1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29
30 #include "trace.h"
31 #include "nvme.h"
32
33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
35
36 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37
38 /*
39 * These can be higher, but we need to ensure that any command doesn't
40 * require an sg allocation that needs more than a page of data.
41 */
42 #define NVME_MAX_KB_SZ 4096
43 #define NVME_MAX_SEGS 127
44
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 "Use SGLs when average request segment size is larger or equal to "
61 "this size. Use 0 to disable SGLs.");
62
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 .set = io_queue_depth_set,
66 .get = param_get_uint,
67 };
68
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72
io_queue_count_set(const char * val,const struct kernel_param * kp)73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 unsigned int n;
76 int ret;
77
78 ret = kstrtouint(val, 10, &n);
79 if (ret != 0 || n > num_possible_cpus())
80 return -EINVAL;
81 return param_set_uint(val, kp);
82 }
83
84 static const struct kernel_param_ops io_queue_count_ops = {
85 .set = io_queue_count_set,
86 .get = param_get_uint,
87 };
88
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 "Number of queues to use for writes. If not set, reads and writes "
93 "will share a queue set.");
94
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102
103 struct nvme_dev;
104 struct nvme_queue;
105
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108
109 /*
110 * Represents an NVM Express device. Each nvme_dev is a PCI function.
111 */
112 struct nvme_dev {
113 struct nvme_queue *queues;
114 struct blk_mq_tag_set tagset;
115 struct blk_mq_tag_set admin_tagset;
116 u32 __iomem *dbs;
117 struct device *dev;
118 struct dma_pool *prp_page_pool;
119 struct dma_pool *prp_small_pool;
120 unsigned online_queues;
121 unsigned max_qid;
122 unsigned io_queues[HCTX_MAX_TYPES];
123 unsigned int num_vecs;
124 u32 q_depth;
125 int io_sqes;
126 u32 db_stride;
127 void __iomem *bar;
128 unsigned long bar_mapped_size;
129 struct work_struct remove_work;
130 struct mutex shutdown_lock;
131 bool subsystem;
132 u64 cmb_size;
133 bool cmb_use_sqes;
134 u32 cmbsz;
135 u32 cmbloc;
136 struct nvme_ctrl ctrl;
137 u32 last_ps;
138
139 mempool_t *iod_mempool;
140
141 /* shadow doorbell buffer support: */
142 __le32 *dbbuf_dbs;
143 dma_addr_t dbbuf_dbs_dma_addr;
144 __le32 *dbbuf_eis;
145 dma_addr_t dbbuf_eis_dma_addr;
146
147 /* host memory buffer support: */
148 u64 host_mem_size;
149 u32 nr_host_mem_descs;
150 u32 host_mem_descs_size;
151 dma_addr_t host_mem_descs_dma;
152 struct nvme_host_mem_buf_desc *host_mem_descs;
153 void **host_mem_desc_bufs;
154 unsigned int nr_allocated_queues;
155 unsigned int nr_write_queues;
156 unsigned int nr_poll_queues;
157 };
158
io_queue_depth_set(const char * val,const struct kernel_param * kp)159 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
160 {
161 int ret;
162 u32 n;
163
164 ret = kstrtou32(val, 10, &n);
165 if (ret != 0 || n < 2)
166 return -EINVAL;
167
168 return param_set_uint(val, kp);
169 }
170
sq_idx(unsigned int qid,u32 stride)171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 return qid * 2 * stride;
174 }
175
cq_idx(unsigned int qid,u32 stride)176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 return (qid * 2 + 1) * stride;
179 }
180
to_nvme_dev(struct nvme_ctrl * ctrl)181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185
186 /*
187 * An NVM Express queue. Each device has at least two (one for admin
188 * commands and one for I/O commands).
189 */
190 struct nvme_queue {
191 struct nvme_dev *dev;
192 spinlock_t sq_lock;
193 void *sq_cmds;
194 /* only used for poll queues: */
195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 struct nvme_completion *cqes;
197 dma_addr_t sq_dma_addr;
198 dma_addr_t cq_dma_addr;
199 u32 __iomem *q_db;
200 u32 q_depth;
201 u16 cq_vector;
202 u16 sq_tail;
203 u16 last_sq_tail;
204 u16 cq_head;
205 u16 qid;
206 u8 cq_phase;
207 u8 sqes;
208 unsigned long flags;
209 #define NVMEQ_ENABLED 0
210 #define NVMEQ_SQ_CMB 1
211 #define NVMEQ_DELETE_ERROR 2
212 #define NVMEQ_POLLED 3
213 __le32 *dbbuf_sq_db;
214 __le32 *dbbuf_cq_db;
215 __le32 *dbbuf_sq_ei;
216 __le32 *dbbuf_cq_ei;
217 struct completion delete_done;
218 };
219
220 /*
221 * The nvme_iod describes the data in an I/O.
222 *
223 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224 * to the actual struct scatterlist.
225 */
226 struct nvme_iod {
227 struct nvme_request req;
228 struct nvme_command cmd;
229 struct nvme_queue *nvmeq;
230 bool use_sgl;
231 int aborted;
232 int npages; /* In the PRP list. 0 means small pool in use */
233 int nents; /* Used in scatterlist */
234 dma_addr_t first_dma;
235 unsigned int dma_len; /* length of single DMA segment mapping */
236 dma_addr_t meta_dma;
237 struct scatterlist *sg;
238 };
239
nvme_dbbuf_size(struct nvme_dev * dev)240 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
241 {
242 return dev->nr_allocated_queues * 8 * dev->db_stride;
243 }
244
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)245 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
246 {
247 unsigned int mem_size = nvme_dbbuf_size(dev);
248
249 if (dev->dbbuf_dbs)
250 return 0;
251
252 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
253 &dev->dbbuf_dbs_dma_addr,
254 GFP_KERNEL);
255 if (!dev->dbbuf_dbs)
256 return -ENOMEM;
257 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
258 &dev->dbbuf_eis_dma_addr,
259 GFP_KERNEL);
260 if (!dev->dbbuf_eis) {
261 dma_free_coherent(dev->dev, mem_size,
262 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
263 dev->dbbuf_dbs = NULL;
264 return -ENOMEM;
265 }
266
267 return 0;
268 }
269
nvme_dbbuf_dma_free(struct nvme_dev * dev)270 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
271 {
272 unsigned int mem_size = nvme_dbbuf_size(dev);
273
274 if (dev->dbbuf_dbs) {
275 dma_free_coherent(dev->dev, mem_size,
276 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
277 dev->dbbuf_dbs = NULL;
278 }
279 if (dev->dbbuf_eis) {
280 dma_free_coherent(dev->dev, mem_size,
281 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
282 dev->dbbuf_eis = NULL;
283 }
284 }
285
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)286 static void nvme_dbbuf_init(struct nvme_dev *dev,
287 struct nvme_queue *nvmeq, int qid)
288 {
289 if (!dev->dbbuf_dbs || !qid)
290 return;
291
292 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
293 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
294 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
295 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
296 }
297
nvme_dbbuf_free(struct nvme_queue * nvmeq)298 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
299 {
300 if (!nvmeq->qid)
301 return;
302
303 nvmeq->dbbuf_sq_db = NULL;
304 nvmeq->dbbuf_cq_db = NULL;
305 nvmeq->dbbuf_sq_ei = NULL;
306 nvmeq->dbbuf_cq_ei = NULL;
307 }
308
nvme_dbbuf_set(struct nvme_dev * dev)309 static void nvme_dbbuf_set(struct nvme_dev *dev)
310 {
311 struct nvme_command c;
312 unsigned int i;
313
314 if (!dev->dbbuf_dbs)
315 return;
316
317 memset(&c, 0, sizeof(c));
318 c.dbbuf.opcode = nvme_admin_dbbuf;
319 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
320 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
321
322 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
323 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
324 /* Free memory and continue on */
325 nvme_dbbuf_dma_free(dev);
326
327 for (i = 1; i <= dev->online_queues; i++)
328 nvme_dbbuf_free(&dev->queues[i]);
329 }
330 }
331
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)332 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
333 {
334 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
335 }
336
337 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)338 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
339 volatile __le32 *dbbuf_ei)
340 {
341 if (dbbuf_db) {
342 u16 old_value, event_idx;
343
344 /*
345 * Ensure that the queue is written before updating
346 * the doorbell in memory
347 */
348 wmb();
349
350 old_value = le32_to_cpu(*dbbuf_db);
351 *dbbuf_db = cpu_to_le32(value);
352
353 /*
354 * Ensure that the doorbell is updated before reading the event
355 * index from memory. The controller needs to provide similar
356 * ordering to ensure the envent index is updated before reading
357 * the doorbell.
358 */
359 mb();
360
361 event_idx = le32_to_cpu(*dbbuf_ei);
362 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
363 return false;
364 }
365
366 return true;
367 }
368
369 /*
370 * Will slightly overestimate the number of pages needed. This is OK
371 * as it only leads to a small amount of wasted memory for the lifetime of
372 * the I/O.
373 */
nvme_pci_npages_prp(void)374 static int nvme_pci_npages_prp(void)
375 {
376 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
377 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
378 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
379 }
380
381 /*
382 * Calculates the number of pages needed for the SGL segments. For example a 4k
383 * page can accommodate 256 SGL descriptors.
384 */
nvme_pci_npages_sgl(void)385 static int nvme_pci_npages_sgl(void)
386 {
387 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
388 NVME_CTRL_PAGE_SIZE);
389 }
390
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)391 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
392 unsigned int hctx_idx)
393 {
394 struct nvme_dev *dev = data;
395 struct nvme_queue *nvmeq = &dev->queues[0];
396
397 WARN_ON(hctx_idx != 0);
398 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
399
400 hctx->driver_data = nvmeq;
401 return 0;
402 }
403
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)404 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
405 unsigned int hctx_idx)
406 {
407 struct nvme_dev *dev = data;
408 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
409
410 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
411 hctx->driver_data = nvmeq;
412 return 0;
413 }
414
nvme_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)415 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
416 unsigned int hctx_idx, unsigned int numa_node)
417 {
418 struct nvme_dev *dev = set->driver_data;
419 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
420 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
421 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
422
423 BUG_ON(!nvmeq);
424 iod->nvmeq = nvmeq;
425
426 nvme_req(req)->ctrl = &dev->ctrl;
427 return 0;
428 }
429
queue_irq_offset(struct nvme_dev * dev)430 static int queue_irq_offset(struct nvme_dev *dev)
431 {
432 /* if we have more than 1 vec, admin queue offsets us by 1 */
433 if (dev->num_vecs > 1)
434 return 1;
435
436 return 0;
437 }
438
nvme_pci_map_queues(struct blk_mq_tag_set * set)439 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
440 {
441 struct nvme_dev *dev = set->driver_data;
442 int i, qoff, offset;
443
444 offset = queue_irq_offset(dev);
445 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 struct blk_mq_queue_map *map = &set->map[i];
447
448 map->nr_queues = dev->io_queues[i];
449 if (!map->nr_queues) {
450 BUG_ON(i == HCTX_TYPE_DEFAULT);
451 continue;
452 }
453
454 /*
455 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 * affinity), so use the regular blk-mq cpu mapping
457 */
458 map->queue_offset = qoff;
459 if (i != HCTX_TYPE_POLL && offset)
460 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461 else
462 blk_mq_map_queues(map);
463 qoff += map->nr_queues;
464 offset += map->nr_queues;
465 }
466
467 return 0;
468 }
469
470 /*
471 * Write sq tail if we are asked to, or if the next command would wrap.
472 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)473 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
474 {
475 if (!write_sq) {
476 u16 next_tail = nvmeq->sq_tail + 1;
477
478 if (next_tail == nvmeq->q_depth)
479 next_tail = 0;
480 if (next_tail != nvmeq->last_sq_tail)
481 return;
482 }
483
484 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
485 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
486 writel(nvmeq->sq_tail, nvmeq->q_db);
487 nvmeq->last_sq_tail = nvmeq->sq_tail;
488 }
489
490 /**
491 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
492 * @nvmeq: The queue to use
493 * @cmd: The command to send
494 * @write_sq: whether to write to the SQ doorbell
495 */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,bool write_sq)496 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
497 bool write_sq)
498 {
499 spin_lock(&nvmeq->sq_lock);
500 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
501 cmd, sizeof(*cmd));
502 if (++nvmeq->sq_tail == nvmeq->q_depth)
503 nvmeq->sq_tail = 0;
504 nvme_write_sq_db(nvmeq, write_sq);
505 spin_unlock(&nvmeq->sq_lock);
506 }
507
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)508 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
509 {
510 struct nvme_queue *nvmeq = hctx->driver_data;
511
512 spin_lock(&nvmeq->sq_lock);
513 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
514 nvme_write_sq_db(nvmeq, true);
515 spin_unlock(&nvmeq->sq_lock);
516 }
517
nvme_pci_iod_list(struct request * req)518 static void **nvme_pci_iod_list(struct request *req)
519 {
520 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
521 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
522 }
523
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)524 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
525 {
526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527 int nseg = blk_rq_nr_phys_segments(req);
528 unsigned int avg_seg_size;
529
530 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
531
532 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
533 return false;
534 if (!iod->nvmeq->qid)
535 return false;
536 if (!sgl_threshold || avg_seg_size < sgl_threshold)
537 return false;
538 return true;
539 }
540
nvme_free_prps(struct nvme_dev * dev,struct request * req)541 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
542 {
543 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
544 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
545 dma_addr_t dma_addr = iod->first_dma;
546 int i;
547
548 for (i = 0; i < iod->npages; i++) {
549 __le64 *prp_list = nvme_pci_iod_list(req)[i];
550 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
551
552 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
553 dma_addr = next_dma_addr;
554 }
555
556 }
557
nvme_free_sgls(struct nvme_dev * dev,struct request * req)558 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
559 {
560 const int last_sg = SGES_PER_PAGE - 1;
561 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
562 dma_addr_t dma_addr = iod->first_dma;
563 int i;
564
565 for (i = 0; i < iod->npages; i++) {
566 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
567 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
568
569 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
570 dma_addr = next_dma_addr;
571 }
572
573 }
574
nvme_unmap_sg(struct nvme_dev * dev,struct request * req)575 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
576 {
577 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
578
579 if (is_pci_p2pdma_page(sg_page(iod->sg)))
580 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
581 rq_dma_dir(req));
582 else
583 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
584 }
585
nvme_unmap_data(struct nvme_dev * dev,struct request * req)586 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
587 {
588 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
589
590 if (iod->dma_len) {
591 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
592 rq_dma_dir(req));
593 return;
594 }
595
596 WARN_ON_ONCE(!iod->nents);
597
598 nvme_unmap_sg(dev, req);
599 if (iod->npages == 0)
600 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
601 iod->first_dma);
602 else if (iod->use_sgl)
603 nvme_free_sgls(dev, req);
604 else
605 nvme_free_prps(dev, req);
606 mempool_free(iod->sg, dev->iod_mempool);
607 }
608
nvme_print_sgl(struct scatterlist * sgl,int nents)609 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
610 {
611 int i;
612 struct scatterlist *sg;
613
614 for_each_sg(sgl, sg, nents, i) {
615 dma_addr_t phys = sg_phys(sg);
616 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
617 "dma_address:%pad dma_length:%d\n",
618 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
619 sg_dma_len(sg));
620 }
621 }
622
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)623 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
624 struct request *req, struct nvme_rw_command *cmnd)
625 {
626 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
627 struct dma_pool *pool;
628 int length = blk_rq_payload_bytes(req);
629 struct scatterlist *sg = iod->sg;
630 int dma_len = sg_dma_len(sg);
631 u64 dma_addr = sg_dma_address(sg);
632 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
633 __le64 *prp_list;
634 void **list = nvme_pci_iod_list(req);
635 dma_addr_t prp_dma;
636 int nprps, i;
637
638 length -= (NVME_CTRL_PAGE_SIZE - offset);
639 if (length <= 0) {
640 iod->first_dma = 0;
641 goto done;
642 }
643
644 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
645 if (dma_len) {
646 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
647 } else {
648 sg = sg_next(sg);
649 dma_addr = sg_dma_address(sg);
650 dma_len = sg_dma_len(sg);
651 }
652
653 if (length <= NVME_CTRL_PAGE_SIZE) {
654 iod->first_dma = dma_addr;
655 goto done;
656 }
657
658 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
659 if (nprps <= (256 / 8)) {
660 pool = dev->prp_small_pool;
661 iod->npages = 0;
662 } else {
663 pool = dev->prp_page_pool;
664 iod->npages = 1;
665 }
666
667 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
668 if (!prp_list) {
669 iod->first_dma = dma_addr;
670 iod->npages = -1;
671 return BLK_STS_RESOURCE;
672 }
673 list[0] = prp_list;
674 iod->first_dma = prp_dma;
675 i = 0;
676 for (;;) {
677 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
678 __le64 *old_prp_list = prp_list;
679 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
680 if (!prp_list)
681 goto free_prps;
682 list[iod->npages++] = prp_list;
683 prp_list[0] = old_prp_list[i - 1];
684 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
685 i = 1;
686 }
687 prp_list[i++] = cpu_to_le64(dma_addr);
688 dma_len -= NVME_CTRL_PAGE_SIZE;
689 dma_addr += NVME_CTRL_PAGE_SIZE;
690 length -= NVME_CTRL_PAGE_SIZE;
691 if (length <= 0)
692 break;
693 if (dma_len > 0)
694 continue;
695 if (unlikely(dma_len < 0))
696 goto bad_sgl;
697 sg = sg_next(sg);
698 dma_addr = sg_dma_address(sg);
699 dma_len = sg_dma_len(sg);
700 }
701 done:
702 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
703 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
704 return BLK_STS_OK;
705 free_prps:
706 nvme_free_prps(dev, req);
707 return BLK_STS_RESOURCE;
708 bad_sgl:
709 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
710 "Invalid SGL for payload:%d nents:%d\n",
711 blk_rq_payload_bytes(req), iod->nents);
712 return BLK_STS_IOERR;
713 }
714
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)715 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
716 struct scatterlist *sg)
717 {
718 sge->addr = cpu_to_le64(sg_dma_address(sg));
719 sge->length = cpu_to_le32(sg_dma_len(sg));
720 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
721 }
722
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)723 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
724 dma_addr_t dma_addr, int entries)
725 {
726 sge->addr = cpu_to_le64(dma_addr);
727 if (entries < SGES_PER_PAGE) {
728 sge->length = cpu_to_le32(entries * sizeof(*sge));
729 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
730 } else {
731 sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
732 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
733 }
734 }
735
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd,int entries)736 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
737 struct request *req, struct nvme_rw_command *cmd, int entries)
738 {
739 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
740 struct dma_pool *pool;
741 struct nvme_sgl_desc *sg_list;
742 struct scatterlist *sg = iod->sg;
743 dma_addr_t sgl_dma;
744 int i = 0;
745
746 /* setting the transfer type as SGL */
747 cmd->flags = NVME_CMD_SGL_METABUF;
748
749 if (entries == 1) {
750 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
751 return BLK_STS_OK;
752 }
753
754 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
755 pool = dev->prp_small_pool;
756 iod->npages = 0;
757 } else {
758 pool = dev->prp_page_pool;
759 iod->npages = 1;
760 }
761
762 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
763 if (!sg_list) {
764 iod->npages = -1;
765 return BLK_STS_RESOURCE;
766 }
767
768 nvme_pci_iod_list(req)[0] = sg_list;
769 iod->first_dma = sgl_dma;
770
771 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
772
773 do {
774 if (i == SGES_PER_PAGE) {
775 struct nvme_sgl_desc *old_sg_desc = sg_list;
776 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
777
778 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
779 if (!sg_list)
780 goto free_sgls;
781
782 i = 0;
783 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
784 sg_list[i++] = *link;
785 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
786 }
787
788 nvme_pci_sgl_set_data(&sg_list[i++], sg);
789 sg = sg_next(sg);
790 } while (--entries > 0);
791
792 return BLK_STS_OK;
793 free_sgls:
794 nvme_free_sgls(dev, req);
795 return BLK_STS_RESOURCE;
796 }
797
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)798 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
799 struct request *req, struct nvme_rw_command *cmnd,
800 struct bio_vec *bv)
801 {
802 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
803 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
804 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
805
806 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
807 if (dma_mapping_error(dev->dev, iod->first_dma))
808 return BLK_STS_RESOURCE;
809 iod->dma_len = bv->bv_len;
810
811 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
812 if (bv->bv_len > first_prp_len)
813 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
814 else
815 cmnd->dptr.prp2 = 0;
816 return BLK_STS_OK;
817 }
818
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)819 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
820 struct request *req, struct nvme_rw_command *cmnd,
821 struct bio_vec *bv)
822 {
823 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
824
825 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
826 if (dma_mapping_error(dev->dev, iod->first_dma))
827 return BLK_STS_RESOURCE;
828 iod->dma_len = bv->bv_len;
829
830 cmnd->flags = NVME_CMD_SGL_METABUF;
831 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
832 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
833 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
834 return BLK_STS_OK;
835 }
836
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)837 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
838 struct nvme_command *cmnd)
839 {
840 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841 blk_status_t ret = BLK_STS_RESOURCE;
842 int nr_mapped;
843
844 if (blk_rq_nr_phys_segments(req) == 1) {
845 struct bio_vec bv = req_bvec(req);
846
847 if (!is_pci_p2pdma_page(bv.bv_page)) {
848 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
849 return nvme_setup_prp_simple(dev, req,
850 &cmnd->rw, &bv);
851
852 if (iod->nvmeq->qid && sgl_threshold &&
853 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
854 return nvme_setup_sgl_simple(dev, req,
855 &cmnd->rw, &bv);
856 }
857 }
858
859 iod->dma_len = 0;
860 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
861 if (!iod->sg)
862 return BLK_STS_RESOURCE;
863 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
864 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
865 if (!iod->nents)
866 goto out_free_sg;
867
868 if (is_pci_p2pdma_page(sg_page(iod->sg)))
869 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
870 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
871 else
872 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
873 rq_dma_dir(req), DMA_ATTR_NO_WARN);
874 if (!nr_mapped)
875 goto out_free_sg;
876
877 iod->use_sgl = nvme_pci_use_sgls(dev, req);
878 if (iod->use_sgl)
879 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
880 else
881 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
882 if (ret != BLK_STS_OK)
883 goto out_unmap_sg;
884 return BLK_STS_OK;
885
886 out_unmap_sg:
887 nvme_unmap_sg(dev, req);
888 out_free_sg:
889 mempool_free(iod->sg, dev->iod_mempool);
890 return ret;
891 }
892
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)893 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
894 struct nvme_command *cmnd)
895 {
896 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
897
898 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
899 rq_dma_dir(req), 0);
900 if (dma_mapping_error(dev->dev, iod->meta_dma))
901 return BLK_STS_IOERR;
902 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
903 return BLK_STS_OK;
904 }
905
906 /*
907 * NOTE: ns is NULL when called on the admin queue.
908 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)909 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
910 const struct blk_mq_queue_data *bd)
911 {
912 struct nvme_ns *ns = hctx->queue->queuedata;
913 struct nvme_queue *nvmeq = hctx->driver_data;
914 struct nvme_dev *dev = nvmeq->dev;
915 struct request *req = bd->rq;
916 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
917 struct nvme_command *cmnd = &iod->cmd;
918 blk_status_t ret;
919
920 iod->aborted = 0;
921 iod->npages = -1;
922 iod->nents = 0;
923
924 /*
925 * We should not need to do this, but we're still using this to
926 * ensure we can drain requests on a dying queue.
927 */
928 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
929 return BLK_STS_IOERR;
930
931 ret = nvme_setup_cmd(ns, req, cmnd);
932 if (ret)
933 return ret;
934
935 if (blk_rq_nr_phys_segments(req)) {
936 ret = nvme_map_data(dev, req, cmnd);
937 if (ret)
938 goto out_free_cmd;
939 }
940
941 if (blk_integrity_rq(req)) {
942 ret = nvme_map_metadata(dev, req, cmnd);
943 if (ret)
944 goto out_unmap_data;
945 }
946
947 blk_mq_start_request(req);
948 nvme_submit_cmd(nvmeq, cmnd, bd->last);
949 return BLK_STS_OK;
950 out_unmap_data:
951 nvme_unmap_data(dev, req);
952 out_free_cmd:
953 nvme_cleanup_cmd(req);
954 return ret;
955 }
956
nvme_pci_complete_rq(struct request * req)957 static void nvme_pci_complete_rq(struct request *req)
958 {
959 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
960 struct nvme_dev *dev = iod->nvmeq->dev;
961
962 if (blk_integrity_rq(req))
963 dma_unmap_page(dev->dev, iod->meta_dma,
964 rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
965
966 if (blk_rq_nr_phys_segments(req))
967 nvme_unmap_data(dev, req);
968 nvme_complete_rq(req);
969 }
970
971 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)972 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
973 {
974 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
975
976 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
977 }
978
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)979 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
980 {
981 u16 head = nvmeq->cq_head;
982
983 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
984 nvmeq->dbbuf_cq_ei))
985 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
986 }
987
nvme_queue_tagset(struct nvme_queue * nvmeq)988 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
989 {
990 if (!nvmeq->qid)
991 return nvmeq->dev->admin_tagset.tags[0];
992 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
993 }
994
nvme_handle_cqe(struct nvme_queue * nvmeq,u16 idx)995 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
996 {
997 struct nvme_completion *cqe = &nvmeq->cqes[idx];
998 __u16 command_id = READ_ONCE(cqe->command_id);
999 struct request *req;
1000
1001 /*
1002 * AEN requests are special as they don't time out and can
1003 * survive any kind of queue freeze and often don't respond to
1004 * aborts. We don't even bother to allocate a struct request
1005 * for them but rather special case them here.
1006 */
1007 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1008 nvme_complete_async_event(&nvmeq->dev->ctrl,
1009 cqe->status, &cqe->result);
1010 return;
1011 }
1012
1013 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1014 if (unlikely(!req)) {
1015 dev_warn(nvmeq->dev->ctrl.device,
1016 "invalid id %d completed on queue %d\n",
1017 command_id, le16_to_cpu(cqe->sq_id));
1018 return;
1019 }
1020
1021 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1022 if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1023 nvme_pci_complete_rq(req);
1024 }
1025
nvme_update_cq_head(struct nvme_queue * nvmeq)1026 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1027 {
1028 u32 tmp = nvmeq->cq_head + 1;
1029
1030 if (tmp == nvmeq->q_depth) {
1031 nvmeq->cq_head = 0;
1032 nvmeq->cq_phase ^= 1;
1033 } else {
1034 nvmeq->cq_head = tmp;
1035 }
1036 }
1037
nvme_process_cq(struct nvme_queue * nvmeq)1038 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1039 {
1040 int found = 0;
1041
1042 while (nvme_cqe_pending(nvmeq)) {
1043 found++;
1044 /*
1045 * load-load control dependency between phase and the rest of
1046 * the cqe requires a full read memory barrier
1047 */
1048 dma_rmb();
1049 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1050 nvme_update_cq_head(nvmeq);
1051 }
1052
1053 if (found)
1054 nvme_ring_cq_doorbell(nvmeq);
1055 return found;
1056 }
1057
nvme_irq(int irq,void * data)1058 static irqreturn_t nvme_irq(int irq, void *data)
1059 {
1060 struct nvme_queue *nvmeq = data;
1061 irqreturn_t ret = IRQ_NONE;
1062
1063 /*
1064 * The rmb/wmb pair ensures we see all updates from a previous run of
1065 * the irq handler, even if that was on another CPU.
1066 */
1067 rmb();
1068 if (nvme_process_cq(nvmeq))
1069 ret = IRQ_HANDLED;
1070 wmb();
1071
1072 return ret;
1073 }
1074
nvme_irq_check(int irq,void * data)1075 static irqreturn_t nvme_irq_check(int irq, void *data)
1076 {
1077 struct nvme_queue *nvmeq = data;
1078
1079 if (nvme_cqe_pending(nvmeq))
1080 return IRQ_WAKE_THREAD;
1081 return IRQ_NONE;
1082 }
1083
1084 /*
1085 * Poll for completions for any interrupt driven queue
1086 * Can be called from any context.
1087 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1088 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1089 {
1090 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1091
1092 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1093
1094 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1095 nvme_process_cq(nvmeq);
1096 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1097 }
1098
nvme_poll(struct blk_mq_hw_ctx * hctx)1099 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1100 {
1101 struct nvme_queue *nvmeq = hctx->driver_data;
1102 bool found;
1103
1104 if (!nvme_cqe_pending(nvmeq))
1105 return 0;
1106
1107 spin_lock(&nvmeq->cq_poll_lock);
1108 found = nvme_process_cq(nvmeq);
1109 spin_unlock(&nvmeq->cq_poll_lock);
1110
1111 return found;
1112 }
1113
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1114 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1115 {
1116 struct nvme_dev *dev = to_nvme_dev(ctrl);
1117 struct nvme_queue *nvmeq = &dev->queues[0];
1118 struct nvme_command c;
1119
1120 memset(&c, 0, sizeof(c));
1121 c.common.opcode = nvme_admin_async_event;
1122 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1123 nvme_submit_cmd(nvmeq, &c, true);
1124 }
1125
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1126 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1127 {
1128 struct nvme_command c;
1129
1130 memset(&c, 0, sizeof(c));
1131 c.delete_queue.opcode = opcode;
1132 c.delete_queue.qid = cpu_to_le16(id);
1133
1134 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1135 }
1136
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1137 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1138 struct nvme_queue *nvmeq, s16 vector)
1139 {
1140 struct nvme_command c;
1141 int flags = NVME_QUEUE_PHYS_CONTIG;
1142
1143 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1144 flags |= NVME_CQ_IRQ_ENABLED;
1145
1146 /*
1147 * Note: we (ab)use the fact that the prp fields survive if no data
1148 * is attached to the request.
1149 */
1150 memset(&c, 0, sizeof(c));
1151 c.create_cq.opcode = nvme_admin_create_cq;
1152 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1153 c.create_cq.cqid = cpu_to_le16(qid);
1154 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1155 c.create_cq.cq_flags = cpu_to_le16(flags);
1156 c.create_cq.irq_vector = cpu_to_le16(vector);
1157
1158 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1159 }
1160
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1161 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1162 struct nvme_queue *nvmeq)
1163 {
1164 struct nvme_ctrl *ctrl = &dev->ctrl;
1165 struct nvme_command c;
1166 int flags = NVME_QUEUE_PHYS_CONTIG;
1167
1168 /*
1169 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1170 * set. Since URGENT priority is zeroes, it makes all queues
1171 * URGENT.
1172 */
1173 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1174 flags |= NVME_SQ_PRIO_MEDIUM;
1175
1176 /*
1177 * Note: we (ab)use the fact that the prp fields survive if no data
1178 * is attached to the request.
1179 */
1180 memset(&c, 0, sizeof(c));
1181 c.create_sq.opcode = nvme_admin_create_sq;
1182 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1183 c.create_sq.sqid = cpu_to_le16(qid);
1184 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1185 c.create_sq.sq_flags = cpu_to_le16(flags);
1186 c.create_sq.cqid = cpu_to_le16(qid);
1187
1188 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1189 }
1190
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1191 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1192 {
1193 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1194 }
1195
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1196 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1197 {
1198 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1199 }
1200
abort_endio(struct request * req,blk_status_t error)1201 static void abort_endio(struct request *req, blk_status_t error)
1202 {
1203 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1204 struct nvme_queue *nvmeq = iod->nvmeq;
1205
1206 dev_warn(nvmeq->dev->ctrl.device,
1207 "Abort status: 0x%x", nvme_req(req)->status);
1208 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1209 blk_mq_free_request(req);
1210 }
1211
nvme_should_reset(struct nvme_dev * dev,u32 csts)1212 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1213 {
1214 /* If true, indicates loss of adapter communication, possibly by a
1215 * NVMe Subsystem reset.
1216 */
1217 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1218
1219 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1220 switch (dev->ctrl.state) {
1221 case NVME_CTRL_RESETTING:
1222 case NVME_CTRL_CONNECTING:
1223 return false;
1224 default:
1225 break;
1226 }
1227
1228 /* We shouldn't reset unless the controller is on fatal error state
1229 * _or_ if we lost the communication with it.
1230 */
1231 if (!(csts & NVME_CSTS_CFS) && !nssro)
1232 return false;
1233
1234 return true;
1235 }
1236
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1237 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1238 {
1239 /* Read a config register to help see what died. */
1240 u16 pci_status;
1241 int result;
1242
1243 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1244 &pci_status);
1245 if (result == PCIBIOS_SUCCESSFUL)
1246 dev_warn(dev->ctrl.device,
1247 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1248 csts, pci_status);
1249 else
1250 dev_warn(dev->ctrl.device,
1251 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1252 csts, result);
1253 }
1254
nvme_timeout(struct request * req,bool reserved)1255 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1256 {
1257 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1258 struct nvme_queue *nvmeq = iod->nvmeq;
1259 struct nvme_dev *dev = nvmeq->dev;
1260 struct request *abort_req;
1261 struct nvme_command cmd;
1262 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1263
1264 /* If PCI error recovery process is happening, we cannot reset or
1265 * the recovery mechanism will surely fail.
1266 */
1267 mb();
1268 if (pci_channel_offline(to_pci_dev(dev->dev)))
1269 return BLK_EH_RESET_TIMER;
1270
1271 /*
1272 * Reset immediately if the controller is failed
1273 */
1274 if (nvme_should_reset(dev, csts)) {
1275 nvme_warn_reset(dev, csts);
1276 nvme_dev_disable(dev, false);
1277 nvme_reset_ctrl(&dev->ctrl);
1278 return BLK_EH_DONE;
1279 }
1280
1281 /*
1282 * Did we miss an interrupt?
1283 */
1284 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1285 nvme_poll(req->mq_hctx);
1286 else
1287 nvme_poll_irqdisable(nvmeq);
1288
1289 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1290 dev_warn(dev->ctrl.device,
1291 "I/O %d QID %d timeout, completion polled\n",
1292 req->tag, nvmeq->qid);
1293 return BLK_EH_DONE;
1294 }
1295
1296 /*
1297 * Shutdown immediately if controller times out while starting. The
1298 * reset work will see the pci device disabled when it gets the forced
1299 * cancellation error. All outstanding requests are completed on
1300 * shutdown, so we return BLK_EH_DONE.
1301 */
1302 switch (dev->ctrl.state) {
1303 case NVME_CTRL_CONNECTING:
1304 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1305 fallthrough;
1306 case NVME_CTRL_DELETING:
1307 dev_warn_ratelimited(dev->ctrl.device,
1308 "I/O %d QID %d timeout, disable controller\n",
1309 req->tag, nvmeq->qid);
1310 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1311 nvme_dev_disable(dev, true);
1312 return BLK_EH_DONE;
1313 case NVME_CTRL_RESETTING:
1314 return BLK_EH_RESET_TIMER;
1315 default:
1316 break;
1317 }
1318
1319 /*
1320 * Shutdown the controller immediately and schedule a reset if the
1321 * command was already aborted once before and still hasn't been
1322 * returned to the driver, or if this is the admin queue.
1323 */
1324 if (!nvmeq->qid || iod->aborted) {
1325 dev_warn(dev->ctrl.device,
1326 "I/O %d QID %d timeout, reset controller\n",
1327 req->tag, nvmeq->qid);
1328 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1329 nvme_dev_disable(dev, false);
1330 nvme_reset_ctrl(&dev->ctrl);
1331
1332 return BLK_EH_DONE;
1333 }
1334
1335 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1336 atomic_inc(&dev->ctrl.abort_limit);
1337 return BLK_EH_RESET_TIMER;
1338 }
1339 iod->aborted = 1;
1340
1341 memset(&cmd, 0, sizeof(cmd));
1342 cmd.abort.opcode = nvme_admin_abort_cmd;
1343 cmd.abort.cid = nvme_cid(req);
1344 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1345
1346 dev_warn(nvmeq->dev->ctrl.device,
1347 "I/O %d QID %d timeout, aborting\n",
1348 req->tag, nvmeq->qid);
1349
1350 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1351 BLK_MQ_REQ_NOWAIT);
1352 if (IS_ERR(abort_req)) {
1353 atomic_inc(&dev->ctrl.abort_limit);
1354 return BLK_EH_RESET_TIMER;
1355 }
1356
1357 abort_req->end_io_data = NULL;
1358 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1359
1360 /*
1361 * The aborted req will be completed on receiving the abort req.
1362 * We enable the timer again. If hit twice, it'll cause a device reset,
1363 * as the device then is in a faulty state.
1364 */
1365 return BLK_EH_RESET_TIMER;
1366 }
1367
nvme_free_queue(struct nvme_queue * nvmeq)1368 static void nvme_free_queue(struct nvme_queue *nvmeq)
1369 {
1370 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1371 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1372 if (!nvmeq->sq_cmds)
1373 return;
1374
1375 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1376 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1377 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1378 } else {
1379 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1380 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1381 }
1382 }
1383
nvme_free_queues(struct nvme_dev * dev,int lowest)1384 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1385 {
1386 int i;
1387
1388 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1389 dev->ctrl.queue_count--;
1390 nvme_free_queue(&dev->queues[i]);
1391 }
1392 }
1393
1394 /**
1395 * nvme_suspend_queue - put queue into suspended state
1396 * @nvmeq: queue to suspend
1397 */
nvme_suspend_queue(struct nvme_queue * nvmeq)1398 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1399 {
1400 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1401 return 1;
1402
1403 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1404 mb();
1405
1406 nvmeq->dev->online_queues--;
1407 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1408 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1409 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1410 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1411 return 0;
1412 }
1413
nvme_suspend_io_queues(struct nvme_dev * dev)1414 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1415 {
1416 int i;
1417
1418 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1419 nvme_suspend_queue(&dev->queues[i]);
1420 }
1421
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1422 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1423 {
1424 struct nvme_queue *nvmeq = &dev->queues[0];
1425
1426 if (shutdown)
1427 nvme_shutdown_ctrl(&dev->ctrl);
1428 else
1429 nvme_disable_ctrl(&dev->ctrl);
1430
1431 nvme_poll_irqdisable(nvmeq);
1432 }
1433
1434 /*
1435 * Called only on a device that has been disabled and after all other threads
1436 * that can check this device's completion queues have synced, except
1437 * nvme_poll(). This is the last chance for the driver to see a natural
1438 * completion before nvme_cancel_request() terminates all incomplete requests.
1439 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1440 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1441 {
1442 int i;
1443
1444 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1445 spin_lock(&dev->queues[i].cq_poll_lock);
1446 nvme_process_cq(&dev->queues[i]);
1447 spin_unlock(&dev->queues[i].cq_poll_lock);
1448 }
1449 }
1450
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1451 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1452 int entry_size)
1453 {
1454 int q_depth = dev->q_depth;
1455 unsigned q_size_aligned = roundup(q_depth * entry_size,
1456 NVME_CTRL_PAGE_SIZE);
1457
1458 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1459 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1460
1461 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1462 q_depth = div_u64(mem_per_q, entry_size);
1463
1464 /*
1465 * Ensure the reduced q_depth is above some threshold where it
1466 * would be better to map queues in system memory with the
1467 * original depth
1468 */
1469 if (q_depth < 64)
1470 return -ENOMEM;
1471 }
1472
1473 return q_depth;
1474 }
1475
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1476 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1477 int qid)
1478 {
1479 struct pci_dev *pdev = to_pci_dev(dev->dev);
1480
1481 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1482 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1483 if (nvmeq->sq_cmds) {
1484 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1485 nvmeq->sq_cmds);
1486 if (nvmeq->sq_dma_addr) {
1487 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1488 return 0;
1489 }
1490
1491 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1492 }
1493 }
1494
1495 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1496 &nvmeq->sq_dma_addr, GFP_KERNEL);
1497 if (!nvmeq->sq_cmds)
1498 return -ENOMEM;
1499 return 0;
1500 }
1501
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1502 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1503 {
1504 struct nvme_queue *nvmeq = &dev->queues[qid];
1505
1506 if (dev->ctrl.queue_count > qid)
1507 return 0;
1508
1509 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1510 nvmeq->q_depth = depth;
1511 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1512 &nvmeq->cq_dma_addr, GFP_KERNEL);
1513 if (!nvmeq->cqes)
1514 goto free_nvmeq;
1515
1516 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1517 goto free_cqdma;
1518
1519 nvmeq->dev = dev;
1520 spin_lock_init(&nvmeq->sq_lock);
1521 spin_lock_init(&nvmeq->cq_poll_lock);
1522 nvmeq->cq_head = 0;
1523 nvmeq->cq_phase = 1;
1524 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1525 nvmeq->qid = qid;
1526 dev->ctrl.queue_count++;
1527
1528 return 0;
1529
1530 free_cqdma:
1531 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1532 nvmeq->cq_dma_addr);
1533 free_nvmeq:
1534 return -ENOMEM;
1535 }
1536
queue_request_irq(struct nvme_queue * nvmeq)1537 static int queue_request_irq(struct nvme_queue *nvmeq)
1538 {
1539 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1540 int nr = nvmeq->dev->ctrl.instance;
1541
1542 if (use_threaded_interrupts) {
1543 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1544 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1545 } else {
1546 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1547 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1548 }
1549 }
1550
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1551 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1552 {
1553 struct nvme_dev *dev = nvmeq->dev;
1554
1555 nvmeq->sq_tail = 0;
1556 nvmeq->last_sq_tail = 0;
1557 nvmeq->cq_head = 0;
1558 nvmeq->cq_phase = 1;
1559 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1560 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1561 nvme_dbbuf_init(dev, nvmeq, qid);
1562 dev->online_queues++;
1563 wmb(); /* ensure the first interrupt sees the initialization */
1564 }
1565
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1566 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1567 {
1568 struct nvme_dev *dev = nvmeq->dev;
1569 int result;
1570 u16 vector = 0;
1571
1572 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1573
1574 /*
1575 * A queue's vector matches the queue identifier unless the controller
1576 * has only one vector available.
1577 */
1578 if (!polled)
1579 vector = dev->num_vecs == 1 ? 0 : qid;
1580 else
1581 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1582
1583 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1584 if (result)
1585 return result;
1586
1587 result = adapter_alloc_sq(dev, qid, nvmeq);
1588 if (result < 0)
1589 return result;
1590 if (result)
1591 goto release_cq;
1592
1593 nvmeq->cq_vector = vector;
1594 nvme_init_queue(nvmeq, qid);
1595
1596 if (!polled) {
1597 result = queue_request_irq(nvmeq);
1598 if (result < 0)
1599 goto release_sq;
1600 }
1601
1602 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1603 return result;
1604
1605 release_sq:
1606 dev->online_queues--;
1607 adapter_delete_sq(dev, qid);
1608 release_cq:
1609 adapter_delete_cq(dev, qid);
1610 return result;
1611 }
1612
1613 static const struct blk_mq_ops nvme_mq_admin_ops = {
1614 .queue_rq = nvme_queue_rq,
1615 .complete = nvme_pci_complete_rq,
1616 .init_hctx = nvme_admin_init_hctx,
1617 .init_request = nvme_init_request,
1618 .timeout = nvme_timeout,
1619 };
1620
1621 static const struct blk_mq_ops nvme_mq_ops = {
1622 .queue_rq = nvme_queue_rq,
1623 .complete = nvme_pci_complete_rq,
1624 .commit_rqs = nvme_commit_rqs,
1625 .init_hctx = nvme_init_hctx,
1626 .init_request = nvme_init_request,
1627 .map_queues = nvme_pci_map_queues,
1628 .timeout = nvme_timeout,
1629 .poll = nvme_poll,
1630 };
1631
nvme_dev_remove_admin(struct nvme_dev * dev)1632 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1633 {
1634 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1635 /*
1636 * If the controller was reset during removal, it's possible
1637 * user requests may be waiting on a stopped queue. Start the
1638 * queue to flush these to completion.
1639 */
1640 nvme_start_admin_queue(&dev->ctrl);
1641 blk_cleanup_queue(dev->ctrl.admin_q);
1642 blk_mq_free_tag_set(&dev->admin_tagset);
1643 }
1644 }
1645
nvme_alloc_admin_tags(struct nvme_dev * dev)1646 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1647 {
1648 if (!dev->ctrl.admin_q) {
1649 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1650 dev->admin_tagset.nr_hw_queues = 1;
1651
1652 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1653 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1654 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1655 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1656 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1657 dev->admin_tagset.driver_data = dev;
1658
1659 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1660 return -ENOMEM;
1661 dev->ctrl.admin_tagset = &dev->admin_tagset;
1662
1663 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1664 if (IS_ERR(dev->ctrl.admin_q)) {
1665 blk_mq_free_tag_set(&dev->admin_tagset);
1666 dev->ctrl.admin_q = NULL;
1667 return -ENOMEM;
1668 }
1669 if (!blk_get_queue(dev->ctrl.admin_q)) {
1670 nvme_dev_remove_admin(dev);
1671 dev->ctrl.admin_q = NULL;
1672 return -ENODEV;
1673 }
1674 } else
1675 nvme_start_admin_queue(&dev->ctrl);
1676
1677 return 0;
1678 }
1679
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1680 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1681 {
1682 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1683 }
1684
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1685 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1686 {
1687 struct pci_dev *pdev = to_pci_dev(dev->dev);
1688
1689 if (size <= dev->bar_mapped_size)
1690 return 0;
1691 if (size > pci_resource_len(pdev, 0))
1692 return -ENOMEM;
1693 if (dev->bar)
1694 iounmap(dev->bar);
1695 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1696 if (!dev->bar) {
1697 dev->bar_mapped_size = 0;
1698 return -ENOMEM;
1699 }
1700 dev->bar_mapped_size = size;
1701 dev->dbs = dev->bar + NVME_REG_DBS;
1702
1703 return 0;
1704 }
1705
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1706 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1707 {
1708 int result;
1709 u32 aqa;
1710 struct nvme_queue *nvmeq;
1711
1712 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1713 if (result < 0)
1714 return result;
1715
1716 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1717 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1718
1719 if (dev->subsystem &&
1720 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1721 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1722
1723 result = nvme_disable_ctrl(&dev->ctrl);
1724 if (result < 0)
1725 return result;
1726
1727 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1728 if (result)
1729 return result;
1730
1731 dev->ctrl.numa_node = dev_to_node(dev->dev);
1732
1733 nvmeq = &dev->queues[0];
1734 aqa = nvmeq->q_depth - 1;
1735 aqa |= aqa << 16;
1736
1737 writel(aqa, dev->bar + NVME_REG_AQA);
1738 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1739 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1740
1741 result = nvme_enable_ctrl(&dev->ctrl);
1742 if (result)
1743 return result;
1744
1745 nvmeq->cq_vector = 0;
1746 nvme_init_queue(nvmeq, 0);
1747 result = queue_request_irq(nvmeq);
1748 if (result) {
1749 dev->online_queues--;
1750 return result;
1751 }
1752
1753 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1754 return result;
1755 }
1756
nvme_create_io_queues(struct nvme_dev * dev)1757 static int nvme_create_io_queues(struct nvme_dev *dev)
1758 {
1759 unsigned i, max, rw_queues;
1760 int ret = 0;
1761
1762 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1763 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1764 ret = -ENOMEM;
1765 break;
1766 }
1767 }
1768
1769 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1770 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1771 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1772 dev->io_queues[HCTX_TYPE_READ];
1773 } else {
1774 rw_queues = max;
1775 }
1776
1777 for (i = dev->online_queues; i <= max; i++) {
1778 bool polled = i > rw_queues;
1779
1780 ret = nvme_create_queue(&dev->queues[i], i, polled);
1781 if (ret)
1782 break;
1783 }
1784
1785 /*
1786 * Ignore failing Create SQ/CQ commands, we can continue with less
1787 * than the desired amount of queues, and even a controller without
1788 * I/O queues can still be used to issue admin commands. This might
1789 * be useful to upgrade a buggy firmware for example.
1790 */
1791 return ret >= 0 ? 0 : ret;
1792 }
1793
nvme_cmb_show(struct device * dev,struct device_attribute * attr,char * buf)1794 static ssize_t nvme_cmb_show(struct device *dev,
1795 struct device_attribute *attr,
1796 char *buf)
1797 {
1798 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1799
1800 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1801 ndev->cmbloc, ndev->cmbsz);
1802 }
1803 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1804
nvme_cmb_size_unit(struct nvme_dev * dev)1805 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1806 {
1807 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1808
1809 return 1ULL << (12 + 4 * szu);
1810 }
1811
nvme_cmb_size(struct nvme_dev * dev)1812 static u32 nvme_cmb_size(struct nvme_dev *dev)
1813 {
1814 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1815 }
1816
nvme_map_cmb(struct nvme_dev * dev)1817 static void nvme_map_cmb(struct nvme_dev *dev)
1818 {
1819 u64 size, offset;
1820 resource_size_t bar_size;
1821 struct pci_dev *pdev = to_pci_dev(dev->dev);
1822 int bar;
1823
1824 if (dev->cmb_size)
1825 return;
1826
1827 if (NVME_CAP_CMBS(dev->ctrl.cap))
1828 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1829
1830 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1831 if (!dev->cmbsz)
1832 return;
1833 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1834
1835 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1836 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1837 bar = NVME_CMB_BIR(dev->cmbloc);
1838 bar_size = pci_resource_len(pdev, bar);
1839
1840 if (offset > bar_size)
1841 return;
1842
1843 /*
1844 * Tell the controller about the host side address mapping the CMB,
1845 * and enable CMB decoding for the NVMe 1.4+ scheme:
1846 */
1847 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1848 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1849 (pci_bus_address(pdev, bar) + offset),
1850 dev->bar + NVME_REG_CMBMSC);
1851 }
1852
1853 /*
1854 * Controllers may support a CMB size larger than their BAR,
1855 * for example, due to being behind a bridge. Reduce the CMB to
1856 * the reported size of the BAR
1857 */
1858 if (size > bar_size - offset)
1859 size = bar_size - offset;
1860
1861 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1862 dev_warn(dev->ctrl.device,
1863 "failed to register the CMB\n");
1864 return;
1865 }
1866
1867 dev->cmb_size = size;
1868 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1869
1870 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1871 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1872 pci_p2pmem_publish(pdev, true);
1873
1874 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1875 &dev_attr_cmb.attr, NULL))
1876 dev_warn(dev->ctrl.device,
1877 "failed to add sysfs attribute for CMB\n");
1878 }
1879
nvme_release_cmb(struct nvme_dev * dev)1880 static inline void nvme_release_cmb(struct nvme_dev *dev)
1881 {
1882 if (dev->cmb_size) {
1883 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1884 &dev_attr_cmb.attr, NULL);
1885 dev->cmb_size = 0;
1886 }
1887 }
1888
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1889 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1890 {
1891 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1892 u64 dma_addr = dev->host_mem_descs_dma;
1893 struct nvme_command c;
1894 int ret;
1895
1896 memset(&c, 0, sizeof(c));
1897 c.features.opcode = nvme_admin_set_features;
1898 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1899 c.features.dword11 = cpu_to_le32(bits);
1900 c.features.dword12 = cpu_to_le32(host_mem_size);
1901 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1902 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1903 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1904
1905 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1906 if (ret) {
1907 dev_warn(dev->ctrl.device,
1908 "failed to set host mem (err %d, flags %#x).\n",
1909 ret, bits);
1910 }
1911 return ret;
1912 }
1913
nvme_free_host_mem(struct nvme_dev * dev)1914 static void nvme_free_host_mem(struct nvme_dev *dev)
1915 {
1916 int i;
1917
1918 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1919 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1920 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1921
1922 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1923 le64_to_cpu(desc->addr),
1924 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1925 }
1926
1927 kfree(dev->host_mem_desc_bufs);
1928 dev->host_mem_desc_bufs = NULL;
1929 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
1930 dev->host_mem_descs, dev->host_mem_descs_dma);
1931 dev->host_mem_descs = NULL;
1932 dev->host_mem_descs_size = 0;
1933 dev->nr_host_mem_descs = 0;
1934 }
1935
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1936 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1937 u32 chunk_size)
1938 {
1939 struct nvme_host_mem_buf_desc *descs;
1940 u32 max_entries, len, descs_size;
1941 dma_addr_t descs_dma;
1942 int i = 0;
1943 void **bufs;
1944 u64 size, tmp;
1945
1946 tmp = (preferred + chunk_size - 1);
1947 do_div(tmp, chunk_size);
1948 max_entries = tmp;
1949
1950 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1951 max_entries = dev->ctrl.hmmaxd;
1952
1953 descs_size = max_entries * sizeof(*descs);
1954 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
1955 GFP_KERNEL);
1956 if (!descs)
1957 goto out;
1958
1959 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1960 if (!bufs)
1961 goto out_free_descs;
1962
1963 for (size = 0; size < preferred && i < max_entries; size += len) {
1964 dma_addr_t dma_addr;
1965
1966 len = min_t(u64, chunk_size, preferred - size);
1967 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1968 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1969 if (!bufs[i])
1970 break;
1971
1972 descs[i].addr = cpu_to_le64(dma_addr);
1973 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1974 i++;
1975 }
1976
1977 if (!size)
1978 goto out_free_bufs;
1979
1980 dev->nr_host_mem_descs = i;
1981 dev->host_mem_size = size;
1982 dev->host_mem_descs = descs;
1983 dev->host_mem_descs_dma = descs_dma;
1984 dev->host_mem_descs_size = descs_size;
1985 dev->host_mem_desc_bufs = bufs;
1986 return 0;
1987
1988 out_free_bufs:
1989 while (--i >= 0) {
1990 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1991
1992 dma_free_attrs(dev->dev, size, bufs[i],
1993 le64_to_cpu(descs[i].addr),
1994 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1995 }
1996
1997 kfree(bufs);
1998 out_free_descs:
1999 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2000 out:
2001 dev->host_mem_descs = NULL;
2002 return -ENOMEM;
2003 }
2004
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2005 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2006 {
2007 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2008 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2009 u64 chunk_size;
2010
2011 /* start big and work our way down */
2012 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2013 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2014 if (!min || dev->host_mem_size >= min)
2015 return 0;
2016 nvme_free_host_mem(dev);
2017 }
2018 }
2019
2020 return -ENOMEM;
2021 }
2022
nvme_setup_host_mem(struct nvme_dev * dev)2023 static int nvme_setup_host_mem(struct nvme_dev *dev)
2024 {
2025 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2026 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2027 u64 min = (u64)dev->ctrl.hmmin * 4096;
2028 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2029 int ret;
2030
2031 preferred = min(preferred, max);
2032 if (min > max) {
2033 dev_warn(dev->ctrl.device,
2034 "min host memory (%lld MiB) above limit (%d MiB).\n",
2035 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2036 nvme_free_host_mem(dev);
2037 return 0;
2038 }
2039
2040 /*
2041 * If we already have a buffer allocated check if we can reuse it.
2042 */
2043 if (dev->host_mem_descs) {
2044 if (dev->host_mem_size >= min)
2045 enable_bits |= NVME_HOST_MEM_RETURN;
2046 else
2047 nvme_free_host_mem(dev);
2048 }
2049
2050 if (!dev->host_mem_descs) {
2051 if (nvme_alloc_host_mem(dev, min, preferred)) {
2052 dev_warn(dev->ctrl.device,
2053 "failed to allocate host memory buffer.\n");
2054 return 0; /* controller must work without HMB */
2055 }
2056
2057 dev_info(dev->ctrl.device,
2058 "allocated %lld MiB host memory buffer.\n",
2059 dev->host_mem_size >> ilog2(SZ_1M));
2060 }
2061
2062 ret = nvme_set_host_mem(dev, enable_bits);
2063 if (ret)
2064 nvme_free_host_mem(dev);
2065 return ret;
2066 }
2067
2068 /*
2069 * nirqs is the number of interrupts available for write and read
2070 * queues. The core already reserved an interrupt for the admin queue.
2071 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2072 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2073 {
2074 struct nvme_dev *dev = affd->priv;
2075 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2076
2077 /*
2078 * If there is no interrupt available for queues, ensure that
2079 * the default queue is set to 1. The affinity set size is
2080 * also set to one, but the irq core ignores it for this case.
2081 *
2082 * If only one interrupt is available or 'write_queue' == 0, combine
2083 * write and read queues.
2084 *
2085 * If 'write_queues' > 0, ensure it leaves room for at least one read
2086 * queue.
2087 */
2088 if (!nrirqs) {
2089 nrirqs = 1;
2090 nr_read_queues = 0;
2091 } else if (nrirqs == 1 || !nr_write_queues) {
2092 nr_read_queues = 0;
2093 } else if (nr_write_queues >= nrirqs) {
2094 nr_read_queues = 1;
2095 } else {
2096 nr_read_queues = nrirqs - nr_write_queues;
2097 }
2098
2099 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2100 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2101 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2102 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2103 affd->nr_sets = nr_read_queues ? 2 : 1;
2104 }
2105
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2106 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2107 {
2108 struct pci_dev *pdev = to_pci_dev(dev->dev);
2109 struct irq_affinity affd = {
2110 .pre_vectors = 1,
2111 .calc_sets = nvme_calc_irq_sets,
2112 .priv = dev,
2113 };
2114 unsigned int irq_queues, poll_queues;
2115
2116 /*
2117 * Poll queues don't need interrupts, but we need at least one I/O queue
2118 * left over for non-polled I/O.
2119 */
2120 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2121 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2122
2123 /*
2124 * Initialize for the single interrupt case, will be updated in
2125 * nvme_calc_irq_sets().
2126 */
2127 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2128 dev->io_queues[HCTX_TYPE_READ] = 0;
2129
2130 /*
2131 * We need interrupts for the admin queue and each non-polled I/O queue,
2132 * but some Apple controllers require all queues to use the first
2133 * vector.
2134 */
2135 irq_queues = 1;
2136 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2137 irq_queues += (nr_io_queues - poll_queues);
2138 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2139 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2140 }
2141
nvme_disable_io_queues(struct nvme_dev * dev)2142 static void nvme_disable_io_queues(struct nvme_dev *dev)
2143 {
2144 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2145 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2146 }
2147
nvme_max_io_queues(struct nvme_dev * dev)2148 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2149 {
2150 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2151 }
2152
nvme_setup_io_queues(struct nvme_dev * dev)2153 static int nvme_setup_io_queues(struct nvme_dev *dev)
2154 {
2155 struct nvme_queue *adminq = &dev->queues[0];
2156 struct pci_dev *pdev = to_pci_dev(dev->dev);
2157 unsigned int nr_io_queues;
2158 unsigned long size;
2159 int result;
2160
2161 /*
2162 * Sample the module parameters once at reset time so that we have
2163 * stable values to work with.
2164 */
2165 dev->nr_write_queues = write_queues;
2166 dev->nr_poll_queues = poll_queues;
2167
2168 /*
2169 * If tags are shared with admin queue (Apple bug), then
2170 * make sure we only use one IO queue.
2171 */
2172 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2173 nr_io_queues = 1;
2174 else
2175 nr_io_queues = min(nvme_max_io_queues(dev),
2176 dev->nr_allocated_queues - 1);
2177
2178 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2179 if (result < 0)
2180 return result;
2181
2182 if (nr_io_queues == 0)
2183 return 0;
2184
2185 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2186
2187 if (dev->cmb_use_sqes) {
2188 result = nvme_cmb_qdepth(dev, nr_io_queues,
2189 sizeof(struct nvme_command));
2190 if (result > 0)
2191 dev->q_depth = result;
2192 else
2193 dev->cmb_use_sqes = false;
2194 }
2195
2196 do {
2197 size = db_bar_size(dev, nr_io_queues);
2198 result = nvme_remap_bar(dev, size);
2199 if (!result)
2200 break;
2201 if (!--nr_io_queues)
2202 return -ENOMEM;
2203 } while (1);
2204 adminq->q_db = dev->dbs;
2205
2206 retry:
2207 /* Deregister the admin queue's interrupt */
2208 pci_free_irq(pdev, 0, adminq);
2209
2210 /*
2211 * If we enable msix early due to not intx, disable it again before
2212 * setting up the full range we need.
2213 */
2214 pci_free_irq_vectors(pdev);
2215
2216 result = nvme_setup_irqs(dev, nr_io_queues);
2217 if (result <= 0)
2218 return -EIO;
2219
2220 dev->num_vecs = result;
2221 result = max(result - 1, 1);
2222 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2223
2224 /*
2225 * Should investigate if there's a performance win from allocating
2226 * more queues than interrupt vectors; it might allow the submission
2227 * path to scale better, even if the receive path is limited by the
2228 * number of interrupts.
2229 */
2230 result = queue_request_irq(adminq);
2231 if (result)
2232 return result;
2233 set_bit(NVMEQ_ENABLED, &adminq->flags);
2234
2235 result = nvme_create_io_queues(dev);
2236 if (result || dev->online_queues < 2)
2237 return result;
2238
2239 if (dev->online_queues - 1 < dev->max_qid) {
2240 nr_io_queues = dev->online_queues - 1;
2241 nvme_disable_io_queues(dev);
2242 nvme_suspend_io_queues(dev);
2243 goto retry;
2244 }
2245 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2246 dev->io_queues[HCTX_TYPE_DEFAULT],
2247 dev->io_queues[HCTX_TYPE_READ],
2248 dev->io_queues[HCTX_TYPE_POLL]);
2249 return 0;
2250 }
2251
nvme_del_queue_end(struct request * req,blk_status_t error)2252 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2253 {
2254 struct nvme_queue *nvmeq = req->end_io_data;
2255
2256 blk_mq_free_request(req);
2257 complete(&nvmeq->delete_done);
2258 }
2259
nvme_del_cq_end(struct request * req,blk_status_t error)2260 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2261 {
2262 struct nvme_queue *nvmeq = req->end_io_data;
2263
2264 if (error)
2265 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2266
2267 nvme_del_queue_end(req, error);
2268 }
2269
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2270 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2271 {
2272 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2273 struct request *req;
2274 struct nvme_command cmd;
2275
2276 memset(&cmd, 0, sizeof(cmd));
2277 cmd.delete_queue.opcode = opcode;
2278 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2279
2280 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2281 if (IS_ERR(req))
2282 return PTR_ERR(req);
2283
2284 req->end_io_data = nvmeq;
2285
2286 init_completion(&nvmeq->delete_done);
2287 blk_execute_rq_nowait(q, NULL, req, false,
2288 opcode == nvme_admin_delete_cq ?
2289 nvme_del_cq_end : nvme_del_queue_end);
2290 return 0;
2291 }
2292
__nvme_disable_io_queues(struct nvme_dev * dev,u8 opcode)2293 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2294 {
2295 int nr_queues = dev->online_queues - 1, sent = 0;
2296 unsigned long timeout;
2297
2298 retry:
2299 timeout = ADMIN_TIMEOUT;
2300 while (nr_queues > 0) {
2301 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2302 break;
2303 nr_queues--;
2304 sent++;
2305 }
2306 while (sent) {
2307 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2308
2309 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2310 timeout);
2311 if (timeout == 0)
2312 return false;
2313
2314 sent--;
2315 if (nr_queues)
2316 goto retry;
2317 }
2318 return true;
2319 }
2320
nvme_dev_add(struct nvme_dev * dev)2321 static void nvme_dev_add(struct nvme_dev *dev)
2322 {
2323 int ret;
2324
2325 if (!dev->ctrl.tagset) {
2326 dev->tagset.ops = &nvme_mq_ops;
2327 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2328 dev->tagset.nr_maps = 2; /* default + read */
2329 if (dev->io_queues[HCTX_TYPE_POLL])
2330 dev->tagset.nr_maps++;
2331 dev->tagset.timeout = NVME_IO_TIMEOUT;
2332 dev->tagset.numa_node = dev->ctrl.numa_node;
2333 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2334 BLK_MQ_MAX_DEPTH) - 1;
2335 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2336 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2337 dev->tagset.driver_data = dev;
2338
2339 /*
2340 * Some Apple controllers requires tags to be unique
2341 * across admin and IO queue, so reserve the first 32
2342 * tags of the IO queue.
2343 */
2344 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2345 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2346
2347 ret = blk_mq_alloc_tag_set(&dev->tagset);
2348 if (ret) {
2349 dev_warn(dev->ctrl.device,
2350 "IO queues tagset allocation failed %d\n", ret);
2351 return;
2352 }
2353 dev->ctrl.tagset = &dev->tagset;
2354 } else {
2355 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2356
2357 /* Free previously allocated queues that are no longer usable */
2358 nvme_free_queues(dev, dev->online_queues);
2359 }
2360
2361 nvme_dbbuf_set(dev);
2362 }
2363
nvme_pci_enable(struct nvme_dev * dev)2364 static int nvme_pci_enable(struct nvme_dev *dev)
2365 {
2366 int result = -ENOMEM;
2367 struct pci_dev *pdev = to_pci_dev(dev->dev);
2368
2369 if (pci_enable_device_mem(pdev))
2370 return result;
2371
2372 pci_set_master(pdev);
2373
2374 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2375 goto disable;
2376
2377 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2378 result = -ENODEV;
2379 goto disable;
2380 }
2381
2382 /*
2383 * Some devices and/or platforms don't advertise or work with INTx
2384 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2385 * adjust this later.
2386 */
2387 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2388 if (result < 0)
2389 return result;
2390
2391 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2392
2393 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2394 io_queue_depth);
2395 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2396 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2397 dev->dbs = dev->bar + 4096;
2398
2399 /*
2400 * Some Apple controllers require a non-standard SQE size.
2401 * Interestingly they also seem to ignore the CC:IOSQES register
2402 * so we don't bother updating it here.
2403 */
2404 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2405 dev->io_sqes = 7;
2406 else
2407 dev->io_sqes = NVME_NVM_IOSQES;
2408
2409 /*
2410 * Temporary fix for the Apple controller found in the MacBook8,1 and
2411 * some MacBook7,1 to avoid controller resets and data loss.
2412 */
2413 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2414 dev->q_depth = 2;
2415 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2416 "set queue depth=%u to work around controller resets\n",
2417 dev->q_depth);
2418 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2419 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2420 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2421 dev->q_depth = 64;
2422 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2423 "set queue depth=%u\n", dev->q_depth);
2424 }
2425
2426 /*
2427 * Controllers with the shared tags quirk need the IO queue to be
2428 * big enough so that we get 32 tags for the admin queue
2429 */
2430 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2431 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2432 dev->q_depth = NVME_AQ_DEPTH + 2;
2433 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2434 dev->q_depth);
2435 }
2436
2437
2438 nvme_map_cmb(dev);
2439
2440 pci_enable_pcie_error_reporting(pdev);
2441 pci_save_state(pdev);
2442 return 0;
2443
2444 disable:
2445 pci_disable_device(pdev);
2446 return result;
2447 }
2448
nvme_dev_unmap(struct nvme_dev * dev)2449 static void nvme_dev_unmap(struct nvme_dev *dev)
2450 {
2451 if (dev->bar)
2452 iounmap(dev->bar);
2453 pci_release_mem_regions(to_pci_dev(dev->dev));
2454 }
2455
nvme_pci_disable(struct nvme_dev * dev)2456 static void nvme_pci_disable(struct nvme_dev *dev)
2457 {
2458 struct pci_dev *pdev = to_pci_dev(dev->dev);
2459
2460 pci_free_irq_vectors(pdev);
2461
2462 if (pci_is_enabled(pdev)) {
2463 pci_disable_pcie_error_reporting(pdev);
2464 pci_disable_device(pdev);
2465 }
2466 }
2467
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2468 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2469 {
2470 bool dead = true, freeze = false;
2471 struct pci_dev *pdev = to_pci_dev(dev->dev);
2472
2473 mutex_lock(&dev->shutdown_lock);
2474 if (pci_is_enabled(pdev)) {
2475 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2476
2477 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2478 dev->ctrl.state == NVME_CTRL_RESETTING) {
2479 freeze = true;
2480 nvme_start_freeze(&dev->ctrl);
2481 }
2482 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2483 pdev->error_state != pci_channel_io_normal);
2484 }
2485
2486 /*
2487 * Give the controller a chance to complete all entered requests if
2488 * doing a safe shutdown.
2489 */
2490 if (!dead && shutdown && freeze)
2491 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2492
2493 nvme_stop_queues(&dev->ctrl);
2494
2495 if (!dead && dev->ctrl.queue_count > 0) {
2496 nvme_disable_io_queues(dev);
2497 nvme_disable_admin_queue(dev, shutdown);
2498 }
2499 nvme_suspend_io_queues(dev);
2500 nvme_suspend_queue(&dev->queues[0]);
2501 nvme_pci_disable(dev);
2502 nvme_reap_pending_cqes(dev);
2503
2504 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2505 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2506 blk_mq_tagset_wait_completed_request(&dev->tagset);
2507 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2508
2509 /*
2510 * The driver will not be starting up queues again if shutting down so
2511 * must flush all entered requests to their failed completion to avoid
2512 * deadlocking blk-mq hot-cpu notifier.
2513 */
2514 if (shutdown) {
2515 nvme_start_queues(&dev->ctrl);
2516 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2517 nvme_start_admin_queue(&dev->ctrl);
2518 }
2519 mutex_unlock(&dev->shutdown_lock);
2520 }
2521
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2522 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2523 {
2524 if (!nvme_wait_reset(&dev->ctrl))
2525 return -EBUSY;
2526 nvme_dev_disable(dev, shutdown);
2527 return 0;
2528 }
2529
nvme_setup_prp_pools(struct nvme_dev * dev)2530 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2531 {
2532 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2533 NVME_CTRL_PAGE_SIZE,
2534 NVME_CTRL_PAGE_SIZE, 0);
2535 if (!dev->prp_page_pool)
2536 return -ENOMEM;
2537
2538 /* Optimisation for I/Os between 4k and 128k */
2539 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2540 256, 256, 0);
2541 if (!dev->prp_small_pool) {
2542 dma_pool_destroy(dev->prp_page_pool);
2543 return -ENOMEM;
2544 }
2545 return 0;
2546 }
2547
nvme_release_prp_pools(struct nvme_dev * dev)2548 static void nvme_release_prp_pools(struct nvme_dev *dev)
2549 {
2550 dma_pool_destroy(dev->prp_page_pool);
2551 dma_pool_destroy(dev->prp_small_pool);
2552 }
2553
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2554 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2555 {
2556 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2557 size_t alloc_size = sizeof(__le64 *) * npages +
2558 sizeof(struct scatterlist) * NVME_MAX_SEGS;
2559
2560 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2561 dev->iod_mempool = mempool_create_node(1,
2562 mempool_kmalloc, mempool_kfree,
2563 (void *)alloc_size, GFP_KERNEL,
2564 dev_to_node(dev->dev));
2565 if (!dev->iod_mempool)
2566 return -ENOMEM;
2567 return 0;
2568 }
2569
nvme_free_tagset(struct nvme_dev * dev)2570 static void nvme_free_tagset(struct nvme_dev *dev)
2571 {
2572 if (dev->tagset.tags)
2573 blk_mq_free_tag_set(&dev->tagset);
2574 dev->ctrl.tagset = NULL;
2575 }
2576
2577 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2578 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2579 {
2580 struct nvme_dev *dev = to_nvme_dev(ctrl);
2581
2582 nvme_dbbuf_dma_free(dev);
2583 nvme_free_tagset(dev);
2584 if (dev->ctrl.admin_q)
2585 blk_put_queue(dev->ctrl.admin_q);
2586 free_opal_dev(dev->ctrl.opal_dev);
2587 mempool_destroy(dev->iod_mempool);
2588 put_device(dev->dev);
2589 kfree(dev->queues);
2590 kfree(dev);
2591 }
2592
nvme_remove_dead_ctrl(struct nvme_dev * dev)2593 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2594 {
2595 /*
2596 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2597 * may be holding this pci_dev's device lock.
2598 */
2599 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2600 nvme_get_ctrl(&dev->ctrl);
2601 nvme_dev_disable(dev, false);
2602 nvme_kill_queues(&dev->ctrl);
2603 if (!queue_work(nvme_wq, &dev->remove_work))
2604 nvme_put_ctrl(&dev->ctrl);
2605 }
2606
nvme_reset_work(struct work_struct * work)2607 static void nvme_reset_work(struct work_struct *work)
2608 {
2609 struct nvme_dev *dev =
2610 container_of(work, struct nvme_dev, ctrl.reset_work);
2611 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2612 int result;
2613
2614 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2615 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2616 dev->ctrl.state);
2617 result = -ENODEV;
2618 goto out;
2619 }
2620
2621 /*
2622 * If we're called to reset a live controller first shut it down before
2623 * moving on.
2624 */
2625 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2626 nvme_dev_disable(dev, false);
2627 nvme_sync_queues(&dev->ctrl);
2628
2629 mutex_lock(&dev->shutdown_lock);
2630 result = nvme_pci_enable(dev);
2631 if (result)
2632 goto out_unlock;
2633
2634 result = nvme_pci_configure_admin_queue(dev);
2635 if (result)
2636 goto out_unlock;
2637
2638 result = nvme_alloc_admin_tags(dev);
2639 if (result)
2640 goto out_unlock;
2641
2642 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2643
2644 /*
2645 * Limit the max command size to prevent iod->sg allocations going
2646 * over a single page.
2647 */
2648 dev->ctrl.max_hw_sectors = min_t(u32,
2649 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2650 dev->ctrl.max_segments = NVME_MAX_SEGS;
2651
2652 /*
2653 * Don't limit the IOMMU merged segment size.
2654 */
2655 dma_set_max_seg_size(dev->dev, 0xffffffff);
2656
2657 mutex_unlock(&dev->shutdown_lock);
2658
2659 /*
2660 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2661 * initializing procedure here.
2662 */
2663 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2664 dev_warn(dev->ctrl.device,
2665 "failed to mark controller CONNECTING\n");
2666 result = -EBUSY;
2667 goto out;
2668 }
2669
2670 /*
2671 * We do not support an SGL for metadata (yet), so we are limited to a
2672 * single integrity segment for the separate metadata pointer.
2673 */
2674 dev->ctrl.max_integrity_segments = 1;
2675
2676 result = nvme_init_identify(&dev->ctrl);
2677 if (result)
2678 goto out;
2679
2680 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2681 if (!dev->ctrl.opal_dev)
2682 dev->ctrl.opal_dev =
2683 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2684 else if (was_suspend)
2685 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2686 } else {
2687 free_opal_dev(dev->ctrl.opal_dev);
2688 dev->ctrl.opal_dev = NULL;
2689 }
2690
2691 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2692 result = nvme_dbbuf_dma_alloc(dev);
2693 if (result)
2694 dev_warn(dev->dev,
2695 "unable to allocate dma for dbbuf\n");
2696 }
2697
2698 if (dev->ctrl.hmpre) {
2699 result = nvme_setup_host_mem(dev);
2700 if (result < 0)
2701 goto out;
2702 }
2703
2704 result = nvme_setup_io_queues(dev);
2705 if (result)
2706 goto out;
2707
2708 /*
2709 * Keep the controller around but remove all namespaces if we don't have
2710 * any working I/O queue.
2711 */
2712 if (dev->online_queues < 2) {
2713 dev_warn(dev->ctrl.device, "IO queues not created\n");
2714 nvme_kill_queues(&dev->ctrl);
2715 nvme_remove_namespaces(&dev->ctrl);
2716 nvme_free_tagset(dev);
2717 } else {
2718 nvme_start_queues(&dev->ctrl);
2719 nvme_wait_freeze(&dev->ctrl);
2720 nvme_dev_add(dev);
2721 nvme_unfreeze(&dev->ctrl);
2722 }
2723
2724 /*
2725 * If only admin queue live, keep it to do further investigation or
2726 * recovery.
2727 */
2728 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2729 dev_warn(dev->ctrl.device,
2730 "failed to mark controller live state\n");
2731 result = -ENODEV;
2732 goto out;
2733 }
2734
2735 nvme_start_ctrl(&dev->ctrl);
2736 return;
2737
2738 out_unlock:
2739 mutex_unlock(&dev->shutdown_lock);
2740 out:
2741 if (result)
2742 dev_warn(dev->ctrl.device,
2743 "Removing after probe failure status: %d\n", result);
2744 nvme_remove_dead_ctrl(dev);
2745 }
2746
nvme_remove_dead_ctrl_work(struct work_struct * work)2747 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2748 {
2749 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2750 struct pci_dev *pdev = to_pci_dev(dev->dev);
2751
2752 if (pci_get_drvdata(pdev))
2753 device_release_driver(&pdev->dev);
2754 nvme_put_ctrl(&dev->ctrl);
2755 }
2756
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2757 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2758 {
2759 *val = readl(to_nvme_dev(ctrl)->bar + off);
2760 return 0;
2761 }
2762
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2763 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2764 {
2765 writel(val, to_nvme_dev(ctrl)->bar + off);
2766 return 0;
2767 }
2768
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2769 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2770 {
2771 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2772 return 0;
2773 }
2774
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2775 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2776 {
2777 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2778
2779 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2780 }
2781
2782 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2783 .name = "pcie",
2784 .module = THIS_MODULE,
2785 .flags = NVME_F_METADATA_SUPPORTED |
2786 NVME_F_PCI_P2PDMA,
2787 .reg_read32 = nvme_pci_reg_read32,
2788 .reg_write32 = nvme_pci_reg_write32,
2789 .reg_read64 = nvme_pci_reg_read64,
2790 .free_ctrl = nvme_pci_free_ctrl,
2791 .submit_async_event = nvme_pci_submit_async_event,
2792 .get_address = nvme_pci_get_address,
2793 };
2794
nvme_dev_map(struct nvme_dev * dev)2795 static int nvme_dev_map(struct nvme_dev *dev)
2796 {
2797 struct pci_dev *pdev = to_pci_dev(dev->dev);
2798
2799 if (pci_request_mem_regions(pdev, "nvme"))
2800 return -ENODEV;
2801
2802 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2803 goto release;
2804
2805 return 0;
2806 release:
2807 pci_release_mem_regions(pdev);
2808 return -ENODEV;
2809 }
2810
check_vendor_combination_bug(struct pci_dev * pdev)2811 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2812 {
2813 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2814 /*
2815 * Several Samsung devices seem to drop off the PCIe bus
2816 * randomly when APST is on and uses the deepest sleep state.
2817 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2818 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2819 * 950 PRO 256GB", but it seems to be restricted to two Dell
2820 * laptops.
2821 */
2822 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2823 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2824 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2825 return NVME_QUIRK_NO_DEEPEST_PS;
2826 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2827 /*
2828 * Samsung SSD 960 EVO drops off the PCIe bus after system
2829 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2830 * within few minutes after bootup on a Coffee Lake board -
2831 * ASUS PRIME Z370-A
2832 */
2833 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2834 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2835 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2836 return NVME_QUIRK_NO_APST;
2837 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2838 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2839 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2840 /*
2841 * Forcing to use host managed nvme power settings for
2842 * lowest idle power with quick resume latency on
2843 * Samsung and Toshiba SSDs based on suspend behavior
2844 * on Coffee Lake board for LENOVO C640
2845 */
2846 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2847 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2848 return NVME_QUIRK_SIMPLE_SUSPEND;
2849 }
2850
2851 return 0;
2852 }
2853
nvme_async_probe(void * data,async_cookie_t cookie)2854 static void nvme_async_probe(void *data, async_cookie_t cookie)
2855 {
2856 struct nvme_dev *dev = data;
2857
2858 flush_work(&dev->ctrl.reset_work);
2859 flush_work(&dev->ctrl.scan_work);
2860 nvme_put_ctrl(&dev->ctrl);
2861 }
2862
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)2863 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2864 const struct pci_device_id *id)
2865 {
2866 unsigned long quirks = id->driver_data;
2867 int node = dev_to_node(&pdev->dev);
2868 struct nvme_dev *dev;
2869 int ret = -ENOMEM;
2870
2871 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2872 if (!dev)
2873 return ERR_PTR(-ENOMEM);
2874 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2875 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2876 mutex_init(&dev->shutdown_lock);
2877
2878 dev->nr_write_queues = write_queues;
2879 dev->nr_poll_queues = poll_queues;
2880 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2881 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2882 sizeof(struct nvme_queue), GFP_KERNEL, node);
2883 if (!dev->queues)
2884 goto out_free_dev;
2885
2886 dev->dev = get_device(&pdev->dev);
2887
2888 quirks |= check_vendor_combination_bug(pdev);
2889 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2890 /*
2891 * Some systems use a bios work around to ask for D3 on
2892 * platforms that support kernel managed suspend.
2893 */
2894 dev_info(&pdev->dev,
2895 "platform quirk: setting simple suspend\n");
2896 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2897 }
2898 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2899 quirks);
2900 if (ret)
2901 goto out_put_device;
2902 return dev;
2903
2904 out_put_device:
2905 put_device(dev->dev);
2906 kfree(dev->queues);
2907 out_free_dev:
2908 kfree(dev);
2909 return ERR_PTR(ret);
2910 }
2911
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)2912 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2913 {
2914 struct nvme_dev *dev;
2915 int result = -ENOMEM;
2916
2917 dev = nvme_pci_alloc_dev(pdev, id);
2918 if (IS_ERR(dev))
2919 return PTR_ERR(dev);
2920
2921 result = nvme_dev_map(dev);
2922 if (result)
2923 goto out_uninit_ctrl;
2924
2925 result = nvme_setup_prp_pools(dev);
2926 if (result)
2927 goto out_dev_unmap;
2928
2929 result = nvme_pci_alloc_iod_mempool(dev);
2930 if (result)
2931 goto out_release_prp_pools;
2932
2933 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2934 pci_set_drvdata(pdev, dev);
2935
2936 nvme_reset_ctrl(&dev->ctrl);
2937 async_schedule(nvme_async_probe, dev);
2938 return 0;
2939
2940 out_release_prp_pools:
2941 nvme_release_prp_pools(dev);
2942 out_dev_unmap:
2943 nvme_dev_unmap(dev);
2944 out_uninit_ctrl:
2945 nvme_uninit_ctrl(&dev->ctrl);
2946 return result;
2947 }
2948
nvme_reset_prepare(struct pci_dev * pdev)2949 static void nvme_reset_prepare(struct pci_dev *pdev)
2950 {
2951 struct nvme_dev *dev = pci_get_drvdata(pdev);
2952
2953 /*
2954 * We don't need to check the return value from waiting for the reset
2955 * state as pci_dev device lock is held, making it impossible to race
2956 * with ->remove().
2957 */
2958 nvme_disable_prepare_reset(dev, false);
2959 nvme_sync_queues(&dev->ctrl);
2960 }
2961
nvme_reset_done(struct pci_dev * pdev)2962 static void nvme_reset_done(struct pci_dev *pdev)
2963 {
2964 struct nvme_dev *dev = pci_get_drvdata(pdev);
2965
2966 if (!nvme_try_sched_reset(&dev->ctrl))
2967 flush_work(&dev->ctrl.reset_work);
2968 }
2969
nvme_shutdown(struct pci_dev * pdev)2970 static void nvme_shutdown(struct pci_dev *pdev)
2971 {
2972 struct nvme_dev *dev = pci_get_drvdata(pdev);
2973
2974 nvme_disable_prepare_reset(dev, true);
2975 }
2976
2977 /*
2978 * The driver's remove may be called on a device in a partially initialized
2979 * state. This function must not have any dependencies on the device state in
2980 * order to proceed.
2981 */
nvme_remove(struct pci_dev * pdev)2982 static void nvme_remove(struct pci_dev *pdev)
2983 {
2984 struct nvme_dev *dev = pci_get_drvdata(pdev);
2985
2986 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2987 pci_set_drvdata(pdev, NULL);
2988
2989 if (!pci_device_is_present(pdev)) {
2990 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2991 nvme_dev_disable(dev, true);
2992 }
2993
2994 flush_work(&dev->ctrl.reset_work);
2995 nvme_stop_ctrl(&dev->ctrl);
2996 nvme_remove_namespaces(&dev->ctrl);
2997 nvme_dev_disable(dev, true);
2998 nvme_release_cmb(dev);
2999 nvme_free_host_mem(dev);
3000 nvme_dev_remove_admin(dev);
3001 nvme_free_queues(dev, 0);
3002 nvme_release_prp_pools(dev);
3003 nvme_dev_unmap(dev);
3004 nvme_uninit_ctrl(&dev->ctrl);
3005 }
3006
3007 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3008 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3009 {
3010 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3011 }
3012
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3013 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3014 {
3015 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3016 }
3017
nvme_resume(struct device * dev)3018 static int nvme_resume(struct device *dev)
3019 {
3020 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3021 struct nvme_ctrl *ctrl = &ndev->ctrl;
3022
3023 if (ndev->last_ps == U32_MAX ||
3024 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3025 return nvme_try_sched_reset(&ndev->ctrl);
3026 return 0;
3027 }
3028
nvme_suspend(struct device * dev)3029 static int nvme_suspend(struct device *dev)
3030 {
3031 struct pci_dev *pdev = to_pci_dev(dev);
3032 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3033 struct nvme_ctrl *ctrl = &ndev->ctrl;
3034 int ret = -EBUSY;
3035
3036 ndev->last_ps = U32_MAX;
3037
3038 /*
3039 * The platform does not remove power for a kernel managed suspend so
3040 * use host managed nvme power settings for lowest idle power if
3041 * possible. This should have quicker resume latency than a full device
3042 * shutdown. But if the firmware is involved after the suspend or the
3043 * device does not support any non-default power states, shut down the
3044 * device fully.
3045 *
3046 * If ASPM is not enabled for the device, shut down the device and allow
3047 * the PCI bus layer to put it into D3 in order to take the PCIe link
3048 * down, so as to allow the platform to achieve its minimum low-power
3049 * state (which may not be possible if the link is up).
3050 *
3051 * If a host memory buffer is enabled, shut down the device as the NVMe
3052 * specification allows the device to access the host memory buffer in
3053 * host DRAM from all power states, but hosts will fail access to DRAM
3054 * during S3.
3055 */
3056 if (pm_suspend_via_firmware() || !ctrl->npss ||
3057 !pcie_aspm_enabled(pdev) ||
3058 ndev->nr_host_mem_descs ||
3059 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3060 return nvme_disable_prepare_reset(ndev, true);
3061
3062 nvme_start_freeze(ctrl);
3063 nvme_wait_freeze(ctrl);
3064 nvme_sync_queues(ctrl);
3065
3066 if (ctrl->state != NVME_CTRL_LIVE)
3067 goto unfreeze;
3068
3069 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3070 if (ret < 0)
3071 goto unfreeze;
3072
3073 /*
3074 * A saved state prevents pci pm from generically controlling the
3075 * device's power. If we're using protocol specific settings, we don't
3076 * want pci interfering.
3077 */
3078 pci_save_state(pdev);
3079
3080 ret = nvme_set_power_state(ctrl, ctrl->npss);
3081 if (ret < 0)
3082 goto unfreeze;
3083
3084 if (ret) {
3085 /* discard the saved state */
3086 pci_load_saved_state(pdev, NULL);
3087
3088 /*
3089 * Clearing npss forces a controller reset on resume. The
3090 * correct value will be rediscovered then.
3091 */
3092 ret = nvme_disable_prepare_reset(ndev, true);
3093 ctrl->npss = 0;
3094 }
3095 unfreeze:
3096 nvme_unfreeze(ctrl);
3097 return ret;
3098 }
3099
nvme_simple_suspend(struct device * dev)3100 static int nvme_simple_suspend(struct device *dev)
3101 {
3102 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3103
3104 return nvme_disable_prepare_reset(ndev, true);
3105 }
3106
nvme_simple_resume(struct device * dev)3107 static int nvme_simple_resume(struct device *dev)
3108 {
3109 struct pci_dev *pdev = to_pci_dev(dev);
3110 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3111
3112 return nvme_try_sched_reset(&ndev->ctrl);
3113 }
3114
3115 static const struct dev_pm_ops nvme_dev_pm_ops = {
3116 .suspend = nvme_suspend,
3117 .resume = nvme_resume,
3118 .freeze = nvme_simple_suspend,
3119 .thaw = nvme_simple_resume,
3120 .poweroff = nvme_simple_suspend,
3121 .restore = nvme_simple_resume,
3122 };
3123 #endif /* CONFIG_PM_SLEEP */
3124
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3125 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3126 pci_channel_state_t state)
3127 {
3128 struct nvme_dev *dev = pci_get_drvdata(pdev);
3129
3130 /*
3131 * A frozen channel requires a reset. When detected, this method will
3132 * shutdown the controller to quiesce. The controller will be restarted
3133 * after the slot reset through driver's slot_reset callback.
3134 */
3135 switch (state) {
3136 case pci_channel_io_normal:
3137 return PCI_ERS_RESULT_CAN_RECOVER;
3138 case pci_channel_io_frozen:
3139 dev_warn(dev->ctrl.device,
3140 "frozen state error detected, reset controller\n");
3141 nvme_dev_disable(dev, false);
3142 return PCI_ERS_RESULT_NEED_RESET;
3143 case pci_channel_io_perm_failure:
3144 dev_warn(dev->ctrl.device,
3145 "failure state error detected, request disconnect\n");
3146 return PCI_ERS_RESULT_DISCONNECT;
3147 }
3148 return PCI_ERS_RESULT_NEED_RESET;
3149 }
3150
nvme_slot_reset(struct pci_dev * pdev)3151 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3152 {
3153 struct nvme_dev *dev = pci_get_drvdata(pdev);
3154
3155 dev_info(dev->ctrl.device, "restart after slot reset\n");
3156 pci_restore_state(pdev);
3157 nvme_reset_ctrl(&dev->ctrl);
3158 return PCI_ERS_RESULT_RECOVERED;
3159 }
3160
nvme_error_resume(struct pci_dev * pdev)3161 static void nvme_error_resume(struct pci_dev *pdev)
3162 {
3163 struct nvme_dev *dev = pci_get_drvdata(pdev);
3164
3165 flush_work(&dev->ctrl.reset_work);
3166 }
3167
3168 static const struct pci_error_handlers nvme_err_handler = {
3169 .error_detected = nvme_error_detected,
3170 .slot_reset = nvme_slot_reset,
3171 .resume = nvme_error_resume,
3172 .reset_prepare = nvme_reset_prepare,
3173 .reset_done = nvme_reset_done,
3174 };
3175
3176 static const struct pci_device_id nvme_id_table[] = {
3177 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3178 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3179 NVME_QUIRK_DEALLOCATE_ZEROES, },
3180 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3181 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3182 NVME_QUIRK_DEALLOCATE_ZEROES, },
3183 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3184 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3185 NVME_QUIRK_DEALLOCATE_ZEROES |
3186 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3187 NVME_QUIRK_BOGUS_NID, },
3188 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3189 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3190 NVME_QUIRK_DEALLOCATE_ZEROES, },
3191 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3192 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3193 NVME_QUIRK_MEDIUM_PRIO_SQ |
3194 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3195 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3196 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3197 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3198 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3199 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3200 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3201 NVME_QUIRK_BOGUS_NID, },
3202 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3203 .driver_data = NVME_QUIRK_BOGUS_NID, },
3204 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3205 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3206 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3207 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3208 NVME_QUIRK_NO_NS_DESC_LIST, },
3209 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3210 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3211 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3212 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3213 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3214 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3215 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3216 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3217 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3218 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3219 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3220 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3221 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3222 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3223 NVME_QUIRK_BOGUS_NID, },
3224 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3225 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3226 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3227 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3228 .driver_data = NVME_QUIRK_LIGHTNVM, },
3229 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3230 .driver_data = NVME_QUIRK_LIGHTNVM, },
3231 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3232 .driver_data = NVME_QUIRK_LIGHTNVM, },
3233 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3234 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3235 NVME_QUIRK_BOGUS_NID, },
3236 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3237 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3238 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3239 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3240 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3241 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3242 .driver_data = NVME_QUIRK_BOGUS_NID, },
3243 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3244 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3245 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3246 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3247 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3248 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3249 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3250 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3251 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3252 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3253 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3254 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3255 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3256 NVME_QUIRK_128_BYTES_SQES |
3257 NVME_QUIRK_SHARED_TAGS |
3258 NVME_QUIRK_SKIP_CID_GEN },
3259 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3260 { 0, }
3261 };
3262 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3263
3264 static struct pci_driver nvme_driver = {
3265 .name = "nvme",
3266 .id_table = nvme_id_table,
3267 .probe = nvme_probe,
3268 .remove = nvme_remove,
3269 .shutdown = nvme_shutdown,
3270 #ifdef CONFIG_PM_SLEEP
3271 .driver = {
3272 .pm = &nvme_dev_pm_ops,
3273 },
3274 #endif
3275 .sriov_configure = pci_sriov_configure_simple,
3276 .err_handler = &nvme_err_handler,
3277 };
3278
nvme_init(void)3279 static int __init nvme_init(void)
3280 {
3281 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3282 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3283 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3284 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3285
3286 return pci_register_driver(&nvme_driver);
3287 }
3288
nvme_exit(void)3289 static void __exit nvme_exit(void)
3290 {
3291 pci_unregister_driver(&nvme_driver);
3292 flush_workqueue(nvme_wq);
3293 }
3294
3295 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3296 MODULE_LICENSE("GPL");
3297 MODULE_VERSION("1.0");
3298 module_init(nvme_init);
3299 module_exit(nvme_exit);
3300