1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 #include "time-sync.h"
13
iwl_mvm_check_pn(struct iwl_mvm * mvm,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 int queue, struct ieee80211_sta *sta)
16 {
17 struct iwl_mvm_sta *mvmsta;
18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 struct iwl_mvm_key_pn *ptk_pn;
21 int res;
22 u8 tid, keyidx;
23 u8 pn[IEEE80211_CCMP_PN_LEN];
24 u8 *extiv;
25
26 /* do PN checking */
27
28 /* multicast and non-data only arrives on default queue */
29 if (!ieee80211_is_data(hdr->frame_control) ||
30 is_multicast_ether_addr(hdr->addr1))
31 return 0;
32
33 /* do not check PN for open AP */
34 if (!(stats->flag & RX_FLAG_DECRYPTED))
35 return 0;
36
37 /*
38 * avoid checking for default queue - we don't want to replicate
39 * all the logic that's necessary for checking the PN on fragmented
40 * frames, leave that to mac80211
41 */
42 if (queue == 0)
43 return 0;
44
45 /* if we are here - this for sure is either CCMP or GCMP */
46 if (IS_ERR_OR_NULL(sta)) {
47 IWL_DEBUG_DROP(mvm,
48 "expected hw-decrypted unicast frame for station\n");
49 return -1;
50 }
51
52 mvmsta = iwl_mvm_sta_from_mac80211(sta);
53
54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 keyidx = extiv[3] >> 6;
56
57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 if (!ptk_pn)
59 return -1;
60
61 if (ieee80211_is_data_qos(hdr->frame_control))
62 tid = ieee80211_get_tid(hdr);
63 else
64 tid = 0;
65
66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 if (tid >= IWL_MAX_TID_COUNT)
68 return -1;
69
70 /* load pn */
71 pn[0] = extiv[7];
72 pn[1] = extiv[6];
73 pn[2] = extiv[5];
74 pn[3] = extiv[4];
75 pn[4] = extiv[1];
76 pn[5] = extiv[0];
77
78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 if (res < 0)
80 return -1;
81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 return -1;
83
84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 stats->flag |= RX_FLAG_PN_VALIDATED;
86
87 return 0;
88 }
89
90 /* iwl_mvm_create_skb Adds the rxb to a new skb */
iwl_mvm_create_skb(struct iwl_mvm * mvm,struct sk_buff * skb,struct ieee80211_hdr * hdr,u16 len,u8 crypt_len,struct iwl_rx_cmd_buffer * rxb)91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 struct iwl_rx_cmd_buffer *rxb)
94 {
95 struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 unsigned int headlen, fraglen, pad_len = 0;
98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101
102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 len -= 2;
104 pad_len = 2;
105 }
106
107 /*
108 * For non monitor interface strip the bytes the RADA might not have
109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 * interface cannot exist with other interfaces, this removal is safe
111 * and sufficient, in monitor mode there's no decryption being done.
112 */
113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 len -= mic_crc_len;
115
116 /* If frame is small enough to fit in skb->head, pull it completely.
117 * If not, only pull ieee80211_hdr (including crypto if present, and
118 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 * splice() or TCP coalesce are more efficient.
120 *
121 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 * least 8 bytes (possibly more for mesh) we can do the same here
123 * to save the cost of doing it later. That still doesn't pull in
124 * the actual IP header since the typical case has a SNAP header.
125 * If the latter changes (there are efforts in the standards group
126 * to do so) we should revisit this and ieee80211_data_to_8023().
127 */
128 headlen = (len <= skb_tailroom(skb)) ? len :
129 hdrlen + crypt_len + 8;
130
131 /* The firmware may align the packet to DWORD.
132 * The padding is inserted after the IV.
133 * After copying the header + IV skip the padding if
134 * present before copying packet data.
135 */
136 hdrlen += crypt_len;
137
138 if (unlikely(headlen < hdrlen))
139 return -EINVAL;
140
141 /* Since data doesn't move data while putting data on skb and that is
142 * the only way we use, data + len is the next place that hdr would be put
143 */
144 skb_set_mac_header(skb, skb->len);
145 skb_put_data(skb, hdr, hdrlen);
146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147
148 /*
149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 * certain cases and starts the checksum after the SNAP. Check if
151 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 * in the cases the hardware didn't handle, since it's rare to see
153 * such packets, even though the hardware did calculate the checksum
154 * in this case, just starting after the MAC header instead.
155 *
156 * Starting from Bz hardware, it calculates starting directly after
157 * the MAC header, so that matches mac80211's expectation.
158 */
159 if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 struct {
161 u8 hdr[6];
162 __be16 type;
163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164
165 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 (shdr->type != htons(ETH_P_IP) &&
168 shdr->type != htons(ETH_P_ARP) &&
169 shdr->type != htons(ETH_P_IPV6) &&
170 shdr->type != htons(ETH_P_8021Q) &&
171 shdr->type != htons(ETH_P_PAE) &&
172 shdr->type != htons(ETH_P_TDLS))))
173 skb->ip_summed = CHECKSUM_NONE;
174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 /* mac80211 assumes full CSUM including SNAP header */
176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 }
178
179 fraglen = len - headlen;
180
181 if (fraglen) {
182 int offset = (u8 *)hdr + headlen + pad_len -
183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184
185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 fraglen, rxb->truesize);
187 }
188
189 return 0;
190 }
191
192 /* put a TLV on the skb and return data pointer
193 *
194 * Also pad to 4 the len and zero out all data part
195 */
196 static void *
iwl_mvm_radiotap_put_tlv(struct sk_buff * skb,u16 type,u16 len)197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198 {
199 struct ieee80211_radiotap_tlv *tlv;
200
201 tlv = skb_put(skb, sizeof(*tlv));
202 tlv->type = cpu_to_le16(type);
203 tlv->len = cpu_to_le16(len);
204 return skb_put_zero(skb, ALIGN(len, 4));
205 }
206
iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm * mvm,struct sk_buff * skb)207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 struct sk_buff *skb)
209 {
210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 struct ieee80211_radiotap_vendor_content *radiotap;
212 const u16 vendor_data_len = sizeof(mvm->cur_aid);
213
214 if (!mvm->cur_aid)
215 return;
216
217 radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 sizeof(*radiotap) + vendor_data_len);
220
221 /* Intel OUI */
222 radiotap->oui[0] = 0xf6;
223 radiotap->oui[1] = 0x54;
224 radiotap->oui[2] = 0x25;
225 /* radiotap sniffer config sub-namespace */
226 radiotap->oui_subtype = 1;
227 radiotap->vendor_type = 0;
228
229 /* fill the data now */
230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231
232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233 }
234
235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm * mvm,struct napi_struct * napi,struct sk_buff * skb,int queue,struct ieee80211_sta * sta,struct ieee80211_link_sta * link_sta)236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 struct napi_struct *napi,
238 struct sk_buff *skb, int queue,
239 struct ieee80211_sta *sta,
240 struct ieee80211_link_sta *link_sta)
241 {
242 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
243 kfree_skb(skb);
244 return;
245 }
246
247 if (sta && sta->valid_links && link_sta) {
248 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
249
250 rx_status->link_valid = 1;
251 rx_status->link_id = link_sta->link_id;
252 }
253
254 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
255 }
256
iwl_mvm_get_signal_strength(struct iwl_mvm * mvm,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int energy_a,int energy_b)257 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
258 struct ieee80211_rx_status *rx_status,
259 u32 rate_n_flags, int energy_a,
260 int energy_b)
261 {
262 int max_energy;
263 u32 rate_flags = rate_n_flags;
264
265 energy_a = energy_a ? -energy_a : S8_MIN;
266 energy_b = energy_b ? -energy_b : S8_MIN;
267 max_energy = max(energy_a, energy_b);
268
269 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
270 energy_a, energy_b, max_energy);
271
272 rx_status->signal = max_energy;
273 rx_status->chains =
274 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
275 rx_status->chain_signal[0] = energy_a;
276 rx_status->chain_signal[1] = energy_b;
277 }
278
iwl_mvm_rx_mgmt_prot(struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc,u32 status,struct ieee80211_rx_status * stats)279 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
280 struct ieee80211_hdr *hdr,
281 struct iwl_rx_mpdu_desc *desc,
282 u32 status,
283 struct ieee80211_rx_status *stats)
284 {
285 struct wireless_dev *wdev;
286 struct iwl_mvm_sta *mvmsta;
287 struct iwl_mvm_vif *mvmvif;
288 u8 keyid;
289 struct ieee80211_key_conf *key;
290 u32 len = le16_to_cpu(desc->mpdu_len);
291 const u8 *frame = (void *)hdr;
292
293 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
294 return 0;
295
296 /*
297 * For non-beacon, we don't really care. But beacons may
298 * be filtered out, and we thus need the firmware's replay
299 * detection, otherwise beacons the firmware previously
300 * filtered could be replayed, or something like that, and
301 * it can filter a lot - though usually only if nothing has
302 * changed.
303 */
304 if (!ieee80211_is_beacon(hdr->frame_control))
305 return 0;
306
307 if (!sta)
308 return -1;
309
310 mvmsta = iwl_mvm_sta_from_mac80211(sta);
311 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
312
313 /* key mismatch - will also report !MIC_OK but we shouldn't count it */
314 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
315 goto report;
316
317 /* good cases */
318 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
319 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
320 stats->flag |= RX_FLAG_DECRYPTED;
321 return 0;
322 }
323
324 /*
325 * both keys will have the same cipher and MIC length, use
326 * whichever one is available
327 */
328 key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
329 if (!key) {
330 key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
331 if (!key)
332 goto report;
333 }
334
335 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
336 goto report;
337
338 /* get the real key ID */
339 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
340 /* and if that's the other key, look it up */
341 if (keyid != key->keyidx) {
342 /*
343 * shouldn't happen since firmware checked, but be safe
344 * in case the MIC length is wrong too, for example
345 */
346 if (keyid != 6 && keyid != 7)
347 return -1;
348 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
349 if (!key)
350 goto report;
351 }
352
353 /* Report status to mac80211 */
354 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
355 ieee80211_key_mic_failure(key);
356 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
357 ieee80211_key_replay(key);
358 report:
359 wdev = ieee80211_vif_to_wdev(mvmsta->vif);
360 if (wdev->netdev)
361 cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len);
362
363 return -1;
364 }
365
iwl_mvm_rx_crypto(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * stats,u16 phy_info,struct iwl_rx_mpdu_desc * desc,u32 pkt_flags,int queue,u8 * crypt_len)366 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
367 struct ieee80211_hdr *hdr,
368 struct ieee80211_rx_status *stats, u16 phy_info,
369 struct iwl_rx_mpdu_desc *desc,
370 u32 pkt_flags, int queue, u8 *crypt_len)
371 {
372 u32 status = le32_to_cpu(desc->status);
373
374 /*
375 * Drop UNKNOWN frames in aggregation, unless in monitor mode
376 * (where we don't have the keys).
377 * We limit this to aggregation because in TKIP this is a valid
378 * scenario, since we may not have the (correct) TTAK (phase 1
379 * key) in the firmware.
380 */
381 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
382 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
383 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
384 return -1;
385
386 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
387 !ieee80211_has_protected(hdr->frame_control)))
388 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
389
390 if (!ieee80211_has_protected(hdr->frame_control) ||
391 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
392 IWL_RX_MPDU_STATUS_SEC_NONE)
393 return 0;
394
395 /* TODO: handle packets encrypted with unknown alg */
396
397 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
398 case IWL_RX_MPDU_STATUS_SEC_CCM:
399 case IWL_RX_MPDU_STATUS_SEC_GCM:
400 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
401 /* alg is CCM: check MIC only */
402 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
403 return -1;
404
405 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
406 *crypt_len = IEEE80211_CCMP_HDR_LEN;
407 return 0;
408 case IWL_RX_MPDU_STATUS_SEC_TKIP:
409 /* Don't drop the frame and decrypt it in SW */
410 if (!fw_has_api(&mvm->fw->ucode_capa,
411 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
412 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
413 return 0;
414
415 if (mvm->trans->trans_cfg->gen2 &&
416 !(status & RX_MPDU_RES_STATUS_MIC_OK))
417 stats->flag |= RX_FLAG_MMIC_ERROR;
418
419 *crypt_len = IEEE80211_TKIP_IV_LEN;
420 fallthrough;
421 case IWL_RX_MPDU_STATUS_SEC_WEP:
422 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
423 return -1;
424
425 stats->flag |= RX_FLAG_DECRYPTED;
426 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
427 IWL_RX_MPDU_STATUS_SEC_WEP)
428 *crypt_len = IEEE80211_WEP_IV_LEN;
429
430 if (pkt_flags & FH_RSCSR_RADA_EN) {
431 stats->flag |= RX_FLAG_ICV_STRIPPED;
432 if (mvm->trans->trans_cfg->gen2)
433 stats->flag |= RX_FLAG_MMIC_STRIPPED;
434 }
435
436 return 0;
437 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
438 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
439 return -1;
440 stats->flag |= RX_FLAG_DECRYPTED;
441 return 0;
442 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
443 break;
444 default:
445 /*
446 * Sometimes we can get frames that were not decrypted
447 * because the firmware didn't have the keys yet. This can
448 * happen after connection where we can get multicast frames
449 * before the GTK is installed.
450 * Silently drop those frames.
451 * Also drop un-decrypted frames in monitor mode.
452 */
453 if (!is_multicast_ether_addr(hdr->addr1) &&
454 !mvm->monitor_on && net_ratelimit())
455 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
456 }
457
458 return 0;
459 }
460
iwl_mvm_rx_csum(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_packet * pkt)461 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
462 struct ieee80211_sta *sta,
463 struct sk_buff *skb,
464 struct iwl_rx_packet *pkt)
465 {
466 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
467
468 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
469 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
470 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
471
472 skb->ip_summed = CHECKSUM_COMPLETE;
473 skb->csum = csum_unfold(~(__force __sum16)hwsum);
474 }
475 } else {
476 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
477 struct iwl_mvm_vif *mvmvif;
478 u16 flags = le16_to_cpu(desc->l3l4_flags);
479 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
480 IWL_RX_L3_PROTO_POS);
481
482 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
483
484 if (mvmvif->features & NETIF_F_RXCSUM &&
485 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
486 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
487 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
488 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
489 skb->ip_summed = CHECKSUM_UNNECESSARY;
490 }
491 }
492
493 /*
494 * returns true if a packet is a duplicate or invalid tid and should be dropped.
495 * Updates AMSDU PN tracking info
496 */
iwl_mvm_is_dup(struct ieee80211_sta * sta,int queue,struct ieee80211_rx_status * rx_status,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc)497 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
498 struct ieee80211_rx_status *rx_status,
499 struct ieee80211_hdr *hdr,
500 struct iwl_rx_mpdu_desc *desc)
501 {
502 struct iwl_mvm_sta *mvm_sta;
503 struct iwl_mvm_rxq_dup_data *dup_data;
504 u8 tid, sub_frame_idx;
505
506 if (WARN_ON(IS_ERR_OR_NULL(sta)))
507 return false;
508
509 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
510
511 if (WARN_ON_ONCE(!mvm_sta->dup_data))
512 return false;
513
514 dup_data = &mvm_sta->dup_data[queue];
515
516 /*
517 * Drop duplicate 802.11 retransmissions
518 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
519 */
520 if (ieee80211_is_ctl(hdr->frame_control) ||
521 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
522 is_multicast_ether_addr(hdr->addr1)) {
523 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
524 return false;
525 }
526
527 if (ieee80211_is_data_qos(hdr->frame_control)) {
528 /* frame has qos control */
529 tid = ieee80211_get_tid(hdr);
530 if (tid >= IWL_MAX_TID_COUNT)
531 return true;
532 } else {
533 tid = IWL_MAX_TID_COUNT;
534 }
535
536 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
537 sub_frame_idx = desc->amsdu_info &
538 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
539
540 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
541 dup_data->last_seq[tid] == hdr->seq_ctrl &&
542 dup_data->last_sub_frame[tid] >= sub_frame_idx))
543 return true;
544
545 /* Allow same PN as the first subframe for following sub frames */
546 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
547 sub_frame_idx > dup_data->last_sub_frame[tid] &&
548 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
549 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
550
551 dup_data->last_seq[tid] = hdr->seq_ctrl;
552 dup_data->last_sub_frame[tid] = sub_frame_idx;
553
554 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
555
556 return false;
557 }
558
559 /*
560 * Returns true if sn2 - buffer_size < sn1 < sn2.
561 * To be used only in order to compare reorder buffer head with NSSN.
562 * We fully trust NSSN unless it is behind us due to reorder timeout.
563 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
564 */
iwl_mvm_is_sn_less(u16 sn1,u16 sn2,u16 buffer_size)565 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
566 {
567 return ieee80211_sn_less(sn1, sn2) &&
568 !ieee80211_sn_less(sn1, sn2 - buffer_size);
569 }
570
iwl_mvm_sync_nssn(struct iwl_mvm * mvm,u8 baid,u16 nssn)571 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
572 {
573 if (IWL_MVM_USE_NSSN_SYNC) {
574 struct iwl_mvm_nssn_sync_data notif = {
575 .baid = baid,
576 .nssn = nssn,
577 };
578
579 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
580 ¬if, sizeof(notif));
581 }
582 }
583
584 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
585
586 enum iwl_mvm_release_flags {
587 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
588 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
589 };
590
iwl_mvm_release_frames(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct napi_struct * napi,struct iwl_mvm_baid_data * baid_data,struct iwl_mvm_reorder_buffer * reorder_buf,u16 nssn,u32 flags)591 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
592 struct ieee80211_sta *sta,
593 struct napi_struct *napi,
594 struct iwl_mvm_baid_data *baid_data,
595 struct iwl_mvm_reorder_buffer *reorder_buf,
596 u16 nssn, u32 flags)
597 {
598 struct iwl_mvm_reorder_buf_entry *entries =
599 &baid_data->entries[reorder_buf->queue *
600 baid_data->entries_per_queue];
601 u16 ssn = reorder_buf->head_sn;
602
603 lockdep_assert_held(&reorder_buf->lock);
604
605 /*
606 * We keep the NSSN not too far behind, if we are sync'ing it and it
607 * is more than 2048 ahead of us, it must be behind us. Discard it.
608 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
609 * behind and this queue already processed packets. The next if
610 * would have caught cases where this queue would have processed less
611 * than 64 packets, but it may have processed more than 64 packets.
612 */
613 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
614 ieee80211_sn_less(nssn, ssn))
615 goto set_timer;
616
617 /* ignore nssn smaller than head sn - this can happen due to timeout */
618 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
619 goto set_timer;
620
621 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
622 int index = ssn % reorder_buf->buf_size;
623 struct sk_buff_head *skb_list = &entries[index].e.frames;
624 struct sk_buff *skb;
625
626 ssn = ieee80211_sn_inc(ssn);
627 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
628 (ssn == 2048 || ssn == 0))
629 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
630
631 /*
632 * Empty the list. Will have more than one frame for A-MSDU.
633 * Empty list is valid as well since nssn indicates frames were
634 * received.
635 */
636 while ((skb = __skb_dequeue(skb_list))) {
637 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
638 reorder_buf->queue,
639 sta, NULL /* FIXME */);
640 reorder_buf->num_stored--;
641 }
642 }
643 reorder_buf->head_sn = nssn;
644
645 set_timer:
646 if (reorder_buf->num_stored && !reorder_buf->removed) {
647 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
648
649 while (skb_queue_empty(&entries[index].e.frames))
650 index = (index + 1) % reorder_buf->buf_size;
651 /* modify timer to match next frame's expiration time */
652 mod_timer(&reorder_buf->reorder_timer,
653 entries[index].e.reorder_time + 1 +
654 RX_REORDER_BUF_TIMEOUT_MQ);
655 } else {
656 del_timer(&reorder_buf->reorder_timer);
657 }
658 }
659
iwl_mvm_reorder_timer_expired(struct timer_list * t)660 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
661 {
662 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
663 struct iwl_mvm_baid_data *baid_data =
664 iwl_mvm_baid_data_from_reorder_buf(buf);
665 struct iwl_mvm_reorder_buf_entry *entries =
666 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
667 int i;
668 u16 sn = 0, index = 0;
669 bool expired = false;
670 bool cont = false;
671
672 spin_lock(&buf->lock);
673
674 if (!buf->num_stored || buf->removed) {
675 spin_unlock(&buf->lock);
676 return;
677 }
678
679 for (i = 0; i < buf->buf_size ; i++) {
680 index = (buf->head_sn + i) % buf->buf_size;
681
682 if (skb_queue_empty(&entries[index].e.frames)) {
683 /*
684 * If there is a hole and the next frame didn't expire
685 * we want to break and not advance SN
686 */
687 cont = false;
688 continue;
689 }
690 if (!cont &&
691 !time_after(jiffies, entries[index].e.reorder_time +
692 RX_REORDER_BUF_TIMEOUT_MQ))
693 break;
694
695 expired = true;
696 /* continue until next hole after this expired frames */
697 cont = true;
698 sn = ieee80211_sn_add(buf->head_sn, i + 1);
699 }
700
701 if (expired) {
702 struct ieee80211_sta *sta;
703 struct iwl_mvm_sta *mvmsta;
704 u8 sta_id = ffs(baid_data->sta_mask) - 1;
705
706 rcu_read_lock();
707 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
708 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) {
709 rcu_read_unlock();
710 goto out;
711 }
712
713 mvmsta = iwl_mvm_sta_from_mac80211(sta);
714
715 /* SN is set to the last expired frame + 1 */
716 IWL_DEBUG_HT(buf->mvm,
717 "Releasing expired frames for sta %u, sn %d\n",
718 sta_id, sn);
719 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
720 sta, baid_data->tid);
721 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
722 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
723 rcu_read_unlock();
724 } else {
725 /*
726 * If no frame expired and there are stored frames, index is now
727 * pointing to the first unexpired frame - modify timer
728 * accordingly to this frame.
729 */
730 mod_timer(&buf->reorder_timer,
731 entries[index].e.reorder_time +
732 1 + RX_REORDER_BUF_TIMEOUT_MQ);
733 }
734
735 out:
736 spin_unlock(&buf->lock);
737 }
738
iwl_mvm_del_ba(struct iwl_mvm * mvm,int queue,struct iwl_mvm_delba_data * data)739 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
740 struct iwl_mvm_delba_data *data)
741 {
742 struct iwl_mvm_baid_data *ba_data;
743 struct ieee80211_sta *sta;
744 struct iwl_mvm_reorder_buffer *reorder_buf;
745 u8 baid = data->baid;
746 u32 sta_id;
747
748 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
749 return;
750
751 rcu_read_lock();
752
753 ba_data = rcu_dereference(mvm->baid_map[baid]);
754 if (WARN_ON_ONCE(!ba_data))
755 goto out;
756
757 /* pick any STA ID to find the pointer */
758 sta_id = ffs(ba_data->sta_mask) - 1;
759 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
760 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
761 goto out;
762
763 reorder_buf = &ba_data->reorder_buf[queue];
764
765 /* release all frames that are in the reorder buffer to the stack */
766 spin_lock_bh(&reorder_buf->lock);
767 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
768 ieee80211_sn_add(reorder_buf->head_sn,
769 reorder_buf->buf_size),
770 0);
771 spin_unlock_bh(&reorder_buf->lock);
772 del_timer_sync(&reorder_buf->reorder_timer);
773
774 out:
775 rcu_read_unlock();
776 }
777
iwl_mvm_release_frames_from_notif(struct iwl_mvm * mvm,struct napi_struct * napi,u8 baid,u16 nssn,int queue,u32 flags)778 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
779 struct napi_struct *napi,
780 u8 baid, u16 nssn, int queue,
781 u32 flags)
782 {
783 struct ieee80211_sta *sta;
784 struct iwl_mvm_reorder_buffer *reorder_buf;
785 struct iwl_mvm_baid_data *ba_data;
786 u32 sta_id;
787
788 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
789 baid, nssn);
790
791 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
792 baid >= ARRAY_SIZE(mvm->baid_map)))
793 return;
794
795 rcu_read_lock();
796
797 ba_data = rcu_dereference(mvm->baid_map[baid]);
798 if (!ba_data) {
799 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
800 "BAID %d not found in map\n", baid);
801 goto out;
802 }
803
804 /* pick any STA ID to find the pointer */
805 sta_id = ffs(ba_data->sta_mask) - 1;
806 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
807 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
808 goto out;
809
810 reorder_buf = &ba_data->reorder_buf[queue];
811
812 spin_lock_bh(&reorder_buf->lock);
813 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
814 reorder_buf, nssn, flags);
815 spin_unlock_bh(&reorder_buf->lock);
816
817 out:
818 rcu_read_unlock();
819 }
820
iwl_mvm_nssn_sync(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,const struct iwl_mvm_nssn_sync_data * data)821 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
822 struct napi_struct *napi, int queue,
823 const struct iwl_mvm_nssn_sync_data *data)
824 {
825 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
826 data->nssn, queue,
827 IWL_MVM_RELEASE_FROM_RSS_SYNC);
828 }
829
iwl_mvm_rx_queue_notif(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)830 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
831 struct iwl_rx_cmd_buffer *rxb, int queue)
832 {
833 struct iwl_rx_packet *pkt = rxb_addr(rxb);
834 struct iwl_rxq_sync_notification *notif;
835 struct iwl_mvm_internal_rxq_notif *internal_notif;
836 u32 len = iwl_rx_packet_payload_len(pkt);
837
838 notif = (void *)pkt->data;
839 internal_notif = (void *)notif->payload;
840
841 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
842 "invalid notification size %d (%d)",
843 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
844 return;
845 len -= sizeof(*notif) + sizeof(*internal_notif);
846
847 if (internal_notif->sync &&
848 mvm->queue_sync_cookie != internal_notif->cookie) {
849 WARN_ONCE(1, "Received expired RX queue sync message\n");
850 return;
851 }
852
853 switch (internal_notif->type) {
854 case IWL_MVM_RXQ_EMPTY:
855 WARN_ONCE(len, "invalid empty notification size %d", len);
856 break;
857 case IWL_MVM_RXQ_NOTIF_DEL_BA:
858 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
859 "invalid delba notification size %d (%d)",
860 len, (int)sizeof(struct iwl_mvm_delba_data)))
861 break;
862 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
863 break;
864 case IWL_MVM_RXQ_NSSN_SYNC:
865 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
866 "invalid nssn sync notification size %d (%d)",
867 len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
868 break;
869 iwl_mvm_nssn_sync(mvm, napi, queue,
870 (void *)internal_notif->data);
871 break;
872 default:
873 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
874 }
875
876 if (internal_notif->sync) {
877 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
878 "queue sync: queue %d responded a second time!\n",
879 queue);
880 if (READ_ONCE(mvm->queue_sync_state) == 0)
881 wake_up(&mvm->rx_sync_waitq);
882 }
883 }
884
iwl_mvm_oldsn_workaround(struct iwl_mvm * mvm,struct ieee80211_sta * sta,int tid,struct iwl_mvm_reorder_buffer * buffer,u32 reorder,u32 gp2,int queue)885 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
886 struct ieee80211_sta *sta, int tid,
887 struct iwl_mvm_reorder_buffer *buffer,
888 u32 reorder, u32 gp2, int queue)
889 {
890 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
891
892 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
893 /* we have a new (A-)MPDU ... */
894
895 /*
896 * reset counter to 0 if we didn't have any oldsn in
897 * the last A-MPDU (as detected by GP2 being identical)
898 */
899 if (!buffer->consec_oldsn_prev_drop)
900 buffer->consec_oldsn_drops = 0;
901
902 /* either way, update our tracking state */
903 buffer->consec_oldsn_ampdu_gp2 = gp2;
904 } else if (buffer->consec_oldsn_prev_drop) {
905 /*
906 * tracking state didn't change, and we had an old SN
907 * indication before - do nothing in this case, we
908 * already noted this one down and are waiting for the
909 * next A-MPDU (by GP2)
910 */
911 return;
912 }
913
914 /* return unless this MPDU has old SN */
915 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
916 return;
917
918 /* update state */
919 buffer->consec_oldsn_prev_drop = 1;
920 buffer->consec_oldsn_drops++;
921
922 /* if limit is reached, send del BA and reset state */
923 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
924 IWL_WARN(mvm,
925 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
926 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
927 sta->addr, queue, tid);
928 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
929 buffer->consec_oldsn_prev_drop = 0;
930 buffer->consec_oldsn_drops = 0;
931 }
932 }
933
934 /*
935 * Returns true if the MPDU was buffered\dropped, false if it should be passed
936 * to upper layer.
937 */
iwl_mvm_reorder(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_mpdu_desc * desc)938 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
939 struct napi_struct *napi,
940 int queue,
941 struct ieee80211_sta *sta,
942 struct sk_buff *skb,
943 struct iwl_rx_mpdu_desc *desc)
944 {
945 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
946 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
947 struct iwl_mvm_baid_data *baid_data;
948 struct iwl_mvm_reorder_buffer *buffer;
949 struct sk_buff *tail;
950 u32 reorder = le32_to_cpu(desc->reorder_data);
951 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
952 bool last_subframe =
953 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
954 u8 tid = ieee80211_get_tid(hdr);
955 u8 sub_frame_idx = desc->amsdu_info &
956 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
957 struct iwl_mvm_reorder_buf_entry *entries;
958 u32 sta_mask;
959 int index;
960 u16 nssn, sn;
961 u8 baid;
962
963 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
964 IWL_RX_MPDU_REORDER_BAID_SHIFT;
965
966 /*
967 * This also covers the case of receiving a Block Ack Request
968 * outside a BA session; we'll pass it to mac80211 and that
969 * then sends a delBA action frame.
970 * This also covers pure monitor mode, in which case we won't
971 * have any BA sessions.
972 */
973 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
974 return false;
975
976 /* no sta yet */
977 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
978 "Got valid BAID without a valid station assigned\n"))
979 return false;
980
981 /* not a data packet or a bar */
982 if (!ieee80211_is_back_req(hdr->frame_control) &&
983 (!ieee80211_is_data_qos(hdr->frame_control) ||
984 is_multicast_ether_addr(hdr->addr1)))
985 return false;
986
987 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
988 return false;
989
990 baid_data = rcu_dereference(mvm->baid_map[baid]);
991 if (!baid_data) {
992 IWL_DEBUG_RX(mvm,
993 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
994 baid, reorder);
995 return false;
996 }
997
998 rcu_read_lock();
999 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
1000 rcu_read_unlock();
1001
1002 if (IWL_FW_CHECK(mvm,
1003 tid != baid_data->tid ||
1004 !(sta_mask & baid_data->sta_mask),
1005 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
1006 baid, baid_data->sta_mask, baid_data->tid,
1007 sta_mask, tid))
1008 return false;
1009
1010 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
1011 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
1012 IWL_RX_MPDU_REORDER_SN_SHIFT;
1013
1014 buffer = &baid_data->reorder_buf[queue];
1015 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
1016
1017 spin_lock_bh(&buffer->lock);
1018
1019 if (!buffer->valid) {
1020 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1021 spin_unlock_bh(&buffer->lock);
1022 return false;
1023 }
1024 buffer->valid = true;
1025 }
1026
1027 if (ieee80211_is_back_req(hdr->frame_control)) {
1028 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1029 buffer, nssn, 0);
1030 goto drop;
1031 }
1032
1033 /*
1034 * If there was a significant jump in the nssn - adjust.
1035 * If the SN is smaller than the NSSN it might need to first go into
1036 * the reorder buffer, in which case we just release up to it and the
1037 * rest of the function will take care of storing it and releasing up to
1038 * the nssn.
1039 * This should not happen. This queue has been lagging and it should
1040 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1041 * and update the other queues.
1042 */
1043 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1044 buffer->buf_size) ||
1045 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1046 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1047
1048 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1049 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1050 }
1051
1052 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1053 rx_status->device_timestamp, queue);
1054
1055 /* drop any oudated packets */
1056 if (ieee80211_sn_less(sn, buffer->head_sn))
1057 goto drop;
1058
1059 /* release immediately if allowed by nssn and no stored frames */
1060 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1061 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1062 buffer->buf_size) &&
1063 (!amsdu || last_subframe)) {
1064 /*
1065 * If we crossed the 2048 or 0 SN, notify all the
1066 * queues. This is done in order to avoid having a
1067 * head_sn that lags behind for too long. When that
1068 * happens, we can get to a situation where the head_sn
1069 * is within the interval [nssn - buf_size : nssn]
1070 * which will make us think that the nssn is a packet
1071 * that we already freed because of the reordering
1072 * buffer and we will ignore it. So maintain the
1073 * head_sn somewhat updated across all the queues:
1074 * when it crosses 0 and 2048.
1075 */
1076 if (sn == 2048 || sn == 0)
1077 iwl_mvm_sync_nssn(mvm, baid, sn);
1078 buffer->head_sn = nssn;
1079 }
1080 /* No need to update AMSDU last SN - we are moving the head */
1081 spin_unlock_bh(&buffer->lock);
1082 return false;
1083 }
1084
1085 /*
1086 * release immediately if there are no stored frames, and the sn is
1087 * equal to the head.
1088 * This can happen due to reorder timer, where NSSN is behind head_sn.
1089 * When we released everything, and we got the next frame in the
1090 * sequence, according to the NSSN we can't release immediately,
1091 * while technically there is no hole and we can move forward.
1092 */
1093 if (!buffer->num_stored && sn == buffer->head_sn) {
1094 if (!amsdu || last_subframe) {
1095 if (sn == 2048 || sn == 0)
1096 iwl_mvm_sync_nssn(mvm, baid, sn);
1097 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1098 }
1099 /* No need to update AMSDU last SN - we are moving the head */
1100 spin_unlock_bh(&buffer->lock);
1101 return false;
1102 }
1103
1104 index = sn % buffer->buf_size;
1105
1106 /*
1107 * Check if we already stored this frame
1108 * As AMSDU is either received or not as whole, logic is simple:
1109 * If we have frames in that position in the buffer and the last frame
1110 * originated from AMSDU had a different SN then it is a retransmission.
1111 * If it is the same SN then if the subframe index is incrementing it
1112 * is the same AMSDU - otherwise it is a retransmission.
1113 */
1114 tail = skb_peek_tail(&entries[index].e.frames);
1115 if (tail && !amsdu)
1116 goto drop;
1117 else if (tail && (sn != buffer->last_amsdu ||
1118 buffer->last_sub_index >= sub_frame_idx))
1119 goto drop;
1120
1121 /* put in reorder buffer */
1122 __skb_queue_tail(&entries[index].e.frames, skb);
1123 buffer->num_stored++;
1124 entries[index].e.reorder_time = jiffies;
1125
1126 if (amsdu) {
1127 buffer->last_amsdu = sn;
1128 buffer->last_sub_index = sub_frame_idx;
1129 }
1130
1131 /*
1132 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1133 * The reason is that NSSN advances on the first sub-frame, and may
1134 * cause the reorder buffer to advance before all the sub-frames arrive.
1135 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1136 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1137 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1138 * already ahead and it will be dropped.
1139 * If the last sub-frame is not on this queue - we will get frame
1140 * release notification with up to date NSSN.
1141 */
1142 if (!amsdu || last_subframe)
1143 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1144 buffer, nssn,
1145 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1146
1147 spin_unlock_bh(&buffer->lock);
1148 return true;
1149
1150 drop:
1151 kfree_skb(skb);
1152 spin_unlock_bh(&buffer->lock);
1153 return true;
1154 }
1155
iwl_mvm_agg_rx_received(struct iwl_mvm * mvm,u32 reorder_data,u8 baid)1156 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1157 u32 reorder_data, u8 baid)
1158 {
1159 unsigned long now = jiffies;
1160 unsigned long timeout;
1161 struct iwl_mvm_baid_data *data;
1162
1163 rcu_read_lock();
1164
1165 data = rcu_dereference(mvm->baid_map[baid]);
1166 if (!data) {
1167 IWL_DEBUG_RX(mvm,
1168 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1169 baid, reorder_data);
1170 goto out;
1171 }
1172
1173 if (!data->timeout)
1174 goto out;
1175
1176 timeout = data->timeout;
1177 /*
1178 * Do not update last rx all the time to avoid cache bouncing
1179 * between the rx queues.
1180 * Update it every timeout. Worst case is the session will
1181 * expire after ~ 2 * timeout, which doesn't matter that much.
1182 */
1183 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1184 /* Update is atomic */
1185 data->last_rx = now;
1186
1187 out:
1188 rcu_read_unlock();
1189 }
1190
iwl_mvm_flip_address(u8 * addr)1191 static void iwl_mvm_flip_address(u8 *addr)
1192 {
1193 int i;
1194 u8 mac_addr[ETH_ALEN];
1195
1196 for (i = 0; i < ETH_ALEN; i++)
1197 mac_addr[i] = addr[ETH_ALEN - i - 1];
1198 ether_addr_copy(addr, mac_addr);
1199 }
1200
1201 struct iwl_mvm_rx_phy_data {
1202 enum iwl_rx_phy_info_type info_type;
1203 __le32 d0, d1, d2, d3, eht_d4, d5;
1204 __le16 d4;
1205 bool with_data;
1206 bool first_subframe;
1207 __le32 rx_vec[4];
1208
1209 u32 rate_n_flags;
1210 u32 gp2_on_air_rise;
1211 u16 phy_info;
1212 u8 energy_a, energy_b;
1213 u8 channel;
1214 };
1215
iwl_mvm_decode_he_mu_ext(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he_mu * he_mu)1216 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1217 struct iwl_mvm_rx_phy_data *phy_data,
1218 struct ieee80211_radiotap_he_mu *he_mu)
1219 {
1220 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1221 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1222 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1223 u32 rate_n_flags = phy_data->rate_n_flags;
1224
1225 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1226 he_mu->flags1 |=
1227 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1228 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1229
1230 he_mu->flags1 |=
1231 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1232 phy_data4),
1233 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1234
1235 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1236 phy_data2);
1237 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1238 phy_data3);
1239 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1240 phy_data2);
1241 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1242 phy_data3);
1243 }
1244
1245 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1246 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1247 he_mu->flags1 |=
1248 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1249 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1250
1251 he_mu->flags2 |=
1252 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1253 phy_data4),
1254 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1255
1256 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1257 phy_data2);
1258 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1259 phy_data3);
1260 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1261 phy_data2);
1262 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1263 phy_data3);
1264 }
1265 }
1266
1267 static void
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status)1268 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1269 struct ieee80211_radiotap_he *he,
1270 struct ieee80211_radiotap_he_mu *he_mu,
1271 struct ieee80211_rx_status *rx_status)
1272 {
1273 /*
1274 * Unfortunately, we have to leave the mac80211 data
1275 * incorrect for the case that we receive an HE-MU
1276 * transmission and *don't* have the HE phy data (due
1277 * to the bits being used for TSF). This shouldn't
1278 * happen though as management frames where we need
1279 * the TSF/timers are not be transmitted in HE-MU.
1280 */
1281 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1282 u32 rate_n_flags = phy_data->rate_n_flags;
1283 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1284 u8 offs = 0;
1285
1286 rx_status->bw = RATE_INFO_BW_HE_RU;
1287
1288 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1289
1290 switch (ru) {
1291 case 0 ... 36:
1292 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1293 offs = ru;
1294 break;
1295 case 37 ... 52:
1296 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1297 offs = ru - 37;
1298 break;
1299 case 53 ... 60:
1300 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1301 offs = ru - 53;
1302 break;
1303 case 61 ... 64:
1304 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1305 offs = ru - 61;
1306 break;
1307 case 65 ... 66:
1308 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1309 offs = ru - 65;
1310 break;
1311 case 67:
1312 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1313 break;
1314 case 68:
1315 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1316 break;
1317 }
1318 he->data2 |= le16_encode_bits(offs,
1319 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1320 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1321 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1322 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1323 he->data2 |=
1324 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1325
1326 #define CHECK_BW(bw) \
1327 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1328 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1329 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1330 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1331 CHECK_BW(20);
1332 CHECK_BW(40);
1333 CHECK_BW(80);
1334 CHECK_BW(160);
1335
1336 if (he_mu)
1337 he_mu->flags2 |=
1338 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1339 rate_n_flags),
1340 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1341 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1342 he->data6 |=
1343 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1344 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1345 rate_n_flags),
1346 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1347 }
1348
iwl_mvm_decode_he_phy_data(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status,int queue)1349 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1350 struct iwl_mvm_rx_phy_data *phy_data,
1351 struct ieee80211_radiotap_he *he,
1352 struct ieee80211_radiotap_he_mu *he_mu,
1353 struct ieee80211_rx_status *rx_status,
1354 int queue)
1355 {
1356 switch (phy_data->info_type) {
1357 case IWL_RX_PHY_INFO_TYPE_NONE:
1358 case IWL_RX_PHY_INFO_TYPE_CCK:
1359 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1360 case IWL_RX_PHY_INFO_TYPE_HT:
1361 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1362 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1363 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1364 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1365 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1366 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1367 return;
1368 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1369 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1370 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1371 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1372 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1373 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1374 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1375 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1376 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1377 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1378 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1379 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1380 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1381 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1382 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1383 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1384 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1385 fallthrough;
1386 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1387 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1388 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1389 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1390 /* HE common */
1391 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1392 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1393 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1394 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1395 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1396 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1397 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1398 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1399 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1400 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1401 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1402 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1403 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1404 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1405 IWL_RX_PHY_DATA0_HE_UPLINK),
1406 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1407 }
1408 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1409 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1410 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1411 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1412 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1413 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1414 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1415 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1416 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1417 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1418 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1419 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1420 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1421 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1422 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1423 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1424 IWL_RX_PHY_DATA0_HE_DOPPLER),
1425 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1426 break;
1427 }
1428
1429 switch (phy_data->info_type) {
1430 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1431 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1432 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1433 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1434 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1435 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1436 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1437 break;
1438 default:
1439 /* nothing here */
1440 break;
1441 }
1442
1443 switch (phy_data->info_type) {
1444 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1445 he_mu->flags1 |=
1446 le16_encode_bits(le16_get_bits(phy_data->d4,
1447 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1448 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1449 he_mu->flags1 |=
1450 le16_encode_bits(le16_get_bits(phy_data->d4,
1451 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1452 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1453 he_mu->flags2 |=
1454 le16_encode_bits(le16_get_bits(phy_data->d4,
1455 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1456 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1457 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1458 fallthrough;
1459 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1460 he_mu->flags2 |=
1461 le16_encode_bits(le32_get_bits(phy_data->d1,
1462 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1463 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1464 he_mu->flags2 |=
1465 le16_encode_bits(le32_get_bits(phy_data->d1,
1466 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1467 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1468 fallthrough;
1469 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1470 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1471 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1472 break;
1473 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1474 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1475 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1476 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1477 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1478 break;
1479 default:
1480 /* nothing */
1481 break;
1482 }
1483 }
1484
1485 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1486 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1487
1488 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1489 typeof(enc_bits) _enc_bits = enc_bits; \
1490 typeof(usig) _usig = usig; \
1491 (_usig)->mask |= cpu_to_le32(_enc_bits); \
1492 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1493 } while (0)
1494
1495 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1496 eht->data[(rt_data)] |= \
1497 (cpu_to_le32 \
1498 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1499 LE32_DEC_ENC(data ## fw_data, \
1500 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1501 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1502
1503 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1504 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1505
1506 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1
1507 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2
1508 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2
1509 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2
1510 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3
1511 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3
1512 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3
1513 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4
1514
1515 #define IWL_RX_RU_DATA_A1 2
1516 #define IWL_RX_RU_DATA_A2 2
1517 #define IWL_RX_RU_DATA_B1 2
1518 #define IWL_RX_RU_DATA_B2 3
1519 #define IWL_RX_RU_DATA_C1 3
1520 #define IWL_RX_RU_DATA_C2 3
1521 #define IWL_RX_RU_DATA_D1 4
1522 #define IWL_RX_RU_DATA_D2 4
1523
1524 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \
1525 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \
1526 rt_ru, \
1527 IWL_RX_RU_DATA_ ## fw_ru, \
1528 fw_ru)
1529
iwl_mvm_decode_eht_ext_mu(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht,struct ieee80211_radiotap_eht_usig * usig)1530 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1531 struct iwl_mvm_rx_phy_data *phy_data,
1532 struct ieee80211_rx_status *rx_status,
1533 struct ieee80211_radiotap_eht *eht,
1534 struct ieee80211_radiotap_eht_usig *usig)
1535 {
1536 if (phy_data->with_data) {
1537 __le32 data1 = phy_data->d1;
1538 __le32 data2 = phy_data->d2;
1539 __le32 data3 = phy_data->d3;
1540 __le32 data4 = phy_data->eht_d4;
1541 __le32 data5 = phy_data->d5;
1542 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1543
1544 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1545 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1546 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1547 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1548 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1549 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1550 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1551 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1552 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1553 IWL_MVM_ENC_USIG_VALUE_MASK
1554 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1555 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1556
1557 eht->user_info[0] |=
1558 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1559 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1560 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1561
1562 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1563 eht->data[7] |= LE32_DEC_ENC
1564 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1565 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1566
1567 /*
1568 * Hardware labels the content channels/RU allocation values
1569 * as follows:
1570 * Content Channel 1 Content Channel 2
1571 * 20 MHz: A1
1572 * 40 MHz: A1 B1
1573 * 80 MHz: A1 C1 B1 D1
1574 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2
1575 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4
1576 *
1577 * However firmware can only give us A1-D2, so the higher
1578 * frequencies are missing.
1579 */
1580
1581 switch (phy_bw) {
1582 case RATE_MCS_CHAN_WIDTH_320:
1583 /* additional values are missing in RX metadata */
1584 case RATE_MCS_CHAN_WIDTH_160:
1585 /* content channel 1 */
1586 IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1587 IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1588 /* content channel 2 */
1589 IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1590 IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1591 fallthrough;
1592 case RATE_MCS_CHAN_WIDTH_80:
1593 /* content channel 1 */
1594 IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1595 /* content channel 2 */
1596 IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1597 fallthrough;
1598 case RATE_MCS_CHAN_WIDTH_40:
1599 /* content channel 2 */
1600 IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1601 fallthrough;
1602 case RATE_MCS_CHAN_WIDTH_20:
1603 IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1604 break;
1605 }
1606 } else {
1607 __le32 usig_a1 = phy_data->rx_vec[0];
1608 __le32 usig_a2 = phy_data->rx_vec[1];
1609
1610 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1611 IWL_RX_USIG_A1_DISREGARD,
1612 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1613 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1614 IWL_RX_USIG_A1_VALIDATE,
1615 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1616 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1617 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1618 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1619 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1620 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1621 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1622 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1623 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1624 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1625 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1626 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1627 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1628 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1629 IWL_RX_USIG_A2_EHT_SIG_MCS,
1630 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1631 IWL_MVM_ENC_USIG_VALUE_MASK
1632 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1633 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1634 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1635 IWL_RX_USIG_A2_EHT_CRC_OK,
1636 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1637 }
1638 }
1639
iwl_mvm_decode_eht_ext_tb(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht,struct ieee80211_radiotap_eht_usig * usig)1640 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1641 struct iwl_mvm_rx_phy_data *phy_data,
1642 struct ieee80211_rx_status *rx_status,
1643 struct ieee80211_radiotap_eht *eht,
1644 struct ieee80211_radiotap_eht_usig *usig)
1645 {
1646 if (phy_data->with_data) {
1647 __le32 data5 = phy_data->d5;
1648
1649 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1650 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1651 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1652 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1653 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1654 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1655
1656 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1657 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1658 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1659 } else {
1660 __le32 usig_a1 = phy_data->rx_vec[0];
1661 __le32 usig_a2 = phy_data->rx_vec[1];
1662
1663 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1664 IWL_RX_USIG_A1_DISREGARD,
1665 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1666 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1667 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1668 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1669 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1670 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1671 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1672 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1673 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1674 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1675 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1676 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1677 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1678 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1679 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1680 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1681 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1682 IWL_RX_USIG_A2_EHT_CRC_OK,
1683 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1684 }
1685 }
1686
iwl_mvm_decode_eht_ru(struct iwl_mvm * mvm,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht)1687 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1688 struct ieee80211_rx_status *rx_status,
1689 struct ieee80211_radiotap_eht *eht)
1690 {
1691 u32 ru = le32_get_bits(eht->data[8],
1692 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1693 enum nl80211_eht_ru_alloc nl_ru;
1694
1695 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1696 * in an EHT variant User Info field
1697 */
1698
1699 switch (ru) {
1700 case 0 ... 36:
1701 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1702 break;
1703 case 37 ... 52:
1704 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1705 break;
1706 case 53 ... 60:
1707 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1708 break;
1709 case 61 ... 64:
1710 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1711 break;
1712 case 65 ... 66:
1713 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1714 break;
1715 case 67:
1716 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1717 break;
1718 case 68:
1719 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1720 break;
1721 case 69:
1722 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1723 break;
1724 case 70 ... 81:
1725 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1726 break;
1727 case 82 ... 89:
1728 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1729 break;
1730 case 90 ... 93:
1731 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1732 break;
1733 case 94 ... 95:
1734 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1735 break;
1736 case 96 ... 99:
1737 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1738 break;
1739 case 100 ... 103:
1740 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1741 break;
1742 case 104:
1743 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1744 break;
1745 case 105 ... 106:
1746 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1747 break;
1748 default:
1749 return;
1750 }
1751
1752 rx_status->bw = RATE_INFO_BW_EHT_RU;
1753 rx_status->eht.ru = nl_ru;
1754 }
1755
iwl_mvm_decode_eht_phy_data(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht,struct ieee80211_radiotap_eht_usig * usig)1756 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1757 struct iwl_mvm_rx_phy_data *phy_data,
1758 struct ieee80211_rx_status *rx_status,
1759 struct ieee80211_radiotap_eht *eht,
1760 struct ieee80211_radiotap_eht_usig *usig)
1761
1762 {
1763 __le32 data0 = phy_data->d0;
1764 __le32 data1 = phy_data->d1;
1765 __le32 usig_a1 = phy_data->rx_vec[0];
1766 u8 info_type = phy_data->info_type;
1767
1768 /* Not in EHT range */
1769 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1770 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1771 return;
1772
1773 usig->common |= cpu_to_le32
1774 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1775 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1776 if (phy_data->with_data) {
1777 usig->common |= LE32_DEC_ENC(data0,
1778 IWL_RX_PHY_DATA0_EHT_UPLINK,
1779 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1780 usig->common |= LE32_DEC_ENC(data0,
1781 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1782 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1783 } else {
1784 usig->common |= LE32_DEC_ENC(usig_a1,
1785 IWL_RX_USIG_A1_UL_FLAG,
1786 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1787 usig->common |= LE32_DEC_ENC(usig_a1,
1788 IWL_RX_USIG_A1_BSS_COLOR,
1789 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1790 }
1791
1792 if (fw_has_capa(&mvm->fw->ucode_capa,
1793 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1794 usig->common |=
1795 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1796 usig->common |=
1797 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1798 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1799 }
1800
1801 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1802 eht->data[0] |= LE32_DEC_ENC(data0,
1803 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1804 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1805
1806 /* All RU allocating size/index is in TB format */
1807 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1808 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1809 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1810 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1811 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1812 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1813 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1814
1815 iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1816
1817 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1818 * which is on only in case of monitor mode so no need to check monitor
1819 * mode
1820 */
1821 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1822 eht->data[1] |=
1823 le32_encode_bits(mvm->monitor_p80,
1824 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1825
1826 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1827 if (phy_data->with_data)
1828 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1829 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1830 else
1831 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1832 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1833
1834 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1835 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1836 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1837
1838 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1839 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1840 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1841
1842 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1843 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1844 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1845
1846 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1847
1848 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1849 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1850
1851 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1852 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1853 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1854
1855 /*
1856 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1857 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1858 */
1859
1860 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1861 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1862 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1863
1864 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1865 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1866 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1867
1868 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1869 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1870 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1871 }
1872
iwl_mvm_rx_eht(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,int queue)1873 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1874 struct iwl_mvm_rx_phy_data *phy_data,
1875 int queue)
1876 {
1877 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1878
1879 struct ieee80211_radiotap_eht *eht;
1880 struct ieee80211_radiotap_eht_usig *usig;
1881 size_t eht_len = sizeof(*eht);
1882
1883 u32 rate_n_flags = phy_data->rate_n_flags;
1884 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1885 /* EHT and HE have the same valus for LTF */
1886 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1887 u16 phy_info = phy_data->phy_info;
1888 u32 bw;
1889
1890 /* u32 for 1 user_info */
1891 if (phy_data->with_data)
1892 eht_len += sizeof(u32);
1893
1894 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1895
1896 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1897 sizeof(*usig));
1898 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1899 usig->common |=
1900 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1901
1902 /* specific handling for 320MHz */
1903 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1904 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1905 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1906 le32_to_cpu(phy_data->d0));
1907
1908 usig->common |= cpu_to_le32
1909 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1910
1911 /* report the AMPDU-EOF bit on single frames */
1912 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1913 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1914 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1915 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1916 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1917 }
1918
1919 /* update aggregation data for monitor sake on default queue */
1920 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1921 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1922 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1923 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1924 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1925 }
1926
1927 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1928 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1929
1930 #define CHECK_TYPE(F) \
1931 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1932 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1933
1934 CHECK_TYPE(SU);
1935 CHECK_TYPE(EXT_SU);
1936 CHECK_TYPE(MU);
1937 CHECK_TYPE(TRIG);
1938
1939 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1940 case 0:
1941 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1942 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1943 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1944 } else {
1945 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1946 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1947 }
1948 break;
1949 case 1:
1950 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1951 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1952 break;
1953 case 2:
1954 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1955 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1956 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1957 else
1958 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1959 break;
1960 case 3:
1961 if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1962 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1963 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1964 }
1965 break;
1966 default:
1967 /* nothing here */
1968 break;
1969 }
1970
1971 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1972 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1973 eht->data[0] |= cpu_to_le32
1974 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1975 ltf) |
1976 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1977 rx_status->eht.gi));
1978 }
1979
1980
1981 if (!phy_data->with_data) {
1982 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1983 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1984 eht->data[7] |=
1985 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1986 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1987 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1988 if (rate_n_flags & RATE_MCS_BF_MSK)
1989 eht->data[7] |=
1990 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1991 } else {
1992 eht->user_info[0] |=
1993 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1994 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1995 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1996 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1997 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1998
1999 if (rate_n_flags & RATE_MCS_BF_MSK)
2000 eht->user_info[0] |=
2001 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
2002
2003 if (rate_n_flags & RATE_MCS_LDPC_MSK)
2004 eht->user_info[0] |=
2005 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
2006
2007 eht->user_info[0] |= cpu_to_le32
2008 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
2009 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
2010 rate_n_flags)) |
2011 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
2012 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
2013 }
2014 }
2015
iwl_mvm_rx_he(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,int queue)2016 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
2017 struct iwl_mvm_rx_phy_data *phy_data,
2018 int queue)
2019 {
2020 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2021 struct ieee80211_radiotap_he *he = NULL;
2022 struct ieee80211_radiotap_he_mu *he_mu = NULL;
2023 u32 rate_n_flags = phy_data->rate_n_flags;
2024 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
2025 u8 ltf;
2026 static const struct ieee80211_radiotap_he known = {
2027 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
2028 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
2029 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
2030 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
2031 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
2032 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
2033 };
2034 static const struct ieee80211_radiotap_he_mu mu_known = {
2035 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
2036 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
2037 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
2038 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
2039 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
2040 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
2041 };
2042 u16 phy_info = phy_data->phy_info;
2043
2044 he = skb_put_data(skb, &known, sizeof(known));
2045 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
2046
2047 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
2048 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
2049 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
2050 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
2051 }
2052
2053 /* report the AMPDU-EOF bit on single frames */
2054 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2055 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2056 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2057 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
2058 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2059 }
2060
2061 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2062 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
2063 queue);
2064
2065 /* update aggregation data for monitor sake on default queue */
2066 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
2067 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
2068 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2069 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
2070 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2071 }
2072
2073 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
2074 rate_n_flags & RATE_MCS_HE_106T_MSK) {
2075 rx_status->bw = RATE_INFO_BW_HE_RU;
2076 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
2077 }
2078
2079 /* actually data is filled in mac80211 */
2080 if (he_type == RATE_MCS_HE_TYPE_SU ||
2081 he_type == RATE_MCS_HE_TYPE_EXT_SU)
2082 he->data1 |=
2083 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
2084
2085 #define CHECK_TYPE(F) \
2086 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
2087 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
2088
2089 CHECK_TYPE(SU);
2090 CHECK_TYPE(EXT_SU);
2091 CHECK_TYPE(MU);
2092 CHECK_TYPE(TRIG);
2093
2094 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
2095
2096 if (rate_n_flags & RATE_MCS_BF_MSK)
2097 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
2098
2099 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
2100 RATE_MCS_HE_GI_LTF_POS) {
2101 case 0:
2102 if (he_type == RATE_MCS_HE_TYPE_TRIG)
2103 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2104 else
2105 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2106 if (he_type == RATE_MCS_HE_TYPE_MU)
2107 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2108 else
2109 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
2110 break;
2111 case 1:
2112 if (he_type == RATE_MCS_HE_TYPE_TRIG)
2113 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2114 else
2115 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2116 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2117 break;
2118 case 2:
2119 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
2120 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2121 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2122 } else {
2123 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2124 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2125 }
2126 break;
2127 case 3:
2128 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2129 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2130 break;
2131 case 4:
2132 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2133 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2134 break;
2135 default:
2136 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
2137 }
2138
2139 he->data5 |= le16_encode_bits(ltf,
2140 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
2141 }
2142
iwl_mvm_decode_lsig(struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data)2143 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
2144 struct iwl_mvm_rx_phy_data *phy_data)
2145 {
2146 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2147 struct ieee80211_radiotap_lsig *lsig;
2148
2149 switch (phy_data->info_type) {
2150 case IWL_RX_PHY_INFO_TYPE_HT:
2151 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
2152 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
2153 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
2154 case IWL_RX_PHY_INFO_TYPE_HE_SU:
2155 case IWL_RX_PHY_INFO_TYPE_HE_MU:
2156 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
2157 case IWL_RX_PHY_INFO_TYPE_HE_TB:
2158 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
2159 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
2160 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
2161 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
2162 lsig = skb_put(skb, sizeof(*lsig));
2163 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
2164 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
2165 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
2166 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
2167 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
2168 break;
2169 default:
2170 break;
2171 }
2172 }
2173
iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)2174 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
2175 {
2176 switch (phy_band) {
2177 case PHY_BAND_24:
2178 return NL80211_BAND_2GHZ;
2179 case PHY_BAND_5:
2180 return NL80211_BAND_5GHZ;
2181 case PHY_BAND_6:
2182 return NL80211_BAND_6GHZ;
2183 default:
2184 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
2185 return NL80211_BAND_5GHZ;
2186 }
2187 }
2188
2189 struct iwl_rx_sta_csa {
2190 bool all_sta_unblocked;
2191 struct ieee80211_vif *vif;
2192 };
2193
iwl_mvm_rx_get_sta_block_tx(void * data,struct ieee80211_sta * sta)2194 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
2195 {
2196 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2197 struct iwl_rx_sta_csa *rx_sta_csa = data;
2198
2199 if (mvmsta->vif != rx_sta_csa->vif)
2200 return;
2201
2202 if (mvmsta->disable_tx)
2203 rx_sta_csa->all_sta_unblocked = false;
2204 }
2205
2206 /*
2207 * Note: requires also rx_status->band to be prefilled, as well
2208 * as phy_data (apart from phy_data->info_type)
2209 */
iwl_mvm_rx_fill_status(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,int queue)2210 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
2211 struct sk_buff *skb,
2212 struct iwl_mvm_rx_phy_data *phy_data,
2213 int queue)
2214 {
2215 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2216 u32 rate_n_flags = phy_data->rate_n_flags;
2217 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
2218 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2219 bool is_sgi;
2220
2221 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
2222
2223 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2224 phy_data->info_type =
2225 le32_get_bits(phy_data->d1,
2226 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
2227
2228 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2229 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2230 case RATE_MCS_CHAN_WIDTH_20:
2231 break;
2232 case RATE_MCS_CHAN_WIDTH_40:
2233 rx_status->bw = RATE_INFO_BW_40;
2234 break;
2235 case RATE_MCS_CHAN_WIDTH_80:
2236 rx_status->bw = RATE_INFO_BW_80;
2237 break;
2238 case RATE_MCS_CHAN_WIDTH_160:
2239 rx_status->bw = RATE_INFO_BW_160;
2240 break;
2241 case RATE_MCS_CHAN_WIDTH_320:
2242 rx_status->bw = RATE_INFO_BW_320;
2243 break;
2244 }
2245
2246 /* must be before L-SIG data */
2247 if (format == RATE_MCS_HE_MSK)
2248 iwl_mvm_rx_he(mvm, skb, phy_data, queue);
2249
2250 iwl_mvm_decode_lsig(skb, phy_data);
2251
2252 rx_status->device_timestamp = phy_data->gp2_on_air_rise;
2253 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
2254 rx_status->band);
2255 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
2256 phy_data->energy_a, phy_data->energy_b);
2257
2258 /* using TLV format and must be after all fixed len fields */
2259 if (format == RATE_MCS_EHT_MSK)
2260 iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
2261
2262 if (unlikely(mvm->monitor_on))
2263 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
2264
2265 is_sgi = format == RATE_MCS_HE_MSK ?
2266 iwl_he_is_sgi(rate_n_flags) :
2267 rate_n_flags & RATE_MCS_SGI_MSK;
2268
2269 if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
2270 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2271
2272 if (rate_n_flags & RATE_MCS_LDPC_MSK)
2273 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2274
2275 switch (format) {
2276 case RATE_MCS_VHT_MSK:
2277 rx_status->encoding = RX_ENC_VHT;
2278 break;
2279 case RATE_MCS_HE_MSK:
2280 rx_status->encoding = RX_ENC_HE;
2281 rx_status->he_dcm =
2282 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2283 break;
2284 case RATE_MCS_EHT_MSK:
2285 rx_status->encoding = RX_ENC_EHT;
2286 break;
2287 }
2288
2289 switch (format) {
2290 case RATE_MCS_HT_MSK:
2291 rx_status->encoding = RX_ENC_HT;
2292 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2293 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2294 break;
2295 case RATE_MCS_VHT_MSK:
2296 case RATE_MCS_HE_MSK:
2297 case RATE_MCS_EHT_MSK:
2298 rx_status->nss =
2299 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2300 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2301 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2302 break;
2303 default: {
2304 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2305 rx_status->band);
2306
2307 rx_status->rate_idx = rate;
2308
2309 if ((rate < 0 || rate > 0xFF)) {
2310 rx_status->rate_idx = 0;
2311 if (net_ratelimit())
2312 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2313 rate_n_flags, rx_status->band);
2314 }
2315
2316 break;
2317 }
2318 }
2319 }
2320
iwl_mvm_rx_mpdu_mq(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2321 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2322 struct iwl_rx_cmd_buffer *rxb, int queue)
2323 {
2324 struct ieee80211_rx_status *rx_status;
2325 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2326 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2327 struct ieee80211_hdr *hdr;
2328 u32 len;
2329 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2330 struct ieee80211_sta *sta = NULL;
2331 struct ieee80211_link_sta *link_sta = NULL;
2332 struct sk_buff *skb;
2333 u8 crypt_len = 0;
2334 size_t desc_size;
2335 struct iwl_mvm_rx_phy_data phy_data = {};
2336 u32 format;
2337
2338 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2339 return;
2340
2341 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2342 desc_size = sizeof(*desc);
2343 else
2344 desc_size = IWL_RX_DESC_SIZE_V1;
2345
2346 if (unlikely(pkt_len < desc_size)) {
2347 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2348 return;
2349 }
2350
2351 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2352 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2353 phy_data.channel = desc->v3.channel;
2354 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2355 phy_data.energy_a = desc->v3.energy_a;
2356 phy_data.energy_b = desc->v3.energy_b;
2357
2358 phy_data.d0 = desc->v3.phy_data0;
2359 phy_data.d1 = desc->v3.phy_data1;
2360 phy_data.d2 = desc->v3.phy_data2;
2361 phy_data.d3 = desc->v3.phy_data3;
2362 phy_data.eht_d4 = desc->phy_eht_data4;
2363 phy_data.d5 = desc->v3.phy_data5;
2364 } else {
2365 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2366 phy_data.channel = desc->v1.channel;
2367 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2368 phy_data.energy_a = desc->v1.energy_a;
2369 phy_data.energy_b = desc->v1.energy_b;
2370
2371 phy_data.d0 = desc->v1.phy_data0;
2372 phy_data.d1 = desc->v1.phy_data1;
2373 phy_data.d2 = desc->v1.phy_data2;
2374 phy_data.d3 = desc->v1.phy_data3;
2375 }
2376
2377 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2378 REPLY_RX_MPDU_CMD, 0) < 4) {
2379 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2380 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2381 phy_data.rate_n_flags);
2382 }
2383
2384 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2385
2386 len = le16_to_cpu(desc->mpdu_len);
2387
2388 if (unlikely(len + desc_size > pkt_len)) {
2389 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2390 return;
2391 }
2392
2393 phy_data.with_data = true;
2394 phy_data.phy_info = le16_to_cpu(desc->phy_info);
2395 phy_data.d4 = desc->phy_data4;
2396
2397 hdr = (void *)(pkt->data + desc_size);
2398 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2399 * ieee80211_hdr pulled.
2400 */
2401 skb = alloc_skb(128, GFP_ATOMIC);
2402 if (!skb) {
2403 IWL_ERR(mvm, "alloc_skb failed\n");
2404 return;
2405 }
2406
2407 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2408 /*
2409 * If the device inserted padding it means that (it thought)
2410 * the 802.11 header wasn't a multiple of 4 bytes long. In
2411 * this case, reserve two bytes at the start of the SKB to
2412 * align the payload properly in case we end up copying it.
2413 */
2414 skb_reserve(skb, 2);
2415 }
2416
2417 rx_status = IEEE80211_SKB_RXCB(skb);
2418
2419 /*
2420 * Keep packets with CRC errors (and with overrun) for monitor mode
2421 * (otherwise the firmware discards them) but mark them as bad.
2422 */
2423 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2424 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2425 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2426 le32_to_cpu(desc->status));
2427 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2428 }
2429
2430 /* set the preamble flag if appropriate */
2431 if (format == RATE_MCS_CCK_MSK &&
2432 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2433 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2434
2435 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2436 u64 tsf_on_air_rise;
2437
2438 if (mvm->trans->trans_cfg->device_family >=
2439 IWL_DEVICE_FAMILY_AX210)
2440 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2441 else
2442 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2443
2444 rx_status->mactime = tsf_on_air_rise;
2445 /* TSF as indicated by the firmware is at INA time */
2446 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2447 }
2448
2449 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2450 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2451
2452 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2453 } else {
2454 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2455 NL80211_BAND_2GHZ;
2456 }
2457
2458 /* update aggregation data for monitor sake on default queue */
2459 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2460 bool toggle_bit;
2461
2462 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2463 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2464 /*
2465 * Toggle is switched whenever new aggregation starts. Make
2466 * sure ampdu_reference is never 0 so we can later use it to
2467 * see if the frame was really part of an A-MPDU or not.
2468 */
2469 if (toggle_bit != mvm->ampdu_toggle) {
2470 mvm->ampdu_ref++;
2471 if (mvm->ampdu_ref == 0)
2472 mvm->ampdu_ref++;
2473 mvm->ampdu_toggle = toggle_bit;
2474 phy_data.first_subframe = true;
2475 }
2476 rx_status->ampdu_reference = mvm->ampdu_ref;
2477 }
2478
2479 rcu_read_lock();
2480
2481 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2482 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2483
2484 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2485 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2486 if (IS_ERR(sta))
2487 sta = NULL;
2488 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2489 }
2490 } else if (!is_multicast_ether_addr(hdr->addr2)) {
2491 /*
2492 * This is fine since we prevent two stations with the same
2493 * address from being added.
2494 */
2495 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2496 }
2497
2498 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2499 le32_to_cpu(pkt->len_n_flags), queue,
2500 &crypt_len)) {
2501 kfree_skb(skb);
2502 goto out;
2503 }
2504
2505 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2506
2507 if (sta) {
2508 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2509 struct ieee80211_vif *tx_blocked_vif =
2510 rcu_dereference(mvm->csa_tx_blocked_vif);
2511 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2512 IWL_RX_MPDU_REORDER_BAID_MASK) >>
2513 IWL_RX_MPDU_REORDER_BAID_SHIFT);
2514 struct iwl_fw_dbg_trigger_tlv *trig;
2515 struct ieee80211_vif *vif = mvmsta->vif;
2516
2517 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2518 !is_multicast_ether_addr(hdr->addr1) &&
2519 ieee80211_is_data(hdr->frame_control) &&
2520 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2521 schedule_delayed_work(&mvm->tcm.work, 0);
2522
2523 /*
2524 * We have tx blocked stations (with CS bit). If we heard
2525 * frames from a blocked station on a new channel we can
2526 * TX to it again.
2527 */
2528 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2529 struct iwl_mvm_vif *mvmvif =
2530 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2531 struct iwl_rx_sta_csa rx_sta_csa = {
2532 .all_sta_unblocked = true,
2533 .vif = tx_blocked_vif,
2534 };
2535
2536 if (mvmvif->csa_target_freq == rx_status->freq)
2537 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2538 false);
2539 ieee80211_iterate_stations_atomic(mvm->hw,
2540 iwl_mvm_rx_get_sta_block_tx,
2541 &rx_sta_csa);
2542
2543 if (rx_sta_csa.all_sta_unblocked) {
2544 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2545 /* Unblock BCAST / MCAST station */
2546 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2547 cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2548 }
2549 }
2550
2551 rs_update_last_rssi(mvm, mvmsta, rx_status);
2552
2553 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2554 ieee80211_vif_to_wdev(vif),
2555 FW_DBG_TRIGGER_RSSI);
2556
2557 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2558 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2559 s32 rssi;
2560
2561 rssi_trig = (void *)trig->data;
2562 rssi = le32_to_cpu(rssi_trig->rssi);
2563
2564 if (rx_status->signal < rssi)
2565 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2566 NULL);
2567 }
2568
2569 if (ieee80211_is_data(hdr->frame_control))
2570 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2571
2572 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2573 kfree_skb(skb);
2574 goto out;
2575 }
2576
2577 /*
2578 * Our hardware de-aggregates AMSDUs but copies the mac header
2579 * as it to the de-aggregated MPDUs. We need to turn off the
2580 * AMSDU bit in the QoS control ourselves.
2581 * In addition, HW reverses addr3 and addr4 - reverse it back.
2582 */
2583 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2584 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2585 u8 *qc = ieee80211_get_qos_ctl(hdr);
2586
2587 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2588
2589 if (mvm->trans->trans_cfg->device_family ==
2590 IWL_DEVICE_FAMILY_9000) {
2591 iwl_mvm_flip_address(hdr->addr3);
2592
2593 if (ieee80211_has_a4(hdr->frame_control))
2594 iwl_mvm_flip_address(hdr->addr4);
2595 }
2596 }
2597 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2598 u32 reorder_data = le32_to_cpu(desc->reorder_data);
2599
2600 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2601 }
2602 }
2603
2604 /* management stuff on default queue */
2605 if (!queue) {
2606 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2607 ieee80211_is_probe_resp(hdr->frame_control)) &&
2608 mvm->sched_scan_pass_all ==
2609 SCHED_SCAN_PASS_ALL_ENABLED))
2610 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2611
2612 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2613 ieee80211_is_probe_resp(hdr->frame_control)))
2614 rx_status->boottime_ns = ktime_get_boottime_ns();
2615 }
2616
2617 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2618 kfree_skb(skb);
2619 goto out;
2620 }
2621
2622 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2623 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2624 likely(!iwl_mvm_mei_filter_scan(mvm, skb)))
2625 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2626 link_sta);
2627 out:
2628 rcu_read_unlock();
2629 }
2630
iwl_mvm_rx_monitor_no_data(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2631 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2632 struct iwl_rx_cmd_buffer *rxb, int queue)
2633 {
2634 struct ieee80211_rx_status *rx_status;
2635 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2636 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2637 u32 rssi;
2638 u32 info_type;
2639 struct ieee80211_sta *sta = NULL;
2640 struct sk_buff *skb;
2641 struct iwl_mvm_rx_phy_data phy_data;
2642 u32 format;
2643
2644 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2645 return;
2646
2647 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2648 return;
2649
2650 rssi = le32_to_cpu(desc->rssi);
2651 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2652 phy_data.d0 = desc->phy_info[0];
2653 phy_data.d1 = desc->phy_info[1];
2654 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2655 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2656 phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2657 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2658 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2659 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2660 phy_data.with_data = false;
2661 phy_data.rx_vec[0] = desc->rx_vec[0];
2662 phy_data.rx_vec[1] = desc->rx_vec[1];
2663
2664 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2665 RX_NO_DATA_NOTIF, 0) < 2) {
2666 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2667 phy_data.rate_n_flags);
2668 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2669 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2670 phy_data.rate_n_flags);
2671 }
2672
2673 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2674
2675 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2676 RX_NO_DATA_NOTIF, 0) >= 3) {
2677 if (unlikely(iwl_rx_packet_payload_len(pkt) <
2678 sizeof(struct iwl_rx_no_data_ver_3)))
2679 /* invalid len for ver 3 */
2680 return;
2681 phy_data.rx_vec[2] = desc->rx_vec[2];
2682 phy_data.rx_vec[3] = desc->rx_vec[3];
2683 } else {
2684 if (format == RATE_MCS_EHT_MSK)
2685 /* no support for EHT before version 3 API */
2686 return;
2687 }
2688
2689 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2690 * ieee80211_hdr pulled.
2691 */
2692 skb = alloc_skb(128, GFP_ATOMIC);
2693 if (!skb) {
2694 IWL_ERR(mvm, "alloc_skb failed\n");
2695 return;
2696 }
2697
2698 rx_status = IEEE80211_SKB_RXCB(skb);
2699
2700 /* 0-length PSDU */
2701 rx_status->flag |= RX_FLAG_NO_PSDU;
2702
2703 switch (info_type) {
2704 case RX_NO_DATA_INFO_TYPE_NDP:
2705 rx_status->zero_length_psdu_type =
2706 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2707 break;
2708 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2709 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2710 rx_status->zero_length_psdu_type =
2711 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2712 break;
2713 default:
2714 rx_status->zero_length_psdu_type =
2715 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2716 break;
2717 }
2718
2719 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2720 NL80211_BAND_2GHZ;
2721
2722 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2723
2724 /* no more radio tap info should be put after this point.
2725 *
2726 * We mark it as mac header, for upper layers to know where
2727 * all radio tap header ends.
2728 */
2729 skb_reset_mac_header(skb);
2730
2731 /*
2732 * Override the nss from the rx_vec since the rate_n_flags has
2733 * only 2 bits for the nss which gives a max of 4 ss but there
2734 * may be up to 8 spatial streams.
2735 */
2736 switch (format) {
2737 case RATE_MCS_VHT_MSK:
2738 rx_status->nss =
2739 le32_get_bits(desc->rx_vec[0],
2740 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2741 break;
2742 case RATE_MCS_HE_MSK:
2743 rx_status->nss =
2744 le32_get_bits(desc->rx_vec[0],
2745 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2746 break;
2747 case RATE_MCS_EHT_MSK:
2748 rx_status->nss =
2749 le32_get_bits(desc->rx_vec[2],
2750 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2751 }
2752
2753 rcu_read_lock();
2754 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2755 rcu_read_unlock();
2756 }
2757
iwl_mvm_rx_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2758 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2759 struct iwl_rx_cmd_buffer *rxb, int queue)
2760 {
2761 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2762 struct iwl_frame_release *release = (void *)pkt->data;
2763
2764 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2765 return;
2766
2767 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2768 le16_to_cpu(release->nssn),
2769 queue, 0);
2770 }
2771
iwl_mvm_rx_bar_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2772 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2773 struct iwl_rx_cmd_buffer *rxb, int queue)
2774 {
2775 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2776 struct iwl_bar_frame_release *release = (void *)pkt->data;
2777 unsigned int baid = le32_get_bits(release->ba_info,
2778 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2779 unsigned int nssn = le32_get_bits(release->ba_info,
2780 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2781 unsigned int sta_id = le32_get_bits(release->sta_tid,
2782 IWL_BAR_FRAME_RELEASE_STA_MASK);
2783 unsigned int tid = le32_get_bits(release->sta_tid,
2784 IWL_BAR_FRAME_RELEASE_TID_MASK);
2785 struct iwl_mvm_baid_data *baid_data;
2786
2787 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2788 return;
2789
2790 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2791 baid >= ARRAY_SIZE(mvm->baid_map)))
2792 return;
2793
2794 rcu_read_lock();
2795 baid_data = rcu_dereference(mvm->baid_map[baid]);
2796 if (!baid_data) {
2797 IWL_DEBUG_RX(mvm,
2798 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2799 baid);
2800 goto out;
2801 }
2802
2803 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2804 !(baid_data->sta_mask & BIT(sta_id)),
2805 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2806 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2807 tid))
2808 goto out;
2809
2810 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2811 out:
2812 rcu_read_unlock();
2813 }
2814