• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 static char default_governor[CPUFREQ_NAME_LEN];
54 
55 /*
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63 
64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)65 bool cpufreq_supports_freq_invariance(void)
66 {
67 	return static_branch_likely(&cpufreq_freq_invariance);
68 }
69 
70 /* Flag to suspend/resume CPUFreq governors */
71 static bool cpufreq_suspended;
72 
has_target(void)73 static inline bool has_target(void)
74 {
75 	return cpufreq_driver->target_index || cpufreq_driver->target;
76 }
77 
78 /* internal prototypes */
79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
80 static int cpufreq_init_governor(struct cpufreq_policy *policy);
81 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 static int cpufreq_set_policy(struct cpufreq_policy *policy,
84 			      struct cpufreq_governor *new_gov,
85 			      unsigned int new_pol);
86 
87 /*
88  * Two notifier lists: the "policy" list is involved in the
89  * validation process for a new CPU frequency policy; the
90  * "transition" list for kernel code that needs to handle
91  * changes to devices when the CPU clock speed changes.
92  * The mutex locks both lists.
93  */
94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
96 
97 static int off __read_mostly;
cpufreq_disabled(void)98 static int cpufreq_disabled(void)
99 {
100 	return off;
101 }
disable_cpufreq(void)102 void disable_cpufreq(void)
103 {
104 	off = 1;
105 }
106 static DEFINE_MUTEX(cpufreq_governor_mutex);
107 
have_governor_per_policy(void)108 bool have_governor_per_policy(void)
109 {
110 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
111 }
112 EXPORT_SYMBOL_GPL(have_governor_per_policy);
113 
114 static struct kobject *cpufreq_global_kobject;
115 
get_governor_parent_kobj(struct cpufreq_policy * policy)116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
117 {
118 	if (have_governor_per_policy())
119 		return &policy->kobj;
120 	else
121 		return cpufreq_global_kobject;
122 }
123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
124 
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
126 {
127 	struct kernel_cpustat kcpustat;
128 	u64 cur_wall_time;
129 	u64 idle_time;
130 	u64 busy_time;
131 
132 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
133 
134 	kcpustat_cpu_fetch(&kcpustat, cpu);
135 
136 	busy_time = kcpustat.cpustat[CPUTIME_USER];
137 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
138 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
139 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
140 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
141 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
142 
143 	idle_time = cur_wall_time - busy_time;
144 	if (wall)
145 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
146 
147 	return div_u64(idle_time, NSEC_PER_USEC);
148 }
149 
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
151 {
152 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
153 
154 	if (idle_time == -1ULL)
155 		return get_cpu_idle_time_jiffy(cpu, wall);
156 	else if (!io_busy)
157 		idle_time += get_cpu_iowait_time_us(cpu, wall);
158 
159 	return idle_time;
160 }
161 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
162 
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 		struct cpufreq_frequency_table *table,
172 		unsigned int transition_latency)
173 {
174 	policy->freq_table = table;
175 	policy->cpuinfo.transition_latency = transition_latency;
176 
177 	/*
178 	 * The driver only supports the SMP configuration where all processors
179 	 * share the clock and voltage and clock.
180 	 */
181 	cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184 
cpufreq_cpu_get_raw(unsigned int cpu)185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188 
189 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192 
cpufreq_generic_get(unsigned int cpu)193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196 
197 	if (!policy || IS_ERR(policy->clk)) {
198 		pr_err("%s: No %s associated to cpu: %d\n",
199 		       __func__, policy ? "clk" : "policy", cpu);
200 		return 0;
201 	}
202 
203 	return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206 
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
cpufreq_cpu_get(unsigned int cpu)218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 	struct cpufreq_policy *policy = NULL;
221 	unsigned long flags;
222 
223 	if (WARN_ON(cpu >= nr_cpu_ids))
224 		return NULL;
225 
226 	/* get the cpufreq driver */
227 	read_lock_irqsave(&cpufreq_driver_lock, flags);
228 
229 	if (cpufreq_driver) {
230 		/* get the CPU */
231 		policy = cpufreq_cpu_get_raw(cpu);
232 		if (policy)
233 			kobject_get(&policy->kobj);
234 	}
235 
236 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237 
238 	return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241 
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
cpufreq_cpu_put(struct cpufreq_policy * policy)246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 	kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251 
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
cpufreq_cpu_release(struct cpufreq_policy * policy)256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 	if (WARN_ON(!policy))
259 		return;
260 
261 	lockdep_assert_held(&policy->rwsem);
262 
263 	up_write(&policy->rwsem);
264 
265 	cpufreq_cpu_put(policy);
266 }
267 
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
cpufreq_cpu_acquire(unsigned int cpu)280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283 
284 	if (!policy)
285 		return NULL;
286 
287 	down_write(&policy->rwsem);
288 
289 	if (policy_is_inactive(policy)) {
290 		cpufreq_cpu_release(policy);
291 		return NULL;
292 	}
293 
294 	return policy;
295 }
296 
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300 
301 /*
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 	static unsigned long l_p_j_ref;
313 	static unsigned int l_p_j_ref_freq;
314 
315 	if (ci->flags & CPUFREQ_CONST_LOOPS)
316 		return;
317 
318 	if (!l_p_j_ref_freq) {
319 		l_p_j_ref = loops_per_jiffy;
320 		l_p_j_ref_freq = ci->old;
321 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 			 l_p_j_ref, l_p_j_ref_freq);
323 	}
324 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 								ci->new);
327 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 			 loops_per_jiffy, ci->new);
329 	}
330 #endif
331 }
332 
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 				      struct cpufreq_freqs *freqs,
345 				      unsigned int state)
346 {
347 	int cpu;
348 
349 	BUG_ON(irqs_disabled());
350 
351 	if (cpufreq_disabled())
352 		return;
353 
354 	freqs->policy = policy;
355 	freqs->flags = cpufreq_driver->flags;
356 	pr_debug("notification %u of frequency transition to %u kHz\n",
357 		 state, freqs->new);
358 
359 	switch (state) {
360 	case CPUFREQ_PRECHANGE:
361 		/*
362 		 * Detect if the driver reported a value as "old frequency"
363 		 * which is not equal to what the cpufreq core thinks is
364 		 * "old frequency".
365 		 */
366 		if (policy->cur && policy->cur != freqs->old) {
367 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 				 freqs->old, policy->cur);
369 			freqs->old = policy->cur;
370 		}
371 
372 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 					 CPUFREQ_PRECHANGE, freqs);
374 
375 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 		break;
377 
378 	case CPUFREQ_POSTCHANGE:
379 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 			 cpumask_pr_args(policy->cpus));
382 
383 		for_each_cpu(cpu, policy->cpus)
384 			trace_cpu_frequency(freqs->new, cpu);
385 
386 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 					 CPUFREQ_POSTCHANGE, freqs);
388 
389 		cpufreq_stats_record_transition(policy, freqs->new);
390 		policy->cur = freqs->new;
391 	}
392 }
393 
394 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 		struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 	if (!transition_failed)
400 		return;
401 
402 	swap(freqs->old, freqs->new);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406 
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 		struct cpufreq_freqs *freqs)
409 {
410 
411 	/*
412 	 * Catch double invocations of _begin() which lead to self-deadlock.
413 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 	 * doesn't invoke _begin() on their behalf, and hence the chances of
415 	 * double invocations are very low. Moreover, there are scenarios
416 	 * where these checks can emit false-positive warnings in these
417 	 * drivers; so we avoid that by skipping them altogether.
418 	 */
419 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 				&& current == policy->transition_task);
421 
422 wait:
423 	wait_event(policy->transition_wait, !policy->transition_ongoing);
424 
425 	spin_lock(&policy->transition_lock);
426 
427 	if (unlikely(policy->transition_ongoing)) {
428 		spin_unlock(&policy->transition_lock);
429 		goto wait;
430 	}
431 
432 	policy->transition_ongoing = true;
433 	policy->transition_task = current;
434 
435 	spin_unlock(&policy->transition_lock);
436 
437 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440 
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 		struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 	if (WARN_ON(!policy->transition_ongoing))
445 		return;
446 
447 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
448 
449 	arch_set_freq_scale(policy->related_cpus,
450 			    policy->cur,
451 			    policy->cpuinfo.max_freq);
452 
453 	spin_lock(&policy->transition_lock);
454 	policy->transition_ongoing = false;
455 	policy->transition_task = NULL;
456 	spin_unlock(&policy->transition_lock);
457 
458 	wake_up(&policy->transition_wait);
459 }
460 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
461 
462 /*
463  * Fast frequency switching status count.  Positive means "enabled", negative
464  * means "disabled" and 0 means "not decided yet".
465  */
466 static int cpufreq_fast_switch_count;
467 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
468 
cpufreq_list_transition_notifiers(void)469 static void cpufreq_list_transition_notifiers(void)
470 {
471 	struct notifier_block *nb;
472 
473 	pr_info("Registered transition notifiers:\n");
474 
475 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
476 
477 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
478 		pr_info("%pS\n", nb->notifier_call);
479 
480 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
481 }
482 
483 /**
484  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
485  * @policy: cpufreq policy to enable fast frequency switching for.
486  *
487  * Try to enable fast frequency switching for @policy.
488  *
489  * The attempt will fail if there is at least one transition notifier registered
490  * at this point, as fast frequency switching is quite fundamentally at odds
491  * with transition notifiers.  Thus if successful, it will make registration of
492  * transition notifiers fail going forward.
493  */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)494 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
495 {
496 	lockdep_assert_held(&policy->rwsem);
497 
498 	if (!policy->fast_switch_possible)
499 		return;
500 
501 	mutex_lock(&cpufreq_fast_switch_lock);
502 	if (cpufreq_fast_switch_count >= 0) {
503 		cpufreq_fast_switch_count++;
504 		policy->fast_switch_enabled = true;
505 	} else {
506 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
507 			policy->cpu);
508 		cpufreq_list_transition_notifiers();
509 	}
510 	mutex_unlock(&cpufreq_fast_switch_lock);
511 }
512 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
513 
514 /**
515  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
516  * @policy: cpufreq policy to disable fast frequency switching for.
517  */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)518 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
519 {
520 	mutex_lock(&cpufreq_fast_switch_lock);
521 	if (policy->fast_switch_enabled) {
522 		policy->fast_switch_enabled = false;
523 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
524 			cpufreq_fast_switch_count--;
525 	}
526 	mutex_unlock(&cpufreq_fast_switch_lock);
527 }
528 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
529 
530 /**
531  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
532  * one.
533  * @policy: associated policy to interrogate
534  * @target_freq: target frequency to resolve.
535  *
536  * The target to driver frequency mapping is cached in the policy.
537  *
538  * Return: Lowest driver-supported frequency greater than or equal to the
539  * given target_freq, subject to policy (min/max) and driver limitations.
540  */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)541 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
542 					 unsigned int target_freq)
543 {
544 	target_freq = clamp_val(target_freq, policy->min, policy->max);
545 	policy->cached_target_freq = target_freq;
546 
547 	if (cpufreq_driver->target_index) {
548 		unsigned int idx;
549 
550 		idx = cpufreq_frequency_table_target(policy, target_freq,
551 						     CPUFREQ_RELATION_L);
552 		policy->cached_resolved_idx = idx;
553 		return policy->freq_table[idx].frequency;
554 	}
555 
556 	if (cpufreq_driver->resolve_freq)
557 		return cpufreq_driver->resolve_freq(policy, target_freq);
558 
559 	return target_freq;
560 }
561 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
562 
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)563 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
564 {
565 	unsigned int latency;
566 
567 	if (policy->transition_delay_us)
568 		return policy->transition_delay_us;
569 
570 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
571 	if (latency) {
572 		/*
573 		 * For platforms that can change the frequency very fast (< 10
574 		 * us), the above formula gives a decent transition delay. But
575 		 * for platforms where transition_latency is in milliseconds, it
576 		 * ends up giving unrealistic values.
577 		 *
578 		 * Cap the default transition delay to 10 ms, which seems to be
579 		 * a reasonable amount of time after which we should reevaluate
580 		 * the frequency.
581 		 */
582 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
583 	}
584 
585 	return LATENCY_MULTIPLIER;
586 }
587 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
588 
589 /*********************************************************************
590  *                          SYSFS INTERFACE                          *
591  *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)592 static ssize_t show_boost(struct kobject *kobj,
593 			  struct kobj_attribute *attr, char *buf)
594 {
595 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
596 }
597 
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)598 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
599 			   const char *buf, size_t count)
600 {
601 	int ret, enable;
602 
603 	ret = sscanf(buf, "%d", &enable);
604 	if (ret != 1 || enable < 0 || enable > 1)
605 		return -EINVAL;
606 
607 	if (cpufreq_boost_trigger_state(enable)) {
608 		pr_err("%s: Cannot %s BOOST!\n",
609 		       __func__, enable ? "enable" : "disable");
610 		return -EINVAL;
611 	}
612 
613 	pr_debug("%s: cpufreq BOOST %s\n",
614 		 __func__, enable ? "enabled" : "disabled");
615 
616 	return count;
617 }
618 define_one_global_rw(boost);
619 
find_governor(const char * str_governor)620 static struct cpufreq_governor *find_governor(const char *str_governor)
621 {
622 	struct cpufreq_governor *t;
623 
624 	for_each_governor(t)
625 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
626 			return t;
627 
628 	return NULL;
629 }
630 
get_governor(const char * str_governor)631 static struct cpufreq_governor *get_governor(const char *str_governor)
632 {
633 	struct cpufreq_governor *t;
634 
635 	mutex_lock(&cpufreq_governor_mutex);
636 	t = find_governor(str_governor);
637 	if (!t)
638 		goto unlock;
639 
640 	if (!try_module_get(t->owner))
641 		t = NULL;
642 
643 unlock:
644 	mutex_unlock(&cpufreq_governor_mutex);
645 
646 	return t;
647 }
648 
cpufreq_parse_policy(char * str_governor)649 static unsigned int cpufreq_parse_policy(char *str_governor)
650 {
651 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
652 		return CPUFREQ_POLICY_PERFORMANCE;
653 
654 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
655 		return CPUFREQ_POLICY_POWERSAVE;
656 
657 	return CPUFREQ_POLICY_UNKNOWN;
658 }
659 
660 /**
661  * cpufreq_parse_governor - parse a governor string only for has_target()
662  * @str_governor: Governor name.
663  */
cpufreq_parse_governor(char * str_governor)664 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
665 {
666 	struct cpufreq_governor *t;
667 
668 	t = get_governor(str_governor);
669 	if (t)
670 		return t;
671 
672 	if (request_module("cpufreq_%s", str_governor))
673 		return NULL;
674 
675 	return get_governor(str_governor);
676 }
677 
678 /*
679  * cpufreq_per_cpu_attr_read() / show_##file_name() -
680  * print out cpufreq information
681  *
682  * Write out information from cpufreq_driver->policy[cpu]; object must be
683  * "unsigned int".
684  */
685 
686 #define show_one(file_name, object)			\
687 static ssize_t show_##file_name				\
688 (struct cpufreq_policy *policy, char *buf)		\
689 {							\
690 	return sprintf(buf, "%u\n", policy->object);	\
691 }
692 
693 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
694 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
695 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
696 show_one(scaling_min_freq, min);
697 show_one(scaling_max_freq, max);
698 
arch_freq_get_on_cpu(int cpu)699 __weak unsigned int arch_freq_get_on_cpu(int cpu)
700 {
701 	return 0;
702 }
703 
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)704 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
705 {
706 	ssize_t ret;
707 	unsigned int freq;
708 
709 	freq = arch_freq_get_on_cpu(policy->cpu);
710 	if (freq)
711 		ret = sprintf(buf, "%u\n", freq);
712 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
713 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
714 	else
715 		ret = sprintf(buf, "%u\n", policy->cur);
716 	return ret;
717 }
718 
719 /*
720  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
721  */
722 #define store_one(file_name, object)			\
723 static ssize_t store_##file_name					\
724 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
725 {									\
726 	unsigned long val;						\
727 	int ret;							\
728 									\
729 	ret = sscanf(buf, "%lu", &val);					\
730 	if (ret != 1)							\
731 		return -EINVAL;						\
732 									\
733 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
734 	return ret >= 0 ? count : ret;					\
735 }
736 
737 store_one(scaling_min_freq, min);
738 store_one(scaling_max_freq, max);
739 
740 /*
741  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
742  */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)743 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
744 					char *buf)
745 {
746 	unsigned int cur_freq = __cpufreq_get(policy);
747 
748 	if (cur_freq)
749 		return sprintf(buf, "%u\n", cur_freq);
750 
751 	return sprintf(buf, "<unknown>\n");
752 }
753 
754 /*
755  * show_scaling_governor - show the current policy for the specified CPU
756  */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)757 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
758 {
759 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
760 		return sprintf(buf, "powersave\n");
761 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
762 		return sprintf(buf, "performance\n");
763 	else if (policy->governor)
764 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
765 				policy->governor->name);
766 	return -EINVAL;
767 }
768 
769 /*
770  * store_scaling_governor - store policy for the specified CPU
771  */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)772 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
773 					const char *buf, size_t count)
774 {
775 	char str_governor[16];
776 	int ret;
777 
778 	ret = sscanf(buf, "%15s", str_governor);
779 	if (ret != 1)
780 		return -EINVAL;
781 
782 	if (cpufreq_driver->setpolicy) {
783 		unsigned int new_pol;
784 
785 		new_pol = cpufreq_parse_policy(str_governor);
786 		if (!new_pol)
787 			return -EINVAL;
788 
789 		ret = cpufreq_set_policy(policy, NULL, new_pol);
790 	} else {
791 		struct cpufreq_governor *new_gov;
792 
793 		new_gov = cpufreq_parse_governor(str_governor);
794 		if (!new_gov)
795 			return -EINVAL;
796 
797 		ret = cpufreq_set_policy(policy, new_gov,
798 					 CPUFREQ_POLICY_UNKNOWN);
799 
800 		module_put(new_gov->owner);
801 	}
802 
803 	return ret ? ret : count;
804 }
805 
806 /*
807  * show_scaling_driver - show the cpufreq driver currently loaded
808  */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)809 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
810 {
811 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
812 }
813 
814 /*
815  * show_scaling_available_governors - show the available CPUfreq governors
816  */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)817 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
818 						char *buf)
819 {
820 	ssize_t i = 0;
821 	struct cpufreq_governor *t;
822 
823 	if (!has_target()) {
824 		i += sprintf(buf, "performance powersave");
825 		goto out;
826 	}
827 
828 	mutex_lock(&cpufreq_governor_mutex);
829 	for_each_governor(t) {
830 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
831 		    - (CPUFREQ_NAME_LEN + 2)))
832 			break;
833 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
834 	}
835 	mutex_unlock(&cpufreq_governor_mutex);
836 out:
837 	i += sprintf(&buf[i], "\n");
838 	return i;
839 }
840 
cpufreq_show_cpus(const struct cpumask * mask,char * buf)841 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
842 {
843 	ssize_t i = 0;
844 	unsigned int cpu;
845 
846 	for_each_cpu(cpu, mask) {
847 		if (i)
848 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
849 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
850 		if (i >= (PAGE_SIZE - 5))
851 			break;
852 	}
853 	i += sprintf(&buf[i], "\n");
854 	return i;
855 }
856 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
857 
858 /*
859  * show_related_cpus - show the CPUs affected by each transition even if
860  * hw coordination is in use
861  */
show_related_cpus(struct cpufreq_policy * policy,char * buf)862 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
863 {
864 	return cpufreq_show_cpus(policy->related_cpus, buf);
865 }
866 
867 /*
868  * show_affected_cpus - show the CPUs affected by each transition
869  */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)870 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
871 {
872 	return cpufreq_show_cpus(policy->cpus, buf);
873 }
874 
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)875 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
876 					const char *buf, size_t count)
877 {
878 	unsigned int freq = 0;
879 	unsigned int ret;
880 
881 	if (!policy->governor || !policy->governor->store_setspeed)
882 		return -EINVAL;
883 
884 	ret = sscanf(buf, "%u", &freq);
885 	if (ret != 1)
886 		return -EINVAL;
887 
888 	policy->governor->store_setspeed(policy, freq);
889 
890 	return count;
891 }
892 
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)893 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
894 {
895 	if (!policy->governor || !policy->governor->show_setspeed)
896 		return sprintf(buf, "<unsupported>\n");
897 
898 	return policy->governor->show_setspeed(policy, buf);
899 }
900 
901 /*
902  * show_bios_limit - show the current cpufreq HW/BIOS limitation
903  */
show_bios_limit(struct cpufreq_policy * policy,char * buf)904 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
905 {
906 	unsigned int limit;
907 	int ret;
908 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
909 	if (!ret)
910 		return sprintf(buf, "%u\n", limit);
911 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
912 }
913 
914 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
915 cpufreq_freq_attr_ro(cpuinfo_min_freq);
916 cpufreq_freq_attr_ro(cpuinfo_max_freq);
917 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
918 cpufreq_freq_attr_ro(scaling_available_governors);
919 cpufreq_freq_attr_ro(scaling_driver);
920 cpufreq_freq_attr_ro(scaling_cur_freq);
921 cpufreq_freq_attr_ro(bios_limit);
922 cpufreq_freq_attr_ro(related_cpus);
923 cpufreq_freq_attr_ro(affected_cpus);
924 cpufreq_freq_attr_rw(scaling_min_freq);
925 cpufreq_freq_attr_rw(scaling_max_freq);
926 cpufreq_freq_attr_rw(scaling_governor);
927 cpufreq_freq_attr_rw(scaling_setspeed);
928 
929 static struct attribute *default_attrs[] = {
930 	&cpuinfo_min_freq.attr,
931 	&cpuinfo_max_freq.attr,
932 	&cpuinfo_transition_latency.attr,
933 	&scaling_min_freq.attr,
934 	&scaling_max_freq.attr,
935 	&affected_cpus.attr,
936 	&related_cpus.attr,
937 	&scaling_governor.attr,
938 	&scaling_driver.attr,
939 	&scaling_available_governors.attr,
940 	&scaling_setspeed.attr,
941 	NULL
942 };
943 
944 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
945 #define to_attr(a) container_of(a, struct freq_attr, attr)
946 
show(struct kobject * kobj,struct attribute * attr,char * buf)947 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
948 {
949 	struct cpufreq_policy *policy = to_policy(kobj);
950 	struct freq_attr *fattr = to_attr(attr);
951 	ssize_t ret;
952 
953 	if (!fattr->show)
954 		return -EIO;
955 
956 	down_read(&policy->rwsem);
957 	ret = fattr->show(policy, buf);
958 	up_read(&policy->rwsem);
959 
960 	return ret;
961 }
962 
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)963 static ssize_t store(struct kobject *kobj, struct attribute *attr,
964 		     const char *buf, size_t count)
965 {
966 	struct cpufreq_policy *policy = to_policy(kobj);
967 	struct freq_attr *fattr = to_attr(attr);
968 	ssize_t ret = -EINVAL;
969 
970 	if (!fattr->store)
971 		return -EIO;
972 
973 	/*
974 	 * cpus_read_trylock() is used here to work around a circular lock
975 	 * dependency problem with respect to the cpufreq_register_driver().
976 	 */
977 	if (!cpus_read_trylock())
978 		return -EBUSY;
979 
980 	if (cpu_online(policy->cpu)) {
981 		down_write(&policy->rwsem);
982 		ret = fattr->store(policy, buf, count);
983 		up_write(&policy->rwsem);
984 	}
985 
986 	cpus_read_unlock();
987 
988 	return ret;
989 }
990 
cpufreq_sysfs_release(struct kobject * kobj)991 static void cpufreq_sysfs_release(struct kobject *kobj)
992 {
993 	struct cpufreq_policy *policy = to_policy(kobj);
994 	pr_debug("last reference is dropped\n");
995 	complete(&policy->kobj_unregister);
996 }
997 
998 static const struct sysfs_ops sysfs_ops = {
999 	.show	= show,
1000 	.store	= store,
1001 };
1002 
1003 static struct kobj_type ktype_cpufreq = {
1004 	.sysfs_ops	= &sysfs_ops,
1005 	.default_attrs	= default_attrs,
1006 	.release	= cpufreq_sysfs_release,
1007 };
1008 
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu,struct device * dev)1009 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1010 				struct device *dev)
1011 {
1012 	if (unlikely(!dev))
1013 		return;
1014 
1015 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1016 		return;
1017 
1018 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1019 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1020 		dev_err(dev, "cpufreq symlink creation failed\n");
1021 }
1022 
remove_cpu_dev_symlink(struct cpufreq_policy * policy,struct device * dev)1023 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1024 				   struct device *dev)
1025 {
1026 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1027 	sysfs_remove_link(&dev->kobj, "cpufreq");
1028 }
1029 
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1030 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1031 {
1032 	struct freq_attr **drv_attr;
1033 	int ret = 0;
1034 
1035 	/* set up files for this cpu device */
1036 	drv_attr = cpufreq_driver->attr;
1037 	while (drv_attr && *drv_attr) {
1038 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1039 		if (ret)
1040 			return ret;
1041 		drv_attr++;
1042 	}
1043 	if (cpufreq_driver->get) {
1044 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1045 		if (ret)
1046 			return ret;
1047 	}
1048 
1049 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1050 	if (ret)
1051 		return ret;
1052 
1053 	if (cpufreq_driver->bios_limit) {
1054 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1055 		if (ret)
1056 			return ret;
1057 	}
1058 
1059 	return 0;
1060 }
1061 
cpufreq_init_policy(struct cpufreq_policy * policy)1062 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1063 {
1064 	struct cpufreq_governor *gov = NULL;
1065 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1066 	int ret;
1067 
1068 	if (has_target()) {
1069 		/* Update policy governor to the one used before hotplug. */
1070 		gov = get_governor(policy->last_governor);
1071 		if (gov) {
1072 			pr_debug("Restoring governor %s for cpu %d\n",
1073 				 gov->name, policy->cpu);
1074 		} else {
1075 			gov = get_governor(default_governor);
1076 		}
1077 
1078 		if (!gov) {
1079 			gov = cpufreq_default_governor();
1080 			__module_get(gov->owner);
1081 		}
1082 
1083 	} else {
1084 
1085 		/* Use the default policy if there is no last_policy. */
1086 		if (policy->last_policy) {
1087 			pol = policy->last_policy;
1088 		} else {
1089 			pol = cpufreq_parse_policy(default_governor);
1090 			/*
1091 			 * In case the default governor is neither "performance"
1092 			 * nor "powersave", fall back to the initial policy
1093 			 * value set by the driver.
1094 			 */
1095 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1096 				pol = policy->policy;
1097 		}
1098 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1099 		    pol != CPUFREQ_POLICY_POWERSAVE)
1100 			return -ENODATA;
1101 	}
1102 
1103 	ret = cpufreq_set_policy(policy, gov, pol);
1104 	if (gov)
1105 		module_put(gov->owner);
1106 
1107 	return ret;
1108 }
1109 
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1110 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1111 {
1112 	int ret = 0;
1113 
1114 	/* Has this CPU been taken care of already? */
1115 	if (cpumask_test_cpu(cpu, policy->cpus))
1116 		return 0;
1117 
1118 	down_write(&policy->rwsem);
1119 	if (has_target())
1120 		cpufreq_stop_governor(policy);
1121 
1122 	cpumask_set_cpu(cpu, policy->cpus);
1123 
1124 	if (has_target()) {
1125 		ret = cpufreq_start_governor(policy);
1126 		if (ret)
1127 			pr_err("%s: Failed to start governor\n", __func__);
1128 	}
1129 	up_write(&policy->rwsem);
1130 	return ret;
1131 }
1132 
refresh_frequency_limits(struct cpufreq_policy * policy)1133 void refresh_frequency_limits(struct cpufreq_policy *policy)
1134 {
1135 	if (!policy_is_inactive(policy)) {
1136 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1137 
1138 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1139 	}
1140 }
1141 EXPORT_SYMBOL(refresh_frequency_limits);
1142 
handle_update(struct work_struct * work)1143 static void handle_update(struct work_struct *work)
1144 {
1145 	struct cpufreq_policy *policy =
1146 		container_of(work, struct cpufreq_policy, update);
1147 
1148 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1149 	down_write(&policy->rwsem);
1150 	refresh_frequency_limits(policy);
1151 	up_write(&policy->rwsem);
1152 }
1153 
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1154 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1155 				void *data)
1156 {
1157 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1158 
1159 	schedule_work(&policy->update);
1160 	return 0;
1161 }
1162 
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1163 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1164 				void *data)
1165 {
1166 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1167 
1168 	schedule_work(&policy->update);
1169 	return 0;
1170 }
1171 
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1172 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1173 {
1174 	struct kobject *kobj;
1175 	struct completion *cmp;
1176 
1177 	down_write(&policy->rwsem);
1178 	cpufreq_stats_free_table(policy);
1179 	kobj = &policy->kobj;
1180 	cmp = &policy->kobj_unregister;
1181 	up_write(&policy->rwsem);
1182 	kobject_put(kobj);
1183 
1184 	/*
1185 	 * We need to make sure that the underlying kobj is
1186 	 * actually not referenced anymore by anybody before we
1187 	 * proceed with unloading.
1188 	 */
1189 	pr_debug("waiting for dropping of refcount\n");
1190 	wait_for_completion(cmp);
1191 	pr_debug("wait complete\n");
1192 }
1193 
cpufreq_policy_alloc(unsigned int cpu)1194 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1195 {
1196 	struct cpufreq_policy *policy;
1197 	struct device *dev = get_cpu_device(cpu);
1198 	int ret;
1199 
1200 	if (!dev)
1201 		return NULL;
1202 
1203 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1204 	if (!policy)
1205 		return NULL;
1206 
1207 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1208 		goto err_free_policy;
1209 
1210 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1211 		goto err_free_cpumask;
1212 
1213 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1214 		goto err_free_rcpumask;
1215 
1216 	init_completion(&policy->kobj_unregister);
1217 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1218 				   cpufreq_global_kobject, "policy%u", cpu);
1219 	if (ret) {
1220 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1221 		/*
1222 		 * The entire policy object will be freed below, but the extra
1223 		 * memory allocated for the kobject name needs to be freed by
1224 		 * releasing the kobject.
1225 		 */
1226 		kobject_put(&policy->kobj);
1227 		goto err_free_real_cpus;
1228 	}
1229 
1230 	freq_constraints_init(&policy->constraints);
1231 
1232 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1233 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1234 
1235 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1236 				    &policy->nb_min);
1237 	if (ret) {
1238 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1239 			ret, cpumask_pr_args(policy->cpus));
1240 		goto err_kobj_remove;
1241 	}
1242 
1243 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1244 				    &policy->nb_max);
1245 	if (ret) {
1246 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1247 			ret, cpumask_pr_args(policy->cpus));
1248 		goto err_min_qos_notifier;
1249 	}
1250 
1251 	INIT_LIST_HEAD(&policy->policy_list);
1252 	init_rwsem(&policy->rwsem);
1253 	spin_lock_init(&policy->transition_lock);
1254 	init_waitqueue_head(&policy->transition_wait);
1255 	INIT_WORK(&policy->update, handle_update);
1256 
1257 	policy->cpu = cpu;
1258 	return policy;
1259 
1260 err_min_qos_notifier:
1261 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1262 				 &policy->nb_min);
1263 err_kobj_remove:
1264 	cpufreq_policy_put_kobj(policy);
1265 err_free_real_cpus:
1266 	free_cpumask_var(policy->real_cpus);
1267 err_free_rcpumask:
1268 	free_cpumask_var(policy->related_cpus);
1269 err_free_cpumask:
1270 	free_cpumask_var(policy->cpus);
1271 err_free_policy:
1272 	kfree(policy);
1273 
1274 	return NULL;
1275 }
1276 
cpufreq_policy_free(struct cpufreq_policy * policy)1277 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1278 {
1279 	unsigned long flags;
1280 	int cpu;
1281 
1282 	/* Remove policy from list */
1283 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1284 	list_del(&policy->policy_list);
1285 
1286 	for_each_cpu(cpu, policy->related_cpus)
1287 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1288 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1289 
1290 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1291 				 &policy->nb_max);
1292 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1293 				 &policy->nb_min);
1294 
1295 	/* Cancel any pending policy->update work before freeing the policy. */
1296 	cancel_work_sync(&policy->update);
1297 
1298 	if (policy->max_freq_req) {
1299 		/*
1300 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1301 		 * successfully adding max_freq_req request.
1302 		 */
1303 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1304 					     CPUFREQ_REMOVE_POLICY, policy);
1305 		freq_qos_remove_request(policy->max_freq_req);
1306 	}
1307 
1308 	freq_qos_remove_request(policy->min_freq_req);
1309 	kfree(policy->min_freq_req);
1310 
1311 	cpufreq_policy_put_kobj(policy);
1312 	free_cpumask_var(policy->real_cpus);
1313 	free_cpumask_var(policy->related_cpus);
1314 	free_cpumask_var(policy->cpus);
1315 	kfree(policy);
1316 }
1317 
cpufreq_online(unsigned int cpu)1318 static int cpufreq_online(unsigned int cpu)
1319 {
1320 	struct cpufreq_policy *policy;
1321 	bool new_policy;
1322 	unsigned long flags;
1323 	unsigned int j;
1324 	int ret;
1325 
1326 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1327 
1328 	/* Check if this CPU already has a policy to manage it */
1329 	policy = per_cpu(cpufreq_cpu_data, cpu);
1330 	if (policy) {
1331 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1332 		if (!policy_is_inactive(policy))
1333 			return cpufreq_add_policy_cpu(policy, cpu);
1334 
1335 		/* This is the only online CPU for the policy.  Start over. */
1336 		new_policy = false;
1337 		down_write(&policy->rwsem);
1338 		policy->cpu = cpu;
1339 		policy->governor = NULL;
1340 		up_write(&policy->rwsem);
1341 	} else {
1342 		new_policy = true;
1343 		policy = cpufreq_policy_alloc(cpu);
1344 		if (!policy)
1345 			return -ENOMEM;
1346 	}
1347 
1348 	if (!new_policy && cpufreq_driver->online) {
1349 		ret = cpufreq_driver->online(policy);
1350 		if (ret) {
1351 			pr_debug("%s: %d: initialization failed\n", __func__,
1352 				 __LINE__);
1353 			goto out_exit_policy;
1354 		}
1355 
1356 		/* Recover policy->cpus using related_cpus */
1357 		cpumask_copy(policy->cpus, policy->related_cpus);
1358 	} else {
1359 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1360 
1361 		/*
1362 		 * Call driver. From then on the cpufreq must be able
1363 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1364 		 */
1365 		ret = cpufreq_driver->init(policy);
1366 		if (ret) {
1367 			pr_debug("%s: %d: initialization failed\n", __func__,
1368 				 __LINE__);
1369 			goto out_free_policy;
1370 		}
1371 
1372 		/*
1373 		 * The initialization has succeeded and the policy is online.
1374 		 * If there is a problem with its frequency table, take it
1375 		 * offline and drop it.
1376 		 */
1377 		ret = cpufreq_table_validate_and_sort(policy);
1378 		if (ret)
1379 			goto out_offline_policy;
1380 
1381 		/* related_cpus should at least include policy->cpus. */
1382 		cpumask_copy(policy->related_cpus, policy->cpus);
1383 	}
1384 
1385 	down_write(&policy->rwsem);
1386 	/*
1387 	 * affected cpus must always be the one, which are online. We aren't
1388 	 * managing offline cpus here.
1389 	 */
1390 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1391 
1392 	if (new_policy) {
1393 		for_each_cpu(j, policy->related_cpus) {
1394 			per_cpu(cpufreq_cpu_data, j) = policy;
1395 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1396 		}
1397 
1398 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1399 					       GFP_KERNEL);
1400 		if (!policy->min_freq_req)
1401 			goto out_destroy_policy;
1402 
1403 		ret = freq_qos_add_request(&policy->constraints,
1404 					   policy->min_freq_req, FREQ_QOS_MIN,
1405 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1406 		if (ret < 0) {
1407 			/*
1408 			 * So we don't call freq_qos_remove_request() for an
1409 			 * uninitialized request.
1410 			 */
1411 			kfree(policy->min_freq_req);
1412 			policy->min_freq_req = NULL;
1413 			goto out_destroy_policy;
1414 		}
1415 
1416 		/*
1417 		 * This must be initialized right here to avoid calling
1418 		 * freq_qos_remove_request() on uninitialized request in case
1419 		 * of errors.
1420 		 */
1421 		policy->max_freq_req = policy->min_freq_req + 1;
1422 
1423 		ret = freq_qos_add_request(&policy->constraints,
1424 					   policy->max_freq_req, FREQ_QOS_MAX,
1425 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1426 		if (ret < 0) {
1427 			policy->max_freq_req = NULL;
1428 			goto out_destroy_policy;
1429 		}
1430 
1431 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1432 				CPUFREQ_CREATE_POLICY, policy);
1433 	}
1434 
1435 	if (cpufreq_driver->get && has_target()) {
1436 		policy->cur = cpufreq_driver->get(policy->cpu);
1437 		if (!policy->cur) {
1438 			pr_err("%s: ->get() failed\n", __func__);
1439 			goto out_destroy_policy;
1440 		}
1441 	}
1442 
1443 	/*
1444 	 * Sometimes boot loaders set CPU frequency to a value outside of
1445 	 * frequency table present with cpufreq core. In such cases CPU might be
1446 	 * unstable if it has to run on that frequency for long duration of time
1447 	 * and so its better to set it to a frequency which is specified in
1448 	 * freq-table. This also makes cpufreq stats inconsistent as
1449 	 * cpufreq-stats would fail to register because current frequency of CPU
1450 	 * isn't found in freq-table.
1451 	 *
1452 	 * Because we don't want this change to effect boot process badly, we go
1453 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1454 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1455 	 * is initialized to zero).
1456 	 *
1457 	 * We are passing target-freq as "policy->cur - 1" otherwise
1458 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1459 	 * equal to target-freq.
1460 	 */
1461 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1462 	    && has_target()) {
1463 		unsigned int old_freq = policy->cur;
1464 
1465 		/* Are we running at unknown frequency ? */
1466 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1467 		if (ret == -EINVAL) {
1468 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1469 						      CPUFREQ_RELATION_L);
1470 
1471 			/*
1472 			 * Reaching here after boot in a few seconds may not
1473 			 * mean that system will remain stable at "unknown"
1474 			 * frequency for longer duration. Hence, a BUG_ON().
1475 			 */
1476 			BUG_ON(ret);
1477 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1478 				__func__, policy->cpu, old_freq, policy->cur);
1479 		}
1480 	}
1481 
1482 	if (new_policy) {
1483 		ret = cpufreq_add_dev_interface(policy);
1484 		if (ret)
1485 			goto out_destroy_policy;
1486 
1487 		cpufreq_stats_create_table(policy);
1488 
1489 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1490 		list_add(&policy->policy_list, &cpufreq_policy_list);
1491 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1492 	}
1493 
1494 	ret = cpufreq_init_policy(policy);
1495 	if (ret) {
1496 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1497 		       __func__, cpu, ret);
1498 		goto out_destroy_policy;
1499 	}
1500 
1501 	up_write(&policy->rwsem);
1502 
1503 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1504 
1505 	/* Callback for handling stuff after policy is ready */
1506 	if (cpufreq_driver->ready)
1507 		cpufreq_driver->ready(policy);
1508 
1509 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1510 		policy->cdev = of_cpufreq_cooling_register(policy);
1511 
1512 	pr_debug("initialization complete\n");
1513 
1514 	return 0;
1515 
1516 out_destroy_policy:
1517 	for_each_cpu(j, policy->real_cpus)
1518 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1519 
1520 	up_write(&policy->rwsem);
1521 
1522 out_offline_policy:
1523 	if (cpufreq_driver->offline)
1524 		cpufreq_driver->offline(policy);
1525 
1526 out_exit_policy:
1527 	if (cpufreq_driver->exit)
1528 		cpufreq_driver->exit(policy);
1529 
1530 out_free_policy:
1531 	cpufreq_policy_free(policy);
1532 	return ret;
1533 }
1534 
1535 /**
1536  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1537  * @dev: CPU device.
1538  * @sif: Subsystem interface structure pointer (not used)
1539  */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1540 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1541 {
1542 	struct cpufreq_policy *policy;
1543 	unsigned cpu = dev->id;
1544 	int ret;
1545 
1546 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1547 
1548 	if (cpu_online(cpu)) {
1549 		ret = cpufreq_online(cpu);
1550 		if (ret)
1551 			return ret;
1552 	}
1553 
1554 	/* Create sysfs link on CPU registration */
1555 	policy = per_cpu(cpufreq_cpu_data, cpu);
1556 	if (policy)
1557 		add_cpu_dev_symlink(policy, cpu, dev);
1558 
1559 	return 0;
1560 }
1561 
cpufreq_offline(unsigned int cpu)1562 static int cpufreq_offline(unsigned int cpu)
1563 {
1564 	struct cpufreq_policy *policy;
1565 	int ret;
1566 
1567 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1568 
1569 	policy = cpufreq_cpu_get_raw(cpu);
1570 	if (!policy) {
1571 		pr_debug("%s: No cpu_data found\n", __func__);
1572 		return 0;
1573 	}
1574 
1575 	down_write(&policy->rwsem);
1576 	if (has_target())
1577 		cpufreq_stop_governor(policy);
1578 
1579 	cpumask_clear_cpu(cpu, policy->cpus);
1580 
1581 	if (policy_is_inactive(policy)) {
1582 		if (has_target())
1583 			strncpy(policy->last_governor, policy->governor->name,
1584 				CPUFREQ_NAME_LEN);
1585 		else
1586 			policy->last_policy = policy->policy;
1587 	} else if (cpu == policy->cpu) {
1588 		/* Nominate new CPU */
1589 		policy->cpu = cpumask_any(policy->cpus);
1590 	}
1591 
1592 	/* Start governor again for active policy */
1593 	if (!policy_is_inactive(policy)) {
1594 		if (has_target()) {
1595 			ret = cpufreq_start_governor(policy);
1596 			if (ret)
1597 				pr_err("%s: Failed to start governor\n", __func__);
1598 		}
1599 
1600 		goto unlock;
1601 	}
1602 
1603 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1604 		cpufreq_cooling_unregister(policy->cdev);
1605 		policy->cdev = NULL;
1606 	}
1607 
1608 	if (cpufreq_driver->stop_cpu)
1609 		cpufreq_driver->stop_cpu(policy);
1610 
1611 	if (has_target())
1612 		cpufreq_exit_governor(policy);
1613 
1614 	/*
1615 	 * Perform the ->offline() during light-weight tear-down, as
1616 	 * that allows fast recovery when the CPU comes back.
1617 	 */
1618 	if (cpufreq_driver->offline) {
1619 		cpufreq_driver->offline(policy);
1620 	} else if (cpufreq_driver->exit) {
1621 		cpufreq_driver->exit(policy);
1622 		policy->freq_table = NULL;
1623 	}
1624 
1625 unlock:
1626 	up_write(&policy->rwsem);
1627 	return 0;
1628 }
1629 
1630 /*
1631  * cpufreq_remove_dev - remove a CPU device
1632  *
1633  * Removes the cpufreq interface for a CPU device.
1634  */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1635 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1636 {
1637 	unsigned int cpu = dev->id;
1638 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1639 
1640 	if (!policy)
1641 		return;
1642 
1643 	if (cpu_online(cpu))
1644 		cpufreq_offline(cpu);
1645 
1646 	cpumask_clear_cpu(cpu, policy->real_cpus);
1647 	remove_cpu_dev_symlink(policy, dev);
1648 
1649 	if (cpumask_empty(policy->real_cpus)) {
1650 		/* We did light-weight exit earlier, do full tear down now */
1651 		if (cpufreq_driver->offline)
1652 			cpufreq_driver->exit(policy);
1653 
1654 		cpufreq_policy_free(policy);
1655 	}
1656 }
1657 
1658 /**
1659  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1660  *	in deep trouble.
1661  *	@policy: policy managing CPUs
1662  *	@new_freq: CPU frequency the CPU actually runs at
1663  *
1664  *	We adjust to current frequency first, and need to clean up later.
1665  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1666  */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1667 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1668 				unsigned int new_freq)
1669 {
1670 	struct cpufreq_freqs freqs;
1671 
1672 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1673 		 policy->cur, new_freq);
1674 
1675 	freqs.old = policy->cur;
1676 	freqs.new = new_freq;
1677 
1678 	cpufreq_freq_transition_begin(policy, &freqs);
1679 	cpufreq_freq_transition_end(policy, &freqs, 0);
1680 }
1681 
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1682 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1683 {
1684 	unsigned int new_freq;
1685 
1686 	new_freq = cpufreq_driver->get(policy->cpu);
1687 	if (!new_freq)
1688 		return 0;
1689 
1690 	/*
1691 	 * If fast frequency switching is used with the given policy, the check
1692 	 * against policy->cur is pointless, so skip it in that case.
1693 	 */
1694 	if (policy->fast_switch_enabled || !has_target())
1695 		return new_freq;
1696 
1697 	if (policy->cur != new_freq) {
1698 		cpufreq_out_of_sync(policy, new_freq);
1699 		if (update)
1700 			schedule_work(&policy->update);
1701 	}
1702 
1703 	return new_freq;
1704 }
1705 
1706 /**
1707  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1708  * @cpu: CPU number
1709  *
1710  * This is the last known freq, without actually getting it from the driver.
1711  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1712  */
cpufreq_quick_get(unsigned int cpu)1713 unsigned int cpufreq_quick_get(unsigned int cpu)
1714 {
1715 	struct cpufreq_policy *policy;
1716 	unsigned int ret_freq = 0;
1717 	unsigned long flags;
1718 
1719 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1720 
1721 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1722 		ret_freq = cpufreq_driver->get(cpu);
1723 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1724 		return ret_freq;
1725 	}
1726 
1727 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1728 
1729 	policy = cpufreq_cpu_get(cpu);
1730 	if (policy) {
1731 		ret_freq = policy->cur;
1732 		cpufreq_cpu_put(policy);
1733 	}
1734 
1735 	return ret_freq;
1736 }
1737 EXPORT_SYMBOL(cpufreq_quick_get);
1738 
1739 /**
1740  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1741  * @cpu: CPU number
1742  *
1743  * Just return the max possible frequency for a given CPU.
1744  */
cpufreq_quick_get_max(unsigned int cpu)1745 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1746 {
1747 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1748 	unsigned int ret_freq = 0;
1749 
1750 	if (policy) {
1751 		ret_freq = policy->max;
1752 		cpufreq_cpu_put(policy);
1753 	}
1754 
1755 	return ret_freq;
1756 }
1757 EXPORT_SYMBOL(cpufreq_quick_get_max);
1758 
1759 /**
1760  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1761  * @cpu: CPU number
1762  *
1763  * The default return value is the max_freq field of cpuinfo.
1764  */
cpufreq_get_hw_max_freq(unsigned int cpu)1765 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1766 {
1767 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1768 	unsigned int ret_freq = 0;
1769 
1770 	if (policy) {
1771 		ret_freq = policy->cpuinfo.max_freq;
1772 		cpufreq_cpu_put(policy);
1773 	}
1774 
1775 	return ret_freq;
1776 }
1777 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1778 
__cpufreq_get(struct cpufreq_policy * policy)1779 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1780 {
1781 	if (unlikely(policy_is_inactive(policy)))
1782 		return 0;
1783 
1784 	return cpufreq_verify_current_freq(policy, true);
1785 }
1786 
1787 /**
1788  * cpufreq_get - get the current CPU frequency (in kHz)
1789  * @cpu: CPU number
1790  *
1791  * Get the CPU current (static) CPU frequency
1792  */
cpufreq_get(unsigned int cpu)1793 unsigned int cpufreq_get(unsigned int cpu)
1794 {
1795 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1796 	unsigned int ret_freq = 0;
1797 
1798 	if (policy) {
1799 		down_read(&policy->rwsem);
1800 		if (cpufreq_driver->get)
1801 			ret_freq = __cpufreq_get(policy);
1802 		up_read(&policy->rwsem);
1803 
1804 		cpufreq_cpu_put(policy);
1805 	}
1806 
1807 	return ret_freq;
1808 }
1809 EXPORT_SYMBOL(cpufreq_get);
1810 
1811 static struct subsys_interface cpufreq_interface = {
1812 	.name		= "cpufreq",
1813 	.subsys		= &cpu_subsys,
1814 	.add_dev	= cpufreq_add_dev,
1815 	.remove_dev	= cpufreq_remove_dev,
1816 };
1817 
1818 /*
1819  * In case platform wants some specific frequency to be configured
1820  * during suspend..
1821  */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1822 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1823 {
1824 	int ret;
1825 
1826 	if (!policy->suspend_freq) {
1827 		pr_debug("%s: suspend_freq not defined\n", __func__);
1828 		return 0;
1829 	}
1830 
1831 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1832 			policy->suspend_freq);
1833 
1834 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1835 			CPUFREQ_RELATION_H);
1836 	if (ret)
1837 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1838 				__func__, policy->suspend_freq, ret);
1839 
1840 	return ret;
1841 }
1842 EXPORT_SYMBOL(cpufreq_generic_suspend);
1843 
1844 /**
1845  * cpufreq_suspend() - Suspend CPUFreq governors
1846  *
1847  * Called during system wide Suspend/Hibernate cycles for suspending governors
1848  * as some platforms can't change frequency after this point in suspend cycle.
1849  * Because some of the devices (like: i2c, regulators, etc) they use for
1850  * changing frequency are suspended quickly after this point.
1851  */
cpufreq_suspend(void)1852 void cpufreq_suspend(void)
1853 {
1854 	struct cpufreq_policy *policy;
1855 
1856 	if (!cpufreq_driver)
1857 		return;
1858 
1859 	if (!has_target() && !cpufreq_driver->suspend)
1860 		goto suspend;
1861 
1862 	pr_debug("%s: Suspending Governors\n", __func__);
1863 
1864 	for_each_active_policy(policy) {
1865 		if (has_target()) {
1866 			down_write(&policy->rwsem);
1867 			cpufreq_stop_governor(policy);
1868 			up_write(&policy->rwsem);
1869 		}
1870 
1871 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1872 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1873 				cpufreq_driver->name);
1874 	}
1875 
1876 suspend:
1877 	cpufreq_suspended = true;
1878 }
1879 
1880 /**
1881  * cpufreq_resume() - Resume CPUFreq governors
1882  *
1883  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1884  * are suspended with cpufreq_suspend().
1885  */
cpufreq_resume(void)1886 void cpufreq_resume(void)
1887 {
1888 	struct cpufreq_policy *policy;
1889 	int ret;
1890 
1891 	if (!cpufreq_driver)
1892 		return;
1893 
1894 	if (unlikely(!cpufreq_suspended))
1895 		return;
1896 
1897 	cpufreq_suspended = false;
1898 
1899 	if (!has_target() && !cpufreq_driver->resume)
1900 		return;
1901 
1902 	pr_debug("%s: Resuming Governors\n", __func__);
1903 
1904 	for_each_active_policy(policy) {
1905 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1906 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1907 				policy);
1908 		} else if (has_target()) {
1909 			down_write(&policy->rwsem);
1910 			ret = cpufreq_start_governor(policy);
1911 			up_write(&policy->rwsem);
1912 
1913 			if (ret)
1914 				pr_err("%s: Failed to start governor for policy: %p\n",
1915 				       __func__, policy);
1916 		}
1917 	}
1918 }
1919 
1920 /**
1921  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1922  * @flags: Flags to test against the current cpufreq driver's flags.
1923  *
1924  * Assumes that the driver is there, so callers must ensure that this is the
1925  * case.
1926  */
cpufreq_driver_test_flags(u16 flags)1927 bool cpufreq_driver_test_flags(u16 flags)
1928 {
1929 	return !!(cpufreq_driver->flags & flags);
1930 }
1931 
1932 /**
1933  *	cpufreq_get_current_driver - return current driver's name
1934  *
1935  *	Return the name string of the currently loaded cpufreq driver
1936  *	or NULL, if none.
1937  */
cpufreq_get_current_driver(void)1938 const char *cpufreq_get_current_driver(void)
1939 {
1940 	if (cpufreq_driver)
1941 		return cpufreq_driver->name;
1942 
1943 	return NULL;
1944 }
1945 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1946 
1947 /**
1948  *	cpufreq_get_driver_data - return current driver data
1949  *
1950  *	Return the private data of the currently loaded cpufreq
1951  *	driver, or NULL if no cpufreq driver is loaded.
1952  */
cpufreq_get_driver_data(void)1953 void *cpufreq_get_driver_data(void)
1954 {
1955 	if (cpufreq_driver)
1956 		return cpufreq_driver->driver_data;
1957 
1958 	return NULL;
1959 }
1960 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1961 
1962 /*********************************************************************
1963  *                     NOTIFIER LISTS INTERFACE                      *
1964  *********************************************************************/
1965 
1966 /**
1967  *	cpufreq_register_notifier - register a driver with cpufreq
1968  *	@nb: notifier function to register
1969  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1970  *
1971  *	Add a driver to one of two lists: either a list of drivers that
1972  *      are notified about clock rate changes (once before and once after
1973  *      the transition), or a list of drivers that are notified about
1974  *      changes in cpufreq policy.
1975  *
1976  *	This function may sleep, and has the same return conditions as
1977  *	blocking_notifier_chain_register.
1978  */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)1979 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1980 {
1981 	int ret;
1982 
1983 	if (cpufreq_disabled())
1984 		return -EINVAL;
1985 
1986 	switch (list) {
1987 	case CPUFREQ_TRANSITION_NOTIFIER:
1988 		mutex_lock(&cpufreq_fast_switch_lock);
1989 
1990 		if (cpufreq_fast_switch_count > 0) {
1991 			mutex_unlock(&cpufreq_fast_switch_lock);
1992 			return -EBUSY;
1993 		}
1994 		ret = srcu_notifier_chain_register(
1995 				&cpufreq_transition_notifier_list, nb);
1996 		if (!ret)
1997 			cpufreq_fast_switch_count--;
1998 
1999 		mutex_unlock(&cpufreq_fast_switch_lock);
2000 		break;
2001 	case CPUFREQ_POLICY_NOTIFIER:
2002 		ret = blocking_notifier_chain_register(
2003 				&cpufreq_policy_notifier_list, nb);
2004 		break;
2005 	default:
2006 		ret = -EINVAL;
2007 	}
2008 
2009 	return ret;
2010 }
2011 EXPORT_SYMBOL(cpufreq_register_notifier);
2012 
2013 /**
2014  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
2015  *	@nb: notifier block to be unregistered
2016  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
2017  *
2018  *	Remove a driver from the CPU frequency notifier list.
2019  *
2020  *	This function may sleep, and has the same return conditions as
2021  *	blocking_notifier_chain_unregister.
2022  */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2023 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2024 {
2025 	int ret;
2026 
2027 	if (cpufreq_disabled())
2028 		return -EINVAL;
2029 
2030 	switch (list) {
2031 	case CPUFREQ_TRANSITION_NOTIFIER:
2032 		mutex_lock(&cpufreq_fast_switch_lock);
2033 
2034 		ret = srcu_notifier_chain_unregister(
2035 				&cpufreq_transition_notifier_list, nb);
2036 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2037 			cpufreq_fast_switch_count++;
2038 
2039 		mutex_unlock(&cpufreq_fast_switch_lock);
2040 		break;
2041 	case CPUFREQ_POLICY_NOTIFIER:
2042 		ret = blocking_notifier_chain_unregister(
2043 				&cpufreq_policy_notifier_list, nb);
2044 		break;
2045 	default:
2046 		ret = -EINVAL;
2047 	}
2048 
2049 	return ret;
2050 }
2051 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2052 
2053 
2054 /*********************************************************************
2055  *                              GOVERNORS                            *
2056  *********************************************************************/
2057 
2058 /**
2059  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2060  * @policy: cpufreq policy to switch the frequency for.
2061  * @target_freq: New frequency to set (may be approximate).
2062  *
2063  * Carry out a fast frequency switch without sleeping.
2064  *
2065  * The driver's ->fast_switch() callback invoked by this function must be
2066  * suitable for being called from within RCU-sched read-side critical sections
2067  * and it is expected to select the minimum available frequency greater than or
2068  * equal to @target_freq (CPUFREQ_RELATION_L).
2069  *
2070  * This function must not be called if policy->fast_switch_enabled is unset.
2071  *
2072  * Governors calling this function must guarantee that it will never be invoked
2073  * twice in parallel for the same policy and that it will never be called in
2074  * parallel with either ->target() or ->target_index() for the same policy.
2075  *
2076  * Returns the actual frequency set for the CPU.
2077  *
2078  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2079  * error condition, the hardware configuration must be preserved.
2080  */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2081 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2082 					unsigned int target_freq)
2083 {
2084 	unsigned int freq;
2085 	int cpu;
2086 
2087 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2088 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2089 
2090 	if (!freq)
2091 		return 0;
2092 
2093 	policy->cur = freq;
2094 	arch_set_freq_scale(policy->related_cpus, freq,
2095 			    policy->cpuinfo.max_freq);
2096 	cpufreq_stats_record_transition(policy, freq);
2097 
2098 	if (trace_cpu_frequency_enabled()) {
2099 		for_each_cpu(cpu, policy->cpus)
2100 			trace_cpu_frequency(freq, cpu);
2101 	}
2102 
2103 	return freq;
2104 }
2105 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2106 
2107 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2108 static int __target_intermediate(struct cpufreq_policy *policy,
2109 				 struct cpufreq_freqs *freqs, int index)
2110 {
2111 	int ret;
2112 
2113 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2114 
2115 	/* We don't need to switch to intermediate freq */
2116 	if (!freqs->new)
2117 		return 0;
2118 
2119 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2120 		 __func__, policy->cpu, freqs->old, freqs->new);
2121 
2122 	cpufreq_freq_transition_begin(policy, freqs);
2123 	ret = cpufreq_driver->target_intermediate(policy, index);
2124 	cpufreq_freq_transition_end(policy, freqs, ret);
2125 
2126 	if (ret)
2127 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2128 		       __func__, ret);
2129 
2130 	return ret;
2131 }
2132 
__target_index(struct cpufreq_policy * policy,int index)2133 static int __target_index(struct cpufreq_policy *policy, int index)
2134 {
2135 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2136 	unsigned int intermediate_freq = 0;
2137 	unsigned int newfreq = policy->freq_table[index].frequency;
2138 	int retval = -EINVAL;
2139 	bool notify;
2140 
2141 	if (newfreq == policy->cur)
2142 		return 0;
2143 
2144 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2145 	if (notify) {
2146 		/* Handle switching to intermediate frequency */
2147 		if (cpufreq_driver->get_intermediate) {
2148 			retval = __target_intermediate(policy, &freqs, index);
2149 			if (retval)
2150 				return retval;
2151 
2152 			intermediate_freq = freqs.new;
2153 			/* Set old freq to intermediate */
2154 			if (intermediate_freq)
2155 				freqs.old = freqs.new;
2156 		}
2157 
2158 		freqs.new = newfreq;
2159 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2160 			 __func__, policy->cpu, freqs.old, freqs.new);
2161 
2162 		cpufreq_freq_transition_begin(policy, &freqs);
2163 	}
2164 
2165 	retval = cpufreq_driver->target_index(policy, index);
2166 	if (retval)
2167 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2168 		       retval);
2169 
2170 	if (notify) {
2171 		cpufreq_freq_transition_end(policy, &freqs, retval);
2172 
2173 		/*
2174 		 * Failed after setting to intermediate freq? Driver should have
2175 		 * reverted back to initial frequency and so should we. Check
2176 		 * here for intermediate_freq instead of get_intermediate, in
2177 		 * case we haven't switched to intermediate freq at all.
2178 		 */
2179 		if (unlikely(retval && intermediate_freq)) {
2180 			freqs.old = intermediate_freq;
2181 			freqs.new = policy->restore_freq;
2182 			cpufreq_freq_transition_begin(policy, &freqs);
2183 			cpufreq_freq_transition_end(policy, &freqs, 0);
2184 		}
2185 	}
2186 
2187 	return retval;
2188 }
2189 
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2190 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2191 			    unsigned int target_freq,
2192 			    unsigned int relation)
2193 {
2194 	unsigned int old_target_freq = target_freq;
2195 	int index;
2196 
2197 	if (cpufreq_disabled())
2198 		return -ENODEV;
2199 
2200 	/* Make sure that target_freq is within supported range */
2201 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2202 
2203 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2204 		 policy->cpu, target_freq, relation, old_target_freq);
2205 
2206 	/*
2207 	 * This might look like a redundant call as we are checking it again
2208 	 * after finding index. But it is left intentionally for cases where
2209 	 * exactly same freq is called again and so we can save on few function
2210 	 * calls.
2211 	 */
2212 	if (target_freq == policy->cur &&
2213 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2214 		return 0;
2215 
2216 	/* Save last value to restore later on errors */
2217 	policy->restore_freq = policy->cur;
2218 
2219 	if (cpufreq_driver->target)
2220 		return cpufreq_driver->target(policy, target_freq, relation);
2221 
2222 	if (!cpufreq_driver->target_index)
2223 		return -EINVAL;
2224 
2225 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2226 
2227 	return __target_index(policy, index);
2228 }
2229 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2230 
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2231 int cpufreq_driver_target(struct cpufreq_policy *policy,
2232 			  unsigned int target_freq,
2233 			  unsigned int relation)
2234 {
2235 	int ret;
2236 
2237 	down_write(&policy->rwsem);
2238 
2239 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2240 
2241 	up_write(&policy->rwsem);
2242 
2243 	return ret;
2244 }
2245 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2246 
cpufreq_fallback_governor(void)2247 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2248 {
2249 	return NULL;
2250 }
2251 
cpufreq_init_governor(struct cpufreq_policy * policy)2252 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2253 {
2254 	int ret;
2255 
2256 	/* Don't start any governor operations if we are entering suspend */
2257 	if (cpufreq_suspended)
2258 		return 0;
2259 	/*
2260 	 * Governor might not be initiated here if ACPI _PPC changed
2261 	 * notification happened, so check it.
2262 	 */
2263 	if (!policy->governor)
2264 		return -EINVAL;
2265 
2266 	/* Platform doesn't want dynamic frequency switching ? */
2267 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2268 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2269 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2270 
2271 		if (gov) {
2272 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2273 				policy->governor->name, gov->name);
2274 			policy->governor = gov;
2275 		} else {
2276 			return -EINVAL;
2277 		}
2278 	}
2279 
2280 	if (!try_module_get(policy->governor->owner))
2281 		return -EINVAL;
2282 
2283 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2284 
2285 	if (policy->governor->init) {
2286 		ret = policy->governor->init(policy);
2287 		if (ret) {
2288 			module_put(policy->governor->owner);
2289 			return ret;
2290 		}
2291 	}
2292 
2293 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2294 
2295 	return 0;
2296 }
2297 
cpufreq_exit_governor(struct cpufreq_policy * policy)2298 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2299 {
2300 	if (cpufreq_suspended || !policy->governor)
2301 		return;
2302 
2303 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2304 
2305 	if (policy->governor->exit)
2306 		policy->governor->exit(policy);
2307 
2308 	module_put(policy->governor->owner);
2309 }
2310 
cpufreq_start_governor(struct cpufreq_policy * policy)2311 int cpufreq_start_governor(struct cpufreq_policy *policy)
2312 {
2313 	int ret;
2314 
2315 	if (cpufreq_suspended)
2316 		return 0;
2317 
2318 	if (!policy->governor)
2319 		return -EINVAL;
2320 
2321 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2322 
2323 	if (cpufreq_driver->get)
2324 		cpufreq_verify_current_freq(policy, false);
2325 
2326 	if (policy->governor->start) {
2327 		ret = policy->governor->start(policy);
2328 		if (ret)
2329 			return ret;
2330 	}
2331 
2332 	if (policy->governor->limits)
2333 		policy->governor->limits(policy);
2334 
2335 	return 0;
2336 }
2337 
cpufreq_stop_governor(struct cpufreq_policy * policy)2338 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2339 {
2340 	if (cpufreq_suspended || !policy->governor)
2341 		return;
2342 
2343 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2344 
2345 	if (policy->governor->stop)
2346 		policy->governor->stop(policy);
2347 }
2348 
cpufreq_governor_limits(struct cpufreq_policy * policy)2349 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2350 {
2351 	if (cpufreq_suspended || !policy->governor)
2352 		return;
2353 
2354 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2355 
2356 	if (policy->governor->limits)
2357 		policy->governor->limits(policy);
2358 }
2359 
cpufreq_register_governor(struct cpufreq_governor * governor)2360 int cpufreq_register_governor(struct cpufreq_governor *governor)
2361 {
2362 	int err;
2363 
2364 	if (!governor)
2365 		return -EINVAL;
2366 
2367 	if (cpufreq_disabled())
2368 		return -ENODEV;
2369 
2370 	mutex_lock(&cpufreq_governor_mutex);
2371 
2372 	err = -EBUSY;
2373 	if (!find_governor(governor->name)) {
2374 		err = 0;
2375 		list_add(&governor->governor_list, &cpufreq_governor_list);
2376 	}
2377 
2378 	mutex_unlock(&cpufreq_governor_mutex);
2379 	return err;
2380 }
2381 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2382 
cpufreq_unregister_governor(struct cpufreq_governor * governor)2383 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2384 {
2385 	struct cpufreq_policy *policy;
2386 	unsigned long flags;
2387 
2388 	if (!governor)
2389 		return;
2390 
2391 	if (cpufreq_disabled())
2392 		return;
2393 
2394 	/* clear last_governor for all inactive policies */
2395 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2396 	for_each_inactive_policy(policy) {
2397 		if (!strcmp(policy->last_governor, governor->name)) {
2398 			policy->governor = NULL;
2399 			strcpy(policy->last_governor, "\0");
2400 		}
2401 	}
2402 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2403 
2404 	mutex_lock(&cpufreq_governor_mutex);
2405 	list_del(&governor->governor_list);
2406 	mutex_unlock(&cpufreq_governor_mutex);
2407 }
2408 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2409 
2410 
2411 /*********************************************************************
2412  *                          POLICY INTERFACE                         *
2413  *********************************************************************/
2414 
2415 /**
2416  * cpufreq_get_policy - get the current cpufreq_policy
2417  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2418  *	is written
2419  * @cpu: CPU to find the policy for
2420  *
2421  * Reads the current cpufreq policy.
2422  */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2423 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2424 {
2425 	struct cpufreq_policy *cpu_policy;
2426 	if (!policy)
2427 		return -EINVAL;
2428 
2429 	cpu_policy = cpufreq_cpu_get(cpu);
2430 	if (!cpu_policy)
2431 		return -EINVAL;
2432 
2433 	memcpy(policy, cpu_policy, sizeof(*policy));
2434 
2435 	cpufreq_cpu_put(cpu_policy);
2436 	return 0;
2437 }
2438 EXPORT_SYMBOL(cpufreq_get_policy);
2439 
2440 /**
2441  * cpufreq_set_policy - Modify cpufreq policy parameters.
2442  * @policy: Policy object to modify.
2443  * @new_gov: Policy governor pointer.
2444  * @new_pol: Policy value (for drivers with built-in governors).
2445  *
2446  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2447  * limits to be set for the policy, update @policy with the verified limits
2448  * values and either invoke the driver's ->setpolicy() callback (if present) or
2449  * carry out a governor update for @policy.  That is, run the current governor's
2450  * ->limits() callback (if @new_gov points to the same object as the one in
2451  * @policy) or replace the governor for @policy with @new_gov.
2452  *
2453  * The cpuinfo part of @policy is not updated by this function.
2454  */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2455 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2456 			      struct cpufreq_governor *new_gov,
2457 			      unsigned int new_pol)
2458 {
2459 	struct cpufreq_policy_data new_data;
2460 	struct cpufreq_governor *old_gov;
2461 	int ret;
2462 
2463 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2464 	new_data.freq_table = policy->freq_table;
2465 	new_data.cpu = policy->cpu;
2466 	/*
2467 	 * PM QoS framework collects all the requests from users and provide us
2468 	 * the final aggregated value here.
2469 	 */
2470 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2471 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2472 
2473 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2474 		 new_data.cpu, new_data.min, new_data.max);
2475 
2476 	/*
2477 	 * Verify that the CPU speed can be set within these limits and make sure
2478 	 * that min <= max.
2479 	 */
2480 	ret = cpufreq_driver->verify(&new_data);
2481 	if (ret)
2482 		return ret;
2483 
2484 	policy->min = new_data.min;
2485 	policy->max = new_data.max;
2486 	trace_cpu_frequency_limits(policy);
2487 
2488 	policy->cached_target_freq = UINT_MAX;
2489 
2490 	pr_debug("new min and max freqs are %u - %u kHz\n",
2491 		 policy->min, policy->max);
2492 
2493 	if (cpufreq_driver->setpolicy) {
2494 		policy->policy = new_pol;
2495 		pr_debug("setting range\n");
2496 		return cpufreq_driver->setpolicy(policy);
2497 	}
2498 
2499 	if (new_gov == policy->governor) {
2500 		pr_debug("governor limits update\n");
2501 		cpufreq_governor_limits(policy);
2502 		return 0;
2503 	}
2504 
2505 	pr_debug("governor switch\n");
2506 
2507 	/* save old, working values */
2508 	old_gov = policy->governor;
2509 	/* end old governor */
2510 	if (old_gov) {
2511 		cpufreq_stop_governor(policy);
2512 		cpufreq_exit_governor(policy);
2513 	}
2514 
2515 	/* start new governor */
2516 	policy->governor = new_gov;
2517 	ret = cpufreq_init_governor(policy);
2518 	if (!ret) {
2519 		ret = cpufreq_start_governor(policy);
2520 		if (!ret) {
2521 			pr_debug("governor change\n");
2522 			sched_cpufreq_governor_change(policy, old_gov);
2523 			return 0;
2524 		}
2525 		cpufreq_exit_governor(policy);
2526 	}
2527 
2528 	/* new governor failed, so re-start old one */
2529 	pr_debug("starting governor %s failed\n", policy->governor->name);
2530 	if (old_gov) {
2531 		policy->governor = old_gov;
2532 		if (cpufreq_init_governor(policy))
2533 			policy->governor = NULL;
2534 		else
2535 			cpufreq_start_governor(policy);
2536 	}
2537 
2538 	return ret;
2539 }
2540 
2541 /**
2542  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2543  * @cpu: CPU to re-evaluate the policy for.
2544  *
2545  * Update the current frequency for the cpufreq policy of @cpu and use
2546  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2547  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2548  * for the policy in question, among other things.
2549  */
cpufreq_update_policy(unsigned int cpu)2550 void cpufreq_update_policy(unsigned int cpu)
2551 {
2552 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2553 
2554 	if (!policy)
2555 		return;
2556 
2557 	/*
2558 	 * BIOS might change freq behind our back
2559 	 * -> ask driver for current freq and notify governors about a change
2560 	 */
2561 	if (cpufreq_driver->get && has_target() &&
2562 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2563 		goto unlock;
2564 
2565 	refresh_frequency_limits(policy);
2566 
2567 unlock:
2568 	cpufreq_cpu_release(policy);
2569 }
2570 EXPORT_SYMBOL(cpufreq_update_policy);
2571 
2572 /**
2573  * cpufreq_update_limits - Update policy limits for a given CPU.
2574  * @cpu: CPU to update the policy limits for.
2575  *
2576  * Invoke the driver's ->update_limits callback if present or call
2577  * cpufreq_update_policy() for @cpu.
2578  */
cpufreq_update_limits(unsigned int cpu)2579 void cpufreq_update_limits(unsigned int cpu)
2580 {
2581 	if (cpufreq_driver->update_limits)
2582 		cpufreq_driver->update_limits(cpu);
2583 	else
2584 		cpufreq_update_policy(cpu);
2585 }
2586 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2587 
2588 /*********************************************************************
2589  *               BOOST						     *
2590  *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2591 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2592 {
2593 	int ret;
2594 
2595 	if (!policy->freq_table)
2596 		return -ENXIO;
2597 
2598 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2599 	if (ret) {
2600 		pr_err("%s: Policy frequency update failed\n", __func__);
2601 		return ret;
2602 	}
2603 
2604 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2605 	if (ret < 0)
2606 		return ret;
2607 
2608 	return 0;
2609 }
2610 
cpufreq_boost_trigger_state(int state)2611 int cpufreq_boost_trigger_state(int state)
2612 {
2613 	struct cpufreq_policy *policy;
2614 	unsigned long flags;
2615 	int ret = 0;
2616 
2617 	if (cpufreq_driver->boost_enabled == state)
2618 		return 0;
2619 
2620 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2621 	cpufreq_driver->boost_enabled = state;
2622 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2623 
2624 	get_online_cpus();
2625 	for_each_active_policy(policy) {
2626 		ret = cpufreq_driver->set_boost(policy, state);
2627 		if (ret)
2628 			goto err_reset_state;
2629 	}
2630 	put_online_cpus();
2631 
2632 	return 0;
2633 
2634 err_reset_state:
2635 	put_online_cpus();
2636 
2637 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2638 	cpufreq_driver->boost_enabled = !state;
2639 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2640 
2641 	pr_err("%s: Cannot %s BOOST\n",
2642 	       __func__, state ? "enable" : "disable");
2643 
2644 	return ret;
2645 }
2646 
cpufreq_boost_supported(void)2647 static bool cpufreq_boost_supported(void)
2648 {
2649 	return cpufreq_driver->set_boost;
2650 }
2651 
create_boost_sysfs_file(void)2652 static int create_boost_sysfs_file(void)
2653 {
2654 	int ret;
2655 
2656 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2657 	if (ret)
2658 		pr_err("%s: cannot register global BOOST sysfs file\n",
2659 		       __func__);
2660 
2661 	return ret;
2662 }
2663 
remove_boost_sysfs_file(void)2664 static void remove_boost_sysfs_file(void)
2665 {
2666 	if (cpufreq_boost_supported())
2667 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2668 }
2669 
cpufreq_enable_boost_support(void)2670 int cpufreq_enable_boost_support(void)
2671 {
2672 	if (!cpufreq_driver)
2673 		return -EINVAL;
2674 
2675 	if (cpufreq_boost_supported())
2676 		return 0;
2677 
2678 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2679 
2680 	/* This will get removed on driver unregister */
2681 	return create_boost_sysfs_file();
2682 }
2683 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2684 
cpufreq_boost_enabled(void)2685 int cpufreq_boost_enabled(void)
2686 {
2687 	return cpufreq_driver->boost_enabled;
2688 }
2689 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2690 
2691 /*********************************************************************
2692  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2693  *********************************************************************/
2694 static enum cpuhp_state hp_online;
2695 
cpuhp_cpufreq_online(unsigned int cpu)2696 static int cpuhp_cpufreq_online(unsigned int cpu)
2697 {
2698 	cpufreq_online(cpu);
2699 
2700 	return 0;
2701 }
2702 
cpuhp_cpufreq_offline(unsigned int cpu)2703 static int cpuhp_cpufreq_offline(unsigned int cpu)
2704 {
2705 	cpufreq_offline(cpu);
2706 
2707 	return 0;
2708 }
2709 
2710 /**
2711  * cpufreq_register_driver - register a CPU Frequency driver
2712  * @driver_data: A struct cpufreq_driver containing the values#
2713  * submitted by the CPU Frequency driver.
2714  *
2715  * Registers a CPU Frequency driver to this core code. This code
2716  * returns zero on success, -EEXIST when another driver got here first
2717  * (and isn't unregistered in the meantime).
2718  *
2719  */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2720 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2721 {
2722 	unsigned long flags;
2723 	int ret;
2724 
2725 	if (cpufreq_disabled())
2726 		return -ENODEV;
2727 
2728 	/*
2729 	 * The cpufreq core depends heavily on the availability of device
2730 	 * structure, make sure they are available before proceeding further.
2731 	 */
2732 	if (!get_cpu_device(0))
2733 		return -EPROBE_DEFER;
2734 
2735 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2736 	    !(driver_data->setpolicy || driver_data->target_index ||
2737 		    driver_data->target) ||
2738 	     (driver_data->setpolicy && (driver_data->target_index ||
2739 		    driver_data->target)) ||
2740 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2741 	     (!driver_data->online != !driver_data->offline))
2742 		return -EINVAL;
2743 
2744 	pr_debug("trying to register driver %s\n", driver_data->name);
2745 
2746 	/* Protect against concurrent CPU online/offline. */
2747 	cpus_read_lock();
2748 
2749 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2750 	if (cpufreq_driver) {
2751 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2752 		ret = -EEXIST;
2753 		goto out;
2754 	}
2755 	cpufreq_driver = driver_data;
2756 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2757 
2758 	/*
2759 	 * Mark support for the scheduler's frequency invariance engine for
2760 	 * drivers that implement target(), target_index() or fast_switch().
2761 	 */
2762 	if (!cpufreq_driver->setpolicy) {
2763 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2764 		pr_debug("supports frequency invariance");
2765 	}
2766 
2767 	if (driver_data->setpolicy)
2768 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2769 
2770 	if (cpufreq_boost_supported()) {
2771 		ret = create_boost_sysfs_file();
2772 		if (ret)
2773 			goto err_null_driver;
2774 	}
2775 
2776 	ret = subsys_interface_register(&cpufreq_interface);
2777 	if (ret)
2778 		goto err_boost_unreg;
2779 
2780 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2781 	    list_empty(&cpufreq_policy_list)) {
2782 		/* if all ->init() calls failed, unregister */
2783 		ret = -ENODEV;
2784 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2785 			 driver_data->name);
2786 		goto err_if_unreg;
2787 	}
2788 
2789 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2790 						   "cpufreq:online",
2791 						   cpuhp_cpufreq_online,
2792 						   cpuhp_cpufreq_offline);
2793 	if (ret < 0)
2794 		goto err_if_unreg;
2795 	hp_online = ret;
2796 	ret = 0;
2797 
2798 	pr_debug("driver %s up and running\n", driver_data->name);
2799 	goto out;
2800 
2801 err_if_unreg:
2802 	subsys_interface_unregister(&cpufreq_interface);
2803 err_boost_unreg:
2804 	remove_boost_sysfs_file();
2805 err_null_driver:
2806 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2807 	cpufreq_driver = NULL;
2808 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2809 out:
2810 	cpus_read_unlock();
2811 	return ret;
2812 }
2813 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2814 
2815 /*
2816  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2817  *
2818  * Unregister the current CPUFreq driver. Only call this if you have
2819  * the right to do so, i.e. if you have succeeded in initialising before!
2820  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2821  * currently not initialised.
2822  */
cpufreq_unregister_driver(struct cpufreq_driver * driver)2823 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2824 {
2825 	unsigned long flags;
2826 
2827 	if (!cpufreq_driver || (driver != cpufreq_driver))
2828 		return -EINVAL;
2829 
2830 	pr_debug("unregistering driver %s\n", driver->name);
2831 
2832 	/* Protect against concurrent cpu hotplug */
2833 	cpus_read_lock();
2834 	subsys_interface_unregister(&cpufreq_interface);
2835 	remove_boost_sysfs_file();
2836 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2837 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2838 
2839 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2840 
2841 	cpufreq_driver = NULL;
2842 
2843 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2844 	cpus_read_unlock();
2845 
2846 	return 0;
2847 }
2848 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2849 
cpufreq_core_init(void)2850 static int __init cpufreq_core_init(void)
2851 {
2852 	struct cpufreq_governor *gov = cpufreq_default_governor();
2853 
2854 	if (cpufreq_disabled())
2855 		return -ENODEV;
2856 
2857 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2858 	BUG_ON(!cpufreq_global_kobject);
2859 
2860 	if (!strlen(default_governor))
2861 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2862 
2863 	return 0;
2864 }
2865 module_param(off, int, 0444);
2866 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2867 core_initcall(cpufreq_core_init);
2868