• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_MIPS64
6 
7 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
8 
9 #include "src/codegen/macro-assembler.h"
10 #include "src/codegen/mips64/assembler-mips64-inl.h"
11 #include "src/heap/factory.h"
12 #include "src/logging/log.h"
13 #include "src/objects/code-inl.h"
14 #include "src/regexp/regexp-stack.h"
15 #include "src/snapshot/embedded/embedded-data-inl.h"
16 
17 namespace v8 {
18 namespace internal {
19 
20 /* clang-format off
21  *
22  * This assembler uses the following register assignment convention
23  * - s0 : Unused.
24  * - s1 : Pointer to current Code object including heap object tag.
25  * - s2 : Current position in input, as negative offset from end of string.
26  *        Please notice that this is the byte offset, not the character offset!
27  * - s5 : Currently loaded character. Must be loaded using
28  *        LoadCurrentCharacter before using any of the dispatch methods.
29  * - s6 : Points to tip of backtrack stack
30  * - s7 : End of input (points to byte after last character in input).
31  * - fp : Frame pointer. Used to access arguments, local variables and
32  *        RegExp registers.
33  * - sp : Points to tip of C stack.
34  *
35  * The remaining registers are free for computations.
36  * Each call to a public method should retain this convention.
37  *
38  * TODO(plind): O32 documented here with intent of having single 32/64 codebase
39  *              in the future.
40  *
41  * The O32 stack will have the following structure:
42  *
43  *  - fp[72]  Isolate* isolate   (address of the current isolate)
44  *  - fp[68]  direct_call  (if 1, direct call from JavaScript code,
45  *                          if 0, call through the runtime system).
46  *  - fp[64]  stack_area_base (High end of the memory area to use as
47  *                             backtracking stack).
48  *  - fp[60]  capture array size (may fit multiple sets of matches)
49  *  - fp[44..59]  MIPS O32 four argument slots
50  *  - fp[40]  int* capture_array (int[num_saved_registers_], for output).
51  *  --- sp when called ---
52  *  - fp[36]  return address      (lr).
53  *  - fp[32]  old frame pointer   (r11).
54  *  - fp[0..31]  backup of registers s0..s7.
55  *  --- frame pointer ----
56  *  - fp[-4]  end of input       (address of end of string).
57  *  - fp[-8]  start of input     (address of first character in string).
58  *  - fp[-12] start index        (character index of start).
59  *  - fp[-16] void* input_string (location of a handle containing the string).
60  *  - fp[-20] success counter    (only for global regexps to count matches).
61  *  - fp[-24] Offset of location before start of input (effectively character
62  *            string start - 1). Used to initialize capture registers to a
63  *            non-position.
64  *  - fp[-28] At start (if 1, we are starting at the start of the
65  *    string, otherwise 0)
66  *  - fp[-32] register 0         (Only positions must be stored in the first
67  *  -         register 1          num_saved_registers_ registers)
68  *  -         ...
69  *  -         register num_registers-1
70  *  --- sp ---
71  *
72  *
73  * The N64 stack will have the following structure:
74  *
75  *  - fp[80]  Isolate* isolate   (address of the current isolate)               kIsolate
76  *                                                                              kStackFrameHeader
77  *  --- sp when called ---
78  *  - fp[72]  ra                 Return from RegExp code (ra).                  kReturnAddress
79  *  - fp[64]  s9, old-fp         Old fp, callee saved(s9).
80  *  - fp[0..63]  s0..s7          Callee-saved registers s0..s7.
81  *  --- frame pointer ----
82  *  - fp[-8]  direct_call        (1 = direct call from JS, 0 = from runtime)    kDirectCall
83  *  - fp[-16] capture array size (may fit multiple sets of matches)             kNumOutputRegisters
84  *  - fp[-24] int* capture_array (int[num_saved_registers_], for output).       kRegisterOutput
85  *  - fp[-32] end of input       (address of end of string).                    kInputEnd
86  *  - fp[-40] start of input     (address of first character in string).        kInputStart
87  *  - fp[-48] start index        (character index of start).                    kStartIndex
88  *  - fp[-56] void* input_string (location of a handle containing the string).  kInputString
89  *  - fp[-64] success counter    (only for global regexps to count matches).    kSuccessfulCaptures
90  *  - fp[-72] Offset of location before start of input (effectively character   kStringStartMinusOne
91  *            position -1). Used to initialize capture registers to a
92  *            non-position.
93  *  --------- The following output registers are 32-bit values. ---------
94  *  - fp[-80] register 0         (Only positions must be stored in the first    kRegisterZero
95  *  -         register 1          num_saved_registers_ registers)
96  *  -         ...
97  *  -         register num_registers-1
98  *  --- sp ---
99  *
100  * The first num_saved_registers_ registers are initialized to point to
101  * "character -1" in the string (i.e., char_size() bytes before the first
102  * character of the string). The remaining registers start out as garbage.
103  *
104  * The data up to the return address must be placed there by the calling
105  * code and the remaining arguments are passed in registers, e.g. by calling the
106  * code entry as cast to a function with the signature:
107  * int (*match)(String input_string,
108  *              int start_index,
109  *              Address start,
110  *              Address end,
111  *              int* capture_output_array,
112  *              int num_capture_registers,
113  *              bool direct_call = false,
114  *              Isolate* isolate);
115  * The call is performed by NativeRegExpMacroAssembler::Execute()
116  * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
117  *
118  * clang-format on
119  */
120 
121 #define __ ACCESS_MASM(masm_)
122 
123 const int RegExpMacroAssemblerMIPS::kRegExpCodeSize;
124 
RegExpMacroAssemblerMIPS(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)125 RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
126                                                    Mode mode,
127                                                    int registers_to_save)
128     : NativeRegExpMacroAssembler(isolate, zone),
129       masm_(std::make_unique<MacroAssembler>(
130           isolate, CodeObjectRequired::kYes,
131           NewAssemblerBuffer(kRegExpCodeSize))),
132       no_root_array_scope_(masm_.get()),
133       mode_(mode),
134       num_registers_(registers_to_save),
135       num_saved_registers_(registers_to_save),
136       entry_label_(),
137       start_label_(),
138       success_label_(),
139       backtrack_label_(),
140       exit_label_(),
141       internal_failure_label_() {
142   DCHECK_EQ(0, registers_to_save % 2);
143   __ jmp(&entry_label_);   // We'll write the entry code later.
144   // If the code gets too big or corrupted, an internal exception will be
145   // raised, and we will exit right away.
146   __ bind(&internal_failure_label_);
147   __ li(v0, Operand(FAILURE));
148   __ Ret();
149   __ bind(&start_label_);  // And then continue from here.
150 }
151 
~RegExpMacroAssemblerMIPS()152 RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
153   // Unuse labels in case we throw away the assembler without calling GetCode.
154   entry_label_.Unuse();
155   start_label_.Unuse();
156   success_label_.Unuse();
157   backtrack_label_.Unuse();
158   exit_label_.Unuse();
159   check_preempt_label_.Unuse();
160   stack_overflow_label_.Unuse();
161   internal_failure_label_.Unuse();
162   fallback_label_.Unuse();
163 }
164 
165 
stack_limit_slack()166 int RegExpMacroAssemblerMIPS::stack_limit_slack()  {
167   return RegExpStack::kStackLimitSlack;
168 }
169 
170 
AdvanceCurrentPosition(int by)171 void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
172   if (by != 0) {
173     __ Daddu(current_input_offset(),
174             current_input_offset(), Operand(by * char_size()));
175   }
176 }
177 
178 
AdvanceRegister(int reg,int by)179 void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
180   DCHECK_LE(0, reg);
181   DCHECK_GT(num_registers_, reg);
182   if (by != 0) {
183     __ Ld(a0, register_location(reg));
184     __ Daddu(a0, a0, Operand(by));
185     __ Sd(a0, register_location(reg));
186   }
187 }
188 
189 
Backtrack()190 void RegExpMacroAssemblerMIPS::Backtrack() {
191   CheckPreemption();
192   if (has_backtrack_limit()) {
193     Label next;
194     __ Ld(a0, MemOperand(frame_pointer(), kBacktrackCount));
195     __ Daddu(a0, a0, Operand(1));
196     __ Sd(a0, MemOperand(frame_pointer(), kBacktrackCount));
197     __ Branch(&next, ne, a0, Operand(backtrack_limit()));
198 
199     // Backtrack limit exceeded.
200     if (can_fallback()) {
201       __ jmp(&fallback_label_);
202     } else {
203       // Can't fallback, so we treat it as a failed match.
204       Fail();
205     }
206 
207     __ bind(&next);
208   }
209   // Pop Code offset from backtrack stack, add Code and jump to location.
210   Pop(a0);
211   __ Daddu(a0, a0, code_pointer());
212   __ Jump(a0);
213 }
214 
215 
Bind(Label * label)216 void RegExpMacroAssemblerMIPS::Bind(Label* label) {
217   __ bind(label);
218 }
219 
220 
CheckCharacter(uint32_t c,Label * on_equal)221 void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
222   BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
223 }
224 
CheckCharacterGT(base::uc16 limit,Label * on_greater)225 void RegExpMacroAssemblerMIPS::CheckCharacterGT(base::uc16 limit,
226                                                 Label* on_greater) {
227   BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
228 }
229 
CheckAtStart(int cp_offset,Label * on_at_start)230 void RegExpMacroAssemblerMIPS::CheckAtStart(int cp_offset, Label* on_at_start) {
231   __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
232   __ Daddu(a0, current_input_offset(),
233            Operand(-char_size() + cp_offset * char_size()));
234   BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
235 }
236 
237 
CheckNotAtStart(int cp_offset,Label * on_not_at_start)238 void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
239                                                Label* on_not_at_start) {
240   __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
241   __ Daddu(a0, current_input_offset(),
242            Operand(-char_size() + cp_offset * char_size()));
243   BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
244 }
245 
CheckCharacterLT(base::uc16 limit,Label * on_less)246 void RegExpMacroAssemblerMIPS::CheckCharacterLT(base::uc16 limit,
247                                                 Label* on_less) {
248   BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
249 }
250 
CheckGreedyLoop(Label * on_equal)251 void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
252   Label backtrack_non_equal;
253   __ Lw(a0, MemOperand(backtrack_stackpointer(), 0));
254   __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
255   __ Daddu(backtrack_stackpointer(),
256           backtrack_stackpointer(),
257           Operand(kIntSize));
258   __ bind(&backtrack_non_equal);
259   BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
260 }
261 
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,bool unicode,Label * on_no_match)262 void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
263     int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
264   Label fallthrough;
265   __ Ld(a0, register_location(start_reg));      // Index of start of capture.
266   __ Ld(a1, register_location(start_reg + 1));  // Index of end of capture.
267   __ Dsubu(a1, a1, a0);  // Length of capture.
268 
269   // At this point, the capture registers are either both set or both cleared.
270   // If the capture length is zero, then the capture is either empty or cleared.
271   // Fall through in both cases.
272   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
273 
274   if (read_backward) {
275     __ Ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
276     __ Daddu(t1, t1, a1);
277     BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
278   } else {
279     __ Daddu(t1, a1, current_input_offset());
280     // Check that there are enough characters left in the input.
281     BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
282   }
283 
284   if (mode_ == LATIN1) {
285     Label success;
286     Label fail;
287     Label loop_check;
288 
289     // a0 - offset of start of capture.
290     // a1 - length of capture.
291     __ Daddu(a0, a0, Operand(end_of_input_address()));
292     __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
293     if (read_backward) {
294       __ Dsubu(a2, a2, Operand(a1));
295     }
296     __ Daddu(a1, a0, Operand(a1));
297 
298     // a0 - Address of start of capture.
299     // a1 - Address of end of capture.
300     // a2 - Address of current input position.
301 
302     Label loop;
303     __ bind(&loop);
304     __ Lbu(a3, MemOperand(a0, 0));
305     __ daddiu(a0, a0, char_size());
306     __ Lbu(a4, MemOperand(a2, 0));
307     __ daddiu(a2, a2, char_size());
308 
309     __ Branch(&loop_check, eq, a4, Operand(a3));
310 
311     // Mismatch, try case-insensitive match (converting letters to lower-case).
312     __ Or(a3, a3, Operand(0x20));  // Convert capture character to lower-case.
313     __ Or(a4, a4, Operand(0x20));  // Also convert input character.
314     __ Branch(&fail, ne, a4, Operand(a3));
315     __ Dsubu(a3, a3, Operand('a'));
316     __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
317     // Latin-1: Check for values in range [224,254] but not 247.
318     __ Dsubu(a3, a3, Operand(224 - 'a'));
319     // Weren't Latin-1 letters.
320     __ Branch(&fail, hi, a3, Operand(254 - 224));
321     // Check for 247.
322     __ Branch(&fail, eq, a3, Operand(247 - 224));
323 
324     __ bind(&loop_check);
325     __ Branch(&loop, lt, a0, Operand(a1));
326     __ jmp(&success);
327 
328     __ bind(&fail);
329     GoTo(on_no_match);
330 
331     __ bind(&success);
332     // Compute new value of character position after the matched part.
333     __ Dsubu(current_input_offset(), a2, end_of_input_address());
334     if (read_backward) {
335       __ Ld(t1, register_location(start_reg));  // Index of start of capture.
336       __ Ld(a2, register_location(start_reg + 1));  // Index of end of capture.
337       __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
338       __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
339     }
340   } else {
341     DCHECK(mode_ == UC16);
342 
343     int argument_count = 4;
344     __ PrepareCallCFunction(argument_count, a2);
345 
346     // a0 - offset of start of capture.
347     // a1 - length of capture.
348 
349     // Put arguments into arguments registers.
350     // Parameters are
351     //   a0: Address byte_offset1 - Address captured substring's start.
352     //   a1: Address byte_offset2 - Address of current character position.
353     //   a2: size_t byte_length - length of capture in bytes(!).
354     //   a3: Isolate* isolate.
355 
356     // Address of start of capture.
357     __ Daddu(a0, a0, Operand(end_of_input_address()));
358     // Length of capture.
359     __ mov(a2, a1);
360     // Save length in callee-save register for use on return.
361     __ mov(s3, a1);
362     // Address of current input position.
363     __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
364     if (read_backward) {
365       __ Dsubu(a1, a1, Operand(s3));
366     }
367     // Isolate.
368     __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
369 
370     {
371       AllowExternalCallThatCantCauseGC scope(masm_.get());
372       ExternalReference function =
373           unicode
374               ? ExternalReference::re_case_insensitive_compare_unicode()
375               : ExternalReference::re_case_insensitive_compare_non_unicode();
376       __ CallCFunction(function, argument_count);
377     }
378 
379     // Check if function returned non-zero for success or zero for failure.
380     BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
381     // On success, increment position by length of capture.
382     if (read_backward) {
383       __ Dsubu(current_input_offset(), current_input_offset(), Operand(s3));
384     } else {
385       __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
386     }
387   }
388 
389   __ bind(&fallthrough);
390 }
391 
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)392 void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
393                                                      bool read_backward,
394                                                      Label* on_no_match) {
395   Label fallthrough;
396 
397   // Find length of back-referenced capture.
398   __ Ld(a0, register_location(start_reg));
399   __ Ld(a1, register_location(start_reg + 1));
400   __ Dsubu(a1, a1, a0);  // Length to check.
401 
402   // At this point, the capture registers are either both set or both cleared.
403   // If the capture length is zero, then the capture is either empty or cleared.
404   // Fall through in both cases.
405   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
406 
407   if (read_backward) {
408     __ Ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
409     __ Daddu(t1, t1, a1);
410     BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
411   } else {
412     __ Daddu(t1, a1, current_input_offset());
413     // Check that there are enough characters left in the input.
414     BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
415   }
416 
417   // Compute pointers to match string and capture string.
418   __ Daddu(a0, a0, Operand(end_of_input_address()));
419   __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
420   if (read_backward) {
421     __ Dsubu(a2, a2, Operand(a1));
422   }
423   __ Daddu(a1, a1, Operand(a0));
424 
425   Label loop;
426   __ bind(&loop);
427   if (mode_ == LATIN1) {
428     __ Lbu(a3, MemOperand(a0, 0));
429     __ daddiu(a0, a0, char_size());
430     __ Lbu(a4, MemOperand(a2, 0));
431     __ daddiu(a2, a2, char_size());
432   } else {
433     DCHECK(mode_ == UC16);
434     __ Lhu(a3, MemOperand(a0, 0));
435     __ daddiu(a0, a0, char_size());
436     __ Lhu(a4, MemOperand(a2, 0));
437     __ daddiu(a2, a2, char_size());
438   }
439   BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
440   __ Branch(&loop, lt, a0, Operand(a1));
441 
442   // Move current character position to position after match.
443   __ Dsubu(current_input_offset(), a2, end_of_input_address());
444   if (read_backward) {
445     __ Ld(t1, register_location(start_reg));      // Index of start of capture.
446     __ Ld(a2, register_location(start_reg + 1));  // Index of end of capture.
447     __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
448     __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
449   }
450   __ bind(&fallthrough);
451 }
452 
453 
CheckNotCharacter(uint32_t c,Label * on_not_equal)454 void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
455                                                  Label* on_not_equal) {
456   BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
457 }
458 
459 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)460 void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
461                                                       uint32_t mask,
462                                                       Label* on_equal) {
463   __ And(a0, current_character(), Operand(mask));
464   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
465   BranchOrBacktrack(on_equal, eq, a0, rhs);
466 }
467 
468 
CheckNotCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_not_equal)469 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
470                                                          uint32_t mask,
471                                                          Label* on_not_equal) {
472   __ And(a0, current_character(), Operand(mask));
473   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
474   BranchOrBacktrack(on_not_equal, ne, a0, rhs);
475 }
476 
CheckNotCharacterAfterMinusAnd(base::uc16 c,base::uc16 minus,base::uc16 mask,Label * on_not_equal)477 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
478     base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
479   DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
480   __ Dsubu(a0, current_character(), Operand(minus));
481   __ And(a0, a0, Operand(mask));
482   BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
483 }
484 
CheckCharacterInRange(base::uc16 from,base::uc16 to,Label * on_in_range)485 void RegExpMacroAssemblerMIPS::CheckCharacterInRange(base::uc16 from,
486                                                      base::uc16 to,
487                                                      Label* on_in_range) {
488   __ Dsubu(a0, current_character(), Operand(from));
489   // Unsigned lower-or-same condition.
490   BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
491 }
492 
CheckCharacterNotInRange(base::uc16 from,base::uc16 to,Label * on_not_in_range)493 void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
494     base::uc16 from, base::uc16 to, Label* on_not_in_range) {
495   __ Dsubu(a0, current_character(), Operand(from));
496   // Unsigned higher condition.
497   BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
498 }
499 
CallIsCharacterInRangeArray(const ZoneList<CharacterRange> * ranges)500 void RegExpMacroAssemblerMIPS::CallIsCharacterInRangeArray(
501     const ZoneList<CharacterRange>* ranges) {
502   static const int kNumArguments = 3;
503   __ PrepareCallCFunction(kNumArguments, a0);
504 
505   __ mov(a0, current_character());
506   __ li(a1, Operand(GetOrAddRangeArray(ranges)));
507   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
508 
509   {
510     // We have a frame (set up in GetCode), but the assembler doesn't know.
511     FrameScope scope(masm_.get(), StackFrame::MANUAL);
512     __ CallCFunction(ExternalReference::re_is_character_in_range_array(),
513                      kNumArguments);
514   }
515 
516   __ li(code_pointer(), Operand(masm_->CodeObject()));
517 }
518 
CheckCharacterInRangeArray(const ZoneList<CharacterRange> * ranges,Label * on_in_range)519 bool RegExpMacroAssemblerMIPS::CheckCharacterInRangeArray(
520     const ZoneList<CharacterRange>* ranges, Label* on_in_range) {
521   CallIsCharacterInRangeArray(ranges);
522   BranchOrBacktrack(on_in_range, ne, v0, Operand(zero_reg));
523   return true;
524 }
525 
CheckCharacterNotInRangeArray(const ZoneList<CharacterRange> * ranges,Label * on_not_in_range)526 bool RegExpMacroAssemblerMIPS::CheckCharacterNotInRangeArray(
527     const ZoneList<CharacterRange>* ranges, Label* on_not_in_range) {
528   CallIsCharacterInRangeArray(ranges);
529   BranchOrBacktrack(on_not_in_range, eq, v0, Operand(zero_reg));
530   return true;
531 }
532 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)533 void RegExpMacroAssemblerMIPS::CheckBitInTable(
534     Handle<ByteArray> table,
535     Label* on_bit_set) {
536   __ li(a0, Operand(table));
537   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
538     __ And(a1, current_character(), Operand(kTableSize - 1));
539     __ Daddu(a0, a0, a1);
540   } else {
541     __ Daddu(a0, a0, current_character());
542   }
543 
544   __ Lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
545   BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
546 }
547 
CheckSpecialCharacterClass(StandardCharacterSet type,Label * on_no_match)548 bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(
549     StandardCharacterSet type, Label* on_no_match) {
550   // Range checks (c in min..max) are generally implemented by an unsigned
551   // (c - min) <= (max - min) check.
552   // TODO(jgruber): No custom implementation (yet): s(UC16), S(UC16).
553   switch (type) {
554     case StandardCharacterSet::kWhitespace:
555       // Match space-characters.
556       if (mode_ == LATIN1) {
557         // One byte space characters are '\t'..'\r', ' ' and \u00a0.
558         Label success;
559         __ Branch(&success, eq, current_character(), Operand(' '));
560         // Check range 0x09..0x0D.
561         __ Dsubu(a0, current_character(), Operand('\t'));
562         __ Branch(&success, ls, a0, Operand('\r' - '\t'));
563         // \u00a0 (NBSP).
564         BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00A0 - '\t'));
565         __ bind(&success);
566         return true;
567       }
568       return false;
569     case StandardCharacterSet::kNotWhitespace:
570       // The emitted code for generic character classes is good enough.
571       return false;
572     case StandardCharacterSet::kDigit:
573       // Match Latin1 digits ('0'..'9').
574       __ Dsubu(a0, current_character(), Operand('0'));
575       BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
576       return true;
577     case StandardCharacterSet::kNotDigit:
578       // Match non Latin1-digits.
579       __ Dsubu(a0, current_character(), Operand('0'));
580       BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
581       return true;
582     case StandardCharacterSet::kNotLineTerminator: {
583       // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
584       __ Xor(a0, current_character(), Operand(0x01));
585       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
586       __ Dsubu(a0, a0, Operand(0x0B));
587       BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0C - 0x0B));
588       if (mode_ == UC16) {
589         // Compare original value to 0x2028 and 0x2029, using the already
590         // computed (current_char ^ 0x01 - 0x0B). I.e., check for
591         // 0x201D (0x2028 - 0x0B) or 0x201E.
592         __ Dsubu(a0, a0, Operand(0x2028 - 0x0B));
593         BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
594       }
595       return true;
596     }
597     case StandardCharacterSet::kLineTerminator: {
598       // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
599       __ Xor(a0, current_character(), Operand(0x01));
600       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
601       __ Dsubu(a0, a0, Operand(0x0B));
602       if (mode_ == LATIN1) {
603         BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0C - 0x0B));
604       } else {
605         Label done;
606         BranchOrBacktrack(&done, ls, a0, Operand(0x0C - 0x0B));
607         // Compare original value to 0x2028 and 0x2029, using the already
608         // computed (current_char ^ 0x01 - 0x0B). I.e., check for
609         // 0x201D (0x2028 - 0x0B) or 0x201E.
610         __ Dsubu(a0, a0, Operand(0x2028 - 0x0B));
611         BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
612         __ bind(&done);
613       }
614       return true;
615     }
616     case StandardCharacterSet::kWord: {
617       if (mode_ != LATIN1) {
618         // Table is 256 entries, so all Latin1 characters can be tested.
619         BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
620       }
621       ExternalReference map = ExternalReference::re_word_character_map();
622       __ li(a0, Operand(map));
623       __ Daddu(a0, a0, current_character());
624       __ Lbu(a0, MemOperand(a0, 0));
625       BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
626       return true;
627     }
628     case StandardCharacterSet::kNotWord: {
629       Label done;
630       if (mode_ != LATIN1) {
631         // Table is 256 entries, so all Latin1 characters can be tested.
632         __ Branch(&done, hi, current_character(), Operand('z'));
633       }
634       ExternalReference map = ExternalReference::re_word_character_map();
635       __ li(a0, Operand(map));
636       __ Daddu(a0, a0, current_character());
637       __ Lbu(a0, MemOperand(a0, 0));
638       BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
639       if (mode_ != LATIN1) {
640         __ bind(&done);
641       }
642       return true;
643     }
644     case StandardCharacterSet::kEverything:
645       // Match any character.
646       return true;
647   }
648 }
649 
Fail()650 void RegExpMacroAssemblerMIPS::Fail() {
651   __ li(v0, Operand(FAILURE));
652   __ jmp(&exit_label_);
653 }
654 
LoadRegExpStackPointerFromMemory(Register dst)655 void RegExpMacroAssemblerMIPS::LoadRegExpStackPointerFromMemory(Register dst) {
656   ExternalReference ref =
657       ExternalReference::address_of_regexp_stack_stack_pointer(isolate());
658   __ li(dst, Operand(ref));
659   __ Ld(dst, MemOperand(dst));
660 }
661 
StoreRegExpStackPointerToMemory(Register src,Register scratch)662 void RegExpMacroAssemblerMIPS::StoreRegExpStackPointerToMemory(
663     Register src, Register scratch) {
664   ExternalReference ref =
665       ExternalReference::address_of_regexp_stack_stack_pointer(isolate());
666   __ li(scratch, Operand(ref));
667   __ Sd(src, MemOperand(scratch));
668 }
669 
PushRegExpBasePointer(Register stack_pointer,Register scratch)670 void RegExpMacroAssemblerMIPS::PushRegExpBasePointer(Register stack_pointer,
671                                                      Register scratch) {
672   ExternalReference ref =
673       ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
674   __ li(scratch, Operand(ref));
675   __ Ld(scratch, MemOperand(scratch));
676   __ Dsubu(scratch, stack_pointer, scratch);
677   __ Sd(scratch, MemOperand(frame_pointer(), kRegExpStackBasePointer));
678 }
679 
PopRegExpBasePointer(Register stack_pointer_out,Register scratch)680 void RegExpMacroAssemblerMIPS::PopRegExpBasePointer(Register stack_pointer_out,
681                                                     Register scratch) {
682   ExternalReference ref =
683       ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
684   __ Ld(stack_pointer_out,
685         MemOperand(frame_pointer(), kRegExpStackBasePointer));
686   __ li(scratch, Operand(ref));
687   __ Ld(scratch, MemOperand(scratch));
688   __ Daddu(stack_pointer_out, stack_pointer_out, scratch);
689   StoreRegExpStackPointerToMemory(stack_pointer_out, scratch);
690 }
691 
GetCode(Handle<String> source)692 Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
693   Label return_v0;
694   if (masm_->has_exception()) {
695     // If the code gets corrupted due to long regular expressions and lack of
696     // space on trampolines, an internal exception flag is set. If this case
697     // is detected, we will jump into exit sequence right away.
698     __ bind_to(&entry_label_, internal_failure_label_.pos());
699   } else {
700     // Finalize code - write the entry point code now we know how many
701     // registers we need.
702 
703     // Entry code:
704     __ bind(&entry_label_);
705 
706     // Tell the system that we have a stack frame.  Because the type is MANUAL,
707     // no is generated.
708     FrameScope scope(masm_.get(), StackFrame::MANUAL);
709 
710     // Actually emit code to start a new stack frame.
711     // Push arguments
712     // Save callee-save registers.
713     // Start new stack frame.
714     // Store link register in existing stack-cell.
715     // Order here should correspond to order of offset constants in header file.
716     // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
717     // or dont save.
718     RegList registers_to_retain = {s0, s1, s2, s3, s4, s5, s6, s7, fp};
719     RegList argument_registers = {a0, a1, a2, a3};
720 
721     argument_registers |= {a4, a5, a6, a7};
722 
723     __ MultiPush(argument_registers | registers_to_retain | ra);
724     // Set frame pointer in space for it if this is not a direct call
725     // from generated code.
726     // TODO(plind): this 8 is the # of argument regs, should have definition.
727     __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
728     STATIC_ASSERT(kSuccessfulCaptures == kInputString - kSystemPointerSize);
729     __ mov(a0, zero_reg);
730     __ push(a0);  // Make room for success counter and initialize it to 0.
731     STATIC_ASSERT(kStringStartMinusOne ==
732                   kSuccessfulCaptures - kSystemPointerSize);
733     __ push(a0);  // Make room for "string start - 1" constant.
734     STATIC_ASSERT(kBacktrackCount == kStringStartMinusOne - kSystemPointerSize);
735     __ push(a0);  // The backtrack counter
736     STATIC_ASSERT(kRegExpStackBasePointer ==
737                   kBacktrackCount - kSystemPointerSize);
738     __ push(a0);  // The regexp stack base ptr.
739 
740     // Initialize backtrack stack pointer. It must not be clobbered from here
741     // on. Note the backtrack_stackpointer is callee-saved.
742     STATIC_ASSERT(backtrack_stackpointer() == s7);
743     LoadRegExpStackPointerFromMemory(backtrack_stackpointer());
744 
745     // Store the regexp base pointer - we'll later restore it / write it to
746     // memory when returning from this irregexp code object.
747     PushRegExpBasePointer(backtrack_stackpointer(), a1);
748 
749     {
750       // Check if we have space on the stack for registers.
751       Label stack_limit_hit, stack_ok;
752 
753       ExternalReference stack_limit =
754           ExternalReference::address_of_jslimit(masm_->isolate());
755       __ li(a0, Operand(stack_limit));
756       __ Ld(a0, MemOperand(a0));
757       __ Dsubu(a0, sp, a0);
758       // Handle it if the stack pointer is already below the stack limit.
759       __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
760       // Check if there is room for the variable number of registers above
761       // the stack limit.
762       __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
763       // Exit with OutOfMemory exception. There is not enough space on the stack
764       // for our working registers.
765       __ li(v0, Operand(EXCEPTION));
766       __ jmp(&return_v0);
767 
768       __ bind(&stack_limit_hit);
769       CallCheckStackGuardState(a0);
770       // If returned value is non-zero, we exit with the returned value as
771       // result.
772       __ Branch(&return_v0, ne, v0, Operand(zero_reg));
773 
774       __ bind(&stack_ok);
775     }
776 
777     // Allocate space on stack for registers.
778     __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
779     // Load string end.
780     __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
781     // Load input start.
782     __ Ld(a0, MemOperand(frame_pointer(), kInputStart));
783     // Find negative length (offset of start relative to end).
784     __ Dsubu(current_input_offset(), a0, end_of_input_address());
785     // Set a0 to address of char before start of the input string
786     // (effectively string position -1).
787     __ Ld(a1, MemOperand(frame_pointer(), kStartIndex));
788     __ Dsubu(a0, current_input_offset(), Operand(char_size()));
789     __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
790     __ Dsubu(a0, a0, t1);
791     // Store this value in a local variable, for use when clearing
792     // position registers.
793     __ Sd(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
794 
795     // Initialize code pointer register
796     __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
797 
798     Label load_char_start_regexp;
799     {
800       Label start_regexp;
801       // Load newline if index is at start, previous character otherwise.
802       __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
803       __ li(current_character(), Operand('\n'));
804       __ jmp(&start_regexp);
805 
806       // Global regexp restarts matching here.
807       __ bind(&load_char_start_regexp);
808       // Load previous char as initial value of current character register.
809       LoadCurrentCharacterUnchecked(-1, 1);
810       __ bind(&start_regexp);
811     }
812 
813     // Initialize on-stack registers.
814     if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
815       // Fill saved registers with initial value = start offset - 1.
816       if (num_saved_registers_ > 8) {
817         // Address of register 0.
818         __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
819         __ li(a2, Operand(num_saved_registers_));
820         Label init_loop;
821         __ bind(&init_loop);
822         __ Sd(a0, MemOperand(a1));
823         __ Daddu(a1, a1, Operand(-kPointerSize));
824         __ Dsubu(a2, a2, Operand(1));
825         __ Branch(&init_loop, ne, a2, Operand(zero_reg));
826       } else {
827         for (int i = 0; i < num_saved_registers_; i++) {
828           __ Sd(a0, register_location(i));
829         }
830       }
831     }
832 
833     __ jmp(&start_label_);
834 
835     // Exit code:
836     if (success_label_.is_linked()) {
837       // Save captures when successful.
838       __ bind(&success_label_);
839       if (num_saved_registers_ > 0) {
840         // Copy captures to output.
841         __ Ld(a1, MemOperand(frame_pointer(), kInputStart));
842         __ Ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
843         __ Ld(a2, MemOperand(frame_pointer(), kStartIndex));
844         __ Dsubu(a1, end_of_input_address(), a1);
845         // a1 is length of input in bytes.
846         if (mode_ == UC16) {
847           __ dsrl(a1, a1, 1);
848         }
849         // a1 is length of input in characters.
850         __ Daddu(a1, a1, Operand(a2));
851         // a1 is length of string in characters.
852 
853         DCHECK_EQ(0, num_saved_registers_ % 2);
854         // Always an even number of capture registers. This allows us to
855         // unroll the loop once to add an operation between a load of a register
856         // and the following use of that register.
857         for (int i = 0; i < num_saved_registers_; i += 2) {
858           __ Ld(a2, register_location(i));
859           __ Ld(a3, register_location(i + 1));
860           if (i == 0 && global_with_zero_length_check()) {
861             // Keep capture start in a4 for the zero-length check later.
862             __ mov(t3, a2);
863           }
864           if (mode_ == UC16) {
865             __ dsra(a2, a2, 1);
866             __ Daddu(a2, a2, a1);
867             __ dsra(a3, a3, 1);
868             __ Daddu(a3, a3, a1);
869           } else {
870             __ Daddu(a2, a1, Operand(a2));
871             __ Daddu(a3, a1, Operand(a3));
872           }
873           // V8 expects the output to be an int32_t array.
874           __ Sw(a2, MemOperand(a0));
875           __ Daddu(a0, a0, kIntSize);
876           __ Sw(a3, MemOperand(a0));
877           __ Daddu(a0, a0, kIntSize);
878         }
879       }
880 
881       if (global()) {
882         // Restart matching if the regular expression is flagged as global.
883         __ Ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
884         __ Ld(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
885         __ Ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
886         // Increment success counter.
887         __ Daddu(a0, a0, 1);
888         __ Sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
889         // Capture results have been stored, so the number of remaining global
890         // output registers is reduced by the number of stored captures.
891         __ Dsubu(a1, a1, num_saved_registers_);
892         // Check whether we have enough room for another set of capture results.
893         __ mov(v0, a0);
894         __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
895 
896         __ Sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
897         // Advance the location for output.
898         __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
899         __ Sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
900 
901         // Prepare a0 to initialize registers with its value in the next run.
902         __ Ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
903 
904         // Restore the original regexp stack pointer value (effectively, pop the
905         // stored base pointer).
906         PopRegExpBasePointer(backtrack_stackpointer(), a2);
907 
908         if (global_with_zero_length_check()) {
909           // Special case for zero-length matches.
910           // t3: capture start index
911           // Not a zero-length match, restart.
912           __ Branch(
913               &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
914           // Offset from the end is zero if we already reached the end.
915           __ Branch(&exit_label_, eq, current_input_offset(),
916                     Operand(zero_reg));
917           // Advance current position after a zero-length match.
918           Label advance;
919           __ bind(&advance);
920           __ Daddu(current_input_offset(), current_input_offset(),
921                    Operand((mode_ == UC16) ? 2 : 1));
922           if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
923         }
924 
925         __ Branch(&load_char_start_regexp);
926       } else {
927         __ li(v0, Operand(SUCCESS));
928       }
929     }
930     // Exit and return v0.
931     __ bind(&exit_label_);
932     if (global()) {
933       __ Ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
934     }
935 
936     __ bind(&return_v0);
937     // Restore the original regexp stack pointer value (effectively, pop the
938     // stored base pointer).
939     PopRegExpBasePointer(backtrack_stackpointer(), a1);
940 
941     // Skip sp past regexp registers and local variables..
942     __ mov(sp, frame_pointer());
943     // Restore registers s0..s7 and return (restoring ra to pc).
944     __ MultiPop(registers_to_retain | ra);
945     __ Ret();
946 
947     // Backtrack code (branch target for conditional backtracks).
948     if (backtrack_label_.is_linked()) {
949       __ bind(&backtrack_label_);
950       Backtrack();
951     }
952 
953     Label exit_with_exception;
954 
955     // Preempt-code.
956     if (check_preempt_label_.is_linked()) {
957       SafeCallTarget(&check_preempt_label_);
958       StoreRegExpStackPointerToMemory(backtrack_stackpointer(), a0);
959 
960       CallCheckStackGuardState(a0);
961       // If returning non-zero, we should end execution with the given
962       // result as return value.
963       __ Branch(&return_v0, ne, v0, Operand(zero_reg));
964 
965       LoadRegExpStackPointerFromMemory(backtrack_stackpointer());
966 
967       // String might have moved: Reload end of string from frame.
968       __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
969       SafeReturn();
970     }
971 
972     // Backtrack stack overflow code.
973     if (stack_overflow_label_.is_linked()) {
974       SafeCallTarget(&stack_overflow_label_);
975       StoreRegExpStackPointerToMemory(backtrack_stackpointer(), a0);
976       // Reached if the backtrack-stack limit has been hit.
977 
978       // Call GrowStack(isolate)
979       static constexpr int kNumArguments = 1;
980       __ PrepareCallCFunction(kNumArguments, a0);
981       __ li(a0, Operand(ExternalReference::isolate_address(masm_->isolate())));
982       ExternalReference grow_stack = ExternalReference::re_grow_stack();
983       __ CallCFunction(grow_stack, kNumArguments);
984       // If nullptr is returned, we have failed to grow the stack, and must exit
985       // with a stack-overflow exception.
986       __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
987       // Otherwise use return value as new stack pointer.
988       __ mov(backtrack_stackpointer(), v0);
989       SafeReturn();
990     }
991 
992     if (exit_with_exception.is_linked()) {
993       // If any of the code above needed to exit with an exception.
994       __ bind(&exit_with_exception);
995       // Exit with Result EXCEPTION(-1) to signal thrown exception.
996       __ li(v0, Operand(EXCEPTION));
997       __ jmp(&return_v0);
998     }
999 
1000     if (fallback_label_.is_linked()) {
1001       __ bind(&fallback_label_);
1002       __ li(v0, Operand(FALLBACK_TO_EXPERIMENTAL));
1003       __ jmp(&return_v0);
1004     }
1005   }
1006 
1007   CodeDesc code_desc;
1008   masm_->GetCode(isolate(), &code_desc);
1009   Handle<Code> code =
1010       Factory::CodeBuilder(isolate(), code_desc, CodeKind::REGEXP)
1011           .set_self_reference(masm_->CodeObject())
1012           .Build();
1013   LOG(masm_->isolate(),
1014       RegExpCodeCreateEvent(Handle<AbstractCode>::cast(code), source));
1015   return Handle<HeapObject>::cast(code);
1016 }
1017 
1018 
GoTo(Label * to)1019 void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
1020   if (to == nullptr) {
1021     Backtrack();
1022     return;
1023   }
1024   __ jmp(to);
1025   return;
1026 }
1027 
1028 
IfRegisterGE(int reg,int comparand,Label * if_ge)1029 void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
1030                                             int comparand,
1031                                             Label* if_ge) {
1032   __ Ld(a0, register_location(reg));
1033   BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
1034 }
1035 
1036 
IfRegisterLT(int reg,int comparand,Label * if_lt)1037 void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
1038                                             int comparand,
1039                                             Label* if_lt) {
1040   __ Ld(a0, register_location(reg));
1041   BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
1042 }
1043 
1044 
IfRegisterEqPos(int reg,Label * if_eq)1045 void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
1046                                                Label* if_eq) {
1047   __ Ld(a0, register_location(reg));
1048   BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
1049 }
1050 
1051 
1052 RegExpMacroAssembler::IrregexpImplementation
Implementation()1053     RegExpMacroAssemblerMIPS::Implementation() {
1054   return kMIPSImplementation;
1055 }
1056 
1057 
PopCurrentPosition()1058 void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
1059   Pop(current_input_offset());
1060 }
1061 
1062 
PopRegister(int register_index)1063 void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
1064   Pop(a0);
1065   __ Sd(a0, register_location(register_index));
1066 }
1067 
1068 
PushBacktrack(Label * label)1069 void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
1070   if (label->is_bound()) {
1071     int target = label->pos();
1072     __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
1073   } else {
1074     Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_.get());
1075     Label after_constant;
1076     __ Branch(&after_constant);
1077     int offset = masm_->pc_offset();
1078     int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
1079     __ emit(0);
1080     masm_->label_at_put(label, offset);
1081     __ bind(&after_constant);
1082     if (is_int16(cp_offset)) {
1083       __ Lwu(a0, MemOperand(code_pointer(), cp_offset));
1084     } else {
1085       __ Daddu(a0, code_pointer(), cp_offset);
1086       __ Lwu(a0, MemOperand(a0, 0));
1087     }
1088   }
1089   Push(a0);
1090   CheckStackLimit();
1091 }
1092 
1093 
PushCurrentPosition()1094 void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
1095   Push(current_input_offset());
1096 }
1097 
1098 
PushRegister(int register_index,StackCheckFlag check_stack_limit)1099 void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
1100                                             StackCheckFlag check_stack_limit) {
1101   __ Ld(a0, register_location(register_index));
1102   Push(a0);
1103   if (check_stack_limit) CheckStackLimit();
1104 }
1105 
1106 
ReadCurrentPositionFromRegister(int reg)1107 void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
1108   __ Ld(current_input_offset(), register_location(reg));
1109 }
1110 
WriteStackPointerToRegister(int reg)1111 void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
1112   ExternalReference ref =
1113       ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
1114   __ li(a0, Operand(ref));
1115   __ Ld(a0, MemOperand(a0));
1116   __ Dsubu(a0, backtrack_stackpointer(), a0);
1117   __ Sd(a0, register_location(reg));
1118 }
1119 
ReadStackPointerFromRegister(int reg)1120 void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
1121   ExternalReference ref =
1122       ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
1123   __ li(a0, Operand(ref));
1124   __ Ld(a0, MemOperand(a0));
1125   __ Ld(backtrack_stackpointer(), register_location(reg));
1126   __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
1127 }
1128 
SetCurrentPositionFromEnd(int by)1129 void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
1130   Label after_position;
1131   __ Branch(&after_position,
1132             ge,
1133             current_input_offset(),
1134             Operand(-by * char_size()));
1135   __ li(current_input_offset(), -by * char_size());
1136   // On RegExp code entry (where this operation is used), the character before
1137   // the current position is expected to be already loaded.
1138   // We have advanced the position, so it's safe to read backwards.
1139   LoadCurrentCharacterUnchecked(-1, 1);
1140   __ bind(&after_position);
1141 }
1142 
1143 
SetRegister(int register_index,int to)1144 void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
1145   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1146   __ li(a0, Operand(to));
1147   __ Sd(a0, register_location(register_index));
1148 }
1149 
1150 
Succeed()1151 bool RegExpMacroAssemblerMIPS::Succeed() {
1152   __ jmp(&success_label_);
1153   return global();
1154 }
1155 
1156 
WriteCurrentPositionToRegister(int reg,int cp_offset)1157 void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
1158                                                               int cp_offset) {
1159   if (cp_offset == 0) {
1160     __ Sd(current_input_offset(), register_location(reg));
1161   } else {
1162     __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1163     __ Sd(a0, register_location(reg));
1164   }
1165 }
1166 
1167 
ClearRegisters(int reg_from,int reg_to)1168 void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
1169   DCHECK(reg_from <= reg_to);
1170   __ Ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
1171   for (int reg = reg_from; reg <= reg_to; reg++) {
1172     __ Sd(a0, register_location(reg));
1173   }
1174 }
1175 
CanReadUnaligned() const1176 bool RegExpMacroAssemblerMIPS::CanReadUnaligned() const { return false; }
1177 
1178 // Private methods:
1179 
CallCheckStackGuardState(Register scratch)1180 void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
1181   DCHECK(!isolate()->IsGeneratingEmbeddedBuiltins());
1182   DCHECK(!masm_->options().isolate_independent_code);
1183 
1184   int stack_alignment = base::OS::ActivationFrameAlignment();
1185 
1186   // Align the stack pointer and save the original sp value on the stack.
1187   __ mov(scratch, sp);
1188   __ Dsubu(sp, sp, Operand(kPointerSize));
1189   DCHECK(base::bits::IsPowerOfTwo(stack_alignment));
1190   __ And(sp, sp, Operand(-stack_alignment));
1191   __ Sd(scratch, MemOperand(sp));
1192 
1193   __ mov(a2, frame_pointer());
1194   // Code of self.
1195   __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
1196 
1197   // We need to make room for the return address on the stack.
1198   DCHECK(IsAligned(stack_alignment, kPointerSize));
1199   __ Dsubu(sp, sp, Operand(stack_alignment));
1200 
1201   // The stack pointer now points to cell where the return address will be
1202   // written. Arguments are in registers, meaning we treat the return address as
1203   // argument 5. Since DirectCEntry will handle allocating space for the C
1204   // argument slots, we don't need to care about that here. This is how the
1205   // stack will look (sp meaning the value of sp at this moment):
1206   // [sp + 3] - empty slot if needed for alignment.
1207   // [sp + 2] - saved sp.
1208   // [sp + 1] - second word reserved for return value.
1209   // [sp + 0] - first word reserved for return value.
1210 
1211   // a0 will point to the return address, placed by DirectCEntry.
1212   __ mov(a0, sp);
1213 
1214   ExternalReference stack_guard_check =
1215       ExternalReference::re_check_stack_guard_state();
1216   __ li(t9, Operand(stack_guard_check));
1217 
1218   EmbeddedData d = EmbeddedData::FromBlob();
1219   CHECK(Builtins::IsIsolateIndependent(Builtin::kDirectCEntry));
1220   Address entry = d.InstructionStartOfBuiltin(Builtin::kDirectCEntry);
1221   __ li(kScratchReg, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
1222   __ Call(kScratchReg);
1223 
1224   // DirectCEntry allocated space for the C argument slots so we have to
1225   // drop them with the return address from the stack with loading saved sp.
1226   // At this point stack must look:
1227   // [sp + 7] - empty slot if needed for alignment.
1228   // [sp + 6] - saved sp.
1229   // [sp + 5] - second word reserved for return value.
1230   // [sp + 4] - first word reserved for return value.
1231   // [sp + 3] - C argument slot.
1232   // [sp + 2] - C argument slot.
1233   // [sp + 1] - C argument slot.
1234   // [sp + 0] - C argument slot.
1235   __ Ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
1236 
1237   __ li(code_pointer(), Operand(masm_->CodeObject()));
1238 }
1239 
1240 
1241 // Helper function for reading a value out of a stack frame.
1242 template <typename T>
frame_entry(Address re_frame,int frame_offset)1243 static T& frame_entry(Address re_frame, int frame_offset) {
1244   return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
1245 }
1246 
1247 
1248 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1249 static T* frame_entry_address(Address re_frame, int frame_offset) {
1250   return reinterpret_cast<T*>(re_frame + frame_offset);
1251 }
1252 
CheckStackGuardState(Address * return_address,Address raw_code,Address re_frame)1253 int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
1254                                                        Address raw_code,
1255                                                        Address re_frame) {
1256   Code re_code = Code::cast(Object(raw_code));
1257   return NativeRegExpMacroAssembler::CheckStackGuardState(
1258       frame_entry<Isolate*>(re_frame, kIsolate),
1259       static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndex)),
1260       static_cast<RegExp::CallOrigin>(
1261           frame_entry<int64_t>(re_frame, kDirectCall)),
1262       return_address, re_code,
1263       frame_entry_address<Address>(re_frame, kInputString),
1264       frame_entry_address<const byte*>(re_frame, kInputStart),
1265       frame_entry_address<const byte*>(re_frame, kInputEnd));
1266 }
1267 
1268 
register_location(int register_index)1269 MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
1270   DCHECK(register_index < (1<<30));
1271   if (num_registers_ <= register_index) {
1272     num_registers_ = register_index + 1;
1273   }
1274   return MemOperand(frame_pointer(),
1275                     kRegisterZero - register_index * kPointerSize);
1276 }
1277 
1278 
CheckPosition(int cp_offset,Label * on_outside_input)1279 void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
1280                                              Label* on_outside_input) {
1281   if (cp_offset >= 0) {
1282     BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
1283                       Operand(-cp_offset * char_size()));
1284   } else {
1285     __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
1286     __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1287     BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
1288   }
1289 }
1290 
1291 
BranchOrBacktrack(Label * to,Condition condition,Register rs,const Operand & rt)1292 void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
1293                                                  Condition condition,
1294                                                  Register rs,
1295                                                  const Operand& rt) {
1296   if (condition == al) {  // Unconditional.
1297     if (to == nullptr) {
1298       Backtrack();
1299       return;
1300     }
1301     __ jmp(to);
1302     return;
1303   }
1304   if (to == nullptr) {
1305     __ Branch(&backtrack_label_, condition, rs, rt);
1306     return;
1307   }
1308   __ Branch(to, condition, rs, rt);
1309 }
1310 
1311 
SafeCall(Label * to,Condition cond,Register rs,const Operand & rt)1312 void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
1313                                         Condition cond,
1314                                         Register rs,
1315                                         const Operand& rt) {
1316   __ BranchAndLink(to, cond, rs, rt);
1317 }
1318 
1319 
SafeReturn()1320 void RegExpMacroAssemblerMIPS::SafeReturn() {
1321   __ pop(ra);
1322   __ Daddu(t1, ra, Operand(masm_->CodeObject()));
1323   __ Jump(t1);
1324 }
1325 
1326 
SafeCallTarget(Label * name)1327 void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
1328   __ bind(name);
1329   __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
1330   __ push(ra);
1331 }
1332 
1333 
Push(Register source)1334 void RegExpMacroAssemblerMIPS::Push(Register source) {
1335   DCHECK(source != backtrack_stackpointer());
1336   __ Daddu(backtrack_stackpointer(),
1337           backtrack_stackpointer(),
1338           Operand(-kIntSize));
1339   __ Sw(source, MemOperand(backtrack_stackpointer()));
1340 }
1341 
1342 
Pop(Register target)1343 void RegExpMacroAssemblerMIPS::Pop(Register target) {
1344   DCHECK(target != backtrack_stackpointer());
1345   __ Lw(target, MemOperand(backtrack_stackpointer()));
1346   __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
1347 }
1348 
1349 
CheckPreemption()1350 void RegExpMacroAssemblerMIPS::CheckPreemption() {
1351   // Check for preemption.
1352   ExternalReference stack_limit =
1353       ExternalReference::address_of_jslimit(masm_->isolate());
1354   __ li(a0, Operand(stack_limit));
1355   __ Ld(a0, MemOperand(a0));
1356   SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
1357 }
1358 
1359 
CheckStackLimit()1360 void RegExpMacroAssemblerMIPS::CheckStackLimit() {
1361   ExternalReference stack_limit =
1362       ExternalReference::address_of_regexp_stack_limit_address(
1363           masm_->isolate());
1364 
1365   __ li(a0, Operand(stack_limit));
1366   __ Ld(a0, MemOperand(a0));
1367   SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
1368 }
1369 
1370 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1371 void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
1372                                                              int characters) {
1373   Register offset = current_input_offset();
1374   if (cp_offset != 0) {
1375     // t3 is not being used to store the capture start index at this point.
1376     __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
1377     offset = t3;
1378   }
1379   // We assume that we cannot do unaligned loads on MIPS, so this function
1380   // must only be used to load a single character at a time.
1381   DCHECK_EQ(1, characters);
1382   __ Daddu(t1, end_of_input_address(), Operand(offset));
1383   if (mode_ == LATIN1) {
1384     __ Lbu(current_character(), MemOperand(t1, 0));
1385   } else {
1386     DCHECK(mode_ == UC16);
1387     __ Lhu(current_character(), MemOperand(t1, 0));
1388   }
1389 }
1390 
1391 #undef __
1392 
1393 }  // namespace internal
1394 }  // namespace v8
1395 
1396 #endif  // V8_TARGET_ARCH_MIPS64
1397