1 // SPDX-License-Identifier: (GPL-2.0+ OR MIT)
2 /*
3 * Copyright (c) 2019 Fuzhou Rockchip Electronics Co., Ltd
4 *
5 * author:
6 * Alpha Lin, alpha.lin@rock-chips.com
7 * Randy Li, randy.li@rock-chips.com
8 * Ding Wei, leo.ding@rock-chips.com
9 *
10 */
11 #include <asm/cacheflush.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/devfreq.h>
15 #include <linux/devfreq_cooling.h>
16 #include <linux/gfp.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/of_platform.h>
22 #include <linux/slab.h>
23 #include <linux/uaccess.h>
24 #include <linux/regmap.h>
25 #include <linux/kernel.h>
26 #include <linux/thermal.h>
27 #include <linux/notifier.h>
28 #include <linux/proc_fs.h>
29 #include <linux/rockchip/rockchip_sip.h>
30 #include <linux/regulator/consumer.h>
31
32 #include <soc/rockchip/pm_domains.h>
33 #include <soc/rockchip/rockchip_sip.h>
34 #include <soc/rockchip/rockchip_opp_select.h>
35
36 #include "mpp_debug.h"
37 #include "mpp_common.h"
38 #include "mpp_iommu.h"
39
40 #include "hack/mpp_hack_px30.h"
41
42 #define RKVDEC_DRIVER_NAME "mpp_rkvdec"
43
44 #define IOMMU_GET_BUS_ID(x) (((x) >> 6) & 0x1f)
45 #define IOMMU_PAGE_SIZE SZ_4K
46
47 #define RKVDEC_SESSION_MAX_BUFFERS 40
48 /* The maximum registers number of all the version */
49 #define HEVC_DEC_REG_NUM 68
50 #define HEVC_DEC_REG_HW_ID_INDEX 0
51 #define HEVC_DEC_REG_START_INDEX 0
52 #define HEVC_DEC_REG_END_INDEX 67
53
54 #define RKVDEC_V1_REG_NUM 78
55 #define RKVDEC_V1_REG_HW_ID_INDEX 0
56 #define RKVDEC_V1_REG_START_INDEX 0
57 #define RKVDEC_V1_REG_END_INDEX 77
58
59 #define RKVDEC_V2_REG_NUM 109
60 #define RKVDEC_V2_REG_HW_ID_INDEX 0
61 #define RKVDEC_V2_REG_START_INDEX 0
62 #define RKVDEC_V2_REG_END_INDEX 108
63
64 #define RKVDEC_REG_INT_EN 0x004
65 #define RKVDEC_REG_INT_EN_INDEX (1)
66 #define RKVDEC_WR_DDR_ALIGN_EN BIT(23)
67 #define RKVDEC_FORCE_SOFT_RESET_VALID BIT(21)
68 #define RKVDEC_SOFTWARE_RESET_EN BIT(20)
69 #define RKVDEC_INT_COLMV_REF_ERROR BIT(17)
70 #define RKVDEC_INT_BUF_EMPTY BIT(16)
71 #define RKVDEC_INT_TIMEOUT BIT(15)
72 #define RKVDEC_INT_STRM_ERROR BIT(14)
73 #define RKVDEC_INT_BUS_ERROR BIT(13)
74 #define RKVDEC_DEC_INT_RAW BIT(9)
75 #define RKVDEC_DEC_INT BIT(8)
76 #define RKVDEC_DEC_TIMEOUT_EN BIT(5)
77 #define RKVDEC_DEC_IRQ_DIS BIT(4)
78 #define RKVDEC_CLOCK_GATE_EN BIT(1)
79 #define RKVDEC_DEC_START BIT(0)
80
81 #define RKVDEC_REG_SYS_CTRL 0x008
82 #define RKVDEC_REG_SYS_CTRL_INDEX (2)
83 #define RKVDEC_RGE_WIDTH_INDEX (3)
84 #define RKVDEC_GET_FORMAT(x) (((x) >> 20) & 0x3)
85 #define REVDEC_GET_PROD_NUM(x) (((x) >> 16) & 0xffff)
86 #define RKVDEC_GET_WIDTH(x) (((x) & 0x3ff) << 4)
87 #define RKVDEC_FMT_H265D (0)
88 #define RKVDEC_FMT_H264D (1)
89 #define RKVDEC_FMT_VP9D (2)
90
91 #define RKVDEC_REG_RLC_BASE 0x010
92 #define RKVDEC_REG_RLC_BASE_INDEX (4)
93
94 #define RKVDEC_RGE_YSTRDE_INDEX (8)
95 #define RKVDEC_GET_YSTRDE(x) (((x) & 0x1fffff) << 4)
96
97 #define RKVDEC_REG_PPS_BASE 0x0a0
98 #define RKVDEC_REG_PPS_BASE_INDEX (42)
99
100 #define RKVDEC_REG_VP9_REFCOLMV_BASE 0x0d0
101 #define RKVDEC_REG_VP9_REFCOLMV_BASE_INDEX (52)
102
103 #define RKVDEC_REG_CACHE0_SIZE_BASE 0x41c
104 #define RKVDEC_REG_CACHE1_SIZE_BASE 0x45c
105 #define RKVDEC_REG_CLR_CACHE0_BASE 0x410
106 #define RKVDEC_REG_CLR_CACHE1_BASE 0x450
107
108 #define RKVDEC_CACHE_PERMIT_CACHEABLE_ACCESS BIT(0)
109 #define RKVDEC_CACHE_PERMIT_READ_ALLOCATE BIT(1)
110 #define RKVDEC_CACHE_LINE_SIZE_64_BYTES BIT(4)
111
112 #define RKVDEC_POWER_CTL_INDEX (99)
113 #define RKVDEC_POWER_CTL_BASE 0x018c
114
115 #define FALLBACK_STATIC_TEMPERATURE 55000
116
117 #define to_rkvdec_task(task) \
118 container_of(task, struct rkvdec_task, mpp_task)
119 #define to_rkvdec_dev(dev) \
120 container_of(dev, struct rkvdec_dev, mpp)
121
122 enum RKVDEC_MODE {
123 RKVDEC_MODE_NONE,
124 RKVDEC_MODE_ONEFRAME,
125 RKVDEC_MODE_BUTT
126 };
127
128 enum SET_CLK_EVENT {
129 EVENT_POWER_ON = 0,
130 EVENT_POWER_OFF,
131 EVENT_ADJUST,
132 EVENT_THERMAL,
133 EVENT_BUTT,
134 };
135
136 struct rkvdec_task {
137 struct mpp_task mpp_task;
138
139 enum RKVDEC_MODE link_mode;
140 enum MPP_CLOCK_MODE clk_mode;
141 u32 reg[RKVDEC_V2_REG_NUM];
142 struct reg_offset_info off_inf;
143
144 u32 strm_addr;
145 u32 irq_status;
146 /* req for current task */
147 u32 w_req_cnt;
148 struct mpp_request w_reqs[MPP_MAX_MSG_NUM];
149 u32 r_req_cnt;
150 struct mpp_request r_reqs[MPP_MAX_MSG_NUM];
151 /* ystride info */
152 u32 pixels;
153 };
154
155 struct rkvdec_dev {
156 struct mpp_dev mpp;
157 /* sip smc reset lock */
158 struct mutex sip_reset_lock;
159
160 struct mpp_clk_info aclk_info;
161 struct mpp_clk_info hclk_info;
162 struct mpp_clk_info core_clk_info;
163 struct mpp_clk_info cabac_clk_info;
164 struct mpp_clk_info hevc_cabac_clk_info;
165 u32 default_max_load;
166 #ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
167 struct proc_dir_entry *procfs;
168 #endif
169 struct reset_control *rst_a;
170 struct reset_control *rst_h;
171 struct reset_control *rst_niu_a;
172 struct reset_control *rst_niu_h;
173 struct reset_control *rst_core;
174 struct reset_control *rst_cabac;
175 struct reset_control *rst_hevc_cabac;
176
177 unsigned long aux_iova;
178 struct page *aux_page;
179 #ifdef CONFIG_PM_DEVFREQ
180 struct regulator *vdd;
181 struct devfreq *devfreq;
182 struct devfreq *parent_devfreq;
183 struct notifier_block devfreq_nb;
184 struct thermal_cooling_device *devfreq_cooling;
185 struct thermal_zone_device *thermal_zone;
186 u32 static_power_coeff;
187 s32 ts[4];
188 /* set clk lock */
189 struct mutex set_clk_lock;
190 unsigned int thermal_div;
191 unsigned long volt;
192 unsigned long devf_aclk_rate_hz;
193 unsigned long devf_core_rate_hz;
194 unsigned long devf_cabac_rate_hz;
195 #endif
196 /* record last infos */
197 u32 last_fmt;
198 bool had_reset;
199 bool grf_changed;
200 };
201
202 /*
203 * hardware information
204 */
205 static struct mpp_hw_info rk_hevcdec_hw_info = {
206 .reg_num = HEVC_DEC_REG_NUM,
207 .reg_id = HEVC_DEC_REG_HW_ID_INDEX,
208 .reg_start = HEVC_DEC_REG_START_INDEX,
209 .reg_end = HEVC_DEC_REG_END_INDEX,
210 .reg_en = RKVDEC_REG_INT_EN_INDEX,
211 };
212
213 static struct mpp_hw_info rkvdec_v1_hw_info = {
214 .reg_num = RKVDEC_V1_REG_NUM,
215 .reg_id = RKVDEC_V1_REG_HW_ID_INDEX,
216 .reg_start = RKVDEC_V1_REG_START_INDEX,
217 .reg_end = RKVDEC_V1_REG_END_INDEX,
218 .reg_en = RKVDEC_REG_INT_EN_INDEX,
219 };
220
221 /*
222 * file handle translate information
223 */
224 static const u16 trans_tbl_h264d[] = {
225 4, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
226 23, 24, 41, 42, 43, 48, 75
227 };
228
229 static const u16 trans_tbl_h265d[] = {
230 4, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
231 23, 24, 42, 43
232 };
233
234 static const u16 trans_tbl_vp9d[] = {
235 4, 6, 7, 11, 12, 13, 14, 15, 16
236 };
237
238 static struct mpp_trans_info rk_hevcdec_trans[] = {
239 [RKVDEC_FMT_H265D] = {
240 .count = ARRAY_SIZE(trans_tbl_h265d),
241 .table = trans_tbl_h265d,
242 },
243 };
244
245 static struct mpp_trans_info rkvdec_v1_trans[] = {
246 [RKVDEC_FMT_H265D] = {
247 .count = ARRAY_SIZE(trans_tbl_h265d),
248 .table = trans_tbl_h265d,
249 },
250 [RKVDEC_FMT_H264D] = {
251 .count = ARRAY_SIZE(trans_tbl_h264d),
252 .table = trans_tbl_h264d,
253 },
254 [RKVDEC_FMT_VP9D] = {
255 .count = ARRAY_SIZE(trans_tbl_vp9d),
256 .table = trans_tbl_vp9d,
257 },
258 };
259
260 #ifdef CONFIG_PM_DEVFREQ
rkvdec_devf_set_clk(struct rkvdec_dev * dec,unsigned long aclk_rate_hz,unsigned long core_rate_hz,unsigned long cabac_rate_hz,unsigned int event)261 static int rkvdec_devf_set_clk(struct rkvdec_dev *dec,
262 unsigned long aclk_rate_hz,
263 unsigned long core_rate_hz,
264 unsigned long cabac_rate_hz,
265 unsigned int event)
266 {
267 struct clk *aclk = dec->aclk_info.clk;
268 struct clk *clk_core = dec->core_clk_info.clk;
269 struct clk *clk_cabac = dec->cabac_clk_info.clk;
270
271 mutex_lock(&dec->set_clk_lock);
272
273 switch (event) {
274 case EVENT_POWER_ON:
275 clk_set_rate(aclk, dec->devf_aclk_rate_hz);
276 clk_set_rate(clk_core, dec->devf_core_rate_hz);
277 clk_set_rate(clk_cabac, dec->devf_cabac_rate_hz);
278 dec->thermal_div = 0;
279 break;
280 case EVENT_POWER_OFF:
281 clk_set_rate(aclk, aclk_rate_hz);
282 clk_set_rate(clk_core, core_rate_hz);
283 clk_set_rate(clk_cabac, cabac_rate_hz);
284 dec->thermal_div = 0;
285 break;
286 case EVENT_ADJUST:
287 if (!dec->thermal_div) {
288 clk_set_rate(aclk, aclk_rate_hz);
289 clk_set_rate(clk_core, core_rate_hz);
290 clk_set_rate(clk_cabac, cabac_rate_hz);
291 } else {
292 clk_set_rate(aclk,
293 aclk_rate_hz / dec->thermal_div);
294 clk_set_rate(clk_core,
295 core_rate_hz / dec->thermal_div);
296 clk_set_rate(clk_cabac,
297 cabac_rate_hz / dec->thermal_div);
298 }
299 dec->devf_aclk_rate_hz = aclk_rate_hz;
300 dec->devf_core_rate_hz = core_rate_hz;
301 dec->devf_cabac_rate_hz = cabac_rate_hz;
302 break;
303 case EVENT_THERMAL:
304 dec->thermal_div = dec->devf_aclk_rate_hz / aclk_rate_hz;
305 if (dec->thermal_div > 4)
306 dec->thermal_div = 4;
307 if (dec->thermal_div) {
308 clk_set_rate(aclk,
309 dec->devf_aclk_rate_hz / dec->thermal_div);
310 clk_set_rate(clk_core,
311 dec->devf_core_rate_hz / dec->thermal_div);
312 clk_set_rate(clk_cabac,
313 dec->devf_cabac_rate_hz / dec->thermal_div);
314 }
315 break;
316 }
317
318 mutex_unlock(&dec->set_clk_lock);
319
320 return 0;
321 }
322
devfreq_target(struct device * dev,unsigned long * freq,u32 flags)323 static int devfreq_target(struct device *dev,
324 unsigned long *freq, u32 flags)
325 {
326 int ret = 0;
327 unsigned int clk_event;
328 struct dev_pm_opp *opp;
329 unsigned long target_volt, target_freq;
330 unsigned long aclk_rate_hz, core_rate_hz, cabac_rate_hz;
331
332 struct rkvdec_dev *dec = dev_get_drvdata(dev);
333 struct devfreq *devfreq = dec->devfreq;
334 struct devfreq_dev_status *stat = &devfreq->last_status;
335 unsigned long old_clk_rate = stat->current_frequency;
336
337 opp = devfreq_recommended_opp(dev, freq, flags);
338 if (IS_ERR(opp)) {
339 dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
340 return PTR_ERR(opp);
341 }
342 target_freq = dev_pm_opp_get_freq(opp);
343 target_volt = dev_pm_opp_get_voltage(opp);
344 dev_pm_opp_put(opp);
345
346 if (target_freq < *freq) {
347 clk_event = EVENT_THERMAL;
348 aclk_rate_hz = target_freq;
349 core_rate_hz = target_freq;
350 cabac_rate_hz = target_freq;
351 } else {
352 clk_event = stat->busy_time ? EVENT_POWER_ON : EVENT_POWER_OFF;
353 aclk_rate_hz = dec->devf_aclk_rate_hz;
354 core_rate_hz = dec->devf_core_rate_hz;
355 cabac_rate_hz = dec->devf_cabac_rate_hz;
356 }
357
358 if (old_clk_rate == target_freq) {
359 if (dec->volt == target_volt)
360 return ret;
361 ret = regulator_set_voltage(dec->vdd, target_volt, INT_MAX);
362 if (ret) {
363 dev_err(dev, "Cannot set voltage %lu uV\n",
364 target_volt);
365 return ret;
366 }
367 dec->volt = target_volt;
368 return 0;
369 }
370
371 if (old_clk_rate < target_freq) {
372 ret = regulator_set_voltage(dec->vdd, target_volt, INT_MAX);
373 if (ret) {
374 dev_err(dev, "set voltage %lu uV\n", target_volt);
375 return ret;
376 }
377 }
378
379 dev_dbg(dev, "%lu-->%lu\n", old_clk_rate, target_freq);
380 rkvdec_devf_set_clk(dec, aclk_rate_hz, core_rate_hz, cabac_rate_hz, clk_event);
381 stat->current_frequency = target_freq;
382
383 if (old_clk_rate > target_freq) {
384 ret = regulator_set_voltage(dec->vdd, target_volt, INT_MAX);
385 if (ret) {
386 dev_err(dev, "set vol %lu uV\n", target_volt);
387 return ret;
388 }
389 }
390 dec->volt = target_volt;
391
392 return ret;
393 }
394
devfreq_get_cur_freq(struct device * dev,unsigned long * freq)395 static int devfreq_get_cur_freq(struct device *dev,
396 unsigned long *freq)
397 {
398 struct rkvdec_dev *dec = dev_get_drvdata(dev);
399
400 *freq = clk_get_rate(dec->aclk_info.clk);
401
402 return 0;
403 }
404
devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)405 static int devfreq_get_dev_status(struct device *dev,
406 struct devfreq_dev_status *stat)
407 {
408 struct rkvdec_dev *dec = dev_get_drvdata(dev);
409 struct devfreq *devfreq = dec->devfreq;
410
411 memcpy(stat, &devfreq->last_status, sizeof(*stat));
412
413 return 0;
414 }
415
416 static struct devfreq_dev_profile devfreq_profile = {
417 .target = devfreq_target,
418 .get_cur_freq = devfreq_get_cur_freq,
419 .get_dev_status = devfreq_get_dev_status,
420 };
421
422 static unsigned long
model_static_power(struct devfreq * devfreq,unsigned long voltage)423 model_static_power(struct devfreq *devfreq,
424 unsigned long voltage)
425 {
426 struct device *dev = devfreq->dev.parent;
427 struct rkvdec_dev *dec = dev_get_drvdata(dev);
428 struct thermal_zone_device *tz = dec->thermal_zone;
429
430 int temperature;
431 unsigned long temp;
432 unsigned long temp_squared, temp_cubed, temp_scaling_factor;
433 const unsigned long voltage_cubed = (voltage * voltage * voltage) >> 10;
434
435 if (!IS_ERR_OR_NULL(tz) && tz->ops->get_temp) {
436 int ret;
437
438 ret = tz->ops->get_temp(tz, &temperature);
439 if (ret) {
440 dev_warn_ratelimited(dev, "ddr thermal zone failed\n");
441 temperature = FALLBACK_STATIC_TEMPERATURE;
442 }
443 } else {
444 temperature = FALLBACK_STATIC_TEMPERATURE;
445 }
446
447 /*
448 * Calculate the temperature scaling factor. To be applied to the
449 * voltage scaled power.
450 */
451 temp = temperature / 1000;
452 temp_squared = temp * temp;
453 temp_cubed = temp_squared * temp;
454 temp_scaling_factor = (dec->ts[3] * temp_cubed)
455 + (dec->ts[2] * temp_squared) + (dec->ts[1] * temp) + dec->ts[0];
456
457 return (((dec->static_power_coeff * voltage_cubed) >> 20)
458 * temp_scaling_factor) / 1000000;
459 }
460
461 static struct devfreq_cooling_power cooling_power_data = {
462 .get_static_power = model_static_power,
463 .dyn_power_coeff = 120,
464 };
465
power_model_simple_init(struct mpp_dev * mpp)466 static int power_model_simple_init(struct mpp_dev *mpp)
467 {
468 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
469 struct device_node *np = mpp->dev->of_node;
470
471 u32 temp;
472 const char *tz_name;
473 struct device_node *power_model_node;
474
475 power_model_node = of_get_child_by_name(np, "vcodec_power_model");
476 if (!power_model_node) {
477 dev_err(mpp->dev, "could not find power_model node\n");
478 return -ENODEV;
479 }
480
481 if (of_property_read_string(power_model_node,
482 "thermal-zone",
483 &tz_name)) {
484 dev_err(mpp->dev, "ts in power_model not available\n");
485 return -EINVAL;
486 }
487
488 dec->thermal_zone = thermal_zone_get_zone_by_name(tz_name);
489 if (IS_ERR(dec->thermal_zone)) {
490 pr_warn("Error getting ddr thermal zone, not yet ready?\n");
491 dec->thermal_zone = NULL;
492 return -EPROBE_DEFER;
493 }
494
495 if (of_property_read_u32(power_model_node,
496 "static-power-coefficient",
497 &dec->static_power_coeff)) {
498 dev_err(mpp->dev, "static-power-coefficient not available\n");
499 return -EINVAL;
500 }
501 if (of_property_read_u32(power_model_node,
502 "dynamic-power-coefficient",
503 &temp)) {
504 dev_err(mpp->dev, "dynamic-power-coefficient not available\n");
505 return -EINVAL;
506 }
507 cooling_power_data.dyn_power_coeff = (unsigned long)temp;
508
509 if (of_property_read_u32_array(power_model_node,
510 "ts",
511 (u32 *)dec->ts,
512 4)) {
513 dev_err(mpp->dev, "ts in power_model not available\n");
514 return -EINVAL;
515 }
516
517 return 0;
518 }
519
devfreq_notifier_call(struct notifier_block * nb,unsigned long event,void * data)520 static int devfreq_notifier_call(struct notifier_block *nb,
521 unsigned long event,
522 void *data)
523 {
524 struct rkvdec_dev *dec = container_of(nb,
525 struct rkvdec_dev,
526 devfreq_nb);
527
528 if (!dec)
529 return NOTIFY_OK;
530
531 if (event == DEVFREQ_PRECHANGE)
532 mutex_lock(&dec->sip_reset_lock);
533 else if (event == DEVFREQ_POSTCHANGE)
534 mutex_unlock(&dec->sip_reset_lock);
535
536 return NOTIFY_OK;
537 }
538 #endif
539
540 /*
541 * NOTE: rkvdec/rkhevc put scaling list address in pps buffer hardware will read
542 * it by pps id in video stream data.
543 *
544 * So we need to translate the address in iommu case. The address data is also
545 * 10bit fd + 22bit offset mode.
546 * Because userspace decoder do not give the pps id in the register file sets
547 * kernel driver need to translate each scaling list address in pps buffer which
548 * means 256 pps for H.264, 64 pps for H.265.
549 *
550 * In order to optimize the performance kernel driver ask userspace decoder to
551 * set all scaling list address in pps buffer to the same one which will be used
552 * on current decoding task. Then kernel driver can only translate the first
553 * address then copy it all pps buffer.
554 */
fill_scaling_list_pps(struct rkvdec_task * task,int fd,int offset,int count,int pps_info_size,int sub_addr_offset)555 static int fill_scaling_list_pps(struct rkvdec_task *task,
556 int fd, int offset, int count,
557 int pps_info_size, int sub_addr_offset)
558 {
559 struct dma_buf *dmabuf = NULL;
560 void *vaddr = NULL;
561 u8 *pps = NULL;
562 u32 scaling_fd = 0;
563 int ret = 0;
564 u32 base = sub_addr_offset;
565
566 dmabuf = dma_buf_get(fd);
567 if (IS_ERR_OR_NULL(dmabuf)) {
568 mpp_err("invliad pps buffer\n");
569 return -ENOENT;
570 }
571
572 ret = dma_buf_begin_cpu_access(dmabuf, DMA_FROM_DEVICE);
573 if (ret) {
574 mpp_err("can't access the pps buffer\n");
575 goto done;
576 }
577
578 vaddr = dma_buf_vmap(dmabuf);
579 if (!vaddr) {
580 mpp_err("can't access the pps buffer\n");
581 ret = -EIO;
582 goto done;
583 }
584 pps = vaddr + offset;
585 /* NOTE: scaling buffer in pps, have no offset */
586 memcpy(&scaling_fd, pps + base, sizeof(scaling_fd));
587 scaling_fd = le32_to_cpu(scaling_fd);
588 if (scaling_fd > 0) {
589 struct mpp_mem_region *mem_region = NULL;
590 u32 tmp = 0;
591 int i = 0;
592
593 mem_region = mpp_task_attach_fd(&task->mpp_task,
594 scaling_fd);
595 if (IS_ERR(mem_region)) {
596 ret = PTR_ERR(mem_region);
597 goto done;
598 }
599
600 tmp = mem_region->iova & 0xffffffff;
601 tmp = cpu_to_le32(tmp);
602 mpp_debug(DEBUG_PPS_FILL,
603 "pps at %p, scaling fd: %3d => %pad + offset %10d\n",
604 pps, scaling_fd, &mem_region->iova, offset);
605
606 /* Fill the scaling list address in each pps entries */
607 for (i = 0; i < count; i++, base += pps_info_size)
608 memcpy(pps + base, &tmp, sizeof(tmp));
609 }
610
611 done:
612 dma_buf_vunmap(dmabuf, vaddr);
613 dma_buf_end_cpu_access(dmabuf, DMA_FROM_DEVICE);
614 dma_buf_put(dmabuf);
615
616 return ret;
617 }
618
rkvdec_process_scl_fd(struct mpp_session * session,struct rkvdec_task * task,struct mpp_task_msgs * msgs)619 static int rkvdec_process_scl_fd(struct mpp_session *session,
620 struct rkvdec_task *task,
621 struct mpp_task_msgs *msgs)
622 {
623 int ret = 0;
624 int pps_fd;
625 u32 pps_offset;
626 int idx = RKVDEC_REG_PPS_BASE_INDEX;
627 u32 fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
628
629 if (session->msg_flags & MPP_FLAGS_REG_NO_OFFSET) {
630 pps_fd = task->reg[idx];
631 pps_offset = 0;
632 } else {
633 pps_fd = task->reg[idx] & 0x3ff;
634 pps_offset = task->reg[idx] >> 10;
635 }
636
637 pps_offset += mpp_query_reg_offset_info(&task->off_inf, idx);
638 if (pps_fd > 0) {
639 int pps_info_offset;
640 int pps_info_count;
641 int pps_info_size;
642 int scaling_list_addr_offset;
643
644 switch (fmt) {
645 case RKVDEC_FMT_H264D:
646 pps_info_offset = pps_offset;
647 pps_info_count = 256;
648 pps_info_size = 32;
649 scaling_list_addr_offset = 23;
650 break;
651 case RKVDEC_FMT_H265D:
652 pps_info_offset = pps_offset;
653 pps_info_count = 64;
654 pps_info_size = 80;
655 scaling_list_addr_offset = 74;
656 break;
657 default:
658 pps_info_offset = 0;
659 pps_info_count = 0;
660 pps_info_size = 0;
661 scaling_list_addr_offset = 0;
662 break;
663 }
664
665 mpp_debug(DEBUG_PPS_FILL,
666 "scaling list filling parameter:\n");
667 mpp_debug(DEBUG_PPS_FILL,
668 "pps_info_offset %d\n", pps_info_offset);
669 mpp_debug(DEBUG_PPS_FILL,
670 "pps_info_count %d\n", pps_info_count);
671 mpp_debug(DEBUG_PPS_FILL,
672 "pps_info_size %d\n", pps_info_size);
673 mpp_debug(DEBUG_PPS_FILL,
674 "scaling_list_addr_offset %d\n",
675 scaling_list_addr_offset);
676
677 if (pps_info_count) {
678 ret = fill_scaling_list_pps(task, pps_fd,
679 pps_info_offset,
680 pps_info_count,
681 pps_info_size,
682 scaling_list_addr_offset);
683 if (ret) {
684 mpp_err("fill pps failed\n");
685 goto fail;
686 }
687 }
688 }
689
690 fail:
691 return ret;
692 }
693
rkvdec_process_reg_fd(struct mpp_session * session,struct rkvdec_task * task,struct mpp_task_msgs * msgs)694 static int rkvdec_process_reg_fd(struct mpp_session *session,
695 struct rkvdec_task *task,
696 struct mpp_task_msgs *msgs)
697 {
698 int ret = 0;
699 u32 fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
700
701 /*
702 * special offset scale case
703 *
704 * This translation is for fd + offset translation.
705 * One register has 32bits. We need to transfer both buffer file
706 * handle and the start address offset so we packet file handle
707 * and offset together using below format.
708 *
709 * 0~9 bit for buffer file handle range 0 ~ 1023
710 * 10~31 bit for offset range 0 ~ 4M
711 *
712 * But on 4K case the offset can be larger the 4M
713 * So on VP9 4K decoder colmv base we scale the offset by 16
714 */
715 if (fmt == RKVDEC_FMT_VP9D) {
716 int fd;
717 u32 offset;
718 dma_addr_t iova = 0;
719 struct mpp_mem_region *mem_region = NULL;
720 int idx = RKVDEC_REG_VP9_REFCOLMV_BASE_INDEX;
721
722 if (session->msg_flags & MPP_FLAGS_REG_NO_OFFSET) {
723 fd = task->reg[idx];
724 offset = 0;
725 } else {
726 fd = task->reg[idx] & 0x3ff;
727 offset = task->reg[idx] >> 10 << 4;
728 }
729 mem_region = mpp_task_attach_fd(&task->mpp_task, fd);
730 if (IS_ERR(mem_region))
731 return -EFAULT;
732
733 iova = mem_region->iova;
734 task->reg[idx] = iova + offset;
735 }
736
737 ret = mpp_translate_reg_address(session, &task->mpp_task,
738 fmt, task->reg, &task->off_inf);
739 if (ret)
740 return ret;
741
742 mpp_translate_reg_offset_info(&task->mpp_task,
743 &task->off_inf, task->reg);
744 return 0;
745 }
746
rkvdec_extract_task_msg(struct rkvdec_task * task,struct mpp_task_msgs * msgs)747 static int rkvdec_extract_task_msg(struct rkvdec_task *task,
748 struct mpp_task_msgs *msgs)
749 {
750 u32 i;
751 int ret;
752 struct mpp_request *req;
753 struct mpp_hw_info *hw_info = task->mpp_task.hw_info;
754
755 for (i = 0; i < msgs->req_cnt; i++) {
756 u32 off_s, off_e;
757
758 req = &msgs->reqs[i];
759 if (!req->size)
760 continue;
761
762 switch (req->cmd) {
763 case MPP_CMD_SET_REG_WRITE: {
764 off_s = hw_info->reg_start * sizeof(u32);
765 off_e = hw_info->reg_end * sizeof(u32);
766 ret = mpp_check_req(req, 0, sizeof(task->reg),
767 off_s, off_e);
768 if (ret)
769 continue;
770 if (copy_from_user((u8 *)task->reg + req->offset,
771 req->data, req->size)) {
772 mpp_err("copy_from_user reg failed\n");
773 return -EIO;
774 }
775 memcpy(&task->w_reqs[task->w_req_cnt++],
776 req, sizeof(*req));
777 } break;
778 case MPP_CMD_SET_REG_READ: {
779 off_s = hw_info->reg_start * sizeof(u32);
780 off_e = hw_info->reg_end * sizeof(u32);
781 ret = mpp_check_req(req, 0, sizeof(task->reg),
782 off_s, off_e);
783 if (ret)
784 continue;
785 memcpy(&task->r_reqs[task->r_req_cnt++],
786 req, sizeof(*req));
787 } break;
788 case MPP_CMD_SET_REG_ADDR_OFFSET: {
789 mpp_extract_reg_offset_info(&task->off_inf, req);
790 } break;
791 default:
792 break;
793 }
794 }
795 mpp_debug(DEBUG_TASK_INFO, "w_req_cnt %d, r_req_cnt %d\n",
796 task->w_req_cnt, task->r_req_cnt);
797
798 return 0;
799 }
800
rkvdec_alloc_task(struct mpp_session * session,struct mpp_task_msgs * msgs)801 static void *rkvdec_alloc_task(struct mpp_session *session,
802 struct mpp_task_msgs *msgs)
803 {
804 int ret;
805 struct mpp_task *mpp_task = NULL;
806 struct rkvdec_task *task = NULL;
807 struct mpp_dev *mpp = session->mpp;
808
809 mpp_debug_enter();
810
811 task = kzalloc(sizeof(*task), GFP_KERNEL);
812 if (!task)
813 return NULL;
814
815 mpp_task = &task->mpp_task;
816 mpp_task_init(session, mpp_task);
817 mpp_task->hw_info = mpp->var->hw_info;
818 mpp_task->reg = task->reg;
819 /* extract reqs for current task */
820 ret = rkvdec_extract_task_msg(task, msgs);
821 if (ret)
822 goto fail;
823 /* process fd in pps for 264 and 265 */
824 if (!(msgs->flags & MPP_FLAGS_SCL_FD_NO_TRANS)) {
825 ret = rkvdec_process_scl_fd(session, task, msgs);
826 if (ret)
827 goto fail;
828 }
829 /* process fd in register */
830 if (!(msgs->flags & MPP_FLAGS_REG_FD_NO_TRANS)) {
831 ret = rkvdec_process_reg_fd(session, task, msgs);
832 if (ret)
833 goto fail;
834 }
835 task->strm_addr = task->reg[RKVDEC_REG_RLC_BASE_INDEX];
836 task->link_mode = RKVDEC_MODE_ONEFRAME;
837 task->clk_mode = CLK_MODE_NORMAL;
838
839 /* get resolution info */
840 task->pixels = RKVDEC_GET_YSTRDE(task->reg[RKVDEC_RGE_YSTRDE_INDEX]);
841 mpp_debug(DEBUG_TASK_INFO, "ystride=%d\n", task->pixels);
842
843 mpp_debug_leave();
844
845 return mpp_task;
846
847 fail:
848 mpp_task_dump_mem_region(mpp, mpp_task);
849 mpp_task_dump_reg(mpp, mpp_task);
850 mpp_task_finalize(session, mpp_task);
851 kfree(task);
852 return NULL;
853 }
854
rkvdec_prepare_with_reset(struct mpp_dev * mpp,struct mpp_task * mpp_task)855 static void *rkvdec_prepare_with_reset(struct mpp_dev *mpp,
856 struct mpp_task *mpp_task)
857 {
858 unsigned long flags;
859 struct mpp_task *out_task = NULL;
860 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
861
862 spin_lock_irqsave(&mpp->queue->running_lock, flags);
863 out_task = list_empty(&mpp->queue->running_list) ? mpp_task : NULL;
864 spin_unlock_irqrestore(&mpp->queue->running_lock, flags);
865
866 if (out_task && !dec->had_reset) {
867 struct rkvdec_task *task = to_rkvdec_task(out_task);
868 u32 fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
869
870 /* in 3399 3228 and 3229 chips, when 264 switch vp9,
871 * hardware will timeout, and can't recover problem.
872 * so reset it when 264 switch vp9, before hardware run.
873 */
874 if (dec->last_fmt == RKVDEC_FMT_H264D && fmt == RKVDEC_FMT_VP9D) {
875 mpp_power_on(mpp);
876 mpp_dev_reset(mpp);
877 mpp_power_off(mpp);
878 }
879 }
880
881 return out_task;
882 }
883
rkvdec_run(struct mpp_dev * mpp,struct mpp_task * mpp_task)884 static int rkvdec_run(struct mpp_dev *mpp,
885 struct mpp_task *mpp_task)
886 {
887 int i;
888 u32 reg_en;
889 struct rkvdec_task *task = NULL;
890
891 mpp_debug_enter();
892
893 task = to_rkvdec_task(mpp_task);
894 reg_en = mpp_task->hw_info->reg_en;
895 switch (task->link_mode) {
896 case RKVDEC_MODE_ONEFRAME: {
897 u32 reg;
898
899 /* set cache size */
900 reg = RKVDEC_CACHE_PERMIT_CACHEABLE_ACCESS
901 | RKVDEC_CACHE_PERMIT_READ_ALLOCATE;
902 if (!mpp_debug_unlikely(DEBUG_CACHE_32B))
903 reg |= RKVDEC_CACHE_LINE_SIZE_64_BYTES;
904
905 mpp_write_relaxed(mpp, RKVDEC_REG_CACHE0_SIZE_BASE, reg);
906 mpp_write_relaxed(mpp, RKVDEC_REG_CACHE1_SIZE_BASE, reg);
907 /* clear cache */
908 mpp_write_relaxed(mpp, RKVDEC_REG_CLR_CACHE0_BASE, 1);
909 mpp_write_relaxed(mpp, RKVDEC_REG_CLR_CACHE1_BASE, 1);
910 /* set registers for hardware */
911 for (i = 0; i < task->w_req_cnt; i++) {
912 int s, e;
913 struct mpp_request *req = &task->w_reqs[i];
914
915 s = req->offset / sizeof(u32);
916 e = s + req->size / sizeof(u32);
917 mpp_write_req(mpp, task->reg, s, e, reg_en);
918 }
919 /* init current task */
920 mpp->cur_task = mpp_task;
921 /* Flush the register before the start the device */
922 wmb();
923 mpp_write(mpp, RKVDEC_REG_INT_EN,
924 task->reg[reg_en] | RKVDEC_DEC_START);
925 } break;
926 default:
927 break;
928 }
929
930 mpp_debug_leave();
931
932 return 0;
933 }
934
rkvdec_3328_run(struct mpp_dev * mpp,struct mpp_task * mpp_task)935 static int rkvdec_3328_run(struct mpp_dev *mpp,
936 struct mpp_task *mpp_task)
937 {
938 u32 fmt = 0;
939 u32 cfg = 0;
940 struct rkvdec_task *task = NULL;
941
942 mpp_debug_enter();
943
944 task = to_rkvdec_task(mpp_task);
945
946 /*
947 * HW defeat workaround: VP9 power save optimization cause decoding
948 * corruption, disable optimization here.
949 */
950 fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
951 if (fmt == RKVDEC_FMT_VP9D) {
952 cfg = task->reg[RKVDEC_POWER_CTL_INDEX] | 0xFFFF;
953 task->reg[RKVDEC_POWER_CTL_INDEX] = cfg & (~(1 << 12));
954 mpp_write_relaxed(mpp, RKVDEC_POWER_CTL_BASE,
955 task->reg[RKVDEC_POWER_CTL_INDEX]);
956 }
957
958 rkvdec_run(mpp, mpp_task);
959
960 mpp_debug_leave();
961
962 return 0;
963 }
964
rkvdec_1126_run(struct mpp_dev * mpp,struct mpp_task * mpp_task)965 static int rkvdec_1126_run(struct mpp_dev *mpp, struct mpp_task *mpp_task)
966 {
967 struct rkvdec_task *task = to_rkvdec_task(mpp_task);
968
969 if (task->link_mode == RKVDEC_MODE_ONEFRAME)
970 mpp_iommu_flush_tlb(mpp->iommu_info);
971
972 return rkvdec_run(mpp, mpp_task);
973 }
974
rkvdec_irq(struct mpp_dev * mpp)975 static int rkvdec_irq(struct mpp_dev *mpp)
976 {
977 mpp->irq_status = mpp_read(mpp, RKVDEC_REG_INT_EN);
978 if (!(mpp->irq_status & RKVDEC_DEC_INT_RAW))
979 return IRQ_NONE;
980
981 mpp_write(mpp, RKVDEC_REG_INT_EN, 0);
982
983 return IRQ_WAKE_THREAD;
984 }
985
rkvdec_isr(struct mpp_dev * mpp)986 static int rkvdec_isr(struct mpp_dev *mpp)
987 {
988 u32 err_mask;
989 struct rkvdec_task *task = NULL;
990 struct mpp_task *mpp_task = mpp->cur_task;
991
992 mpp_debug_enter();
993 /* FIXME use a spin lock here */
994 if (!mpp_task) {
995 dev_err(mpp->dev, "no current task\n");
996 goto done;
997 }
998 mpp_time_diff(mpp_task);
999 mpp->cur_task = NULL;
1000 task = to_rkvdec_task(mpp_task);
1001 task->irq_status = mpp->irq_status;
1002 switch (task->link_mode) {
1003 case RKVDEC_MODE_ONEFRAME: {
1004 mpp_debug(DEBUG_IRQ_STATUS, "irq_status: %08x\n", task->irq_status);
1005
1006 err_mask = RKVDEC_INT_BUF_EMPTY
1007 | RKVDEC_INT_BUS_ERROR
1008 | RKVDEC_INT_COLMV_REF_ERROR
1009 | RKVDEC_INT_STRM_ERROR
1010 | RKVDEC_INT_TIMEOUT;
1011
1012 if (err_mask & task->irq_status)
1013 atomic_inc(&mpp->reset_request);
1014
1015 mpp_task_finish(mpp_task->session, mpp_task);
1016 } break;
1017 default:
1018 break;
1019 }
1020 done:
1021 mpp_debug_leave();
1022 return IRQ_HANDLED;
1023 }
1024
rkvdec_3328_isr(struct mpp_dev * mpp)1025 static int rkvdec_3328_isr(struct mpp_dev *mpp)
1026 {
1027 u32 err_mask;
1028 struct rkvdec_task *task = NULL;
1029 struct mpp_task *mpp_task = mpp->cur_task;
1030 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1031
1032 mpp_debug_enter();
1033 /* FIXME use a spin lock here */
1034 if (!mpp_task) {
1035 dev_err(mpp->dev, "no current task\n");
1036 goto done;
1037 }
1038 mpp_time_diff(mpp_task);
1039 mpp->cur_task = NULL;
1040 task = to_rkvdec_task(mpp_task);
1041 task->irq_status = mpp->irq_status;
1042 mpp_debug(DEBUG_IRQ_STATUS, "irq_status: %08x\n", task->irq_status);
1043
1044 err_mask = RKVDEC_INT_BUF_EMPTY
1045 | RKVDEC_INT_BUS_ERROR
1046 | RKVDEC_INT_COLMV_REF_ERROR
1047 | RKVDEC_INT_STRM_ERROR
1048 | RKVDEC_INT_TIMEOUT;
1049 if (err_mask & task->irq_status)
1050 atomic_inc(&mpp->reset_request);
1051
1052 /* unmap reserve buffer */
1053 if (dec->aux_iova != -1) {
1054 iommu_unmap(mpp->iommu_info->domain, dec->aux_iova, IOMMU_PAGE_SIZE);
1055 dec->aux_iova = -1;
1056 }
1057
1058 mpp_task_finish(mpp_task->session, mpp_task);
1059 done:
1060 mpp_debug_leave();
1061 return IRQ_HANDLED;
1062 }
1063
rkvdec_finish(struct mpp_dev * mpp,struct mpp_task * mpp_task)1064 static int rkvdec_finish(struct mpp_dev *mpp,
1065 struct mpp_task *mpp_task)
1066 {
1067 u32 i;
1068 u32 dec_get;
1069 s32 dec_length;
1070 struct rkvdec_task *task = to_rkvdec_task(mpp_task);
1071
1072 mpp_debug_enter();
1073
1074 switch (task->link_mode) {
1075 case RKVDEC_MODE_ONEFRAME: {
1076 u32 s, e;
1077 struct mpp_request *req;
1078
1079 /* read register after running */
1080 for (i = 0; i < task->r_req_cnt; i++) {
1081 req = &task->r_reqs[i];
1082 s = req->offset / sizeof(u32);
1083 e = s + req->size / sizeof(u32);
1084 mpp_read_req(mpp, task->reg, s, e);
1085 }
1086 /* revert hack for irq status */
1087 task->reg[RKVDEC_REG_INT_EN_INDEX] = task->irq_status;
1088 /* revert hack for decoded length */
1089 dec_get = mpp_read_relaxed(mpp, RKVDEC_REG_RLC_BASE);
1090 dec_length = dec_get - task->strm_addr;
1091 task->reg[RKVDEC_REG_RLC_BASE_INDEX] = dec_length << 10;
1092 mpp_debug(DEBUG_REGISTER,
1093 "dec_get %08x dec_length %d\n", dec_get, dec_length);
1094 } break;
1095 default:
1096 break;
1097 }
1098
1099 mpp_debug_leave();
1100
1101 return 0;
1102 }
1103
rkvdec_finish_with_record_info(struct mpp_dev * mpp,struct mpp_task * mpp_task)1104 static int rkvdec_finish_with_record_info(struct mpp_dev *mpp,
1105 struct mpp_task *mpp_task)
1106 {
1107 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1108 struct rkvdec_task *task = to_rkvdec_task(mpp_task);
1109
1110 rkvdec_finish(mpp, mpp_task);
1111 dec->last_fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
1112 dec->had_reset = (atomic_read(&mpp->reset_request) > 0) ? true : false;
1113
1114 return 0;
1115 }
1116
rkvdec_result(struct mpp_dev * mpp,struct mpp_task * mpp_task,struct mpp_task_msgs * msgs)1117 static int rkvdec_result(struct mpp_dev *mpp,
1118 struct mpp_task *mpp_task,
1119 struct mpp_task_msgs *msgs)
1120 {
1121 u32 i;
1122 struct mpp_request *req;
1123 struct rkvdec_task *task = to_rkvdec_task(mpp_task);
1124
1125 /* FIXME may overflow the kernel */
1126 for (i = 0; i < task->r_req_cnt; i++) {
1127 req = &task->r_reqs[i];
1128
1129 if (copy_to_user(req->data,
1130 (u8 *)task->reg + req->offset,
1131 req->size)) {
1132 mpp_err("copy_to_user reg fail\n");
1133 return -EIO;
1134 }
1135 }
1136
1137 return 0;
1138 }
1139
rkvdec_free_task(struct mpp_session * session,struct mpp_task * mpp_task)1140 static int rkvdec_free_task(struct mpp_session *session,
1141 struct mpp_task *mpp_task)
1142 {
1143 struct rkvdec_task *task = to_rkvdec_task(mpp_task);
1144
1145 mpp_task_finalize(session, mpp_task);
1146 kfree(task);
1147
1148 return 0;
1149 }
1150
1151 #ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
rkvdec_procfs_remove(struct mpp_dev * mpp)1152 static int rkvdec_procfs_remove(struct mpp_dev *mpp)
1153 {
1154 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1155
1156 if (dec->procfs) {
1157 proc_remove(dec->procfs);
1158 dec->procfs = NULL;
1159 }
1160
1161 return 0;
1162 }
1163
rkvdec_procfs_init(struct mpp_dev * mpp)1164 static int rkvdec_procfs_init(struct mpp_dev *mpp)
1165 {
1166 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1167
1168 dec->procfs = proc_mkdir(mpp->dev->of_node->name, mpp->srv->procfs);
1169 if (IS_ERR_OR_NULL(dec->procfs)) {
1170 mpp_err("failed on open procfs\n");
1171 dec->procfs = NULL;
1172 return -EIO;
1173 }
1174 mpp_procfs_create_u32("aclk", 0644,
1175 dec->procfs, &dec->aclk_info.debug_rate_hz);
1176 mpp_procfs_create_u32("clk_core", 0644,
1177 dec->procfs, &dec->core_clk_info.debug_rate_hz);
1178 mpp_procfs_create_u32("clk_cabac", 0644,
1179 dec->procfs, &dec->cabac_clk_info.debug_rate_hz);
1180 mpp_procfs_create_u32("clk_hevc_cabac", 0644,
1181 dec->procfs, &dec->hevc_cabac_clk_info.debug_rate_hz);
1182 mpp_procfs_create_u32("session_buffers", 0644,
1183 dec->procfs, &mpp->session_max_buffers);
1184
1185 return 0;
1186 }
1187 #else
rkvdec_procfs_remove(struct mpp_dev * mpp)1188 static inline int rkvdec_procfs_remove(struct mpp_dev *mpp)
1189 {
1190 return 0;
1191 }
1192
rkvdec_procfs_init(struct mpp_dev * mpp)1193 static inline int rkvdec_procfs_init(struct mpp_dev *mpp)
1194 {
1195 return 0;
1196 }
1197 #endif
1198
rkvdec_init(struct mpp_dev * mpp)1199 static int rkvdec_init(struct mpp_dev *mpp)
1200 {
1201 int ret;
1202 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1203
1204 mutex_init(&dec->sip_reset_lock);
1205 mpp->grf_info = &mpp->srv->grf_infos[MPP_DRIVER_RKVDEC];
1206
1207 /* Get clock info from dtsi */
1208 ret = mpp_get_clk_info(mpp, &dec->aclk_info, "aclk_vcodec");
1209 if (ret)
1210 mpp_err("failed on clk_get aclk_vcodec\n");
1211 ret = mpp_get_clk_info(mpp, &dec->hclk_info, "hclk_vcodec");
1212 if (ret)
1213 mpp_err("failed on clk_get hclk_vcodec\n");
1214 ret = mpp_get_clk_info(mpp, &dec->core_clk_info, "clk_core");
1215 if (ret)
1216 mpp_err("failed on clk_get clk_core\n");
1217 ret = mpp_get_clk_info(mpp, &dec->cabac_clk_info, "clk_cabac");
1218 if (ret)
1219 mpp_err("failed on clk_get clk_cabac\n");
1220 ret = mpp_get_clk_info(mpp, &dec->hevc_cabac_clk_info, "clk_hevc_cabac");
1221 if (ret)
1222 mpp_err("failed on clk_get clk_hevc_cabac\n");
1223 /* Set default rates */
1224 mpp_set_clk_info_rate_hz(&dec->aclk_info, CLK_MODE_DEFAULT, 300 * MHZ);
1225 mpp_set_clk_info_rate_hz(&dec->core_clk_info, CLK_MODE_DEFAULT, 200 * MHZ);
1226 mpp_set_clk_info_rate_hz(&dec->cabac_clk_info, CLK_MODE_DEFAULT, 200 * MHZ);
1227 mpp_set_clk_info_rate_hz(&dec->hevc_cabac_clk_info, CLK_MODE_DEFAULT, 300 * MHZ);
1228
1229 /* Get normal max workload from dtsi */
1230 of_property_read_u32(mpp->dev->of_node,
1231 "rockchip,default-max-load", &dec->default_max_load);
1232 /* Get reset control from dtsi */
1233 dec->rst_a = mpp_reset_control_get(mpp, RST_TYPE_A, "video_a");
1234 if (!dec->rst_a)
1235 mpp_err("No aclk reset resource define\n");
1236 dec->rst_h = mpp_reset_control_get(mpp, RST_TYPE_H, "video_h");
1237 if (!dec->rst_h)
1238 mpp_err("No hclk reset resource define\n");
1239 dec->rst_niu_a = mpp_reset_control_get(mpp, RST_TYPE_NIU_A, "niu_a");
1240 if (!dec->rst_niu_a)
1241 mpp_err("No niu aclk reset resource define\n");
1242 dec->rst_niu_h = mpp_reset_control_get(mpp, RST_TYPE_NIU_H, "niu_h");
1243 if (!dec->rst_niu_h)
1244 mpp_err("No niu hclk reset resource define\n");
1245 dec->rst_core = mpp_reset_control_get(mpp, RST_TYPE_CORE, "video_core");
1246 if (!dec->rst_core)
1247 mpp_err("No core reset resource define\n");
1248 dec->rst_cabac = mpp_reset_control_get(mpp, RST_TYPE_CABAC, "video_cabac");
1249 if (!dec->rst_cabac)
1250 mpp_err("No cabac reset resource define\n");
1251 dec->rst_hevc_cabac = mpp_reset_control_get(mpp, RST_TYPE_HEVC_CABAC, "video_hevc_cabac");
1252 if (!dec->rst_hevc_cabac)
1253 mpp_err("No hevc cabac reset resource define\n");
1254
1255 return 0;
1256 }
1257
rkvdec_px30_init(struct mpp_dev * mpp)1258 static int rkvdec_px30_init(struct mpp_dev *mpp)
1259 {
1260 rkvdec_init(mpp);
1261 return px30_workaround_combo_init(mpp);
1262 }
1263
rkvdec_3328_iommu_hdl(struct iommu_domain * iommu,struct device * iommu_dev,unsigned long iova,int status,void * arg)1264 static int rkvdec_3328_iommu_hdl(struct iommu_domain *iommu,
1265 struct device *iommu_dev,
1266 unsigned long iova,
1267 int status, void *arg)
1268 {
1269 int ret = 0;
1270 struct mpp_dev *mpp = (struct mpp_dev *)arg;
1271 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1272
1273 /*
1274 * defeat workaround, invalidate address generated when rk322x
1275 * hevc decoder tile mode pre-fetch colmv data.
1276 */
1277 if (IOMMU_GET_BUS_ID(status) == 2) {
1278 unsigned long page_iova = 0;
1279 /* avoid another page fault occur after page fault */
1280 if (dec->aux_iova != -1) {
1281 iommu_unmap(mpp->iommu_info->domain, dec->aux_iova, IOMMU_PAGE_SIZE);
1282 dec->aux_iova = -1;
1283 }
1284
1285 page_iova = round_down(iova, IOMMU_PAGE_SIZE);
1286 ret = iommu_map(mpp->iommu_info->domain, page_iova,
1287 page_to_phys(dec->aux_page), IOMMU_PAGE_SIZE,
1288 IOMMU_READ | IOMMU_WRITE);
1289 if (!ret)
1290 dec->aux_iova = page_iova;
1291 }
1292
1293 return ret;
1294 }
1295
1296 #ifdef CONFIG_PM_DEVFREQ
rkvdec_devfreq_remove(struct mpp_dev * mpp)1297 static int rkvdec_devfreq_remove(struct mpp_dev *mpp)
1298 {
1299 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1300
1301 devfreq_unregister_opp_notifier(mpp->dev, dec->devfreq);
1302 dev_pm_opp_of_remove_table(mpp->dev);
1303
1304 return 0;
1305 }
1306
rkvdec_devfreq_init(struct mpp_dev * mpp)1307 static int rkvdec_devfreq_init(struct mpp_dev *mpp)
1308 {
1309 int ret = 0;
1310 struct devfreq_dev_status *stat;
1311 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1312
1313 mutex_init(&dec->set_clk_lock);
1314 dec->parent_devfreq = devfreq_get_devfreq_by_phandle(mpp->dev, "rkvdec_devfreq", 0);
1315 if (IS_ERR_OR_NULL(dec->parent_devfreq)) {
1316 if (PTR_ERR(dec->parent_devfreq) == -EPROBE_DEFER) {
1317 dev_warn(mpp->dev, "parent devfreq is not ready, retry\n");
1318
1319 return -EPROBE_DEFER;
1320 }
1321 } else {
1322 dec->devfreq_nb.notifier_call = devfreq_notifier_call;
1323 devm_devfreq_register_notifier(mpp->dev,
1324 dec->parent_devfreq,
1325 &dec->devfreq_nb,
1326 DEVFREQ_TRANSITION_NOTIFIER);
1327 }
1328
1329 dec->vdd = devm_regulator_get_optional(mpp->dev, "vcodec");
1330 if (IS_ERR_OR_NULL(dec->vdd)) {
1331 if (PTR_ERR(dec->vdd) == -EPROBE_DEFER) {
1332 dev_warn(mpp->dev, "vcodec regulator not ready, retry\n");
1333
1334 return -EPROBE_DEFER;
1335 }
1336 dev_warn(mpp->dev, "no regulator for vcodec\n");
1337
1338 return 0;
1339 }
1340
1341 ret = rockchip_init_opp_table(mpp->dev, NULL,
1342 "rkvdec_leakage", "vcodec");
1343 if (ret) {
1344 dev_err(mpp->dev, "Failed to init_opp_table\n");
1345 goto done;
1346 }
1347 dec->devfreq = devm_devfreq_add_device(mpp->dev, &devfreq_profile,
1348 "userspace", NULL);
1349 if (IS_ERR(dec->devfreq)) {
1350 ret = PTR_ERR(dec->devfreq);
1351 goto done;
1352 }
1353
1354 stat = &dec->devfreq->last_status;
1355 stat->current_frequency = clk_get_rate(dec->aclk_info.clk);
1356
1357 ret = devfreq_register_opp_notifier(mpp->dev, dec->devfreq);
1358 if (ret)
1359 goto done;
1360
1361 /* power simplle init */
1362 ret = power_model_simple_init(mpp);
1363 if (!ret && dec->devfreq) {
1364 dec->devfreq_cooling =
1365 of_devfreq_cooling_register_power(mpp->dev->of_node,
1366 dec->devfreq,
1367 &cooling_power_data);
1368 if (IS_ERR_OR_NULL(dec->devfreq_cooling)) {
1369 ret = -ENXIO;
1370 dev_err(mpp->dev, "Failed to register cooling\n");
1371 goto done;
1372 }
1373 }
1374
1375 done:
1376 return ret;
1377 }
1378 #else
rkvdec_devfreq_remove(struct mpp_dev * mpp)1379 static inline int rkvdec_devfreq_remove(struct mpp_dev *mpp)
1380 {
1381 return 0;
1382 }
1383
rkvdec_devfreq_init(struct mpp_dev * mpp)1384 static inline int rkvdec_devfreq_init(struct mpp_dev *mpp)
1385 {
1386 return 0;
1387 }
1388 #endif
1389
rkvdec_3328_init(struct mpp_dev * mpp)1390 static int rkvdec_3328_init(struct mpp_dev *mpp)
1391 {
1392 int ret = 0;
1393 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1394
1395 rkvdec_init(mpp);
1396
1397 /* warkaround for mmu pagefault */
1398 dec->aux_page = alloc_page(GFP_KERNEL);
1399 if (!dec->aux_page) {
1400 dev_err(mpp->dev, "allocate a page for auxiliary usage\n");
1401 ret = -ENOMEM;
1402 goto done;
1403 }
1404 dec->aux_iova = -1;
1405 mpp->iommu_info->hdl = rkvdec_3328_iommu_hdl;
1406
1407 ret = rkvdec_devfreq_init(mpp);
1408 done:
1409 return ret;
1410 }
1411
rkvdec_3328_exit(struct mpp_dev * mpp)1412 static int rkvdec_3328_exit(struct mpp_dev *mpp)
1413 {
1414 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1415
1416 if (dec->aux_page)
1417 __free_page(dec->aux_page);
1418
1419 if (dec->aux_iova != -1) {
1420 iommu_unmap(mpp->iommu_info->domain, dec->aux_iova, IOMMU_PAGE_SIZE);
1421 dec->aux_iova = -1;
1422 }
1423 rkvdec_devfreq_remove(mpp);
1424
1425 return 0;
1426 }
1427
rkvdec_clk_on(struct mpp_dev * mpp)1428 static int rkvdec_clk_on(struct mpp_dev *mpp)
1429 {
1430 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1431
1432 mpp_clk_safe_enable(dec->aclk_info.clk);
1433 mpp_clk_safe_enable(dec->hclk_info.clk);
1434 mpp_clk_safe_enable(dec->core_clk_info.clk);
1435 mpp_clk_safe_enable(dec->cabac_clk_info.clk);
1436 mpp_clk_safe_enable(dec->hevc_cabac_clk_info.clk);
1437
1438 return 0;
1439 }
1440
rkvdec_clk_off(struct mpp_dev * mpp)1441 static int rkvdec_clk_off(struct mpp_dev *mpp)
1442 {
1443 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1444
1445 clk_disable_unprepare(dec->aclk_info.clk);
1446 clk_disable_unprepare(dec->hclk_info.clk);
1447 clk_disable_unprepare(dec->core_clk_info.clk);
1448 clk_disable_unprepare(dec->cabac_clk_info.clk);
1449 clk_disable_unprepare(dec->hevc_cabac_clk_info.clk);
1450
1451 return 0;
1452 }
1453
rkvdec_get_freq(struct mpp_dev * mpp,struct mpp_task * mpp_task)1454 static int rkvdec_get_freq(struct mpp_dev *mpp,
1455 struct mpp_task *mpp_task)
1456 {
1457 u32 task_cnt;
1458 u32 workload;
1459 struct mpp_task *loop = NULL, *n;
1460 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1461 struct rkvdec_task *task = to_rkvdec_task(mpp_task);
1462
1463 /* if not set max load, consider not have advanced mode */
1464 if (!dec->default_max_load || !task->pixels)
1465 return 0;
1466
1467 task_cnt = 1;
1468 workload = task->pixels;
1469 /* calc workload in pending list */
1470 mutex_lock(&mpp->queue->pending_lock);
1471 list_for_each_entry_safe(loop, n,
1472 &mpp->queue->pending_list,
1473 queue_link) {
1474 struct rkvdec_task *loop_task = to_rkvdec_task(loop);
1475
1476 task_cnt++;
1477 workload += loop_task->pixels;
1478 }
1479 mutex_unlock(&mpp->queue->pending_lock);
1480
1481 if (workload > dec->default_max_load)
1482 task->clk_mode = CLK_MODE_ADVANCED;
1483
1484 mpp_debug(DEBUG_TASK_INFO, "pending task %d, workload %d, clk_mode=%d\n",
1485 task_cnt, workload, task->clk_mode);
1486
1487 return 0;
1488 }
1489
rkvdec_3328_get_freq(struct mpp_dev * mpp,struct mpp_task * mpp_task)1490 static int rkvdec_3328_get_freq(struct mpp_dev *mpp,
1491 struct mpp_task *mpp_task)
1492 {
1493 u32 fmt;
1494 u32 ddr_align_en;
1495 struct rkvdec_task *task = to_rkvdec_task(mpp_task);
1496
1497 fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
1498 ddr_align_en = task->reg[RKVDEC_REG_INT_EN_INDEX] & RKVDEC_WR_DDR_ALIGN_EN;
1499 if (fmt == RKVDEC_FMT_H264D && ddr_align_en)
1500 task->clk_mode = CLK_MODE_ADVANCED;
1501 else
1502 rkvdec_get_freq(mpp, mpp_task);
1503
1504 return 0;
1505 }
1506
rkvdec_3368_set_grf(struct mpp_dev * mpp)1507 static int rkvdec_3368_set_grf(struct mpp_dev *mpp)
1508 {
1509 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1510
1511 dec->grf_changed = mpp_grf_is_changed(mpp->grf_info);
1512 mpp_set_grf(mpp->grf_info);
1513
1514 return 0;
1515 }
1516
rkvdec_set_freq(struct mpp_dev * mpp,struct mpp_task * mpp_task)1517 static int rkvdec_set_freq(struct mpp_dev *mpp,
1518 struct mpp_task *mpp_task)
1519 {
1520 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1521 struct rkvdec_task *task = to_rkvdec_task(mpp_task);
1522
1523 mpp_clk_set_rate(&dec->aclk_info, task->clk_mode);
1524 mpp_clk_set_rate(&dec->core_clk_info, task->clk_mode);
1525 mpp_clk_set_rate(&dec->cabac_clk_info, task->clk_mode);
1526 mpp_clk_set_rate(&dec->hevc_cabac_clk_info, task->clk_mode);
1527
1528 return 0;
1529 }
1530
rkvdec_3368_set_freq(struct mpp_dev * mpp,struct mpp_task * mpp_task)1531 static int rkvdec_3368_set_freq(struct mpp_dev *mpp, struct mpp_task *mpp_task)
1532 {
1533 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1534 struct rkvdec_task *task = to_rkvdec_task(mpp_task);
1535
1536 /* if grf changed, need reset iommu for rk3368 */
1537 if (dec->grf_changed) {
1538 mpp_iommu_refresh(mpp->iommu_info, mpp->dev);
1539 dec->grf_changed = false;
1540 }
1541
1542 mpp_clk_set_rate(&dec->aclk_info, task->clk_mode);
1543 mpp_clk_set_rate(&dec->core_clk_info, task->clk_mode);
1544 mpp_clk_set_rate(&dec->cabac_clk_info, task->clk_mode);
1545 mpp_clk_set_rate(&dec->hevc_cabac_clk_info, task->clk_mode);
1546
1547 return 0;
1548 }
1549
rkvdec_3328_set_freq(struct mpp_dev * mpp,struct mpp_task * mpp_task)1550 static int rkvdec_3328_set_freq(struct mpp_dev *mpp,
1551 struct mpp_task *mpp_task)
1552 {
1553 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1554 struct rkvdec_task *task = to_rkvdec_task(mpp_task);
1555
1556 #ifdef CONFIG_PM_DEVFREQ
1557 if (dec->devfreq) {
1558 struct devfreq_dev_status *stat;
1559 unsigned long aclk_rate_hz, core_rate_hz, cabac_rate_hz;
1560
1561 stat = &dec->devfreq->last_status;
1562 stat->busy_time = 1;
1563 stat->total_time = 1;
1564 aclk_rate_hz = mpp_get_clk_info_rate_hz(&dec->aclk_info,
1565 task->clk_mode);
1566 core_rate_hz = mpp_get_clk_info_rate_hz(&dec->core_clk_info,
1567 task->clk_mode);
1568 cabac_rate_hz = mpp_get_clk_info_rate_hz(&dec->cabac_clk_info,
1569 task->clk_mode);
1570 rkvdec_devf_set_clk(dec, aclk_rate_hz,
1571 core_rate_hz, cabac_rate_hz,
1572 EVENT_ADJUST);
1573 }
1574 #else
1575 mpp_clk_set_rate(&dec->aclk_info, task->clk_mode);
1576 mpp_clk_set_rate(&dec->core_clk_info, task->clk_mode);
1577 mpp_clk_set_rate(&dec->cabac_clk_info, task->clk_mode);
1578 #endif
1579
1580 return 0;
1581 }
1582
rkvdec_reduce_freq(struct mpp_dev * mpp)1583 static int rkvdec_reduce_freq(struct mpp_dev *mpp)
1584 {
1585 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1586
1587 mpp_clk_set_rate(&dec->aclk_info, CLK_MODE_REDUCE);
1588 mpp_clk_set_rate(&dec->core_clk_info, CLK_MODE_REDUCE);
1589 mpp_clk_set_rate(&dec->cabac_clk_info, CLK_MODE_REDUCE);
1590 mpp_clk_set_rate(&dec->hevc_cabac_clk_info, CLK_MODE_REDUCE);
1591
1592 return 0;
1593 }
1594
rkvdec_3328_reduce_freq(struct mpp_dev * mpp)1595 static int rkvdec_3328_reduce_freq(struct mpp_dev *mpp)
1596 {
1597 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1598
1599 #ifdef CONFIG_PM_DEVFREQ
1600 if (dec->devfreq) {
1601 struct devfreq_dev_status *stat;
1602 unsigned long aclk_rate_hz, core_rate_hz, cabac_rate_hz;
1603
1604 stat = &dec->devfreq->last_status;
1605 stat->busy_time = 0;
1606 stat->total_time = 1;
1607 aclk_rate_hz = mpp_get_clk_info_rate_hz(&dec->aclk_info,
1608 CLK_MODE_REDUCE);
1609 core_rate_hz = mpp_get_clk_info_rate_hz(&dec->core_clk_info,
1610 CLK_MODE_REDUCE);
1611 cabac_rate_hz = mpp_get_clk_info_rate_hz(&dec->cabac_clk_info,
1612 CLK_MODE_REDUCE);
1613 rkvdec_devf_set_clk(dec, aclk_rate_hz,
1614 core_rate_hz, cabac_rate_hz,
1615 EVENT_ADJUST);
1616 }
1617 #else
1618 mpp_clk_set_rate(&dec->aclk_info, CLK_MODE_REDUCE);
1619 mpp_clk_set_rate(&dec->core_clk_info, CLK_MODE_REDUCE);
1620 mpp_clk_set_rate(&dec->cabac_clk_info, CLK_MODE_REDUCE);
1621 #endif
1622
1623 return 0;
1624 }
1625
rkvdec_reset(struct mpp_dev * mpp)1626 static int rkvdec_reset(struct mpp_dev *mpp)
1627 {
1628 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1629
1630 mpp_debug_enter();
1631 if (dec->rst_a && dec->rst_h) {
1632 mpp_pmu_idle_request(mpp, true);
1633 mpp_safe_reset(dec->rst_niu_a);
1634 mpp_safe_reset(dec->rst_niu_h);
1635 mpp_safe_reset(dec->rst_a);
1636 mpp_safe_reset(dec->rst_h);
1637 mpp_safe_reset(dec->rst_core);
1638 mpp_safe_reset(dec->rst_cabac);
1639 mpp_safe_reset(dec->rst_hevc_cabac);
1640 udelay(5);
1641 mpp_safe_unreset(dec->rst_niu_h);
1642 mpp_safe_unreset(dec->rst_niu_a);
1643 mpp_safe_unreset(dec->rst_a);
1644 mpp_safe_unreset(dec->rst_h);
1645 mpp_safe_unreset(dec->rst_core);
1646 mpp_safe_unreset(dec->rst_cabac);
1647 mpp_safe_unreset(dec->rst_hevc_cabac);
1648 mpp_pmu_idle_request(mpp, false);
1649 }
1650 mpp_debug_leave();
1651
1652 return 0;
1653 }
1654
rkvdec_sip_reset(struct mpp_dev * mpp)1655 static int rkvdec_sip_reset(struct mpp_dev *mpp)
1656 {
1657 struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
1658
1659 /* The reset flow in arm trustzone firmware */
1660 #if IS_ENABLED(CONFIG_ROCKCHIP_SIP)
1661 mutex_lock(&dec->sip_reset_lock);
1662 sip_smc_vpu_reset(0, 0, 0);
1663 mutex_unlock(&dec->sip_reset_lock);
1664
1665 return 0;
1666 #else
1667 return rkvdec_reset(mpp);
1668 #endif
1669 }
1670
1671 static struct mpp_hw_ops rkvdec_v1_hw_ops = {
1672 .init = rkvdec_init,
1673 .clk_on = rkvdec_clk_on,
1674 .clk_off = rkvdec_clk_off,
1675 .get_freq = rkvdec_get_freq,
1676 .set_freq = rkvdec_set_freq,
1677 .reduce_freq = rkvdec_reduce_freq,
1678 .reset = rkvdec_reset,
1679 };
1680
1681 static struct mpp_hw_ops rkvdec_px30_hw_ops = {
1682 .init = rkvdec_px30_init,
1683 .clk_on = rkvdec_clk_on,
1684 .clk_off = rkvdec_clk_off,
1685 .get_freq = rkvdec_get_freq,
1686 .set_freq = rkvdec_set_freq,
1687 .reduce_freq = rkvdec_reduce_freq,
1688 .reset = rkvdec_reset,
1689 .set_grf = px30_workaround_combo_switch_grf,
1690 };
1691
1692 static struct mpp_hw_ops rkvdec_3399_hw_ops = {
1693 .init = rkvdec_init,
1694 .clk_on = rkvdec_clk_on,
1695 .clk_off = rkvdec_clk_off,
1696 .get_freq = rkvdec_get_freq,
1697 .set_freq = rkvdec_set_freq,
1698 .reduce_freq = rkvdec_reduce_freq,
1699 .reset = rkvdec_reset,
1700 };
1701
1702 static struct mpp_hw_ops rkvdec_3368_hw_ops = {
1703 .init = rkvdec_init,
1704 .clk_on = rkvdec_clk_on,
1705 .clk_off = rkvdec_clk_off,
1706 .get_freq = rkvdec_get_freq,
1707 .set_freq = rkvdec_3368_set_freq,
1708 .reduce_freq = rkvdec_reduce_freq,
1709 .reset = rkvdec_reset,
1710 .set_grf = rkvdec_3368_set_grf,
1711 };
1712
1713 static struct mpp_dev_ops rkvdec_v1_dev_ops = {
1714 .alloc_task = rkvdec_alloc_task,
1715 .run = rkvdec_run,
1716 .irq = rkvdec_irq,
1717 .isr = rkvdec_isr,
1718 .finish = rkvdec_finish,
1719 .result = rkvdec_result,
1720 .free_task = rkvdec_free_task,
1721 };
1722
1723 static struct mpp_hw_ops rkvdec_3328_hw_ops = {
1724 .init = rkvdec_3328_init,
1725 .exit = rkvdec_3328_exit,
1726 .clk_on = rkvdec_clk_on,
1727 .clk_off = rkvdec_clk_off,
1728 .get_freq = rkvdec_3328_get_freq,
1729 .set_freq = rkvdec_3328_set_freq,
1730 .reduce_freq = rkvdec_3328_reduce_freq,
1731 .reset = rkvdec_sip_reset,
1732 };
1733
1734 static struct mpp_dev_ops rkvdec_3328_dev_ops = {
1735 .alloc_task = rkvdec_alloc_task,
1736 .run = rkvdec_3328_run,
1737 .irq = rkvdec_irq,
1738 .isr = rkvdec_3328_isr,
1739 .finish = rkvdec_finish,
1740 .result = rkvdec_result,
1741 .free_task = rkvdec_free_task,
1742 };
1743
1744 static struct mpp_dev_ops rkvdec_3399_dev_ops = {
1745 .alloc_task = rkvdec_alloc_task,
1746 .prepare = rkvdec_prepare_with_reset,
1747 .run = rkvdec_run,
1748 .irq = rkvdec_irq,
1749 .isr = rkvdec_isr,
1750 .finish = rkvdec_finish_with_record_info,
1751 .result = rkvdec_result,
1752 .free_task = rkvdec_free_task,
1753 };
1754
1755 static struct mpp_dev_ops rkvdec_1126_dev_ops = {
1756 .alloc_task = rkvdec_alloc_task,
1757 .run = rkvdec_1126_run,
1758 .irq = rkvdec_irq,
1759 .isr = rkvdec_isr,
1760 .finish = rkvdec_finish,
1761 .result = rkvdec_result,
1762 .free_task = rkvdec_free_task,
1763 };
1764 static const struct mpp_dev_var rk_hevcdec_data = {
1765 .device_type = MPP_DEVICE_HEVC_DEC,
1766 .hw_info = &rk_hevcdec_hw_info,
1767 .trans_info = rk_hevcdec_trans,
1768 .hw_ops = &rkvdec_v1_hw_ops,
1769 .dev_ops = &rkvdec_v1_dev_ops,
1770 };
1771
1772 static const struct mpp_dev_var rk_hevcdec_3368_data = {
1773 .device_type = MPP_DEVICE_HEVC_DEC,
1774 .hw_info = &rk_hevcdec_hw_info,
1775 .trans_info = rk_hevcdec_trans,
1776 .hw_ops = &rkvdec_3368_hw_ops,
1777 .dev_ops = &rkvdec_v1_dev_ops,
1778 };
1779
1780 static const struct mpp_dev_var rk_hevcdec_px30_data = {
1781 .device_type = MPP_DEVICE_HEVC_DEC,
1782 .hw_info = &rk_hevcdec_hw_info,
1783 .trans_info = rk_hevcdec_trans,
1784 .hw_ops = &rkvdec_px30_hw_ops,
1785 .dev_ops = &rkvdec_v1_dev_ops,
1786 };
1787
1788 static const struct mpp_dev_var rkvdec_v1_data = {
1789 .device_type = MPP_DEVICE_RKVDEC,
1790 .hw_info = &rkvdec_v1_hw_info,
1791 .trans_info = rkvdec_v1_trans,
1792 .hw_ops = &rkvdec_v1_hw_ops,
1793 .dev_ops = &rkvdec_v1_dev_ops,
1794 };
1795
1796 static const struct mpp_dev_var rkvdec_3399_data = {
1797 .device_type = MPP_DEVICE_RKVDEC,
1798 .hw_info = &rkvdec_v1_hw_info,
1799 .trans_info = rkvdec_v1_trans,
1800 .hw_ops = &rkvdec_3399_hw_ops,
1801 .dev_ops = &rkvdec_3399_dev_ops,
1802 };
1803
1804 static const struct mpp_dev_var rkvdec_3328_data = {
1805 .device_type = MPP_DEVICE_RKVDEC,
1806 .hw_info = &rkvdec_v1_hw_info,
1807 .trans_info = rkvdec_v1_trans,
1808 .hw_ops = &rkvdec_3328_hw_ops,
1809 .dev_ops = &rkvdec_3328_dev_ops,
1810 };
1811
1812 static const struct mpp_dev_var rkvdec_1126_data = {
1813 .device_type = MPP_DEVICE_RKVDEC,
1814 .hw_info = &rkvdec_v1_hw_info,
1815 .trans_info = rkvdec_v1_trans,
1816 .hw_ops = &rkvdec_v1_hw_ops,
1817 .dev_ops = &rkvdec_1126_dev_ops,
1818 };
1819
1820 static const struct of_device_id mpp_rkvdec_dt_match[] = {
1821 {
1822 .compatible = "rockchip,hevc-decoder",
1823 .data = &rk_hevcdec_data,
1824 },
1825 #ifdef CONFIG_CPU_PX30
1826 {
1827 .compatible = "rockchip,hevc-decoder-px30",
1828 .data = &rk_hevcdec_px30_data,
1829 },
1830 #endif
1831 #ifdef CONFIG_CPU_RK3368
1832 {
1833 .compatible = "rockchip,hevc-decoder-rk3368",
1834 .data = &rk_hevcdec_3368_data,
1835 },
1836 #endif
1837 {
1838 .compatible = "rockchip,rkv-decoder-v1",
1839 .data = &rkvdec_v1_data,
1840 },
1841 #ifdef CONFIG_CPU_RK3399
1842 {
1843 .compatible = "rockchip,rkv-decoder-rk3399",
1844 .data = &rkvdec_3399_data,
1845 },
1846 #endif
1847 #ifdef CONFIG_CPU_RK3328
1848 {
1849 .compatible = "rockchip,rkv-decoder-rk3328",
1850 .data = &rkvdec_3328_data,
1851 },
1852 #endif
1853 #ifdef CONFIG_CPU_RV1126
1854 {
1855 .compatible = "rockchip,rkv-decoder-rv1126",
1856 .data = &rkvdec_1126_data,
1857 },
1858 #endif
1859 {},
1860 };
1861
rkvdec_probe(struct platform_device * pdev)1862 static int rkvdec_probe(struct platform_device *pdev)
1863 {
1864 struct device *dev = &pdev->dev;
1865 struct rkvdec_dev *dec = NULL;
1866 struct mpp_dev *mpp = NULL;
1867 const struct of_device_id *match = NULL;
1868 int ret = 0;
1869
1870 dev_info(dev, "probing start\n");
1871 dec = devm_kzalloc(dev, sizeof(*dec), GFP_KERNEL);
1872 if (!dec)
1873 return -ENOMEM;
1874
1875 mpp = &dec->mpp;
1876 platform_set_drvdata(pdev, dec);
1877
1878 if (pdev->dev.of_node) {
1879 match = of_match_node(mpp_rkvdec_dt_match,
1880 pdev->dev.of_node);
1881 if (match)
1882 mpp->var = (struct mpp_dev_var *)match->data;
1883 }
1884
1885 ret = mpp_dev_probe(mpp, pdev);
1886 if (ret) {
1887 dev_err(dev, "probe sub driver failed\n");
1888 return ret;
1889 }
1890
1891 ret = devm_request_threaded_irq(dev, mpp->irq,
1892 mpp_dev_irq,
1893 mpp_dev_isr_sched,
1894 IRQF_SHARED,
1895 dev_name(dev), mpp);
1896 if (ret) {
1897 dev_err(dev, "register interrupter runtime failed\n");
1898 return -EINVAL;
1899 }
1900
1901 mpp->session_max_buffers = RKVDEC_SESSION_MAX_BUFFERS;
1902 rkvdec_procfs_init(mpp);
1903 /* register current device to mpp service */
1904 mpp_dev_register_srv(mpp, mpp->srv);
1905 dev_info(dev, "probing finish\n");
1906
1907 return 0;
1908 }
1909
rkvdec_remove(struct platform_device * pdev)1910 static int rkvdec_remove(struct platform_device *pdev)
1911 {
1912 struct device *dev = &pdev->dev;
1913 struct rkvdec_dev *dec = platform_get_drvdata(pdev);
1914
1915 dev_info(dev, "remove device\n");
1916 mpp_dev_remove(&dec->mpp);
1917 rkvdec_procfs_remove(&dec->mpp);
1918
1919 return 0;
1920 }
1921
rkvdec_shutdown(struct platform_device * pdev)1922 static void rkvdec_shutdown(struct platform_device *pdev)
1923 {
1924 int ret;
1925 int val;
1926 struct device *dev = &pdev->dev;
1927 struct rkvdec_dev *dec = platform_get_drvdata(pdev);
1928 struct mpp_dev *mpp = &dec->mpp;
1929
1930 dev_info(dev, "shutdown device\n");
1931
1932 atomic_inc(&mpp->srv->shutdown_request);
1933 ret = readx_poll_timeout(atomic_read,
1934 &mpp->task_count,
1935 val, val == 0, 20000, 200000);
1936 if (ret == -ETIMEDOUT)
1937 dev_err(dev, "wait total running time out\n");
1938 }
1939
1940 struct platform_driver rockchip_rkvdec_driver = {
1941 .probe = rkvdec_probe,
1942 .remove = rkvdec_remove,
1943 .shutdown = rkvdec_shutdown,
1944 .driver = {
1945 .name = RKVDEC_DRIVER_NAME,
1946 .of_match_table = of_match_ptr(mpp_rkvdec_dt_match),
1947 },
1948 };
1949 EXPORT_SYMBOL(rockchip_rkvdec_driver);
1950