1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 * Copyright (C) 2012 ARM Ltd.
9 */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45
46 struct pt_regs_offset {
47 const char *name;
48 int offset;
49 };
50
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55
56 static const struct pt_regs_offset regoffset_table[] = {
57 GPR_OFFSET_NAME(0),
58 GPR_OFFSET_NAME(1),
59 GPR_OFFSET_NAME(2),
60 GPR_OFFSET_NAME(3),
61 GPR_OFFSET_NAME(4),
62 GPR_OFFSET_NAME(5),
63 GPR_OFFSET_NAME(6),
64 GPR_OFFSET_NAME(7),
65 GPR_OFFSET_NAME(8),
66 GPR_OFFSET_NAME(9),
67 GPR_OFFSET_NAME(10),
68 GPR_OFFSET_NAME(11),
69 GPR_OFFSET_NAME(12),
70 GPR_OFFSET_NAME(13),
71 GPR_OFFSET_NAME(14),
72 GPR_OFFSET_NAME(15),
73 GPR_OFFSET_NAME(16),
74 GPR_OFFSET_NAME(17),
75 GPR_OFFSET_NAME(18),
76 GPR_OFFSET_NAME(19),
77 GPR_OFFSET_NAME(20),
78 GPR_OFFSET_NAME(21),
79 GPR_OFFSET_NAME(22),
80 GPR_OFFSET_NAME(23),
81 GPR_OFFSET_NAME(24),
82 GPR_OFFSET_NAME(25),
83 GPR_OFFSET_NAME(26),
84 GPR_OFFSET_NAME(27),
85 GPR_OFFSET_NAME(28),
86 GPR_OFFSET_NAME(29),
87 GPR_OFFSET_NAME(30),
88 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 REG_OFFSET_NAME(sp),
90 REG_OFFSET_NAME(pc),
91 REG_OFFSET_NAME(pstate),
92 REG_OFFSET_END,
93 };
94
95 /**
96 * regs_query_register_offset() - query register offset from its name
97 * @name: the name of a register
98 *
99 * regs_query_register_offset() returns the offset of a register in struct
100 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101 */
regs_query_register_offset(const char * name)102 int regs_query_register_offset(const char *name)
103 {
104 const struct pt_regs_offset *roff;
105
106 for (roff = regoffset_table; roff->name != NULL; roff++)
107 if (!strcmp(roff->name, name))
108 return roff->offset;
109 return -EINVAL;
110 }
111
112 /**
113 * regs_within_kernel_stack() - check the address in the stack
114 * @regs: pt_regs which contains kernel stack pointer.
115 * @addr: address which is checked.
116 *
117 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118 * If @addr is within the kernel stack, it returns true. If not, returns false.
119 */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 return ((addr & ~(THREAD_SIZE - 1)) ==
123 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 on_irq_stack(addr, sizeof(unsigned long));
125 }
126
127 /**
128 * regs_get_kernel_stack_nth() - get Nth entry of the stack
129 * @regs: pt_regs which contains kernel stack pointer.
130 * @n: stack entry number.
131 *
132 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134 * this returns 0.
135 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139
140 addr += n;
141 if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 return *addr;
143 else
144 return 0;
145 }
146
147 /*
148 * TODO: does not yet catch signals sent when the child dies.
149 * in exit.c or in signal.c.
150 */
151
152 /*
153 * Called by kernel/ptrace.c when detaching..
154 */
ptrace_disable(struct task_struct * child)155 void ptrace_disable(struct task_struct *child)
156 {
157 /*
158 * This would be better off in core code, but PTRACE_DETACH has
159 * grown its fair share of arch-specific worts and changing it
160 * is likely to cause regressions on obscure architectures.
161 */
162 user_disable_single_step(child);
163 }
164
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167 * Handle hitting a HW-breakpoint.
168 */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)169 static void ptrace_hbptriggered(struct perf_event *bp,
170 struct perf_sample_data *data,
171 struct pt_regs *regs)
172 {
173 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 const char *desc = "Hardware breakpoint trap (ptrace)";
175
176 #ifdef CONFIG_COMPAT
177 if (is_compat_task()) {
178 int si_errno = 0;
179 int i;
180
181 for (i = 0; i < ARM_MAX_BRP; ++i) {
182 if (current->thread.debug.hbp_break[i] == bp) {
183 si_errno = (i << 1) + 1;
184 break;
185 }
186 }
187
188 for (i = 0; i < ARM_MAX_WRP; ++i) {
189 if (current->thread.debug.hbp_watch[i] == bp) {
190 si_errno = -((i << 1) + 1);
191 break;
192 }
193 }
194 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 desc);
196 return;
197 }
198 #endif
199 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201
202 /*
203 * Unregister breakpoints from this task and reset the pointers in
204 * the thread_struct.
205 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 int i;
209 struct thread_struct *t = &tsk->thread;
210
211 for (i = 0; i < ARM_MAX_BRP; i++) {
212 if (t->debug.hbp_break[i]) {
213 unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 t->debug.hbp_break[i] = NULL;
215 }
216 }
217
218 for (i = 0; i < ARM_MAX_WRP; i++) {
219 if (t->debug.hbp_watch[i]) {
220 unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 t->debug.hbp_watch[i] = NULL;
222 }
223 }
224 }
225
ptrace_hw_copy_thread(struct task_struct * tsk)226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230
ptrace_hbp_get_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx)231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 struct task_struct *tsk,
233 unsigned long idx)
234 {
235 struct perf_event *bp = ERR_PTR(-EINVAL);
236
237 switch (note_type) {
238 case NT_ARM_HW_BREAK:
239 if (idx >= ARM_MAX_BRP)
240 goto out;
241 idx = array_index_nospec(idx, ARM_MAX_BRP);
242 bp = tsk->thread.debug.hbp_break[idx];
243 break;
244 case NT_ARM_HW_WATCH:
245 if (idx >= ARM_MAX_WRP)
246 goto out;
247 idx = array_index_nospec(idx, ARM_MAX_WRP);
248 bp = tsk->thread.debug.hbp_watch[idx];
249 break;
250 }
251
252 out:
253 return bp;
254 }
255
ptrace_hbp_set_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx,struct perf_event * bp)256 static int ptrace_hbp_set_event(unsigned int note_type,
257 struct task_struct *tsk,
258 unsigned long idx,
259 struct perf_event *bp)
260 {
261 int err = -EINVAL;
262
263 switch (note_type) {
264 case NT_ARM_HW_BREAK:
265 if (idx >= ARM_MAX_BRP)
266 goto out;
267 idx = array_index_nospec(idx, ARM_MAX_BRP);
268 tsk->thread.debug.hbp_break[idx] = bp;
269 err = 0;
270 break;
271 case NT_ARM_HW_WATCH:
272 if (idx >= ARM_MAX_WRP)
273 goto out;
274 idx = array_index_nospec(idx, ARM_MAX_WRP);
275 tsk->thread.debug.hbp_watch[idx] = bp;
276 err = 0;
277 break;
278 }
279
280 out:
281 return err;
282 }
283
ptrace_hbp_create(unsigned int note_type,struct task_struct * tsk,unsigned long idx)284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 struct task_struct *tsk,
286 unsigned long idx)
287 {
288 struct perf_event *bp;
289 struct perf_event_attr attr;
290 int err, type;
291
292 switch (note_type) {
293 case NT_ARM_HW_BREAK:
294 type = HW_BREAKPOINT_X;
295 break;
296 case NT_ARM_HW_WATCH:
297 type = HW_BREAKPOINT_RW;
298 break;
299 default:
300 return ERR_PTR(-EINVAL);
301 }
302
303 ptrace_breakpoint_init(&attr);
304
305 /*
306 * Initialise fields to sane defaults
307 * (i.e. values that will pass validation).
308 */
309 attr.bp_addr = 0;
310 attr.bp_len = HW_BREAKPOINT_LEN_4;
311 attr.bp_type = type;
312 attr.disabled = 1;
313
314 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 if (IS_ERR(bp))
316 return bp;
317
318 err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 if (err)
320 return ERR_PTR(err);
321
322 return bp;
323 }
324
ptrace_hbp_fill_attr_ctrl(unsigned int note_type,struct arch_hw_breakpoint_ctrl ctrl,struct perf_event_attr * attr)325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 struct arch_hw_breakpoint_ctrl ctrl,
327 struct perf_event_attr *attr)
328 {
329 int err, len, type, offset, disabled = !ctrl.enabled;
330
331 attr->disabled = disabled;
332 if (disabled)
333 return 0;
334
335 err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 if (err)
337 return err;
338
339 switch (note_type) {
340 case NT_ARM_HW_BREAK:
341 if ((type & HW_BREAKPOINT_X) != type)
342 return -EINVAL;
343 break;
344 case NT_ARM_HW_WATCH:
345 if ((type & HW_BREAKPOINT_RW) != type)
346 return -EINVAL;
347 break;
348 default:
349 return -EINVAL;
350 }
351
352 attr->bp_len = len;
353 attr->bp_type = type;
354 attr->bp_addr += offset;
355
356 return 0;
357 }
358
ptrace_hbp_get_resource_info(unsigned int note_type,u32 * info)359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 u8 num;
362 u32 reg = 0;
363
364 switch (note_type) {
365 case NT_ARM_HW_BREAK:
366 num = hw_breakpoint_slots(TYPE_INST);
367 break;
368 case NT_ARM_HW_WATCH:
369 num = hw_breakpoint_slots(TYPE_DATA);
370 break;
371 default:
372 return -EINVAL;
373 }
374
375 reg |= debug_monitors_arch();
376 reg <<= 8;
377 reg |= num;
378
379 *info = reg;
380 return 0;
381 }
382
ptrace_hbp_get_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 * ctrl)383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 struct task_struct *tsk,
385 unsigned long idx,
386 u32 *ctrl)
387 {
388 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389
390 if (IS_ERR(bp))
391 return PTR_ERR(bp);
392
393 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 return 0;
395 }
396
ptrace_hbp_get_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 * addr)397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 struct task_struct *tsk,
399 unsigned long idx,
400 u64 *addr)
401 {
402 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403
404 if (IS_ERR(bp))
405 return PTR_ERR(bp);
406
407 *addr = bp ? counter_arch_bp(bp)->address : 0;
408 return 0;
409 }
410
ptrace_hbp_get_initialised_bp(unsigned int note_type,struct task_struct * tsk,unsigned long idx)411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 struct task_struct *tsk,
413 unsigned long idx)
414 {
415 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416
417 if (!bp)
418 bp = ptrace_hbp_create(note_type, tsk, idx);
419
420 return bp;
421 }
422
ptrace_hbp_set_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 uctrl)423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 struct task_struct *tsk,
425 unsigned long idx,
426 u32 uctrl)
427 {
428 int err;
429 struct perf_event *bp;
430 struct perf_event_attr attr;
431 struct arch_hw_breakpoint_ctrl ctrl;
432
433 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 if (IS_ERR(bp)) {
435 err = PTR_ERR(bp);
436 return err;
437 }
438
439 attr = bp->attr;
440 decode_ctrl_reg(uctrl, &ctrl);
441 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 if (err)
443 return err;
444
445 return modify_user_hw_breakpoint(bp, &attr);
446 }
447
ptrace_hbp_set_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 addr)448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 struct task_struct *tsk,
450 unsigned long idx,
451 u64 addr)
452 {
453 int err;
454 struct perf_event *bp;
455 struct perf_event_attr attr;
456
457 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 if (IS_ERR(bp)) {
459 err = PTR_ERR(bp);
460 return err;
461 }
462
463 attr = bp->attr;
464 attr.bp_addr = addr;
465 err = modify_user_hw_breakpoint(bp, &attr);
466 return err;
467 }
468
469 #define PTRACE_HBP_ADDR_SZ sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ sizeof(u32)
472
hw_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)473 static int hw_break_get(struct task_struct *target,
474 const struct user_regset *regset,
475 struct membuf to)
476 {
477 unsigned int note_type = regset->core_note_type;
478 int ret, idx = 0;
479 u32 info, ctrl;
480 u64 addr;
481
482 /* Resource info */
483 ret = ptrace_hbp_get_resource_info(note_type, &info);
484 if (ret)
485 return ret;
486
487 membuf_write(&to, &info, sizeof(info));
488 membuf_zero(&to, sizeof(u32));
489 /* (address, ctrl) registers */
490 while (to.left) {
491 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 if (ret)
493 return ret;
494 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 if (ret)
496 return ret;
497 membuf_store(&to, addr);
498 membuf_store(&to, ctrl);
499 membuf_zero(&to, sizeof(u32));
500 idx++;
501 }
502 return 0;
503 }
504
hw_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)505 static int hw_break_set(struct task_struct *target,
506 const struct user_regset *regset,
507 unsigned int pos, unsigned int count,
508 const void *kbuf, const void __user *ubuf)
509 {
510 unsigned int note_type = regset->core_note_type;
511 int ret, idx = 0, offset, limit;
512 u32 ctrl;
513 u64 addr;
514
515 /* Resource info and pad */
516 offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518
519 /* (address, ctrl) registers */
520 limit = regset->n * regset->size;
521 while (count && offset < limit) {
522 if (count < PTRACE_HBP_ADDR_SZ)
523 return -EINVAL;
524 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
525 offset, offset + PTRACE_HBP_ADDR_SZ);
526 if (ret)
527 return ret;
528 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
529 if (ret)
530 return ret;
531 offset += PTRACE_HBP_ADDR_SZ;
532
533 if (!count)
534 break;
535 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
536 offset, offset + PTRACE_HBP_CTRL_SZ);
537 if (ret)
538 return ret;
539 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
540 if (ret)
541 return ret;
542 offset += PTRACE_HBP_CTRL_SZ;
543
544 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
545 offset, offset + PTRACE_HBP_PAD_SZ);
546 offset += PTRACE_HBP_PAD_SZ;
547 idx++;
548 }
549
550 return 0;
551 }
552 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
553
gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)554 static int gpr_get(struct task_struct *target,
555 const struct user_regset *regset,
556 struct membuf to)
557 {
558 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
559 return membuf_write(&to, uregs, sizeof(*uregs));
560 }
561
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)562 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
563 unsigned int pos, unsigned int count,
564 const void *kbuf, const void __user *ubuf)
565 {
566 int ret;
567 struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
568
569 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
570 if (ret)
571 return ret;
572
573 if (!valid_user_regs(&newregs, target))
574 return -EINVAL;
575
576 task_pt_regs(target)->user_regs = newregs;
577 return 0;
578 }
579
fpr_active(struct task_struct * target,const struct user_regset * regset)580 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
581 {
582 if (!system_supports_fpsimd())
583 return -ENODEV;
584 return regset->n;
585 }
586
587 /*
588 * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
589 */
__fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)590 static int __fpr_get(struct task_struct *target,
591 const struct user_regset *regset,
592 struct membuf to)
593 {
594 struct user_fpsimd_state *uregs;
595
596 sve_sync_to_fpsimd(target);
597
598 uregs = &target->thread.uw.fpsimd_state;
599
600 return membuf_write(&to, uregs, sizeof(*uregs));
601 }
602
fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)603 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
604 struct membuf to)
605 {
606 if (!system_supports_fpsimd())
607 return -EINVAL;
608
609 if (target == current)
610 fpsimd_preserve_current_state();
611
612 return __fpr_get(target, regset, to);
613 }
614
__fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned int start_pos)615 static int __fpr_set(struct task_struct *target,
616 const struct user_regset *regset,
617 unsigned int pos, unsigned int count,
618 const void *kbuf, const void __user *ubuf,
619 unsigned int start_pos)
620 {
621 int ret;
622 struct user_fpsimd_state newstate;
623
624 /*
625 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
626 * short copyin can't resurrect stale data.
627 */
628 sve_sync_to_fpsimd(target);
629
630 newstate = target->thread.uw.fpsimd_state;
631
632 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
633 start_pos, start_pos + sizeof(newstate));
634 if (ret)
635 return ret;
636
637 target->thread.uw.fpsimd_state = newstate;
638
639 return ret;
640 }
641
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)642 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
643 unsigned int pos, unsigned int count,
644 const void *kbuf, const void __user *ubuf)
645 {
646 int ret;
647
648 if (!system_supports_fpsimd())
649 return -EINVAL;
650
651 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
652 if (ret)
653 return ret;
654
655 sve_sync_from_fpsimd_zeropad(target);
656 fpsimd_flush_task_state(target);
657
658 return ret;
659 }
660
tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)661 static int tls_get(struct task_struct *target, const struct user_regset *regset,
662 struct membuf to)
663 {
664 int ret;
665
666 if (target == current)
667 tls_preserve_current_state();
668
669 ret = membuf_store(&to, target->thread.uw.tp_value);
670 if (system_supports_tpidr2())
671 ret = membuf_store(&to, target->thread.tpidr2_el0);
672 else
673 ret = membuf_zero(&to, sizeof(u64));
674
675 return ret;
676 }
677
tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679 unsigned int pos, unsigned int count,
680 const void *kbuf, const void __user *ubuf)
681 {
682 int ret;
683 unsigned long tls[2];
684
685 tls[0] = target->thread.uw.tp_value;
686 if (system_supports_tpidr2())
687 tls[1] = target->thread.tpidr2_el0;
688
689 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
690 if (ret)
691 return ret;
692
693 target->thread.uw.tp_value = tls[0];
694 if (system_supports_tpidr2())
695 target->thread.tpidr2_el0 = tls[1];
696
697 return ret;
698 }
699
system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)700 static int system_call_get(struct task_struct *target,
701 const struct user_regset *regset,
702 struct membuf to)
703 {
704 return membuf_store(&to, task_pt_regs(target)->syscallno);
705 }
706
system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)707 static int system_call_set(struct task_struct *target,
708 const struct user_regset *regset,
709 unsigned int pos, unsigned int count,
710 const void *kbuf, const void __user *ubuf)
711 {
712 int syscallno = task_pt_regs(target)->syscallno;
713 int ret;
714
715 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
716 if (ret)
717 return ret;
718
719 task_pt_regs(target)->syscallno = syscallno;
720 return ret;
721 }
722
723 #ifdef CONFIG_ARM64_SVE
724
sve_init_header_from_task(struct user_sve_header * header,struct task_struct * target,enum vec_type type)725 static void sve_init_header_from_task(struct user_sve_header *header,
726 struct task_struct *target,
727 enum vec_type type)
728 {
729 unsigned int vq;
730 bool active;
731 bool fpsimd_only;
732 enum vec_type task_type;
733
734 memset(header, 0, sizeof(*header));
735
736 /* Check if the requested registers are active for the task */
737 if (thread_sm_enabled(&target->thread))
738 task_type = ARM64_VEC_SME;
739 else
740 task_type = ARM64_VEC_SVE;
741 active = (task_type == type);
742
743 switch (type) {
744 case ARM64_VEC_SVE:
745 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
746 header->flags |= SVE_PT_VL_INHERIT;
747 fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
748 break;
749 case ARM64_VEC_SME:
750 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
751 header->flags |= SVE_PT_VL_INHERIT;
752 fpsimd_only = false;
753 break;
754 default:
755 WARN_ON_ONCE(1);
756 return;
757 }
758
759 if (active) {
760 if (fpsimd_only) {
761 header->flags |= SVE_PT_REGS_FPSIMD;
762 } else {
763 header->flags |= SVE_PT_REGS_SVE;
764 }
765 }
766
767 header->vl = task_get_vl(target, type);
768 vq = sve_vq_from_vl(header->vl);
769
770 header->max_vl = vec_max_vl(type);
771 header->size = SVE_PT_SIZE(vq, header->flags);
772 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
773 SVE_PT_REGS_SVE);
774 }
775
sve_size_from_header(struct user_sve_header const * header)776 static unsigned int sve_size_from_header(struct user_sve_header const *header)
777 {
778 return ALIGN(header->size, SVE_VQ_BYTES);
779 }
780
sve_get_common(struct task_struct * target,const struct user_regset * regset,struct membuf to,enum vec_type type)781 static int sve_get_common(struct task_struct *target,
782 const struct user_regset *regset,
783 struct membuf to,
784 enum vec_type type)
785 {
786 struct user_sve_header header;
787 unsigned int vq;
788 unsigned long start, end;
789
790 /* Header */
791 sve_init_header_from_task(&header, target, type);
792 vq = sve_vq_from_vl(header.vl);
793
794 membuf_write(&to, &header, sizeof(header));
795
796 if (target == current)
797 fpsimd_preserve_current_state();
798
799 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
800 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
801
802 switch ((header.flags & SVE_PT_REGS_MASK)) {
803 case SVE_PT_REGS_FPSIMD:
804 return __fpr_get(target, regset, to);
805
806 case SVE_PT_REGS_SVE:
807 start = SVE_PT_SVE_OFFSET;
808 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
809 membuf_write(&to, target->thread.sve_state, end - start);
810
811 start = end;
812 end = SVE_PT_SVE_FPSR_OFFSET(vq);
813 membuf_zero(&to, end - start);
814
815 /*
816 * Copy fpsr, and fpcr which must follow contiguously in
817 * struct fpsimd_state:
818 */
819 start = end;
820 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
821 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
822 end - start);
823
824 start = end;
825 end = sve_size_from_header(&header);
826 return membuf_zero(&to, end - start);
827
828 default:
829 return 0;
830 }
831 }
832
sve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)833 static int sve_get(struct task_struct *target,
834 const struct user_regset *regset,
835 struct membuf to)
836 {
837 if (!system_supports_sve())
838 return -EINVAL;
839
840 return sve_get_common(target, regset, to, ARM64_VEC_SVE);
841 }
842
sve_set_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,enum vec_type type)843 static int sve_set_common(struct task_struct *target,
844 const struct user_regset *regset,
845 unsigned int pos, unsigned int count,
846 const void *kbuf, const void __user *ubuf,
847 enum vec_type type)
848 {
849 int ret;
850 struct user_sve_header header;
851 unsigned int vq;
852 unsigned long start, end;
853
854 /* Header */
855 if (count < sizeof(header))
856 return -EINVAL;
857 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
858 0, sizeof(header));
859 if (ret)
860 goto out;
861
862 /*
863 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
864 * vec_set_vector_length(), which will also validate them for us:
865 */
866 ret = vec_set_vector_length(target, type, header.vl,
867 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
868 if (ret)
869 goto out;
870
871 /* Actual VL set may be less than the user asked for: */
872 vq = sve_vq_from_vl(task_get_vl(target, type));
873
874 /* Enter/exit streaming mode */
875 if (system_supports_sme()) {
876 u64 old_svcr = target->thread.svcr;
877
878 switch (type) {
879 case ARM64_VEC_SVE:
880 target->thread.svcr &= ~SVCR_SM_MASK;
881 break;
882 case ARM64_VEC_SME:
883 target->thread.svcr |= SVCR_SM_MASK;
884
885 /*
886 * Disable traps and ensure there is SME storage but
887 * preserve any currently set values in ZA/ZT.
888 */
889 sme_alloc(target, false);
890 set_tsk_thread_flag(target, TIF_SME);
891 break;
892 default:
893 WARN_ON_ONCE(1);
894 ret = -EINVAL;
895 goto out;
896 }
897
898 /*
899 * If we switched then invalidate any existing SVE
900 * state and ensure there's storage.
901 */
902 if (target->thread.svcr != old_svcr)
903 sve_alloc(target, true);
904 }
905
906 /* Registers: FPSIMD-only case */
907
908 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
909 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
910 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
911 SVE_PT_FPSIMD_OFFSET);
912 clear_tsk_thread_flag(target, TIF_SVE);
913 target->thread.fp_type = FP_STATE_FPSIMD;
914 goto out;
915 }
916
917 /*
918 * Otherwise: no registers or full SVE case. For backwards
919 * compatibility reasons we treat empty flags as SVE registers.
920 */
921
922 /*
923 * If setting a different VL from the requested VL and there is
924 * register data, the data layout will be wrong: don't even
925 * try to set the registers in this case.
926 */
927 if (count && vq != sve_vq_from_vl(header.vl)) {
928 ret = -EIO;
929 goto out;
930 }
931
932 sve_alloc(target, true);
933 if (!target->thread.sve_state) {
934 ret = -ENOMEM;
935 clear_tsk_thread_flag(target, TIF_SVE);
936 target->thread.fp_type = FP_STATE_FPSIMD;
937 goto out;
938 }
939
940 /*
941 * Ensure target->thread.sve_state is up to date with target's
942 * FPSIMD regs, so that a short copyin leaves trailing
943 * registers unmodified. Only enable SVE if we are
944 * configuring normal SVE, a system with streaming SVE may not
945 * have normal SVE.
946 */
947 fpsimd_sync_to_sve(target);
948 if (type == ARM64_VEC_SVE)
949 set_tsk_thread_flag(target, TIF_SVE);
950 target->thread.fp_type = FP_STATE_SVE;
951
952 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
953 start = SVE_PT_SVE_OFFSET;
954 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
955 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
956 target->thread.sve_state,
957 start, end);
958 if (ret)
959 goto out;
960
961 start = end;
962 end = SVE_PT_SVE_FPSR_OFFSET(vq);
963 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
964
965 /*
966 * Copy fpsr, and fpcr which must follow contiguously in
967 * struct fpsimd_state:
968 */
969 start = end;
970 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
971 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
972 &target->thread.uw.fpsimd_state.fpsr,
973 start, end);
974
975 out:
976 fpsimd_flush_task_state(target);
977 return ret;
978 }
979
sve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)980 static int sve_set(struct task_struct *target,
981 const struct user_regset *regset,
982 unsigned int pos, unsigned int count,
983 const void *kbuf, const void __user *ubuf)
984 {
985 if (!system_supports_sve())
986 return -EINVAL;
987
988 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
989 ARM64_VEC_SVE);
990 }
991
992 #endif /* CONFIG_ARM64_SVE */
993
994 #ifdef CONFIG_ARM64_SME
995
ssve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)996 static int ssve_get(struct task_struct *target,
997 const struct user_regset *regset,
998 struct membuf to)
999 {
1000 if (!system_supports_sme())
1001 return -EINVAL;
1002
1003 return sve_get_common(target, regset, to, ARM64_VEC_SME);
1004 }
1005
ssve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1006 static int ssve_set(struct task_struct *target,
1007 const struct user_regset *regset,
1008 unsigned int pos, unsigned int count,
1009 const void *kbuf, const void __user *ubuf)
1010 {
1011 if (!system_supports_sme())
1012 return -EINVAL;
1013
1014 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1015 ARM64_VEC_SME);
1016 }
1017
za_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1018 static int za_get(struct task_struct *target,
1019 const struct user_regset *regset,
1020 struct membuf to)
1021 {
1022 struct user_za_header header;
1023 unsigned int vq;
1024 unsigned long start, end;
1025
1026 if (!system_supports_sme())
1027 return -EINVAL;
1028
1029 /* Header */
1030 memset(&header, 0, sizeof(header));
1031
1032 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1033 header.flags |= ZA_PT_VL_INHERIT;
1034
1035 header.vl = task_get_sme_vl(target);
1036 vq = sve_vq_from_vl(header.vl);
1037 header.max_vl = sme_max_vl();
1038 header.max_size = ZA_PT_SIZE(vq);
1039
1040 /* If ZA is not active there is only the header */
1041 if (thread_za_enabled(&target->thread))
1042 header.size = ZA_PT_SIZE(vq);
1043 else
1044 header.size = ZA_PT_ZA_OFFSET;
1045
1046 membuf_write(&to, &header, sizeof(header));
1047
1048 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1049 end = ZA_PT_ZA_OFFSET;
1050
1051 if (target == current)
1052 fpsimd_preserve_current_state();
1053
1054 /* Any register data to include? */
1055 if (thread_za_enabled(&target->thread)) {
1056 start = end;
1057 end = ZA_PT_SIZE(vq);
1058 membuf_write(&to, target->thread.sme_state, end - start);
1059 }
1060
1061 /* Zero any trailing padding */
1062 start = end;
1063 end = ALIGN(header.size, SVE_VQ_BYTES);
1064 return membuf_zero(&to, end - start);
1065 }
1066
za_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1067 static int za_set(struct task_struct *target,
1068 const struct user_regset *regset,
1069 unsigned int pos, unsigned int count,
1070 const void *kbuf, const void __user *ubuf)
1071 {
1072 int ret;
1073 struct user_za_header header;
1074 unsigned int vq;
1075 unsigned long start, end;
1076
1077 if (!system_supports_sme())
1078 return -EINVAL;
1079
1080 /* Header */
1081 if (count < sizeof(header))
1082 return -EINVAL;
1083 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1084 0, sizeof(header));
1085 if (ret)
1086 goto out;
1087
1088 /*
1089 * All current ZA_PT_* flags are consumed by
1090 * vec_set_vector_length(), which will also validate them for
1091 * us:
1092 */
1093 ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1094 ((unsigned long)header.flags) << 16);
1095 if (ret)
1096 goto out;
1097
1098 /* Actual VL set may be less than the user asked for: */
1099 vq = sve_vq_from_vl(task_get_sme_vl(target));
1100
1101 /* Ensure there is some SVE storage for streaming mode */
1102 if (!target->thread.sve_state) {
1103 sve_alloc(target, false);
1104 if (!target->thread.sve_state) {
1105 ret = -ENOMEM;
1106 goto out;
1107 }
1108 }
1109
1110 /*
1111 * Only flush the storage if PSTATE.ZA was not already set,
1112 * otherwise preserve any existing data.
1113 */
1114 sme_alloc(target, !thread_za_enabled(&target->thread));
1115 if (!target->thread.sme_state)
1116 return -ENOMEM;
1117
1118 /* If there is no data then disable ZA */
1119 if (!count) {
1120 target->thread.svcr &= ~SVCR_ZA_MASK;
1121 goto out;
1122 }
1123
1124 /*
1125 * If setting a different VL from the requested VL and there is
1126 * register data, the data layout will be wrong: don't even
1127 * try to set the registers in this case.
1128 */
1129 if (vq != sve_vq_from_vl(header.vl)) {
1130 ret = -EIO;
1131 goto out;
1132 }
1133
1134 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1135 start = ZA_PT_ZA_OFFSET;
1136 end = ZA_PT_SIZE(vq);
1137 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1138 target->thread.sme_state,
1139 start, end);
1140 if (ret)
1141 goto out;
1142
1143 /* Mark ZA as active and let userspace use it */
1144 set_tsk_thread_flag(target, TIF_SME);
1145 target->thread.svcr |= SVCR_ZA_MASK;
1146
1147 out:
1148 fpsimd_flush_task_state(target);
1149 return ret;
1150 }
1151
zt_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1152 static int zt_get(struct task_struct *target,
1153 const struct user_regset *regset,
1154 struct membuf to)
1155 {
1156 if (!system_supports_sme2())
1157 return -EINVAL;
1158
1159 /*
1160 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1161 * enabled so report the current register value as zero.
1162 */
1163 if (thread_za_enabled(&target->thread))
1164 membuf_write(&to, thread_zt_state(&target->thread),
1165 ZT_SIG_REG_BYTES);
1166 else
1167 membuf_zero(&to, ZT_SIG_REG_BYTES);
1168
1169 return 0;
1170 }
1171
zt_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1172 static int zt_set(struct task_struct *target,
1173 const struct user_regset *regset,
1174 unsigned int pos, unsigned int count,
1175 const void *kbuf, const void __user *ubuf)
1176 {
1177 int ret;
1178
1179 if (!system_supports_sme2())
1180 return -EINVAL;
1181
1182 /* Ensure SVE storage in case this is first use of SME */
1183 sve_alloc(target, false);
1184 if (!target->thread.sve_state)
1185 return -ENOMEM;
1186
1187 if (!thread_za_enabled(&target->thread)) {
1188 sme_alloc(target, true);
1189 if (!target->thread.sme_state)
1190 return -ENOMEM;
1191 }
1192
1193 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1194 thread_zt_state(&target->thread),
1195 0, ZT_SIG_REG_BYTES);
1196 if (ret == 0) {
1197 target->thread.svcr |= SVCR_ZA_MASK;
1198 set_tsk_thread_flag(target, TIF_SME);
1199 }
1200
1201 fpsimd_flush_task_state(target);
1202
1203 return ret;
1204 }
1205
1206 #endif /* CONFIG_ARM64_SME */
1207
1208 #ifdef CONFIG_ARM64_PTR_AUTH
pac_mask_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1209 static int pac_mask_get(struct task_struct *target,
1210 const struct user_regset *regset,
1211 struct membuf to)
1212 {
1213 /*
1214 * The PAC bits can differ across data and instruction pointers
1215 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1216 * we expose separate masks.
1217 */
1218 unsigned long mask = ptrauth_user_pac_mask();
1219 struct user_pac_mask uregs = {
1220 .data_mask = mask,
1221 .insn_mask = mask,
1222 };
1223
1224 if (!system_supports_address_auth())
1225 return -EINVAL;
1226
1227 return membuf_write(&to, &uregs, sizeof(uregs));
1228 }
1229
pac_enabled_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1230 static int pac_enabled_keys_get(struct task_struct *target,
1231 const struct user_regset *regset,
1232 struct membuf to)
1233 {
1234 long enabled_keys = ptrauth_get_enabled_keys(target);
1235
1236 if (IS_ERR_VALUE(enabled_keys))
1237 return enabled_keys;
1238
1239 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1240 }
1241
pac_enabled_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1242 static int pac_enabled_keys_set(struct task_struct *target,
1243 const struct user_regset *regset,
1244 unsigned int pos, unsigned int count,
1245 const void *kbuf, const void __user *ubuf)
1246 {
1247 int ret;
1248 long enabled_keys = ptrauth_get_enabled_keys(target);
1249
1250 if (IS_ERR_VALUE(enabled_keys))
1251 return enabled_keys;
1252
1253 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1254 sizeof(long));
1255 if (ret)
1256 return ret;
1257
1258 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1259 enabled_keys);
1260 }
1261
1262 #ifdef CONFIG_CHECKPOINT_RESTORE
pac_key_to_user(const struct ptrauth_key * key)1263 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1264 {
1265 return (__uint128_t)key->hi << 64 | key->lo;
1266 }
1267
pac_key_from_user(__uint128_t ukey)1268 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1269 {
1270 struct ptrauth_key key = {
1271 .lo = (unsigned long)ukey,
1272 .hi = (unsigned long)(ukey >> 64),
1273 };
1274
1275 return key;
1276 }
1277
pac_address_keys_to_user(struct user_pac_address_keys * ukeys,const struct ptrauth_keys_user * keys)1278 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1279 const struct ptrauth_keys_user *keys)
1280 {
1281 ukeys->apiakey = pac_key_to_user(&keys->apia);
1282 ukeys->apibkey = pac_key_to_user(&keys->apib);
1283 ukeys->apdakey = pac_key_to_user(&keys->apda);
1284 ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1285 }
1286
pac_address_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_address_keys * ukeys)1287 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1288 const struct user_pac_address_keys *ukeys)
1289 {
1290 keys->apia = pac_key_from_user(ukeys->apiakey);
1291 keys->apib = pac_key_from_user(ukeys->apibkey);
1292 keys->apda = pac_key_from_user(ukeys->apdakey);
1293 keys->apdb = pac_key_from_user(ukeys->apdbkey);
1294 }
1295
pac_address_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1296 static int pac_address_keys_get(struct task_struct *target,
1297 const struct user_regset *regset,
1298 struct membuf to)
1299 {
1300 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1301 struct user_pac_address_keys user_keys;
1302
1303 if (!system_supports_address_auth())
1304 return -EINVAL;
1305
1306 pac_address_keys_to_user(&user_keys, keys);
1307
1308 return membuf_write(&to, &user_keys, sizeof(user_keys));
1309 }
1310
pac_address_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1311 static int pac_address_keys_set(struct task_struct *target,
1312 const struct user_regset *regset,
1313 unsigned int pos, unsigned int count,
1314 const void *kbuf, const void __user *ubuf)
1315 {
1316 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1317 struct user_pac_address_keys user_keys;
1318 int ret;
1319
1320 if (!system_supports_address_auth())
1321 return -EINVAL;
1322
1323 pac_address_keys_to_user(&user_keys, keys);
1324 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1325 &user_keys, 0, -1);
1326 if (ret)
1327 return ret;
1328 pac_address_keys_from_user(keys, &user_keys);
1329
1330 return 0;
1331 }
1332
pac_generic_keys_to_user(struct user_pac_generic_keys * ukeys,const struct ptrauth_keys_user * keys)1333 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1334 const struct ptrauth_keys_user *keys)
1335 {
1336 ukeys->apgakey = pac_key_to_user(&keys->apga);
1337 }
1338
pac_generic_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_generic_keys * ukeys)1339 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1340 const struct user_pac_generic_keys *ukeys)
1341 {
1342 keys->apga = pac_key_from_user(ukeys->apgakey);
1343 }
1344
pac_generic_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1345 static int pac_generic_keys_get(struct task_struct *target,
1346 const struct user_regset *regset,
1347 struct membuf to)
1348 {
1349 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1350 struct user_pac_generic_keys user_keys;
1351
1352 if (!system_supports_generic_auth())
1353 return -EINVAL;
1354
1355 pac_generic_keys_to_user(&user_keys, keys);
1356
1357 return membuf_write(&to, &user_keys, sizeof(user_keys));
1358 }
1359
pac_generic_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1360 static int pac_generic_keys_set(struct task_struct *target,
1361 const struct user_regset *regset,
1362 unsigned int pos, unsigned int count,
1363 const void *kbuf, const void __user *ubuf)
1364 {
1365 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1366 struct user_pac_generic_keys user_keys;
1367 int ret;
1368
1369 if (!system_supports_generic_auth())
1370 return -EINVAL;
1371
1372 pac_generic_keys_to_user(&user_keys, keys);
1373 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1374 &user_keys, 0, -1);
1375 if (ret)
1376 return ret;
1377 pac_generic_keys_from_user(keys, &user_keys);
1378
1379 return 0;
1380 }
1381 #endif /* CONFIG_CHECKPOINT_RESTORE */
1382 #endif /* CONFIG_ARM64_PTR_AUTH */
1383
1384 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
tagged_addr_ctrl_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1385 static int tagged_addr_ctrl_get(struct task_struct *target,
1386 const struct user_regset *regset,
1387 struct membuf to)
1388 {
1389 long ctrl = get_tagged_addr_ctrl(target);
1390
1391 if (IS_ERR_VALUE(ctrl))
1392 return ctrl;
1393
1394 return membuf_write(&to, &ctrl, sizeof(ctrl));
1395 }
1396
tagged_addr_ctrl_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1397 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1398 user_regset *regset, unsigned int pos,
1399 unsigned int count, const void *kbuf, const
1400 void __user *ubuf)
1401 {
1402 int ret;
1403 long ctrl;
1404
1405 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1406 if (ret)
1407 return ret;
1408
1409 return set_tagged_addr_ctrl(target, ctrl);
1410 }
1411 #endif
1412
1413 enum aarch64_regset {
1414 REGSET_GPR,
1415 REGSET_FPR,
1416 REGSET_TLS,
1417 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1418 REGSET_HW_BREAK,
1419 REGSET_HW_WATCH,
1420 #endif
1421 REGSET_SYSTEM_CALL,
1422 #ifdef CONFIG_ARM64_SVE
1423 REGSET_SVE,
1424 #endif
1425 #ifdef CONFIG_ARM64_SME
1426 REGSET_SSVE,
1427 REGSET_ZA,
1428 REGSET_ZT,
1429 #endif
1430 #ifdef CONFIG_ARM64_PTR_AUTH
1431 REGSET_PAC_MASK,
1432 REGSET_PAC_ENABLED_KEYS,
1433 #ifdef CONFIG_CHECKPOINT_RESTORE
1434 REGSET_PACA_KEYS,
1435 REGSET_PACG_KEYS,
1436 #endif
1437 #endif
1438 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1439 REGSET_TAGGED_ADDR_CTRL,
1440 #endif
1441 };
1442
1443 static const struct user_regset aarch64_regsets[] = {
1444 [REGSET_GPR] = {
1445 .core_note_type = NT_PRSTATUS,
1446 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1447 .size = sizeof(u64),
1448 .align = sizeof(u64),
1449 .regset_get = gpr_get,
1450 .set = gpr_set
1451 },
1452 [REGSET_FPR] = {
1453 .core_note_type = NT_PRFPREG,
1454 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1455 /*
1456 * We pretend we have 32-bit registers because the fpsr and
1457 * fpcr are 32-bits wide.
1458 */
1459 .size = sizeof(u32),
1460 .align = sizeof(u32),
1461 .active = fpr_active,
1462 .regset_get = fpr_get,
1463 .set = fpr_set
1464 },
1465 [REGSET_TLS] = {
1466 .core_note_type = NT_ARM_TLS,
1467 .n = 2,
1468 .size = sizeof(void *),
1469 .align = sizeof(void *),
1470 .regset_get = tls_get,
1471 .set = tls_set,
1472 },
1473 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1474 [REGSET_HW_BREAK] = {
1475 .core_note_type = NT_ARM_HW_BREAK,
1476 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1477 .size = sizeof(u32),
1478 .align = sizeof(u32),
1479 .regset_get = hw_break_get,
1480 .set = hw_break_set,
1481 },
1482 [REGSET_HW_WATCH] = {
1483 .core_note_type = NT_ARM_HW_WATCH,
1484 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1485 .size = sizeof(u32),
1486 .align = sizeof(u32),
1487 .regset_get = hw_break_get,
1488 .set = hw_break_set,
1489 },
1490 #endif
1491 [REGSET_SYSTEM_CALL] = {
1492 .core_note_type = NT_ARM_SYSTEM_CALL,
1493 .n = 1,
1494 .size = sizeof(int),
1495 .align = sizeof(int),
1496 .regset_get = system_call_get,
1497 .set = system_call_set,
1498 },
1499 #ifdef CONFIG_ARM64_SVE
1500 [REGSET_SVE] = { /* Scalable Vector Extension */
1501 .core_note_type = NT_ARM_SVE,
1502 .n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX,
1503 SVE_PT_REGS_SVE),
1504 SVE_VQ_BYTES),
1505 .size = SVE_VQ_BYTES,
1506 .align = SVE_VQ_BYTES,
1507 .regset_get = sve_get,
1508 .set = sve_set,
1509 },
1510 #endif
1511 #ifdef CONFIG_ARM64_SME
1512 [REGSET_SSVE] = { /* Streaming mode SVE */
1513 .core_note_type = NT_ARM_SSVE,
1514 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1515 SVE_VQ_BYTES),
1516 .size = SVE_VQ_BYTES,
1517 .align = SVE_VQ_BYTES,
1518 .regset_get = ssve_get,
1519 .set = ssve_set,
1520 },
1521 [REGSET_ZA] = { /* SME ZA */
1522 .core_note_type = NT_ARM_ZA,
1523 /*
1524 * ZA is a single register but it's variably sized and
1525 * the ptrace core requires that the size of any data
1526 * be an exact multiple of the configured register
1527 * size so report as though we had SVE_VQ_BYTES
1528 * registers. These values aren't exposed to
1529 * userspace.
1530 */
1531 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1532 .size = SVE_VQ_BYTES,
1533 .align = SVE_VQ_BYTES,
1534 .regset_get = za_get,
1535 .set = za_set,
1536 },
1537 [REGSET_ZT] = { /* SME ZT */
1538 .core_note_type = NT_ARM_ZT,
1539 .n = 1,
1540 .size = ZT_SIG_REG_BYTES,
1541 .align = sizeof(u64),
1542 .regset_get = zt_get,
1543 .set = zt_set,
1544 },
1545 #endif
1546 #ifdef CONFIG_ARM64_PTR_AUTH
1547 [REGSET_PAC_MASK] = {
1548 .core_note_type = NT_ARM_PAC_MASK,
1549 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1550 .size = sizeof(u64),
1551 .align = sizeof(u64),
1552 .regset_get = pac_mask_get,
1553 /* this cannot be set dynamically */
1554 },
1555 [REGSET_PAC_ENABLED_KEYS] = {
1556 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1557 .n = 1,
1558 .size = sizeof(long),
1559 .align = sizeof(long),
1560 .regset_get = pac_enabled_keys_get,
1561 .set = pac_enabled_keys_set,
1562 },
1563 #ifdef CONFIG_CHECKPOINT_RESTORE
1564 [REGSET_PACA_KEYS] = {
1565 .core_note_type = NT_ARM_PACA_KEYS,
1566 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1567 .size = sizeof(__uint128_t),
1568 .align = sizeof(__uint128_t),
1569 .regset_get = pac_address_keys_get,
1570 .set = pac_address_keys_set,
1571 },
1572 [REGSET_PACG_KEYS] = {
1573 .core_note_type = NT_ARM_PACG_KEYS,
1574 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1575 .size = sizeof(__uint128_t),
1576 .align = sizeof(__uint128_t),
1577 .regset_get = pac_generic_keys_get,
1578 .set = pac_generic_keys_set,
1579 },
1580 #endif
1581 #endif
1582 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1583 [REGSET_TAGGED_ADDR_CTRL] = {
1584 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1585 .n = 1,
1586 .size = sizeof(long),
1587 .align = sizeof(long),
1588 .regset_get = tagged_addr_ctrl_get,
1589 .set = tagged_addr_ctrl_set,
1590 },
1591 #endif
1592 };
1593
1594 static const struct user_regset_view user_aarch64_view = {
1595 .name = "aarch64", .e_machine = EM_AARCH64,
1596 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1597 };
1598
1599 #ifdef CONFIG_COMPAT
1600 enum compat_regset {
1601 REGSET_COMPAT_GPR,
1602 REGSET_COMPAT_VFP,
1603 };
1604
compat_get_user_reg(struct task_struct * task,int idx)1605 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1606 {
1607 struct pt_regs *regs = task_pt_regs(task);
1608
1609 switch (idx) {
1610 case 15:
1611 return regs->pc;
1612 case 16:
1613 return pstate_to_compat_psr(regs->pstate);
1614 case 17:
1615 return regs->orig_x0;
1616 default:
1617 return regs->regs[idx];
1618 }
1619 }
1620
compat_gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1621 static int compat_gpr_get(struct task_struct *target,
1622 const struct user_regset *regset,
1623 struct membuf to)
1624 {
1625 int i = 0;
1626
1627 while (to.left)
1628 membuf_store(&to, compat_get_user_reg(target, i++));
1629 return 0;
1630 }
1631
compat_gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1632 static int compat_gpr_set(struct task_struct *target,
1633 const struct user_regset *regset,
1634 unsigned int pos, unsigned int count,
1635 const void *kbuf, const void __user *ubuf)
1636 {
1637 struct pt_regs newregs;
1638 int ret = 0;
1639 unsigned int i, start, num_regs;
1640
1641 /* Calculate the number of AArch32 registers contained in count */
1642 num_regs = count / regset->size;
1643
1644 /* Convert pos into an register number */
1645 start = pos / regset->size;
1646
1647 if (start + num_regs > regset->n)
1648 return -EIO;
1649
1650 newregs = *task_pt_regs(target);
1651
1652 for (i = 0; i < num_regs; ++i) {
1653 unsigned int idx = start + i;
1654 compat_ulong_t reg;
1655
1656 if (kbuf) {
1657 memcpy(®, kbuf, sizeof(reg));
1658 kbuf += sizeof(reg);
1659 } else {
1660 ret = copy_from_user(®, ubuf, sizeof(reg));
1661 if (ret) {
1662 ret = -EFAULT;
1663 break;
1664 }
1665
1666 ubuf += sizeof(reg);
1667 }
1668
1669 switch (idx) {
1670 case 15:
1671 newregs.pc = reg;
1672 break;
1673 case 16:
1674 reg = compat_psr_to_pstate(reg);
1675 newregs.pstate = reg;
1676 break;
1677 case 17:
1678 newregs.orig_x0 = reg;
1679 break;
1680 default:
1681 newregs.regs[idx] = reg;
1682 }
1683
1684 }
1685
1686 if (valid_user_regs(&newregs.user_regs, target))
1687 *task_pt_regs(target) = newregs;
1688 else
1689 ret = -EINVAL;
1690
1691 return ret;
1692 }
1693
compat_vfp_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1694 static int compat_vfp_get(struct task_struct *target,
1695 const struct user_regset *regset,
1696 struct membuf to)
1697 {
1698 struct user_fpsimd_state *uregs;
1699 compat_ulong_t fpscr;
1700
1701 if (!system_supports_fpsimd())
1702 return -EINVAL;
1703
1704 uregs = &target->thread.uw.fpsimd_state;
1705
1706 if (target == current)
1707 fpsimd_preserve_current_state();
1708
1709 /*
1710 * The VFP registers are packed into the fpsimd_state, so they all sit
1711 * nicely together for us. We just need to create the fpscr separately.
1712 */
1713 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1714 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1715 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1716 return membuf_store(&to, fpscr);
1717 }
1718
compat_vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1719 static int compat_vfp_set(struct task_struct *target,
1720 const struct user_regset *regset,
1721 unsigned int pos, unsigned int count,
1722 const void *kbuf, const void __user *ubuf)
1723 {
1724 struct user_fpsimd_state *uregs;
1725 compat_ulong_t fpscr;
1726 int ret, vregs_end_pos;
1727
1728 if (!system_supports_fpsimd())
1729 return -EINVAL;
1730
1731 uregs = &target->thread.uw.fpsimd_state;
1732
1733 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1734 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1735 vregs_end_pos);
1736
1737 if (count && !ret) {
1738 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1739 vregs_end_pos, VFP_STATE_SIZE);
1740 if (!ret) {
1741 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1742 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1743 }
1744 }
1745
1746 fpsimd_flush_task_state(target);
1747 return ret;
1748 }
1749
compat_tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1750 static int compat_tls_get(struct task_struct *target,
1751 const struct user_regset *regset,
1752 struct membuf to)
1753 {
1754 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1755 }
1756
compat_tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1757 static int compat_tls_set(struct task_struct *target,
1758 const struct user_regset *regset, unsigned int pos,
1759 unsigned int count, const void *kbuf,
1760 const void __user *ubuf)
1761 {
1762 int ret;
1763 compat_ulong_t tls = target->thread.uw.tp_value;
1764
1765 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1766 if (ret)
1767 return ret;
1768
1769 target->thread.uw.tp_value = tls;
1770 return ret;
1771 }
1772
1773 static const struct user_regset aarch32_regsets[] = {
1774 [REGSET_COMPAT_GPR] = {
1775 .core_note_type = NT_PRSTATUS,
1776 .n = COMPAT_ELF_NGREG,
1777 .size = sizeof(compat_elf_greg_t),
1778 .align = sizeof(compat_elf_greg_t),
1779 .regset_get = compat_gpr_get,
1780 .set = compat_gpr_set
1781 },
1782 [REGSET_COMPAT_VFP] = {
1783 .core_note_type = NT_ARM_VFP,
1784 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1785 .size = sizeof(compat_ulong_t),
1786 .align = sizeof(compat_ulong_t),
1787 .active = fpr_active,
1788 .regset_get = compat_vfp_get,
1789 .set = compat_vfp_set
1790 },
1791 };
1792
1793 static const struct user_regset_view user_aarch32_view = {
1794 .name = "aarch32", .e_machine = EM_ARM,
1795 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1796 };
1797
1798 static const struct user_regset aarch32_ptrace_regsets[] = {
1799 [REGSET_GPR] = {
1800 .core_note_type = NT_PRSTATUS,
1801 .n = COMPAT_ELF_NGREG,
1802 .size = sizeof(compat_elf_greg_t),
1803 .align = sizeof(compat_elf_greg_t),
1804 .regset_get = compat_gpr_get,
1805 .set = compat_gpr_set
1806 },
1807 [REGSET_FPR] = {
1808 .core_note_type = NT_ARM_VFP,
1809 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1810 .size = sizeof(compat_ulong_t),
1811 .align = sizeof(compat_ulong_t),
1812 .regset_get = compat_vfp_get,
1813 .set = compat_vfp_set
1814 },
1815 [REGSET_TLS] = {
1816 .core_note_type = NT_ARM_TLS,
1817 .n = 1,
1818 .size = sizeof(compat_ulong_t),
1819 .align = sizeof(compat_ulong_t),
1820 .regset_get = compat_tls_get,
1821 .set = compat_tls_set,
1822 },
1823 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1824 [REGSET_HW_BREAK] = {
1825 .core_note_type = NT_ARM_HW_BREAK,
1826 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1827 .size = sizeof(u32),
1828 .align = sizeof(u32),
1829 .regset_get = hw_break_get,
1830 .set = hw_break_set,
1831 },
1832 [REGSET_HW_WATCH] = {
1833 .core_note_type = NT_ARM_HW_WATCH,
1834 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1835 .size = sizeof(u32),
1836 .align = sizeof(u32),
1837 .regset_get = hw_break_get,
1838 .set = hw_break_set,
1839 },
1840 #endif
1841 [REGSET_SYSTEM_CALL] = {
1842 .core_note_type = NT_ARM_SYSTEM_CALL,
1843 .n = 1,
1844 .size = sizeof(int),
1845 .align = sizeof(int),
1846 .regset_get = system_call_get,
1847 .set = system_call_set,
1848 },
1849 };
1850
1851 static const struct user_regset_view user_aarch32_ptrace_view = {
1852 .name = "aarch32", .e_machine = EM_ARM,
1853 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1854 };
1855
compat_ptrace_read_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t __user * ret)1856 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1857 compat_ulong_t __user *ret)
1858 {
1859 compat_ulong_t tmp;
1860
1861 if (off & 3)
1862 return -EIO;
1863
1864 if (off == COMPAT_PT_TEXT_ADDR)
1865 tmp = tsk->mm->start_code;
1866 else if (off == COMPAT_PT_DATA_ADDR)
1867 tmp = tsk->mm->start_data;
1868 else if (off == COMPAT_PT_TEXT_END_ADDR)
1869 tmp = tsk->mm->end_code;
1870 else if (off < sizeof(compat_elf_gregset_t))
1871 tmp = compat_get_user_reg(tsk, off >> 2);
1872 else if (off >= COMPAT_USER_SZ)
1873 return -EIO;
1874 else
1875 tmp = 0;
1876
1877 return put_user(tmp, ret);
1878 }
1879
compat_ptrace_write_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t val)1880 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1881 compat_ulong_t val)
1882 {
1883 struct pt_regs newregs = *task_pt_regs(tsk);
1884 unsigned int idx = off / 4;
1885
1886 if (off & 3 || off >= COMPAT_USER_SZ)
1887 return -EIO;
1888
1889 if (off >= sizeof(compat_elf_gregset_t))
1890 return 0;
1891
1892 switch (idx) {
1893 case 15:
1894 newregs.pc = val;
1895 break;
1896 case 16:
1897 newregs.pstate = compat_psr_to_pstate(val);
1898 break;
1899 case 17:
1900 newregs.orig_x0 = val;
1901 break;
1902 default:
1903 newregs.regs[idx] = val;
1904 }
1905
1906 if (!valid_user_regs(&newregs.user_regs, tsk))
1907 return -EINVAL;
1908
1909 *task_pt_regs(tsk) = newregs;
1910 return 0;
1911 }
1912
1913 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1914
1915 /*
1916 * Convert a virtual register number into an index for a thread_info
1917 * breakpoint array. Breakpoints are identified using positive numbers
1918 * whilst watchpoints are negative. The registers are laid out as pairs
1919 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1920 * Register 0 is reserved for describing resource information.
1921 */
compat_ptrace_hbp_num_to_idx(compat_long_t num)1922 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1923 {
1924 return (abs(num) - 1) >> 1;
1925 }
1926
compat_ptrace_hbp_get_resource_info(u32 * kdata)1927 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1928 {
1929 u8 num_brps, num_wrps, debug_arch, wp_len;
1930 u32 reg = 0;
1931
1932 num_brps = hw_breakpoint_slots(TYPE_INST);
1933 num_wrps = hw_breakpoint_slots(TYPE_DATA);
1934
1935 debug_arch = debug_monitors_arch();
1936 wp_len = 8;
1937 reg |= debug_arch;
1938 reg <<= 8;
1939 reg |= wp_len;
1940 reg <<= 8;
1941 reg |= num_wrps;
1942 reg <<= 8;
1943 reg |= num_brps;
1944
1945 *kdata = reg;
1946 return 0;
1947 }
1948
compat_ptrace_hbp_get(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1949 static int compat_ptrace_hbp_get(unsigned int note_type,
1950 struct task_struct *tsk,
1951 compat_long_t num,
1952 u32 *kdata)
1953 {
1954 u64 addr = 0;
1955 u32 ctrl = 0;
1956
1957 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1958
1959 if (num & 1) {
1960 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1961 *kdata = (u32)addr;
1962 } else {
1963 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1964 *kdata = ctrl;
1965 }
1966
1967 return err;
1968 }
1969
compat_ptrace_hbp_set(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1970 static int compat_ptrace_hbp_set(unsigned int note_type,
1971 struct task_struct *tsk,
1972 compat_long_t num,
1973 u32 *kdata)
1974 {
1975 u64 addr;
1976 u32 ctrl;
1977
1978 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1979
1980 if (num & 1) {
1981 addr = *kdata;
1982 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1983 } else {
1984 ctrl = *kdata;
1985 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1986 }
1987
1988 return err;
1989 }
1990
compat_ptrace_gethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1991 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1992 compat_ulong_t __user *data)
1993 {
1994 int ret;
1995 u32 kdata;
1996
1997 /* Watchpoint */
1998 if (num < 0) {
1999 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
2000 /* Resource info */
2001 } else if (num == 0) {
2002 ret = compat_ptrace_hbp_get_resource_info(&kdata);
2003 /* Breakpoint */
2004 } else {
2005 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2006 }
2007
2008 if (!ret)
2009 ret = put_user(kdata, data);
2010
2011 return ret;
2012 }
2013
compat_ptrace_sethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)2014 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2015 compat_ulong_t __user *data)
2016 {
2017 int ret;
2018 u32 kdata = 0;
2019
2020 if (num == 0)
2021 return 0;
2022
2023 ret = get_user(kdata, data);
2024 if (ret)
2025 return ret;
2026
2027 if (num < 0)
2028 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2029 else
2030 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2031
2032 return ret;
2033 }
2034 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2035
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)2036 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2037 compat_ulong_t caddr, compat_ulong_t cdata)
2038 {
2039 unsigned long addr = caddr;
2040 unsigned long data = cdata;
2041 void __user *datap = compat_ptr(data);
2042 int ret;
2043
2044 switch (request) {
2045 case PTRACE_PEEKUSR:
2046 ret = compat_ptrace_read_user(child, addr, datap);
2047 break;
2048
2049 case PTRACE_POKEUSR:
2050 ret = compat_ptrace_write_user(child, addr, data);
2051 break;
2052
2053 case COMPAT_PTRACE_GETREGS:
2054 ret = copy_regset_to_user(child,
2055 &user_aarch32_view,
2056 REGSET_COMPAT_GPR,
2057 0, sizeof(compat_elf_gregset_t),
2058 datap);
2059 break;
2060
2061 case COMPAT_PTRACE_SETREGS:
2062 ret = copy_regset_from_user(child,
2063 &user_aarch32_view,
2064 REGSET_COMPAT_GPR,
2065 0, sizeof(compat_elf_gregset_t),
2066 datap);
2067 break;
2068
2069 case COMPAT_PTRACE_GET_THREAD_AREA:
2070 ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2071 (compat_ulong_t __user *)datap);
2072 break;
2073
2074 case COMPAT_PTRACE_SET_SYSCALL:
2075 task_pt_regs(child)->syscallno = data;
2076 ret = 0;
2077 break;
2078
2079 case COMPAT_PTRACE_GETVFPREGS:
2080 ret = copy_regset_to_user(child,
2081 &user_aarch32_view,
2082 REGSET_COMPAT_VFP,
2083 0, VFP_STATE_SIZE,
2084 datap);
2085 break;
2086
2087 case COMPAT_PTRACE_SETVFPREGS:
2088 ret = copy_regset_from_user(child,
2089 &user_aarch32_view,
2090 REGSET_COMPAT_VFP,
2091 0, VFP_STATE_SIZE,
2092 datap);
2093 break;
2094
2095 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2096 case COMPAT_PTRACE_GETHBPREGS:
2097 ret = compat_ptrace_gethbpregs(child, addr, datap);
2098 break;
2099
2100 case COMPAT_PTRACE_SETHBPREGS:
2101 ret = compat_ptrace_sethbpregs(child, addr, datap);
2102 break;
2103 #endif
2104
2105 default:
2106 ret = compat_ptrace_request(child, request, addr,
2107 data);
2108 break;
2109 }
2110
2111 return ret;
2112 }
2113 #endif /* CONFIG_COMPAT */
2114
task_user_regset_view(struct task_struct * task)2115 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2116 {
2117 #ifdef CONFIG_COMPAT
2118 /*
2119 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2120 * user_aarch32_view compatible with arm32. Native ptrace requests on
2121 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2122 * access to the TLS register.
2123 */
2124 if (is_compat_task())
2125 return &user_aarch32_view;
2126 else if (is_compat_thread(task_thread_info(task)))
2127 return &user_aarch32_ptrace_view;
2128 #endif
2129 return &user_aarch64_view;
2130 }
2131
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)2132 long arch_ptrace(struct task_struct *child, long request,
2133 unsigned long addr, unsigned long data)
2134 {
2135 switch (request) {
2136 case PTRACE_PEEKMTETAGS:
2137 case PTRACE_POKEMTETAGS:
2138 return mte_ptrace_copy_tags(child, request, addr, data);
2139 }
2140
2141 return ptrace_request(child, request, addr, data);
2142 }
2143
2144 enum ptrace_syscall_dir {
2145 PTRACE_SYSCALL_ENTER = 0,
2146 PTRACE_SYSCALL_EXIT,
2147 };
2148
report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)2149 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2150 {
2151 int regno;
2152 unsigned long saved_reg;
2153
2154 /*
2155 * We have some ABI weirdness here in the way that we handle syscall
2156 * exit stops because we indicate whether or not the stop has been
2157 * signalled from syscall entry or syscall exit by clobbering a general
2158 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2159 * and restoring its old value after the stop. This means that:
2160 *
2161 * - Any writes by the tracer to this register during the stop are
2162 * ignored/discarded.
2163 *
2164 * - The actual value of the register is not available during the stop,
2165 * so the tracer cannot save it and restore it later.
2166 *
2167 * - Syscall stops behave differently to seccomp and pseudo-step traps
2168 * (the latter do not nobble any registers).
2169 */
2170 regno = (is_compat_task() ? 12 : 7);
2171 saved_reg = regs->regs[regno];
2172 regs->regs[regno] = dir;
2173
2174 if (dir == PTRACE_SYSCALL_ENTER) {
2175 if (ptrace_report_syscall_entry(regs))
2176 forget_syscall(regs);
2177 regs->regs[regno] = saved_reg;
2178 } else if (!test_thread_flag(TIF_SINGLESTEP)) {
2179 ptrace_report_syscall_exit(regs, 0);
2180 regs->regs[regno] = saved_reg;
2181 } else {
2182 regs->regs[regno] = saved_reg;
2183
2184 /*
2185 * Signal a pseudo-step exception since we are stepping but
2186 * tracer modifications to the registers may have rewound the
2187 * state machine.
2188 */
2189 ptrace_report_syscall_exit(regs, 1);
2190 }
2191 }
2192
syscall_trace_enter(struct pt_regs * regs)2193 int syscall_trace_enter(struct pt_regs *regs)
2194 {
2195 unsigned long flags = read_thread_flags();
2196
2197 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2198 report_syscall(regs, PTRACE_SYSCALL_ENTER);
2199 if (flags & _TIF_SYSCALL_EMU)
2200 return NO_SYSCALL;
2201 }
2202
2203 /* Do the secure computing after ptrace; failures should be fast. */
2204 if (secure_computing() == -1)
2205 return NO_SYSCALL;
2206
2207 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2208 trace_sys_enter(regs, regs->syscallno);
2209
2210 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2211 regs->regs[2], regs->regs[3]);
2212
2213 return regs->syscallno;
2214 }
2215
syscall_trace_exit(struct pt_regs * regs)2216 void syscall_trace_exit(struct pt_regs *regs)
2217 {
2218 unsigned long flags = read_thread_flags();
2219
2220 audit_syscall_exit(regs);
2221
2222 if (flags & _TIF_SYSCALL_TRACEPOINT)
2223 trace_sys_exit(regs, syscall_get_return_value(current, regs));
2224
2225 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2226 report_syscall(regs, PTRACE_SYSCALL_EXIT);
2227
2228 rseq_syscall(regs);
2229 }
2230
2231 /*
2232 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2233 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2234 * not described in ARM DDI 0487D.a.
2235 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2236 * be allocated an EL0 meaning in future.
2237 * Userspace cannot use these until they have an architectural meaning.
2238 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2239 * We also reserve IL for the kernel; SS is handled dynamically.
2240 */
2241 #define SPSR_EL1_AARCH64_RES0_BITS \
2242 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2243 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2244 #define SPSR_EL1_AARCH32_RES0_BITS \
2245 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2246
valid_compat_regs(struct user_pt_regs * regs)2247 static int valid_compat_regs(struct user_pt_regs *regs)
2248 {
2249 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2250
2251 if (!system_supports_mixed_endian_el0()) {
2252 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2253 regs->pstate |= PSR_AA32_E_BIT;
2254 else
2255 regs->pstate &= ~PSR_AA32_E_BIT;
2256 }
2257
2258 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2259 (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2260 (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2261 (regs->pstate & PSR_AA32_F_BIT) == 0) {
2262 return 1;
2263 }
2264
2265 /*
2266 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2267 * arch/arm.
2268 */
2269 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2270 PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2271 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2272 PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2273 PSR_AA32_T_BIT;
2274 regs->pstate |= PSR_MODE32_BIT;
2275
2276 return 0;
2277 }
2278
valid_native_regs(struct user_pt_regs * regs)2279 static int valid_native_regs(struct user_pt_regs *regs)
2280 {
2281 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2282
2283 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2284 (regs->pstate & PSR_D_BIT) == 0 &&
2285 (regs->pstate & PSR_A_BIT) == 0 &&
2286 (regs->pstate & PSR_I_BIT) == 0 &&
2287 (regs->pstate & PSR_F_BIT) == 0) {
2288 return 1;
2289 }
2290
2291 /* Force PSR to a valid 64-bit EL0t */
2292 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2293
2294 return 0;
2295 }
2296
2297 /*
2298 * Are the current registers suitable for user mode? (used to maintain
2299 * security in signal handlers)
2300 */
valid_user_regs(struct user_pt_regs * regs,struct task_struct * task)2301 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2302 {
2303 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2304 user_regs_reset_single_step(regs, task);
2305
2306 if (is_compat_thread(task_thread_info(task)))
2307 return valid_compat_regs(regs);
2308 else
2309 return valid_native_regs(regs);
2310 }
2311