);
1696 ssize_t ret = -EIO;
1697
1698 if (dev_attr->show)
1699 ret = dev_attr->show(dev, dev_attr, buf);
1700 if (ret >= (ssize_t)PAGE_SIZE) {
1701 printk("dev_attr_show: %pS returned bad count\n",
1702 dev_attr->show);
1703 }
1704 return ret;
1705 }
1706
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1707 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1708 const char *buf, size_t count)
1709 {
1710 struct device_attribute *dev_attr = to_dev_attr(attr);
1711 struct device *dev = kobj_to_dev(kobj);
1712 ssize_t ret = -EIO;
1713
1714 if (dev_attr->store)
1715 ret = dev_attr->store(dev, dev_attr, buf, count);
1716 return ret;
1717 }
1718
1719 static const struct sysfs_ops dev_sysfs_ops = {
1720 .show = dev_attr_show,
1721 .store = dev_attr_store,
1722 };
1723
1724 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1725
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1726 ssize_t device_store_ulong(struct device *dev,
1727 struct device_attribute *attr,
1728 const char *buf, size_t size)
1729 {
1730 struct dev_ext_attribute *ea = to_ext_attr(attr);
1731 int ret;
1732 unsigned long new;
1733
1734 ret = kstrtoul(buf, 0, &new);
1735 if (ret)
1736 return ret;
1737 *(unsigned long *)(ea->var) = new;
1738 /* Always return full write size even if we didn't consume all */
1739 return size;
1740 }
1741 EXPORT_SYMBOL_GPL(device_store_ulong);
1742
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)1743 ssize_t device_show_ulong(struct device *dev,
1744 struct device_attribute *attr,
1745 char *buf)
1746 {
1747 struct dev_ext_attribute *ea = to_ext_attr(attr);
1748 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
1749 }
1750 EXPORT_SYMBOL_GPL(device_show_ulong);
1751
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1752 ssize_t device_store_int(struct device *dev,
1753 struct device_attribute *attr,
1754 const char *buf, size_t size)
1755 {
1756 struct dev_ext_attribute *ea = to_ext_attr(attr);
1757 int ret;
1758 long new;
1759
1760 ret = kstrtol(buf, 0, &new);
1761 if (ret)
1762 return ret;
1763
1764 if (new > INT_MAX || new < INT_MIN)
1765 return -EINVAL;
1766 *(int *)(ea->var) = new;
1767 /* Always return full write size even if we didn't consume all */
1768 return size;
1769 }
1770 EXPORT_SYMBOL_GPL(device_store_int);
1771
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)1772 ssize_t device_show_int(struct device *dev,
1773 struct device_attribute *attr,
1774 char *buf)
1775 {
1776 struct dev_ext_attribute *ea = to_ext_attr(attr);
1777
1778 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
1779 }
1780 EXPORT_SYMBOL_GPL(device_show_int);
1781
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1782 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1783 const char *buf, size_t size)
1784 {
1785 struct dev_ext_attribute *ea = to_ext_attr(attr);
1786
1787 if (strtobool(buf, ea->var) < 0)
1788 return -EINVAL;
1789
1790 return size;
1791 }
1792 EXPORT_SYMBOL_GPL(device_store_bool);
1793
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)1794 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1795 char *buf)
1796 {
1797 struct dev_ext_attribute *ea = to_ext_attr(attr);
1798
1799 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
1800 }
1801 EXPORT_SYMBOL_GPL(device_show_bool);
1802
1803 /**
1804 * device_release - free device structure.
1805 * @kobj: device's kobject.
1806 *
1807 * This is called once the reference count for the object
1808 * reaches 0. We forward the call to the device's release
1809 * method, which should handle actually freeing the structure.
1810 */
device_release(struct kobject * kobj)1811 static void device_release(struct kobject *kobj)
1812 {
1813 struct device *dev = kobj_to_dev(kobj);
1814 struct device_private *p = dev->p;
1815
1816 /*
1817 * Some platform devices are driven without driver attached
1818 * and managed resources may have been acquired. Make sure
1819 * all resources are released.
1820 *
1821 * Drivers still can add resources into device after device
1822 * is deleted but alive, so release devres here to avoid
1823 * possible memory leak.
1824 */
1825 devres_release_all(dev);
1826
1827 kfree(dev->dma_range_map);
1828
1829 if (dev->release)
1830 dev->release(dev);
1831 else if (dev->type && dev->type->release)
1832 dev->type->release(dev);
1833 else if (dev->class && dev->class->dev_release)
1834 dev->class->dev_release(dev);
1835 else
1836 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1837 dev_name(dev));
1838 kfree(p);
1839 }
1840
device_namespace(struct kobject * kobj)1841 static const void *device_namespace(struct kobject *kobj)
1842 {
1843 struct device *dev = kobj_to_dev(kobj);
1844 const void *ns = NULL;
1845
1846 if (dev->class && dev->class->ns_type)
1847 ns = dev->class->namespace(dev);
1848
1849 return ns;
1850 }
1851
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)1852 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1853 {
1854 struct device *dev = kobj_to_dev(kobj);
1855
1856 if (dev->class && dev->class->get_ownership)
1857 dev->class->get_ownership(dev, uid, gid);
1858 }
1859
1860 static struct kobj_type device_ktype = {
1861 .release = device_release,
1862 .sysfs_ops = &dev_sysfs_ops,
1863 .namespace = device_namespace,
1864 .get_ownership = device_get_ownership,
1865 };
1866
1867
dev_uevent_filter(struct kset * kset,struct kobject * kobj)1868 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1869 {
1870 struct kobj_type *ktype = get_ktype(kobj);
1871
1872 if (ktype == &device_ktype) {
1873 struct device *dev = kobj_to_dev(kobj);
1874 if (dev->bus)
1875 return 1;
1876 if (dev->class)
1877 return 1;
1878 }
1879 return 0;
1880 }
1881
dev_uevent_name(struct kset * kset,struct kobject * kobj)1882 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1883 {
1884 struct device *dev = kobj_to_dev(kobj);
1885
1886 if (dev->bus)
1887 return dev->bus->name;
1888 if (dev->class)
1889 return dev->class->name;
1890 return NULL;
1891 }
1892
dev_uevent(struct kset * kset,struct kobject * kobj,struct kobj_uevent_env * env)1893 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1894 struct kobj_uevent_env *env)
1895 {
1896 struct device *dev = kobj_to_dev(kobj);
1897 int retval = 0;
1898
1899 /* add device node properties if present */
1900 if (MAJOR(dev->devt)) {
1901 const char *tmp;
1902 const char *name;
1903 umode_t mode = 0;
1904 kuid_t uid = GLOBAL_ROOT_UID;
1905 kgid_t gid = GLOBAL_ROOT_GID;
1906
1907 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1908 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1909 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1910 if (name) {
1911 add_uevent_var(env, "DEVNAME=%s", name);
1912 if (mode)
1913 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1914 if (!uid_eq(uid, GLOBAL_ROOT_UID))
1915 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1916 if (!gid_eq(gid, GLOBAL_ROOT_GID))
1917 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1918 kfree(tmp);
1919 }
1920 }
1921
1922 if (dev->type && dev->type->name)
1923 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1924
1925 if (dev->driver)
1926 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1927
1928 /* Add common DT information about the device */
1929 of_device_uevent(dev, env);
1930
1931 /* have the bus specific function add its stuff */
1932 if (dev->bus && dev->bus->uevent) {
1933 retval = dev->bus->uevent(dev, env);
1934 if (retval)
1935 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1936 dev_name(dev), __func__, retval);
1937 }
1938
1939 /* have the class specific function add its stuff */
1940 if (dev->class && dev->class->dev_uevent) {
1941 retval = dev->class->dev_uevent(dev, env);
1942 if (retval)
1943 pr_debug("device: '%s': %s: class uevent() "
1944 "returned %d\n", dev_name(dev),
1945 __func__, retval);
1946 }
1947
1948 /* have the device type specific function add its stuff */
1949 if (dev->type && dev->type->uevent) {
1950 retval = dev->type->uevent(dev, env);
1951 if (retval)
1952 pr_debug("device: '%s': %s: dev_type uevent() "
1953 "returned %d\n", dev_name(dev),
1954 __func__, retval);
1955 }
1956
1957 return retval;
1958 }
1959
1960 static const struct kset_uevent_ops device_uevent_ops = {
1961 .filter = dev_uevent_filter,
1962 .name = dev_uevent_name,
1963 .uevent = dev_uevent,
1964 };
1965
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)1966 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1967 char *buf)
1968 {
1969 struct kobject *top_kobj;
1970 struct kset *kset;
1971 struct kobj_uevent_env *env = NULL;
1972 int i;
1973 int len = 0;
1974 int retval;
1975
1976 /* search the kset, the device belongs to */
1977 top_kobj = &dev->kobj;
1978 while (!top_kobj->kset && top_kobj->parent)
1979 top_kobj = top_kobj->parent;
1980 if (!top_kobj->kset)
1981 goto out;
1982
1983 kset = top_kobj->kset;
1984 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1985 goto out;
1986
1987 /* respect filter */
1988 if (kset->uevent_ops && kset->uevent_ops->filter)
1989 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1990 goto out;
1991
1992 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1993 if (!env)
1994 return -ENOMEM;
1995
1996 /* let the kset specific function add its keys */
1997 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1998 if (retval)
1999 goto out;
2000
2001 /* copy keys to file */
2002 for (i = 0; i < env->envp_idx; i++)
2003 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2004 out:
2005 kfree(env);
2006 return len;
2007 }
2008
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2009 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2010 const char *buf, size_t count)
2011 {
2012 int rc;
2013
2014 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2015
2016 if (rc) {
2017 dev_err(dev, "uevent: failed to send synthetic uevent\n");
2018 return rc;
2019 }
2020
2021 return count;
2022 }
2023 static DEVICE_ATTR_RW(uevent);
2024
online_show(struct device * dev,struct device_attribute * attr,char * buf)2025 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2026 char *buf)
2027 {
2028 bool val;
2029
2030 device_lock(dev);
2031 val = !dev->offline;
2032 device_unlock(dev);
2033 return sysfs_emit(buf, "%u\n", val);
2034 }
2035
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2036 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2037 const char *buf, size_t count)
2038 {
2039 bool val;
2040 int ret;
2041
2042 ret = strtobool(buf, &val);
2043 if (ret < 0)
2044 return ret;
2045
2046 ret = lock_device_hotplug_sysfs();
2047 if (ret)
2048 return ret;
2049
2050 ret = val ? device_online(dev) : device_offline(dev);
2051 unlock_device_hotplug();
2052 return ret < 0 ? ret : count;
2053 }
2054 static DEVICE_ATTR_RW(online);
2055
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2056 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2057 char *buf)
2058 {
2059 const char *loc;
2060
2061 switch (dev->removable) {
2062 case DEVICE_REMOVABLE:
2063 loc = "removable";
2064 break;
2065 case DEVICE_FIXED:
2066 loc = "fixed";
2067 break;
2068 default:
2069 loc = "unknown";
2070 }
2071 return sysfs_emit(buf, "%s\n", loc);
2072 }
2073 static DEVICE_ATTR_RO(removable);
2074
device_add_groups(struct device * dev,const struct attribute_group ** groups)2075 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2076 {
2077 return sysfs_create_groups(&dev->kobj, groups);
2078 }
2079 EXPORT_SYMBOL_GPL(device_add_groups);
2080
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2081 void device_remove_groups(struct device *dev,
2082 const struct attribute_group **groups)
2083 {
2084 sysfs_remove_groups(&dev->kobj, groups);
2085 }
2086 EXPORT_SYMBOL_GPL(device_remove_groups);
2087
2088 union device_attr_group_devres {
2089 const struct attribute_group *group;
2090 const struct attribute_group **groups;
2091 };
2092
devm_attr_group_match(struct device * dev,void * res,void * data)2093 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2094 {
2095 return ((union device_attr_group_devres *)res)->group == data;
2096 }
2097
devm_attr_group_remove(struct device * dev,void * res)2098 static void devm_attr_group_remove(struct device *dev, void *res)
2099 {
2100 union device_attr_group_devres *devres = res;
2101 const struct attribute_group *group = devres->group;
2102
2103 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2104 sysfs_remove_group(&dev->kobj, group);
2105 }
2106
devm_attr_groups_remove(struct device * dev,void * res)2107 static void devm_attr_groups_remove(struct device *dev, void *res)
2108 {
2109 union device_attr_group_devres *devres = res;
2110 const struct attribute_group **groups = devres->groups;
2111
2112 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2113 sysfs_remove_groups(&dev->kobj, groups);
2114 }
2115
2116 /**
2117 * devm_device_add_group - given a device, create a managed attribute group
2118 * @dev: The device to create the group for
2119 * @grp: The attribute group to create
2120 *
2121 * This function creates a group for the first time. It will explicitly
2122 * warn and error if any of the attribute files being created already exist.
2123 *
2124 * Returns 0 on success or error code on failure.
2125 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2126 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2127 {
2128 union device_attr_group_devres *devres;
2129 int error;
2130
2131 devres = devres_alloc(devm_attr_group_remove,
2132 sizeof(*devres), GFP_KERNEL);
2133 if (!devres)
2134 return -ENOMEM;
2135
2136 error = sysfs_create_group(&dev->kobj, grp);
2137 if (error) {
2138 devres_free(devres);
2139 return error;
2140 }
2141
2142 devres->group = grp;
2143 devres_add(dev, devres);
2144 return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(devm_device_add_group);
2147
2148 /**
2149 * devm_device_remove_group: remove a managed group from a device
2150 * @dev: device to remove the group from
2151 * @grp: group to remove
2152 *
2153 * This function removes a group of attributes from a device. The attributes
2154 * previously have to have been created for this group, otherwise it will fail.
2155 */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)2156 void devm_device_remove_group(struct device *dev,
2157 const struct attribute_group *grp)
2158 {
2159 WARN_ON(devres_release(dev, devm_attr_group_remove,
2160 devm_attr_group_match,
2161 /* cast away const */ (void *)grp));
2162 }
2163 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2164
2165 /**
2166 * devm_device_add_groups - create a bunch of managed attribute groups
2167 * @dev: The device to create the group for
2168 * @groups: The attribute groups to create, NULL terminated
2169 *
2170 * This function creates a bunch of managed attribute groups. If an error
2171 * occurs when creating a group, all previously created groups will be
2172 * removed, unwinding everything back to the original state when this
2173 * function was called. It will explicitly warn and error if any of the
2174 * attribute files being created already exist.
2175 *
2176 * Returns 0 on success or error code from sysfs_create_group on failure.
2177 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2178 int devm_device_add_groups(struct device *dev,
2179 const struct attribute_group **groups)
2180 {
2181 union device_attr_group_devres *devres;
2182 int error;
2183
2184 devres = devres_alloc(devm_attr_groups_remove,
2185 sizeof(*devres), GFP_KERNEL);
2186 if (!devres)
2187 return -ENOMEM;
2188
2189 error = sysfs_create_groups(&dev->kobj, groups);
2190 if (error) {
2191 devres_free(devres);
2192 return error;
2193 }
2194
2195 devres->groups = groups;
2196 devres_add(dev, devres);
2197 return 0;
2198 }
2199 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2200
2201 /**
2202 * devm_device_remove_groups - remove a list of managed groups
2203 *
2204 * @dev: The device for the groups to be removed from
2205 * @groups: NULL terminated list of groups to be removed
2206 *
2207 * If groups is not NULL, remove the specified groups from the device.
2208 */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)2209 void devm_device_remove_groups(struct device *dev,
2210 const struct attribute_group **groups)
2211 {
2212 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2213 devm_attr_group_match,
2214 /* cast away const */ (void *)groups));
2215 }
2216 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2217
device_add_attrs(struct device * dev)2218 static int device_add_attrs(struct device *dev)
2219 {
2220 struct class *class = dev->class;
2221 const struct device_type *type = dev->type;
2222 int error;
2223
2224 if (class) {
2225 error = device_add_groups(dev, class->dev_groups);
2226 if (error)
2227 return error;
2228 }
2229
2230 if (type) {
2231 error = device_add_groups(dev, type->groups);
2232 if (error)
2233 goto err_remove_class_groups;
2234 }
2235
2236 error = device_add_groups(dev, dev->groups);
2237 if (error)
2238 goto err_remove_type_groups;
2239
2240 if (device_supports_offline(dev) && !dev->offline_disabled) {
2241 error = device_create_file(dev, &dev_attr_online);
2242 if (error)
2243 goto err_remove_dev_groups;
2244 }
2245
2246 if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2247 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2248 if (error)
2249 goto err_remove_dev_online;
2250 }
2251
2252 if (dev_removable_is_valid(dev)) {
2253 error = device_create_file(dev, &dev_attr_removable);
2254 if (error)
2255 goto err_remove_dev_waiting_for_supplier;
2256 }
2257
2258 return 0;
2259
2260 err_remove_dev_waiting_for_supplier:
2261 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2262 err_remove_dev_online:
2263 device_remove_file(dev, &dev_attr_online);
2264 err_remove_dev_groups:
2265 device_remove_groups(dev, dev->groups);
2266 err_remove_type_groups:
2267 if (type)
2268 device_remove_groups(dev, type->groups);
2269 err_remove_class_groups:
2270 if (class)
2271 device_remove_groups(dev, class->dev_groups);
2272
2273 return error;
2274 }
2275
device_remove_attrs(struct device * dev)2276 static void device_remove_attrs(struct device *dev)
2277 {
2278 struct class *class = dev->class;
2279 const struct device_type *type = dev->type;
2280
2281 device_remove_file(dev, &dev_attr_removable);
2282 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2283 device_remove_file(dev, &dev_attr_online);
2284 device_remove_groups(dev, dev->groups);
2285
2286 if (type)
2287 device_remove_groups(dev, type->groups);
2288
2289 if (class)
2290 device_remove_groups(dev, class->dev_groups);
2291 }
2292
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2293 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2294 char *buf)
2295 {
2296 return print_dev_t(buf, dev->devt);
2297 }
2298 static DEVICE_ATTR_RO(dev);
2299
2300 /* /sys/devices/ */
2301 struct kset *devices_kset;
2302
2303 /**
2304 * devices_kset_move_before - Move device in the devices_kset's list.
2305 * @deva: Device to move.
2306 * @devb: Device @deva should come before.
2307 */
devices_kset_move_before(struct device * deva,struct device * devb)2308 static void devices_kset_move_before(struct device *deva, struct device *devb)
2309 {
2310 if (!devices_kset)
2311 return;
2312 pr_debug("devices_kset: Moving %s before %s\n",
2313 dev_name(deva), dev_name(devb));
2314 spin_lock(&devices_kset->list_lock);
2315 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2316 spin_unlock(&devices_kset->list_lock);
2317 }
2318
2319 /**
2320 * devices_kset_move_after - Move device in the devices_kset's list.
2321 * @deva: Device to move
2322 * @devb: Device @deva should come after.
2323 */
devices_kset_move_after(struct device * deva,struct device * devb)2324 static void devices_kset_move_after(struct device *deva, struct device *devb)
2325 {
2326 if (!devices_kset)
2327 return;
2328 pr_debug("devices_kset: Moving %s after %s\n",
2329 dev_name(deva), dev_name(devb));
2330 spin_lock(&devices_kset->list_lock);
2331 list_move(&deva->kobj.entry, &devb->kobj.entry);
2332 spin_unlock(&devices_kset->list_lock);
2333 }
2334
2335 /**
2336 * devices_kset_move_last - move the device to the end of devices_kset's list.
2337 * @dev: device to move
2338 */
devices_kset_move_last(struct device * dev)2339 void devices_kset_move_last(struct device *dev)
2340 {
2341 if (!devices_kset)
2342 return;
2343 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2344 spin_lock(&devices_kset->list_lock);
2345 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2346 spin_unlock(&devices_kset->list_lock);
2347 }
2348
2349 /**
2350 * device_create_file - create sysfs attribute file for device.
2351 * @dev: device.
2352 * @attr: device attribute descriptor.
2353 */
device_create_file(struct device * dev,const struct device_attribute * attr)2354 int device_create_file(struct device *dev,
2355 const struct device_attribute *attr)
2356 {
2357 int error = 0;
2358
2359 if (dev) {
2360 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2361 "Attribute %s: write permission without 'store'\n",
2362 attr->attr.name);
2363 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2364 "Attribute %s: read permission without 'show'\n",
2365 attr->attr.name);
2366 error = sysfs_create_file(&dev->kobj, &attr->attr);
2367 }
2368
2369 return error;
2370 }
2371 EXPORT_SYMBOL_GPL(device_create_file);
2372
2373 /**
2374 * device_remove_file - remove sysfs attribute file.
2375 * @dev: device.
2376 * @attr: device attribute descriptor.
2377 */
device_remove_file(struct device * dev,const struct device_attribute * attr)2378 void device_remove_file(struct device *dev,
2379 const struct device_attribute *attr)
2380 {
2381 if (dev)
2382 sysfs_remove_file(&dev->kobj, &attr->attr);
2383 }
2384 EXPORT_SYMBOL_GPL(device_remove_file);
2385
2386 /**
2387 * device_remove_file_self - remove sysfs attribute file from its own method.
2388 * @dev: device.
2389 * @attr: device attribute descriptor.
2390 *
2391 * See kernfs_remove_self() for details.
2392 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)2393 bool device_remove_file_self(struct device *dev,
2394 const struct device_attribute *attr)
2395 {
2396 if (dev)
2397 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2398 else
2399 return false;
2400 }
2401 EXPORT_SYMBOL_GPL(device_remove_file_self);
2402
2403 /**
2404 * device_create_bin_file - create sysfs binary attribute file for device.
2405 * @dev: device.
2406 * @attr: device binary attribute descriptor.
2407 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)2408 int device_create_bin_file(struct device *dev,
2409 const struct bin_attribute *attr)
2410 {
2411 int error = -EINVAL;
2412 if (dev)
2413 error = sysfs_create_bin_file(&dev->kobj, attr);
2414 return error;
2415 }
2416 EXPORT_SYMBOL_GPL(device_create_bin_file);
2417
2418 /**
2419 * device_remove_bin_file - remove sysfs binary attribute file
2420 * @dev: device.
2421 * @attr: device binary attribute descriptor.
2422 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)2423 void device_remove_bin_file(struct device *dev,
2424 const struct bin_attribute *attr)
2425 {
2426 if (dev)
2427 sysfs_remove_bin_file(&dev->kobj, attr);
2428 }
2429 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2430
klist_children_get(struct klist_node * n)2431 static void klist_children_get(struct klist_node *n)
2432 {
2433 struct device_private *p = to_device_private_parent(n);
2434 struct device *dev = p->device;
2435
2436 get_device(dev);
2437 }
2438
klist_children_put(struct klist_node * n)2439 static void klist_children_put(struct klist_node *n)
2440 {
2441 struct device_private *p = to_device_private_parent(n);
2442 struct device *dev = p->device;
2443
2444 put_device(dev);
2445 }
2446
2447 /**
2448 * device_initialize - init device structure.
2449 * @dev: device.
2450 *
2451 * This prepares the device for use by other layers by initializing
2452 * its fields.
2453 * It is the first half of device_register(), if called by
2454 * that function, though it can also be called separately, so one
2455 * may use @dev's fields. In particular, get_device()/put_device()
2456 * may be used for reference counting of @dev after calling this
2457 * function.
2458 *
2459 * All fields in @dev must be initialized by the caller to 0, except
2460 * for those explicitly set to some other value. The simplest
2461 * approach is to use kzalloc() to allocate the structure containing
2462 * @dev.
2463 *
2464 * NOTE: Use put_device() to give up your reference instead of freeing
2465 * @dev directly once you have called this function.
2466 */
device_initialize(struct device * dev)2467 void device_initialize(struct device *dev)
2468 {
2469 dev->kobj.kset = devices_kset;
2470 kobject_init(&dev->kobj, &device_ktype);
2471 INIT_LIST_HEAD(&dev->dma_pools);
2472 mutex_init(&dev->mutex);
2473 #ifdef CONFIG_PROVE_LOCKING
2474 mutex_init(&dev->lockdep_mutex);
2475 #endif
2476 lockdep_set_novalidate_class(&dev->mutex);
2477 spin_lock_init(&dev->devres_lock);
2478 INIT_LIST_HEAD(&dev->devres_head);
2479 device_pm_init(dev);
2480 set_dev_node(dev, -1);
2481 #ifdef CONFIG_GENERIC_MSI_IRQ
2482 raw_spin_lock_init(&dev->msi_lock);
2483 INIT_LIST_HEAD(&dev->msi_list);
2484 #endif
2485 INIT_LIST_HEAD(&dev->links.consumers);
2486 INIT_LIST_HEAD(&dev->links.suppliers);
2487 INIT_LIST_HEAD(&dev->links.needs_suppliers);
2488 INIT_LIST_HEAD(&dev->links.defer_hook);
2489 dev->links.status = DL_DEV_NO_DRIVER;
2490 }
2491 EXPORT_SYMBOL_GPL(device_initialize);
2492
virtual_device_parent(struct device * dev)2493 struct kobject *virtual_device_parent(struct device *dev)
2494 {
2495 static struct kobject *virtual_dir = NULL;
2496
2497 if (!virtual_dir)
2498 virtual_dir = kobject_create_and_add("virtual",
2499 &devices_kset->kobj);
2500
2501 return virtual_dir;
2502 }
2503
2504 struct class_dir {
2505 struct kobject kobj;
2506 struct class *class;
2507 };
2508
2509 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2510
class_dir_release(struct kobject * kobj)2511 static void class_dir_release(struct kobject *kobj)
2512 {
2513 struct class_dir *dir = to_class_dir(kobj);
2514 kfree(dir);
2515 }
2516
2517 static const
class_dir_child_ns_type(struct kobject * kobj)2518 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2519 {
2520 struct class_dir *dir = to_class_dir(kobj);
2521 return dir->class->ns_type;
2522 }
2523
2524 static struct kobj_type class_dir_ktype = {
2525 .release = class_dir_release,
2526 .sysfs_ops = &kobj_sysfs_ops,
2527 .child_ns_type = class_dir_child_ns_type
2528 };
2529
2530 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)2531 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2532 {
2533 struct class_dir *dir;
2534 int retval;
2535
2536 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2537 if (!dir)
2538 return ERR_PTR(-ENOMEM);
2539
2540 dir->class = class;
2541 kobject_init(&dir->kobj, &class_dir_ktype);
2542
2543 dir->kobj.kset = &class->p->glue_dirs;
2544
2545 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2546 if (retval < 0) {
2547 kobject_put(&dir->kobj);
2548 return ERR_PTR(retval);
2549 }
2550 return &dir->kobj;
2551 }
2552
2553 static DEFINE_MUTEX(gdp_mutex);
2554
get_device_parent(struct device * dev,struct device * parent)2555 static struct kobject *get_device_parent(struct device *dev,
2556 struct device *parent)
2557 {
2558 if (dev->class) {
2559 struct kobject *kobj = NULL;
2560 struct kobject *parent_kobj;
2561 struct kobject *k;
2562
2563 #ifdef CONFIG_BLOCK
2564 /* block disks show up in /sys/block */
2565 if (sysfs_deprecated && dev->class == &block_class) {
2566 if (parent && parent->class == &block_class)
2567 return &parent->kobj;
2568 return &block_class.p->subsys.kobj;
2569 }
2570 #endif
2571
2572 /*
2573 * If we have no parent, we live in "virtual".
2574 * Class-devices with a non class-device as parent, live
2575 * in a "glue" directory to prevent namespace collisions.
2576 */
2577 if (parent == NULL)
2578 parent_kobj = virtual_device_parent(dev);
2579 else if (parent->class && !dev->class->ns_type)
2580 return &parent->kobj;
2581 else
2582 parent_kobj = &parent->kobj;
2583
2584 mutex_lock(&gdp_mutex);
2585
2586 /* find our class-directory at the parent and reference it */
2587 spin_lock(&dev->class->p->glue_dirs.list_lock);
2588 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2589 if (k->parent == parent_kobj) {
2590 kobj = kobject_get(k);
2591 break;
2592 }
2593 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2594 if (kobj) {
2595 mutex_unlock(&gdp_mutex);
2596 return kobj;
2597 }
2598
2599 /* or create a new class-directory at the parent device */
2600 k = class_dir_create_and_add(dev->class, parent_kobj);
2601 /* do not emit an uevent for this simple "glue" directory */
2602 mutex_unlock(&gdp_mutex);
2603 return k;
2604 }
2605
2606 /* subsystems can specify a default root directory for their devices */
2607 if (!parent && dev->bus && dev->bus->dev_root)
2608 return &dev->bus->dev_root->kobj;
2609
2610 if (parent)
2611 return &parent->kobj;
2612 return NULL;
2613 }
2614
live_in_glue_dir(struct kobject * kobj,struct device * dev)2615 static inline bool live_in_glue_dir(struct kobject *kobj,
2616 struct device *dev)
2617 {
2618 if (!kobj || !dev->class ||
2619 kobj->kset != &dev->class->p->glue_dirs)
2620 return false;
2621 return true;
2622 }
2623
get_glue_dir(struct device * dev)2624 static inline struct kobject *get_glue_dir(struct device *dev)
2625 {
2626 return dev->kobj.parent;
2627 }
2628
2629 /*
2630 * make sure cleaning up dir as the last step, we need to make
2631 * sure .release handler of kobject is run with holding the
2632 * global lock
2633 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)2634 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2635 {
2636 unsigned int ref;
2637
2638 /* see if we live in a "glue" directory */
2639 if (!live_in_glue_dir(glue_dir, dev))
2640 return;
2641
2642 mutex_lock(&gdp_mutex);
2643 /**
2644 * There is a race condition between removing glue directory
2645 * and adding a new device under the glue directory.
2646 *
2647 * CPU1: CPU2:
2648 *
2649 * device_add()
2650 * get_device_parent()
2651 * class_dir_create_and_add()
2652 * kobject_add_internal()
2653 * create_dir() // create glue_dir
2654 *
2655 * device_add()
2656 * get_device_parent()
2657 * kobject_get() // get glue_dir
2658 *
2659 * device_del()
2660 * cleanup_glue_dir()
2661 * kobject_del(glue_dir)
2662 *
2663 * kobject_add()
2664 * kobject_add_internal()
2665 * create_dir() // in glue_dir
2666 * sysfs_create_dir_ns()
2667 * kernfs_create_dir_ns(sd)
2668 *
2669 * sysfs_remove_dir() // glue_dir->sd=NULL
2670 * sysfs_put() // free glue_dir->sd
2671 *
2672 * // sd is freed
2673 * kernfs_new_node(sd)
2674 * kernfs_get(glue_dir)
2675 * kernfs_add_one()
2676 * kernfs_put()
2677 *
2678 * Before CPU1 remove last child device under glue dir, if CPU2 add
2679 * a new device under glue dir, the glue_dir kobject reference count
2680 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2681 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2682 * and sysfs_put(). This result in glue_dir->sd is freed.
2683 *
2684 * Then the CPU2 will see a stale "empty" but still potentially used
2685 * glue dir around in kernfs_new_node().
2686 *
2687 * In order to avoid this happening, we also should make sure that
2688 * kernfs_node for glue_dir is released in CPU1 only when refcount
2689 * for glue_dir kobj is 1.
2690 */
2691 ref = kref_read(&glue_dir->kref);
2692 if (!kobject_has_children(glue_dir) && !--ref)
2693 kobject_del(glue_dir);
2694 kobject_put(glue_dir);
2695 mutex_unlock(&gdp_mutex);
2696 }
2697
device_add_class_symlinks(struct device * dev)2698 static int device_add_class_symlinks(struct device *dev)
2699 {
2700 struct device_node *of_node = dev_of_node(dev);
2701 int error;
2702
2703 if (of_node) {
2704 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2705 if (error)
2706 dev_warn(dev, "Error %d creating of_node link\n",error);
2707 /* An error here doesn't warrant bringing down the device */
2708 }
2709
2710 if (!dev->class)
2711 return 0;
2712
2713 error = sysfs_create_link(&dev->kobj,
2714 &dev->class->p->subsys.kobj,
2715 "subsystem");
2716 if (error)
2717 goto out_devnode;
2718
2719 if (dev->parent && device_is_not_partition(dev)) {
2720 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2721 "device");
2722 if (error)
2723 goto out_subsys;
2724 }
2725
2726 #ifdef CONFIG_BLOCK
2727 /* /sys/block has directories and does not need symlinks */
2728 if (sysfs_deprecated && dev->class == &block_class)
2729 return 0;
2730 #endif
2731
2732 /* link in the class directory pointing to the device */
2733 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2734 &dev->kobj, dev_name(dev));
2735 if (error)
2736 goto out_device;
2737
2738 return 0;
2739
2740 out_device:
2741 sysfs_remove_link(&dev->kobj, "device");
2742
2743 out_subsys:
2744 sysfs_remove_link(&dev->kobj, "subsystem");
2745 out_devnode:
2746 sysfs_remove_link(&dev->kobj, "of_node");
2747 return error;
2748 }
2749
device_remove_class_symlinks(struct device * dev)2750 static void device_remove_class_symlinks(struct device *dev)
2751 {
2752 if (dev_of_node(dev))
2753 sysfs_remove_link(&dev->kobj, "of_node");
2754
2755 if (!dev->class)
2756 return;
2757
2758 if (dev->parent && device_is_not_partition(dev))
2759 sysfs_remove_link(&dev->kobj, "device");
2760 sysfs_remove_link(&dev->kobj, "subsystem");
2761 #ifdef CONFIG_BLOCK
2762 if (sysfs_deprecated && dev->class == &block_class)
2763 return;
2764 #endif
2765 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2766 }
2767
2768 /**
2769 * dev_set_name - set a device name
2770 * @dev: device
2771 * @fmt: format string for the device's name
2772 */
dev_set_name(struct device * dev,const char * fmt,...)2773 int dev_set_name(struct device *dev, const char *fmt, ...)
2774 {
2775 va_list vargs;
2776 int err;
2777
2778 va_start(vargs, fmt);
2779 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2780 va_end(vargs);
2781 return err;
2782 }
2783 EXPORT_SYMBOL_GPL(dev_set_name);
2784
2785 /**
2786 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2787 * @dev: device
2788 *
2789 * By default we select char/ for new entries. Setting class->dev_obj
2790 * to NULL prevents an entry from being created. class->dev_kobj must
2791 * be set (or cleared) before any devices are registered to the class
2792 * otherwise device_create_sys_dev_entry() and
2793 * device_remove_sys_dev_entry() will disagree about the presence of
2794 * the link.
2795 */
device_to_dev_kobj(struct device * dev)2796 static struct kobject *device_to_dev_kobj(struct device *dev)
2797 {
2798 struct kobject *kobj;
2799
2800 if (dev->class)
2801 kobj = dev->class->dev_kobj;
2802 else
2803 kobj = sysfs_dev_char_kobj;
2804
2805 return kobj;
2806 }
2807
device_create_sys_dev_entry(struct device * dev)2808 static int device_create_sys_dev_entry(struct device *dev)
2809 {
2810 struct kobject *kobj = device_to_dev_kobj(dev);
2811 int error = 0;
2812 char devt_str[15];
2813
2814 if (kobj) {
2815 format_dev_t(devt_str, dev->devt);
2816 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2817 }
2818
2819 return error;
2820 }
2821
device_remove_sys_dev_entry(struct device * dev)2822 static void device_remove_sys_dev_entry(struct device *dev)
2823 {
2824 struct kobject *kobj = device_to_dev_kobj(dev);
2825 char devt_str[15];
2826
2827 if (kobj) {
2828 format_dev_t(devt_str, dev->devt);
2829 sysfs_remove_link(kobj, devt_str);
2830 }
2831 }
2832
device_private_init(struct device * dev)2833 static int device_private_init(struct device *dev)
2834 {
2835 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2836 if (!dev->p)
2837 return -ENOMEM;
2838 dev->p->device = dev;
2839 klist_init(&dev->p->klist_children, klist_children_get,
2840 klist_children_put);
2841 INIT_LIST_HEAD(&dev->p->deferred_probe);
2842 return 0;
2843 }
2844
2845 /**
2846 * device_add - add device to device hierarchy.
2847 * @dev: device.
2848 *
2849 * This is part 2 of device_register(), though may be called
2850 * separately _iff_ device_initialize() has been called separately.
2851 *
2852 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2853 * to the global and sibling lists for the device, then
2854 * adds it to the other relevant subsystems of the driver model.
2855 *
2856 * Do not call this routine or device_register() more than once for
2857 * any device structure. The driver model core is not designed to work
2858 * with devices that get unregistered and then spring back to life.
2859 * (Among other things, it's very hard to guarantee that all references
2860 * to the previous incarnation of @dev have been dropped.) Allocate
2861 * and register a fresh new struct device instead.
2862 *
2863 * NOTE: _Never_ directly free @dev after calling this function, even
2864 * if it returned an error! Always use put_device() to give up your
2865 * reference instead.
2866 *
2867 * Rule of thumb is: if device_add() succeeds, you should call
2868 * device_del() when you want to get rid of it. If device_add() has
2869 * *not* succeeded, use *only* put_device() to drop the reference
2870 * count.
2871 */
device_add(struct device * dev)2872 int device_add(struct device *dev)
2873 {
2874 struct device *parent;
2875 struct kobject *kobj;
2876 struct class_interface *class_intf;
2877 int error = -EINVAL;
2878 struct kobject *glue_dir = NULL;
2879
2880 dev = get_device(dev);
2881 if (!dev)
2882 goto done;
2883
2884 if (!dev->p) {
2885 error = device_private_init(dev);
2886 if (error)
2887 goto done;
2888 }
2889
2890 /*
2891 * for statically allocated devices, which should all be converted
2892 * some day, we need to initialize the name. We prevent reading back
2893 * the name, and force the use of dev_name()
2894 */
2895 if (dev->init_name) {
2896 dev_set_name(dev, "%s", dev->init_name);
2897 dev->init_name = NULL;
2898 }
2899
2900 /* subsystems can specify simple device enumeration */
2901 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2902 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2903
2904 if (!dev_name(dev)) {
2905 error = -EINVAL;
2906 goto name_error;
2907 }
2908
2909 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2910
2911 parent = get_device(dev->parent);
2912 kobj = get_device_parent(dev, parent);
2913 if (IS_ERR(kobj)) {
2914 error = PTR_ERR(kobj);
2915 goto parent_error;
2916 }
2917 if (kobj)
2918 dev->kobj.parent = kobj;
2919
2920 /* use parent numa_node */
2921 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2922 set_dev_node(dev, dev_to_node(parent));
2923
2924 /* first, register with generic layer. */
2925 /* we require the name to be set before, and pass NULL */
2926 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2927 if (error) {
2928 glue_dir = get_glue_dir(dev);
2929 goto Error;
2930 }
2931
2932 /* notify platform of device entry */
2933 error = device_platform_notify(dev, KOBJ_ADD);
2934 if (error)
2935 goto platform_error;
2936
2937 error = device_create_file(dev, &dev_attr_uevent);
2938 if (error)
2939 goto attrError;
2940
2941 error = device_add_class_symlinks(dev);
2942 if (error)
2943 goto SymlinkError;
2944 error = device_add_attrs(dev);
2945 if (error)
2946 goto AttrsError;
2947 error = bus_add_device(dev);
2948 if (error)
2949 goto BusError;
2950 error = dpm_sysfs_add(dev);
2951 if (error)
2952 goto DPMError;
2953 device_pm_add(dev);
2954
2955 if (MAJOR(dev->devt)) {
2956 error = device_create_file(dev, &dev_attr_dev);
2957 if (error)
2958 goto DevAttrError;
2959
2960 error = device_create_sys_dev_entry(dev);
2961 if (error)
2962 goto SysEntryError;
2963
2964 devtmpfs_create_node(dev);
2965 }
2966
2967 /* Notify clients of device addition. This call must come
2968 * after dpm_sysfs_add() and before kobject_uevent().
2969 */
2970 if (dev->bus)
2971 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2972 BUS_NOTIFY_ADD_DEVICE, dev);
2973
2974 kobject_uevent(&dev->kobj, KOBJ_ADD);
2975
2976 /*
2977 * Check if any of the other devices (consumers) have been waiting for
2978 * this device (supplier) to be added so that they can create a device
2979 * link to it.
2980 *
2981 * This needs to happen after device_pm_add() because device_link_add()
2982 * requires the supplier be registered before it's called.
2983 *
2984 * But this also needs to happen before bus_probe_device() to make sure
2985 * waiting consumers can link to it before the driver is bound to the
2986 * device and the driver sync_state callback is called for this device.
2987 */
2988 if (dev->fwnode && !dev->fwnode->dev) {
2989 dev->fwnode->dev = dev;
2990 fw_devlink_link_device(dev);
2991 }
2992
2993 bus_probe_device(dev);
2994 if (parent)
2995 klist_add_tail(&dev->p->knode_parent,
2996 &parent->p->klist_children);
2997
2998 if (dev->class) {
2999 mutex_lock(&dev->class->p->mutex);
3000 /* tie the class to the device */
3001 klist_add_tail(&dev->p->knode_class,
3002 &dev->class->p->klist_devices);
3003
3004 /* notify any interfaces that the device is here */
3005 list_for_each_entry(class_intf,
3006 &dev->class->p->interfaces, node)
3007 if (class_intf->add_dev)
3008 class_intf->add_dev(dev, class_intf);
3009 mutex_unlock(&dev->class->p->mutex);
3010 }
3011 done:
3012 put_device(dev);
3013 return error;
3014 SysEntryError:
3015 if (MAJOR(dev->devt))
3016 device_remove_file(dev, &dev_attr_dev);
3017 DevAttrError:
3018 device_pm_remove(dev);
3019 dpm_sysfs_remove(dev);
3020 DPMError:
3021 bus_remove_device(dev);
3022 BusError:
3023 device_remove_attrs(dev);
3024 AttrsError:
3025 device_remove_class_symlinks(dev);
3026 SymlinkError:
3027 device_remove_file(dev, &dev_attr_uevent);
3028 attrError:
3029 device_platform_notify(dev, KOBJ_REMOVE);
3030 platform_error:
3031 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3032 glue_dir = get_glue_dir(dev);
3033 kobject_del(&dev->kobj);
3034 Error:
3035 cleanup_glue_dir(dev, glue_dir);
3036 parent_error:
3037 put_device(parent);
3038 name_error:
3039 kfree(dev->p);
3040 dev->p = NULL;
3041 goto done;
3042 }
3043 EXPORT_SYMBOL_GPL(device_add);
3044
3045 /**
3046 * device_register - register a device with the system.
3047 * @dev: pointer to the device structure
3048 *
3049 * This happens in two clean steps - initialize the device
3050 * and add it to the system. The two steps can be called
3051 * separately, but this is the easiest and most common.
3052 * I.e. you should only call the two helpers separately if
3053 * have a clearly defined need to use and refcount the device
3054 * before it is added to the hierarchy.
3055 *
3056 * For more information, see the kerneldoc for device_initialize()
3057 * and device_add().
3058 *
3059 * NOTE: _Never_ directly free @dev after calling this function, even
3060 * if it returned an error! Always use put_device() to give up the
3061 * reference initialized in this function instead.
3062 */
device_register(struct device * dev)3063 int device_register(struct device *dev)
3064 {
3065 device_initialize(dev);
3066 return device_add(dev);
3067 }
3068 EXPORT_SYMBOL_GPL(device_register);
3069
3070 /**
3071 * get_device - increment reference count for device.
3072 * @dev: device.
3073 *
3074 * This simply forwards the call to kobject_get(), though
3075 * we do take care to provide for the case that we get a NULL
3076 * pointer passed in.
3077 */
get_device(struct device * dev)3078 struct device *get_device(struct device *dev)
3079 {
3080 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3081 }
3082 EXPORT_SYMBOL_GPL(get_device);
3083
3084 /**
3085 * put_device - decrement reference count.
3086 * @dev: device in question.
3087 */
put_device(struct device * dev)3088 void put_device(struct device *dev)
3089 {
3090 /* might_sleep(); */
3091 if (dev)
3092 kobject_put(&dev->kobj);
3093 }
3094 EXPORT_SYMBOL_GPL(put_device);
3095
kill_device(struct device * dev)3096 bool kill_device(struct device *dev)
3097 {
3098 /*
3099 * Require the device lock and set the "dead" flag to guarantee that
3100 * the update behavior is consistent with the other bitfields near
3101 * it and that we cannot have an asynchronous probe routine trying
3102 * to run while we are tearing out the bus/class/sysfs from
3103 * underneath the device.
3104 */
3105 lockdep_assert_held(&dev->mutex);
3106
3107 if (dev->p->dead)
3108 return false;
3109 dev->p->dead = true;
3110 return true;
3111 }
3112 EXPORT_SYMBOL_GPL(kill_device);
3113
3114 /**
3115 * device_del - delete device from system.
3116 * @dev: device.
3117 *
3118 * This is the first part of the device unregistration
3119 * sequence. This removes the device from the lists we control
3120 * from here, has it removed from the other driver model
3121 * subsystems it was added to in device_add(), and removes it
3122 * from the kobject hierarchy.
3123 *
3124 * NOTE: this should be called manually _iff_ device_add() was
3125 * also called manually.
3126 */
device_del(struct device * dev)3127 void device_del(struct device *dev)
3128 {
3129 struct device *parent = dev->parent;
3130 struct kobject *glue_dir = NULL;
3131 struct class_interface *class_intf;
3132 unsigned int noio_flag;
3133
3134 device_lock(dev);
3135 kill_device(dev);
3136 device_unlock(dev);
3137
3138 if (dev->fwnode && dev->fwnode->dev == dev)
3139 dev->fwnode->dev = NULL;
3140
3141 /* Notify clients of device removal. This call must come
3142 * before dpm_sysfs_remove().
3143 */
3144 noio_flag = memalloc_noio_save();
3145 if (dev->bus)
3146 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3147 BUS_NOTIFY_DEL_DEVICE, dev);
3148
3149 dpm_sysfs_remove(dev);
3150 if (parent)
3151 klist_del(&dev->p->knode_parent);
3152 if (MAJOR(dev->devt)) {
3153 devtmpfs_delete_node(dev);
3154 device_remove_sys_dev_entry(dev);
3155 device_remove_file(dev, &dev_attr_dev);
3156 }
3157 if (dev->class) {
3158 device_remove_class_symlinks(dev);
3159
3160 mutex_lock(&dev->class->p->mutex);
3161 /* notify any interfaces that the device is now gone */
3162 list_for_each_entry(class_intf,
3163 &dev->class->p->interfaces, node)
3164 if (class_intf->remove_dev)
3165 class_intf->remove_dev(dev, class_intf);
3166 /* remove the device from the class list */
3167 klist_del(&dev->p->knode_class);
3168 mutex_unlock(&dev->class->p->mutex);
3169 }
3170 device_remove_file(dev, &dev_attr_uevent);
3171 device_remove_attrs(dev);
3172 bus_remove_device(dev);
3173 device_pm_remove(dev);
3174 driver_deferred_probe_del(dev);
3175 device_platform_notify(dev, KOBJ_REMOVE);
3176 device_remove_properties(dev);
3177 device_links_purge(dev);
3178
3179 if (dev->bus)
3180 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3181 BUS_NOTIFY_REMOVED_DEVICE, dev);
3182 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3183 glue_dir = get_glue_dir(dev);
3184 kobject_del(&dev->kobj);
3185 cleanup_glue_dir(dev, glue_dir);
3186 memalloc_noio_restore(noio_flag);
3187 put_device(parent);
3188 }
3189 EXPORT_SYMBOL_GPL(device_del);
3190
3191 /**
3192 * device_unregister - unregister device from system.
3193 * @dev: device going away.
3194 *
3195 * We do this in two parts, like we do device_register(). First,
3196 * we remove it from all the subsystems with device_del(), then
3197 * we decrement the reference count via put_device(). If that
3198 * is the final reference count, the device will be cleaned up
3199 * via device_release() above. Otherwise, the structure will
3200 * stick around until the final reference to the device is dropped.
3201 */
device_unregister(struct device * dev)3202 void device_unregister(struct device *dev)
3203 {
3204 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3205 device_del(dev);
3206 put_device(dev);
3207 }
3208 EXPORT_SYMBOL_GPL(device_unregister);
3209
prev_device(struct klist_iter * i)3210 static struct device *prev_device(struct klist_iter *i)
3211 {
3212 struct klist_node *n = klist_prev(i);
3213 struct device *dev = NULL;
3214 struct device_private *p;
3215
3216 if (n) {
3217 p = to_device_private_parent(n);
3218 dev = p->device;
3219 }
3220 return dev;
3221 }
3222
next_device(struct klist_iter * i)3223 static struct device *next_device(struct klist_iter *i)
3224 {
3225 struct klist_node *n = klist_next(i);
3226 struct device *dev = NULL;
3227 struct device_private *p;
3228
3229 if (n) {
3230 p = to_device_private_parent(n);
3231 dev = p->device;
3232 }
3233 return dev;
3234 }
3235
3236 /**
3237 * device_get_devnode - path of device node file
3238 * @dev: device
3239 * @mode: returned file access mode
3240 * @uid: returned file owner
3241 * @gid: returned file group
3242 * @tmp: possibly allocated string
3243 *
3244 * Return the relative path of a possible device node.
3245 * Non-default names may need to allocate a memory to compose
3246 * a name. This memory is returned in tmp and needs to be
3247 * freed by the caller.
3248 */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3249 const char *device_get_devnode(struct device *dev,
3250 umode_t *mode, kuid_t *uid, kgid_t *gid,
3251 const char **tmp)
3252 {
3253 char *s;
3254
3255 *tmp = NULL;
3256
3257 /* the device type may provide a specific name */
3258 if (dev->type && dev->type->devnode)
3259 *tmp = dev->type->devnode(dev, mode, uid, gid);
3260 if (*tmp)
3261 return *tmp;
3262
3263 /* the class may provide a specific name */
3264 if (dev->class && dev->class->devnode)
3265 *tmp = dev->class->devnode(dev, mode);
3266 if (*tmp)
3267 return *tmp;
3268
3269 /* return name without allocation, tmp == NULL */
3270 if (strchr(dev_name(dev), '!') == NULL)
3271 return dev_name(dev);
3272
3273 /* replace '!' in the name with '/' */
3274 s = kstrdup(dev_name(dev), GFP_KERNEL);
3275 if (!s)
3276 return NULL;
3277 strreplace(s, '!', '/');
3278 return *tmp = s;
3279 }
3280
3281 /**
3282 * device_for_each_child - device child iterator.
3283 * @parent: parent struct device.
3284 * @fn: function to be called for each device.
3285 * @data: data for the callback.
3286 *
3287 * Iterate over @parent's child devices, and call @fn for each,
3288 * passing it @data.
3289 *
3290 * We check the return of @fn each time. If it returns anything
3291 * other than 0, we break out and return that value.
3292 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3293 int device_for_each_child(struct device *parent, void *data,
3294 int (*fn)(struct device *dev, void *data))
3295 {
3296 struct klist_iter i;
3297 struct device *child;
3298 int error = 0;
3299
3300 if (!parent->p)
3301 return 0;
3302
3303 klist_iter_init(&parent->p->klist_children, &i);
3304 while (!error && (child = next_device(&i)))
3305 error = fn(child, data);
3306 klist_iter_exit(&i);
3307 return error;
3308 }
3309 EXPORT_SYMBOL_GPL(device_for_each_child);
3310
3311 /**
3312 * device_for_each_child_reverse - device child iterator in reversed order.
3313 * @parent: parent struct device.
3314 * @fn: function to be called for each device.
3315 * @data: data for the callback.
3316 *
3317 * Iterate over @parent's child devices, and call @fn for each,
3318 * passing it @data.
3319 *
3320 * We check the return of @fn each time. If it returns anything
3321 * other than 0, we break out and return that value.
3322 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3323 int device_for_each_child_reverse(struct device *parent, void *data,
3324 int (*fn)(struct device *dev, void *data))
3325 {
3326 struct klist_iter i;
3327 struct device *child;
3328 int error = 0;
3329
3330 if (!parent->p)
3331 return 0;
3332
3333 klist_iter_init(&parent->p->klist_children, &i);
3334 while ((child = prev_device(&i)) && !error)
3335 error = fn(child, data);
3336 klist_iter_exit(&i);
3337 return error;
3338 }
3339 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3340
3341 /**
3342 * device_find_child - device iterator for locating a particular device.
3343 * @parent: parent struct device
3344 * @match: Callback function to check device
3345 * @data: Data to pass to match function
3346 *
3347 * This is similar to the device_for_each_child() function above, but it
3348 * returns a reference to a device that is 'found' for later use, as
3349 * determined by the @match callback.
3350 *
3351 * The callback should return 0 if the device doesn't match and non-zero
3352 * if it does. If the callback returns non-zero and a reference to the
3353 * current device can be obtained, this function will return to the caller
3354 * and not iterate over any more devices.
3355 *
3356 * NOTE: you will need to drop the reference with put_device() after use.
3357 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))3358 struct device *device_find_child(struct device *parent, void *data,
3359 int (*match)(struct device *dev, void *data))
3360 {
3361 struct klist_iter i;
3362 struct device *child;
3363
3364 if (!parent)
3365 return NULL;
3366
3367 klist_iter_init(&parent->p->klist_children, &i);
3368 while ((child = next_device(&i)))
3369 if (match(child, data) && get_device(child))
3370 break;
3371 klist_iter_exit(&i);
3372 return child;
3373 }
3374 EXPORT_SYMBOL_GPL(device_find_child);
3375
3376 /**
3377 * device_find_child_by_name - device iterator for locating a child device.
3378 * @parent: parent struct device
3379 * @name: name of the child device
3380 *
3381 * This is similar to the device_find_child() function above, but it
3382 * returns a reference to a device that has the name @name.
3383 *
3384 * NOTE: you will need to drop the reference with put_device() after use.
3385 */
device_find_child_by_name(struct device * parent,const char * name)3386 struct device *device_find_child_by_name(struct device *parent,
3387 const char *name)
3388 {
3389 struct klist_iter i;
3390 struct device *child;
3391
3392 if (!parent)
3393 return NULL;
3394
3395 klist_iter_init(&parent->p->klist_children, &i);
3396 while ((child = next_device(&i)))
3397 if (sysfs_streq(dev_name(child), name) && get_device(child))
3398 break;
3399 klist_iter_exit(&i);
3400 return child;
3401 }
3402 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3403
devices_init(void)3404 int __init devices_init(void)
3405 {
3406 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3407 if (!devices_kset)
3408 return -ENOMEM;
3409 dev_kobj = kobject_create_and_add("dev", NULL);
3410 if (!dev_kobj)
3411 goto dev_kobj_err;
3412 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3413 if (!sysfs_dev_block_kobj)
3414 goto block_kobj_err;
3415 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3416 if (!sysfs_dev_char_kobj)
3417 goto char_kobj_err;
3418
3419 return 0;
3420
3421 char_kobj_err:
3422 kobject_put(sysfs_dev_block_kobj);
3423 block_kobj_err:
3424 kobject_put(dev_kobj);
3425 dev_kobj_err:
3426 kset_unregister(devices_kset);
3427 return -ENOMEM;
3428 }
3429
device_check_offline(struct device * dev,void * not_used)3430 static int device_check_offline(struct device *dev, void *not_used)
3431 {
3432 int ret;
3433
3434 ret = device_for_each_child(dev, NULL, device_check_offline);
3435 if (ret)
3436 return ret;
3437
3438 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3439 }
3440
3441 /**
3442 * device_offline - Prepare the device for hot-removal.
3443 * @dev: Device to be put offline.
3444 *
3445 * Execute the device bus type's .offline() callback, if present, to prepare
3446 * the device for a subsequent hot-removal. If that succeeds, the device must
3447 * not be used until either it is removed or its bus type's .online() callback
3448 * is executed.
3449 *
3450 * Call under device_hotplug_lock.
3451 */
device_offline(struct device * dev)3452 int device_offline(struct device *dev)
3453 {
3454 int ret;
3455
3456 if (dev->offline_disabled)
3457 return -EPERM;
3458
3459 ret = device_for_each_child(dev, NULL, device_check_offline);
3460 if (ret)
3461 return ret;
3462
3463 device_lock(dev);
3464 if (device_supports_offline(dev)) {
3465 if (dev->offline) {
3466 ret = 1;
3467 } else {
3468 ret = dev->bus->offline(dev);
3469 if (!ret) {
3470 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3471 dev->offline = true;
3472 }
3473 }
3474 }
3475 device_unlock(dev);
3476
3477 return ret;
3478 }
3479
3480 /**
3481 * device_online - Put the device back online after successful device_offline().
3482 * @dev: Device to be put back online.
3483 *
3484 * If device_offline() has been successfully executed for @dev, but the device
3485 * has not been removed subsequently, execute its bus type's .online() callback
3486 * to indicate that the device can be used again.
3487 *
3488 * Call under device_hotplug_lock.
3489 */
device_online(struct device * dev)3490 int device_online(struct device *dev)
3491 {
3492 int ret = 0;
3493
3494 device_lock(dev);
3495 if (device_supports_offline(dev)) {
3496 if (dev->offline) {
3497 ret = dev->bus->online(dev);
3498 if (!ret) {
3499 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3500 dev->offline = false;
3501 }
3502 } else {
3503 ret = 1;
3504 }
3505 }
3506 device_unlock(dev);
3507
3508 return ret;
3509 }
3510
3511 struct root_device {
3512 struct device dev;
3513 struct module *owner;
3514 };
3515
to_root_device(struct device * d)3516 static inline struct root_device *to_root_device(struct device *d)
3517 {
3518 return container_of(d, struct root_device, dev);
3519 }
3520
root_device_release(struct device * dev)3521 static void root_device_release(struct device *dev)
3522 {
3523 kfree(to_root_device(dev));
3524 }
3525
3526 /**
3527 * __root_device_register - allocate and register a root device
3528 * @name: root device name
3529 * @owner: owner module of the root device, usually THIS_MODULE
3530 *
3531 * This function allocates a root device and registers it
3532 * using device_register(). In order to free the returned
3533 * device, use root_device_unregister().
3534 *
3535 * Root devices are dummy devices which allow other devices
3536 * to be grouped under /sys/devices. Use this function to
3537 * allocate a root device and then use it as the parent of
3538 * any device which should appear under /sys/devices/{name}
3539 *
3540 * The /sys/devices/{name} directory will also contain a
3541 * 'module' symlink which points to the @owner directory
3542 * in sysfs.
3543 *
3544 * Returns &struct device pointer on success, or ERR_PTR() on error.
3545 *
3546 * Note: You probably want to use root_device_register().
3547 */
__root_device_register(const char * name,struct module * owner)3548 struct device *__root_device_register(const char *name, struct module *owner)
3549 {
3550 struct root_device *root;
3551 int err = -ENOMEM;
3552
3553 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3554 if (!root)
3555 return ERR_PTR(err);
3556
3557 err = dev_set_name(&root->dev, "%s", name);
3558 if (err) {
3559 kfree(root);
3560 return ERR_PTR(err);
3561 }
3562
3563 root->dev.release = root_device_release;
3564
3565 err = device_register(&root->dev);
3566 if (err) {
3567 put_device(&root->dev);
3568 return ERR_PTR(err);
3569 }
3570
3571 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3572 if (owner) {
3573 struct module_kobject *mk = &owner->mkobj;
3574
3575 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3576 if (err) {
3577 device_unregister(&root->dev);
3578 return ERR_PTR(err);
3579 }
3580 root->owner = owner;
3581 }
3582 #endif
3583
3584 return &root->dev;
3585 }
3586 EXPORT_SYMBOL_GPL(__root_device_register);
3587
3588 /**
3589 * root_device_unregister - unregister and free a root device
3590 * @dev: device going away
3591 *
3592 * This function unregisters and cleans up a device that was created by
3593 * root_device_register().
3594 */
root_device_unregister(struct device * dev)3595 void root_device_unregister(struct device *dev)
3596 {
3597 struct root_device *root = to_root_device(dev);
3598
3599 if (root->owner)
3600 sysfs_remove_link(&root->dev.kobj, "module");
3601
3602 device_unregister(dev);
3603 }
3604 EXPORT_SYMBOL_GPL(root_device_unregister);
3605
3606
device_create_release(struct device * dev)3607 static void device_create_release(struct device *dev)
3608 {
3609 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3610 kfree(dev);
3611 }
3612
3613 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)3614 device_create_groups_vargs(struct class *class, struct device *parent,
3615 dev_t devt, void *drvdata,
3616 const struct attribute_group **groups,
3617 const char *fmt, va_list args)
3618 {
3619 struct device *dev = NULL;
3620 int retval = -ENODEV;
3621
3622 if (class == NULL || IS_ERR(class))
3623 goto error;
3624
3625 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3626 if (!dev) {
3627 retval = -ENOMEM;
3628 goto error;
3629 }
3630
3631 device_initialize(dev);
3632 dev->devt = devt;
3633 dev->class = class;
3634 dev->parent = parent;
3635 dev->groups = groups;
3636 dev->release = device_create_release;
3637 dev_set_drvdata(dev, drvdata);
3638
3639 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3640 if (retval)
3641 goto error;
3642
3643 retval = device_add(dev);
3644 if (retval)
3645 goto error;
3646
3647 return dev;
3648
3649 error:
3650 put_device(dev);
3651 return ERR_PTR(retval);
3652 }
3653
3654 /**
3655 * device_create - creates a device and registers it with sysfs
3656 * @class: pointer to the struct class that this device should be registered to
3657 * @parent: pointer to the parent struct device of this new device, if any
3658 * @devt: the dev_t for the char device to be added
3659 * @drvdata: the data to be added to the device for callbacks
3660 * @fmt: string for the device's name
3661 *
3662 * This function can be used by char device classes. A struct device
3663 * will be created in sysfs, registered to the specified class.
3664 *
3665 * A "dev" file will be created, showing the dev_t for the device, if
3666 * the dev_t is not 0,0.
3667 * If a pointer to a parent struct device is passed in, the newly created
3668 * struct device will be a child of that device in sysfs.
3669 * The pointer to the struct device will be returned from the call.
3670 * Any further sysfs files that might be required can be created using this
3671 * pointer.
3672 *
3673 * Returns &struct device pointer on success, or ERR_PTR() on error.
3674 *
3675 * Note: the struct class passed to this function must have previously
3676 * been created with a call to class_create().
3677 */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)3678 struct device *device_create(struct class *class, struct device *parent,
3679 dev_t devt, void *drvdata, const char *fmt, ...)
3680 {
3681 va_list vargs;
3682 struct device *dev;
3683
3684 va_start(vargs, fmt);
3685 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3686 fmt, vargs);
3687 va_end(vargs);
3688 return dev;
3689 }
3690 EXPORT_SYMBOL_GPL(device_create);
3691
3692 /**
3693 * device_create_with_groups - creates a device and registers it with sysfs
3694 * @class: pointer to the struct class that this device should be registered to
3695 * @parent: pointer to the parent struct device of this new device, if any
3696 * @devt: the dev_t for the char device to be added
3697 * @drvdata: the data to be added to the device for callbacks
3698 * @groups: NULL-terminated list of attribute groups to be created
3699 * @fmt: string for the device's name
3700 *
3701 * This function can be used by char device classes. A struct device
3702 * will be created in sysfs, registered to the specified class.
3703 * Additional attributes specified in the groups parameter will also
3704 * be created automatically.
3705 *
3706 * A "dev" file will be created, showing the dev_t for the device, if
3707 * the dev_t is not 0,0.
3708 * If a pointer to a parent struct device is passed in, the newly created
3709 * struct device will be a child of that device in sysfs.
3710 * The pointer to the struct device will be returned from the call.
3711 * Any further sysfs files that might be required can be created using this
3712 * pointer.
3713 *
3714 * Returns &struct device pointer on success, or ERR_PTR() on error.
3715 *
3716 * Note: the struct class passed to this function must have previously
3717 * been created with a call to class_create().
3718 */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)3719 struct device *device_create_with_groups(struct class *class,
3720 struct device *parent, dev_t devt,
3721 void *drvdata,
3722 const struct attribute_group **groups,
3723 const char *fmt, ...)
3724 {
3725 va_list vargs;
3726 struct device *dev;
3727
3728 va_start(vargs, fmt);
3729 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3730 fmt, vargs);
3731 va_end(vargs);
3732 return dev;
3733 }
3734 EXPORT_SYMBOL_GPL(device_create_with_groups);
3735
3736 /**
3737 * device_destroy - removes a device that was created with device_create()
3738 * @class: pointer to the struct class that this device was registered with
3739 * @devt: the dev_t of the device that was previously registered
3740 *
3741 * This call unregisters and cleans up a device that was created with a
3742 * call to device_create().
3743 */
device_destroy(struct class * class,dev_t devt)3744 void device_destroy(struct class *class, dev_t devt)
3745 {
3746 struct device *dev;
3747
3748 dev = class_find_device_by_devt(class, devt);
3749 if (dev) {
3750 put_device(dev);
3751 device_unregister(dev);
3752 }
3753 }
3754 EXPORT_SYMBOL_GPL(device_destroy);
3755
3756 /**
3757 * device_rename - renames a device
3758 * @dev: the pointer to the struct device to be renamed
3759 * @new_name: the new name of the device
3760 *
3761 * It is the responsibility of the caller to provide mutual
3762 * exclusion between two different calls of device_rename
3763 * on the same device to ensure that new_name is valid and
3764 * won't conflict with other devices.
3765 *
3766 * Note: Don't call this function. Currently, the networking layer calls this
3767 * function, but that will change. The following text from Kay Sievers offers
3768 * some insight:
3769 *
3770 * Renaming devices is racy at many levels, symlinks and other stuff are not
3771 * replaced atomically, and you get a "move" uevent, but it's not easy to
3772 * connect the event to the old and new device. Device nodes are not renamed at
3773 * all, there isn't even support for that in the kernel now.
3774 *
3775 * In the meantime, during renaming, your target name might be taken by another
3776 * driver, creating conflicts. Or the old name is taken directly after you
3777 * renamed it -- then you get events for the same DEVPATH, before you even see
3778 * the "move" event. It's just a mess, and nothing new should ever rely on
3779 * kernel device renaming. Besides that, it's not even implemented now for
3780 * other things than (driver-core wise very simple) network devices.
3781 *
3782 * We are currently about to change network renaming in udev to completely
3783 * disallow renaming of devices in the same namespace as the kernel uses,
3784 * because we can't solve the problems properly, that arise with swapping names
3785 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3786 * be allowed to some other name than eth[0-9]*, for the aforementioned
3787 * reasons.
3788 *
3789 * Make up a "real" name in the driver before you register anything, or add
3790 * some other attributes for userspace to find the device, or use udev to add
3791 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3792 * don't even want to get into that and try to implement the missing pieces in
3793 * the core. We really have other pieces to fix in the driver core mess. :)
3794 */
device_rename(struct device * dev,const char * new_name)3795 int device_rename(struct device *dev, const char *new_name)
3796 {
3797 struct kobject *kobj = &dev->kobj;
3798 char *old_device_name = NULL;
3799 int error;
3800
3801 dev = get_device(dev);
3802 if (!dev)
3803 return -EINVAL;
3804
3805 dev_dbg(dev, "renaming to %s\n", new_name);
3806
3807 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3808 if (!old_device_name) {
3809 error = -ENOMEM;
3810 goto out;
3811 }
3812
3813 if (dev->class) {
3814 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3815 kobj, old_device_name,
3816 new_name, kobject_namespace(kobj));
3817 if (error)
3818 goto out;
3819 }
3820
3821 error = kobject_rename(kobj, new_name);
3822 if (error)
3823 goto out;
3824
3825 out:
3826 put_device(dev);
3827
3828 kfree(old_device_name);
3829
3830 return error;
3831 }
3832 EXPORT_SYMBOL_GPL(device_rename);
3833
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)3834 static int device_move_class_links(struct device *dev,
3835 struct device *old_parent,
3836 struct device *new_parent)
3837 {
3838 int error = 0;
3839
3840 if (old_parent)
3841 sysfs_remove_link(&dev->kobj, "device");
3842 if (new_parent)
3843 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3844 "device");
3845 return error;
3846 }
3847
3848 /**
3849 * device_move - moves a device to a new parent
3850 * @dev: the pointer to the struct device to be moved
3851 * @new_parent: the new parent of the device (can be NULL)
3852 * @dpm_order: how to reorder the dpm_list
3853 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)3854 int device_move(struct device *dev, struct device *new_parent,
3855 enum dpm_order dpm_order)
3856 {
3857 int error;
3858 struct device *old_parent;
3859 struct kobject *new_parent_kobj;
3860
3861 dev = get_device(dev);
3862 if (!dev)
3863 return -EINVAL;
3864
3865 device_pm_lock();
3866 new_parent = get_device(new_parent);
3867 new_parent_kobj = get_device_parent(dev, new_parent);
3868 if (IS_ERR(new_parent_kobj)) {
3869 error = PTR_ERR(new_parent_kobj);
3870 put_device(new_parent);
3871 goto out;
3872 }
3873
3874 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3875 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3876 error = kobject_move(&dev->kobj, new_parent_kobj);
3877 if (error) {
3878 cleanup_glue_dir(dev, new_parent_kobj);
3879 put_device(new_parent);
3880 goto out;
3881 }
3882 old_parent = dev->parent;
3883 dev->parent = new_parent;
3884 if (old_parent)
3885 klist_remove(&dev->p->knode_parent);
3886 if (new_parent) {
3887 klist_add_tail(&dev->p->knode_parent,
3888 &new_parent->p->klist_children);
3889 set_dev_node(dev, dev_to_node(new_parent));
3890 }
3891
3892 if (dev->class) {
3893 error = device_move_class_links(dev, old_parent, new_parent);
3894 if (error) {
3895 /* We ignore errors on cleanup since we're hosed anyway... */
3896 device_move_class_links(dev, new_parent, old_parent);
3897 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3898 if (new_parent)
3899 klist_remove(&dev->p->knode_parent);
3900 dev->parent = old_parent;
3901 if (old_parent) {
3902 klist_add_tail(&dev->p->knode_parent,
3903 &old_parent->p->klist_children);
3904 set_dev_node(dev, dev_to_node(old_parent));
3905 }
3906 }
3907 cleanup_glue_dir(dev, new_parent_kobj);
3908 put_device(new_parent);
3909 goto out;
3910 }
3911 }
3912 switch (dpm_order) {
3913 case DPM_ORDER_NONE:
3914 break;
3915 case DPM_ORDER_DEV_AFTER_PARENT:
3916 device_pm_move_after(dev, new_parent);
3917 devices_kset_move_after(dev, new_parent);
3918 break;
3919 case DPM_ORDER_PARENT_BEFORE_DEV:
3920 device_pm_move_before(new_parent, dev);
3921 devices_kset_move_before(new_parent, dev);
3922 break;
3923 case DPM_ORDER_DEV_LAST:
3924 device_pm_move_last(dev);
3925 devices_kset_move_last(dev);
3926 break;
3927 }
3928
3929 put_device(old_parent);
3930 out:
3931 device_pm_unlock();
3932 put_device(dev);
3933 return error;
3934 }
3935 EXPORT_SYMBOL_GPL(device_move);
3936
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)3937 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3938 kgid_t kgid)
3939 {
3940 struct kobject *kobj = &dev->kobj;
3941 struct class *class = dev->class;
3942 const struct device_type *type = dev->type;
3943 int error;
3944
3945 if (class) {
3946 /*
3947 * Change the device groups of the device class for @dev to
3948 * @kuid/@kgid.
3949 */
3950 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3951 kgid);
3952 if (error)
3953 return error;
3954 }
3955
3956 if (type) {
3957 /*
3958 * Change the device groups of the device type for @dev to
3959 * @kuid/@kgid.
3960 */
3961 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3962 kgid);
3963 if (error)
3964 return error;
3965 }
3966
3967 /* Change the device groups of @dev to @kuid/@kgid. */
3968 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3969 if (error)
3970 return error;
3971
3972 if (device_supports_offline(dev) && !dev->offline_disabled) {
3973 /* Change online device attributes of @dev to @kuid/@kgid. */
3974 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3975 kuid, kgid);
3976 if (error)
3977 return error;
3978 }
3979
3980 return 0;
3981 }
3982
3983 /**
3984 * device_change_owner - change the owner of an existing device.
3985 * @dev: device.
3986 * @kuid: new owner's kuid
3987 * @kgid: new owner's kgid
3988 *
3989 * This changes the owner of @dev and its corresponding sysfs entries to
3990 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3991 * core.
3992 *
3993 * Returns 0 on success or error code on failure.
3994 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)3995 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3996 {
3997 int error;
3998 struct kobject *kobj = &dev->kobj;
3999
4000 dev = get_device(dev);
4001 if (!dev)
4002 return -EINVAL;
4003
4004 /*
4005 * Change the kobject and the default attributes and groups of the
4006 * ktype associated with it to @kuid/@kgid.
4007 */
4008 error = sysfs_change_owner(kobj, kuid, kgid);
4009 if (error)
4010 goto out;
4011
4012 /*
4013 * Change the uevent file for @dev to the new owner. The uevent file
4014 * was created in a separate step when @dev got added and we mirror
4015 * that step here.
4016 */
4017 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4018 kgid);
4019 if (error)
4020 goto out;
4021
4022 /*
4023 * Change the device groups, the device groups associated with the
4024 * device class, and the groups associated with the device type of @dev
4025 * to @kuid/@kgid.
4026 */
4027 error = device_attrs_change_owner(dev, kuid, kgid);
4028 if (error)
4029 goto out;
4030
4031 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4032 if (error)
4033 goto out;
4034
4035 #ifdef CONFIG_BLOCK
4036 if (sysfs_deprecated && dev->class == &block_class)
4037 goto out;
4038 #endif
4039
4040 /*
4041 * Change the owner of the symlink located in the class directory of
4042 * the device class associated with @dev which points to the actual
4043 * directory entry for @dev to @kuid/@kgid. This ensures that the
4044 * symlink shows the same permissions as its target.
4045 */
4046 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4047 dev_name(dev), kuid, kgid);
4048 if (error)
4049 goto out;
4050
4051 out:
4052 put_device(dev);
4053 return error;
4054 }
4055 EXPORT_SYMBOL_GPL(device_change_owner);
4056
4057 /**
4058 * device_shutdown - call ->shutdown() on each device to shutdown.
4059 */
device_shutdown(void)4060 void device_shutdown(void)
4061 {
4062 struct device *dev, *parent;
4063
4064 wait_for_device_probe();
4065 device_block_probing();
4066
4067 cpufreq_suspend();
4068
4069 spin_lock(&devices_kset->list_lock);
4070 /*
4071 * Walk the devices list backward, shutting down each in turn.
4072 * Beware that device unplug events may also start pulling
4073 * devices offline, even as the system is shutting down.
4074 */
4075 while (!list_empty(&devices_kset->list)) {
4076 dev = list_entry(devices_kset->list.prev, struct device,
4077 kobj.entry);
4078
4079 /*
4080 * hold reference count of device's parent to
4081 * prevent it from being freed because parent's
4082 * lock is to be held
4083 */
4084 parent = get_device(dev->parent);
4085 get_device(dev);
4086 /*
4087 * Make sure the device is off the kset list, in the
4088 * event that dev->*->shutdown() doesn't remove it.
4089 */
4090 list_del_init(&dev->kobj.entry);
4091 spin_unlock(&devices_kset->list_lock);
4092
4093 /* hold lock to avoid race with probe/release */
4094 if (parent)
4095 device_lock(parent);
4096 device_lock(dev);
4097
4098 /* Don't allow any more runtime suspends */
4099 pm_runtime_get_noresume(dev);
4100 pm_runtime_barrier(dev);
4101
4102 if (dev->class && dev->class->shutdown_pre) {
4103 if (initcall_debug)
4104 dev_info(dev, "shutdown_pre\n");
4105 dev->class->shutdown_pre(dev);
4106 }
4107 if (dev->bus && dev->bus->shutdown) {
4108 if (initcall_debug)
4109 dev_info(dev, "shutdown\n");
4110 dev->bus->shutdown(dev);
4111 } else if (dev->driver && dev->driver->shutdown) {
4112 if (initcall_debug)
4113 dev_info(dev, "shutdown\n");
4114 dev->driver->shutdown(dev);
4115 }
4116
4117 device_unlock(dev);
4118 if (parent)
4119 device_unlock(parent);
4120
4121 put_device(dev);
4122 put_device(parent);
4123
4124 spin_lock(&devices_kset->list_lock);
4125 }
4126 spin_unlock(&devices_kset->list_lock);
4127 }
4128
4129 /*
4130 * Device logging functions
4131 */
4132
4133 #ifdef CONFIG_PRINTK
4134 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4135 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4136 {
4137 const char *subsys;
4138
4139 memset(dev_info, 0, sizeof(*dev_info));
4140
4141 if (dev->class)
4142 subsys = dev->class->name;
4143 else if (dev->bus)
4144 subsys = dev->bus->name;
4145 else
4146 return;
4147
4148 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4149
4150 /*
4151 * Add device identifier DEVICE=:
4152 * b12:8 block dev_t
4153 * c127:3 char dev_t
4154 * n8 netdev ifindex
4155 * +sound:card0 subsystem:devname
4156 */
4157 if (MAJOR(dev->devt)) {
4158 char c;
4159
4160 if (strcmp(subsys, "block") == 0)
4161 c = 'b';
4162 else
4163 c = 'c';
4164
4165 snprintf(dev_info->device, sizeof(dev_info->device),
4166 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4167 } else if (strcmp(subsys, "net") == 0) {
4168 struct net_device *net = to_net_dev(dev);
4169
4170 snprintf(dev_info->device, sizeof(dev_info->device),
4171 "n%u", net->ifindex);
4172 } else {
4173 snprintf(dev_info->device, sizeof(dev_info->device),
4174 "+%s:%s", subsys, dev_name(dev));
4175 }
4176 }
4177
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4178 int dev_vprintk_emit(int level, const struct device *dev,
4179 const char *fmt, va_list args)
4180 {
4181 struct dev_printk_info dev_info;
4182
4183 set_dev_info(dev, &dev_info);
4184
4185 return vprintk_emit(0, level, &dev_info, fmt, args);
4186 }
4187 EXPORT_SYMBOL(dev_vprintk_emit);
4188
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4189 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4190 {
4191 va_list args;
4192 int r;
4193
4194 va_start(args, fmt);
4195
4196 r = dev_vprintk_emit(level, dev, fmt, args);
4197
4198 va_end(args);
4199
4200 return r;
4201 }
4202 EXPORT_SYMBOL(dev_printk_emit);
4203
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4204 static void __dev_printk(const char *level, const struct device *dev,
4205 struct va_format *vaf)
4206 {
4207 if (dev)
4208 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4209 dev_driver_string(dev), dev_name(dev), vaf);
4210 else
4211 printk("%s(NULL device *): %pV", level, vaf);
4212 }
4213
dev_printk(const char * level,const struct device * dev,const char * fmt,...)4214 void dev_printk(const char *level, const struct device *dev,
4215 const char *fmt, ...)
4216 {
4217 struct va_format vaf;
4218 va_list args;
4219
4220 va_start(args, fmt);
4221
4222 vaf.fmt = fmt;
4223 vaf.va = &args;
4224
4225 __dev_printk(level, dev, &vaf);
4226
4227 va_end(args);
4228 }
4229 EXPORT_SYMBOL(dev_printk);
4230
4231 #define define_dev_printk_level(func, kern_level) \
4232 void func(const struct device *dev, const char *fmt, ...) \
4233 { \
4234 struct va_format vaf; \
4235 va_list args; \
4236 \
4237 va_start(args, fmt); \
4238 \
4239 vaf.fmt = fmt; \
4240 vaf.va = &args; \
4241 \
4242 __dev_printk(kern_level, dev, &vaf); \
4243 \
4244 va_end(args); \
4245 } \
4246 EXPORT_SYMBOL(func);
4247
4248 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4249 define_dev_printk_level(_dev_alert, KERN_ALERT);
4250 define_dev_printk_level(_dev_crit, KERN_CRIT);
4251 define_dev_printk_level(_dev_err, KERN_ERR);
4252 define_dev_printk_level(_dev_warn, KERN_WARNING);
4253 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4254 define_dev_printk_level(_dev_info, KERN_INFO);
4255
4256 #endif
4257
4258 /**
4259 * dev_err_probe - probe error check and log helper
4260 * @dev: the pointer to the struct device
4261 * @err: error value to test
4262 * @fmt: printf-style format string
4263 * @...: arguments as specified in the format string
4264 *
4265 * This helper implements common pattern present in probe functions for error
4266 * checking: print debug or error message depending if the error value is
4267 * -EPROBE_DEFER and propagate error upwards.
4268 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4269 * checked later by reading devices_deferred debugfs attribute.
4270 * It replaces code sequence::
4271 *
4272 * if (err != -EPROBE_DEFER)
4273 * dev_err(dev, ...);
4274 * else
4275 * dev_dbg(dev, ...);
4276 * return err;
4277 *
4278 * with::
4279 *
4280 * return dev_err_probe(dev, err, ...);
4281 *
4282 * Returns @err.
4283 *
4284 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)4285 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4286 {
4287 struct va_format vaf;
4288 va_list args;
4289
4290 va_start(args, fmt);
4291 vaf.fmt = fmt;
4292 vaf.va = &args;
4293
4294 if (err != -EPROBE_DEFER) {
4295 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4296 } else {
4297 device_set_deferred_probe_reason(dev, &vaf);
4298 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4299 }
4300
4301 va_end(args);
4302
4303 return err;
4304 }
4305 EXPORT_SYMBOL_GPL(dev_err_probe);
4306
fwnode_is_primary(struct fwnode_handle * fwnode)4307 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4308 {
4309 return fwnode && !IS_ERR(fwnode->secondary);
4310 }
4311
4312 /**
4313 * set_primary_fwnode - Change the primary firmware node of a given device.
4314 * @dev: Device to handle.
4315 * @fwnode: New primary firmware node of the device.
4316 *
4317 * Set the device's firmware node pointer to @fwnode, but if a secondary
4318 * firmware node of the device is present, preserve it.
4319 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4320 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4321 {
4322 struct device *parent = dev->parent;
4323 struct fwnode_handle *fn = dev->fwnode;
4324
4325 if (fwnode) {
4326 if (fwnode_is_primary(fn))
4327 fn = fn->secondary;
4328
4329 if (fn) {
4330 WARN_ON(fwnode->secondary);
4331 fwnode->secondary = fn;
4332 }
4333 dev->fwnode = fwnode;
4334 } else {
4335 if (fwnode_is_primary(fn)) {
4336 dev->fwnode = fn->secondary;
4337 if (!(parent && fn == parent->fwnode))
4338 fn->secondary = NULL;
4339 } else {
4340 dev->fwnode = NULL;
4341 }
4342 }
4343 }
4344 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4345
4346 /**
4347 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4348 * @dev: Device to handle.
4349 * @fwnode: New secondary firmware node of the device.
4350 *
4351 * If a primary firmware node of the device is present, set its secondary
4352 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4353 * @fwnode.
4354 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4355 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4356 {
4357 if (fwnode)
4358 fwnode->secondary = ERR_PTR(-ENODEV);
4359
4360 if (fwnode_is_primary(dev->fwnode))
4361 dev->fwnode->secondary = fwnode;
4362 else
4363 dev->fwnode = fwnode;
4364 }
4365 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4366
4367 /**
4368 * device_set_of_node_from_dev - reuse device-tree node of another device
4369 * @dev: device whose device-tree node is being set
4370 * @dev2: device whose device-tree node is being reused
4371 *
4372 * Takes another reference to the new device-tree node after first dropping
4373 * any reference held to the old node.
4374 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)4375 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4376 {
4377 of_node_put(dev->of_node);
4378 dev->of_node = of_node_get(dev2->of_node);
4379 dev->of_node_reused = true;
4380 }
4381 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4382
device_set_node(struct device * dev,struct fwnode_handle * fwnode)4383 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4384 {
4385 dev->fwnode = fwnode;
4386 dev->of_node = to_of_node(fwnode);
4387 }
4388 EXPORT_SYMBOL_GPL(device_set_node);
4389
device_match_name(struct device * dev,const void * name)4390 int device_match_name(struct device *dev, const void *name)
4391 {
4392 return sysfs_streq(dev_name(dev), name);
4393 }
4394 EXPORT_SYMBOL_GPL(device_match_name);
4395
device_match_of_node(struct device * dev,const void * np)4396 int device_match_of_node(struct device *dev, const void *np)
4397 {
4398 return dev->of_node == np;
4399 }
4400 EXPORT_SYMBOL_GPL(device_match_of_node);
4401
device_match_fwnode(struct device * dev,const void * fwnode)4402 int device_match_fwnode(struct device *dev, const void *fwnode)
4403 {
4404 return dev_fwnode(dev) == fwnode;
4405 }
4406 EXPORT_SYMBOL_GPL(device_match_fwnode);
4407
device_match_devt(struct device * dev,const void * pdevt)4408 int device_match_devt(struct device *dev, const void *pdevt)
4409 {
4410 return dev->devt == *(dev_t *)pdevt;
4411 }
4412 EXPORT_SYMBOL_GPL(device_match_devt);
4413
device_match_acpi_dev(struct device * dev,const void * adev)4414 int device_match_acpi_dev(struct device *dev, const void *adev)
4415 {
4416 return ACPI_COMPANION(dev) == adev;
4417 }
4418 EXPORT_SYMBOL(device_match_acpi_dev);
4419
device_match_any(struct device * dev,const void * unused)4420 int device_match_any(struct device *dev, const void *unused)
4421 {
4422 return 1;
4423 }
4424 EXPORT_SYMBOL_GPL(device_match_any);
4425