1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/base/bits.h"
6 #include "src/compiler/backend/instruction-selector-impl.h"
7 #include "src/compiler/node-matchers.h"
8 #include "src/compiler/node-properties.h"
9
10 namespace v8 {
11 namespace internal {
12 namespace compiler {
13
14 #define TRACE_UNIMPL() \
15 PrintF("UNIMPLEMENTED instr_sel: %s at line %d\n", __FUNCTION__, __LINE__)
16
17 #define TRACE() PrintF("instr_sel: %s at line %d\n", __FUNCTION__, __LINE__)
18
19 // Adds Mips-specific methods for generating InstructionOperands.
20 class MipsOperandGenerator final : public OperandGenerator {
21 public:
MipsOperandGenerator(InstructionSelector * selector)22 explicit MipsOperandGenerator(InstructionSelector* selector)
23 : OperandGenerator(selector) {}
24
UseOperand(Node * node,InstructionCode opcode)25 InstructionOperand UseOperand(Node* node, InstructionCode opcode) {
26 if (CanBeImmediate(node, opcode)) {
27 return UseImmediate(node);
28 }
29 return UseRegister(node);
30 }
31
32 // Use the zero register if the node has the immediate value zero, otherwise
33 // assign a register.
UseRegisterOrImmediateZero(Node * node)34 InstructionOperand UseRegisterOrImmediateZero(Node* node) {
35 if ((IsIntegerConstant(node) && (GetIntegerConstantValue(node) == 0)) ||
36 (IsFloatConstant(node) &&
37 (bit_cast<int64_t>(GetFloatConstantValue(node)) == 0))) {
38 return UseImmediate(node);
39 }
40 return UseRegister(node);
41 }
42
IsIntegerConstant(Node * node)43 bool IsIntegerConstant(Node* node) {
44 return (node->opcode() == IrOpcode::kInt32Constant);
45 }
46
GetIntegerConstantValue(Node * node)47 int64_t GetIntegerConstantValue(Node* node) {
48 DCHECK_EQ(IrOpcode::kInt32Constant, node->opcode());
49 return OpParameter<int32_t>(node->op());
50 }
51
IsFloatConstant(Node * node)52 bool IsFloatConstant(Node* node) {
53 return (node->opcode() == IrOpcode::kFloat32Constant) ||
54 (node->opcode() == IrOpcode::kFloat64Constant);
55 }
56
GetFloatConstantValue(Node * node)57 double GetFloatConstantValue(Node* node) {
58 if (node->opcode() == IrOpcode::kFloat32Constant) {
59 return OpParameter<float>(node->op());
60 }
61 DCHECK_EQ(IrOpcode::kFloat64Constant, node->opcode());
62 return OpParameter<double>(node->op());
63 }
64
CanBeImmediate(Node * node,InstructionCode opcode)65 bool CanBeImmediate(Node* node, InstructionCode opcode) {
66 Int32Matcher m(node);
67 if (!m.HasResolvedValue()) return false;
68 int32_t value = m.ResolvedValue();
69 switch (ArchOpcodeField::decode(opcode)) {
70 case kMipsShl:
71 case kMipsSar:
72 case kMipsShr:
73 return is_uint5(value);
74 case kMipsAdd:
75 case kMipsAnd:
76 case kMipsOr:
77 case kMipsTst:
78 case kMipsSub:
79 case kMipsXor:
80 return is_uint16(value);
81 case kMipsLb:
82 case kMipsLbu:
83 case kMipsSb:
84 case kMipsLh:
85 case kMipsLhu:
86 case kMipsSh:
87 case kMipsLw:
88 case kMipsSw:
89 case kMipsLwc1:
90 case kMipsSwc1:
91 case kMipsLdc1:
92 case kMipsSdc1:
93 // true even for 32b values, offsets > 16b
94 // are handled in assembler-mips.cc
95 return is_int32(value);
96 default:
97 return is_int16(value);
98 }
99 }
100
101 private:
ImmediateFitsAddrMode1Instruction(int32_t imm) const102 bool ImmediateFitsAddrMode1Instruction(int32_t imm) const {
103 TRACE_UNIMPL();
104 return false;
105 }
106 };
107
VisitRRR(InstructionSelector * selector,ArchOpcode opcode,Node * node)108 static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode,
109 Node* node) {
110 MipsOperandGenerator g(selector);
111 selector->Emit(opcode, g.DefineAsRegister(node),
112 g.UseRegister(node->InputAt(0)),
113 g.UseRegister(node->InputAt(1)));
114 }
115
VisitUniqueRRR(InstructionSelector * selector,ArchOpcode opcode,Node * node)116 static void VisitUniqueRRR(InstructionSelector* selector, ArchOpcode opcode,
117 Node* node) {
118 MipsOperandGenerator g(selector);
119 selector->Emit(opcode, g.DefineAsRegister(node),
120 g.UseUniqueRegister(node->InputAt(0)),
121 g.UseUniqueRegister(node->InputAt(1)));
122 }
123
VisitRRRR(InstructionSelector * selector,ArchOpcode opcode,Node * node)124 void VisitRRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) {
125 MipsOperandGenerator g(selector);
126 selector->Emit(
127 opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
128 g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)));
129 }
130
VisitRR(InstructionSelector * selector,ArchOpcode opcode,Node * node)131 static void VisitRR(InstructionSelector* selector, ArchOpcode opcode,
132 Node* node) {
133 MipsOperandGenerator g(selector);
134 selector->Emit(opcode, g.DefineAsRegister(node),
135 g.UseRegister(node->InputAt(0)));
136 }
137
VisitRRI(InstructionSelector * selector,ArchOpcode opcode,Node * node)138 static void VisitRRI(InstructionSelector* selector, ArchOpcode opcode,
139 Node* node) {
140 MipsOperandGenerator g(selector);
141 int32_t imm = OpParameter<int32_t>(node->op());
142 selector->Emit(opcode, g.DefineAsRegister(node),
143 g.UseRegister(node->InputAt(0)), g.UseImmediate(imm));
144 }
145
VisitRRIR(InstructionSelector * selector,ArchOpcode opcode,Node * node)146 static void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode,
147 Node* node) {
148 MipsOperandGenerator g(selector);
149 int32_t imm = OpParameter<int32_t>(node->op());
150 selector->Emit(opcode, g.DefineAsRegister(node),
151 g.UseRegister(node->InputAt(0)), g.UseImmediate(imm),
152 g.UseRegister(node->InputAt(1)));
153 }
154
VisitRRO(InstructionSelector * selector,ArchOpcode opcode,Node * node)155 static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode,
156 Node* node) {
157 MipsOperandGenerator g(selector);
158 selector->Emit(opcode, g.DefineAsRegister(node),
159 g.UseRegister(node->InputAt(0)),
160 g.UseOperand(node->InputAt(1), opcode));
161 }
162
TryMatchImmediate(InstructionSelector * selector,InstructionCode * opcode_return,Node * node,size_t * input_count_return,InstructionOperand * inputs)163 bool TryMatchImmediate(InstructionSelector* selector,
164 InstructionCode* opcode_return, Node* node,
165 size_t* input_count_return, InstructionOperand* inputs) {
166 MipsOperandGenerator g(selector);
167 if (g.CanBeImmediate(node, *opcode_return)) {
168 *opcode_return |= AddressingModeField::encode(kMode_MRI);
169 inputs[0] = g.UseImmediate(node);
170 *input_count_return = 1;
171 return true;
172 }
173 return false;
174 }
175
VisitBinop(InstructionSelector * selector,Node * node,InstructionCode opcode,bool has_reverse_opcode,InstructionCode reverse_opcode,FlagsContinuation * cont)176 static void VisitBinop(InstructionSelector* selector, Node* node,
177 InstructionCode opcode, bool has_reverse_opcode,
178 InstructionCode reverse_opcode,
179 FlagsContinuation* cont) {
180 MipsOperandGenerator g(selector);
181 Int32BinopMatcher m(node);
182 InstructionOperand inputs[2];
183 size_t input_count = 0;
184 InstructionOperand outputs[1];
185 size_t output_count = 0;
186
187 if (TryMatchImmediate(selector, &opcode, m.right().node(), &input_count,
188 &inputs[1])) {
189 inputs[0] = g.UseRegister(m.left().node());
190 input_count++;
191 } else if (has_reverse_opcode &&
192 TryMatchImmediate(selector, &reverse_opcode, m.left().node(),
193 &input_count, &inputs[1])) {
194 inputs[0] = g.UseRegister(m.right().node());
195 opcode = reverse_opcode;
196 input_count++;
197 } else {
198 inputs[input_count++] = g.UseRegister(m.left().node());
199 inputs[input_count++] = g.UseOperand(m.right().node(), opcode);
200 }
201
202 if (cont->IsDeoptimize()) {
203 // If we can deoptimize as a result of the binop, we need to make sure that
204 // the deopt inputs are not overwritten by the binop result. One way
205 // to achieve that is to declare the output register as same-as-first.
206 outputs[output_count++] = g.DefineSameAsFirst(node);
207 } else {
208 outputs[output_count++] = g.DefineAsRegister(node);
209 }
210
211 DCHECK_NE(0u, input_count);
212 DCHECK_EQ(1u, output_count);
213 DCHECK_GE(arraysize(inputs), input_count);
214 DCHECK_GE(arraysize(outputs), output_count);
215
216 selector->EmitWithContinuation(opcode, output_count, outputs, input_count,
217 inputs, cont);
218 }
219
VisitBinop(InstructionSelector * selector,Node * node,InstructionCode opcode,bool has_reverse_opcode,InstructionCode reverse_opcode)220 static void VisitBinop(InstructionSelector* selector, Node* node,
221 InstructionCode opcode, bool has_reverse_opcode,
222 InstructionCode reverse_opcode) {
223 FlagsContinuation cont;
224 VisitBinop(selector, node, opcode, has_reverse_opcode, reverse_opcode, &cont);
225 }
226
VisitBinop(InstructionSelector * selector,Node * node,InstructionCode opcode,FlagsContinuation * cont)227 static void VisitBinop(InstructionSelector* selector, Node* node,
228 InstructionCode opcode, FlagsContinuation* cont) {
229 VisitBinop(selector, node, opcode, false, kArchNop, cont);
230 }
231
VisitBinop(InstructionSelector * selector,Node * node,InstructionCode opcode)232 static void VisitBinop(InstructionSelector* selector, Node* node,
233 InstructionCode opcode) {
234 VisitBinop(selector, node, opcode, false, kArchNop);
235 }
236
VisitPairAtomicBinop(InstructionSelector * selector,Node * node,ArchOpcode opcode)237 static void VisitPairAtomicBinop(InstructionSelector* selector, Node* node,
238 ArchOpcode opcode) {
239 MipsOperandGenerator g(selector);
240 Node* base = node->InputAt(0);
241 Node* index = node->InputAt(1);
242 Node* value = node->InputAt(2);
243 Node* value_high = node->InputAt(3);
244 AddressingMode addressing_mode = kMode_None;
245 InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
246 InstructionOperand inputs[] = {g.UseRegister(base), g.UseRegister(index),
247 g.UseFixed(value, a1),
248 g.UseFixed(value_high, a2)};
249 InstructionOperand outputs[2];
250 size_t output_count = 0;
251 InstructionOperand temps[3];
252 size_t temp_count = 0;
253 temps[temp_count++] = g.TempRegister(a0);
254
255 Node* projection0 = NodeProperties::FindProjection(node, 0);
256 Node* projection1 = NodeProperties::FindProjection(node, 1);
257 if (projection0) {
258 outputs[output_count++] = g.DefineAsFixed(projection0, v0);
259 } else {
260 temps[temp_count++] = g.TempRegister(v0);
261 }
262 if (projection1) {
263 outputs[output_count++] = g.DefineAsFixed(projection1, v1);
264 } else {
265 temps[temp_count++] = g.TempRegister(v1);
266 }
267 selector->Emit(code, output_count, outputs, arraysize(inputs), inputs,
268 temp_count, temps);
269 }
270
VisitStackSlot(Node * node)271 void InstructionSelector::VisitStackSlot(Node* node) {
272 StackSlotRepresentation rep = StackSlotRepresentationOf(node->op());
273 int alignment = rep.alignment();
274 int slot = frame_->AllocateSpillSlot(rep.size(), alignment);
275 OperandGenerator g(this);
276
277 Emit(kArchStackSlot, g.DefineAsRegister(node),
278 sequence()->AddImmediate(Constant(slot)), 0, nullptr);
279 }
280
VisitAbortCSADcheck(Node * node)281 void InstructionSelector::VisitAbortCSADcheck(Node* node) {
282 MipsOperandGenerator g(this);
283 Emit(kArchAbortCSADcheck, g.NoOutput(), g.UseFixed(node->InputAt(0), a0));
284 }
285
VisitLoadTransform(Node * node)286 void InstructionSelector::VisitLoadTransform(Node* node) {
287 LoadTransformParameters params = LoadTransformParametersOf(node->op());
288 MipsOperandGenerator g(this);
289 Node* base = node->InputAt(0);
290 Node* index = node->InputAt(1);
291
292 InstructionCode opcode = kArchNop;
293 switch (params.transformation) {
294 case LoadTransformation::kS128Load8Splat:
295 opcode = kMipsS128Load8Splat;
296 break;
297 case LoadTransformation::kS128Load16Splat:
298 opcode = kMipsS128Load16Splat;
299 break;
300 case LoadTransformation::kS128Load32Splat:
301 opcode = kMipsS128Load32Splat;
302 break;
303 case LoadTransformation::kS128Load64Splat:
304 opcode = kMipsS128Load64Splat;
305 break;
306 case LoadTransformation::kS128Load8x8S:
307 opcode = kMipsS128Load8x8S;
308 break;
309 case LoadTransformation::kS128Load8x8U:
310 opcode = kMipsS128Load8x8U;
311 break;
312 case LoadTransformation::kS128Load16x4S:
313 opcode = kMipsS128Load16x4S;
314 break;
315 case LoadTransformation::kS128Load16x4U:
316 opcode = kMipsS128Load16x4U;
317 break;
318 case LoadTransformation::kS128Load32x2S:
319 opcode = kMipsS128Load32x2S;
320 break;
321 case LoadTransformation::kS128Load32x2U:
322 opcode = kMipsS128Load32x2U;
323 break;
324 default:
325 UNIMPLEMENTED();
326 }
327
328 if (g.CanBeImmediate(index, opcode)) {
329 Emit(opcode | AddressingModeField::encode(kMode_MRI),
330 g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
331 } else {
332 InstructionOperand addr_reg = g.TempRegister();
333 Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
334 g.UseRegister(index), g.UseRegister(base));
335 // Emit desired load opcode, using temp addr_reg.
336 Emit(opcode | AddressingModeField::encode(kMode_MRI),
337 g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
338 }
339 }
340
VisitLoad(Node * node)341 void InstructionSelector::VisitLoad(Node* node) {
342 LoadRepresentation load_rep = LoadRepresentationOf(node->op());
343 MipsOperandGenerator g(this);
344 Node* base = node->InputAt(0);
345 Node* index = node->InputAt(1);
346
347 InstructionCode opcode = kArchNop;
348 switch (load_rep.representation()) {
349 case MachineRepresentation::kFloat32:
350 opcode = kMipsLwc1;
351 break;
352 case MachineRepresentation::kFloat64:
353 opcode = kMipsLdc1;
354 break;
355 case MachineRepresentation::kBit: // Fall through.
356 case MachineRepresentation::kWord8:
357 opcode = load_rep.IsUnsigned() ? kMipsLbu : kMipsLb;
358 break;
359 case MachineRepresentation::kWord16:
360 opcode = load_rep.IsUnsigned() ? kMipsLhu : kMipsLh;
361 break;
362 case MachineRepresentation::kTaggedSigned: // Fall through.
363 case MachineRepresentation::kTaggedPointer: // Fall through.
364 case MachineRepresentation::kTagged: // Fall through.
365 case MachineRepresentation::kWord32:
366 opcode = kMipsLw;
367 break;
368 case MachineRepresentation::kSimd128:
369 opcode = kMipsMsaLd;
370 break;
371 case MachineRepresentation::kCompressedPointer: // Fall through.
372 case MachineRepresentation::kCompressed: // Fall through.
373 case MachineRepresentation::kSandboxedPointer: // Fall through.
374 case MachineRepresentation::kWord64: // Fall through.
375 case MachineRepresentation::kMapWord: // Fall through.
376 case MachineRepresentation::kNone:
377 UNREACHABLE();
378 }
379
380 if (g.CanBeImmediate(index, opcode)) {
381 Emit(opcode | AddressingModeField::encode(kMode_MRI),
382 g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
383 } else {
384 InstructionOperand addr_reg = g.TempRegister();
385 Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
386 g.UseRegister(index), g.UseRegister(base));
387 // Emit desired load opcode, using temp addr_reg.
388 Emit(opcode | AddressingModeField::encode(kMode_MRI),
389 g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
390 }
391 }
392
VisitProtectedLoad(Node * node)393 void InstructionSelector::VisitProtectedLoad(Node* node) {
394 // TODO(eholk)
395 UNIMPLEMENTED();
396 }
397
VisitStore(Node * node)398 void InstructionSelector::VisitStore(Node* node) {
399 MipsOperandGenerator g(this);
400 Node* base = node->InputAt(0);
401 Node* index = node->InputAt(1);
402 Node* value = node->InputAt(2);
403
404 StoreRepresentation store_rep = StoreRepresentationOf(node->op());
405 WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
406 MachineRepresentation rep = store_rep.representation();
407
408 if (FLAG_enable_unconditional_write_barriers && CanBeTaggedPointer(rep)) {
409 write_barrier_kind = kFullWriteBarrier;
410 }
411
412 // TODO(mips): I guess this could be done in a better way.
413 if (write_barrier_kind != kNoWriteBarrier && !FLAG_disable_write_barriers) {
414 DCHECK(CanBeTaggedPointer(rep));
415 InstructionOperand inputs[3];
416 size_t input_count = 0;
417 inputs[input_count++] = g.UseUniqueRegister(base);
418 inputs[input_count++] = g.UseUniqueRegister(index);
419 inputs[input_count++] = g.UseUniqueRegister(value);
420 RecordWriteMode record_write_mode =
421 WriteBarrierKindToRecordWriteMode(write_barrier_kind);
422 InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
423 size_t const temp_count = arraysize(temps);
424 InstructionCode code = kArchStoreWithWriteBarrier;
425 code |= MiscField::encode(static_cast<int>(record_write_mode));
426 Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
427 } else {
428 ArchOpcode opcode;
429 switch (rep) {
430 case MachineRepresentation::kFloat32:
431 opcode = kMipsSwc1;
432 break;
433 case MachineRepresentation::kFloat64:
434 opcode = kMipsSdc1;
435 break;
436 case MachineRepresentation::kBit: // Fall through.
437 case MachineRepresentation::kWord8:
438 opcode = kMipsSb;
439 break;
440 case MachineRepresentation::kWord16:
441 opcode = kMipsSh;
442 break;
443 case MachineRepresentation::kTaggedSigned: // Fall through.
444 case MachineRepresentation::kTaggedPointer: // Fall through.
445 case MachineRepresentation::kTagged: // Fall through.
446 case MachineRepresentation::kWord32:
447 opcode = kMipsSw;
448 break;
449 case MachineRepresentation::kSimd128:
450 opcode = kMipsMsaSt;
451 break;
452 case MachineRepresentation::kCompressedPointer: // Fall through.
453 case MachineRepresentation::kCompressed: // Fall through.
454 case MachineRepresentation::kSandboxedPointer: // Fall through.
455 case MachineRepresentation::kWord64: // Fall through.
456 case MachineRepresentation::kMapWord: // Fall through.
457 case MachineRepresentation::kNone:
458 UNREACHABLE();
459 }
460
461 if (g.CanBeImmediate(index, opcode)) {
462 Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
463 g.UseRegister(base), g.UseImmediate(index),
464 g.UseRegisterOrImmediateZero(value));
465 } else {
466 InstructionOperand addr_reg = g.TempRegister();
467 Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
468 g.UseRegister(index), g.UseRegister(base));
469 // Emit desired store opcode, using temp addr_reg.
470 Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
471 addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value));
472 }
473 }
474 }
475
VisitProtectedStore(Node * node)476 void InstructionSelector::VisitProtectedStore(Node* node) {
477 // TODO(eholk)
478 UNIMPLEMENTED();
479 }
480
VisitLoadLane(Node * node)481 void InstructionSelector::VisitLoadLane(Node* node) { UNIMPLEMENTED(); }
482
VisitStoreLane(Node * node)483 void InstructionSelector::VisitStoreLane(Node* node) { UNIMPLEMENTED(); }
484
VisitWord32And(Node * node)485 void InstructionSelector::VisitWord32And(Node* node) {
486 MipsOperandGenerator g(this);
487 Int32BinopMatcher m(node);
488 if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) &&
489 m.right().HasResolvedValue()) {
490 uint32_t mask = m.right().ResolvedValue();
491 uint32_t mask_width = base::bits::CountPopulation(mask);
492 uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
493 if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
494 // The mask must be contiguous, and occupy the least-significant bits.
495 DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
496
497 // Select Ext for And(Shr(x, imm), mask) where the mask is in the least
498 // significant bits.
499 Int32BinopMatcher mleft(m.left().node());
500 if (mleft.right().HasResolvedValue()) {
501 // Any shift value can match; int32 shifts use `value % 32`.
502 uint32_t lsb = mleft.right().ResolvedValue() & 0x1F;
503
504 // Ext cannot extract bits past the register size, however since
505 // shifting the original value would have introduced some zeros we can
506 // still use Ext with a smaller mask and the remaining bits will be
507 // zeros.
508 if (lsb + mask_width > 32) mask_width = 32 - lsb;
509
510 if (lsb == 0 && mask_width == 32) {
511 Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(mleft.left().node()));
512 } else {
513 Emit(kMipsExt, g.DefineAsRegister(node),
514 g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
515 g.TempImmediate(mask_width));
516 }
517 return;
518 }
519 // Other cases fall through to the normal And operation.
520 }
521 }
522 if (m.right().HasResolvedValue()) {
523 uint32_t mask = m.right().ResolvedValue();
524 uint32_t shift = base::bits::CountPopulation(~mask);
525 uint32_t msb = base::bits::CountLeadingZeros32(~mask);
526 if (shift != 0 && shift != 32 && msb + shift == 32) {
527 // Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction
528 // and remove constant loading of invereted mask.
529 Emit(kMipsIns, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
530 g.TempImmediate(0), g.TempImmediate(shift));
531 return;
532 }
533 }
534 VisitBinop(this, node, kMipsAnd, true, kMipsAnd);
535 }
536
VisitWord32Or(Node * node)537 void InstructionSelector::VisitWord32Or(Node* node) {
538 VisitBinop(this, node, kMipsOr, true, kMipsOr);
539 }
540
VisitWord32Xor(Node * node)541 void InstructionSelector::VisitWord32Xor(Node* node) {
542 Int32BinopMatcher m(node);
543 if (m.left().IsWord32Or() && CanCover(node, m.left().node()) &&
544 m.right().Is(-1)) {
545 Int32BinopMatcher mleft(m.left().node());
546 if (!mleft.right().HasResolvedValue()) {
547 MipsOperandGenerator g(this);
548 Emit(kMipsNor, g.DefineAsRegister(node),
549 g.UseRegister(mleft.left().node()),
550 g.UseRegister(mleft.right().node()));
551 return;
552 }
553 }
554 if (m.right().Is(-1)) {
555 // Use Nor for bit negation and eliminate constant loading for xori.
556 MipsOperandGenerator g(this);
557 Emit(kMipsNor, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
558 g.TempImmediate(0));
559 return;
560 }
561 VisitBinop(this, node, kMipsXor, true, kMipsXor);
562 }
563
VisitWord32Shl(Node * node)564 void InstructionSelector::VisitWord32Shl(Node* node) {
565 Int32BinopMatcher m(node);
566 if (m.left().IsWord32And() && CanCover(node, m.left().node()) &&
567 m.right().IsInRange(1, 31)) {
568 MipsOperandGenerator g(this);
569 Int32BinopMatcher mleft(m.left().node());
570 // Match Word32Shl(Word32And(x, mask), imm) to Shl where the mask is
571 // contiguous, and the shift immediate non-zero.
572 if (mleft.right().HasResolvedValue()) {
573 uint32_t mask = mleft.right().ResolvedValue();
574 uint32_t mask_width = base::bits::CountPopulation(mask);
575 uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
576 if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
577 uint32_t shift = m.right().ResolvedValue();
578 DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
579 DCHECK_NE(0u, shift);
580 if ((shift + mask_width) >= 32) {
581 // If the mask is contiguous and reaches or extends beyond the top
582 // bit, only the shift is needed.
583 Emit(kMipsShl, g.DefineAsRegister(node),
584 g.UseRegister(mleft.left().node()),
585 g.UseImmediate(m.right().node()));
586 return;
587 }
588 }
589 }
590 }
591 VisitRRO(this, kMipsShl, node);
592 }
593
VisitWord32Shr(Node * node)594 void InstructionSelector::VisitWord32Shr(Node* node) {
595 Int32BinopMatcher m(node);
596 if (m.left().IsWord32And() && m.right().HasResolvedValue()) {
597 uint32_t lsb = m.right().ResolvedValue() & 0x1F;
598 Int32BinopMatcher mleft(m.left().node());
599 if (mleft.right().HasResolvedValue() &&
600 mleft.right().ResolvedValue() != 0) {
601 // Select Ext for Shr(And(x, mask), imm) where the result of the mask is
602 // shifted into the least-significant bits.
603 uint32_t mask = (mleft.right().ResolvedValue() >> lsb) << lsb;
604 unsigned mask_width = base::bits::CountPopulation(mask);
605 unsigned mask_msb = base::bits::CountLeadingZeros32(mask);
606 if ((mask_msb + mask_width + lsb) == 32) {
607 MipsOperandGenerator g(this);
608 DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask));
609 Emit(kMipsExt, g.DefineAsRegister(node),
610 g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
611 g.TempImmediate(mask_width));
612 return;
613 }
614 }
615 }
616 VisitRRO(this, kMipsShr, node);
617 }
618
VisitWord32Sar(Node * node)619 void InstructionSelector::VisitWord32Sar(Node* node) {
620 Int32BinopMatcher m(node);
621 if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
622 m.left().IsWord32Shl() && CanCover(node, m.left().node())) {
623 Int32BinopMatcher mleft(m.left().node());
624 if (m.right().HasResolvedValue() && mleft.right().HasResolvedValue()) {
625 MipsOperandGenerator g(this);
626 uint32_t sar = m.right().ResolvedValue();
627 uint32_t shl = mleft.right().ResolvedValue();
628 if ((sar == shl) && (sar == 16)) {
629 Emit(kMipsSeh, g.DefineAsRegister(node),
630 g.UseRegister(mleft.left().node()));
631 return;
632 } else if ((sar == shl) && (sar == 24)) {
633 Emit(kMipsSeb, g.DefineAsRegister(node),
634 g.UseRegister(mleft.left().node()));
635 return;
636 }
637 }
638 }
639 VisitRRO(this, kMipsSar, node);
640 }
641
VisitInt32PairBinop(InstructionSelector * selector,InstructionCode pair_opcode,InstructionCode single_opcode,Node * node)642 static void VisitInt32PairBinop(InstructionSelector* selector,
643 InstructionCode pair_opcode,
644 InstructionCode single_opcode, Node* node) {
645 MipsOperandGenerator g(selector);
646
647 Node* projection1 = NodeProperties::FindProjection(node, 1);
648
649 if (projection1) {
650 // We use UseUniqueRegister here to avoid register sharing with the output
651 // register.
652 InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
653 g.UseUniqueRegister(node->InputAt(1)),
654 g.UseUniqueRegister(node->InputAt(2)),
655 g.UseUniqueRegister(node->InputAt(3))};
656
657 InstructionOperand outputs[] = {
658 g.DefineAsRegister(node),
659 g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
660 selector->Emit(pair_opcode, 2, outputs, 4, inputs);
661 } else {
662 // The high word of the result is not used, so we emit the standard 32 bit
663 // instruction.
664 selector->Emit(single_opcode, g.DefineSameAsFirst(node),
665 g.UseRegister(node->InputAt(0)),
666 g.UseRegister(node->InputAt(2)));
667 }
668 }
669
VisitInt32PairAdd(Node * node)670 void InstructionSelector::VisitInt32PairAdd(Node* node) {
671 VisitInt32PairBinop(this, kMipsAddPair, kMipsAdd, node);
672 }
673
VisitInt32PairSub(Node * node)674 void InstructionSelector::VisitInt32PairSub(Node* node) {
675 VisitInt32PairBinop(this, kMipsSubPair, kMipsSub, node);
676 }
677
VisitInt32PairMul(Node * node)678 void InstructionSelector::VisitInt32PairMul(Node* node) {
679 VisitInt32PairBinop(this, kMipsMulPair, kMipsMul, node);
680 }
681
682 // Shared routine for multiple shift operations.
VisitWord32PairShift(InstructionSelector * selector,InstructionCode opcode,Node * node)683 static void VisitWord32PairShift(InstructionSelector* selector,
684 InstructionCode opcode, Node* node) {
685 MipsOperandGenerator g(selector);
686 Int32Matcher m(node->InputAt(2));
687 InstructionOperand shift_operand;
688 if (m.HasResolvedValue()) {
689 shift_operand = g.UseImmediate(m.node());
690 } else {
691 shift_operand = g.UseUniqueRegister(m.node());
692 }
693
694 // We use UseUniqueRegister here to avoid register sharing with the output
695 // register.
696 InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
697 g.UseUniqueRegister(node->InputAt(1)),
698 shift_operand};
699
700 Node* projection1 = NodeProperties::FindProjection(node, 1);
701
702 InstructionOperand outputs[2];
703 InstructionOperand temps[1];
704 int32_t output_count = 0;
705 int32_t temp_count = 0;
706
707 outputs[output_count++] = g.DefineAsRegister(node);
708 if (projection1) {
709 outputs[output_count++] = g.DefineAsRegister(projection1);
710 } else {
711 temps[temp_count++] = g.TempRegister();
712 }
713
714 selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps);
715 }
716
VisitWord32PairShl(Node * node)717 void InstructionSelector::VisitWord32PairShl(Node* node) {
718 VisitWord32PairShift(this, kMipsShlPair, node);
719 }
720
VisitWord32PairShr(Node * node)721 void InstructionSelector::VisitWord32PairShr(Node* node) {
722 VisitWord32PairShift(this, kMipsShrPair, node);
723 }
724
VisitWord32PairSar(Node * node)725 void InstructionSelector::VisitWord32PairSar(Node* node) {
726 VisitWord32PairShift(this, kMipsSarPair, node);
727 }
728
VisitWord32Rol(Node * node)729 void InstructionSelector::VisitWord32Rol(Node* node) { UNREACHABLE(); }
730
VisitWord32Ror(Node * node)731 void InstructionSelector::VisitWord32Ror(Node* node) {
732 VisitRRO(this, kMipsRor, node);
733 }
734
VisitWord32Clz(Node * node)735 void InstructionSelector::VisitWord32Clz(Node* node) {
736 VisitRR(this, kMipsClz, node);
737 }
738
VisitWord32AtomicPairLoad(Node * node)739 void InstructionSelector::VisitWord32AtomicPairLoad(Node* node) {
740 MipsOperandGenerator g(this);
741 Node* base = node->InputAt(0);
742 Node* index = node->InputAt(1);
743 ArchOpcode opcode = kMipsWord32AtomicPairLoad;
744 AddressingMode addressing_mode = kMode_MRI;
745 InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
746 InstructionOperand inputs[] = {g.UseRegister(base), g.UseRegister(index)};
747 InstructionOperand temps[3];
748 size_t temp_count = 0;
749 temps[temp_count++] = g.TempRegister(a0);
750 InstructionOperand outputs[2];
751 size_t output_count = 0;
752
753 Node* projection0 = NodeProperties::FindProjection(node, 0);
754 Node* projection1 = NodeProperties::FindProjection(node, 1);
755 if (projection0) {
756 outputs[output_count++] = g.DefineAsFixed(projection0, v0);
757 } else {
758 temps[temp_count++] = g.TempRegister(v0);
759 }
760 if (projection1) {
761 outputs[output_count++] = g.DefineAsFixed(projection1, v1);
762 } else {
763 temps[temp_count++] = g.TempRegister(v1);
764 }
765 Emit(code, output_count, outputs, arraysize(inputs), inputs, temp_count,
766 temps);
767 }
768
VisitWord32AtomicPairStore(Node * node)769 void InstructionSelector::VisitWord32AtomicPairStore(Node* node) {
770 MipsOperandGenerator g(this);
771 Node* base = node->InputAt(0);
772 Node* index = node->InputAt(1);
773 Node* value_low = node->InputAt(2);
774 Node* value_high = node->InputAt(3);
775
776 InstructionOperand inputs[] = {g.UseRegister(base), g.UseRegister(index),
777 g.UseFixed(value_low, a1),
778 g.UseFixed(value_high, a2)};
779 InstructionOperand temps[] = {g.TempRegister(a0), g.TempRegister(),
780 g.TempRegister()};
781 Emit(kMipsWord32AtomicPairStore | AddressingModeField::encode(kMode_MRI), 0,
782 nullptr, arraysize(inputs), inputs, arraysize(temps), temps);
783 }
784
VisitWord32AtomicPairAdd(Node * node)785 void InstructionSelector::VisitWord32AtomicPairAdd(Node* node) {
786 VisitPairAtomicBinop(this, node, kMipsWord32AtomicPairAdd);
787 }
788
VisitWord32AtomicPairSub(Node * node)789 void InstructionSelector::VisitWord32AtomicPairSub(Node* node) {
790 VisitPairAtomicBinop(this, node, kMipsWord32AtomicPairSub);
791 }
792
VisitWord32AtomicPairAnd(Node * node)793 void InstructionSelector::VisitWord32AtomicPairAnd(Node* node) {
794 VisitPairAtomicBinop(this, node, kMipsWord32AtomicPairAnd);
795 }
796
VisitWord32AtomicPairOr(Node * node)797 void InstructionSelector::VisitWord32AtomicPairOr(Node* node) {
798 VisitPairAtomicBinop(this, node, kMipsWord32AtomicPairOr);
799 }
800
VisitWord32AtomicPairXor(Node * node)801 void InstructionSelector::VisitWord32AtomicPairXor(Node* node) {
802 VisitPairAtomicBinop(this, node, kMipsWord32AtomicPairXor);
803 }
804
VisitWord32AtomicPairExchange(Node * node)805 void InstructionSelector::VisitWord32AtomicPairExchange(Node* node) {
806 VisitPairAtomicBinop(this, node, kMipsWord32AtomicPairExchange);
807 }
808
VisitWord32AtomicPairCompareExchange(Node * node)809 void InstructionSelector::VisitWord32AtomicPairCompareExchange(Node* node) {
810 MipsOperandGenerator g(this);
811 InstructionOperand inputs[] = {
812 g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)),
813 g.UseFixed(node->InputAt(2), a1), g.UseFixed(node->InputAt(3), a2),
814 g.UseFixed(node->InputAt(4), a3), g.UseUniqueRegister(node->InputAt(5))};
815
816 InstructionCode code = kMipsWord32AtomicPairCompareExchange |
817 AddressingModeField::encode(kMode_MRI);
818 Node* projection0 = NodeProperties::FindProjection(node, 0);
819 Node* projection1 = NodeProperties::FindProjection(node, 1);
820 InstructionOperand outputs[2];
821 size_t output_count = 0;
822 InstructionOperand temps[3];
823 size_t temp_count = 0;
824 temps[temp_count++] = g.TempRegister(a0);
825 if (projection0) {
826 outputs[output_count++] = g.DefineAsFixed(projection0, v0);
827 } else {
828 temps[temp_count++] = g.TempRegister(v0);
829 }
830 if (projection1) {
831 outputs[output_count++] = g.DefineAsFixed(projection1, v1);
832 } else {
833 temps[temp_count++] = g.TempRegister(v1);
834 }
835 Emit(code, output_count, outputs, arraysize(inputs), inputs, temp_count,
836 temps);
837 }
838
VisitWord32ReverseBits(Node * node)839 void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
840
VisitWord64ReverseBytes(Node * node)841 void InstructionSelector::VisitWord64ReverseBytes(Node* node) { UNREACHABLE(); }
842
VisitWord32ReverseBytes(Node * node)843 void InstructionSelector::VisitWord32ReverseBytes(Node* node) {
844 MipsOperandGenerator g(this);
845 Emit(kMipsByteSwap32, g.DefineAsRegister(node),
846 g.UseRegister(node->InputAt(0)));
847 }
848
VisitSimd128ReverseBytes(Node * node)849 void InstructionSelector::VisitSimd128ReverseBytes(Node* node) {
850 UNREACHABLE();
851 }
852
VisitWord32Ctz(Node * node)853 void InstructionSelector::VisitWord32Ctz(Node* node) {
854 MipsOperandGenerator g(this);
855 Emit(kMipsCtz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
856 }
857
VisitWord32Popcnt(Node * node)858 void InstructionSelector::VisitWord32Popcnt(Node* node) {
859 MipsOperandGenerator g(this);
860 Emit(kMipsPopcnt, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
861 }
862
VisitInt32Add(Node * node)863 void InstructionSelector::VisitInt32Add(Node* node) {
864 MipsOperandGenerator g(this);
865 Int32BinopMatcher m(node);
866
867 if (IsMipsArchVariant(kMips32r6)) {
868 // Select Lsa for (left + (left_of_right << imm)).
869 if (m.right().opcode() == IrOpcode::kWord32Shl &&
870 CanCover(node, m.left().node()) && CanCover(node, m.right().node())) {
871 Int32BinopMatcher mright(m.right().node());
872 if (mright.right().HasResolvedValue() && !m.left().HasResolvedValue()) {
873 int32_t shift_value =
874 static_cast<int32_t>(mright.right().ResolvedValue());
875 if (shift_value > 0 && shift_value <= 31) {
876 Emit(kMipsLsa, g.DefineAsRegister(node),
877 g.UseRegister(m.left().node()),
878 g.UseRegister(mright.left().node()),
879 g.TempImmediate(shift_value));
880 return;
881 }
882 }
883 }
884
885 // Select Lsa for ((left_of_left << imm) + right).
886 if (m.left().opcode() == IrOpcode::kWord32Shl &&
887 CanCover(node, m.right().node()) && CanCover(node, m.left().node())) {
888 Int32BinopMatcher mleft(m.left().node());
889 if (mleft.right().HasResolvedValue() && !m.right().HasResolvedValue()) {
890 int32_t shift_value =
891 static_cast<int32_t>(mleft.right().ResolvedValue());
892 if (shift_value > 0 && shift_value <= 31) {
893 Emit(kMipsLsa, g.DefineAsRegister(node),
894 g.UseRegister(m.right().node()),
895 g.UseRegister(mleft.left().node()),
896 g.TempImmediate(shift_value));
897 return;
898 }
899 }
900 }
901 }
902
903 VisitBinop(this, node, kMipsAdd, true, kMipsAdd);
904 }
905
VisitInt32Sub(Node * node)906 void InstructionSelector::VisitInt32Sub(Node* node) {
907 VisitBinop(this, node, kMipsSub);
908 }
909
VisitInt32Mul(Node * node)910 void InstructionSelector::VisitInt32Mul(Node* node) {
911 MipsOperandGenerator g(this);
912 Int32BinopMatcher m(node);
913 if (m.right().HasResolvedValue() && m.right().ResolvedValue() > 0) {
914 uint32_t value = static_cast<uint32_t>(m.right().ResolvedValue());
915 if (base::bits::IsPowerOfTwo(value)) {
916 Emit(kMipsShl | AddressingModeField::encode(kMode_None),
917 g.DefineAsRegister(node), g.UseRegister(m.left().node()),
918 g.TempImmediate(base::bits::WhichPowerOfTwo(value)));
919 return;
920 }
921 if (base::bits::IsPowerOfTwo(value - 1) && IsMipsArchVariant(kMips32r6) &&
922 value - 1 > 0 && value - 1 <= 31) {
923 Emit(kMipsLsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
924 g.UseRegister(m.left().node()),
925 g.TempImmediate(base::bits::WhichPowerOfTwo(value - 1)));
926 return;
927 }
928 if (base::bits::IsPowerOfTwo(value + 1)) {
929 InstructionOperand temp = g.TempRegister();
930 Emit(kMipsShl | AddressingModeField::encode(kMode_None), temp,
931 g.UseRegister(m.left().node()),
932 g.TempImmediate(base::bits::WhichPowerOfTwo(value + 1)));
933 Emit(kMipsSub | AddressingModeField::encode(kMode_None),
934 g.DefineAsRegister(node), temp, g.UseRegister(m.left().node()));
935 return;
936 }
937 }
938 VisitRRR(this, kMipsMul, node);
939 }
940
VisitInt32MulHigh(Node * node)941 void InstructionSelector::VisitInt32MulHigh(Node* node) {
942 VisitRRR(this, kMipsMulHigh, node);
943 }
944
VisitUint32MulHigh(Node * node)945 void InstructionSelector::VisitUint32MulHigh(Node* node) {
946 MipsOperandGenerator g(this);
947 Emit(kMipsMulHighU, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)),
948 g.UseRegister(node->InputAt(1)));
949 }
950
VisitInt32Div(Node * node)951 void InstructionSelector::VisitInt32Div(Node* node) {
952 MipsOperandGenerator g(this);
953 Int32BinopMatcher m(node);
954 Emit(kMipsDiv, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
955 g.UseRegister(m.right().node()));
956 }
957
VisitUint32Div(Node * node)958 void InstructionSelector::VisitUint32Div(Node* node) {
959 MipsOperandGenerator g(this);
960 Int32BinopMatcher m(node);
961 Emit(kMipsDivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
962 g.UseRegister(m.right().node()));
963 }
964
VisitInt32Mod(Node * node)965 void InstructionSelector::VisitInt32Mod(Node* node) {
966 MipsOperandGenerator g(this);
967 Int32BinopMatcher m(node);
968 Emit(kMipsMod, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
969 g.UseRegister(m.right().node()));
970 }
971
VisitUint32Mod(Node * node)972 void InstructionSelector::VisitUint32Mod(Node* node) {
973 MipsOperandGenerator g(this);
974 Int32BinopMatcher m(node);
975 Emit(kMipsModU, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
976 g.UseRegister(m.right().node()));
977 }
978
VisitChangeFloat32ToFloat64(Node * node)979 void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
980 VisitRR(this, kMipsCvtDS, node);
981 }
982
VisitRoundInt32ToFloat32(Node * node)983 void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) {
984 VisitRR(this, kMipsCvtSW, node);
985 }
986
VisitRoundUint32ToFloat32(Node * node)987 void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) {
988 VisitRR(this, kMipsCvtSUw, node);
989 }
990
VisitChangeInt32ToFloat64(Node * node)991 void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
992 VisitRR(this, kMipsCvtDW, node);
993 }
994
VisitChangeUint32ToFloat64(Node * node)995 void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
996 VisitRR(this, kMipsCvtDUw, node);
997 }
998
VisitTruncateFloat32ToInt32(Node * node)999 void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) {
1000 MipsOperandGenerator g(this);
1001 InstructionCode opcode = kMipsTruncWS;
1002 TruncateKind kind = OpParameter<TruncateKind>(node->op());
1003 if (kind == TruncateKind::kSetOverflowToMin) {
1004 opcode |= MiscField::encode(true);
1005 }
1006
1007 Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
1008 }
1009
VisitTruncateFloat32ToUint32(Node * node)1010 void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) {
1011 MipsOperandGenerator g(this);
1012 InstructionCode opcode = kMipsTruncUwS;
1013 TruncateKind kind = OpParameter<TruncateKind>(node->op());
1014 if (kind == TruncateKind::kSetOverflowToMin) {
1015 opcode |= MiscField::encode(true);
1016 }
1017
1018 Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
1019 }
1020
VisitChangeFloat64ToInt32(Node * node)1021 void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
1022 MipsOperandGenerator g(this);
1023 Node* value = node->InputAt(0);
1024 // Match ChangeFloat64ToInt32(Float64Round##OP) to corresponding instruction
1025 // which does rounding and conversion to integer format.
1026 if (CanCover(node, value)) {
1027 switch (value->opcode()) {
1028 case IrOpcode::kFloat64RoundDown:
1029 Emit(kMipsFloorWD, g.DefineAsRegister(node),
1030 g.UseRegister(value->InputAt(0)));
1031 return;
1032 case IrOpcode::kFloat64RoundUp:
1033 Emit(kMipsCeilWD, g.DefineAsRegister(node),
1034 g.UseRegister(value->InputAt(0)));
1035 return;
1036 case IrOpcode::kFloat64RoundTiesEven:
1037 Emit(kMipsRoundWD, g.DefineAsRegister(node),
1038 g.UseRegister(value->InputAt(0)));
1039 return;
1040 case IrOpcode::kFloat64RoundTruncate:
1041 Emit(kMipsTruncWD, g.DefineAsRegister(node),
1042 g.UseRegister(value->InputAt(0)));
1043 return;
1044 default:
1045 break;
1046 }
1047 if (value->opcode() == IrOpcode::kChangeFloat32ToFloat64) {
1048 Node* next = value->InputAt(0);
1049 if (CanCover(value, next)) {
1050 // Match ChangeFloat64ToInt32(ChangeFloat32ToFloat64(Float64Round##OP))
1051 switch (next->opcode()) {
1052 case IrOpcode::kFloat32RoundDown:
1053 Emit(kMipsFloorWS, g.DefineAsRegister(node),
1054 g.UseRegister(next->InputAt(0)));
1055 return;
1056 case IrOpcode::kFloat32RoundUp:
1057 Emit(kMipsCeilWS, g.DefineAsRegister(node),
1058 g.UseRegister(next->InputAt(0)));
1059 return;
1060 case IrOpcode::kFloat32RoundTiesEven:
1061 Emit(kMipsRoundWS, g.DefineAsRegister(node),
1062 g.UseRegister(next->InputAt(0)));
1063 return;
1064 case IrOpcode::kFloat32RoundTruncate:
1065 Emit(kMipsTruncWS, g.DefineAsRegister(node),
1066 g.UseRegister(next->InputAt(0)));
1067 return;
1068 default:
1069 Emit(kMipsTruncWS, g.DefineAsRegister(node),
1070 g.UseRegister(value->InputAt(0)));
1071 return;
1072 }
1073 } else {
1074 // Match float32 -> float64 -> int32 representation change path.
1075 Emit(kMipsTruncWS, g.DefineAsRegister(node),
1076 g.UseRegister(value->InputAt(0)));
1077 return;
1078 }
1079 }
1080 }
1081 VisitRR(this, kMipsTruncWD, node);
1082 }
1083
VisitChangeFloat64ToUint32(Node * node)1084 void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
1085 VisitRR(this, kMipsTruncUwD, node);
1086 }
1087
VisitTruncateFloat64ToUint32(Node * node)1088 void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) {
1089 VisitRR(this, kMipsTruncUwD, node);
1090 }
1091
VisitTruncateFloat64ToFloat32(Node * node)1092 void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
1093 MipsOperandGenerator g(this);
1094 Node* value = node->InputAt(0);
1095 // Match TruncateFloat64ToFloat32(ChangeInt32ToFloat64) to corresponding
1096 // instruction.
1097 if (CanCover(node, value) &&
1098 value->opcode() == IrOpcode::kChangeInt32ToFloat64) {
1099 Emit(kMipsCvtSW, g.DefineAsRegister(node),
1100 g.UseRegister(value->InputAt(0)));
1101 return;
1102 }
1103 VisitRR(this, kMipsCvtSD, node);
1104 }
1105
VisitTruncateFloat64ToWord32(Node * node)1106 void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
1107 VisitRR(this, kArchTruncateDoubleToI, node);
1108 }
1109
VisitRoundFloat64ToInt32(Node * node)1110 void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) {
1111 VisitRR(this, kMipsTruncWD, node);
1112 }
1113
VisitBitcastFloat32ToInt32(Node * node)1114 void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
1115 VisitRR(this, kMipsFloat64ExtractLowWord32, node);
1116 }
1117
VisitBitcastInt32ToFloat32(Node * node)1118 void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
1119 MipsOperandGenerator g(this);
1120 Emit(kMipsFloat64InsertLowWord32, g.DefineAsRegister(node),
1121 ImmediateOperand(ImmediateOperand::INLINE_INT32, 0),
1122 g.UseRegister(node->InputAt(0)));
1123 }
1124
VisitFloat32Add(Node * node)1125 void InstructionSelector::VisitFloat32Add(Node* node) {
1126 MipsOperandGenerator g(this);
1127 if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y).
1128 Float32BinopMatcher m(node);
1129 if (m.left().IsFloat32Mul() && CanCover(node, m.left().node())) {
1130 // For Add.S(Mul.S(x, y), z):
1131 Float32BinopMatcher mleft(m.left().node());
1132 Emit(kMipsMaddS, g.DefineAsRegister(node),
1133 g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()),
1134 g.UseRegister(mleft.right().node()));
1135 return;
1136 }
1137 if (m.right().IsFloat32Mul() && CanCover(node, m.right().node())) {
1138 // For Add.S(x, Mul.S(y, z)):
1139 Float32BinopMatcher mright(m.right().node());
1140 Emit(kMipsMaddS, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
1141 g.UseRegister(mright.left().node()),
1142 g.UseRegister(mright.right().node()));
1143 return;
1144 }
1145 }
1146 VisitRRR(this, kMipsAddS, node);
1147 }
1148
VisitFloat64Add(Node * node)1149 void InstructionSelector::VisitFloat64Add(Node* node) {
1150 MipsOperandGenerator g(this);
1151 if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y).
1152 Float64BinopMatcher m(node);
1153 if (m.left().IsFloat64Mul() && CanCover(node, m.left().node())) {
1154 // For Add.D(Mul.D(x, y), z):
1155 Float64BinopMatcher mleft(m.left().node());
1156 Emit(kMipsMaddD, g.DefineAsRegister(node),
1157 g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()),
1158 g.UseRegister(mleft.right().node()));
1159 return;
1160 }
1161 if (m.right().IsFloat64Mul() && CanCover(node, m.right().node())) {
1162 // For Add.D(x, Mul.D(y, z)):
1163 Float64BinopMatcher mright(m.right().node());
1164 Emit(kMipsMaddD, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
1165 g.UseRegister(mright.left().node()),
1166 g.UseRegister(mright.right().node()));
1167 return;
1168 }
1169 }
1170 VisitRRR(this, kMipsAddD, node);
1171 }
1172
VisitFloat32Sub(Node * node)1173 void InstructionSelector::VisitFloat32Sub(Node* node) {
1174 MipsOperandGenerator g(this);
1175 if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y).
1176 Float32BinopMatcher m(node);
1177 if (m.left().IsFloat32Mul() && CanCover(node, m.left().node())) {
1178 // For Sub.S(Mul.S(x,y), z) select Msub.S(z, x, y).
1179 Float32BinopMatcher mleft(m.left().node());
1180 Emit(kMipsMsubS, g.DefineAsRegister(node),
1181 g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()),
1182 g.UseRegister(mleft.right().node()));
1183 return;
1184 }
1185 }
1186 VisitRRR(this, kMipsSubS, node);
1187 }
1188
VisitFloat64Sub(Node * node)1189 void InstructionSelector::VisitFloat64Sub(Node* node) {
1190 MipsOperandGenerator g(this);
1191 if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y).
1192 Float64BinopMatcher m(node);
1193 if (m.left().IsFloat64Mul() && CanCover(node, m.left().node())) {
1194 // For Sub.D(Mul.S(x,y), z) select Msub.D(z, x, y).
1195 Float64BinopMatcher mleft(m.left().node());
1196 Emit(kMipsMsubD, g.DefineAsRegister(node),
1197 g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()),
1198 g.UseRegister(mleft.right().node()));
1199 return;
1200 }
1201 }
1202 VisitRRR(this, kMipsSubD, node);
1203 }
1204
VisitFloat32Mul(Node * node)1205 void InstructionSelector::VisitFloat32Mul(Node* node) {
1206 VisitRRR(this, kMipsMulS, node);
1207 }
1208
VisitFloat64Mul(Node * node)1209 void InstructionSelector::VisitFloat64Mul(Node* node) {
1210 VisitRRR(this, kMipsMulD, node);
1211 }
1212
VisitFloat32Div(Node * node)1213 void InstructionSelector::VisitFloat32Div(Node* node) {
1214 VisitRRR(this, kMipsDivS, node);
1215 }
1216
VisitFloat64Div(Node * node)1217 void InstructionSelector::VisitFloat64Div(Node* node) {
1218 VisitRRR(this, kMipsDivD, node);
1219 }
1220
VisitFloat64Mod(Node * node)1221 void InstructionSelector::VisitFloat64Mod(Node* node) {
1222 MipsOperandGenerator g(this);
1223 Emit(kMipsModD, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12),
1224 g.UseFixed(node->InputAt(1), f14))
1225 ->MarkAsCall();
1226 }
1227
VisitFloat32Max(Node * node)1228 void InstructionSelector::VisitFloat32Max(Node* node) {
1229 MipsOperandGenerator g(this);
1230 Emit(kMipsFloat32Max, g.DefineAsRegister(node),
1231 g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
1232 }
1233
VisitFloat64Max(Node * node)1234 void InstructionSelector::VisitFloat64Max(Node* node) {
1235 MipsOperandGenerator g(this);
1236 Emit(kMipsFloat64Max, g.DefineAsRegister(node),
1237 g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
1238 }
1239
VisitFloat32Min(Node * node)1240 void InstructionSelector::VisitFloat32Min(Node* node) {
1241 MipsOperandGenerator g(this);
1242 Emit(kMipsFloat32Min, g.DefineAsRegister(node),
1243 g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
1244 }
1245
VisitFloat64Min(Node * node)1246 void InstructionSelector::VisitFloat64Min(Node* node) {
1247 MipsOperandGenerator g(this);
1248 Emit(kMipsFloat64Min, g.DefineAsRegister(node),
1249 g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
1250 }
1251
VisitFloat32Abs(Node * node)1252 void InstructionSelector::VisitFloat32Abs(Node* node) {
1253 VisitRR(this, kMipsAbsS, node);
1254 }
1255
VisitFloat64Abs(Node * node)1256 void InstructionSelector::VisitFloat64Abs(Node* node) {
1257 VisitRR(this, kMipsAbsD, node);
1258 }
1259
VisitFloat32Sqrt(Node * node)1260 void InstructionSelector::VisitFloat32Sqrt(Node* node) {
1261 VisitRR(this, kMipsSqrtS, node);
1262 }
1263
VisitFloat64Sqrt(Node * node)1264 void InstructionSelector::VisitFloat64Sqrt(Node* node) {
1265 VisitRR(this, kMipsSqrtD, node);
1266 }
1267
VisitFloat32RoundDown(Node * node)1268 void InstructionSelector::VisitFloat32RoundDown(Node* node) {
1269 VisitRR(this, kMipsFloat32RoundDown, node);
1270 }
1271
VisitFloat64RoundDown(Node * node)1272 void InstructionSelector::VisitFloat64RoundDown(Node* node) {
1273 VisitRR(this, kMipsFloat64RoundDown, node);
1274 }
1275
VisitFloat32RoundUp(Node * node)1276 void InstructionSelector::VisitFloat32RoundUp(Node* node) {
1277 VisitRR(this, kMipsFloat32RoundUp, node);
1278 }
1279
VisitFloat64RoundUp(Node * node)1280 void InstructionSelector::VisitFloat64RoundUp(Node* node) {
1281 VisitRR(this, kMipsFloat64RoundUp, node);
1282 }
1283
VisitFloat32RoundTruncate(Node * node)1284 void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
1285 VisitRR(this, kMipsFloat32RoundTruncate, node);
1286 }
1287
VisitFloat64RoundTruncate(Node * node)1288 void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
1289 VisitRR(this, kMipsFloat64RoundTruncate, node);
1290 }
1291
VisitFloat64RoundTiesAway(Node * node)1292 void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
1293 UNREACHABLE();
1294 }
1295
VisitFloat32RoundTiesEven(Node * node)1296 void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
1297 VisitRR(this, kMipsFloat32RoundTiesEven, node);
1298 }
1299
VisitFloat64RoundTiesEven(Node * node)1300 void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
1301 VisitRR(this, kMipsFloat64RoundTiesEven, node);
1302 }
1303
VisitFloat32Neg(Node * node)1304 void InstructionSelector::VisitFloat32Neg(Node* node) {
1305 VisitRR(this, kMipsNegS, node);
1306 }
1307
VisitFloat64Neg(Node * node)1308 void InstructionSelector::VisitFloat64Neg(Node* node) {
1309 VisitRR(this, kMipsNegD, node);
1310 }
1311
VisitFloat64Ieee754Binop(Node * node,InstructionCode opcode)1312 void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
1313 InstructionCode opcode) {
1314 MipsOperandGenerator g(this);
1315 Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f2),
1316 g.UseFixed(node->InputAt(1), f4))
1317 ->MarkAsCall();
1318 }
1319
VisitFloat64Ieee754Unop(Node * node,InstructionCode opcode)1320 void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
1321 InstructionCode opcode) {
1322 MipsOperandGenerator g(this);
1323 Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12))
1324 ->MarkAsCall();
1325 }
1326
EmitPrepareArguments(ZoneVector<PushParameter> * arguments,const CallDescriptor * call_descriptor,Node * node)1327 void InstructionSelector::EmitPrepareArguments(
1328 ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor,
1329 Node* node) {
1330 MipsOperandGenerator g(this);
1331
1332 // Prepare for C function call.
1333 if (call_descriptor->IsCFunctionCall()) {
1334 Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>(
1335 call_descriptor->ParameterCount())),
1336 0, nullptr, 0, nullptr);
1337
1338 // Poke any stack arguments.
1339 int slot = kCArgSlotCount;
1340 for (PushParameter input : (*arguments)) {
1341 if (input.node) {
1342 Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node),
1343 g.TempImmediate(slot << kSystemPointerSizeLog2));
1344 ++slot;
1345 }
1346 }
1347 } else {
1348 // Possibly align stack here for functions.
1349 int push_count = static_cast<int>(call_descriptor->ParameterSlotCount());
1350 if (push_count > 0) {
1351 // Calculate needed space
1352 int stack_size = 0;
1353 for (size_t n = 0; n < arguments->size(); ++n) {
1354 PushParameter input = (*arguments)[n];
1355 if (input.node) {
1356 stack_size += input.location.GetSizeInPointers();
1357 }
1358 }
1359 Emit(kMipsStackClaim, g.NoOutput(),
1360 g.TempImmediate(stack_size << kSystemPointerSizeLog2));
1361 }
1362 for (size_t n = 0; n < arguments->size(); ++n) {
1363 PushParameter input = (*arguments)[n];
1364 if (input.node) {
1365 Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node),
1366 g.TempImmediate(n << kSystemPointerSizeLog2));
1367 }
1368 }
1369 }
1370 }
1371
EmitPrepareResults(ZoneVector<PushParameter> * results,const CallDescriptor * call_descriptor,Node * node)1372 void InstructionSelector::EmitPrepareResults(
1373 ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor,
1374 Node* node) {
1375 MipsOperandGenerator g(this);
1376
1377 for (PushParameter output : *results) {
1378 if (!output.location.IsCallerFrameSlot()) continue;
1379 // Skip any alignment holes in nodes.
1380 if (output.node != nullptr) {
1381 DCHECK(!call_descriptor->IsCFunctionCall());
1382 if (output.location.GetType() == MachineType::Float32()) {
1383 MarkAsFloat32(output.node);
1384 } else if (output.location.GetType() == MachineType::Float64()) {
1385 MarkAsFloat64(output.node);
1386 } else if (output.location.GetType() == MachineType::Simd128()) {
1387 MarkAsSimd128(output.node);
1388 }
1389 int offset = call_descriptor->GetOffsetToReturns();
1390 int reverse_slot = -output.location.GetLocation() - offset;
1391 Emit(kMipsPeek, g.DefineAsRegister(output.node),
1392 g.UseImmediate(reverse_slot));
1393 }
1394 }
1395 }
1396
IsTailCallAddressImmediate()1397 bool InstructionSelector::IsTailCallAddressImmediate() { return false; }
1398
VisitUnalignedLoad(Node * node)1399 void InstructionSelector::VisitUnalignedLoad(Node* node) {
1400 LoadRepresentation load_rep = LoadRepresentationOf(node->op());
1401 MipsOperandGenerator g(this);
1402 Node* base = node->InputAt(0);
1403 Node* index = node->InputAt(1);
1404
1405 ArchOpcode opcode;
1406 switch (load_rep.representation()) {
1407 case MachineRepresentation::kWord8:
1408 opcode = load_rep.IsUnsigned() ? kMipsLbu : kMipsLb;
1409 break;
1410 case MachineRepresentation::kWord16:
1411 opcode = load_rep.IsUnsigned() ? kMipsUlhu : kMipsUlh;
1412 break;
1413 case MachineRepresentation::kTaggedSigned: // Fall through.
1414 case MachineRepresentation::kTaggedPointer: // Fall through.
1415 case MachineRepresentation::kTagged: // Fall through.
1416 case MachineRepresentation::kWord32:
1417 opcode = kMipsUlw;
1418 break;
1419 case MachineRepresentation::kFloat32:
1420 opcode = kMipsUlwc1;
1421 break;
1422 case MachineRepresentation::kFloat64:
1423 opcode = kMipsUldc1;
1424 break;
1425 case MachineRepresentation::kSimd128:
1426 opcode = kMipsMsaLd;
1427 break;
1428 case MachineRepresentation::kBit: // Fall through.
1429 case MachineRepresentation::kCompressedPointer: // Fall through.
1430 case MachineRepresentation::kCompressed: // Fall through.
1431 case MachineRepresentation::kSandboxedPointer: // Fall through.
1432 case MachineRepresentation::kWord64: // Fall through.
1433 case MachineRepresentation::kMapWord: // Fall through.
1434 case MachineRepresentation::kNone:
1435 UNREACHABLE();
1436 }
1437
1438 if (g.CanBeImmediate(index, opcode)) {
1439 Emit(opcode | AddressingModeField::encode(kMode_MRI),
1440 g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
1441 } else {
1442 InstructionOperand addr_reg = g.TempRegister();
1443 Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
1444 g.UseRegister(index), g.UseRegister(base));
1445 // Emit desired load opcode, using temp addr_reg.
1446 Emit(opcode | AddressingModeField::encode(kMode_MRI),
1447 g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
1448 }
1449 }
1450
VisitUnalignedStore(Node * node)1451 void InstructionSelector::VisitUnalignedStore(Node* node) {
1452 MipsOperandGenerator g(this);
1453 Node* base = node->InputAt(0);
1454 Node* index = node->InputAt(1);
1455 Node* value = node->InputAt(2);
1456
1457 UnalignedStoreRepresentation rep = UnalignedStoreRepresentationOf(node->op());
1458
1459 // TODO(mips): I guess this could be done in a better way.
1460 ArchOpcode opcode;
1461 switch (rep) {
1462 case MachineRepresentation::kFloat32:
1463 opcode = kMipsUswc1;
1464 break;
1465 case MachineRepresentation::kFloat64:
1466 opcode = kMipsUsdc1;
1467 break;
1468 case MachineRepresentation::kWord8:
1469 opcode = kMipsSb;
1470 break;
1471 case MachineRepresentation::kWord16:
1472 opcode = kMipsUsh;
1473 break;
1474 case MachineRepresentation::kTaggedSigned: // Fall through.
1475 case MachineRepresentation::kTaggedPointer: // Fall through.
1476 case MachineRepresentation::kTagged: // Fall through.
1477 case MachineRepresentation::kWord32:
1478 opcode = kMipsUsw;
1479 break;
1480 case MachineRepresentation::kSimd128:
1481 opcode = kMipsMsaSt;
1482 break;
1483 case MachineRepresentation::kBit: // Fall through.
1484 case MachineRepresentation::kCompressedPointer: // Fall through.
1485 case MachineRepresentation::kCompressed: // Fall through.
1486 case MachineRepresentation::kSandboxedPointer: // Fall through.
1487 case MachineRepresentation::kWord64: // Fall through.
1488 case MachineRepresentation::kMapWord: // Fall through.
1489 case MachineRepresentation::kNone:
1490 UNREACHABLE();
1491 }
1492
1493 if (g.CanBeImmediate(index, opcode)) {
1494 Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
1495 g.UseRegister(base), g.UseImmediate(index),
1496 g.UseRegisterOrImmediateZero(value));
1497 } else {
1498 InstructionOperand addr_reg = g.TempRegister();
1499 Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
1500 g.UseRegister(index), g.UseRegister(base));
1501 // Emit desired store opcode, using temp addr_reg.
1502 Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
1503 addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value));
1504 }
1505 }
1506
1507 namespace {
1508 // Shared routine for multiple compare operations.
VisitCompare(InstructionSelector * selector,InstructionCode opcode,InstructionOperand left,InstructionOperand right,FlagsContinuation * cont)1509 static void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
1510 InstructionOperand left, InstructionOperand right,
1511 FlagsContinuation* cont) {
1512 selector->EmitWithContinuation(opcode, left, right, cont);
1513 }
1514
1515 // Shared routine for multiple float32 compare operations.
VisitFloat32Compare(InstructionSelector * selector,Node * node,FlagsContinuation * cont)1516 void VisitFloat32Compare(InstructionSelector* selector, Node* node,
1517 FlagsContinuation* cont) {
1518 MipsOperandGenerator g(selector);
1519 Float32BinopMatcher m(node);
1520 InstructionOperand lhs, rhs;
1521
1522 lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
1523 : g.UseRegister(m.left().node());
1524 rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
1525 : g.UseRegister(m.right().node());
1526 VisitCompare(selector, kMipsCmpS, lhs, rhs, cont);
1527 }
1528
1529 // Shared routine for multiple float64 compare operations.
VisitFloat64Compare(InstructionSelector * selector,Node * node,FlagsContinuation * cont)1530 void VisitFloat64Compare(InstructionSelector* selector, Node* node,
1531 FlagsContinuation* cont) {
1532 MipsOperandGenerator g(selector);
1533 Float64BinopMatcher m(node);
1534 InstructionOperand lhs, rhs;
1535
1536 lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
1537 : g.UseRegister(m.left().node());
1538 rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
1539 : g.UseRegister(m.right().node());
1540 VisitCompare(selector, kMipsCmpD, lhs, rhs, cont);
1541 }
1542
1543 // Shared routine for multiple word compare operations.
VisitWordCompare(InstructionSelector * selector,Node * node,InstructionCode opcode,FlagsContinuation * cont,bool commutative)1544 void VisitWordCompare(InstructionSelector* selector, Node* node,
1545 InstructionCode opcode, FlagsContinuation* cont,
1546 bool commutative) {
1547 MipsOperandGenerator g(selector);
1548 Node* left = node->InputAt(0);
1549 Node* right = node->InputAt(1);
1550
1551 // Match immediates on left or right side of comparison.
1552 if (g.CanBeImmediate(right, opcode)) {
1553 if (opcode == kMipsTst) {
1554 VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right),
1555 cont);
1556 } else {
1557 switch (cont->condition()) {
1558 case kEqual:
1559 case kNotEqual:
1560 if (cont->IsSet()) {
1561 VisitCompare(selector, opcode, g.UseRegister(left),
1562 g.UseImmediate(right), cont);
1563 } else {
1564 VisitCompare(selector, opcode, g.UseRegister(left),
1565 g.UseRegister(right), cont);
1566 }
1567 break;
1568 case kSignedLessThan:
1569 case kSignedGreaterThanOrEqual:
1570 case kUnsignedLessThan:
1571 case kUnsignedGreaterThanOrEqual:
1572 VisitCompare(selector, opcode, g.UseRegister(left),
1573 g.UseImmediate(right), cont);
1574 break;
1575 default:
1576 VisitCompare(selector, opcode, g.UseRegister(left),
1577 g.UseRegister(right), cont);
1578 }
1579 }
1580 } else if (g.CanBeImmediate(left, opcode)) {
1581 if (!commutative) cont->Commute();
1582 if (opcode == kMipsTst) {
1583 VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left),
1584 cont);
1585 } else {
1586 switch (cont->condition()) {
1587 case kEqual:
1588 case kNotEqual:
1589 if (cont->IsSet()) {
1590 VisitCompare(selector, opcode, g.UseRegister(right),
1591 g.UseImmediate(left), cont);
1592 } else {
1593 VisitCompare(selector, opcode, g.UseRegister(right),
1594 g.UseRegister(left), cont);
1595 }
1596 break;
1597 case kSignedLessThan:
1598 case kSignedGreaterThanOrEqual:
1599 case kUnsignedLessThan:
1600 case kUnsignedGreaterThanOrEqual:
1601 VisitCompare(selector, opcode, g.UseRegister(right),
1602 g.UseImmediate(left), cont);
1603 break;
1604 default:
1605 VisitCompare(selector, opcode, g.UseRegister(right),
1606 g.UseRegister(left), cont);
1607 }
1608 }
1609 } else {
1610 VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right),
1611 cont);
1612 }
1613 }
1614
VisitWordCompare(InstructionSelector * selector,Node * node,FlagsContinuation * cont)1615 void VisitWordCompare(InstructionSelector* selector, Node* node,
1616 FlagsContinuation* cont) {
1617 VisitWordCompare(selector, node, kMipsCmp, cont, false);
1618 }
1619
1620 } // namespace
1621
VisitStackPointerGreaterThan(Node * node,FlagsContinuation * cont)1622 void InstructionSelector::VisitStackPointerGreaterThan(
1623 Node* node, FlagsContinuation* cont) {
1624 StackCheckKind kind = StackCheckKindOf(node->op());
1625 InstructionCode opcode =
1626 kArchStackPointerGreaterThan | MiscField::encode(static_cast<int>(kind));
1627
1628 MipsOperandGenerator g(this);
1629
1630 // No outputs.
1631 InstructionOperand* const outputs = nullptr;
1632 const int output_count = 0;
1633
1634 // TempRegister(0) is used to store the comparison result.
1635 // Applying an offset to this stack check requires a temp register. Offsets
1636 // are only applied to the first stack check. If applying an offset, we must
1637 // ensure the input and temp registers do not alias, thus kUniqueRegister.
1638 InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
1639 const int temp_count = (kind == StackCheckKind::kJSFunctionEntry ? 2 : 1);
1640 const auto register_mode = (kind == StackCheckKind::kJSFunctionEntry)
1641 ? OperandGenerator::kUniqueRegister
1642 : OperandGenerator::kRegister;
1643
1644 Node* const value = node->InputAt(0);
1645 InstructionOperand inputs[] = {g.UseRegisterWithMode(value, register_mode)};
1646 static constexpr int input_count = arraysize(inputs);
1647
1648 EmitWithContinuation(opcode, output_count, outputs, input_count, inputs,
1649 temp_count, temps, cont);
1650 }
1651
1652 // Shared routine for word comparisons against zero.
VisitWordCompareZero(Node * user,Node * value,FlagsContinuation * cont)1653 void InstructionSelector::VisitWordCompareZero(Node* user, Node* value,
1654 FlagsContinuation* cont) {
1655 // Try to combine with comparisons against 0 by simply inverting the branch.
1656 while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) {
1657 Int32BinopMatcher m(value);
1658 if (!m.right().Is(0)) break;
1659
1660 user = value;
1661 value = m.left().node();
1662 cont->Negate();
1663 }
1664
1665 if (CanCover(user, value)) {
1666 switch (value->opcode()) {
1667 case IrOpcode::kWord32Equal:
1668 cont->OverwriteAndNegateIfEqual(kEqual);
1669 return VisitWordCompare(this, value, cont);
1670 case IrOpcode::kInt32LessThan:
1671 cont->OverwriteAndNegateIfEqual(kSignedLessThan);
1672 return VisitWordCompare(this, value, cont);
1673 case IrOpcode::kInt32LessThanOrEqual:
1674 cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
1675 return VisitWordCompare(this, value, cont);
1676 case IrOpcode::kUint32LessThan:
1677 cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
1678 return VisitWordCompare(this, value, cont);
1679 case IrOpcode::kUint32LessThanOrEqual:
1680 cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
1681 return VisitWordCompare(this, value, cont);
1682 case IrOpcode::kFloat32Equal:
1683 cont->OverwriteAndNegateIfEqual(kEqual);
1684 return VisitFloat32Compare(this, value, cont);
1685 case IrOpcode::kFloat32LessThan:
1686 cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
1687 return VisitFloat32Compare(this, value, cont);
1688 case IrOpcode::kFloat32LessThanOrEqual:
1689 cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
1690 return VisitFloat32Compare(this, value, cont);
1691 case IrOpcode::kFloat64Equal:
1692 cont->OverwriteAndNegateIfEqual(kEqual);
1693 return VisitFloat64Compare(this, value, cont);
1694 case IrOpcode::kFloat64LessThan:
1695 cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
1696 return VisitFloat64Compare(this, value, cont);
1697 case IrOpcode::kFloat64LessThanOrEqual:
1698 cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
1699 return VisitFloat64Compare(this, value, cont);
1700 case IrOpcode::kProjection:
1701 // Check if this is the overflow output projection of an
1702 // <Operation>WithOverflow node.
1703 if (ProjectionIndexOf(value->op()) == 1u) {
1704 // We cannot combine the <Operation>WithOverflow with this branch
1705 // unless the 0th projection (the use of the actual value of the
1706 // <Operation> is either nullptr, which means there's no use of the
1707 // actual value, or was already defined, which means it is scheduled
1708 // *AFTER* this branch).
1709 Node* const node = value->InputAt(0);
1710 Node* const result = NodeProperties::FindProjection(node, 0);
1711 if (!result || IsDefined(result)) {
1712 switch (node->opcode()) {
1713 case IrOpcode::kInt32AddWithOverflow:
1714 cont->OverwriteAndNegateIfEqual(kOverflow);
1715 return VisitBinop(this, node, kMipsAddOvf, cont);
1716 case IrOpcode::kInt32SubWithOverflow:
1717 cont->OverwriteAndNegateIfEqual(kOverflow);
1718 return VisitBinop(this, node, kMipsSubOvf, cont);
1719 case IrOpcode::kInt32MulWithOverflow:
1720 cont->OverwriteAndNegateIfEqual(kOverflow);
1721 return VisitBinop(this, node, kMipsMulOvf, cont);
1722 default:
1723 break;
1724 }
1725 }
1726 }
1727 break;
1728 case IrOpcode::kWord32And:
1729 return VisitWordCompare(this, value, kMipsTst, cont, true);
1730 case IrOpcode::kStackPointerGreaterThan:
1731 cont->OverwriteAndNegateIfEqual(kStackPointerGreaterThanCondition);
1732 return VisitStackPointerGreaterThan(value, cont);
1733 default:
1734 break;
1735 }
1736 }
1737
1738 // Continuation could not be combined with a compare, emit compare against 0.
1739 MipsOperandGenerator g(this);
1740 InstructionOperand const value_operand = g.UseRegister(value);
1741 EmitWithContinuation(kMipsCmp, value_operand, g.TempImmediate(0), cont);
1742 }
1743
VisitSwitch(Node * node,const SwitchInfo & sw)1744 void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
1745 MipsOperandGenerator g(this);
1746 InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
1747
1748 // Emit either ArchTableSwitch or ArchBinarySearchSwitch.
1749 if (enable_switch_jump_table_ == kEnableSwitchJumpTable) {
1750 static const size_t kMaxTableSwitchValueRange = 2 << 16;
1751 size_t table_space_cost = 9 + sw.value_range();
1752 size_t table_time_cost = 3;
1753 size_t lookup_space_cost = 2 + 2 * sw.case_count();
1754 size_t lookup_time_cost = sw.case_count();
1755 if (sw.case_count() > 0 &&
1756 table_space_cost + 3 * table_time_cost <=
1757 lookup_space_cost + 3 * lookup_time_cost &&
1758 sw.min_value() > std::numeric_limits<int32_t>::min() &&
1759 sw.value_range() <= kMaxTableSwitchValueRange) {
1760 InstructionOperand index_operand = value_operand;
1761 if (sw.min_value()) {
1762 index_operand = g.TempRegister();
1763 Emit(kMipsSub, index_operand, value_operand,
1764 g.TempImmediate(sw.min_value()));
1765 }
1766 // Generate a table lookup.
1767 return EmitTableSwitch(sw, index_operand);
1768 }
1769 }
1770
1771 // Generate a tree of conditional jumps.
1772 return EmitBinarySearchSwitch(std::move(sw), value_operand);
1773 }
1774
VisitWord32Equal(Node * const node)1775 void InstructionSelector::VisitWord32Equal(Node* const node) {
1776 FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
1777 Int32BinopMatcher m(node);
1778 if (m.right().Is(0)) {
1779 return VisitWordCompareZero(m.node(), m.left().node(), &cont);
1780 }
1781 VisitWordCompare(this, node, &cont);
1782 }
1783
VisitInt32LessThan(Node * node)1784 void InstructionSelector::VisitInt32LessThan(Node* node) {
1785 FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
1786 VisitWordCompare(this, node, &cont);
1787 }
1788
VisitInt32LessThanOrEqual(Node * node)1789 void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
1790 FlagsContinuation cont =
1791 FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
1792 VisitWordCompare(this, node, &cont);
1793 }
1794
VisitUint32LessThan(Node * node)1795 void InstructionSelector::VisitUint32LessThan(Node* node) {
1796 FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
1797 VisitWordCompare(this, node, &cont);
1798 }
1799
VisitUint32LessThanOrEqual(Node * node)1800 void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
1801 FlagsContinuation cont =
1802 FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
1803 VisitWordCompare(this, node, &cont);
1804 }
1805
VisitInt32AddWithOverflow(Node * node)1806 void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
1807 if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
1808 FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
1809 return VisitBinop(this, node, kMipsAddOvf, &cont);
1810 }
1811 FlagsContinuation cont;
1812 VisitBinop(this, node, kMipsAddOvf, &cont);
1813 }
1814
VisitInt32SubWithOverflow(Node * node)1815 void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
1816 if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
1817 FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
1818 return VisitBinop(this, node, kMipsSubOvf, &cont);
1819 }
1820 FlagsContinuation cont;
1821 VisitBinop(this, node, kMipsSubOvf, &cont);
1822 }
1823
VisitInt32MulWithOverflow(Node * node)1824 void InstructionSelector::VisitInt32MulWithOverflow(Node* node) {
1825 if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
1826 FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
1827 return VisitBinop(this, node, kMipsMulOvf, &cont);
1828 }
1829 FlagsContinuation cont;
1830 VisitBinop(this, node, kMipsMulOvf, &cont);
1831 }
1832
VisitFloat32Equal(Node * node)1833 void InstructionSelector::VisitFloat32Equal(Node* node) {
1834 FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
1835 VisitFloat32Compare(this, node, &cont);
1836 }
1837
VisitFloat32LessThan(Node * node)1838 void InstructionSelector::VisitFloat32LessThan(Node* node) {
1839 FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
1840 VisitFloat32Compare(this, node, &cont);
1841 }
1842
VisitFloat32LessThanOrEqual(Node * node)1843 void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
1844 FlagsContinuation cont =
1845 FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
1846 VisitFloat32Compare(this, node, &cont);
1847 }
1848
VisitFloat64Equal(Node * node)1849 void InstructionSelector::VisitFloat64Equal(Node* node) {
1850 FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
1851 VisitFloat64Compare(this, node, &cont);
1852 }
1853
VisitFloat64LessThan(Node * node)1854 void InstructionSelector::VisitFloat64LessThan(Node* node) {
1855 FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
1856 VisitFloat64Compare(this, node, &cont);
1857 }
1858
VisitFloat64LessThanOrEqual(Node * node)1859 void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
1860 FlagsContinuation cont =
1861 FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
1862 VisitFloat64Compare(this, node, &cont);
1863 }
1864
VisitFloat64ExtractLowWord32(Node * node)1865 void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
1866 MipsOperandGenerator g(this);
1867 Emit(kMipsFloat64ExtractLowWord32, g.DefineAsRegister(node),
1868 g.UseRegister(node->InputAt(0)));
1869 }
1870
VisitFloat64ExtractHighWord32(Node * node)1871 void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
1872 MipsOperandGenerator g(this);
1873 Emit(kMipsFloat64ExtractHighWord32, g.DefineAsRegister(node),
1874 g.UseRegister(node->InputAt(0)));
1875 }
1876
VisitFloat64InsertLowWord32(Node * node)1877 void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
1878 MipsOperandGenerator g(this);
1879 Node* left = node->InputAt(0);
1880 Node* right = node->InputAt(1);
1881 Emit(kMipsFloat64InsertLowWord32, g.DefineSameAsFirst(node),
1882 g.UseRegister(left), g.UseRegister(right));
1883 }
1884
VisitFloat64InsertHighWord32(Node * node)1885 void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
1886 MipsOperandGenerator g(this);
1887 Node* left = node->InputAt(0);
1888 Node* right = node->InputAt(1);
1889 Emit(kMipsFloat64InsertHighWord32, g.DefineSameAsFirst(node),
1890 g.UseRegister(left), g.UseRegister(right));
1891 }
1892
VisitFloat64SilenceNaN(Node * node)1893 void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
1894 MipsOperandGenerator g(this);
1895 Node* left = node->InputAt(0);
1896 InstructionOperand temps[] = {g.TempRegister()};
1897 Emit(kMipsFloat64SilenceNaN, g.DefineSameAsFirst(node), g.UseRegister(left),
1898 arraysize(temps), temps);
1899 }
1900
VisitMemoryBarrier(Node * node)1901 void InstructionSelector::VisitMemoryBarrier(Node* node) {
1902 MipsOperandGenerator g(this);
1903 Emit(kMipsSync, g.NoOutput());
1904 }
1905
VisitWord32AtomicLoad(Node * node)1906 void InstructionSelector::VisitWord32AtomicLoad(Node* node) {
1907 // TODO(mips-dev): Confirm whether there is any mips32 chip in use and
1908 // support atomic loads of tagged values with barriers.
1909 AtomicLoadParameters atomic_load_params = AtomicLoadParametersOf(node->op());
1910 LoadRepresentation load_rep = atomic_load_params.representation();
1911 MipsOperandGenerator g(this);
1912 Node* base = node->InputAt(0);
1913 Node* index = node->InputAt(1);
1914 ArchOpcode opcode;
1915 switch (load_rep.representation()) {
1916 case MachineRepresentation::kWord8:
1917 opcode = load_rep.IsSigned() ? kAtomicLoadInt8 : kAtomicLoadUint8;
1918 break;
1919 case MachineRepresentation::kWord16:
1920 opcode = load_rep.IsSigned() ? kAtomicLoadInt16 : kAtomicLoadUint16;
1921 break;
1922 case MachineRepresentation::kTaggedSigned: // Fall through.
1923 case MachineRepresentation::kTaggedPointer: // Fall through.
1924 case MachineRepresentation::kTagged:
1925 case MachineRepresentation::kWord32:
1926 opcode = kAtomicLoadWord32;
1927 break;
1928 default:
1929 UNREACHABLE();
1930 }
1931
1932 if (g.CanBeImmediate(index, opcode)) {
1933 Emit(opcode | AddressingModeField::encode(kMode_MRI),
1934 g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
1935 } else {
1936 InstructionOperand addr_reg = g.TempRegister();
1937 Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
1938 g.UseRegister(index), g.UseRegister(base));
1939 // Emit desired load opcode, using temp addr_reg.
1940 Emit(opcode | AddressingModeField::encode(kMode_MRI),
1941 g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
1942 }
1943 }
1944
VisitWord32AtomicStore(Node * node)1945 void InstructionSelector::VisitWord32AtomicStore(Node* node) {
1946 // TODO(mips-dev): Confirm whether there is any mips32 chip in use and
1947 // support atomic stores of tagged values with barriers.
1948 AtomicStoreParameters store_params = AtomicStoreParametersOf(node->op());
1949 MachineRepresentation rep = store_params.representation();
1950 MipsOperandGenerator g(this);
1951 Node* base = node->InputAt(0);
1952 Node* index = node->InputAt(1);
1953 Node* value = node->InputAt(2);
1954 ArchOpcode opcode;
1955 switch (rep) {
1956 case MachineRepresentation::kWord8:
1957 opcode = kAtomicStoreWord8;
1958 break;
1959 case MachineRepresentation::kWord16:
1960 opcode = kAtomicStoreWord16;
1961 break;
1962 case MachineRepresentation::kTaggedSigned: // Fall through.
1963 case MachineRepresentation::kTaggedPointer: // Fall through.
1964 case MachineRepresentation::kTagged:
1965 case MachineRepresentation::kWord32:
1966 opcode = kAtomicStoreWord32;
1967 break;
1968 default:
1969 UNREACHABLE();
1970 }
1971
1972 if (g.CanBeImmediate(index, opcode)) {
1973 Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
1974 g.UseRegister(base), g.UseImmediate(index),
1975 g.UseRegisterOrImmediateZero(value));
1976 } else {
1977 InstructionOperand addr_reg = g.TempRegister();
1978 Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
1979 g.UseRegister(index), g.UseRegister(base));
1980 // Emit desired store opcode, using temp addr_reg.
1981 Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
1982 addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value));
1983 }
1984 }
1985
VisitWord32AtomicExchange(Node * node)1986 void InstructionSelector::VisitWord32AtomicExchange(Node* node) {
1987 MipsOperandGenerator g(this);
1988 Node* base = node->InputAt(0);
1989 Node* index = node->InputAt(1);
1990 Node* value = node->InputAt(2);
1991 ArchOpcode opcode;
1992 MachineType type = AtomicOpType(node->op());
1993 if (type == MachineType::Int8()) {
1994 opcode = kAtomicExchangeInt8;
1995 } else if (type == MachineType::Uint8()) {
1996 opcode = kAtomicExchangeUint8;
1997 } else if (type == MachineType::Int16()) {
1998 opcode = kAtomicExchangeInt16;
1999 } else if (type == MachineType::Uint16()) {
2000 opcode = kAtomicExchangeUint16;
2001 } else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
2002 opcode = kAtomicExchangeWord32;
2003 } else {
2004 UNREACHABLE();
2005 }
2006
2007 AddressingMode addressing_mode = kMode_MRI;
2008 InstructionOperand inputs[3];
2009 size_t input_count = 0;
2010 inputs[input_count++] = g.UseUniqueRegister(base);
2011 inputs[input_count++] = g.UseUniqueRegister(index);
2012 inputs[input_count++] = g.UseUniqueRegister(value);
2013 InstructionOperand outputs[1];
2014 outputs[0] = g.UseUniqueRegister(node);
2015 InstructionOperand temp[3];
2016 temp[0] = g.TempRegister();
2017 temp[1] = g.TempRegister();
2018 temp[2] = g.TempRegister();
2019 InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
2020 Emit(code, 1, outputs, input_count, inputs, 3, temp);
2021 }
2022
VisitWord32AtomicCompareExchange(Node * node)2023 void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) {
2024 MipsOperandGenerator g(this);
2025 Node* base = node->InputAt(0);
2026 Node* index = node->InputAt(1);
2027 Node* old_value = node->InputAt(2);
2028 Node* new_value = node->InputAt(3);
2029 ArchOpcode opcode;
2030 MachineType type = AtomicOpType(node->op());
2031 if (type == MachineType::Int8()) {
2032 opcode = kAtomicCompareExchangeInt8;
2033 } else if (type == MachineType::Uint8()) {
2034 opcode = kAtomicCompareExchangeUint8;
2035 } else if (type == MachineType::Int16()) {
2036 opcode = kAtomicCompareExchangeInt16;
2037 } else if (type == MachineType::Uint16()) {
2038 opcode = kAtomicCompareExchangeUint16;
2039 } else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
2040 opcode = kAtomicCompareExchangeWord32;
2041 } else {
2042 UNREACHABLE();
2043 }
2044
2045 AddressingMode addressing_mode = kMode_MRI;
2046 InstructionOperand inputs[4];
2047 size_t input_count = 0;
2048 inputs[input_count++] = g.UseUniqueRegister(base);
2049 inputs[input_count++] = g.UseUniqueRegister(index);
2050 inputs[input_count++] = g.UseUniqueRegister(old_value);
2051 inputs[input_count++] = g.UseUniqueRegister(new_value);
2052 InstructionOperand outputs[1];
2053 outputs[0] = g.UseUniqueRegister(node);
2054 InstructionOperand temp[3];
2055 temp[0] = g.TempRegister();
2056 temp[1] = g.TempRegister();
2057 temp[2] = g.TempRegister();
2058 InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
2059 Emit(code, 1, outputs, input_count, inputs, 3, temp);
2060 }
2061
VisitWord32AtomicBinaryOperation(Node * node,ArchOpcode int8_op,ArchOpcode uint8_op,ArchOpcode int16_op,ArchOpcode uint16_op,ArchOpcode word32_op)2062 void InstructionSelector::VisitWord32AtomicBinaryOperation(
2063 Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op,
2064 ArchOpcode uint16_op, ArchOpcode word32_op) {
2065 MipsOperandGenerator g(this);
2066 Node* base = node->InputAt(0);
2067 Node* index = node->InputAt(1);
2068 Node* value = node->InputAt(2);
2069 ArchOpcode opcode;
2070 MachineType type = AtomicOpType(node->op());
2071 if (type == MachineType::Int8()) {
2072 opcode = int8_op;
2073 } else if (type == MachineType::Uint8()) {
2074 opcode = uint8_op;
2075 } else if (type == MachineType::Int16()) {
2076 opcode = int16_op;
2077 } else if (type == MachineType::Uint16()) {
2078 opcode = uint16_op;
2079 } else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
2080 opcode = word32_op;
2081 } else {
2082 UNREACHABLE();
2083 }
2084
2085 AddressingMode addressing_mode = kMode_MRI;
2086 InstructionOperand inputs[3];
2087 size_t input_count = 0;
2088 inputs[input_count++] = g.UseUniqueRegister(base);
2089 inputs[input_count++] = g.UseUniqueRegister(index);
2090 inputs[input_count++] = g.UseUniqueRegister(value);
2091 InstructionOperand outputs[1];
2092 outputs[0] = g.UseUniqueRegister(node);
2093 InstructionOperand temps[4];
2094 temps[0] = g.TempRegister();
2095 temps[1] = g.TempRegister();
2096 temps[2] = g.TempRegister();
2097 temps[3] = g.TempRegister();
2098 InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
2099 Emit(code, 1, outputs, input_count, inputs, 4, temps);
2100 }
2101
2102 #define VISIT_ATOMIC_BINOP(op) \
2103 void InstructionSelector::VisitWord32Atomic##op(Node* node) { \
2104 VisitWord32AtomicBinaryOperation( \
2105 node, kAtomic##op##Int8, kAtomic##op##Uint8, kAtomic##op##Int16, \
2106 kAtomic##op##Uint16, kAtomic##op##Word32); \
2107 }
2108 VISIT_ATOMIC_BINOP(Add)
VISIT_ATOMIC_BINOP(Sub)2109 VISIT_ATOMIC_BINOP(Sub)
2110 VISIT_ATOMIC_BINOP(And)
2111 VISIT_ATOMIC_BINOP(Or)
2112 VISIT_ATOMIC_BINOP(Xor)
2113 #undef VISIT_ATOMIC_BINOP
2114
2115 void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) {
2116 UNREACHABLE();
2117 }
2118
VisitInt64AbsWithOverflow(Node * node)2119 void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) {
2120 UNREACHABLE();
2121 }
2122
2123 #define SIMD_TYPE_LIST(V) \
2124 V(F32x4) \
2125 V(I32x4) \
2126 V(I16x8) \
2127 V(I8x16)
2128
2129 #define SIMD_UNOP_LIST(V) \
2130 V(F64x2Abs, kMipsF64x2Abs) \
2131 V(F64x2Neg, kMipsF64x2Neg) \
2132 V(F64x2Sqrt, kMipsF64x2Sqrt) \
2133 V(F64x2Ceil, kMipsF64x2Ceil) \
2134 V(F64x2Floor, kMipsF64x2Floor) \
2135 V(F64x2Trunc, kMipsF64x2Trunc) \
2136 V(F64x2NearestInt, kMipsF64x2NearestInt) \
2137 V(F64x2ConvertLowI32x4S, kMipsF64x2ConvertLowI32x4S) \
2138 V(F64x2ConvertLowI32x4U, kMipsF64x2ConvertLowI32x4U) \
2139 V(F64x2PromoteLowF32x4, kMipsF64x2PromoteLowF32x4) \
2140 V(I64x2Neg, kMipsI64x2Neg) \
2141 V(I64x2BitMask, kMipsI64x2BitMask) \
2142 V(I64x2Abs, kMipsI64x2Abs) \
2143 V(I64x2SConvertI32x4Low, kMipsI64x2SConvertI32x4Low) \
2144 V(I64x2SConvertI32x4High, kMipsI64x2SConvertI32x4High) \
2145 V(I64x2UConvertI32x4Low, kMipsI64x2UConvertI32x4Low) \
2146 V(I64x2UConvertI32x4High, kMipsI64x2UConvertI32x4High) \
2147 V(F32x4SConvertI32x4, kMipsF32x4SConvertI32x4) \
2148 V(F32x4UConvertI32x4, kMipsF32x4UConvertI32x4) \
2149 V(F32x4Abs, kMipsF32x4Abs) \
2150 V(F32x4Neg, kMipsF32x4Neg) \
2151 V(F32x4Sqrt, kMipsF32x4Sqrt) \
2152 V(F32x4RecipApprox, kMipsF32x4RecipApprox) \
2153 V(F32x4RecipSqrtApprox, kMipsF32x4RecipSqrtApprox) \
2154 V(F32x4Ceil, kMipsF32x4Ceil) \
2155 V(F32x4Floor, kMipsF32x4Floor) \
2156 V(F32x4Trunc, kMipsF32x4Trunc) \
2157 V(F32x4NearestInt, kMipsF32x4NearestInt) \
2158 V(F32x4DemoteF64x2Zero, kMipsF32x4DemoteF64x2Zero) \
2159 V(I32x4SConvertF32x4, kMipsI32x4SConvertF32x4) \
2160 V(I32x4UConvertF32x4, kMipsI32x4UConvertF32x4) \
2161 V(I32x4Neg, kMipsI32x4Neg) \
2162 V(I32x4BitMask, kMipsI32x4BitMask) \
2163 V(I32x4SConvertI16x8Low, kMipsI32x4SConvertI16x8Low) \
2164 V(I32x4SConvertI16x8High, kMipsI32x4SConvertI16x8High) \
2165 V(I32x4UConvertI16x8Low, kMipsI32x4UConvertI16x8Low) \
2166 V(I32x4UConvertI16x8High, kMipsI32x4UConvertI16x8High) \
2167 V(I32x4ExtAddPairwiseI16x8S, kMipsI32x4ExtAddPairwiseI16x8S) \
2168 V(I32x4ExtAddPairwiseI16x8U, kMipsI32x4ExtAddPairwiseI16x8U) \
2169 V(I32x4TruncSatF64x2SZero, kMipsI32x4TruncSatF64x2SZero) \
2170 V(I32x4TruncSatF64x2UZero, kMipsI32x4TruncSatF64x2UZero) \
2171 V(I16x8Neg, kMipsI16x8Neg) \
2172 V(I16x8BitMask, kMipsI16x8BitMask) \
2173 V(I16x8SConvertI8x16Low, kMipsI16x8SConvertI8x16Low) \
2174 V(I16x8SConvertI8x16High, kMipsI16x8SConvertI8x16High) \
2175 V(I16x8UConvertI8x16Low, kMipsI16x8UConvertI8x16Low) \
2176 V(I16x8UConvertI8x16High, kMipsI16x8UConvertI8x16High) \
2177 V(I16x8ExtAddPairwiseI8x16S, kMipsI16x8ExtAddPairwiseI8x16S) \
2178 V(I16x8ExtAddPairwiseI8x16U, kMipsI16x8ExtAddPairwiseI8x16U) \
2179 V(I8x16Neg, kMipsI8x16Neg) \
2180 V(I8x16Popcnt, kMipsI8x16Popcnt) \
2181 V(I8x16BitMask, kMipsI8x16BitMask) \
2182 V(S128Not, kMipsS128Not) \
2183 V(I64x2AllTrue, kMipsI64x2AllTrue) \
2184 V(I32x4AllTrue, kMipsI32x4AllTrue) \
2185 V(I16x8AllTrue, kMipsI16x8AllTrue) \
2186 V(I8x16AllTrue, kMipsI8x16AllTrue) \
2187 V(V128AnyTrue, kMipsV128AnyTrue)
2188
2189 #define SIMD_SHIFT_OP_LIST(V) \
2190 V(I64x2Shl) \
2191 V(I64x2ShrS) \
2192 V(I64x2ShrU) \
2193 V(I32x4Shl) \
2194 V(I32x4ShrS) \
2195 V(I32x4ShrU) \
2196 V(I16x8Shl) \
2197 V(I16x8ShrS) \
2198 V(I16x8ShrU) \
2199 V(I8x16Shl) \
2200 V(I8x16ShrS) \
2201 V(I8x16ShrU)
2202
2203 #define SIMD_BINOP_LIST(V) \
2204 V(F64x2Add, kMipsF64x2Add) \
2205 V(F64x2Sub, kMipsF64x2Sub) \
2206 V(F64x2Mul, kMipsF64x2Mul) \
2207 V(F64x2Div, kMipsF64x2Div) \
2208 V(F64x2Min, kMipsF64x2Min) \
2209 V(F64x2Max, kMipsF64x2Max) \
2210 V(F64x2Eq, kMipsF64x2Eq) \
2211 V(F64x2Ne, kMipsF64x2Ne) \
2212 V(F64x2Lt, kMipsF64x2Lt) \
2213 V(F64x2Le, kMipsF64x2Le) \
2214 V(I64x2Eq, kMipsI64x2Eq) \
2215 V(I64x2Ne, kMipsI64x2Ne) \
2216 V(I64x2Add, kMipsI64x2Add) \
2217 V(I64x2Sub, kMipsI64x2Sub) \
2218 V(I64x2Mul, kMipsI64x2Mul) \
2219 V(I64x2GtS, kMipsI64x2GtS) \
2220 V(I64x2GeS, kMipsI64x2GeS) \
2221 V(I64x2ExtMulLowI32x4S, kMipsI64x2ExtMulLowI32x4S) \
2222 V(I64x2ExtMulHighI32x4S, kMipsI64x2ExtMulHighI32x4S) \
2223 V(I64x2ExtMulLowI32x4U, kMipsI64x2ExtMulLowI32x4U) \
2224 V(I64x2ExtMulHighI32x4U, kMipsI64x2ExtMulHighI32x4U) \
2225 V(F32x4Add, kMipsF32x4Add) \
2226 V(F32x4Sub, kMipsF32x4Sub) \
2227 V(F32x4Mul, kMipsF32x4Mul) \
2228 V(F32x4Div, kMipsF32x4Div) \
2229 V(F32x4Max, kMipsF32x4Max) \
2230 V(F32x4Min, kMipsF32x4Min) \
2231 V(F32x4Eq, kMipsF32x4Eq) \
2232 V(F32x4Ne, kMipsF32x4Ne) \
2233 V(F32x4Lt, kMipsF32x4Lt) \
2234 V(F32x4Le, kMipsF32x4Le) \
2235 V(I32x4Add, kMipsI32x4Add) \
2236 V(I32x4Sub, kMipsI32x4Sub) \
2237 V(I32x4Mul, kMipsI32x4Mul) \
2238 V(I32x4MaxS, kMipsI32x4MaxS) \
2239 V(I32x4MinS, kMipsI32x4MinS) \
2240 V(I32x4MaxU, kMipsI32x4MaxU) \
2241 V(I32x4MinU, kMipsI32x4MinU) \
2242 V(I32x4Eq, kMipsI32x4Eq) \
2243 V(I32x4Ne, kMipsI32x4Ne) \
2244 V(I32x4GtS, kMipsI32x4GtS) \
2245 V(I32x4GeS, kMipsI32x4GeS) \
2246 V(I32x4GtU, kMipsI32x4GtU) \
2247 V(I32x4GeU, kMipsI32x4GeU) \
2248 V(I32x4Abs, kMipsI32x4Abs) \
2249 V(I32x4DotI16x8S, kMipsI32x4DotI16x8S) \
2250 V(I32x4ExtMulLowI16x8S, kMipsI32x4ExtMulLowI16x8S) \
2251 V(I32x4ExtMulHighI16x8S, kMipsI32x4ExtMulHighI16x8S) \
2252 V(I32x4ExtMulLowI16x8U, kMipsI32x4ExtMulLowI16x8U) \
2253 V(I32x4ExtMulHighI16x8U, kMipsI32x4ExtMulHighI16x8U) \
2254 V(I16x8Add, kMipsI16x8Add) \
2255 V(I16x8AddSatS, kMipsI16x8AddSatS) \
2256 V(I16x8AddSatU, kMipsI16x8AddSatU) \
2257 V(I16x8Sub, kMipsI16x8Sub) \
2258 V(I16x8SubSatS, kMipsI16x8SubSatS) \
2259 V(I16x8SubSatU, kMipsI16x8SubSatU) \
2260 V(I16x8Mul, kMipsI16x8Mul) \
2261 V(I16x8MaxS, kMipsI16x8MaxS) \
2262 V(I16x8MinS, kMipsI16x8MinS) \
2263 V(I16x8MaxU, kMipsI16x8MaxU) \
2264 V(I16x8MinU, kMipsI16x8MinU) \
2265 V(I16x8Eq, kMipsI16x8Eq) \
2266 V(I16x8Ne, kMipsI16x8Ne) \
2267 V(I16x8GtS, kMipsI16x8GtS) \
2268 V(I16x8GeS, kMipsI16x8GeS) \
2269 V(I16x8GtU, kMipsI16x8GtU) \
2270 V(I16x8GeU, kMipsI16x8GeU) \
2271 V(I16x8SConvertI32x4, kMipsI16x8SConvertI32x4) \
2272 V(I16x8UConvertI32x4, kMipsI16x8UConvertI32x4) \
2273 V(I16x8Q15MulRSatS, kMipsI16x8Q15MulRSatS) \
2274 V(I16x8ExtMulLowI8x16S, kMipsI16x8ExtMulLowI8x16S) \
2275 V(I16x8ExtMulHighI8x16S, kMipsI16x8ExtMulHighI8x16S) \
2276 V(I16x8ExtMulLowI8x16U, kMipsI16x8ExtMulLowI8x16U) \
2277 V(I16x8ExtMulHighI8x16U, kMipsI16x8ExtMulHighI8x16U) \
2278 V(I16x8RoundingAverageU, kMipsI16x8RoundingAverageU) \
2279 V(I16x8Abs, kMipsI16x8Abs) \
2280 V(I8x16Add, kMipsI8x16Add) \
2281 V(I8x16AddSatS, kMipsI8x16AddSatS) \
2282 V(I8x16AddSatU, kMipsI8x16AddSatU) \
2283 V(I8x16Sub, kMipsI8x16Sub) \
2284 V(I8x16SubSatS, kMipsI8x16SubSatS) \
2285 V(I8x16SubSatU, kMipsI8x16SubSatU) \
2286 V(I8x16MaxS, kMipsI8x16MaxS) \
2287 V(I8x16MinS, kMipsI8x16MinS) \
2288 V(I8x16MaxU, kMipsI8x16MaxU) \
2289 V(I8x16MinU, kMipsI8x16MinU) \
2290 V(I8x16Eq, kMipsI8x16Eq) \
2291 V(I8x16Ne, kMipsI8x16Ne) \
2292 V(I8x16GtS, kMipsI8x16GtS) \
2293 V(I8x16GeS, kMipsI8x16GeS) \
2294 V(I8x16GtU, kMipsI8x16GtU) \
2295 V(I8x16GeU, kMipsI8x16GeU) \
2296 V(I8x16RoundingAverageU, kMipsI8x16RoundingAverageU) \
2297 V(I8x16SConvertI16x8, kMipsI8x16SConvertI16x8) \
2298 V(I8x16UConvertI16x8, kMipsI8x16UConvertI16x8) \
2299 V(I8x16Abs, kMipsI8x16Abs) \
2300 V(S128And, kMipsS128And) \
2301 V(S128Or, kMipsS128Or) \
2302 V(S128Xor, kMipsS128Xor) \
2303 V(S128AndNot, kMipsS128AndNot)
2304
VisitS128Const(Node * node)2305 void InstructionSelector::VisitS128Const(Node* node) { UNIMPLEMENTED(); }
2306
VisitS128Zero(Node * node)2307 void InstructionSelector::VisitS128Zero(Node* node) {
2308 MipsOperandGenerator g(this);
2309 Emit(kMipsS128Zero, g.DefineSameAsFirst(node));
2310 }
2311
2312 #define SIMD_VISIT_SPLAT(Type) \
2313 void InstructionSelector::Visit##Type##Splat(Node* node) { \
2314 VisitRR(this, kMips##Type##Splat, node); \
2315 }
2316 SIMD_TYPE_LIST(SIMD_VISIT_SPLAT)
SIMD_VISIT_SPLAT(F64x2)2317 SIMD_VISIT_SPLAT(F64x2)
2318 #undef SIMD_VISIT_SPLAT
2319
2320 #define SIMD_VISIT_EXTRACT_LANE(Type, Sign) \
2321 void InstructionSelector::Visit##Type##ExtractLane##Sign(Node* node) { \
2322 VisitRRI(this, kMips##Type##ExtractLane##Sign, node); \
2323 }
2324 SIMD_VISIT_EXTRACT_LANE(F64x2, )
2325 SIMD_VISIT_EXTRACT_LANE(F32x4, )
2326 SIMD_VISIT_EXTRACT_LANE(I32x4, )
2327 SIMD_VISIT_EXTRACT_LANE(I16x8, U)
2328 SIMD_VISIT_EXTRACT_LANE(I16x8, S)
2329 SIMD_VISIT_EXTRACT_LANE(I8x16, U)
2330 SIMD_VISIT_EXTRACT_LANE(I8x16, S)
2331 #undef SIMD_VISIT_EXTRACT_LANE
2332
2333 #define SIMD_VISIT_REPLACE_LANE(Type) \
2334 void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \
2335 VisitRRIR(this, kMips##Type##ReplaceLane, node); \
2336 }
2337 SIMD_TYPE_LIST(SIMD_VISIT_REPLACE_LANE)
2338 SIMD_VISIT_REPLACE_LANE(F64x2)
2339 #undef SIMD_VISIT_REPLACE_LANE
2340
2341 #define SIMD_VISIT_UNOP(Name, instruction) \
2342 void InstructionSelector::Visit##Name(Node* node) { \
2343 VisitRR(this, instruction, node); \
2344 }
2345 SIMD_UNOP_LIST(SIMD_VISIT_UNOP)
2346 #undef SIMD_VISIT_UNOP
2347
2348 #define SIMD_VISIT_SHIFT_OP(Name) \
2349 void InstructionSelector::Visit##Name(Node* node) { \
2350 VisitRRI(this, kMips##Name, node); \
2351 }
2352 SIMD_SHIFT_OP_LIST(SIMD_VISIT_SHIFT_OP)
2353 #undef SIMD_VISIT_SHIFT_OP
2354
2355 #define SIMD_VISIT_BINOP(Name, instruction) \
2356 void InstructionSelector::Visit##Name(Node* node) { \
2357 VisitRRR(this, instruction, node); \
2358 }
2359 SIMD_BINOP_LIST(SIMD_VISIT_BINOP)
2360 #undef SIMD_VISIT_BINOP
2361
2362 void InstructionSelector::VisitS128Select(Node* node) {
2363 VisitRRRR(this, kMipsS128Select, node);
2364 }
2365
2366 #if V8_ENABLE_WEBASSEMBLY
2367 namespace {
2368
2369 struct ShuffleEntry {
2370 uint8_t shuffle[kSimd128Size];
2371 ArchOpcode opcode;
2372 };
2373
2374 static const ShuffleEntry arch_shuffles[] = {
2375 {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23},
2376 kMipsS32x4InterleaveRight},
2377 {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31},
2378 kMipsS32x4InterleaveLeft},
2379 {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27},
2380 kMipsS32x4PackEven},
2381 {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31},
2382 kMipsS32x4PackOdd},
2383 {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27},
2384 kMipsS32x4InterleaveEven},
2385 {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31},
2386 kMipsS32x4InterleaveOdd},
2387
2388 {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23},
2389 kMipsS16x8InterleaveRight},
2390 {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31},
2391 kMipsS16x8InterleaveLeft},
2392 {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29},
2393 kMipsS16x8PackEven},
2394 {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31},
2395 kMipsS16x8PackOdd},
2396 {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29},
2397 kMipsS16x8InterleaveEven},
2398 {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31},
2399 kMipsS16x8InterleaveOdd},
2400 {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}, kMipsS16x4Reverse},
2401 {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}, kMipsS16x2Reverse},
2402
2403 {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23},
2404 kMipsS8x16InterleaveRight},
2405 {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31},
2406 kMipsS8x16InterleaveLeft},
2407 {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30},
2408 kMipsS8x16PackEven},
2409 {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31},
2410 kMipsS8x16PackOdd},
2411 {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30},
2412 kMipsS8x16InterleaveEven},
2413 {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31},
2414 kMipsS8x16InterleaveOdd},
2415 {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}, kMipsS8x8Reverse},
2416 {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}, kMipsS8x4Reverse},
2417 {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}, kMipsS8x2Reverse}};
2418
TryMatchArchShuffle(const uint8_t * shuffle,const ShuffleEntry * table,size_t num_entries,bool is_swizzle,ArchOpcode * opcode)2419 bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table,
2420 size_t num_entries, bool is_swizzle,
2421 ArchOpcode* opcode) {
2422 uint8_t mask = is_swizzle ? kSimd128Size - 1 : 2 * kSimd128Size - 1;
2423 for (size_t i = 0; i < num_entries; ++i) {
2424 const ShuffleEntry& entry = table[i];
2425 int j = 0;
2426 for (; j < kSimd128Size; ++j) {
2427 if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) {
2428 break;
2429 }
2430 }
2431 if (j == kSimd128Size) {
2432 *opcode = entry.opcode;
2433 return true;
2434 }
2435 }
2436 return false;
2437 }
2438
2439 } // namespace
2440
VisitI8x16Shuffle(Node * node)2441 void InstructionSelector::VisitI8x16Shuffle(Node* node) {
2442 uint8_t shuffle[kSimd128Size];
2443 bool is_swizzle;
2444 CanonicalizeShuffle(node, shuffle, &is_swizzle);
2445 uint8_t shuffle32x4[4];
2446 ArchOpcode opcode;
2447 if (TryMatchArchShuffle(shuffle, arch_shuffles, arraysize(arch_shuffles),
2448 is_swizzle, &opcode)) {
2449 VisitRRR(this, opcode, node);
2450 return;
2451 }
2452 Node* input0 = node->InputAt(0);
2453 Node* input1 = node->InputAt(1);
2454 uint8_t offset;
2455 MipsOperandGenerator g(this);
2456 if (wasm::SimdShuffle::TryMatchConcat(shuffle, &offset)) {
2457 Emit(kMipsS8x16Concat, g.DefineSameAsFirst(node), g.UseRegister(input1),
2458 g.UseRegister(input0), g.UseImmediate(offset));
2459 return;
2460 }
2461 if (wasm::SimdShuffle::TryMatch32x4Shuffle(shuffle, shuffle32x4)) {
2462 Emit(kMipsS32x4Shuffle, g.DefineAsRegister(node), g.UseRegister(input0),
2463 g.UseRegister(input1),
2464 g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle32x4)));
2465 return;
2466 }
2467 Emit(kMipsI8x16Shuffle, g.DefineAsRegister(node), g.UseRegister(input0),
2468 g.UseRegister(input1),
2469 g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle)),
2470 g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle + 4)),
2471 g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle + 8)),
2472 g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle + 12)));
2473 }
2474 #else
VisitI8x16Shuffle(Node * node)2475 void InstructionSelector::VisitI8x16Shuffle(Node* node) { UNREACHABLE(); }
2476 #endif // V8_ENABLE_WEBASSEMBLY
2477
VisitI8x16Swizzle(Node * node)2478 void InstructionSelector::VisitI8x16Swizzle(Node* node) {
2479 MipsOperandGenerator g(this);
2480 InstructionOperand temps[] = {g.TempSimd128Register()};
2481 // We don't want input 0 or input 1 to be the same as output, since we will
2482 // modify output before do the calculation.
2483 Emit(kMipsI8x16Swizzle, g.DefineAsRegister(node),
2484 g.UseUniqueRegister(node->InputAt(0)),
2485 g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
2486 }
2487
VisitSignExtendWord8ToInt32(Node * node)2488 void InstructionSelector::VisitSignExtendWord8ToInt32(Node* node) {
2489 MipsOperandGenerator g(this);
2490 Emit(kMipsSeb, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
2491 }
2492
VisitSignExtendWord16ToInt32(Node * node)2493 void InstructionSelector::VisitSignExtendWord16ToInt32(Node* node) {
2494 MipsOperandGenerator g(this);
2495 Emit(kMipsSeh, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
2496 }
2497
VisitF32x4Pmin(Node * node)2498 void InstructionSelector::VisitF32x4Pmin(Node* node) {
2499 VisitUniqueRRR(this, kMipsF32x4Pmin, node);
2500 }
2501
VisitF32x4Pmax(Node * node)2502 void InstructionSelector::VisitF32x4Pmax(Node* node) {
2503 VisitUniqueRRR(this, kMipsF32x4Pmax, node);
2504 }
2505
VisitF64x2Pmin(Node * node)2506 void InstructionSelector::VisitF64x2Pmin(Node* node) {
2507 VisitUniqueRRR(this, kMipsF64x2Pmin, node);
2508 }
2509
VisitF64x2Pmax(Node * node)2510 void InstructionSelector::VisitF64x2Pmax(Node* node) {
2511 VisitUniqueRRR(this, kMipsF64x2Pmax, node);
2512 }
2513
AddOutputToSelectContinuation(OperandGenerator * g,int first_input_index,Node * node)2514 void InstructionSelector::AddOutputToSelectContinuation(OperandGenerator* g,
2515 int first_input_index,
2516 Node* node) {
2517 UNREACHABLE();
2518 }
2519
2520 // static
2521 MachineOperatorBuilder::Flags
SupportedMachineOperatorFlags()2522 InstructionSelector::SupportedMachineOperatorFlags() {
2523 MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kNoFlags;
2524 if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2525 IsFp64Mode()) {
2526 flags |= MachineOperatorBuilder::kFloat64RoundDown |
2527 MachineOperatorBuilder::kFloat64RoundUp |
2528 MachineOperatorBuilder::kFloat64RoundTruncate |
2529 MachineOperatorBuilder::kFloat64RoundTiesEven;
2530 }
2531
2532 return flags | MachineOperatorBuilder::kWord32Ctz |
2533 MachineOperatorBuilder::kWord32Popcnt |
2534 MachineOperatorBuilder::kInt32DivIsSafe |
2535 MachineOperatorBuilder::kUint32DivIsSafe |
2536 MachineOperatorBuilder::kWord32ShiftIsSafe |
2537 MachineOperatorBuilder::kFloat32RoundDown |
2538 MachineOperatorBuilder::kFloat32RoundUp |
2539 MachineOperatorBuilder::kFloat32RoundTruncate |
2540 MachineOperatorBuilder::kFloat32RoundTiesEven;
2541 }
2542
2543 // static
2544 MachineOperatorBuilder::AlignmentRequirements
AlignmentRequirements()2545 InstructionSelector::AlignmentRequirements() {
2546 if (IsMipsArchVariant(kMips32r6)) {
2547 return MachineOperatorBuilder::AlignmentRequirements::
2548 FullUnalignedAccessSupport();
2549 } else {
2550 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2551 IsMipsArchVariant(kMips32r2));
2552 return MachineOperatorBuilder::AlignmentRequirements::
2553 NoUnalignedAccessSupport();
2554 }
2555 }
2556
2557 #undef SIMD_BINOP_LIST
2558 #undef SIMD_SHIFT_OP_LIST
2559 #undef SIMD_UNOP_LIST
2560 #undef SIMD_TYPE_LIST
2561 #undef TRACE_UNIMPL
2562 #undef TRACE
2563
2564 } // namespace compiler
2565 } // namespace internal
2566 } // namespace v8
2567