1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include "trace.h"
33 #include <trace/events/f2fs.h>
34 #include <uapi/linux/f2fs.h>
35
f2fs_filemap_fault(struct vm_fault * vmf)36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 struct inode *inode = file_inode(vmf->vma->vm_file);
39 vm_fault_t ret;
40
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 ret = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
44
45 if (!ret)
46 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
47 F2FS_BLKSIZE);
48
49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51 return ret;
52 }
53
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 struct page *page = vmf->page;
57 struct inode *inode = file_inode(vmf->vma->vm_file);
58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 struct dnode_of_data dn;
60 bool need_alloc = true;
61 int err = 0;
62
63 if (unlikely(IS_IMMUTABLE(inode)))
64 return VM_FAULT_SIGBUS;
65
66 if (unlikely(f2fs_cp_error(sbi))) {
67 err = -EIO;
68 goto err;
69 }
70
71 if (!f2fs_is_checkpoint_ready(sbi)) {
72 err = -ENOSPC;
73 goto err;
74 }
75
76 #ifdef CONFIG_F2FS_FS_COMPRESSION
77 if (f2fs_compressed_file(inode)) {
78 int ret = f2fs_is_compressed_cluster(inode, page->index);
79
80 if (ret < 0) {
81 err = ret;
82 goto err;
83 } else if (ret) {
84 if (ret < F2FS_I(inode)->i_cluster_size) {
85 err = -EAGAIN;
86 goto err;
87 }
88 need_alloc = false;
89 }
90 }
91 #endif
92 /* should do out of any locked page */
93 if (need_alloc)
94 f2fs_balance_fs(sbi, true);
95
96 sb_start_pagefault(inode->i_sb);
97
98 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
99
100 file_update_time(vmf->vma->vm_file);
101 down_read(&F2FS_I(inode)->i_mmap_sem);
102 lock_page(page);
103 if (unlikely(page->mapping != inode->i_mapping ||
104 page_offset(page) > i_size_read(inode) ||
105 !PageUptodate(page))) {
106 unlock_page(page);
107 err = -EFAULT;
108 goto out_sem;
109 }
110
111 if (need_alloc) {
112 /* block allocation */
113 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
114 set_new_dnode(&dn, inode, NULL, NULL, 0);
115 err = f2fs_get_block(&dn, page->index);
116 f2fs_put_dnode(&dn);
117 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
118 }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 if (!need_alloc) {
122 set_new_dnode(&dn, inode, NULL, NULL, 0);
123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 f2fs_put_dnode(&dn);
125 }
126 #endif
127 if (err) {
128 unlock_page(page);
129 goto out_sem;
130 }
131
132 f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134 /* wait for GCed page writeback via META_MAPPING */
135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137 /*
138 * check to see if the page is mapped already (no holes)
139 */
140 if (PageMappedToDisk(page))
141 goto out_sem;
142
143 /* page is wholly or partially inside EOF */
144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 i_size_read(inode)) {
146 loff_t offset;
147
148 offset = i_size_read(inode) & ~PAGE_MASK;
149 zero_user_segment(page, offset, PAGE_SIZE);
150 }
151 set_page_dirty(page);
152 if (!PageUptodate(page))
153 SetPageUptodate(page);
154
155 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
156 f2fs_update_time(sbi, REQ_TIME);
157
158 trace_f2fs_vm_page_mkwrite(page, DATA);
159 out_sem:
160 up_read(&F2FS_I(inode)->i_mmap_sem);
161
162 sb_end_pagefault(inode->i_sb);
163 err:
164 return block_page_mkwrite_return(err);
165 }
166
167 static const struct vm_operations_struct f2fs_file_vm_ops = {
168 .fault = f2fs_filemap_fault,
169 .map_pages = filemap_map_pages,
170 .page_mkwrite = f2fs_vm_page_mkwrite,
171 };
172
get_parent_ino(struct inode * inode,nid_t * pino)173 static int get_parent_ino(struct inode *inode, nid_t *pino)
174 {
175 struct dentry *dentry;
176
177 /*
178 * Make sure to get the non-deleted alias. The alias associated with
179 * the open file descriptor being fsync()'ed may be deleted already.
180 */
181 dentry = d_find_alias(inode);
182 if (!dentry)
183 return 0;
184
185 *pino = parent_ino(dentry);
186 dput(dentry);
187 return 1;
188 }
189
need_do_checkpoint(struct inode * inode)190 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
191 {
192 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
193 enum cp_reason_type cp_reason = CP_NO_NEEDED;
194
195 if (!S_ISREG(inode->i_mode))
196 cp_reason = CP_NON_REGULAR;
197 else if (f2fs_compressed_file(inode))
198 cp_reason = CP_COMPRESSED;
199 else if (inode->i_nlink != 1)
200 cp_reason = CP_HARDLINK;
201 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
202 cp_reason = CP_SB_NEED_CP;
203 else if (file_wrong_pino(inode))
204 cp_reason = CP_WRONG_PINO;
205 else if (!f2fs_space_for_roll_forward(sbi))
206 cp_reason = CP_NO_SPC_ROLL;
207 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
208 cp_reason = CP_NODE_NEED_CP;
209 else if (test_opt(sbi, FASTBOOT))
210 cp_reason = CP_FASTBOOT_MODE;
211 else if (F2FS_OPTION(sbi).active_logs == 2)
212 cp_reason = CP_SPEC_LOG_NUM;
213 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
214 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
215 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
216 TRANS_DIR_INO))
217 cp_reason = CP_RECOVER_DIR;
218
219 return cp_reason;
220 }
221
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)222 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
223 {
224 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
225 bool ret = false;
226 /* But we need to avoid that there are some inode updates */
227 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
228 ret = true;
229 f2fs_put_page(i, 0);
230 return ret;
231 }
232
try_to_fix_pino(struct inode * inode)233 static void try_to_fix_pino(struct inode *inode)
234 {
235 struct f2fs_inode_info *fi = F2FS_I(inode);
236 nid_t pino;
237
238 down_write(&fi->i_sem);
239 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
240 get_parent_ino(inode, &pino)) {
241 f2fs_i_pino_write(inode, pino);
242 file_got_pino(inode);
243 }
244 up_write(&fi->i_sem);
245 }
246
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)247 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
248 int datasync, bool atomic)
249 {
250 struct inode *inode = file->f_mapping->host;
251 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
252 nid_t ino = inode->i_ino;
253 int ret = 0;
254 enum cp_reason_type cp_reason = 0;
255 struct writeback_control wbc = {
256 .sync_mode = WB_SYNC_ALL,
257 .nr_to_write = LONG_MAX,
258 .for_reclaim = 0,
259 };
260 unsigned int seq_id = 0;
261
262 if (unlikely(f2fs_readonly(inode->i_sb)))
263 return 0;
264
265 trace_f2fs_sync_file_enter(inode);
266
267 if (S_ISDIR(inode->i_mode))
268 goto go_write;
269
270 /* if fdatasync is triggered, let's do in-place-update */
271 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
272 set_inode_flag(inode, FI_NEED_IPU);
273 ret = file_write_and_wait_range(file, start, end);
274 clear_inode_flag(inode, FI_NEED_IPU);
275
276 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
277 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
278 return ret;
279 }
280
281 /* if the inode is dirty, let's recover all the time */
282 if (!f2fs_skip_inode_update(inode, datasync)) {
283 f2fs_write_inode(inode, NULL);
284 goto go_write;
285 }
286
287 /*
288 * if there is no written data, don't waste time to write recovery info.
289 */
290 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
291 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
292
293 /* it may call write_inode just prior to fsync */
294 if (need_inode_page_update(sbi, ino))
295 goto go_write;
296
297 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
298 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
299 goto flush_out;
300 goto out;
301 }
302 go_write:
303 /*
304 * Both of fdatasync() and fsync() are able to be recovered from
305 * sudden-power-off.
306 */
307 down_read(&F2FS_I(inode)->i_sem);
308 cp_reason = need_do_checkpoint(inode);
309 up_read(&F2FS_I(inode)->i_sem);
310
311 if (cp_reason) {
312 /* all the dirty node pages should be flushed for POR */
313 ret = f2fs_sync_fs(inode->i_sb, 1);
314
315 /*
316 * We've secured consistency through sync_fs. Following pino
317 * will be used only for fsynced inodes after checkpoint.
318 */
319 try_to_fix_pino(inode);
320 clear_inode_flag(inode, FI_APPEND_WRITE);
321 clear_inode_flag(inode, FI_UPDATE_WRITE);
322 goto out;
323 }
324 sync_nodes:
325 atomic_inc(&sbi->wb_sync_req[NODE]);
326 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
327 atomic_dec(&sbi->wb_sync_req[NODE]);
328 if (ret)
329 goto out;
330
331 /* if cp_error was enabled, we should avoid infinite loop */
332 if (unlikely(f2fs_cp_error(sbi))) {
333 ret = -EIO;
334 goto out;
335 }
336
337 if (f2fs_need_inode_block_update(sbi, ino)) {
338 f2fs_mark_inode_dirty_sync(inode, true);
339 f2fs_write_inode(inode, NULL);
340 goto sync_nodes;
341 }
342
343 /*
344 * If it's atomic_write, it's just fine to keep write ordering. So
345 * here we don't need to wait for node write completion, since we use
346 * node chain which serializes node blocks. If one of node writes are
347 * reordered, we can see simply broken chain, resulting in stopping
348 * roll-forward recovery. It means we'll recover all or none node blocks
349 * given fsync mark.
350 */
351 if (!atomic) {
352 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
353 if (ret)
354 goto out;
355 }
356
357 /* once recovery info is written, don't need to tack this */
358 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
359 clear_inode_flag(inode, FI_APPEND_WRITE);
360 flush_out:
361 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
362 ret = f2fs_issue_flush(sbi, inode->i_ino);
363 if (!ret) {
364 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
365 clear_inode_flag(inode, FI_UPDATE_WRITE);
366 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
367 }
368 f2fs_update_time(sbi, REQ_TIME);
369 out:
370 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
371 f2fs_trace_ios(NULL, 1);
372 return ret;
373 }
374
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)375 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
376 {
377 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
378 return -EIO;
379 return f2fs_do_sync_file(file, start, end, datasync, false);
380 }
381
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)382 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
383 pgoff_t index, int whence)
384 {
385 switch (whence) {
386 case SEEK_DATA:
387 if (__is_valid_data_blkaddr(blkaddr))
388 return true;
389 if (blkaddr == NEW_ADDR &&
390 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
391 return true;
392 break;
393 case SEEK_HOLE:
394 if (blkaddr == NULL_ADDR)
395 return true;
396 break;
397 }
398 return false;
399 }
400
f2fs_seek_block(struct file * file,loff_t offset,int whence)401 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
402 {
403 struct inode *inode = file->f_mapping->host;
404 loff_t maxbytes = inode->i_sb->s_maxbytes;
405 struct dnode_of_data dn;
406 pgoff_t pgofs, end_offset;
407 loff_t data_ofs = offset;
408 loff_t isize;
409 int err = 0;
410
411 inode_lock(inode);
412
413 isize = i_size_read(inode);
414 if (offset >= isize)
415 goto fail;
416
417 /* handle inline data case */
418 if (f2fs_has_inline_data(inode)) {
419 if (whence == SEEK_HOLE) {
420 data_ofs = isize;
421 goto found;
422 } else if (whence == SEEK_DATA) {
423 data_ofs = offset;
424 goto found;
425 }
426 }
427
428 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
429
430 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
431 set_new_dnode(&dn, inode, NULL, NULL, 0);
432 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
433 if (err && err != -ENOENT) {
434 goto fail;
435 } else if (err == -ENOENT) {
436 /* direct node does not exists */
437 if (whence == SEEK_DATA) {
438 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
439 continue;
440 } else {
441 goto found;
442 }
443 }
444
445 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
446
447 /* find data/hole in dnode block */
448 for (; dn.ofs_in_node < end_offset;
449 dn.ofs_in_node++, pgofs++,
450 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
451 block_t blkaddr;
452
453 blkaddr = f2fs_data_blkaddr(&dn);
454
455 if (__is_valid_data_blkaddr(blkaddr) &&
456 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
457 blkaddr, DATA_GENERIC_ENHANCE)) {
458 f2fs_put_dnode(&dn);
459 goto fail;
460 }
461
462 if (__found_offset(file->f_mapping, blkaddr,
463 pgofs, whence)) {
464 f2fs_put_dnode(&dn);
465 goto found;
466 }
467 }
468 f2fs_put_dnode(&dn);
469 }
470
471 if (whence == SEEK_DATA)
472 goto fail;
473 found:
474 if (whence == SEEK_HOLE && data_ofs > isize)
475 data_ofs = isize;
476 inode_unlock(inode);
477 return vfs_setpos(file, data_ofs, maxbytes);
478 fail:
479 inode_unlock(inode);
480 return -ENXIO;
481 }
482
f2fs_llseek(struct file * file,loff_t offset,int whence)483 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
484 {
485 struct inode *inode = file->f_mapping->host;
486 loff_t maxbytes = inode->i_sb->s_maxbytes;
487
488 switch (whence) {
489 case SEEK_SET:
490 case SEEK_CUR:
491 case SEEK_END:
492 return generic_file_llseek_size(file, offset, whence,
493 maxbytes, i_size_read(inode));
494 case SEEK_DATA:
495 case SEEK_HOLE:
496 if (offset < 0)
497 return -ENXIO;
498 return f2fs_seek_block(file, offset, whence);
499 }
500
501 return -EINVAL;
502 }
503
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)504 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
505 {
506 struct inode *inode = file_inode(file);
507 int err;
508
509 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
510 return -EIO;
511
512 if (!f2fs_is_compress_backend_ready(inode))
513 return -EOPNOTSUPP;
514
515 /* we don't need to use inline_data strictly */
516 err = f2fs_convert_inline_inode(inode);
517 if (err)
518 return err;
519
520 file_accessed(file);
521 vma->vm_ops = &f2fs_file_vm_ops;
522 set_inode_flag(inode, FI_MMAP_FILE);
523 return 0;
524 }
525
f2fs_file_open(struct inode * inode,struct file * filp)526 static int f2fs_file_open(struct inode *inode, struct file *filp)
527 {
528 int err = fscrypt_file_open(inode, filp);
529
530 if (err)
531 return err;
532
533 if (!f2fs_is_compress_backend_ready(inode))
534 return -EOPNOTSUPP;
535
536 err = fsverity_file_open(inode, filp);
537 if (err)
538 return err;
539
540 filp->f_mode |= FMODE_NOWAIT;
541
542 return dquot_file_open(inode, filp);
543 }
544
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)545 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
546 {
547 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
548 struct f2fs_node *raw_node;
549 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
550 __le32 *addr;
551 int base = 0;
552 bool compressed_cluster = false;
553 int cluster_index = 0, valid_blocks = 0;
554 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
555 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
556
557 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
558 base = get_extra_isize(dn->inode);
559
560 raw_node = F2FS_NODE(dn->node_page);
561 addr = blkaddr_in_node(raw_node) + base + ofs;
562
563 /* Assumption: truncateion starts with cluster */
564 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
565 block_t blkaddr = le32_to_cpu(*addr);
566
567 if (f2fs_compressed_file(dn->inode) &&
568 !(cluster_index & (cluster_size - 1))) {
569 if (compressed_cluster)
570 f2fs_i_compr_blocks_update(dn->inode,
571 valid_blocks, false);
572 compressed_cluster = (blkaddr == COMPRESS_ADDR);
573 valid_blocks = 0;
574 }
575
576 if (blkaddr == NULL_ADDR)
577 continue;
578
579 dn->data_blkaddr = NULL_ADDR;
580 f2fs_set_data_blkaddr(dn);
581
582 if (__is_valid_data_blkaddr(blkaddr)) {
583 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
584 DATA_GENERIC_ENHANCE))
585 continue;
586 if (compressed_cluster)
587 valid_blocks++;
588 }
589
590 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
591 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
592
593 f2fs_invalidate_blocks(sbi, blkaddr);
594
595 if (!released || blkaddr != COMPRESS_ADDR)
596 nr_free++;
597 }
598
599 if (compressed_cluster)
600 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
601
602 if (nr_free) {
603 pgoff_t fofs;
604 /*
605 * once we invalidate valid blkaddr in range [ofs, ofs + count],
606 * we will invalidate all blkaddr in the whole range.
607 */
608 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
609 dn->inode) + ofs;
610 f2fs_update_extent_cache_range(dn, fofs, 0, len);
611 dec_valid_block_count(sbi, dn->inode, nr_free);
612 }
613 dn->ofs_in_node = ofs;
614
615 f2fs_update_time(sbi, REQ_TIME);
616 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
617 dn->ofs_in_node, nr_free);
618 }
619
f2fs_truncate_data_blocks(struct dnode_of_data * dn)620 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
621 {
622 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
623 }
624
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)625 static int truncate_partial_data_page(struct inode *inode, u64 from,
626 bool cache_only)
627 {
628 loff_t offset = from & (PAGE_SIZE - 1);
629 pgoff_t index = from >> PAGE_SHIFT;
630 struct address_space *mapping = inode->i_mapping;
631 struct page *page;
632
633 if (!offset && !cache_only)
634 return 0;
635
636 if (cache_only) {
637 page = find_lock_page(mapping, index);
638 if (page && PageUptodate(page))
639 goto truncate_out;
640 f2fs_put_page(page, 1);
641 return 0;
642 }
643
644 page = f2fs_get_lock_data_page(inode, index, true);
645 if (IS_ERR(page))
646 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
647 truncate_out:
648 f2fs_wait_on_page_writeback(page, DATA, true, true);
649 zero_user(page, offset, PAGE_SIZE - offset);
650
651 /* An encrypted inode should have a key and truncate the last page. */
652 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
653 if (!cache_only)
654 set_page_dirty(page);
655 f2fs_put_page(page, 1);
656 return 0;
657 }
658
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)659 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
660 {
661 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
662 struct dnode_of_data dn;
663 pgoff_t free_from;
664 int count = 0, err = 0;
665 struct page *ipage;
666 bool truncate_page = false;
667
668 trace_f2fs_truncate_blocks_enter(inode, from);
669
670 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
671
672 if (free_from >= sbi->max_file_blocks)
673 goto free_partial;
674
675 if (lock)
676 f2fs_lock_op(sbi);
677
678 ipage = f2fs_get_node_page(sbi, inode->i_ino);
679 if (IS_ERR(ipage)) {
680 err = PTR_ERR(ipage);
681 goto out;
682 }
683
684 if (f2fs_has_inline_data(inode)) {
685 f2fs_truncate_inline_inode(inode, ipage, from);
686 f2fs_put_page(ipage, 1);
687 truncate_page = true;
688 goto out;
689 }
690
691 set_new_dnode(&dn, inode, ipage, NULL, 0);
692 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
693 if (err) {
694 if (err == -ENOENT)
695 goto free_next;
696 goto out;
697 }
698
699 count = ADDRS_PER_PAGE(dn.node_page, inode);
700
701 count -= dn.ofs_in_node;
702 f2fs_bug_on(sbi, count < 0);
703
704 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
705 f2fs_truncate_data_blocks_range(&dn, count);
706 free_from += count;
707 }
708
709 f2fs_put_dnode(&dn);
710 free_next:
711 err = f2fs_truncate_inode_blocks(inode, free_from);
712 out:
713 if (lock)
714 f2fs_unlock_op(sbi);
715 free_partial:
716 /* lastly zero out the first data page */
717 if (!err)
718 err = truncate_partial_data_page(inode, from, truncate_page);
719
720 trace_f2fs_truncate_blocks_exit(inode, err);
721 return err;
722 }
723
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)724 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
725 {
726 u64 free_from = from;
727 int err;
728
729 #ifdef CONFIG_F2FS_FS_COMPRESSION
730 /*
731 * for compressed file, only support cluster size
732 * aligned truncation.
733 */
734 if (f2fs_compressed_file(inode))
735 free_from = round_up(from,
736 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
737 #endif
738
739 err = f2fs_do_truncate_blocks(inode, free_from, lock);
740 if (err)
741 return err;
742
743 #ifdef CONFIG_F2FS_FS_COMPRESSION
744 if (from != free_from) {
745 err = f2fs_truncate_partial_cluster(inode, from, lock);
746 if (err)
747 return err;
748 }
749 #endif
750
751 return 0;
752 }
753
f2fs_truncate(struct inode * inode)754 int f2fs_truncate(struct inode *inode)
755 {
756 int err;
757
758 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
759 return -EIO;
760
761 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
762 S_ISLNK(inode->i_mode)))
763 return 0;
764
765 trace_f2fs_truncate(inode);
766
767 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
768 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
769 return -EIO;
770 }
771
772 err = dquot_initialize(inode);
773 if (err)
774 return err;
775
776 /* we should check inline_data size */
777 if (!f2fs_may_inline_data(inode)) {
778 err = f2fs_convert_inline_inode(inode);
779 if (err)
780 return err;
781 }
782
783 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
784 if (err)
785 return err;
786
787 inode->i_mtime = inode->i_ctime = current_time(inode);
788 f2fs_mark_inode_dirty_sync(inode, false);
789 return 0;
790 }
791
f2fs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)792 int f2fs_getattr(const struct path *path, struct kstat *stat,
793 u32 request_mask, unsigned int query_flags)
794 {
795 struct inode *inode = d_inode(path->dentry);
796 struct f2fs_inode_info *fi = F2FS_I(inode);
797 struct f2fs_inode *ri;
798 unsigned int flags;
799
800 if (f2fs_has_extra_attr(inode) &&
801 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
802 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
803 stat->result_mask |= STATX_BTIME;
804 stat->btime.tv_sec = fi->i_crtime.tv_sec;
805 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
806 }
807
808 flags = fi->i_flags;
809 if (flags & F2FS_COMPR_FL)
810 stat->attributes |= STATX_ATTR_COMPRESSED;
811 if (flags & F2FS_APPEND_FL)
812 stat->attributes |= STATX_ATTR_APPEND;
813 if (IS_ENCRYPTED(inode))
814 stat->attributes |= STATX_ATTR_ENCRYPTED;
815 if (flags & F2FS_IMMUTABLE_FL)
816 stat->attributes |= STATX_ATTR_IMMUTABLE;
817 if (flags & F2FS_NODUMP_FL)
818 stat->attributes |= STATX_ATTR_NODUMP;
819 if (IS_VERITY(inode))
820 stat->attributes |= STATX_ATTR_VERITY;
821
822 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
823 STATX_ATTR_APPEND |
824 STATX_ATTR_ENCRYPTED |
825 STATX_ATTR_IMMUTABLE |
826 STATX_ATTR_NODUMP |
827 STATX_ATTR_VERITY);
828
829 generic_fillattr(inode, stat);
830
831 /* we need to show initial sectors used for inline_data/dentries */
832 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
833 f2fs_has_inline_dentry(inode))
834 stat->blocks += (stat->size + 511) >> 9;
835
836 return 0;
837 }
838
839 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct inode * inode,const struct iattr * attr)840 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
841 {
842 unsigned int ia_valid = attr->ia_valid;
843
844 if (ia_valid & ATTR_UID)
845 inode->i_uid = attr->ia_uid;
846 if (ia_valid & ATTR_GID)
847 inode->i_gid = attr->ia_gid;
848 if (ia_valid & ATTR_ATIME)
849 inode->i_atime = attr->ia_atime;
850 if (ia_valid & ATTR_MTIME)
851 inode->i_mtime = attr->ia_mtime;
852 if (ia_valid & ATTR_CTIME)
853 inode->i_ctime = attr->ia_ctime;
854 if (ia_valid & ATTR_MODE) {
855 umode_t mode = attr->ia_mode;
856
857 if (!in_group_p(inode->i_gid) &&
858 !capable_wrt_inode_uidgid(inode, CAP_FSETID))
859 mode &= ~S_ISGID;
860 set_acl_inode(inode, mode);
861 }
862 }
863 #else
864 #define __setattr_copy setattr_copy
865 #endif
866
f2fs_setattr(struct dentry * dentry,struct iattr * attr)867 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
868 {
869 struct inode *inode = d_inode(dentry);
870 int err;
871
872 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
873 return -EIO;
874
875 if (unlikely(IS_IMMUTABLE(inode)))
876 return -EPERM;
877
878 if (unlikely(IS_APPEND(inode) &&
879 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
880 ATTR_GID | ATTR_TIMES_SET))))
881 return -EPERM;
882
883 if ((attr->ia_valid & ATTR_SIZE) &&
884 !f2fs_is_compress_backend_ready(inode))
885 return -EOPNOTSUPP;
886
887 err = setattr_prepare(dentry, attr);
888 if (err)
889 return err;
890
891 err = fscrypt_prepare_setattr(dentry, attr);
892 if (err)
893 return err;
894
895 err = fsverity_prepare_setattr(dentry, attr);
896 if (err)
897 return err;
898
899 if (is_quota_modification(inode, attr)) {
900 err = dquot_initialize(inode);
901 if (err)
902 return err;
903 }
904 if ((attr->ia_valid & ATTR_UID &&
905 !uid_eq(attr->ia_uid, inode->i_uid)) ||
906 (attr->ia_valid & ATTR_GID &&
907 !gid_eq(attr->ia_gid, inode->i_gid))) {
908 f2fs_lock_op(F2FS_I_SB(inode));
909 err = dquot_transfer(inode, attr);
910 if (err) {
911 set_sbi_flag(F2FS_I_SB(inode),
912 SBI_QUOTA_NEED_REPAIR);
913 f2fs_unlock_op(F2FS_I_SB(inode));
914 return err;
915 }
916 /*
917 * update uid/gid under lock_op(), so that dquot and inode can
918 * be updated atomically.
919 */
920 if (attr->ia_valid & ATTR_UID)
921 inode->i_uid = attr->ia_uid;
922 if (attr->ia_valid & ATTR_GID)
923 inode->i_gid = attr->ia_gid;
924 f2fs_mark_inode_dirty_sync(inode, true);
925 f2fs_unlock_op(F2FS_I_SB(inode));
926 }
927
928 if (attr->ia_valid & ATTR_SIZE) {
929 loff_t old_size = i_size_read(inode);
930
931 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
932 /*
933 * should convert inline inode before i_size_write to
934 * keep smaller than inline_data size with inline flag.
935 */
936 err = f2fs_convert_inline_inode(inode);
937 if (err)
938 return err;
939 }
940
941 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
942 down_write(&F2FS_I(inode)->i_mmap_sem);
943
944 truncate_setsize(inode, attr->ia_size);
945
946 if (attr->ia_size <= old_size)
947 err = f2fs_truncate(inode);
948 /*
949 * do not trim all blocks after i_size if target size is
950 * larger than i_size.
951 */
952 up_write(&F2FS_I(inode)->i_mmap_sem);
953 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
954 if (err)
955 return err;
956
957 spin_lock(&F2FS_I(inode)->i_size_lock);
958 inode->i_mtime = inode->i_ctime = current_time(inode);
959 F2FS_I(inode)->last_disk_size = i_size_read(inode);
960 spin_unlock(&F2FS_I(inode)->i_size_lock);
961 }
962
963 __setattr_copy(inode, attr);
964
965 if (attr->ia_valid & ATTR_MODE) {
966 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
967 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
968 inode->i_mode = F2FS_I(inode)->i_acl_mode;
969 clear_inode_flag(inode, FI_ACL_MODE);
970 }
971 }
972
973 /* file size may changed here */
974 f2fs_mark_inode_dirty_sync(inode, true);
975
976 /* inode change will produce dirty node pages flushed by checkpoint */
977 f2fs_balance_fs(F2FS_I_SB(inode), true);
978
979 return err;
980 }
981
982 const struct inode_operations f2fs_file_inode_operations = {
983 .getattr = f2fs_getattr,
984 .setattr = f2fs_setattr,
985 .get_acl = f2fs_get_acl,
986 .set_acl = f2fs_set_acl,
987 .listxattr = f2fs_listxattr,
988 .fiemap = f2fs_fiemap,
989 };
990
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)991 static int fill_zero(struct inode *inode, pgoff_t index,
992 loff_t start, loff_t len)
993 {
994 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
995 struct page *page;
996
997 if (!len)
998 return 0;
999
1000 f2fs_balance_fs(sbi, true);
1001
1002 f2fs_lock_op(sbi);
1003 page = f2fs_get_new_data_page(inode, NULL, index, false);
1004 f2fs_unlock_op(sbi);
1005
1006 if (IS_ERR(page))
1007 return PTR_ERR(page);
1008
1009 f2fs_wait_on_page_writeback(page, DATA, true, true);
1010 zero_user(page, start, len);
1011 set_page_dirty(page);
1012 f2fs_put_page(page, 1);
1013 return 0;
1014 }
1015
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1016 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1017 {
1018 int err;
1019
1020 while (pg_start < pg_end) {
1021 struct dnode_of_data dn;
1022 pgoff_t end_offset, count;
1023
1024 set_new_dnode(&dn, inode, NULL, NULL, 0);
1025 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1026 if (err) {
1027 if (err == -ENOENT) {
1028 pg_start = f2fs_get_next_page_offset(&dn,
1029 pg_start);
1030 continue;
1031 }
1032 return err;
1033 }
1034
1035 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1036 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1037
1038 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1039
1040 f2fs_truncate_data_blocks_range(&dn, count);
1041 f2fs_put_dnode(&dn);
1042
1043 pg_start += count;
1044 }
1045 return 0;
1046 }
1047
punch_hole(struct inode * inode,loff_t offset,loff_t len)1048 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1049 {
1050 pgoff_t pg_start, pg_end;
1051 loff_t off_start, off_end;
1052 int ret;
1053
1054 ret = f2fs_convert_inline_inode(inode);
1055 if (ret)
1056 return ret;
1057
1058 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1059 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1060
1061 off_start = offset & (PAGE_SIZE - 1);
1062 off_end = (offset + len) & (PAGE_SIZE - 1);
1063
1064 if (pg_start == pg_end) {
1065 ret = fill_zero(inode, pg_start, off_start,
1066 off_end - off_start);
1067 if (ret)
1068 return ret;
1069 } else {
1070 if (off_start) {
1071 ret = fill_zero(inode, pg_start++, off_start,
1072 PAGE_SIZE - off_start);
1073 if (ret)
1074 return ret;
1075 }
1076 if (off_end) {
1077 ret = fill_zero(inode, pg_end, 0, off_end);
1078 if (ret)
1079 return ret;
1080 }
1081
1082 if (pg_start < pg_end) {
1083 loff_t blk_start, blk_end;
1084 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1085
1086 f2fs_balance_fs(sbi, true);
1087
1088 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1089 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1090
1091 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1092 down_write(&F2FS_I(inode)->i_mmap_sem);
1093
1094 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1095
1096 f2fs_lock_op(sbi);
1097 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1098 f2fs_unlock_op(sbi);
1099
1100 up_write(&F2FS_I(inode)->i_mmap_sem);
1101 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1102 }
1103 }
1104
1105 return ret;
1106 }
1107
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1108 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1109 int *do_replace, pgoff_t off, pgoff_t len)
1110 {
1111 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1112 struct dnode_of_data dn;
1113 int ret, done, i;
1114
1115 next_dnode:
1116 set_new_dnode(&dn, inode, NULL, NULL, 0);
1117 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1118 if (ret && ret != -ENOENT) {
1119 return ret;
1120 } else if (ret == -ENOENT) {
1121 if (dn.max_level == 0)
1122 return -ENOENT;
1123 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1124 dn.ofs_in_node, len);
1125 blkaddr += done;
1126 do_replace += done;
1127 goto next;
1128 }
1129
1130 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1131 dn.ofs_in_node, len);
1132 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1133 *blkaddr = f2fs_data_blkaddr(&dn);
1134
1135 if (__is_valid_data_blkaddr(*blkaddr) &&
1136 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1137 DATA_GENERIC_ENHANCE)) {
1138 f2fs_put_dnode(&dn);
1139 return -EFSCORRUPTED;
1140 }
1141
1142 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1143
1144 if (f2fs_lfs_mode(sbi)) {
1145 f2fs_put_dnode(&dn);
1146 return -EOPNOTSUPP;
1147 }
1148
1149 /* do not invalidate this block address */
1150 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1151 *do_replace = 1;
1152 }
1153 }
1154 f2fs_put_dnode(&dn);
1155 next:
1156 len -= done;
1157 off += done;
1158 if (len)
1159 goto next_dnode;
1160 return 0;
1161 }
1162
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1163 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1164 int *do_replace, pgoff_t off, int len)
1165 {
1166 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1167 struct dnode_of_data dn;
1168 int ret, i;
1169
1170 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1171 if (*do_replace == 0)
1172 continue;
1173
1174 set_new_dnode(&dn, inode, NULL, NULL, 0);
1175 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1176 if (ret) {
1177 dec_valid_block_count(sbi, inode, 1);
1178 f2fs_invalidate_blocks(sbi, *blkaddr);
1179 } else {
1180 f2fs_update_data_blkaddr(&dn, *blkaddr);
1181 }
1182 f2fs_put_dnode(&dn);
1183 }
1184 return 0;
1185 }
1186
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1187 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1188 block_t *blkaddr, int *do_replace,
1189 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1190 {
1191 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1192 pgoff_t i = 0;
1193 int ret;
1194
1195 while (i < len) {
1196 if (blkaddr[i] == NULL_ADDR && !full) {
1197 i++;
1198 continue;
1199 }
1200
1201 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1202 struct dnode_of_data dn;
1203 struct node_info ni;
1204 size_t new_size;
1205 pgoff_t ilen;
1206
1207 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1208 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1209 if (ret)
1210 return ret;
1211
1212 ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1213 if (ret) {
1214 f2fs_put_dnode(&dn);
1215 return ret;
1216 }
1217
1218 ilen = min((pgoff_t)
1219 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1220 dn.ofs_in_node, len - i);
1221 do {
1222 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1223 f2fs_truncate_data_blocks_range(&dn, 1);
1224
1225 if (do_replace[i]) {
1226 f2fs_i_blocks_write(src_inode,
1227 1, false, false);
1228 f2fs_i_blocks_write(dst_inode,
1229 1, true, false);
1230 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1231 blkaddr[i], ni.version, true, false);
1232
1233 do_replace[i] = 0;
1234 }
1235 dn.ofs_in_node++;
1236 i++;
1237 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1238 if (dst_inode->i_size < new_size)
1239 f2fs_i_size_write(dst_inode, new_size);
1240 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1241
1242 f2fs_put_dnode(&dn);
1243 } else {
1244 struct page *psrc, *pdst;
1245
1246 psrc = f2fs_get_lock_data_page(src_inode,
1247 src + i, true);
1248 if (IS_ERR(psrc))
1249 return PTR_ERR(psrc);
1250 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1251 true);
1252 if (IS_ERR(pdst)) {
1253 f2fs_put_page(psrc, 1);
1254 return PTR_ERR(pdst);
1255 }
1256 f2fs_copy_page(psrc, pdst);
1257 set_page_dirty(pdst);
1258 f2fs_put_page(pdst, 1);
1259 f2fs_put_page(psrc, 1);
1260
1261 ret = f2fs_truncate_hole(src_inode,
1262 src + i, src + i + 1);
1263 if (ret)
1264 return ret;
1265 i++;
1266 }
1267 }
1268 return 0;
1269 }
1270
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1271 static int __exchange_data_block(struct inode *src_inode,
1272 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1273 pgoff_t len, bool full)
1274 {
1275 block_t *src_blkaddr;
1276 int *do_replace;
1277 pgoff_t olen;
1278 int ret;
1279
1280 while (len) {
1281 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1282
1283 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1284 array_size(olen, sizeof(block_t)),
1285 GFP_NOFS);
1286 if (!src_blkaddr)
1287 return -ENOMEM;
1288
1289 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1290 array_size(olen, sizeof(int)),
1291 GFP_NOFS);
1292 if (!do_replace) {
1293 kvfree(src_blkaddr);
1294 return -ENOMEM;
1295 }
1296
1297 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1298 do_replace, src, olen);
1299 if (ret)
1300 goto roll_back;
1301
1302 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1303 do_replace, src, dst, olen, full);
1304 if (ret)
1305 goto roll_back;
1306
1307 src += olen;
1308 dst += olen;
1309 len -= olen;
1310
1311 kvfree(src_blkaddr);
1312 kvfree(do_replace);
1313 }
1314 return 0;
1315
1316 roll_back:
1317 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1318 kvfree(src_blkaddr);
1319 kvfree(do_replace);
1320 return ret;
1321 }
1322
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1323 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1324 {
1325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1326 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1327 pgoff_t start = offset >> PAGE_SHIFT;
1328 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1329 int ret;
1330
1331 f2fs_balance_fs(sbi, true);
1332
1333 /* avoid gc operation during block exchange */
1334 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1335 down_write(&F2FS_I(inode)->i_mmap_sem);
1336
1337 f2fs_lock_op(sbi);
1338 f2fs_drop_extent_tree(inode);
1339 truncate_pagecache(inode, offset);
1340 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1341 f2fs_unlock_op(sbi);
1342
1343 up_write(&F2FS_I(inode)->i_mmap_sem);
1344 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1345 return ret;
1346 }
1347
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1348 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1349 {
1350 loff_t new_size;
1351 int ret;
1352
1353 if (offset + len >= i_size_read(inode))
1354 return -EINVAL;
1355
1356 /* collapse range should be aligned to block size of f2fs. */
1357 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1358 return -EINVAL;
1359
1360 ret = f2fs_convert_inline_inode(inode);
1361 if (ret)
1362 return ret;
1363
1364 /* write out all dirty pages from offset */
1365 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1366 if (ret)
1367 return ret;
1368
1369 ret = f2fs_do_collapse(inode, offset, len);
1370 if (ret)
1371 return ret;
1372
1373 /* write out all moved pages, if possible */
1374 down_write(&F2FS_I(inode)->i_mmap_sem);
1375 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1376 truncate_pagecache(inode, offset);
1377
1378 new_size = i_size_read(inode) - len;
1379 ret = f2fs_truncate_blocks(inode, new_size, true);
1380 up_write(&F2FS_I(inode)->i_mmap_sem);
1381 if (!ret)
1382 f2fs_i_size_write(inode, new_size);
1383 return ret;
1384 }
1385
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1386 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1387 pgoff_t end)
1388 {
1389 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1390 pgoff_t index = start;
1391 unsigned int ofs_in_node = dn->ofs_in_node;
1392 blkcnt_t count = 0;
1393 int ret;
1394
1395 for (; index < end; index++, dn->ofs_in_node++) {
1396 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1397 count++;
1398 }
1399
1400 dn->ofs_in_node = ofs_in_node;
1401 ret = f2fs_reserve_new_blocks(dn, count);
1402 if (ret)
1403 return ret;
1404
1405 dn->ofs_in_node = ofs_in_node;
1406 for (index = start; index < end; index++, dn->ofs_in_node++) {
1407 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1408 /*
1409 * f2fs_reserve_new_blocks will not guarantee entire block
1410 * allocation.
1411 */
1412 if (dn->data_blkaddr == NULL_ADDR) {
1413 ret = -ENOSPC;
1414 break;
1415 }
1416
1417 if (dn->data_blkaddr == NEW_ADDR)
1418 continue;
1419
1420 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1421 DATA_GENERIC_ENHANCE)) {
1422 ret = -EFSCORRUPTED;
1423 break;
1424 }
1425
1426 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1427 dn->data_blkaddr = NEW_ADDR;
1428 f2fs_set_data_blkaddr(dn);
1429 }
1430
1431 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1432
1433 return ret;
1434 }
1435
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1436 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1437 int mode)
1438 {
1439 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1440 struct address_space *mapping = inode->i_mapping;
1441 pgoff_t index, pg_start, pg_end;
1442 loff_t new_size = i_size_read(inode);
1443 loff_t off_start, off_end;
1444 int ret = 0;
1445
1446 ret = inode_newsize_ok(inode, (len + offset));
1447 if (ret)
1448 return ret;
1449
1450 ret = f2fs_convert_inline_inode(inode);
1451 if (ret)
1452 return ret;
1453
1454 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1455 if (ret)
1456 return ret;
1457
1458 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1459 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1460
1461 off_start = offset & (PAGE_SIZE - 1);
1462 off_end = (offset + len) & (PAGE_SIZE - 1);
1463
1464 if (pg_start == pg_end) {
1465 ret = fill_zero(inode, pg_start, off_start,
1466 off_end - off_start);
1467 if (ret)
1468 return ret;
1469
1470 new_size = max_t(loff_t, new_size, offset + len);
1471 } else {
1472 if (off_start) {
1473 ret = fill_zero(inode, pg_start++, off_start,
1474 PAGE_SIZE - off_start);
1475 if (ret)
1476 return ret;
1477
1478 new_size = max_t(loff_t, new_size,
1479 (loff_t)pg_start << PAGE_SHIFT);
1480 }
1481
1482 for (index = pg_start; index < pg_end;) {
1483 struct dnode_of_data dn;
1484 unsigned int end_offset;
1485 pgoff_t end;
1486
1487 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1488 down_write(&F2FS_I(inode)->i_mmap_sem);
1489
1490 truncate_pagecache_range(inode,
1491 (loff_t)index << PAGE_SHIFT,
1492 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1493
1494 f2fs_lock_op(sbi);
1495
1496 set_new_dnode(&dn, inode, NULL, NULL, 0);
1497 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1498 if (ret) {
1499 f2fs_unlock_op(sbi);
1500 up_write(&F2FS_I(inode)->i_mmap_sem);
1501 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1502 goto out;
1503 }
1504
1505 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1506 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1507
1508 ret = f2fs_do_zero_range(&dn, index, end);
1509 f2fs_put_dnode(&dn);
1510
1511 f2fs_unlock_op(sbi);
1512 up_write(&F2FS_I(inode)->i_mmap_sem);
1513 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1514
1515 f2fs_balance_fs(sbi, dn.node_changed);
1516
1517 if (ret)
1518 goto out;
1519
1520 index = end;
1521 new_size = max_t(loff_t, new_size,
1522 (loff_t)index << PAGE_SHIFT);
1523 }
1524
1525 if (off_end) {
1526 ret = fill_zero(inode, pg_end, 0, off_end);
1527 if (ret)
1528 goto out;
1529
1530 new_size = max_t(loff_t, new_size, offset + len);
1531 }
1532 }
1533
1534 out:
1535 if (new_size > i_size_read(inode)) {
1536 if (mode & FALLOC_FL_KEEP_SIZE)
1537 file_set_keep_isize(inode);
1538 else
1539 f2fs_i_size_write(inode, new_size);
1540 }
1541 return ret;
1542 }
1543
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1544 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1545 {
1546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1547 pgoff_t nr, pg_start, pg_end, delta, idx;
1548 loff_t new_size;
1549 int ret = 0;
1550
1551 new_size = i_size_read(inode) + len;
1552 ret = inode_newsize_ok(inode, new_size);
1553 if (ret)
1554 return ret;
1555
1556 if (offset >= i_size_read(inode))
1557 return -EINVAL;
1558
1559 /* insert range should be aligned to block size of f2fs. */
1560 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1561 return -EINVAL;
1562
1563 ret = f2fs_convert_inline_inode(inode);
1564 if (ret)
1565 return ret;
1566
1567 f2fs_balance_fs(sbi, true);
1568
1569 down_write(&F2FS_I(inode)->i_mmap_sem);
1570 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1571 up_write(&F2FS_I(inode)->i_mmap_sem);
1572 if (ret)
1573 return ret;
1574
1575 /* write out all dirty pages from offset */
1576 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1577 if (ret)
1578 return ret;
1579
1580 pg_start = offset >> PAGE_SHIFT;
1581 pg_end = (offset + len) >> PAGE_SHIFT;
1582 delta = pg_end - pg_start;
1583 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1584
1585 /* avoid gc operation during block exchange */
1586 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1587 down_write(&F2FS_I(inode)->i_mmap_sem);
1588 truncate_pagecache(inode, offset);
1589
1590 while (!ret && idx > pg_start) {
1591 nr = idx - pg_start;
1592 if (nr > delta)
1593 nr = delta;
1594 idx -= nr;
1595
1596 f2fs_lock_op(sbi);
1597 f2fs_drop_extent_tree(inode);
1598
1599 ret = __exchange_data_block(inode, inode, idx,
1600 idx + delta, nr, false);
1601 f2fs_unlock_op(sbi);
1602 }
1603 up_write(&F2FS_I(inode)->i_mmap_sem);
1604 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1605
1606 /* write out all moved pages, if possible */
1607 down_write(&F2FS_I(inode)->i_mmap_sem);
1608 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1609 truncate_pagecache(inode, offset);
1610 up_write(&F2FS_I(inode)->i_mmap_sem);
1611
1612 if (!ret)
1613 f2fs_i_size_write(inode, new_size);
1614 return ret;
1615 }
1616
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1617 static int expand_inode_data(struct inode *inode, loff_t offset,
1618 loff_t len, int mode)
1619 {
1620 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1621 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1622 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1623 .m_may_create = true };
1624 pgoff_t pg_start, pg_end;
1625 loff_t new_size = i_size_read(inode);
1626 loff_t off_end;
1627 block_t expanded = 0;
1628 int err;
1629
1630 err = inode_newsize_ok(inode, (len + offset));
1631 if (err)
1632 return err;
1633
1634 err = f2fs_convert_inline_inode(inode);
1635 if (err)
1636 return err;
1637
1638 f2fs_balance_fs(sbi, true);
1639
1640 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1641 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1642 off_end = (offset + len) & (PAGE_SIZE - 1);
1643
1644 map.m_lblk = pg_start;
1645 map.m_len = pg_end - pg_start;
1646 if (off_end)
1647 map.m_len++;
1648
1649 if (!map.m_len)
1650 return 0;
1651
1652 if (f2fs_is_pinned_file(inode)) {
1653 block_t sec_blks = BLKS_PER_SEC(sbi);
1654 block_t sec_len = roundup(map.m_len, sec_blks);
1655
1656 map.m_len = sec_blks;
1657 next_alloc:
1658 if (has_not_enough_free_secs(sbi, 0,
1659 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1660 down_write(&sbi->gc_lock);
1661 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1662 if (err && err != -ENODATA && err != -EAGAIN)
1663 goto out_err;
1664 }
1665
1666 down_write(&sbi->pin_sem);
1667
1668 f2fs_lock_op(sbi);
1669 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED);
1670 f2fs_unlock_op(sbi);
1671
1672 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1673 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1674
1675 up_write(&sbi->pin_sem);
1676
1677 expanded += map.m_len;
1678 sec_len -= map.m_len;
1679 map.m_lblk += map.m_len;
1680 if (!err && sec_len)
1681 goto next_alloc;
1682
1683 map.m_len = expanded;
1684 } else {
1685 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1686 expanded = map.m_len;
1687 }
1688 out_err:
1689 if (err) {
1690 pgoff_t last_off;
1691
1692 if (!expanded)
1693 return err;
1694
1695 last_off = pg_start + expanded - 1;
1696
1697 /* update new size to the failed position */
1698 new_size = (last_off == pg_end) ? offset + len :
1699 (loff_t)(last_off + 1) << PAGE_SHIFT;
1700 } else {
1701 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1702 }
1703
1704 if (new_size > i_size_read(inode)) {
1705 if (mode & FALLOC_FL_KEEP_SIZE)
1706 file_set_keep_isize(inode);
1707 else
1708 f2fs_i_size_write(inode, new_size);
1709 }
1710
1711 return err;
1712 }
1713
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1714 static long f2fs_fallocate(struct file *file, int mode,
1715 loff_t offset, loff_t len)
1716 {
1717 struct inode *inode = file_inode(file);
1718 long ret = 0;
1719
1720 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1721 return -EIO;
1722 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1723 return -ENOSPC;
1724 if (!f2fs_is_compress_backend_ready(inode))
1725 return -EOPNOTSUPP;
1726
1727 /* f2fs only support ->fallocate for regular file */
1728 if (!S_ISREG(inode->i_mode))
1729 return -EINVAL;
1730
1731 if (IS_ENCRYPTED(inode) &&
1732 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1733 return -EOPNOTSUPP;
1734
1735 if (f2fs_compressed_file(inode) &&
1736 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1737 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1738 return -EOPNOTSUPP;
1739
1740 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1741 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1742 FALLOC_FL_INSERT_RANGE))
1743 return -EOPNOTSUPP;
1744
1745 inode_lock(inode);
1746
1747 ret = file_modified(file);
1748 if (ret)
1749 goto out;
1750
1751 if (mode & FALLOC_FL_PUNCH_HOLE) {
1752 if (offset >= inode->i_size)
1753 goto out;
1754
1755 ret = punch_hole(inode, offset, len);
1756 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1757 ret = f2fs_collapse_range(inode, offset, len);
1758 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1759 ret = f2fs_zero_range(inode, offset, len, mode);
1760 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1761 ret = f2fs_insert_range(inode, offset, len);
1762 } else {
1763 ret = expand_inode_data(inode, offset, len, mode);
1764 }
1765
1766 if (!ret) {
1767 inode->i_mtime = inode->i_ctime = current_time(inode);
1768 f2fs_mark_inode_dirty_sync(inode, false);
1769 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1770 }
1771
1772 out:
1773 inode_unlock(inode);
1774
1775 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1776 return ret;
1777 }
1778
f2fs_release_file(struct inode * inode,struct file * filp)1779 static int f2fs_release_file(struct inode *inode, struct file *filp)
1780 {
1781 /*
1782 * f2fs_relase_file is called at every close calls. So we should
1783 * not drop any inmemory pages by close called by other process.
1784 */
1785 if (!(filp->f_mode & FMODE_WRITE) ||
1786 atomic_read(&inode->i_writecount) != 1)
1787 return 0;
1788
1789 /* some remained atomic pages should discarded */
1790 if (f2fs_is_atomic_file(inode))
1791 f2fs_drop_inmem_pages(inode);
1792 if (f2fs_is_volatile_file(inode)) {
1793 set_inode_flag(inode, FI_DROP_CACHE);
1794 filemap_fdatawrite(inode->i_mapping);
1795 clear_inode_flag(inode, FI_DROP_CACHE);
1796 clear_inode_flag(inode, FI_VOLATILE_FILE);
1797 stat_dec_volatile_write(inode);
1798 }
1799 return 0;
1800 }
1801
f2fs_file_flush(struct file * file,fl_owner_t id)1802 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1803 {
1804 struct inode *inode = file_inode(file);
1805
1806 /*
1807 * If the process doing a transaction is crashed, we should do
1808 * roll-back. Otherwise, other reader/write can see corrupted database
1809 * until all the writers close its file. Since this should be done
1810 * before dropping file lock, it needs to do in ->flush.
1811 */
1812 if (f2fs_is_atomic_file(inode) &&
1813 F2FS_I(inode)->inmem_task == current)
1814 f2fs_drop_inmem_pages(inode);
1815 return 0;
1816 }
1817
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1818 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1819 {
1820 struct f2fs_inode_info *fi = F2FS_I(inode);
1821 u32 masked_flags = fi->i_flags & mask;
1822
1823 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask));
1824
1825 /* Is it quota file? Do not allow user to mess with it */
1826 if (IS_NOQUOTA(inode))
1827 return -EPERM;
1828
1829 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1830 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1831 return -EOPNOTSUPP;
1832 if (!f2fs_empty_dir(inode))
1833 return -ENOTEMPTY;
1834 }
1835
1836 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1837 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1838 return -EOPNOTSUPP;
1839 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1840 return -EINVAL;
1841 }
1842
1843 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1844 if (masked_flags & F2FS_COMPR_FL) {
1845 if (!f2fs_disable_compressed_file(inode))
1846 return -EINVAL;
1847 } else {
1848 if (!f2fs_may_compress(inode))
1849 return -EINVAL;
1850 if (S_ISREG(inode->i_mode) && inode->i_size)
1851 return -EINVAL;
1852
1853 set_compress_context(inode);
1854 }
1855 }
1856
1857 fi->i_flags = iflags | (fi->i_flags & ~mask);
1858 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1859 (fi->i_flags & F2FS_NOCOMP_FL));
1860
1861 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1862 set_inode_flag(inode, FI_PROJ_INHERIT);
1863 else
1864 clear_inode_flag(inode, FI_PROJ_INHERIT);
1865
1866 inode->i_ctime = current_time(inode);
1867 f2fs_set_inode_flags(inode);
1868 f2fs_mark_inode_dirty_sync(inode, true);
1869 return 0;
1870 }
1871
1872 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1873
1874 /*
1875 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1876 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1877 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1878 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1879 */
1880
1881 static const struct {
1882 u32 iflag;
1883 u32 fsflag;
1884 } f2fs_fsflags_map[] = {
1885 { F2FS_COMPR_FL, FS_COMPR_FL },
1886 { F2FS_SYNC_FL, FS_SYNC_FL },
1887 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1888 { F2FS_APPEND_FL, FS_APPEND_FL },
1889 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1890 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1891 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1892 { F2FS_INDEX_FL, FS_INDEX_FL },
1893 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1894 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1895 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1896 };
1897
1898 #define F2FS_GETTABLE_FS_FL ( \
1899 FS_COMPR_FL | \
1900 FS_SYNC_FL | \
1901 FS_IMMUTABLE_FL | \
1902 FS_APPEND_FL | \
1903 FS_NODUMP_FL | \
1904 FS_NOATIME_FL | \
1905 FS_NOCOMP_FL | \
1906 FS_INDEX_FL | \
1907 FS_DIRSYNC_FL | \
1908 FS_PROJINHERIT_FL | \
1909 FS_ENCRYPT_FL | \
1910 FS_INLINE_DATA_FL | \
1911 FS_NOCOW_FL | \
1912 FS_VERITY_FL | \
1913 FS_CASEFOLD_FL)
1914
1915 #define F2FS_SETTABLE_FS_FL ( \
1916 FS_COMPR_FL | \
1917 FS_SYNC_FL | \
1918 FS_IMMUTABLE_FL | \
1919 FS_APPEND_FL | \
1920 FS_NODUMP_FL | \
1921 FS_NOATIME_FL | \
1922 FS_NOCOMP_FL | \
1923 FS_DIRSYNC_FL | \
1924 FS_PROJINHERIT_FL | \
1925 FS_CASEFOLD_FL)
1926
1927 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)1928 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1929 {
1930 u32 fsflags = 0;
1931 int i;
1932
1933 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1934 if (iflags & f2fs_fsflags_map[i].iflag)
1935 fsflags |= f2fs_fsflags_map[i].fsflag;
1936
1937 return fsflags;
1938 }
1939
1940 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)1941 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1942 {
1943 u32 iflags = 0;
1944 int i;
1945
1946 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1947 if (fsflags & f2fs_fsflags_map[i].fsflag)
1948 iflags |= f2fs_fsflags_map[i].iflag;
1949
1950 return iflags;
1951 }
1952
f2fs_ioc_getflags(struct file * filp,unsigned long arg)1953 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1954 {
1955 struct inode *inode = file_inode(filp);
1956 struct f2fs_inode_info *fi = F2FS_I(inode);
1957 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1958
1959 if (IS_ENCRYPTED(inode))
1960 fsflags |= FS_ENCRYPT_FL;
1961 if (IS_VERITY(inode))
1962 fsflags |= FS_VERITY_FL;
1963 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1964 fsflags |= FS_INLINE_DATA_FL;
1965 if (is_inode_flag_set(inode, FI_PIN_FILE))
1966 fsflags |= FS_NOCOW_FL;
1967
1968 fsflags &= F2FS_GETTABLE_FS_FL;
1969
1970 return put_user(fsflags, (int __user *)arg);
1971 }
1972
f2fs_ioc_setflags(struct file * filp,unsigned long arg)1973 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1974 {
1975 struct inode *inode = file_inode(filp);
1976 struct f2fs_inode_info *fi = F2FS_I(inode);
1977 u32 fsflags, old_fsflags;
1978 u32 iflags;
1979 int ret;
1980
1981 if (!inode_owner_or_capable(inode))
1982 return -EACCES;
1983
1984 if (get_user(fsflags, (int __user *)arg))
1985 return -EFAULT;
1986
1987 if (fsflags & ~F2FS_GETTABLE_FS_FL)
1988 return -EOPNOTSUPP;
1989 fsflags &= F2FS_SETTABLE_FS_FL;
1990
1991 iflags = f2fs_fsflags_to_iflags(fsflags);
1992 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
1993 return -EOPNOTSUPP;
1994
1995 ret = mnt_want_write_file(filp);
1996 if (ret)
1997 return ret;
1998
1999 inode_lock(inode);
2000
2001 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
2002 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
2003 if (ret)
2004 goto out;
2005
2006 ret = f2fs_setflags_common(inode, iflags,
2007 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
2008 out:
2009 inode_unlock(inode);
2010 mnt_drop_write_file(filp);
2011 return ret;
2012 }
2013
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2014 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2015 {
2016 struct inode *inode = file_inode(filp);
2017
2018 return put_user(inode->i_generation, (int __user *)arg);
2019 }
2020
f2fs_ioc_start_atomic_write(struct file * filp)2021 static int f2fs_ioc_start_atomic_write(struct file *filp)
2022 {
2023 struct inode *inode = file_inode(filp);
2024 struct f2fs_inode_info *fi = F2FS_I(inode);
2025 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2026 int ret;
2027
2028 if (!inode_owner_or_capable(inode))
2029 return -EACCES;
2030
2031 if (!S_ISREG(inode->i_mode))
2032 return -EINVAL;
2033
2034 if (filp->f_flags & O_DIRECT)
2035 return -EINVAL;
2036
2037 ret = mnt_want_write_file(filp);
2038 if (ret)
2039 return ret;
2040
2041 inode_lock(inode);
2042
2043 if (!f2fs_disable_compressed_file(inode)) {
2044 ret = -EINVAL;
2045 goto out;
2046 }
2047
2048 if (f2fs_is_atomic_file(inode)) {
2049 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2050 ret = -EINVAL;
2051 goto out;
2052 }
2053
2054 ret = f2fs_convert_inline_inode(inode);
2055 if (ret)
2056 goto out;
2057
2058 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2059
2060 /*
2061 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2062 * f2fs_is_atomic_file.
2063 */
2064 if (get_dirty_pages(inode))
2065 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2066 inode->i_ino, get_dirty_pages(inode));
2067 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2068 if (ret) {
2069 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2070 goto out;
2071 }
2072
2073 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2074 if (list_empty(&fi->inmem_ilist))
2075 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2076 sbi->atomic_files++;
2077 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2078
2079 /* add inode in inmem_list first and set atomic_file */
2080 set_inode_flag(inode, FI_ATOMIC_FILE);
2081 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2082 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2083
2084 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2085 F2FS_I(inode)->inmem_task = current;
2086 stat_update_max_atomic_write(inode);
2087 out:
2088 inode_unlock(inode);
2089 mnt_drop_write_file(filp);
2090 return ret;
2091 }
2092
f2fs_ioc_commit_atomic_write(struct file * filp)2093 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2094 {
2095 struct inode *inode = file_inode(filp);
2096 int ret;
2097
2098 if (!inode_owner_or_capable(inode))
2099 return -EACCES;
2100
2101 ret = mnt_want_write_file(filp);
2102 if (ret)
2103 return ret;
2104
2105 f2fs_balance_fs(F2FS_I_SB(inode), true);
2106
2107 inode_lock(inode);
2108
2109 if (f2fs_is_volatile_file(inode)) {
2110 ret = -EINVAL;
2111 goto err_out;
2112 }
2113
2114 if (f2fs_is_atomic_file(inode)) {
2115 ret = f2fs_commit_inmem_pages(inode);
2116 if (ret)
2117 goto err_out;
2118
2119 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2120 if (!ret)
2121 f2fs_drop_inmem_pages(inode);
2122 } else {
2123 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2124 }
2125 err_out:
2126 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2127 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2128 ret = -EINVAL;
2129 }
2130 inode_unlock(inode);
2131 mnt_drop_write_file(filp);
2132 return ret;
2133 }
2134
f2fs_ioc_start_volatile_write(struct file * filp)2135 static int f2fs_ioc_start_volatile_write(struct file *filp)
2136 {
2137 struct inode *inode = file_inode(filp);
2138 int ret;
2139
2140 if (!inode_owner_or_capable(inode))
2141 return -EACCES;
2142
2143 if (!S_ISREG(inode->i_mode))
2144 return -EINVAL;
2145
2146 ret = mnt_want_write_file(filp);
2147 if (ret)
2148 return ret;
2149
2150 inode_lock(inode);
2151
2152 if (f2fs_is_volatile_file(inode))
2153 goto out;
2154
2155 ret = f2fs_convert_inline_inode(inode);
2156 if (ret)
2157 goto out;
2158
2159 stat_inc_volatile_write(inode);
2160 stat_update_max_volatile_write(inode);
2161
2162 set_inode_flag(inode, FI_VOLATILE_FILE);
2163 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2164 out:
2165 inode_unlock(inode);
2166 mnt_drop_write_file(filp);
2167 return ret;
2168 }
2169
f2fs_ioc_release_volatile_write(struct file * filp)2170 static int f2fs_ioc_release_volatile_write(struct file *filp)
2171 {
2172 struct inode *inode = file_inode(filp);
2173 int ret;
2174
2175 if (!inode_owner_or_capable(inode))
2176 return -EACCES;
2177
2178 ret = mnt_want_write_file(filp);
2179 if (ret)
2180 return ret;
2181
2182 inode_lock(inode);
2183
2184 if (!f2fs_is_volatile_file(inode))
2185 goto out;
2186
2187 if (!f2fs_is_first_block_written(inode)) {
2188 ret = truncate_partial_data_page(inode, 0, true);
2189 goto out;
2190 }
2191
2192 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2193 out:
2194 inode_unlock(inode);
2195 mnt_drop_write_file(filp);
2196 return ret;
2197 }
2198
f2fs_ioc_abort_volatile_write(struct file * filp)2199 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2200 {
2201 struct inode *inode = file_inode(filp);
2202 int ret;
2203
2204 if (!inode_owner_or_capable(inode))
2205 return -EACCES;
2206
2207 ret = mnt_want_write_file(filp);
2208 if (ret)
2209 return ret;
2210
2211 inode_lock(inode);
2212
2213 if (f2fs_is_atomic_file(inode))
2214 f2fs_drop_inmem_pages(inode);
2215 if (f2fs_is_volatile_file(inode)) {
2216 clear_inode_flag(inode, FI_VOLATILE_FILE);
2217 stat_dec_volatile_write(inode);
2218 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2219 }
2220
2221 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2222
2223 inode_unlock(inode);
2224
2225 mnt_drop_write_file(filp);
2226 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2227 return ret;
2228 }
2229
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2230 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2231 {
2232 struct inode *inode = file_inode(filp);
2233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2234 struct super_block *sb = sbi->sb;
2235 __u32 in;
2236 int ret = 0;
2237
2238 if (!capable(CAP_SYS_ADMIN))
2239 return -EPERM;
2240
2241 if (get_user(in, (__u32 __user *)arg))
2242 return -EFAULT;
2243
2244 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2245 ret = mnt_want_write_file(filp);
2246 if (ret) {
2247 if (ret == -EROFS) {
2248 ret = 0;
2249 f2fs_stop_checkpoint(sbi, false);
2250 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2251 trace_f2fs_shutdown(sbi, in, ret);
2252 }
2253 return ret;
2254 }
2255 }
2256
2257 switch (in) {
2258 case F2FS_GOING_DOWN_FULLSYNC:
2259 sb = freeze_bdev(sb->s_bdev);
2260 if (IS_ERR(sb)) {
2261 ret = PTR_ERR(sb);
2262 goto out;
2263 }
2264 if (sb) {
2265 f2fs_stop_checkpoint(sbi, false);
2266 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2267 thaw_bdev(sb->s_bdev, sb);
2268 }
2269 break;
2270 case F2FS_GOING_DOWN_METASYNC:
2271 /* do checkpoint only */
2272 ret = f2fs_sync_fs(sb, 1);
2273 if (ret)
2274 goto out;
2275 f2fs_stop_checkpoint(sbi, false);
2276 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2277 break;
2278 case F2FS_GOING_DOWN_NOSYNC:
2279 f2fs_stop_checkpoint(sbi, false);
2280 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2281 break;
2282 case F2FS_GOING_DOWN_METAFLUSH:
2283 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2284 f2fs_stop_checkpoint(sbi, false);
2285 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2286 break;
2287 case F2FS_GOING_DOWN_NEED_FSCK:
2288 set_sbi_flag(sbi, SBI_NEED_FSCK);
2289 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2290 set_sbi_flag(sbi, SBI_IS_DIRTY);
2291 /* do checkpoint only */
2292 ret = f2fs_sync_fs(sb, 1);
2293 goto out;
2294 default:
2295 ret = -EINVAL;
2296 goto out;
2297 }
2298
2299 /*
2300 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2301 * paths.
2302 */
2303 down_write(&sbi->sb->s_umount);
2304
2305 f2fs_stop_gc_thread(sbi);
2306 f2fs_stop_discard_thread(sbi);
2307
2308 f2fs_drop_discard_cmd(sbi);
2309 clear_opt(sbi, DISCARD);
2310
2311 up_write(&sbi->sb->s_umount);
2312
2313 f2fs_update_time(sbi, REQ_TIME);
2314 out:
2315 if (in != F2FS_GOING_DOWN_FULLSYNC)
2316 mnt_drop_write_file(filp);
2317
2318 trace_f2fs_shutdown(sbi, in, ret);
2319
2320 return ret;
2321 }
2322
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2323 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2324 {
2325 struct inode *inode = file_inode(filp);
2326 struct super_block *sb = inode->i_sb;
2327 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2328 struct fstrim_range range;
2329 int ret;
2330
2331 if (!capable(CAP_SYS_ADMIN))
2332 return -EPERM;
2333
2334 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2335 return -EOPNOTSUPP;
2336
2337 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2338 sizeof(range)))
2339 return -EFAULT;
2340
2341 ret = mnt_want_write_file(filp);
2342 if (ret)
2343 return ret;
2344
2345 range.minlen = max((unsigned int)range.minlen,
2346 q->limits.discard_granularity);
2347 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2348 mnt_drop_write_file(filp);
2349 if (ret < 0)
2350 return ret;
2351
2352 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2353 sizeof(range)))
2354 return -EFAULT;
2355 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2356 return 0;
2357 }
2358
uuid_is_nonzero(__u8 u[16])2359 static bool uuid_is_nonzero(__u8 u[16])
2360 {
2361 int i;
2362
2363 for (i = 0; i < 16; i++)
2364 if (u[i])
2365 return true;
2366 return false;
2367 }
2368
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2369 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2370 {
2371 struct inode *inode = file_inode(filp);
2372
2373 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2374 return -EOPNOTSUPP;
2375
2376 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2377
2378 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2379 }
2380
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2381 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2382 {
2383 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2384 return -EOPNOTSUPP;
2385 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2386 }
2387
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2388 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2389 {
2390 struct inode *inode = file_inode(filp);
2391 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2392 int err;
2393
2394 if (!f2fs_sb_has_encrypt(sbi))
2395 return -EOPNOTSUPP;
2396
2397 err = mnt_want_write_file(filp);
2398 if (err)
2399 return err;
2400
2401 down_write(&sbi->sb_lock);
2402
2403 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2404 goto got_it;
2405
2406 /* update superblock with uuid */
2407 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2408
2409 err = f2fs_commit_super(sbi, false);
2410 if (err) {
2411 /* undo new data */
2412 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2413 goto out_err;
2414 }
2415 got_it:
2416 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2417 16))
2418 err = -EFAULT;
2419 out_err:
2420 up_write(&sbi->sb_lock);
2421 mnt_drop_write_file(filp);
2422 return err;
2423 }
2424
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2425 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2426 unsigned long arg)
2427 {
2428 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2429 return -EOPNOTSUPP;
2430
2431 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2432 }
2433
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2434 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2435 {
2436 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2437 return -EOPNOTSUPP;
2438
2439 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2440 }
2441
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2442 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2443 {
2444 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2445 return -EOPNOTSUPP;
2446
2447 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2448 }
2449
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2450 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2451 unsigned long arg)
2452 {
2453 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2454 return -EOPNOTSUPP;
2455
2456 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2457 }
2458
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2459 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2460 unsigned long arg)
2461 {
2462 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2463 return -EOPNOTSUPP;
2464
2465 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2466 }
2467
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2468 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2469 {
2470 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2471 return -EOPNOTSUPP;
2472
2473 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2474 }
2475
f2fs_ioc_gc(struct file * filp,unsigned long arg)2476 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2477 {
2478 struct inode *inode = file_inode(filp);
2479 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2480 __u32 sync;
2481 int ret;
2482
2483 if (!capable(CAP_SYS_ADMIN))
2484 return -EPERM;
2485
2486 if (get_user(sync, (__u32 __user *)arg))
2487 return -EFAULT;
2488
2489 if (f2fs_readonly(sbi->sb))
2490 return -EROFS;
2491
2492 ret = mnt_want_write_file(filp);
2493 if (ret)
2494 return ret;
2495
2496 if (!sync) {
2497 if (!down_write_trylock(&sbi->gc_lock)) {
2498 ret = -EBUSY;
2499 goto out;
2500 }
2501 } else {
2502 down_write(&sbi->gc_lock);
2503 }
2504
2505 ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2506 out:
2507 mnt_drop_write_file(filp);
2508 return ret;
2509 }
2510
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2511 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2512 {
2513 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2514 u64 end;
2515 int ret;
2516
2517 if (!capable(CAP_SYS_ADMIN))
2518 return -EPERM;
2519 if (f2fs_readonly(sbi->sb))
2520 return -EROFS;
2521
2522 end = range->start + range->len;
2523 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2524 end >= MAX_BLKADDR(sbi))
2525 return -EINVAL;
2526
2527 ret = mnt_want_write_file(filp);
2528 if (ret)
2529 return ret;
2530
2531 do_more:
2532 if (!range->sync) {
2533 if (!down_write_trylock(&sbi->gc_lock)) {
2534 ret = -EBUSY;
2535 goto out;
2536 }
2537 } else {
2538 down_write(&sbi->gc_lock);
2539 }
2540
2541 ret = f2fs_gc(sbi, range->sync, true, false,
2542 GET_SEGNO(sbi, range->start));
2543 if (ret) {
2544 if (ret == -EBUSY)
2545 ret = -EAGAIN;
2546 goto out;
2547 }
2548 range->start += BLKS_PER_SEC(sbi);
2549 if (range->start <= end)
2550 goto do_more;
2551 out:
2552 mnt_drop_write_file(filp);
2553 return ret;
2554 }
2555
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2556 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2557 {
2558 struct f2fs_gc_range range;
2559
2560 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2561 sizeof(range)))
2562 return -EFAULT;
2563 return __f2fs_ioc_gc_range(filp, &range);
2564 }
2565
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2566 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2567 {
2568 struct inode *inode = file_inode(filp);
2569 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2570 int ret;
2571
2572 if (!capable(CAP_SYS_ADMIN))
2573 return -EPERM;
2574
2575 if (f2fs_readonly(sbi->sb))
2576 return -EROFS;
2577
2578 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2579 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2580 return -EINVAL;
2581 }
2582
2583 ret = mnt_want_write_file(filp);
2584 if (ret)
2585 return ret;
2586
2587 ret = f2fs_sync_fs(sbi->sb, 1);
2588
2589 mnt_drop_write_file(filp);
2590 return ret;
2591 }
2592
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2593 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2594 struct file *filp,
2595 struct f2fs_defragment *range)
2596 {
2597 struct inode *inode = file_inode(filp);
2598 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2599 .m_seg_type = NO_CHECK_TYPE ,
2600 .m_may_create = false };
2601 struct extent_info ei = {0, 0, 0};
2602 pgoff_t pg_start, pg_end, next_pgofs;
2603 unsigned int blk_per_seg = sbi->blocks_per_seg;
2604 unsigned int total = 0, sec_num;
2605 block_t blk_end = 0;
2606 bool fragmented = false;
2607 int err;
2608
2609 /* if in-place-update policy is enabled, don't waste time here */
2610 if (f2fs_should_update_inplace(inode, NULL))
2611 return -EINVAL;
2612
2613 pg_start = range->start >> PAGE_SHIFT;
2614 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2615
2616 f2fs_balance_fs(sbi, true);
2617
2618 inode_lock(inode);
2619
2620 /* writeback all dirty pages in the range */
2621 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2622 range->start + range->len - 1);
2623 if (err)
2624 goto out;
2625
2626 /*
2627 * lookup mapping info in extent cache, skip defragmenting if physical
2628 * block addresses are continuous.
2629 */
2630 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2631 if (ei.fofs + ei.len >= pg_end)
2632 goto out;
2633 }
2634
2635 map.m_lblk = pg_start;
2636 map.m_next_pgofs = &next_pgofs;
2637
2638 /*
2639 * lookup mapping info in dnode page cache, skip defragmenting if all
2640 * physical block addresses are continuous even if there are hole(s)
2641 * in logical blocks.
2642 */
2643 while (map.m_lblk < pg_end) {
2644 map.m_len = pg_end - map.m_lblk;
2645 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2646 if (err)
2647 goto out;
2648
2649 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2650 map.m_lblk = next_pgofs;
2651 continue;
2652 }
2653
2654 if (blk_end && blk_end != map.m_pblk)
2655 fragmented = true;
2656
2657 /* record total count of block that we're going to move */
2658 total += map.m_len;
2659
2660 blk_end = map.m_pblk + map.m_len;
2661
2662 map.m_lblk += map.m_len;
2663 }
2664
2665 if (!fragmented) {
2666 total = 0;
2667 goto out;
2668 }
2669
2670 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2671
2672 /*
2673 * make sure there are enough free section for LFS allocation, this can
2674 * avoid defragment running in SSR mode when free section are allocated
2675 * intensively
2676 */
2677 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2678 err = -EAGAIN;
2679 goto out;
2680 }
2681
2682 map.m_lblk = pg_start;
2683 map.m_len = pg_end - pg_start;
2684 total = 0;
2685
2686 while (map.m_lblk < pg_end) {
2687 pgoff_t idx;
2688 int cnt = 0;
2689
2690 do_map:
2691 map.m_len = pg_end - map.m_lblk;
2692 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2693 if (err)
2694 goto clear_out;
2695
2696 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2697 map.m_lblk = next_pgofs;
2698 goto check;
2699 }
2700
2701 set_inode_flag(inode, FI_DO_DEFRAG);
2702
2703 idx = map.m_lblk;
2704 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2705 struct page *page;
2706
2707 page = f2fs_get_lock_data_page(inode, idx, true);
2708 if (IS_ERR(page)) {
2709 err = PTR_ERR(page);
2710 goto clear_out;
2711 }
2712
2713 set_page_dirty(page);
2714 f2fs_put_page(page, 1);
2715
2716 idx++;
2717 cnt++;
2718 total++;
2719 }
2720
2721 map.m_lblk = idx;
2722 check:
2723 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2724 goto do_map;
2725
2726 clear_inode_flag(inode, FI_DO_DEFRAG);
2727
2728 err = filemap_fdatawrite(inode->i_mapping);
2729 if (err)
2730 goto out;
2731 }
2732 clear_out:
2733 clear_inode_flag(inode, FI_DO_DEFRAG);
2734 out:
2735 inode_unlock(inode);
2736 if (!err)
2737 range->len = (u64)total << PAGE_SHIFT;
2738 return err;
2739 }
2740
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2741 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2742 {
2743 struct inode *inode = file_inode(filp);
2744 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2745 struct f2fs_defragment range;
2746 int err;
2747
2748 if (!capable(CAP_SYS_ADMIN))
2749 return -EPERM;
2750
2751 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2752 return -EINVAL;
2753
2754 if (f2fs_readonly(sbi->sb))
2755 return -EROFS;
2756
2757 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2758 sizeof(range)))
2759 return -EFAULT;
2760
2761 /* verify alignment of offset & size */
2762 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2763 return -EINVAL;
2764
2765 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2766 sbi->max_file_blocks))
2767 return -EINVAL;
2768
2769 err = mnt_want_write_file(filp);
2770 if (err)
2771 return err;
2772
2773 err = f2fs_defragment_range(sbi, filp, &range);
2774 mnt_drop_write_file(filp);
2775
2776 f2fs_update_time(sbi, REQ_TIME);
2777 if (err < 0)
2778 return err;
2779
2780 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2781 sizeof(range)))
2782 return -EFAULT;
2783
2784 return 0;
2785 }
2786
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2787 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2788 struct file *file_out, loff_t pos_out, size_t len)
2789 {
2790 struct inode *src = file_inode(file_in);
2791 struct inode *dst = file_inode(file_out);
2792 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2793 size_t olen = len, dst_max_i_size = 0;
2794 size_t dst_osize;
2795 int ret;
2796
2797 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2798 src->i_sb != dst->i_sb)
2799 return -EXDEV;
2800
2801 if (unlikely(f2fs_readonly(src->i_sb)))
2802 return -EROFS;
2803
2804 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2805 return -EINVAL;
2806
2807 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2808 return -EOPNOTSUPP;
2809
2810 if (pos_out < 0 || pos_in < 0)
2811 return -EINVAL;
2812
2813 if (src == dst) {
2814 if (pos_in == pos_out)
2815 return 0;
2816 if (pos_out > pos_in && pos_out < pos_in + len)
2817 return -EINVAL;
2818 }
2819
2820 inode_lock(src);
2821 if (src != dst) {
2822 ret = -EBUSY;
2823 if (!inode_trylock(dst))
2824 goto out;
2825 }
2826
2827 ret = -EINVAL;
2828 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2829 goto out_unlock;
2830 if (len == 0)
2831 olen = len = src->i_size - pos_in;
2832 if (pos_in + len == src->i_size)
2833 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2834 if (len == 0) {
2835 ret = 0;
2836 goto out_unlock;
2837 }
2838
2839 dst_osize = dst->i_size;
2840 if (pos_out + olen > dst->i_size)
2841 dst_max_i_size = pos_out + olen;
2842
2843 /* verify the end result is block aligned */
2844 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2845 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2846 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2847 goto out_unlock;
2848
2849 ret = f2fs_convert_inline_inode(src);
2850 if (ret)
2851 goto out_unlock;
2852
2853 ret = f2fs_convert_inline_inode(dst);
2854 if (ret)
2855 goto out_unlock;
2856
2857 /* write out all dirty pages from offset */
2858 ret = filemap_write_and_wait_range(src->i_mapping,
2859 pos_in, pos_in + len);
2860 if (ret)
2861 goto out_unlock;
2862
2863 ret = filemap_write_and_wait_range(dst->i_mapping,
2864 pos_out, pos_out + len);
2865 if (ret)
2866 goto out_unlock;
2867
2868 f2fs_balance_fs(sbi, true);
2869
2870 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2871 if (src != dst) {
2872 ret = -EBUSY;
2873 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2874 goto out_src;
2875 }
2876
2877 f2fs_lock_op(sbi);
2878 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2879 pos_out >> F2FS_BLKSIZE_BITS,
2880 len >> F2FS_BLKSIZE_BITS, false);
2881
2882 if (!ret) {
2883 if (dst_max_i_size)
2884 f2fs_i_size_write(dst, dst_max_i_size);
2885 else if (dst_osize != dst->i_size)
2886 f2fs_i_size_write(dst, dst_osize);
2887 }
2888 f2fs_unlock_op(sbi);
2889
2890 if (src != dst)
2891 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2892 out_src:
2893 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2894 out_unlock:
2895 if (src != dst)
2896 inode_unlock(dst);
2897 out:
2898 inode_unlock(src);
2899 return ret;
2900 }
2901
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)2902 static int __f2fs_ioc_move_range(struct file *filp,
2903 struct f2fs_move_range *range)
2904 {
2905 struct fd dst;
2906 int err;
2907
2908 if (!(filp->f_mode & FMODE_READ) ||
2909 !(filp->f_mode & FMODE_WRITE))
2910 return -EBADF;
2911
2912 dst = fdget(range->dst_fd);
2913 if (!dst.file)
2914 return -EBADF;
2915
2916 if (!(dst.file->f_mode & FMODE_WRITE)) {
2917 err = -EBADF;
2918 goto err_out;
2919 }
2920
2921 err = mnt_want_write_file(filp);
2922 if (err)
2923 goto err_out;
2924
2925 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2926 range->pos_out, range->len);
2927
2928 mnt_drop_write_file(filp);
2929 err_out:
2930 fdput(dst);
2931 return err;
2932 }
2933
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2934 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2935 {
2936 struct f2fs_move_range range;
2937
2938 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2939 sizeof(range)))
2940 return -EFAULT;
2941 return __f2fs_ioc_move_range(filp, &range);
2942 }
2943
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2944 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2945 {
2946 struct inode *inode = file_inode(filp);
2947 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2948 struct sit_info *sm = SIT_I(sbi);
2949 unsigned int start_segno = 0, end_segno = 0;
2950 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2951 struct f2fs_flush_device range;
2952 int ret;
2953
2954 if (!capable(CAP_SYS_ADMIN))
2955 return -EPERM;
2956
2957 if (f2fs_readonly(sbi->sb))
2958 return -EROFS;
2959
2960 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2961 return -EINVAL;
2962
2963 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2964 sizeof(range)))
2965 return -EFAULT;
2966
2967 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2968 __is_large_section(sbi)) {
2969 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2970 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2971 return -EINVAL;
2972 }
2973
2974 ret = mnt_want_write_file(filp);
2975 if (ret)
2976 return ret;
2977
2978 if (range.dev_num != 0)
2979 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2980 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2981
2982 start_segno = sm->last_victim[FLUSH_DEVICE];
2983 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2984 start_segno = dev_start_segno;
2985 end_segno = min(start_segno + range.segments, dev_end_segno);
2986
2987 while (start_segno < end_segno) {
2988 if (!down_write_trylock(&sbi->gc_lock)) {
2989 ret = -EBUSY;
2990 goto out;
2991 }
2992 sm->last_victim[GC_CB] = end_segno + 1;
2993 sm->last_victim[GC_GREEDY] = end_segno + 1;
2994 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2995 ret = f2fs_gc(sbi, true, true, true, start_segno);
2996 if (ret == -EAGAIN)
2997 ret = 0;
2998 else if (ret < 0)
2999 break;
3000 start_segno++;
3001 }
3002 out:
3003 mnt_drop_write_file(filp);
3004 return ret;
3005 }
3006
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3007 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3008 {
3009 struct inode *inode = file_inode(filp);
3010 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3011
3012 /* Must validate to set it with SQLite behavior in Android. */
3013 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3014
3015 return put_user(sb_feature, (u32 __user *)arg);
3016 }
3017
3018 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3019 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3020 {
3021 struct dquot *transfer_to[MAXQUOTAS] = {};
3022 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3023 struct super_block *sb = sbi->sb;
3024 int err;
3025
3026 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3027 if (IS_ERR(transfer_to[PRJQUOTA]))
3028 return PTR_ERR(transfer_to[PRJQUOTA]);
3029
3030 err = __dquot_transfer(inode, transfer_to);
3031 if (err)
3032 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3033 dqput(transfer_to[PRJQUOTA]);
3034 return err;
3035 }
3036
f2fs_ioc_setproject(struct file * filp,__u32 projid)3037 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3038 {
3039 struct inode *inode = file_inode(filp);
3040 struct f2fs_inode_info *fi = F2FS_I(inode);
3041 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3042 struct page *ipage;
3043 kprojid_t kprojid;
3044 int err;
3045
3046 if (!f2fs_sb_has_project_quota(sbi)) {
3047 if (projid != F2FS_DEF_PROJID)
3048 return -EOPNOTSUPP;
3049 else
3050 return 0;
3051 }
3052
3053 if (!f2fs_has_extra_attr(inode))
3054 return -EOPNOTSUPP;
3055
3056 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3057
3058 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3059 return 0;
3060
3061 err = -EPERM;
3062 /* Is it quota file? Do not allow user to mess with it */
3063 if (IS_NOQUOTA(inode))
3064 return err;
3065
3066 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3067 if (IS_ERR(ipage))
3068 return PTR_ERR(ipage);
3069
3070 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3071 i_projid)) {
3072 err = -EOVERFLOW;
3073 f2fs_put_page(ipage, 1);
3074 return err;
3075 }
3076 f2fs_put_page(ipage, 1);
3077
3078 err = dquot_initialize(inode);
3079 if (err)
3080 return err;
3081
3082 f2fs_lock_op(sbi);
3083 err = f2fs_transfer_project_quota(inode, kprojid);
3084 if (err)
3085 goto out_unlock;
3086
3087 F2FS_I(inode)->i_projid = kprojid;
3088 inode->i_ctime = current_time(inode);
3089 f2fs_mark_inode_dirty_sync(inode, true);
3090 out_unlock:
3091 f2fs_unlock_op(sbi);
3092 return err;
3093 }
3094 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3095 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3096 {
3097 return 0;
3098 }
3099
f2fs_ioc_setproject(struct file * filp,__u32 projid)3100 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3101 {
3102 if (projid != F2FS_DEF_PROJID)
3103 return -EOPNOTSUPP;
3104 return 0;
3105 }
3106 #endif
3107
3108 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
3109
3110 /*
3111 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
3112 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
3113 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
3114 */
3115
3116 static const struct {
3117 u32 iflag;
3118 u32 xflag;
3119 } f2fs_xflags_map[] = {
3120 { F2FS_SYNC_FL, FS_XFLAG_SYNC },
3121 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE },
3122 { F2FS_APPEND_FL, FS_XFLAG_APPEND },
3123 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP },
3124 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME },
3125 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT },
3126 };
3127
3128 #define F2FS_SUPPORTED_XFLAGS ( \
3129 FS_XFLAG_SYNC | \
3130 FS_XFLAG_IMMUTABLE | \
3131 FS_XFLAG_APPEND | \
3132 FS_XFLAG_NODUMP | \
3133 FS_XFLAG_NOATIME | \
3134 FS_XFLAG_PROJINHERIT)
3135
3136 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
f2fs_iflags_to_xflags(u32 iflags)3137 static inline u32 f2fs_iflags_to_xflags(u32 iflags)
3138 {
3139 u32 xflags = 0;
3140 int i;
3141
3142 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3143 if (iflags & f2fs_xflags_map[i].iflag)
3144 xflags |= f2fs_xflags_map[i].xflag;
3145
3146 return xflags;
3147 }
3148
3149 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
f2fs_xflags_to_iflags(u32 xflags)3150 static inline u32 f2fs_xflags_to_iflags(u32 xflags)
3151 {
3152 u32 iflags = 0;
3153 int i;
3154
3155 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3156 if (xflags & f2fs_xflags_map[i].xflag)
3157 iflags |= f2fs_xflags_map[i].iflag;
3158
3159 return iflags;
3160 }
3161
f2fs_fill_fsxattr(struct inode * inode,struct fsxattr * fa)3162 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
3163 {
3164 struct f2fs_inode_info *fi = F2FS_I(inode);
3165
3166 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
3167
3168 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3169 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3170 }
3171
f2fs_ioc_fsgetxattr(struct file * filp,unsigned long arg)3172 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
3173 {
3174 struct inode *inode = file_inode(filp);
3175 struct fsxattr fa;
3176
3177 f2fs_fill_fsxattr(inode, &fa);
3178
3179 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
3180 return -EFAULT;
3181 return 0;
3182 }
3183
f2fs_ioc_fssetxattr(struct file * filp,unsigned long arg)3184 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
3185 {
3186 struct inode *inode = file_inode(filp);
3187 struct fsxattr fa, old_fa;
3188 u32 iflags;
3189 int err;
3190
3191 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
3192 return -EFAULT;
3193
3194 /* Make sure caller has proper permission */
3195 if (!inode_owner_or_capable(inode))
3196 return -EACCES;
3197
3198 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
3199 return -EOPNOTSUPP;
3200
3201 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
3202 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3203 return -EOPNOTSUPP;
3204
3205 err = mnt_want_write_file(filp);
3206 if (err)
3207 return err;
3208
3209 inode_lock(inode);
3210
3211 f2fs_fill_fsxattr(inode, &old_fa);
3212 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
3213 if (err)
3214 goto out;
3215
3216 err = f2fs_setflags_common(inode, iflags,
3217 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
3218 if (err)
3219 goto out;
3220
3221 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3222 out:
3223 inode_unlock(inode);
3224 mnt_drop_write_file(filp);
3225 return err;
3226 }
3227
f2fs_pin_file_control(struct inode * inode,bool inc)3228 int f2fs_pin_file_control(struct inode *inode, bool inc)
3229 {
3230 struct f2fs_inode_info *fi = F2FS_I(inode);
3231 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3232
3233 /* Use i_gc_failures for normal file as a risk signal. */
3234 if (inc)
3235 f2fs_i_gc_failures_write(inode,
3236 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3237
3238 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3239 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3240 __func__, inode->i_ino,
3241 fi->i_gc_failures[GC_FAILURE_PIN]);
3242 clear_inode_flag(inode, FI_PIN_FILE);
3243 return -EAGAIN;
3244 }
3245 return 0;
3246 }
3247
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3248 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3249 {
3250 struct inode *inode = file_inode(filp);
3251 __u32 pin;
3252 int ret = 0;
3253
3254 if (get_user(pin, (__u32 __user *)arg))
3255 return -EFAULT;
3256
3257 if (!S_ISREG(inode->i_mode))
3258 return -EINVAL;
3259
3260 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3261 return -EROFS;
3262
3263 ret = mnt_want_write_file(filp);
3264 if (ret)
3265 return ret;
3266
3267 inode_lock(inode);
3268
3269 if (f2fs_should_update_outplace(inode, NULL)) {
3270 ret = -EINVAL;
3271 goto out;
3272 }
3273
3274 if (!pin) {
3275 clear_inode_flag(inode, FI_PIN_FILE);
3276 f2fs_i_gc_failures_write(inode, 0);
3277 goto done;
3278 }
3279
3280 if (f2fs_pin_file_control(inode, false)) {
3281 ret = -EAGAIN;
3282 goto out;
3283 }
3284
3285 ret = f2fs_convert_inline_inode(inode);
3286 if (ret)
3287 goto out;
3288
3289 if (!f2fs_disable_compressed_file(inode)) {
3290 ret = -EOPNOTSUPP;
3291 goto out;
3292 }
3293
3294 set_inode_flag(inode, FI_PIN_FILE);
3295 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3296 done:
3297 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3298 out:
3299 inode_unlock(inode);
3300 mnt_drop_write_file(filp);
3301 return ret;
3302 }
3303
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3304 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3305 {
3306 struct inode *inode = file_inode(filp);
3307 __u32 pin = 0;
3308
3309 if (is_inode_flag_set(inode, FI_PIN_FILE))
3310 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3311 return put_user(pin, (u32 __user *)arg);
3312 }
3313
f2fs_precache_extents(struct inode * inode)3314 int f2fs_precache_extents(struct inode *inode)
3315 {
3316 struct f2fs_inode_info *fi = F2FS_I(inode);
3317 struct f2fs_map_blocks map;
3318 pgoff_t m_next_extent;
3319 loff_t end;
3320 int err;
3321
3322 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3323 return -EOPNOTSUPP;
3324
3325 map.m_lblk = 0;
3326 map.m_pblk = 0;
3327 map.m_next_pgofs = NULL;
3328 map.m_next_extent = &m_next_extent;
3329 map.m_seg_type = NO_CHECK_TYPE;
3330 map.m_may_create = false;
3331 end = F2FS_I_SB(inode)->max_file_blocks;
3332
3333 while (map.m_lblk < end) {
3334 map.m_len = end - map.m_lblk;
3335
3336 down_write(&fi->i_gc_rwsem[WRITE]);
3337 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3338 up_write(&fi->i_gc_rwsem[WRITE]);
3339 if (err)
3340 return err;
3341
3342 map.m_lblk = m_next_extent;
3343 }
3344
3345 return err;
3346 }
3347
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)3348 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3349 {
3350 return f2fs_precache_extents(file_inode(filp));
3351 }
3352
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3353 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3354 {
3355 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3356 __u64 block_count;
3357
3358 if (!capable(CAP_SYS_ADMIN))
3359 return -EPERM;
3360
3361 if (f2fs_readonly(sbi->sb))
3362 return -EROFS;
3363
3364 if (copy_from_user(&block_count, (void __user *)arg,
3365 sizeof(block_count)))
3366 return -EFAULT;
3367
3368 return f2fs_resize_fs(filp, block_count);
3369 }
3370
f2fs_has_feature_verity(struct file * filp)3371 static inline int f2fs_has_feature_verity(struct file *filp)
3372 {
3373 struct inode *inode = file_inode(filp);
3374
3375 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3376
3377 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3378 f2fs_warn(F2FS_I_SB(inode),
3379 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3380 inode->i_ino);
3381 return -EOPNOTSUPP;
3382 }
3383 return 0;
3384 }
3385
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3386 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3387 {
3388 int err = f2fs_has_feature_verity(filp);
3389
3390 if (err)
3391 return err;
3392
3393 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3394 }
3395
f2fs_ioc_enable_code_sign(struct file * filp,unsigned long arg)3396 static int f2fs_ioc_enable_code_sign(struct file *filp, unsigned long arg)
3397 {
3398 int err = f2fs_has_feature_verity(filp);
3399
3400 if (err)
3401 return err;
3402
3403 return fsverity_ioctl_enable_code_sign(filp, (const void __user *)arg);
3404 }
3405
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3406 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3407 {
3408 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3409 return -EOPNOTSUPP;
3410
3411 return fsverity_ioctl_measure(filp, (void __user *)arg);
3412 }
3413
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3414 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3415 {
3416 struct inode *inode = file_inode(filp);
3417 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3418 char *vbuf;
3419 int count;
3420 int err = 0;
3421
3422 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3423 if (!vbuf)
3424 return -ENOMEM;
3425
3426 down_read(&sbi->sb_lock);
3427 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3428 ARRAY_SIZE(sbi->raw_super->volume_name),
3429 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3430 up_read(&sbi->sb_lock);
3431
3432 if (copy_to_user((char __user *)arg, vbuf,
3433 min(FSLABEL_MAX, count)))
3434 err = -EFAULT;
3435
3436 kfree(vbuf);
3437 return err;
3438 }
3439
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3440 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3441 {
3442 struct inode *inode = file_inode(filp);
3443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3444 char *vbuf;
3445 int err = 0;
3446
3447 if (!capable(CAP_SYS_ADMIN))
3448 return -EPERM;
3449
3450 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3451 if (IS_ERR(vbuf))
3452 return PTR_ERR(vbuf);
3453
3454 err = mnt_want_write_file(filp);
3455 if (err)
3456 goto out;
3457
3458 down_write(&sbi->sb_lock);
3459
3460 memset(sbi->raw_super->volume_name, 0,
3461 sizeof(sbi->raw_super->volume_name));
3462 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3463 sbi->raw_super->volume_name,
3464 ARRAY_SIZE(sbi->raw_super->volume_name));
3465
3466 err = f2fs_commit_super(sbi, false);
3467
3468 up_write(&sbi->sb_lock);
3469
3470 mnt_drop_write_file(filp);
3471 out:
3472 kfree(vbuf);
3473 return err;
3474 }
3475
f2fs_get_compress_blocks(struct file * filp,unsigned long arg)3476 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3477 {
3478 struct inode *inode = file_inode(filp);
3479 __u64 blocks;
3480
3481 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3482 return -EOPNOTSUPP;
3483
3484 if (!f2fs_compressed_file(inode))
3485 return -EINVAL;
3486
3487 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3488 return put_user(blocks, (u64 __user *)arg);
3489 }
3490
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3491 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3492 {
3493 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3494 unsigned int released_blocks = 0;
3495 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3496 block_t blkaddr;
3497 int i;
3498
3499 for (i = 0; i < count; i++) {
3500 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3501 dn->ofs_in_node + i);
3502
3503 if (!__is_valid_data_blkaddr(blkaddr))
3504 continue;
3505 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3506 DATA_GENERIC_ENHANCE)))
3507 return -EFSCORRUPTED;
3508 }
3509
3510 while (count) {
3511 int compr_blocks = 0;
3512
3513 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3514 blkaddr = f2fs_data_blkaddr(dn);
3515
3516 if (i == 0) {
3517 if (blkaddr == COMPRESS_ADDR)
3518 continue;
3519 dn->ofs_in_node += cluster_size;
3520 goto next;
3521 }
3522
3523 if (__is_valid_data_blkaddr(blkaddr))
3524 compr_blocks++;
3525
3526 if (blkaddr != NEW_ADDR)
3527 continue;
3528
3529 dn->data_blkaddr = NULL_ADDR;
3530 f2fs_set_data_blkaddr(dn);
3531 }
3532
3533 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3534 dec_valid_block_count(sbi, dn->inode,
3535 cluster_size - compr_blocks);
3536
3537 released_blocks += cluster_size - compr_blocks;
3538 next:
3539 count -= cluster_size;
3540 }
3541
3542 return released_blocks;
3543 }
3544
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3545 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3546 {
3547 struct inode *inode = file_inode(filp);
3548 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3549 pgoff_t page_idx = 0, last_idx;
3550 unsigned int released_blocks = 0;
3551 int ret;
3552 int writecount;
3553
3554 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3555 return -EOPNOTSUPP;
3556
3557 if (!f2fs_compressed_file(inode))
3558 return -EINVAL;
3559
3560 if (f2fs_readonly(sbi->sb))
3561 return -EROFS;
3562
3563 ret = mnt_want_write_file(filp);
3564 if (ret)
3565 return ret;
3566
3567 f2fs_balance_fs(F2FS_I_SB(inode), true);
3568
3569 inode_lock(inode);
3570
3571 writecount = atomic_read(&inode->i_writecount);
3572 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3573 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3574 ret = -EBUSY;
3575 goto out;
3576 }
3577
3578 if (IS_IMMUTABLE(inode)) {
3579 ret = -EINVAL;
3580 goto out;
3581 }
3582
3583 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3584 if (ret)
3585 goto out;
3586
3587 F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL;
3588 f2fs_set_inode_flags(inode);
3589 inode->i_ctime = current_time(inode);
3590 f2fs_mark_inode_dirty_sync(inode, true);
3591
3592 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3593 goto out;
3594
3595 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3596 down_write(&F2FS_I(inode)->i_mmap_sem);
3597
3598 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3599
3600 while (page_idx < last_idx) {
3601 struct dnode_of_data dn;
3602 pgoff_t end_offset, count;
3603
3604 f2fs_lock_op(sbi);
3605
3606 set_new_dnode(&dn, inode, NULL, NULL, 0);
3607 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3608 if (ret) {
3609 f2fs_unlock_op(sbi);
3610 if (ret == -ENOENT) {
3611 page_idx = f2fs_get_next_page_offset(&dn,
3612 page_idx);
3613 ret = 0;
3614 continue;
3615 }
3616 break;
3617 }
3618
3619 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3620 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3621 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3622
3623 ret = release_compress_blocks(&dn, count);
3624
3625 f2fs_put_dnode(&dn);
3626
3627 f2fs_unlock_op(sbi);
3628
3629 if (ret < 0)
3630 break;
3631
3632 page_idx += count;
3633 released_blocks += ret;
3634 }
3635
3636 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3637 up_write(&F2FS_I(inode)->i_mmap_sem);
3638 out:
3639 inode_unlock(inode);
3640
3641 mnt_drop_write_file(filp);
3642
3643 if (ret >= 0) {
3644 ret = put_user(released_blocks, (u64 __user *)arg);
3645 } else if (released_blocks &&
3646 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3647 set_sbi_flag(sbi, SBI_NEED_FSCK);
3648 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3649 "iblocks=%llu, released=%u, compr_blocks=%u, "
3650 "run fsck to fix.",
3651 __func__, inode->i_ino, inode->i_blocks,
3652 released_blocks,
3653 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3654 }
3655
3656 return ret;
3657 }
3658
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count,unsigned int * reserved_blocks)3659 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3660 unsigned int *reserved_blocks)
3661 {
3662 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3663 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3664 block_t blkaddr;
3665 int i;
3666
3667 for (i = 0; i < count; i++) {
3668 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3669 dn->ofs_in_node + i);
3670
3671 if (!__is_valid_data_blkaddr(blkaddr))
3672 continue;
3673 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3674 DATA_GENERIC_ENHANCE)))
3675 return -EFSCORRUPTED;
3676 }
3677
3678 while (count) {
3679 int compr_blocks = 0;
3680 blkcnt_t reserved;
3681 int ret;
3682
3683 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3684 blkaddr = f2fs_data_blkaddr(dn);
3685
3686 if (i == 0) {
3687 if (blkaddr == COMPRESS_ADDR)
3688 continue;
3689 dn->ofs_in_node += cluster_size;
3690 goto next;
3691 }
3692
3693 if (__is_valid_data_blkaddr(blkaddr)) {
3694 compr_blocks++;
3695 continue;
3696 }
3697
3698 dn->data_blkaddr = NEW_ADDR;
3699 f2fs_set_data_blkaddr(dn);
3700 }
3701
3702 reserved = cluster_size - compr_blocks;
3703 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3704 if (ret)
3705 return ret;
3706
3707 if (reserved != cluster_size - compr_blocks)
3708 return -ENOSPC;
3709
3710 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3711
3712 *reserved_blocks += reserved;
3713 next:
3714 count -= cluster_size;
3715 }
3716
3717 return 0;
3718 }
3719
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3720 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3721 {
3722 struct inode *inode = file_inode(filp);
3723 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3724 pgoff_t page_idx = 0, last_idx;
3725 unsigned int reserved_blocks = 0;
3726 int ret;
3727
3728 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3729 return -EOPNOTSUPP;
3730
3731 if (!f2fs_compressed_file(inode))
3732 return -EINVAL;
3733
3734 if (f2fs_readonly(sbi->sb))
3735 return -EROFS;
3736
3737 ret = mnt_want_write_file(filp);
3738 if (ret)
3739 return ret;
3740
3741 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3742 goto out;
3743
3744 f2fs_balance_fs(F2FS_I_SB(inode), true);
3745
3746 inode_lock(inode);
3747
3748 if (!IS_IMMUTABLE(inode)) {
3749 ret = -EINVAL;
3750 goto unlock_inode;
3751 }
3752
3753 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3754 down_write(&F2FS_I(inode)->i_mmap_sem);
3755
3756 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3757
3758 while (page_idx < last_idx) {
3759 struct dnode_of_data dn;
3760 pgoff_t end_offset, count;
3761
3762 f2fs_lock_op(sbi);
3763
3764 set_new_dnode(&dn, inode, NULL, NULL, 0);
3765 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3766 if (ret) {
3767 f2fs_unlock_op(sbi);
3768 if (ret == -ENOENT) {
3769 page_idx = f2fs_get_next_page_offset(&dn,
3770 page_idx);
3771 ret = 0;
3772 continue;
3773 }
3774 break;
3775 }
3776
3777 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3778 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3779 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3780
3781 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3782
3783 f2fs_put_dnode(&dn);
3784
3785 f2fs_unlock_op(sbi);
3786
3787 if (ret < 0)
3788 break;
3789
3790 page_idx += count;
3791 }
3792
3793 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3794 up_write(&F2FS_I(inode)->i_mmap_sem);
3795
3796 if (ret >= 0) {
3797 F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL;
3798 f2fs_set_inode_flags(inode);
3799 inode->i_ctime = current_time(inode);
3800 f2fs_mark_inode_dirty_sync(inode, true);
3801 }
3802 unlock_inode:
3803 inode_unlock(inode);
3804 out:
3805 mnt_drop_write_file(filp);
3806
3807 if (!ret) {
3808 ret = put_user(reserved_blocks, (u64 __user *)arg);
3809 } else if (reserved_blocks &&
3810 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3811 set_sbi_flag(sbi, SBI_NEED_FSCK);
3812 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3813 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3814 "run fsck to fix.",
3815 __func__, inode->i_ino, inode->i_blocks,
3816 reserved_blocks,
3817 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3818 }
3819
3820 return ret;
3821 }
3822
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3823 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3824 pgoff_t off, block_t block, block_t len, u32 flags)
3825 {
3826 struct request_queue *q = bdev_get_queue(bdev);
3827 sector_t sector = SECTOR_FROM_BLOCK(block);
3828 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3829 int ret = 0;
3830
3831 if (!q)
3832 return -ENXIO;
3833
3834 if (flags & F2FS_TRIM_FILE_DISCARD)
3835 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3836 blk_queue_secure_erase(q) ?
3837 BLKDEV_DISCARD_SECURE : 0);
3838
3839 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3840 if (IS_ENCRYPTED(inode))
3841 ret = fscrypt_zeroout_range(inode, off, block, len);
3842 else
3843 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3844 GFP_NOFS, 0);
3845 }
3846
3847 return ret;
3848 }
3849
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3850 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3851 {
3852 struct inode *inode = file_inode(filp);
3853 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3854 struct address_space *mapping = inode->i_mapping;
3855 struct block_device *prev_bdev = NULL;
3856 struct f2fs_sectrim_range range;
3857 pgoff_t index, pg_end, prev_index = 0;
3858 block_t prev_block = 0, len = 0;
3859 loff_t end_addr;
3860 bool to_end = false;
3861 int ret = 0;
3862
3863 if (!(filp->f_mode & FMODE_WRITE))
3864 return -EBADF;
3865
3866 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3867 sizeof(range)))
3868 return -EFAULT;
3869
3870 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3871 !S_ISREG(inode->i_mode))
3872 return -EINVAL;
3873
3874 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3875 !f2fs_hw_support_discard(sbi)) ||
3876 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3877 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3878 return -EOPNOTSUPP;
3879
3880 file_start_write(filp);
3881 inode_lock(inode);
3882
3883 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3884 range.start >= inode->i_size) {
3885 ret = -EINVAL;
3886 goto err;
3887 }
3888
3889 if (range.len == 0)
3890 goto err;
3891
3892 if (inode->i_size - range.start > range.len) {
3893 end_addr = range.start + range.len;
3894 } else {
3895 end_addr = range.len == (u64)-1 ?
3896 sbi->sb->s_maxbytes : inode->i_size;
3897 to_end = true;
3898 }
3899
3900 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3901 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3902 ret = -EINVAL;
3903 goto err;
3904 }
3905
3906 index = F2FS_BYTES_TO_BLK(range.start);
3907 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3908
3909 ret = f2fs_convert_inline_inode(inode);
3910 if (ret)
3911 goto err;
3912
3913 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3914 down_write(&F2FS_I(inode)->i_mmap_sem);
3915
3916 ret = filemap_write_and_wait_range(mapping, range.start,
3917 to_end ? LLONG_MAX : end_addr - 1);
3918 if (ret)
3919 goto out;
3920
3921 truncate_inode_pages_range(mapping, range.start,
3922 to_end ? -1 : end_addr - 1);
3923
3924 while (index < pg_end) {
3925 struct dnode_of_data dn;
3926 pgoff_t end_offset, count;
3927 int i;
3928
3929 set_new_dnode(&dn, inode, NULL, NULL, 0);
3930 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3931 if (ret) {
3932 if (ret == -ENOENT) {
3933 index = f2fs_get_next_page_offset(&dn, index);
3934 continue;
3935 }
3936 goto out;
3937 }
3938
3939 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3940 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3941 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3942 struct block_device *cur_bdev;
3943 block_t blkaddr = f2fs_data_blkaddr(&dn);
3944
3945 if (!__is_valid_data_blkaddr(blkaddr))
3946 continue;
3947
3948 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3949 DATA_GENERIC_ENHANCE)) {
3950 ret = -EFSCORRUPTED;
3951 f2fs_put_dnode(&dn);
3952 goto out;
3953 }
3954
3955 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3956 if (f2fs_is_multi_device(sbi)) {
3957 int di = f2fs_target_device_index(sbi, blkaddr);
3958
3959 blkaddr -= FDEV(di).start_blk;
3960 }
3961
3962 if (len) {
3963 if (prev_bdev == cur_bdev &&
3964 index == prev_index + len &&
3965 blkaddr == prev_block + len) {
3966 len++;
3967 } else {
3968 ret = f2fs_secure_erase(prev_bdev,
3969 inode, prev_index, prev_block,
3970 len, range.flags);
3971 if (ret) {
3972 f2fs_put_dnode(&dn);
3973 goto out;
3974 }
3975
3976 len = 0;
3977 }
3978 }
3979
3980 if (!len) {
3981 prev_bdev = cur_bdev;
3982 prev_index = index;
3983 prev_block = blkaddr;
3984 len = 1;
3985 }
3986 }
3987
3988 f2fs_put_dnode(&dn);
3989
3990 if (fatal_signal_pending(current)) {
3991 ret = -EINTR;
3992 goto out;
3993 }
3994 cond_resched();
3995 }
3996
3997 if (len)
3998 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3999 prev_block, len, range.flags);
4000 out:
4001 up_write(&F2FS_I(inode)->i_mmap_sem);
4002 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4003 err:
4004 inode_unlock(inode);
4005 file_end_write(filp);
4006
4007 return ret;
4008 }
4009
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4010 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4011 {
4012 switch (cmd) {
4013 case FS_IOC_GETFLAGS:
4014 return f2fs_ioc_getflags(filp, arg);
4015 case FS_IOC_SETFLAGS:
4016 return f2fs_ioc_setflags(filp, arg);
4017 case FS_IOC_GETVERSION:
4018 return f2fs_ioc_getversion(filp, arg);
4019 case F2FS_IOC_START_ATOMIC_WRITE:
4020 return f2fs_ioc_start_atomic_write(filp);
4021 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4022 return f2fs_ioc_commit_atomic_write(filp);
4023 case F2FS_IOC_START_VOLATILE_WRITE:
4024 return f2fs_ioc_start_volatile_write(filp);
4025 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4026 return f2fs_ioc_release_volatile_write(filp);
4027 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4028 return f2fs_ioc_abort_volatile_write(filp);
4029 case F2FS_IOC_SHUTDOWN:
4030 return f2fs_ioc_shutdown(filp, arg);
4031 case FITRIM:
4032 return f2fs_ioc_fitrim(filp, arg);
4033 case FS_IOC_SET_ENCRYPTION_POLICY:
4034 return f2fs_ioc_set_encryption_policy(filp, arg);
4035 case FS_IOC_GET_ENCRYPTION_POLICY:
4036 return f2fs_ioc_get_encryption_policy(filp, arg);
4037 case FS_IOC_GET_ENCRYPTION_PWSALT:
4038 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4039 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4040 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4041 case FS_IOC_ADD_ENCRYPTION_KEY:
4042 return f2fs_ioc_add_encryption_key(filp, arg);
4043 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4044 return f2fs_ioc_remove_encryption_key(filp, arg);
4045 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4046 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4047 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4048 return f2fs_ioc_get_encryption_key_status(filp, arg);
4049 case FS_IOC_GET_ENCRYPTION_NONCE:
4050 return f2fs_ioc_get_encryption_nonce(filp, arg);
4051 case F2FS_IOC_GARBAGE_COLLECT:
4052 return f2fs_ioc_gc(filp, arg);
4053 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4054 return f2fs_ioc_gc_range(filp, arg);
4055 case F2FS_IOC_WRITE_CHECKPOINT:
4056 return f2fs_ioc_write_checkpoint(filp, arg);
4057 case F2FS_IOC_DEFRAGMENT:
4058 return f2fs_ioc_defragment(filp, arg);
4059 case F2FS_IOC_MOVE_RANGE:
4060 return f2fs_ioc_move_range(filp, arg);
4061 case F2FS_IOC_FLUSH_DEVICE:
4062 return f2fs_ioc_flush_device(filp, arg);
4063 case F2FS_IOC_GET_FEATURES:
4064 return f2fs_ioc_get_features(filp, arg);
4065 case FS_IOC_FSGETXATTR:
4066 return f2fs_ioc_fsgetxattr(filp, arg);
4067 case FS_IOC_FSSETXATTR:
4068 return f2fs_ioc_fssetxattr(filp, arg);
4069 case F2FS_IOC_GET_PIN_FILE:
4070 return f2fs_ioc_get_pin_file(filp, arg);
4071 case F2FS_IOC_SET_PIN_FILE:
4072 return f2fs_ioc_set_pin_file(filp, arg);
4073 case F2FS_IOC_PRECACHE_EXTENTS:
4074 return f2fs_ioc_precache_extents(filp, arg);
4075 case F2FS_IOC_RESIZE_FS:
4076 return f2fs_ioc_resize_fs(filp, arg);
4077 case FS_IOC_ENABLE_VERITY:
4078 return f2fs_ioc_enable_verity(filp, arg);
4079 case FS_IOC_MEASURE_VERITY:
4080 return f2fs_ioc_measure_verity(filp, arg);
4081 case FS_IOC_ENABLE_CODE_SIGN:
4082 return f2fs_ioc_enable_code_sign(filp, arg);
4083 case FS_IOC_GETFSLABEL:
4084 return f2fs_ioc_getfslabel(filp, arg);
4085 case FS_IOC_SETFSLABEL:
4086 return f2fs_ioc_setfslabel(filp, arg);
4087 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4088 return f2fs_get_compress_blocks(filp, arg);
4089 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4090 return f2fs_release_compress_blocks(filp, arg);
4091 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4092 return f2fs_reserve_compress_blocks(filp, arg);
4093 case F2FS_IOC_SEC_TRIM_FILE:
4094 return f2fs_sec_trim_file(filp, arg);
4095 default:
4096 return -ENOTTY;
4097 }
4098 }
4099
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4100 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4101 {
4102 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4103 return -EIO;
4104 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4105 return -ENOSPC;
4106
4107 return __f2fs_ioctl(filp, cmd, arg);
4108 }
4109
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)4110 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4111 {
4112 struct file *file = iocb->ki_filp;
4113 struct inode *inode = file_inode(file);
4114 int ret;
4115
4116 if (!f2fs_is_compress_backend_ready(inode))
4117 return -EOPNOTSUPP;
4118
4119 ret = generic_file_read_iter(iocb, iter);
4120
4121 if (ret > 0)
4122 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4123
4124 return ret;
4125 }
4126
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4127 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4128 {
4129 struct file *file = iocb->ki_filp;
4130 struct inode *inode = file_inode(file);
4131 ssize_t ret;
4132
4133 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4134 ret = -EIO;
4135 goto out;
4136 }
4137
4138 if (!f2fs_is_compress_backend_ready(inode)) {
4139 ret = -EOPNOTSUPP;
4140 goto out;
4141 }
4142
4143 if (iocb->ki_flags & IOCB_NOWAIT) {
4144 if (!inode_trylock(inode)) {
4145 ret = -EAGAIN;
4146 goto out;
4147 }
4148 } else {
4149 inode_lock(inode);
4150 }
4151
4152 if (unlikely(IS_IMMUTABLE(inode))) {
4153 ret = -EPERM;
4154 goto unlock;
4155 }
4156
4157 ret = generic_write_checks(iocb, from);
4158 if (ret > 0) {
4159 bool preallocated = false;
4160 size_t target_size = 0;
4161 int err;
4162
4163 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
4164 set_inode_flag(inode, FI_NO_PREALLOC);
4165
4166 if ((iocb->ki_flags & IOCB_NOWAIT)) {
4167 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4168 iov_iter_count(from)) ||
4169 f2fs_has_inline_data(inode) ||
4170 f2fs_force_buffered_io(inode, iocb, from)) {
4171 clear_inode_flag(inode, FI_NO_PREALLOC);
4172 inode_unlock(inode);
4173 ret = -EAGAIN;
4174 goto out;
4175 }
4176 goto write;
4177 }
4178
4179 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4180 goto write;
4181
4182 if (iocb->ki_flags & IOCB_DIRECT) {
4183 /*
4184 * Convert inline data for Direct I/O before entering
4185 * f2fs_direct_IO().
4186 */
4187 err = f2fs_convert_inline_inode(inode);
4188 if (err)
4189 goto out_err;
4190 /*
4191 * If force_buffere_io() is true, we have to allocate
4192 * blocks all the time, since f2fs_direct_IO will fall
4193 * back to buffered IO.
4194 */
4195 if (!f2fs_force_buffered_io(inode, iocb, from) &&
4196 allow_outplace_dio(inode, iocb, from))
4197 goto write;
4198 }
4199 preallocated = true;
4200 target_size = iocb->ki_pos + iov_iter_count(from);
4201
4202 err = f2fs_preallocate_blocks(iocb, from);
4203 if (err) {
4204 out_err:
4205 clear_inode_flag(inode, FI_NO_PREALLOC);
4206 inode_unlock(inode);
4207 ret = err;
4208 goto out;
4209 }
4210 write:
4211 ret = __generic_file_write_iter(iocb, from);
4212 clear_inode_flag(inode, FI_NO_PREALLOC);
4213
4214 /* if we couldn't write data, we should deallocate blocks. */
4215 if (preallocated && i_size_read(inode) < target_size)
4216 f2fs_truncate(inode);
4217
4218 if (ret > 0)
4219 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4220 }
4221 unlock:
4222 inode_unlock(inode);
4223 out:
4224 trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4225 iov_iter_count(from), ret);
4226 if (ret > 0)
4227 ret = generic_write_sync(iocb, ret);
4228 return ret;
4229 }
4230
4231 #ifdef CONFIG_COMPAT
4232 struct compat_f2fs_gc_range {
4233 u32 sync;
4234 compat_u64 start;
4235 compat_u64 len;
4236 };
4237 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
4238 struct compat_f2fs_gc_range)
4239
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)4240 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4241 {
4242 struct compat_f2fs_gc_range __user *urange;
4243 struct f2fs_gc_range range;
4244 int err;
4245
4246 urange = compat_ptr(arg);
4247 err = get_user(range.sync, &urange->sync);
4248 err |= get_user(range.start, &urange->start);
4249 err |= get_user(range.len, &urange->len);
4250 if (err)
4251 return -EFAULT;
4252
4253 return __f2fs_ioc_gc_range(file, &range);
4254 }
4255
4256 struct compat_f2fs_move_range {
4257 u32 dst_fd;
4258 compat_u64 pos_in;
4259 compat_u64 pos_out;
4260 compat_u64 len;
4261 };
4262 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
4263 struct compat_f2fs_move_range)
4264
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)4265 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4266 {
4267 struct compat_f2fs_move_range __user *urange;
4268 struct f2fs_move_range range;
4269 int err;
4270
4271 urange = compat_ptr(arg);
4272 err = get_user(range.dst_fd, &urange->dst_fd);
4273 err |= get_user(range.pos_in, &urange->pos_in);
4274 err |= get_user(range.pos_out, &urange->pos_out);
4275 err |= get_user(range.len, &urange->len);
4276 if (err)
4277 return -EFAULT;
4278
4279 return __f2fs_ioc_move_range(file, &range);
4280 }
4281
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4282 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4283 {
4284 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4285 return -EIO;
4286 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4287 return -ENOSPC;
4288
4289 switch (cmd) {
4290 case FS_IOC32_GETFLAGS:
4291 cmd = FS_IOC_GETFLAGS;
4292 break;
4293 case FS_IOC32_SETFLAGS:
4294 cmd = FS_IOC_SETFLAGS;
4295 break;
4296 case FS_IOC32_GETVERSION:
4297 cmd = FS_IOC_GETVERSION;
4298 break;
4299 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4300 return f2fs_compat_ioc_gc_range(file, arg);
4301 case F2FS_IOC32_MOVE_RANGE:
4302 return f2fs_compat_ioc_move_range(file, arg);
4303 case F2FS_IOC_START_ATOMIC_WRITE:
4304 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4305 case F2FS_IOC_START_VOLATILE_WRITE:
4306 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4307 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4308 case F2FS_IOC_SHUTDOWN:
4309 case FITRIM:
4310 case FS_IOC_SET_ENCRYPTION_POLICY:
4311 case FS_IOC_GET_ENCRYPTION_PWSALT:
4312 case FS_IOC_GET_ENCRYPTION_POLICY:
4313 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4314 case FS_IOC_ADD_ENCRYPTION_KEY:
4315 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4316 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4317 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4318 case FS_IOC_GET_ENCRYPTION_NONCE:
4319 case F2FS_IOC_GARBAGE_COLLECT:
4320 case F2FS_IOC_WRITE_CHECKPOINT:
4321 case F2FS_IOC_DEFRAGMENT:
4322 case F2FS_IOC_FLUSH_DEVICE:
4323 case F2FS_IOC_GET_FEATURES:
4324 case FS_IOC_FSGETXATTR:
4325 case FS_IOC_FSSETXATTR:
4326 case F2FS_IOC_GET_PIN_FILE:
4327 case F2FS_IOC_SET_PIN_FILE:
4328 case F2FS_IOC_PRECACHE_EXTENTS:
4329 case F2FS_IOC_RESIZE_FS:
4330 case FS_IOC_ENABLE_VERITY:
4331 case FS_IOC_MEASURE_VERITY:
4332 case FS_IOC_ENABLE_CODE_SIGN:
4333 case FS_IOC_GETFSLABEL:
4334 case FS_IOC_SETFSLABEL:
4335 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4336 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4337 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4338 case F2FS_IOC_SEC_TRIM_FILE:
4339 break;
4340 default:
4341 return -ENOIOCTLCMD;
4342 }
4343 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4344 }
4345 #endif
4346
4347 const struct file_operations f2fs_file_operations = {
4348 .llseek = f2fs_llseek,
4349 .read_iter = f2fs_file_read_iter,
4350 .write_iter = f2fs_file_write_iter,
4351 .open = f2fs_file_open,
4352 .release = f2fs_release_file,
4353 .mmap = f2fs_file_mmap,
4354 .flush = f2fs_file_flush,
4355 .fsync = f2fs_sync_file,
4356 .fallocate = f2fs_fallocate,
4357 .unlocked_ioctl = f2fs_ioctl,
4358 #ifdef CONFIG_COMPAT
4359 .compat_ioctl = f2fs_compat_ioctl,
4360 #endif
4361 .splice_read = generic_file_splice_read,
4362 .splice_write = iter_file_splice_write,
4363 };
4364