1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18
19 #include <trace/events/cgroup.h>
20
21 /*
22 * pidlists linger the following amount before being destroyed. The goal
23 * is avoiding frequent destruction in the middle of consecutive read calls
24 * Expiring in the middle is a performance problem not a correctness one.
25 * 1 sec should be enough.
26 */
27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
28
29 /* Controllers blocked by the commandline in v1 */
30 static u16 cgroup_no_v1_mask;
31
32 /* disable named v1 mounts */
33 static bool cgroup_no_v1_named;
34
35 /*
36 * pidlist destructions need to be flushed on cgroup destruction. Use a
37 * separate workqueue as flush domain.
38 */
39 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40
41 /* protects cgroup_subsys->release_agent_path */
42 static DEFINE_SPINLOCK(release_agent_path_lock);
43
cgroup1_ssid_disabled(int ssid)44 bool cgroup1_ssid_disabled(int ssid)
45 {
46 return cgroup_no_v1_mask & (1 << ssid);
47 }
48
49 /**
50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
51 * @from: attach to all cgroups of a given task
52 * @tsk: the task to be attached
53 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)54 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
55 {
56 struct cgroup_root *root;
57 int retval = 0;
58
59 mutex_lock(&cgroup_mutex);
60 cpus_read_lock();
61 percpu_down_write(&cgroup_threadgroup_rwsem);
62 for_each_root(root) {
63 struct cgroup *from_cgrp;
64
65 if (root == &cgrp_dfl_root)
66 continue;
67
68 spin_lock_irq(&css_set_lock);
69 from_cgrp = task_cgroup_from_root(from, root);
70 spin_unlock_irq(&css_set_lock);
71
72 retval = cgroup_attach_task(from_cgrp, tsk, false);
73 if (retval)
74 break;
75 }
76 percpu_up_write(&cgroup_threadgroup_rwsem);
77 cpus_read_unlock();
78 mutex_unlock(&cgroup_mutex);
79
80 return retval;
81 }
82 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
83
84 /**
85 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
86 * @to: cgroup to which the tasks will be moved
87 * @from: cgroup in which the tasks currently reside
88 *
89 * Locking rules between cgroup_post_fork() and the migration path
90 * guarantee that, if a task is forking while being migrated, the new child
91 * is guaranteed to be either visible in the source cgroup after the
92 * parent's migration is complete or put into the target cgroup. No task
93 * can slip out of migration through forking.
94 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)95 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
96 {
97 DEFINE_CGROUP_MGCTX(mgctx);
98 struct cgrp_cset_link *link;
99 struct css_task_iter it;
100 struct task_struct *task;
101 int ret;
102
103 if (cgroup_on_dfl(to))
104 return -EINVAL;
105
106 ret = cgroup_migrate_vet_dst(to);
107 if (ret)
108 return ret;
109
110 mutex_lock(&cgroup_mutex);
111
112 percpu_down_write(&cgroup_threadgroup_rwsem);
113
114 /* all tasks in @from are being moved, all csets are source */
115 spin_lock_irq(&css_set_lock);
116 list_for_each_entry(link, &from->cset_links, cset_link)
117 cgroup_migrate_add_src(link->cset, to, &mgctx);
118 spin_unlock_irq(&css_set_lock);
119
120 ret = cgroup_migrate_prepare_dst(&mgctx);
121 if (ret)
122 goto out_err;
123
124 /*
125 * Migrate tasks one-by-one until @from is empty. This fails iff
126 * ->can_attach() fails.
127 */
128 do {
129 css_task_iter_start(&from->self, 0, &it);
130
131 do {
132 task = css_task_iter_next(&it);
133 } while (task && (task->flags & PF_EXITING));
134
135 if (task)
136 get_task_struct(task);
137 css_task_iter_end(&it);
138
139 if (task) {
140 ret = cgroup_migrate(task, false, &mgctx);
141 if (!ret)
142 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
143 put_task_struct(task);
144 }
145 } while (task && !ret);
146 out_err:
147 cgroup_migrate_finish(&mgctx);
148 percpu_up_write(&cgroup_threadgroup_rwsem);
149 mutex_unlock(&cgroup_mutex);
150 return ret;
151 }
152
153 /*
154 * Stuff for reading the 'tasks'/'procs' files.
155 *
156 * Reading this file can return large amounts of data if a cgroup has
157 * *lots* of attached tasks. So it may need several calls to read(),
158 * but we cannot guarantee that the information we produce is correct
159 * unless we produce it entirely atomically.
160 *
161 */
162
163 /* which pidlist file are we talking about? */
164 enum cgroup_filetype {
165 CGROUP_FILE_PROCS,
166 CGROUP_FILE_TASKS,
167 };
168
169 /*
170 * A pidlist is a list of pids that virtually represents the contents of one
171 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
172 * a pair (one each for procs, tasks) for each pid namespace that's relevant
173 * to the cgroup.
174 */
175 struct cgroup_pidlist {
176 /*
177 * used to find which pidlist is wanted. doesn't change as long as
178 * this particular list stays in the list.
179 */
180 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
181 /* array of xids */
182 pid_t *list;
183 /* how many elements the above list has */
184 int length;
185 /* each of these stored in a list by its cgroup */
186 struct list_head links;
187 /* pointer to the cgroup we belong to, for list removal purposes */
188 struct cgroup *owner;
189 /* for delayed destruction */
190 struct delayed_work destroy_dwork;
191 };
192
193 /*
194 * Used to destroy all pidlists lingering waiting for destroy timer. None
195 * should be left afterwards.
196 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)197 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
198 {
199 struct cgroup_pidlist *l, *tmp_l;
200
201 mutex_lock(&cgrp->pidlist_mutex);
202 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
203 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
204 mutex_unlock(&cgrp->pidlist_mutex);
205
206 flush_workqueue(cgroup_pidlist_destroy_wq);
207 BUG_ON(!list_empty(&cgrp->pidlists));
208 }
209
cgroup_pidlist_destroy_work_fn(struct work_struct * work)210 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
211 {
212 struct delayed_work *dwork = to_delayed_work(work);
213 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
214 destroy_dwork);
215 struct cgroup_pidlist *tofree = NULL;
216
217 mutex_lock(&l->owner->pidlist_mutex);
218
219 /*
220 * Destroy iff we didn't get queued again. The state won't change
221 * as destroy_dwork can only be queued while locked.
222 */
223 if (!delayed_work_pending(dwork)) {
224 list_del(&l->links);
225 kvfree(l->list);
226 put_pid_ns(l->key.ns);
227 tofree = l;
228 }
229
230 mutex_unlock(&l->owner->pidlist_mutex);
231 kfree(tofree);
232 }
233
234 /*
235 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
236 * Returns the number of unique elements.
237 */
pidlist_uniq(pid_t * list,int length)238 static int pidlist_uniq(pid_t *list, int length)
239 {
240 int src, dest = 1;
241
242 /*
243 * we presume the 0th element is unique, so i starts at 1. trivial
244 * edge cases first; no work needs to be done for either
245 */
246 if (length == 0 || length == 1)
247 return length;
248 /* src and dest walk down the list; dest counts unique elements */
249 for (src = 1; src < length; src++) {
250 /* find next unique element */
251 while (list[src] == list[src-1]) {
252 src++;
253 if (src == length)
254 goto after;
255 }
256 /* dest always points to where the next unique element goes */
257 list[dest] = list[src];
258 dest++;
259 }
260 after:
261 return dest;
262 }
263
264 /*
265 * The two pid files - task and cgroup.procs - guaranteed that the result
266 * is sorted, which forced this whole pidlist fiasco. As pid order is
267 * different per namespace, each namespace needs differently sorted list,
268 * making it impossible to use, for example, single rbtree of member tasks
269 * sorted by task pointer. As pidlists can be fairly large, allocating one
270 * per open file is dangerous, so cgroup had to implement shared pool of
271 * pidlists keyed by cgroup and namespace.
272 */
cmppid(const void * a,const void * b)273 static int cmppid(const void *a, const void *b)
274 {
275 return *(pid_t *)a - *(pid_t *)b;
276 }
277
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)278 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
279 enum cgroup_filetype type)
280 {
281 struct cgroup_pidlist *l;
282 /* don't need task_nsproxy() if we're looking at ourself */
283 struct pid_namespace *ns = task_active_pid_ns(current);
284
285 lockdep_assert_held(&cgrp->pidlist_mutex);
286
287 list_for_each_entry(l, &cgrp->pidlists, links)
288 if (l->key.type == type && l->key.ns == ns)
289 return l;
290 return NULL;
291 }
292
293 /*
294 * find the appropriate pidlist for our purpose (given procs vs tasks)
295 * returns with the lock on that pidlist already held, and takes care
296 * of the use count, or returns NULL with no locks held if we're out of
297 * memory.
298 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)299 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
300 enum cgroup_filetype type)
301 {
302 struct cgroup_pidlist *l;
303
304 lockdep_assert_held(&cgrp->pidlist_mutex);
305
306 l = cgroup_pidlist_find(cgrp, type);
307 if (l)
308 return l;
309
310 /* entry not found; create a new one */
311 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
312 if (!l)
313 return l;
314
315 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
316 l->key.type = type;
317 /* don't need task_nsproxy() if we're looking at ourself */
318 l->key.ns = get_pid_ns(task_active_pid_ns(current));
319 l->owner = cgrp;
320 list_add(&l->links, &cgrp->pidlists);
321 return l;
322 }
323
324 /*
325 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
326 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)327 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
328 struct cgroup_pidlist **lp)
329 {
330 pid_t *array;
331 int length;
332 int pid, n = 0; /* used for populating the array */
333 struct css_task_iter it;
334 struct task_struct *tsk;
335 struct cgroup_pidlist *l;
336
337 lockdep_assert_held(&cgrp->pidlist_mutex);
338
339 /*
340 * If cgroup gets more users after we read count, we won't have
341 * enough space - tough. This race is indistinguishable to the
342 * caller from the case that the additional cgroup users didn't
343 * show up until sometime later on.
344 */
345 length = cgroup_task_count(cgrp);
346 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
347 if (!array)
348 return -ENOMEM;
349 /* now, populate the array */
350 css_task_iter_start(&cgrp->self, 0, &it);
351 while ((tsk = css_task_iter_next(&it))) {
352 if (unlikely(n == length))
353 break;
354 /* get tgid or pid for procs or tasks file respectively */
355 if (type == CGROUP_FILE_PROCS)
356 pid = task_tgid_vnr(tsk);
357 else
358 pid = task_pid_vnr(tsk);
359 if (pid > 0) /* make sure to only use valid results */
360 array[n++] = pid;
361 }
362 css_task_iter_end(&it);
363 length = n;
364 /* now sort & strip out duplicates (tgids or recycled thread PIDs) */
365 sort(array, length, sizeof(pid_t), cmppid, NULL);
366 length = pidlist_uniq(array, length);
367
368 l = cgroup_pidlist_find_create(cgrp, type);
369 if (!l) {
370 kvfree(array);
371 return -ENOMEM;
372 }
373
374 /* store array, freeing old if necessary */
375 kvfree(l->list);
376 l->list = array;
377 l->length = length;
378 *lp = l;
379 return 0;
380 }
381
382 /*
383 * seq_file methods for the tasks/procs files. The seq_file position is the
384 * next pid to display; the seq_file iterator is a pointer to the pid
385 * in the cgroup->l->list array.
386 */
387
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)388 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
389 {
390 /*
391 * Initially we receive a position value that corresponds to
392 * one more than the last pid shown (or 0 on the first call or
393 * after a seek to the start). Use a binary-search to find the
394 * next pid to display, if any
395 */
396 struct kernfs_open_file *of = s->private;
397 struct cgroup_file_ctx *ctx = of->priv;
398 struct cgroup *cgrp = seq_css(s)->cgroup;
399 struct cgroup_pidlist *l;
400 enum cgroup_filetype type = seq_cft(s)->private;
401 int index = 0, pid = *pos;
402 int *iter, ret;
403
404 mutex_lock(&cgrp->pidlist_mutex);
405
406 /*
407 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
408 * start() after open. If the matching pidlist is around, we can use
409 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
410 * directly. It could already have been destroyed.
411 */
412 if (ctx->procs1.pidlist)
413 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
414
415 /*
416 * Either this is the first start() after open or the matching
417 * pidlist has been destroyed inbetween. Create a new one.
418 */
419 if (!ctx->procs1.pidlist) {
420 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
421 if (ret)
422 return ERR_PTR(ret);
423 }
424 l = ctx->procs1.pidlist;
425
426 if (pid) {
427 int end = l->length;
428
429 while (index < end) {
430 int mid = (index + end) / 2;
431 if (l->list[mid] == pid) {
432 index = mid;
433 break;
434 } else if (l->list[mid] <= pid)
435 index = mid + 1;
436 else
437 end = mid;
438 }
439 }
440 /* If we're off the end of the array, we're done */
441 if (index >= l->length)
442 return NULL;
443 /* Update the abstract position to be the actual pid that we found */
444 iter = l->list + index;
445 *pos = *iter;
446 return iter;
447 }
448
cgroup_pidlist_stop(struct seq_file * s,void * v)449 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
450 {
451 struct kernfs_open_file *of = s->private;
452 struct cgroup_file_ctx *ctx = of->priv;
453 struct cgroup_pidlist *l = ctx->procs1.pidlist;
454
455 if (l)
456 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
457 CGROUP_PIDLIST_DESTROY_DELAY);
458 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
459 }
460
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)461 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
462 {
463 struct kernfs_open_file *of = s->private;
464 struct cgroup_file_ctx *ctx = of->priv;
465 struct cgroup_pidlist *l = ctx->procs1.pidlist;
466 pid_t *p = v;
467 pid_t *end = l->list + l->length;
468 /*
469 * Advance to the next pid in the array. If this goes off the
470 * end, we're done
471 */
472 p++;
473 if (p >= end) {
474 (*pos)++;
475 return NULL;
476 } else {
477 *pos = *p;
478 return p;
479 }
480 }
481
cgroup_pidlist_show(struct seq_file * s,void * v)482 static int cgroup_pidlist_show(struct seq_file *s, void *v)
483 {
484 seq_printf(s, "%d\n", *(int *)v);
485
486 return 0;
487 }
488
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)489 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
490 char *buf, size_t nbytes, loff_t off,
491 bool threadgroup)
492 {
493 struct cgroup *cgrp;
494 struct task_struct *task;
495 const struct cred *cred, *tcred;
496 ssize_t ret;
497 bool locked;
498
499 cgrp = cgroup_kn_lock_live(of->kn, false);
500 if (!cgrp)
501 return -ENODEV;
502
503 task = cgroup_procs_write_start(buf, threadgroup, &locked);
504 ret = PTR_ERR_OR_ZERO(task);
505 if (ret)
506 goto out_unlock;
507
508 /*
509 * Even if we're attaching all tasks in the thread group, we only need
510 * to check permissions on one of them. Check permissions using the
511 * credentials from file open to protect against inherited fd attacks.
512 */
513 cred = of->file->f_cred;
514 tcred = get_task_cred(task);
515 #ifdef CONFIG_HYPERHOLD
516 if (!uid_eq(cred->euid, GLOBAL_MEMMGR_UID) &&
517 !uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
518 #else
519 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
520 #endif
521 !uid_eq(cred->euid, tcred->uid) &&
522 !uid_eq(cred->euid, tcred->suid))
523 ret = -EACCES;
524 put_cred(tcred);
525 if (ret)
526 goto out_finish;
527
528 ret = cgroup_attach_task(cgrp, task, threadgroup);
529
530 out_finish:
531 cgroup_procs_write_finish(task, locked);
532 out_unlock:
533 cgroup_kn_unlock(of->kn);
534
535 return ret ?: nbytes;
536 }
537
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)538 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
539 char *buf, size_t nbytes, loff_t off)
540 {
541 return __cgroup1_procs_write(of, buf, nbytes, off, true);
542 }
543
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)544 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
545 char *buf, size_t nbytes, loff_t off)
546 {
547 return __cgroup1_procs_write(of, buf, nbytes, off, false);
548 }
549
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)550 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
551 char *buf, size_t nbytes, loff_t off)
552 {
553 struct cgroup *cgrp;
554 struct cgroup_file_ctx *ctx;
555
556 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
557
558 /*
559 * Release agent gets called with all capabilities,
560 * require capabilities to set release agent.
561 */
562 ctx = of->priv;
563 if ((ctx->ns->user_ns != &init_user_ns) ||
564 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
565 return -EPERM;
566
567 cgrp = cgroup_kn_lock_live(of->kn, false);
568 if (!cgrp)
569 return -ENODEV;
570 spin_lock(&release_agent_path_lock);
571 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
572 sizeof(cgrp->root->release_agent_path));
573 spin_unlock(&release_agent_path_lock);
574 cgroup_kn_unlock(of->kn);
575 return nbytes;
576 }
577
cgroup_release_agent_show(struct seq_file * seq,void * v)578 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
579 {
580 struct cgroup *cgrp = seq_css(seq)->cgroup;
581
582 spin_lock(&release_agent_path_lock);
583 seq_puts(seq, cgrp->root->release_agent_path);
584 spin_unlock(&release_agent_path_lock);
585 seq_putc(seq, '\n');
586 return 0;
587 }
588
cgroup_sane_behavior_show(struct seq_file * seq,void * v)589 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
590 {
591 seq_puts(seq, "0\n");
592 return 0;
593 }
594
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)595 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
596 struct cftype *cft)
597 {
598 return notify_on_release(css->cgroup);
599 }
600
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)601 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
602 struct cftype *cft, u64 val)
603 {
604 if (val)
605 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
606 else
607 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
608 return 0;
609 }
610
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)611 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
612 struct cftype *cft)
613 {
614 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
615 }
616
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)617 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
618 struct cftype *cft, u64 val)
619 {
620 if (val)
621 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
622 else
623 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
624 return 0;
625 }
626
627 /* cgroup core interface files for the legacy hierarchies */
628 struct cftype cgroup1_base_files[] = {
629 {
630 .name = "cgroup.procs",
631 .seq_start = cgroup_pidlist_start,
632 .seq_next = cgroup_pidlist_next,
633 .seq_stop = cgroup_pidlist_stop,
634 .seq_show = cgroup_pidlist_show,
635 .private = CGROUP_FILE_PROCS,
636 .write = cgroup1_procs_write,
637 },
638 {
639 .name = "cgroup.clone_children",
640 .read_u64 = cgroup_clone_children_read,
641 .write_u64 = cgroup_clone_children_write,
642 },
643 {
644 .name = "cgroup.sane_behavior",
645 .flags = CFTYPE_ONLY_ON_ROOT,
646 .seq_show = cgroup_sane_behavior_show,
647 },
648 {
649 .name = "tasks",
650 .seq_start = cgroup_pidlist_start,
651 .seq_next = cgroup_pidlist_next,
652 .seq_stop = cgroup_pidlist_stop,
653 .seq_show = cgroup_pidlist_show,
654 .private = CGROUP_FILE_TASKS,
655 .write = cgroup1_tasks_write,
656 },
657 {
658 .name = "notify_on_release",
659 .read_u64 = cgroup_read_notify_on_release,
660 .write_u64 = cgroup_write_notify_on_release,
661 },
662 {
663 .name = "release_agent",
664 .flags = CFTYPE_ONLY_ON_ROOT,
665 .seq_show = cgroup_release_agent_show,
666 .write = cgroup_release_agent_write,
667 .max_write_len = PATH_MAX - 1,
668 },
669 { } /* terminate */
670 };
671
672 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)673 int proc_cgroupstats_show(struct seq_file *m, void *v)
674 {
675 struct cgroup_subsys *ss;
676 int i;
677 bool dead;
678
679 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
680 /*
681 * ideally we don't want subsystems moving around while we do this.
682 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
683 * subsys/hierarchy state.
684 */
685 mutex_lock(&cgroup_mutex);
686
687 for_each_subsys(ss, i)
688 for_each_subsys(ss, i) {
689 dead = percpu_ref_is_dying(&ss->root->cgrp.self.refcnt);
690 seq_printf(m, "%s\t%d\t%d\t%d\n",
691 ss->legacy_name, dead ? 0 : ss->root->hierarchy_id,
692 dead ? 0 : atomic_read(&ss->root->nr_cgrps),
693 cgroup_ssid_enabled(i));
694 }
695
696 mutex_unlock(&cgroup_mutex);
697 return 0;
698 }
699
700 /**
701 * cgroupstats_build - build and fill cgroupstats
702 * @stats: cgroupstats to fill information into
703 * @dentry: A dentry entry belonging to the cgroup for which stats have
704 * been requested.
705 *
706 * Build and fill cgroupstats so that taskstats can export it to user
707 * space.
708 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)709 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
710 {
711 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
712 struct cgroup *cgrp;
713 struct css_task_iter it;
714 struct task_struct *tsk;
715
716 /* it should be kernfs_node belonging to cgroupfs and is a directory */
717 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
718 kernfs_type(kn) != KERNFS_DIR)
719 return -EINVAL;
720
721 mutex_lock(&cgroup_mutex);
722
723 /*
724 * We aren't being called from kernfs and there's no guarantee on
725 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
726 * @kn->priv is RCU safe. Let's do the RCU dancing.
727 */
728 rcu_read_lock();
729 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
730 if (!cgrp || cgroup_is_dead(cgrp)) {
731 rcu_read_unlock();
732 mutex_unlock(&cgroup_mutex);
733 return -ENOENT;
734 }
735 rcu_read_unlock();
736
737 css_task_iter_start(&cgrp->self, 0, &it);
738 while ((tsk = css_task_iter_next(&it))) {
739 switch (tsk->state) {
740 case TASK_RUNNING:
741 stats->nr_running++;
742 break;
743 case TASK_INTERRUPTIBLE:
744 stats->nr_sleeping++;
745 break;
746 case TASK_UNINTERRUPTIBLE:
747 stats->nr_uninterruptible++;
748 break;
749 case TASK_STOPPED:
750 stats->nr_stopped++;
751 break;
752 default:
753 if (delayacct_is_task_waiting_on_io(tsk))
754 stats->nr_io_wait++;
755 break;
756 }
757 }
758 css_task_iter_end(&it);
759
760 mutex_unlock(&cgroup_mutex);
761 return 0;
762 }
763
cgroup1_check_for_release(struct cgroup * cgrp)764 void cgroup1_check_for_release(struct cgroup *cgrp)
765 {
766 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
767 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
768 schedule_work(&cgrp->release_agent_work);
769 }
770
771 /*
772 * Notify userspace when a cgroup is released, by running the
773 * configured release agent with the name of the cgroup (path
774 * relative to the root of cgroup file system) as the argument.
775 *
776 * Most likely, this user command will try to rmdir this cgroup.
777 *
778 * This races with the possibility that some other task will be
779 * attached to this cgroup before it is removed, or that some other
780 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
781 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
782 * unused, and this cgroup will be reprieved from its death sentence,
783 * to continue to serve a useful existence. Next time it's released,
784 * we will get notified again, if it still has 'notify_on_release' set.
785 *
786 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
787 * means only wait until the task is successfully execve()'d. The
788 * separate release agent task is forked by call_usermodehelper(),
789 * then control in this thread returns here, without waiting for the
790 * release agent task. We don't bother to wait because the caller of
791 * this routine has no use for the exit status of the release agent
792 * task, so no sense holding our caller up for that.
793 */
cgroup1_release_agent(struct work_struct * work)794 void cgroup1_release_agent(struct work_struct *work)
795 {
796 struct cgroup *cgrp =
797 container_of(work, struct cgroup, release_agent_work);
798 char *pathbuf, *agentbuf;
799 char *argv[3], *envp[3];
800 int ret;
801
802 /* snoop agent path and exit early if empty */
803 if (!cgrp->root->release_agent_path[0])
804 return;
805
806 /* prepare argument buffers */
807 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
808 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
809 if (!pathbuf || !agentbuf)
810 goto out_free;
811
812 spin_lock(&release_agent_path_lock);
813 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
814 spin_unlock(&release_agent_path_lock);
815 if (!agentbuf[0])
816 goto out_free;
817
818 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
819 if (ret < 0 || ret >= PATH_MAX)
820 goto out_free;
821
822 argv[0] = agentbuf;
823 argv[1] = pathbuf;
824 argv[2] = NULL;
825
826 /* minimal command environment */
827 envp[0] = "HOME=/";
828 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
829 envp[2] = NULL;
830
831 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
832 out_free:
833 kfree(agentbuf);
834 kfree(pathbuf);
835 }
836
837 /*
838 * cgroup_rename - Only allow simple rename of directories in place.
839 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)840 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
841 const char *new_name_str)
842 {
843 struct cgroup *cgrp = kn->priv;
844 int ret;
845
846 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
847 if (strchr(new_name_str, '\n'))
848 return -EINVAL;
849
850 if (kernfs_type(kn) != KERNFS_DIR)
851 return -ENOTDIR;
852 if (kn->parent != new_parent)
853 return -EIO;
854
855 /*
856 * We're gonna grab cgroup_mutex which nests outside kernfs
857 * active_ref. kernfs_rename() doesn't require active_ref
858 * protection. Break them before grabbing cgroup_mutex.
859 */
860 kernfs_break_active_protection(new_parent);
861 kernfs_break_active_protection(kn);
862
863 mutex_lock(&cgroup_mutex);
864
865 ret = kernfs_rename(kn, new_parent, new_name_str);
866 if (!ret)
867 TRACE_CGROUP_PATH(rename, cgrp);
868
869 mutex_unlock(&cgroup_mutex);
870
871 kernfs_unbreak_active_protection(kn);
872 kernfs_unbreak_active_protection(new_parent);
873 return ret;
874 }
875
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)876 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
877 {
878 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
879 struct cgroup_subsys *ss;
880 int ssid;
881
882 for_each_subsys(ss, ssid)
883 if (root->subsys_mask & (1 << ssid))
884 seq_show_option(seq, ss->legacy_name, NULL);
885 if (root->flags & CGRP_ROOT_NOPREFIX)
886 seq_puts(seq, ",noprefix");
887 if (root->flags & CGRP_ROOT_XATTR)
888 seq_puts(seq, ",xattr");
889 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
890 seq_puts(seq, ",cpuset_v2_mode");
891
892 spin_lock(&release_agent_path_lock);
893 if (strlen(root->release_agent_path))
894 seq_show_option(seq, "release_agent",
895 root->release_agent_path);
896 spin_unlock(&release_agent_path_lock);
897
898 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
899 seq_puts(seq, ",clone_children");
900 if (strlen(root->name))
901 seq_show_option(seq, "name", root->name);
902 return 0;
903 }
904
905 enum cgroup1_param {
906 Opt_all,
907 Opt_clone_children,
908 Opt_cpuset_v2_mode,
909 Opt_name,
910 Opt_none,
911 Opt_noprefix,
912 Opt_release_agent,
913 Opt_xattr,
914 };
915
916 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
917 fsparam_flag ("all", Opt_all),
918 fsparam_flag ("clone_children", Opt_clone_children),
919 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
920 fsparam_string("name", Opt_name),
921 fsparam_flag ("none", Opt_none),
922 fsparam_flag ("noprefix", Opt_noprefix),
923 fsparam_string("release_agent", Opt_release_agent),
924 fsparam_flag ("xattr", Opt_xattr),
925 {}
926 };
927
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)928 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
929 {
930 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
931 struct cgroup_subsys *ss;
932 struct fs_parse_result result;
933 int opt, i;
934
935 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
936 if (opt == -ENOPARAM) {
937 int ret;
938
939 ret = vfs_parse_fs_param_source(fc, param);
940 if (ret != -ENOPARAM)
941 return ret;
942 for_each_subsys(ss, i) {
943 if (strcmp(param->key, ss->legacy_name))
944 continue;
945 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
946 return invalfc(fc, "Disabled controller '%s'",
947 param->key);
948 ctx->subsys_mask |= (1 << i);
949 return 0;
950 }
951 return invalfc(fc, "Unknown subsys name '%s'", param->key);
952 }
953 if (opt < 0)
954 return opt;
955
956 switch (opt) {
957 case Opt_none:
958 /* Explicitly have no subsystems */
959 ctx->none = true;
960 break;
961 case Opt_all:
962 ctx->all_ss = true;
963 break;
964 case Opt_noprefix:
965 ctx->flags |= CGRP_ROOT_NOPREFIX;
966 break;
967 case Opt_clone_children:
968 ctx->cpuset_clone_children = true;
969 break;
970 case Opt_cpuset_v2_mode:
971 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
972 break;
973 case Opt_xattr:
974 ctx->flags |= CGRP_ROOT_XATTR;
975 break;
976 case Opt_release_agent:
977 /* Specifying two release agents is forbidden */
978 if (ctx->release_agent)
979 return invalfc(fc, "release_agent respecified");
980 /*
981 * Release agent gets called with all capabilities,
982 * require capabilities to set release agent.
983 */
984 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
985 return invalfc(fc, "Setting release_agent not allowed");
986 ctx->release_agent = param->string;
987 param->string = NULL;
988 break;
989 case Opt_name:
990 /* blocked by boot param? */
991 if (cgroup_no_v1_named)
992 return -ENOENT;
993 /* Can't specify an empty name */
994 if (!param->size)
995 return invalfc(fc, "Empty name");
996 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
997 return invalfc(fc, "Name too long");
998 /* Must match [\w.-]+ */
999 for (i = 0; i < param->size; i++) {
1000 char c = param->string[i];
1001 if (isalnum(c))
1002 continue;
1003 if ((c == '.') || (c == '-') || (c == '_'))
1004 continue;
1005 return invalfc(fc, "Invalid name");
1006 }
1007 /* Specifying two names is forbidden */
1008 if (ctx->name)
1009 return invalfc(fc, "name respecified");
1010 ctx->name = param->string;
1011 param->string = NULL;
1012 break;
1013 }
1014 return 0;
1015 }
1016
check_cgroupfs_options(struct fs_context * fc)1017 static int check_cgroupfs_options(struct fs_context *fc)
1018 {
1019 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1020 u16 mask = U16_MAX;
1021 u16 enabled = 0;
1022 struct cgroup_subsys *ss;
1023 int i;
1024
1025 #ifdef CONFIG_CPUSETS
1026 mask = ~((u16)1 << cpuset_cgrp_id);
1027 #endif
1028 for_each_subsys(ss, i)
1029 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1030 enabled |= 1 << i;
1031
1032 ctx->subsys_mask &= enabled;
1033
1034 /*
1035 * In absense of 'none', 'name=' or subsystem name options,
1036 * let's default to 'all'.
1037 */
1038 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1039 ctx->all_ss = true;
1040
1041 if (ctx->all_ss) {
1042 /* Mutually exclusive option 'all' + subsystem name */
1043 if (ctx->subsys_mask)
1044 return invalfc(fc, "subsys name conflicts with all");
1045 /* 'all' => select all the subsystems */
1046 ctx->subsys_mask = enabled;
1047 }
1048
1049 /*
1050 * We either have to specify by name or by subsystems. (So all
1051 * empty hierarchies must have a name).
1052 */
1053 if (!ctx->subsys_mask && !ctx->name)
1054 return invalfc(fc, "Need name or subsystem set");
1055
1056 /*
1057 * Option noprefix was introduced just for backward compatibility
1058 * with the old cpuset, so we allow noprefix only if mounting just
1059 * the cpuset subsystem.
1060 */
1061 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1062 return invalfc(fc, "noprefix used incorrectly");
1063
1064 /* Can't specify "none" and some subsystems */
1065 if (ctx->subsys_mask && ctx->none)
1066 return invalfc(fc, "none used incorrectly");
1067
1068 return 0;
1069 }
1070
cgroup1_reconfigure(struct fs_context * fc)1071 int cgroup1_reconfigure(struct fs_context *fc)
1072 {
1073 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1074 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1075 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1076 int ret = 0;
1077 u16 added_mask, removed_mask;
1078
1079 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1080
1081 /* See what subsystems are wanted */
1082 ret = check_cgroupfs_options(fc);
1083 if (ret)
1084 goto out_unlock;
1085
1086 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1087 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1088 task_tgid_nr(current), current->comm);
1089
1090 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1091 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1092
1093 /* Don't allow flags or name to change at remount */
1094 if ((ctx->flags ^ root->flags) ||
1095 (ctx->name && strcmp(ctx->name, root->name))) {
1096 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1097 ctx->flags, ctx->name ?: "", root->flags, root->name);
1098 ret = -EINVAL;
1099 goto out_unlock;
1100 }
1101
1102 /* remounting is not allowed for populated hierarchies */
1103 if (!list_empty(&root->cgrp.self.children)) {
1104 ret = -EBUSY;
1105 goto out_unlock;
1106 }
1107
1108 ret = rebind_subsystems(root, added_mask);
1109 if (ret)
1110 goto out_unlock;
1111
1112 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1113
1114 if (ctx->release_agent) {
1115 spin_lock(&release_agent_path_lock);
1116 strcpy(root->release_agent_path, ctx->release_agent);
1117 spin_unlock(&release_agent_path_lock);
1118 }
1119
1120 trace_cgroup_remount(root);
1121
1122 out_unlock:
1123 mutex_unlock(&cgroup_mutex);
1124 return ret;
1125 }
1126
1127 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1128 .rename = cgroup1_rename,
1129 .show_options = cgroup1_show_options,
1130 .mkdir = cgroup_mkdir,
1131 .rmdir = cgroup_rmdir,
1132 .show_path = cgroup_show_path,
1133 };
1134
1135 /*
1136 * The guts of cgroup1 mount - find or create cgroup_root to use.
1137 * Called with cgroup_mutex held; returns 0 on success, -E... on
1138 * error and positive - in case when the candidate is busy dying.
1139 * On success it stashes a reference to cgroup_root into given
1140 * cgroup_fs_context; that reference is *NOT* counting towards the
1141 * cgroup_root refcount.
1142 */
cgroup1_root_to_use(struct fs_context * fc)1143 static int cgroup1_root_to_use(struct fs_context *fc)
1144 {
1145 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1146 struct cgroup_root *root;
1147 struct cgroup_subsys *ss;
1148 int i, ret;
1149
1150 /* First find the desired set of subsystems */
1151 ret = check_cgroupfs_options(fc);
1152 if (ret)
1153 return ret;
1154
1155 /*
1156 * Destruction of cgroup root is asynchronous, so subsystems may
1157 * still be dying after the previous unmount. Let's drain the
1158 * dying subsystems. We just need to ensure that the ones
1159 * unmounted previously finish dying and don't care about new ones
1160 * starting. Testing ref liveliness is good enough.
1161 */
1162 for_each_subsys(ss, i) {
1163 if (!(ctx->subsys_mask & (1 << i)) ||
1164 ss->root == &cgrp_dfl_root)
1165 continue;
1166
1167 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1168 return 1; /* restart */
1169 cgroup_put(&ss->root->cgrp);
1170 }
1171
1172 for_each_root(root) {
1173 bool name_match = false;
1174
1175 if (root == &cgrp_dfl_root)
1176 continue;
1177
1178 /*
1179 * If we asked for a name then it must match. Also, if
1180 * name matches but sybsys_mask doesn't, we should fail.
1181 * Remember whether name matched.
1182 */
1183 if (ctx->name) {
1184 if (strcmp(ctx->name, root->name))
1185 continue;
1186 name_match = true;
1187 }
1188
1189 /*
1190 * If we asked for subsystems (or explicitly for no
1191 * subsystems) then they must match.
1192 */
1193 if ((ctx->subsys_mask || ctx->none) &&
1194 (ctx->subsys_mask != root->subsys_mask)) {
1195 if (!name_match)
1196 continue;
1197 return -EBUSY;
1198 }
1199
1200 if (root->flags ^ ctx->flags)
1201 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1202
1203 ctx->root = root;
1204 return 0;
1205 }
1206
1207 /*
1208 * No such thing, create a new one. name= matching without subsys
1209 * specification is allowed for already existing hierarchies but we
1210 * can't create new one without subsys specification.
1211 */
1212 if (!ctx->subsys_mask && !ctx->none)
1213 return invalfc(fc, "No subsys list or none specified");
1214
1215 /* Hierarchies may only be created in the initial cgroup namespace. */
1216 if (ctx->ns != &init_cgroup_ns)
1217 return -EPERM;
1218
1219 root = kzalloc(sizeof(*root), GFP_KERNEL);
1220 if (!root)
1221 return -ENOMEM;
1222
1223 ctx->root = root;
1224 init_cgroup_root(ctx);
1225
1226 ret = cgroup_setup_root(root, ctx->subsys_mask);
1227 if (ret)
1228 cgroup_free_root(root);
1229 return ret;
1230 }
1231
cgroup1_get_tree(struct fs_context * fc)1232 int cgroup1_get_tree(struct fs_context *fc)
1233 {
1234 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1235 int ret;
1236
1237 /* Check if the caller has permission to mount. */
1238 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1239 return -EPERM;
1240
1241 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1242
1243 ret = cgroup1_root_to_use(fc);
1244 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1245 ret = 1; /* restart */
1246
1247 mutex_unlock(&cgroup_mutex);
1248
1249 if (!ret)
1250 ret = cgroup_do_get_tree(fc);
1251
1252 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1253 fc_drop_locked(fc);
1254 ret = 1;
1255 }
1256
1257 if (unlikely(ret > 0)) {
1258 msleep(10);
1259 return restart_syscall();
1260 }
1261 return ret;
1262 }
1263
cgroup1_wq_init(void)1264 static int __init cgroup1_wq_init(void)
1265 {
1266 /*
1267 * Used to destroy pidlists and separate to serve as flush domain.
1268 * Cap @max_active to 1 too.
1269 */
1270 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1271 0, 1);
1272 BUG_ON(!cgroup_pidlist_destroy_wq);
1273 return 0;
1274 }
1275 core_initcall(cgroup1_wq_init);
1276
cgroup_no_v1(char * str)1277 static int __init cgroup_no_v1(char *str)
1278 {
1279 struct cgroup_subsys *ss;
1280 char *token;
1281 int i;
1282
1283 while ((token = strsep(&str, ",")) != NULL) {
1284 if (!*token)
1285 continue;
1286
1287 if (!strcmp(token, "all")) {
1288 cgroup_no_v1_mask = U16_MAX;
1289 continue;
1290 }
1291
1292 if (!strcmp(token, "named")) {
1293 cgroup_no_v1_named = true;
1294 continue;
1295 }
1296
1297 for_each_subsys(ss, i) {
1298 if (strcmp(token, ss->name) &&
1299 strcmp(token, ss->legacy_name))
1300 continue;
1301
1302 cgroup_no_v1_mask |= 1 << i;
1303 }
1304 }
1305 return 1;
1306 }
1307 __setup("cgroup_no_v1=", cgroup_no_v1);
1308