1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80 };
81
82 /*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
rdev_get_name(struct regulator_dev * rdev)111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119 }
120
have_full_constraints(void)121 static bool have_full_constraints(void)
122 {
123 return has_full_constraints || of_have_populated_dt();
124 }
125
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137 }
138
139 /**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152 {
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(®ulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(®ulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(®ulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(®ulator_nesting_mutex);
179
180 return ret;
181 }
182
183 /**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
regulator_lock(struct regulator_dev * rdev)193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
regulator_unlock(struct regulator_dev * rdev)205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 mutex_lock(®ulator_nesting_mutex);
208
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
212 }
213
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216 mutex_unlock(®ulator_nesting_mutex);
217 }
218
219 /**
220 * regulator_lock_two - lock two regulators
221 * @rdev1: first regulator
222 * @rdev2: second regulator
223 * @ww_ctx: w/w mutex acquire context
224 *
225 * Locks both rdevs using the regulator_ww_class.
226 */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)227 static void regulator_lock_two(struct regulator_dev *rdev1,
228 struct regulator_dev *rdev2,
229 struct ww_acquire_ctx *ww_ctx)
230 {
231 struct regulator_dev *tmp;
232 int ret;
233
234 ww_acquire_init(ww_ctx, ®ulator_ww_class);
235
236 /* Try to just grab both of them */
237 ret = regulator_lock_nested(rdev1, ww_ctx);
238 WARN_ON(ret);
239 ret = regulator_lock_nested(rdev2, ww_ctx);
240 if (ret != -EDEADLOCK) {
241 WARN_ON(ret);
242 goto exit;
243 }
244
245 while (true) {
246 /*
247 * Start of loop: rdev1 was locked and rdev2 was contended.
248 * Need to unlock rdev1, slowly lock rdev2, then try rdev1
249 * again.
250 */
251 regulator_unlock(rdev1);
252
253 ww_mutex_lock_slow(&rdev2->mutex, ww_ctx);
254 rdev2->ref_cnt++;
255 rdev2->mutex_owner = current;
256 ret = regulator_lock_nested(rdev1, ww_ctx);
257
258 if (ret == -EDEADLOCK) {
259 /* More contention; swap which needs to be slow */
260 tmp = rdev1;
261 rdev1 = rdev2;
262 rdev2 = tmp;
263 } else {
264 WARN_ON(ret);
265 break;
266 }
267 }
268
269 exit:
270 ww_acquire_done(ww_ctx);
271 }
272
273 /**
274 * regulator_unlock_two - unlock two regulators
275 * @rdev1: first regulator
276 * @rdev2: second regulator
277 * @ww_ctx: w/w mutex acquire context
278 *
279 * The inverse of regulator_lock_two().
280 */
281
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)282 static void regulator_unlock_two(struct regulator_dev *rdev1,
283 struct regulator_dev *rdev2,
284 struct ww_acquire_ctx *ww_ctx)
285 {
286 regulator_unlock(rdev2);
287 regulator_unlock(rdev1);
288 ww_acquire_fini(ww_ctx);
289 }
290
regulator_supply_is_couple(struct regulator_dev * rdev)291 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
292 {
293 struct regulator_dev *c_rdev;
294 int i;
295
296 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
297 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
298
299 if (rdev->supply->rdev == c_rdev)
300 return true;
301 }
302
303 return false;
304 }
305
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)306 static void regulator_unlock_recursive(struct regulator_dev *rdev,
307 unsigned int n_coupled)
308 {
309 struct regulator_dev *c_rdev, *supply_rdev;
310 int i, supply_n_coupled;
311
312 for (i = n_coupled; i > 0; i--) {
313 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
314
315 if (!c_rdev)
316 continue;
317
318 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
319 supply_rdev = c_rdev->supply->rdev;
320 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
321
322 regulator_unlock_recursive(supply_rdev,
323 supply_n_coupled);
324 }
325
326 regulator_unlock(c_rdev);
327 }
328 }
329
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)330 static int regulator_lock_recursive(struct regulator_dev *rdev,
331 struct regulator_dev **new_contended_rdev,
332 struct regulator_dev **old_contended_rdev,
333 struct ww_acquire_ctx *ww_ctx)
334 {
335 struct regulator_dev *c_rdev;
336 int i, err;
337
338 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
339 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
340
341 if (!c_rdev)
342 continue;
343
344 if (c_rdev != *old_contended_rdev) {
345 err = regulator_lock_nested(c_rdev, ww_ctx);
346 if (err) {
347 if (err == -EDEADLK) {
348 *new_contended_rdev = c_rdev;
349 goto err_unlock;
350 }
351
352 /* shouldn't happen */
353 WARN_ON_ONCE(err != -EALREADY);
354 }
355 } else {
356 *old_contended_rdev = NULL;
357 }
358
359 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
360 err = regulator_lock_recursive(c_rdev->supply->rdev,
361 new_contended_rdev,
362 old_contended_rdev,
363 ww_ctx);
364 if (err) {
365 regulator_unlock(c_rdev);
366 goto err_unlock;
367 }
368 }
369 }
370
371 return 0;
372
373 err_unlock:
374 regulator_unlock_recursive(rdev, i);
375
376 return err;
377 }
378
379 /**
380 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
381 * regulators
382 * @rdev: regulator source
383 * @ww_ctx: w/w mutex acquire context
384 *
385 * Unlock all regulators related with rdev by coupling or supplying.
386 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)387 static void regulator_unlock_dependent(struct regulator_dev *rdev,
388 struct ww_acquire_ctx *ww_ctx)
389 {
390 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
391 ww_acquire_fini(ww_ctx);
392 }
393
394 /**
395 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
396 * @rdev: regulator source
397 * @ww_ctx: w/w mutex acquire context
398 *
399 * This function as a wrapper on regulator_lock_recursive(), which locks
400 * all regulators related with rdev by coupling or supplying.
401 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)402 static void regulator_lock_dependent(struct regulator_dev *rdev,
403 struct ww_acquire_ctx *ww_ctx)
404 {
405 struct regulator_dev *new_contended_rdev = NULL;
406 struct regulator_dev *old_contended_rdev = NULL;
407 int err;
408
409 mutex_lock(®ulator_list_mutex);
410
411 ww_acquire_init(ww_ctx, ®ulator_ww_class);
412
413 do {
414 if (new_contended_rdev) {
415 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
416 old_contended_rdev = new_contended_rdev;
417 old_contended_rdev->ref_cnt++;
418 old_contended_rdev->mutex_owner = current;
419 }
420
421 err = regulator_lock_recursive(rdev,
422 &new_contended_rdev,
423 &old_contended_rdev,
424 ww_ctx);
425
426 if (old_contended_rdev)
427 regulator_unlock(old_contended_rdev);
428
429 } while (err == -EDEADLK);
430
431 ww_acquire_done(ww_ctx);
432
433 mutex_unlock(®ulator_list_mutex);
434 }
435
436 /**
437 * of_get_child_regulator - get a child regulator device node
438 * based on supply name
439 * @parent: Parent device node
440 * @prop_name: Combination regulator supply name and "-supply"
441 *
442 * Traverse all child nodes.
443 * Extract the child regulator device node corresponding to the supply name.
444 * returns the device node corresponding to the regulator if found, else
445 * returns NULL.
446 */
of_get_child_regulator(struct device_node * parent,const char * prop_name)447 static struct device_node *of_get_child_regulator(struct device_node *parent,
448 const char *prop_name)
449 {
450 struct device_node *regnode = NULL;
451 struct device_node *child = NULL;
452
453 for_each_child_of_node(parent, child) {
454 regnode = of_parse_phandle(child, prop_name, 0);
455
456 if (!regnode) {
457 regnode = of_get_child_regulator(child, prop_name);
458 if (regnode)
459 goto err_node_put;
460 } else {
461 goto err_node_put;
462 }
463 }
464 return NULL;
465
466 err_node_put:
467 of_node_put(child);
468 return regnode;
469 }
470
471 /**
472 * of_get_regulator - get a regulator device node based on supply name
473 * @dev: Device pointer for the consumer (of regulator) device
474 * @supply: regulator supply name
475 *
476 * Extract the regulator device node corresponding to the supply name.
477 * returns the device node corresponding to the regulator if found, else
478 * returns NULL.
479 */
of_get_regulator(struct device * dev,const char * supply)480 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
481 {
482 struct device_node *regnode = NULL;
483 char prop_name[64]; /* 64 is max size of property name */
484
485 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
486
487 snprintf(prop_name, 64, "%s-supply", supply);
488 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
489
490 if (!regnode) {
491 regnode = of_get_child_regulator(dev->of_node, prop_name);
492 if (regnode)
493 return regnode;
494
495 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
496 prop_name, dev->of_node);
497 return NULL;
498 }
499 return regnode;
500 }
501
502 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)503 int regulator_check_voltage(struct regulator_dev *rdev,
504 int *min_uV, int *max_uV)
505 {
506 BUG_ON(*min_uV > *max_uV);
507
508 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
509 rdev_err(rdev, "voltage operation not allowed\n");
510 return -EPERM;
511 }
512
513 if (*max_uV > rdev->constraints->max_uV)
514 *max_uV = rdev->constraints->max_uV;
515 if (*min_uV < rdev->constraints->min_uV)
516 *min_uV = rdev->constraints->min_uV;
517
518 if (*min_uV > *max_uV) {
519 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
520 *min_uV, *max_uV);
521 return -EINVAL;
522 }
523
524 return 0;
525 }
526
527 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)528 static int regulator_check_states(suspend_state_t state)
529 {
530 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
531 }
532
533 /* Make sure we select a voltage that suits the needs of all
534 * regulator consumers
535 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)536 int regulator_check_consumers(struct regulator_dev *rdev,
537 int *min_uV, int *max_uV,
538 suspend_state_t state)
539 {
540 struct regulator *regulator;
541 struct regulator_voltage *voltage;
542
543 list_for_each_entry(regulator, &rdev->consumer_list, list) {
544 voltage = ®ulator->voltage[state];
545 /*
546 * Assume consumers that didn't say anything are OK
547 * with anything in the constraint range.
548 */
549 if (!voltage->min_uV && !voltage->max_uV)
550 continue;
551
552 if (*max_uV > voltage->max_uV)
553 *max_uV = voltage->max_uV;
554 if (*min_uV < voltage->min_uV)
555 *min_uV = voltage->min_uV;
556 }
557
558 if (*min_uV > *max_uV) {
559 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
560 *min_uV, *max_uV);
561 return -EINVAL;
562 }
563
564 return 0;
565 }
566
567 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)568 static int regulator_check_current_limit(struct regulator_dev *rdev,
569 int *min_uA, int *max_uA)
570 {
571 BUG_ON(*min_uA > *max_uA);
572
573 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
574 rdev_err(rdev, "current operation not allowed\n");
575 return -EPERM;
576 }
577
578 if (*max_uA > rdev->constraints->max_uA)
579 *max_uA = rdev->constraints->max_uA;
580 if (*min_uA < rdev->constraints->min_uA)
581 *min_uA = rdev->constraints->min_uA;
582
583 if (*min_uA > *max_uA) {
584 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
585 *min_uA, *max_uA);
586 return -EINVAL;
587 }
588
589 return 0;
590 }
591
592 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)593 static int regulator_mode_constrain(struct regulator_dev *rdev,
594 unsigned int *mode)
595 {
596 switch (*mode) {
597 case REGULATOR_MODE_FAST:
598 case REGULATOR_MODE_NORMAL:
599 case REGULATOR_MODE_IDLE:
600 case REGULATOR_MODE_STANDBY:
601 break;
602 default:
603 rdev_err(rdev, "invalid mode %x specified\n", *mode);
604 return -EINVAL;
605 }
606
607 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
608 rdev_err(rdev, "mode operation not allowed\n");
609 return -EPERM;
610 }
611
612 /* The modes are bitmasks, the most power hungry modes having
613 * the lowest values. If the requested mode isn't supported
614 * try higher modes. */
615 while (*mode) {
616 if (rdev->constraints->valid_modes_mask & *mode)
617 return 0;
618 *mode /= 2;
619 }
620
621 return -EINVAL;
622 }
623
624 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)625 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
626 {
627 if (rdev->constraints == NULL)
628 return NULL;
629
630 switch (state) {
631 case PM_SUSPEND_STANDBY:
632 return &rdev->constraints->state_standby;
633 case PM_SUSPEND_MEM:
634 return &rdev->constraints->state_mem;
635 case PM_SUSPEND_MAX:
636 return &rdev->constraints->state_disk;
637 default:
638 return NULL;
639 }
640 }
641
642 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)643 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
644 {
645 const struct regulator_state *rstate;
646
647 rstate = regulator_get_suspend_state(rdev, state);
648 if (rstate == NULL)
649 return NULL;
650
651 /* If we have no suspend mode configuration don't set anything;
652 * only warn if the driver implements set_suspend_voltage or
653 * set_suspend_mode callback.
654 */
655 if (rstate->enabled != ENABLE_IN_SUSPEND &&
656 rstate->enabled != DISABLE_IN_SUSPEND) {
657 if (rdev->desc->ops->set_suspend_voltage ||
658 rdev->desc->ops->set_suspend_mode)
659 rdev_warn(rdev, "No configuration\n");
660 return NULL;
661 }
662
663 return rstate;
664 }
665
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)666 static ssize_t regulator_uV_show(struct device *dev,
667 struct device_attribute *attr, char *buf)
668 {
669 struct regulator_dev *rdev = dev_get_drvdata(dev);
670 int uV;
671
672 regulator_lock(rdev);
673 uV = regulator_get_voltage_rdev(rdev);
674 regulator_unlock(rdev);
675
676 if (uV < 0)
677 return uV;
678 return sprintf(buf, "%d\n", uV);
679 }
680 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
681
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)682 static ssize_t regulator_uA_show(struct device *dev,
683 struct device_attribute *attr, char *buf)
684 {
685 struct regulator_dev *rdev = dev_get_drvdata(dev);
686
687 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
688 }
689 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
690
name_show(struct device * dev,struct device_attribute * attr,char * buf)691 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
692 char *buf)
693 {
694 struct regulator_dev *rdev = dev_get_drvdata(dev);
695
696 return sprintf(buf, "%s\n", rdev_get_name(rdev));
697 }
698 static DEVICE_ATTR_RO(name);
699
regulator_opmode_to_str(int mode)700 static const char *regulator_opmode_to_str(int mode)
701 {
702 switch (mode) {
703 case REGULATOR_MODE_FAST:
704 return "fast";
705 case REGULATOR_MODE_NORMAL:
706 return "normal";
707 case REGULATOR_MODE_IDLE:
708 return "idle";
709 case REGULATOR_MODE_STANDBY:
710 return "standby";
711 }
712 return "unknown";
713 }
714
regulator_print_opmode(char * buf,int mode)715 static ssize_t regulator_print_opmode(char *buf, int mode)
716 {
717 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
718 }
719
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)720 static ssize_t regulator_opmode_show(struct device *dev,
721 struct device_attribute *attr, char *buf)
722 {
723 struct regulator_dev *rdev = dev_get_drvdata(dev);
724
725 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
726 }
727 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
728
regulator_print_state(char * buf,int state)729 static ssize_t regulator_print_state(char *buf, int state)
730 {
731 if (state > 0)
732 return sprintf(buf, "enabled\n");
733 else if (state == 0)
734 return sprintf(buf, "disabled\n");
735 else
736 return sprintf(buf, "unknown\n");
737 }
738
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)739 static ssize_t regulator_state_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
741 {
742 struct regulator_dev *rdev = dev_get_drvdata(dev);
743 ssize_t ret;
744
745 regulator_lock(rdev);
746 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
747 regulator_unlock(rdev);
748
749 return ret;
750 }
751 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
752
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)753 static ssize_t regulator_status_show(struct device *dev,
754 struct device_attribute *attr, char *buf)
755 {
756 struct regulator_dev *rdev = dev_get_drvdata(dev);
757 int status;
758 char *label;
759
760 status = rdev->desc->ops->get_status(rdev);
761 if (status < 0)
762 return status;
763
764 switch (status) {
765 case REGULATOR_STATUS_OFF:
766 label = "off";
767 break;
768 case REGULATOR_STATUS_ON:
769 label = "on";
770 break;
771 case REGULATOR_STATUS_ERROR:
772 label = "error";
773 break;
774 case REGULATOR_STATUS_FAST:
775 label = "fast";
776 break;
777 case REGULATOR_STATUS_NORMAL:
778 label = "normal";
779 break;
780 case REGULATOR_STATUS_IDLE:
781 label = "idle";
782 break;
783 case REGULATOR_STATUS_STANDBY:
784 label = "standby";
785 break;
786 case REGULATOR_STATUS_BYPASS:
787 label = "bypass";
788 break;
789 case REGULATOR_STATUS_UNDEFINED:
790 label = "undefined";
791 break;
792 default:
793 return -ERANGE;
794 }
795
796 return sprintf(buf, "%s\n", label);
797 }
798 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
799
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)800 static ssize_t regulator_min_uA_show(struct device *dev,
801 struct device_attribute *attr, char *buf)
802 {
803 struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805 if (!rdev->constraints)
806 return sprintf(buf, "constraint not defined\n");
807
808 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
809 }
810 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
811
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)812 static ssize_t regulator_max_uA_show(struct device *dev,
813 struct device_attribute *attr, char *buf)
814 {
815 struct regulator_dev *rdev = dev_get_drvdata(dev);
816
817 if (!rdev->constraints)
818 return sprintf(buf, "constraint not defined\n");
819
820 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
821 }
822 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
823
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)824 static ssize_t regulator_min_uV_show(struct device *dev,
825 struct device_attribute *attr, char *buf)
826 {
827 struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829 if (!rdev->constraints)
830 return sprintf(buf, "constraint not defined\n");
831
832 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
833 }
834 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
835
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)836 static ssize_t regulator_max_uV_show(struct device *dev,
837 struct device_attribute *attr, char *buf)
838 {
839 struct regulator_dev *rdev = dev_get_drvdata(dev);
840
841 if (!rdev->constraints)
842 return sprintf(buf, "constraint not defined\n");
843
844 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
845 }
846 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
847
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)848 static ssize_t regulator_total_uA_show(struct device *dev,
849 struct device_attribute *attr, char *buf)
850 {
851 struct regulator_dev *rdev = dev_get_drvdata(dev);
852 struct regulator *regulator;
853 int uA = 0;
854
855 regulator_lock(rdev);
856 list_for_each_entry(regulator, &rdev->consumer_list, list) {
857 if (regulator->enable_count)
858 uA += regulator->uA_load;
859 }
860 regulator_unlock(rdev);
861 return sprintf(buf, "%d\n", uA);
862 }
863 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
864
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)865 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
866 char *buf)
867 {
868 struct regulator_dev *rdev = dev_get_drvdata(dev);
869 return sprintf(buf, "%d\n", rdev->use_count);
870 }
871 static DEVICE_ATTR_RO(num_users);
872
type_show(struct device * dev,struct device_attribute * attr,char * buf)873 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
874 char *buf)
875 {
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 switch (rdev->desc->type) {
879 case REGULATOR_VOLTAGE:
880 return sprintf(buf, "voltage\n");
881 case REGULATOR_CURRENT:
882 return sprintf(buf, "current\n");
883 }
884 return sprintf(buf, "unknown\n");
885 }
886 static DEVICE_ATTR_RO(type);
887
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)888 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
889 struct device_attribute *attr, char *buf)
890 {
891 struct regulator_dev *rdev = dev_get_drvdata(dev);
892
893 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
894 }
895 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
896 regulator_suspend_mem_uV_show, NULL);
897
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)898 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
899 struct device_attribute *attr, char *buf)
900 {
901 struct regulator_dev *rdev = dev_get_drvdata(dev);
902
903 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
904 }
905 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
906 regulator_suspend_disk_uV_show, NULL);
907
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)908 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
909 struct device_attribute *attr, char *buf)
910 {
911 struct regulator_dev *rdev = dev_get_drvdata(dev);
912
913 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
914 }
915 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
916 regulator_suspend_standby_uV_show, NULL);
917
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)918 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
919 struct device_attribute *attr, char *buf)
920 {
921 struct regulator_dev *rdev = dev_get_drvdata(dev);
922
923 return regulator_print_opmode(buf,
924 rdev->constraints->state_mem.mode);
925 }
926 static DEVICE_ATTR(suspend_mem_mode, 0444,
927 regulator_suspend_mem_mode_show, NULL);
928
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)929 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
930 struct device_attribute *attr, char *buf)
931 {
932 struct regulator_dev *rdev = dev_get_drvdata(dev);
933
934 return regulator_print_opmode(buf,
935 rdev->constraints->state_disk.mode);
936 }
937 static DEVICE_ATTR(suspend_disk_mode, 0444,
938 regulator_suspend_disk_mode_show, NULL);
939
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)940 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
941 struct device_attribute *attr, char *buf)
942 {
943 struct regulator_dev *rdev = dev_get_drvdata(dev);
944
945 return regulator_print_opmode(buf,
946 rdev->constraints->state_standby.mode);
947 }
948 static DEVICE_ATTR(suspend_standby_mode, 0444,
949 regulator_suspend_standby_mode_show, NULL);
950
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)951 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
952 struct device_attribute *attr, char *buf)
953 {
954 struct regulator_dev *rdev = dev_get_drvdata(dev);
955
956 return regulator_print_state(buf,
957 rdev->constraints->state_mem.enabled);
958 }
959 static DEVICE_ATTR(suspend_mem_state, 0444,
960 regulator_suspend_mem_state_show, NULL);
961
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)962 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
964 {
965 struct regulator_dev *rdev = dev_get_drvdata(dev);
966
967 return regulator_print_state(buf,
968 rdev->constraints->state_disk.enabled);
969 }
970 static DEVICE_ATTR(suspend_disk_state, 0444,
971 regulator_suspend_disk_state_show, NULL);
972
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)973 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
974 struct device_attribute *attr, char *buf)
975 {
976 struct regulator_dev *rdev = dev_get_drvdata(dev);
977
978 return regulator_print_state(buf,
979 rdev->constraints->state_standby.enabled);
980 }
981 static DEVICE_ATTR(suspend_standby_state, 0444,
982 regulator_suspend_standby_state_show, NULL);
983
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)984 static ssize_t regulator_bypass_show(struct device *dev,
985 struct device_attribute *attr, char *buf)
986 {
987 struct regulator_dev *rdev = dev_get_drvdata(dev);
988 const char *report;
989 bool bypass;
990 int ret;
991
992 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
993
994 if (ret != 0)
995 report = "unknown";
996 else if (bypass)
997 report = "enabled";
998 else
999 report = "disabled";
1000
1001 return sprintf(buf, "%s\n", report);
1002 }
1003 static DEVICE_ATTR(bypass, 0444,
1004 regulator_bypass_show, NULL);
1005
1006 /* Calculate the new optimum regulator operating mode based on the new total
1007 * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010 struct regulator *sibling;
1011 int current_uA = 0, output_uV, input_uV, err;
1012 unsigned int mode;
1013
1014 /*
1015 * first check to see if we can set modes at all, otherwise just
1016 * tell the consumer everything is OK.
1017 */
1018 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 return 0;
1021 }
1022
1023 if (!rdev->desc->ops->get_optimum_mode &&
1024 !rdev->desc->ops->set_load)
1025 return 0;
1026
1027 if (!rdev->desc->ops->set_mode &&
1028 !rdev->desc->ops->set_load)
1029 return -EINVAL;
1030
1031 /* calc total requested load */
1032 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 if (sibling->enable_count)
1034 current_uA += sibling->uA_load;
1035 }
1036
1037 current_uA += rdev->constraints->system_load;
1038
1039 if (rdev->desc->ops->set_load) {
1040 /* set the optimum mode for our new total regulator load */
1041 err = rdev->desc->ops->set_load(rdev, current_uA);
1042 if (err < 0)
1043 rdev_err(rdev, "failed to set load %d: %pe\n",
1044 current_uA, ERR_PTR(err));
1045 } else {
1046 /* get output voltage */
1047 output_uV = regulator_get_voltage_rdev(rdev);
1048 if (output_uV <= 0) {
1049 rdev_err(rdev, "invalid output voltage found\n");
1050 return -EINVAL;
1051 }
1052
1053 /* get input voltage */
1054 input_uV = 0;
1055 if (rdev->supply)
1056 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1057 if (input_uV <= 0)
1058 input_uV = rdev->constraints->input_uV;
1059 if (input_uV <= 0) {
1060 rdev_err(rdev, "invalid input voltage found\n");
1061 return -EINVAL;
1062 }
1063
1064 /* now get the optimum mode for our new total regulator load */
1065 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1066 output_uV, current_uA);
1067
1068 /* check the new mode is allowed */
1069 err = regulator_mode_constrain(rdev, &mode);
1070 if (err < 0) {
1071 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1072 current_uA, input_uV, output_uV, ERR_PTR(err));
1073 return err;
1074 }
1075
1076 err = rdev->desc->ops->set_mode(rdev, mode);
1077 if (err < 0)
1078 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1079 mode, ERR_PTR(err));
1080 }
1081
1082 return err;
1083 }
1084
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1085 static int __suspend_set_state(struct regulator_dev *rdev,
1086 const struct regulator_state *rstate)
1087 {
1088 int ret = 0;
1089
1090 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1091 rdev->desc->ops->set_suspend_enable)
1092 ret = rdev->desc->ops->set_suspend_enable(rdev);
1093 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1094 rdev->desc->ops->set_suspend_disable)
1095 ret = rdev->desc->ops->set_suspend_disable(rdev);
1096 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1097 ret = 0;
1098
1099 if (ret < 0) {
1100 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1101 return ret;
1102 }
1103
1104 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1105 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1106 if (ret < 0) {
1107 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1108 return ret;
1109 }
1110 }
1111
1112 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1113 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1114 if (ret < 0) {
1115 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1116 return ret;
1117 }
1118 }
1119
1120 return ret;
1121 }
1122
suspend_set_initial_state(struct regulator_dev * rdev)1123 static int suspend_set_initial_state(struct regulator_dev *rdev)
1124 {
1125 const struct regulator_state *rstate;
1126
1127 rstate = regulator_get_suspend_state_check(rdev,
1128 rdev->constraints->initial_state);
1129 if (!rstate)
1130 return 0;
1131
1132 return __suspend_set_state(rdev, rstate);
1133 }
1134
1135 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1136 static void print_constraints_debug(struct regulator_dev *rdev)
1137 {
1138 struct regulation_constraints *constraints = rdev->constraints;
1139 char buf[160] = "";
1140 size_t len = sizeof(buf) - 1;
1141 int count = 0;
1142 int ret;
1143
1144 if (constraints->min_uV && constraints->max_uV) {
1145 if (constraints->min_uV == constraints->max_uV)
1146 count += scnprintf(buf + count, len - count, "%d mV ",
1147 constraints->min_uV / 1000);
1148 else
1149 count += scnprintf(buf + count, len - count,
1150 "%d <--> %d mV ",
1151 constraints->min_uV / 1000,
1152 constraints->max_uV / 1000);
1153 }
1154
1155 if (!constraints->min_uV ||
1156 constraints->min_uV != constraints->max_uV) {
1157 ret = regulator_get_voltage_rdev(rdev);
1158 if (ret > 0)
1159 count += scnprintf(buf + count, len - count,
1160 "at %d mV ", ret / 1000);
1161 }
1162
1163 if (constraints->uV_offset)
1164 count += scnprintf(buf + count, len - count, "%dmV offset ",
1165 constraints->uV_offset / 1000);
1166
1167 if (constraints->min_uA && constraints->max_uA) {
1168 if (constraints->min_uA == constraints->max_uA)
1169 count += scnprintf(buf + count, len - count, "%d mA ",
1170 constraints->min_uA / 1000);
1171 else
1172 count += scnprintf(buf + count, len - count,
1173 "%d <--> %d mA ",
1174 constraints->min_uA / 1000,
1175 constraints->max_uA / 1000);
1176 }
1177
1178 if (!constraints->min_uA ||
1179 constraints->min_uA != constraints->max_uA) {
1180 ret = _regulator_get_current_limit(rdev);
1181 if (ret > 0)
1182 count += scnprintf(buf + count, len - count,
1183 "at %d mA ", ret / 1000);
1184 }
1185
1186 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1187 count += scnprintf(buf + count, len - count, "fast ");
1188 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1189 count += scnprintf(buf + count, len - count, "normal ");
1190 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1191 count += scnprintf(buf + count, len - count, "idle ");
1192 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1193 count += scnprintf(buf + count, len - count, "standby ");
1194
1195 if (!count)
1196 count = scnprintf(buf, len, "no parameters");
1197 else
1198 --count;
1199
1200 count += scnprintf(buf + count, len - count, ", %s",
1201 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1202
1203 rdev_dbg(rdev, "%s\n", buf);
1204 }
1205 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1206 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1207 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1208
print_constraints(struct regulator_dev * rdev)1209 static void print_constraints(struct regulator_dev *rdev)
1210 {
1211 struct regulation_constraints *constraints = rdev->constraints;
1212
1213 print_constraints_debug(rdev);
1214
1215 if ((constraints->min_uV != constraints->max_uV) &&
1216 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1217 rdev_warn(rdev,
1218 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1219 }
1220
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1221 static int machine_constraints_voltage(struct regulator_dev *rdev,
1222 struct regulation_constraints *constraints)
1223 {
1224 const struct regulator_ops *ops = rdev->desc->ops;
1225 int ret;
1226
1227 /* do we need to apply the constraint voltage */
1228 if (rdev->constraints->apply_uV &&
1229 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1230 int target_min, target_max;
1231 int current_uV = regulator_get_voltage_rdev(rdev);
1232
1233 if (current_uV == -ENOTRECOVERABLE) {
1234 /* This regulator can't be read and must be initialized */
1235 rdev_info(rdev, "Setting %d-%duV\n",
1236 rdev->constraints->min_uV,
1237 rdev->constraints->max_uV);
1238 _regulator_do_set_voltage(rdev,
1239 rdev->constraints->min_uV,
1240 rdev->constraints->max_uV);
1241 current_uV = regulator_get_voltage_rdev(rdev);
1242 }
1243
1244 if (current_uV < 0) {
1245 rdev_err(rdev,
1246 "failed to get the current voltage: %pe\n",
1247 ERR_PTR(current_uV));
1248 return current_uV;
1249 }
1250
1251 /*
1252 * If we're below the minimum voltage move up to the
1253 * minimum voltage, if we're above the maximum voltage
1254 * then move down to the maximum.
1255 */
1256 target_min = current_uV;
1257 target_max = current_uV;
1258
1259 if (current_uV < rdev->constraints->min_uV) {
1260 target_min = rdev->constraints->min_uV;
1261 target_max = rdev->constraints->min_uV;
1262 }
1263
1264 if (current_uV > rdev->constraints->max_uV) {
1265 target_min = rdev->constraints->max_uV;
1266 target_max = rdev->constraints->max_uV;
1267 }
1268
1269 if (target_min != current_uV || target_max != current_uV) {
1270 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1271 current_uV, target_min, target_max);
1272 ret = _regulator_do_set_voltage(
1273 rdev, target_min, target_max);
1274 if (ret < 0) {
1275 rdev_err(rdev,
1276 "failed to apply %d-%duV constraint: %pe\n",
1277 target_min, target_max, ERR_PTR(ret));
1278 return ret;
1279 }
1280 }
1281 }
1282
1283 /* constrain machine-level voltage specs to fit
1284 * the actual range supported by this regulator.
1285 */
1286 if (ops->list_voltage && rdev->desc->n_voltages) {
1287 int count = rdev->desc->n_voltages;
1288 int i;
1289 int min_uV = INT_MAX;
1290 int max_uV = INT_MIN;
1291 int cmin = constraints->min_uV;
1292 int cmax = constraints->max_uV;
1293
1294 /* it's safe to autoconfigure fixed-voltage supplies
1295 and the constraints are used by list_voltage. */
1296 if (count == 1 && !cmin) {
1297 cmin = 1;
1298 cmax = INT_MAX;
1299 constraints->min_uV = cmin;
1300 constraints->max_uV = cmax;
1301 }
1302
1303 /* voltage constraints are optional */
1304 if ((cmin == 0) && (cmax == 0))
1305 return 0;
1306
1307 /* else require explicit machine-level constraints */
1308 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1309 rdev_err(rdev, "invalid voltage constraints\n");
1310 return -EINVAL;
1311 }
1312
1313 /* no need to loop voltages if range is continuous */
1314 if (rdev->desc->continuous_voltage_range)
1315 return 0;
1316
1317 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1318 for (i = 0; i < count; i++) {
1319 int value;
1320
1321 value = ops->list_voltage(rdev, i);
1322 if (value <= 0)
1323 continue;
1324
1325 /* maybe adjust [min_uV..max_uV] */
1326 if (value >= cmin && value < min_uV)
1327 min_uV = value;
1328 if (value <= cmax && value > max_uV)
1329 max_uV = value;
1330 }
1331
1332 /* final: [min_uV..max_uV] valid iff constraints valid */
1333 if (max_uV < min_uV) {
1334 rdev_err(rdev,
1335 "unsupportable voltage constraints %u-%uuV\n",
1336 min_uV, max_uV);
1337 return -EINVAL;
1338 }
1339
1340 /* use regulator's subset of machine constraints */
1341 if (constraints->min_uV < min_uV) {
1342 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1343 constraints->min_uV, min_uV);
1344 constraints->min_uV = min_uV;
1345 }
1346 if (constraints->max_uV > max_uV) {
1347 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1348 constraints->max_uV, max_uV);
1349 constraints->max_uV = max_uV;
1350 }
1351 }
1352
1353 return 0;
1354 }
1355
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1356 static int machine_constraints_current(struct regulator_dev *rdev,
1357 struct regulation_constraints *constraints)
1358 {
1359 const struct regulator_ops *ops = rdev->desc->ops;
1360 int ret;
1361
1362 if (!constraints->min_uA && !constraints->max_uA)
1363 return 0;
1364
1365 if (constraints->min_uA > constraints->max_uA) {
1366 rdev_err(rdev, "Invalid current constraints\n");
1367 return -EINVAL;
1368 }
1369
1370 if (!ops->set_current_limit || !ops->get_current_limit) {
1371 rdev_warn(rdev, "Operation of current configuration missing\n");
1372 return 0;
1373 }
1374
1375 /* Set regulator current in constraints range */
1376 ret = ops->set_current_limit(rdev, constraints->min_uA,
1377 constraints->max_uA);
1378 if (ret < 0) {
1379 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1380 return ret;
1381 }
1382
1383 return 0;
1384 }
1385
1386 static int _regulator_do_enable(struct regulator_dev *rdev);
1387
1388 /**
1389 * set_machine_constraints - sets regulator constraints
1390 * @rdev: regulator source
1391 *
1392 * Allows platform initialisation code to define and constrain
1393 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1394 * Constraints *must* be set by platform code in order for some
1395 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396 * set_mode.
1397 */
set_machine_constraints(struct regulator_dev * rdev)1398 static int set_machine_constraints(struct regulator_dev *rdev)
1399 {
1400 int ret = 0;
1401 const struct regulator_ops *ops = rdev->desc->ops;
1402
1403 ret = machine_constraints_voltage(rdev, rdev->constraints);
1404 if (ret != 0)
1405 return ret;
1406
1407 ret = machine_constraints_current(rdev, rdev->constraints);
1408 if (ret != 0)
1409 return ret;
1410
1411 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412 ret = ops->set_input_current_limit(rdev,
1413 rdev->constraints->ilim_uA);
1414 if (ret < 0) {
1415 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416 return ret;
1417 }
1418 }
1419
1420 /* do we need to setup our suspend state */
1421 if (rdev->constraints->initial_state) {
1422 ret = suspend_set_initial_state(rdev);
1423 if (ret < 0) {
1424 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425 return ret;
1426 }
1427 }
1428
1429 if (rdev->constraints->initial_mode) {
1430 if (!ops->set_mode) {
1431 rdev_err(rdev, "no set_mode operation\n");
1432 return -EINVAL;
1433 }
1434
1435 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436 if (ret < 0) {
1437 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438 return ret;
1439 }
1440 } else if (rdev->constraints->system_load) {
1441 /*
1442 * We'll only apply the initial system load if an
1443 * initial mode wasn't specified.
1444 */
1445 drms_uA_update(rdev);
1446 }
1447
1448 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449 && ops->set_ramp_delay) {
1450 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451 if (ret < 0) {
1452 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453 return ret;
1454 }
1455 }
1456
1457 if (rdev->constraints->pull_down && ops->set_pull_down) {
1458 ret = ops->set_pull_down(rdev);
1459 if (ret < 0) {
1460 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461 return ret;
1462 }
1463 }
1464
1465 if (rdev->constraints->soft_start && ops->set_soft_start) {
1466 ret = ops->set_soft_start(rdev);
1467 if (ret < 0) {
1468 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469 return ret;
1470 }
1471 }
1472
1473 if (rdev->constraints->over_current_protection
1474 && ops->set_over_current_protection) {
1475 ret = ops->set_over_current_protection(rdev);
1476 if (ret < 0) {
1477 rdev_err(rdev, "failed to set over current protection: %pe\n",
1478 ERR_PTR(ret));
1479 return ret;
1480 }
1481 }
1482
1483 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1484 bool ad_state = (rdev->constraints->active_discharge ==
1485 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1486
1487 ret = ops->set_active_discharge(rdev, ad_state);
1488 if (ret < 0) {
1489 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1490 return ret;
1491 }
1492 }
1493
1494 /* If the constraints say the regulator should be on at this point
1495 * and we have control then make sure it is enabled.
1496 */
1497 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1498 /* If we want to enable this regulator, make sure that we know
1499 * the supplying regulator.
1500 */
1501 if (rdev->supply_name && !rdev->supply)
1502 return -EPROBE_DEFER;
1503
1504 /* If supplying regulator has already been enabled,
1505 * it's not intended to have use_count increment
1506 * when rdev is only boot-on.
1507 */
1508 if (rdev->supply &&
1509 (rdev->constraints->always_on ||
1510 !regulator_is_enabled(rdev->supply))) {
1511 ret = regulator_enable(rdev->supply);
1512 if (ret < 0) {
1513 _regulator_put(rdev->supply);
1514 rdev->supply = NULL;
1515 return ret;
1516 }
1517 }
1518
1519 ret = _regulator_do_enable(rdev);
1520 if (ret < 0 && ret != -EINVAL) {
1521 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1522 return ret;
1523 }
1524
1525 if (rdev->constraints->always_on)
1526 rdev->use_count++;
1527 } else if (rdev->desc->off_on_delay) {
1528 rdev->last_off_jiffy = jiffies;
1529 }
1530
1531 print_constraints(rdev);
1532 return 0;
1533 }
1534
1535 /**
1536 * set_supply - set regulator supply regulator
1537 * @rdev: regulator (locked)
1538 * @supply_rdev: supply regulator (locked))
1539 *
1540 * Called by platform initialisation code to set the supply regulator for this
1541 * regulator. This ensures that a regulators supply will also be enabled by the
1542 * core if it's child is enabled.
1543 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1544 static int set_supply(struct regulator_dev *rdev,
1545 struct regulator_dev *supply_rdev)
1546 {
1547 int err;
1548
1549 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1550
1551 if (!try_module_get(supply_rdev->owner))
1552 return -ENODEV;
1553
1554 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1555 if (rdev->supply == NULL) {
1556 module_put(supply_rdev->owner);
1557 err = -ENOMEM;
1558 return err;
1559 }
1560 supply_rdev->open_count++;
1561
1562 return 0;
1563 }
1564
1565 /**
1566 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1567 * @rdev: regulator source
1568 * @consumer_dev_name: dev_name() string for device supply applies to
1569 * @supply: symbolic name for supply
1570 *
1571 * Allows platform initialisation code to map physical regulator
1572 * sources to symbolic names for supplies for use by devices. Devices
1573 * should use these symbolic names to request regulators, avoiding the
1574 * need to provide board-specific regulator names as platform data.
1575 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1576 static int set_consumer_device_supply(struct regulator_dev *rdev,
1577 const char *consumer_dev_name,
1578 const char *supply)
1579 {
1580 struct regulator_map *node, *new_node;
1581 int has_dev;
1582
1583 if (supply == NULL)
1584 return -EINVAL;
1585
1586 if (consumer_dev_name != NULL)
1587 has_dev = 1;
1588 else
1589 has_dev = 0;
1590
1591 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1592 if (new_node == NULL)
1593 return -ENOMEM;
1594
1595 new_node->regulator = rdev;
1596 new_node->supply = supply;
1597
1598 if (has_dev) {
1599 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1600 if (new_node->dev_name == NULL) {
1601 kfree(new_node);
1602 return -ENOMEM;
1603 }
1604 }
1605
1606 mutex_lock(®ulator_list_mutex);
1607 list_for_each_entry(node, ®ulator_map_list, list) {
1608 if (node->dev_name && consumer_dev_name) {
1609 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1610 continue;
1611 } else if (node->dev_name || consumer_dev_name) {
1612 continue;
1613 }
1614
1615 if (strcmp(node->supply, supply) != 0)
1616 continue;
1617
1618 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1619 consumer_dev_name,
1620 dev_name(&node->regulator->dev),
1621 node->regulator->desc->name,
1622 supply,
1623 dev_name(&rdev->dev), rdev_get_name(rdev));
1624 goto fail;
1625 }
1626
1627 list_add(&new_node->list, ®ulator_map_list);
1628 mutex_unlock(®ulator_list_mutex);
1629
1630 return 0;
1631
1632 fail:
1633 mutex_unlock(®ulator_list_mutex);
1634 kfree(new_node->dev_name);
1635 kfree(new_node);
1636 return -EBUSY;
1637 }
1638
unset_regulator_supplies(struct regulator_dev * rdev)1639 static void unset_regulator_supplies(struct regulator_dev *rdev)
1640 {
1641 struct regulator_map *node, *n;
1642
1643 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1644 if (rdev == node->regulator) {
1645 list_del(&node->list);
1646 kfree(node->dev_name);
1647 kfree(node);
1648 }
1649 }
1650 }
1651
1652 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1653 static ssize_t constraint_flags_read_file(struct file *file,
1654 char __user *user_buf,
1655 size_t count, loff_t *ppos)
1656 {
1657 const struct regulator *regulator = file->private_data;
1658 const struct regulation_constraints *c = regulator->rdev->constraints;
1659 char *buf;
1660 ssize_t ret;
1661
1662 if (!c)
1663 return 0;
1664
1665 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1666 if (!buf)
1667 return -ENOMEM;
1668
1669 ret = snprintf(buf, PAGE_SIZE,
1670 "always_on: %u\n"
1671 "boot_on: %u\n"
1672 "apply_uV: %u\n"
1673 "ramp_disable: %u\n"
1674 "soft_start: %u\n"
1675 "pull_down: %u\n"
1676 "over_current_protection: %u\n",
1677 c->always_on,
1678 c->boot_on,
1679 c->apply_uV,
1680 c->ramp_disable,
1681 c->soft_start,
1682 c->pull_down,
1683 c->over_current_protection);
1684
1685 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1686 kfree(buf);
1687
1688 return ret;
1689 }
1690
1691 #endif
1692
1693 static const struct file_operations constraint_flags_fops = {
1694 #ifdef CONFIG_DEBUG_FS
1695 .open = simple_open,
1696 .read = constraint_flags_read_file,
1697 .llseek = default_llseek,
1698 #endif
1699 };
1700
1701 #define REG_STR_SIZE 64
1702
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1703 static struct regulator *create_regulator(struct regulator_dev *rdev,
1704 struct device *dev,
1705 const char *supply_name)
1706 {
1707 struct regulator *regulator;
1708 int err = 0;
1709
1710 lockdep_assert_held_once(&rdev->mutex.base);
1711
1712 if (dev) {
1713 char buf[REG_STR_SIZE];
1714 int size;
1715
1716 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1717 dev->kobj.name, supply_name);
1718 if (size >= REG_STR_SIZE)
1719 return NULL;
1720
1721 supply_name = kstrdup(buf, GFP_KERNEL);
1722 if (supply_name == NULL)
1723 return NULL;
1724 } else {
1725 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1726 if (supply_name == NULL)
1727 return NULL;
1728 }
1729
1730 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1731 if (regulator == NULL) {
1732 kfree_const(supply_name);
1733 return NULL;
1734 }
1735
1736 regulator->rdev = rdev;
1737 regulator->supply_name = supply_name;
1738
1739 list_add(®ulator->list, &rdev->consumer_list);
1740
1741 if (dev) {
1742 regulator->dev = dev;
1743
1744 /* Add a link to the device sysfs entry */
1745 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1746 supply_name);
1747 if (err) {
1748 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1749 dev->kobj.name, ERR_PTR(err));
1750 /* non-fatal */
1751 }
1752 }
1753
1754 if (err != -EEXIST)
1755 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1756 if (IS_ERR(regulator->debugfs))
1757 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1758
1759 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1760 ®ulator->uA_load);
1761 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1762 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1763 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1764 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1765 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1766 regulator, &constraint_flags_fops);
1767
1768 /*
1769 * Check now if the regulator is an always on regulator - if
1770 * it is then we don't need to do nearly so much work for
1771 * enable/disable calls.
1772 */
1773 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1774 _regulator_is_enabled(rdev))
1775 regulator->always_on = true;
1776
1777 return regulator;
1778 }
1779
_regulator_get_enable_time(struct regulator_dev * rdev)1780 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1781 {
1782 if (rdev->constraints && rdev->constraints->enable_time)
1783 return rdev->constraints->enable_time;
1784 if (rdev->desc->ops->enable_time)
1785 return rdev->desc->ops->enable_time(rdev);
1786 return rdev->desc->enable_time;
1787 }
1788
regulator_find_supply_alias(struct device * dev,const char * supply)1789 static struct regulator_supply_alias *regulator_find_supply_alias(
1790 struct device *dev, const char *supply)
1791 {
1792 struct regulator_supply_alias *map;
1793
1794 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1795 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1796 return map;
1797
1798 return NULL;
1799 }
1800
regulator_supply_alias(struct device ** dev,const char ** supply)1801 static void regulator_supply_alias(struct device **dev, const char **supply)
1802 {
1803 struct regulator_supply_alias *map;
1804
1805 map = regulator_find_supply_alias(*dev, *supply);
1806 if (map) {
1807 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1808 *supply, map->alias_supply,
1809 dev_name(map->alias_dev));
1810 *dev = map->alias_dev;
1811 *supply = map->alias_supply;
1812 }
1813 }
1814
regulator_match(struct device * dev,const void * data)1815 static int regulator_match(struct device *dev, const void *data)
1816 {
1817 struct regulator_dev *r = dev_to_rdev(dev);
1818
1819 return strcmp(rdev_get_name(r), data) == 0;
1820 }
1821
regulator_lookup_by_name(const char * name)1822 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1823 {
1824 struct device *dev;
1825
1826 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1827
1828 return dev ? dev_to_rdev(dev) : NULL;
1829 }
1830
1831 /**
1832 * regulator_dev_lookup - lookup a regulator device.
1833 * @dev: device for regulator "consumer".
1834 * @supply: Supply name or regulator ID.
1835 *
1836 * If successful, returns a struct regulator_dev that corresponds to the name
1837 * @supply and with the embedded struct device refcount incremented by one.
1838 * The refcount must be dropped by calling put_device().
1839 * On failure one of the following ERR-PTR-encoded values is returned:
1840 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1841 * in the future.
1842 */
regulator_dev_lookup(struct device * dev,const char * supply)1843 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1844 const char *supply)
1845 {
1846 struct regulator_dev *r = NULL;
1847 struct device_node *node;
1848 struct regulator_map *map;
1849 const char *devname = NULL;
1850
1851 regulator_supply_alias(&dev, &supply);
1852
1853 /* first do a dt based lookup */
1854 if (dev && dev->of_node) {
1855 node = of_get_regulator(dev, supply);
1856 if (node) {
1857 r = of_find_regulator_by_node(node);
1858 of_node_put(node);
1859 if (r)
1860 return r;
1861
1862 /*
1863 * We have a node, but there is no device.
1864 * assume it has not registered yet.
1865 */
1866 return ERR_PTR(-EPROBE_DEFER);
1867 }
1868 }
1869
1870 /* if not found, try doing it non-dt way */
1871 if (dev)
1872 devname = dev_name(dev);
1873
1874 mutex_lock(®ulator_list_mutex);
1875 list_for_each_entry(map, ®ulator_map_list, list) {
1876 /* If the mapping has a device set up it must match */
1877 if (map->dev_name &&
1878 (!devname || strcmp(map->dev_name, devname)))
1879 continue;
1880
1881 if (strcmp(map->supply, supply) == 0 &&
1882 get_device(&map->regulator->dev)) {
1883 r = map->regulator;
1884 break;
1885 }
1886 }
1887 mutex_unlock(®ulator_list_mutex);
1888
1889 if (r)
1890 return r;
1891
1892 r = regulator_lookup_by_name(supply);
1893 if (r)
1894 return r;
1895
1896 return ERR_PTR(-ENODEV);
1897 }
1898
regulator_resolve_supply(struct regulator_dev * rdev)1899 static int regulator_resolve_supply(struct regulator_dev *rdev)
1900 {
1901 struct regulator_dev *r;
1902 struct device *dev = rdev->dev.parent;
1903 struct ww_acquire_ctx ww_ctx;
1904 int ret = 0;
1905
1906 /* No supply to resolve? */
1907 if (!rdev->supply_name)
1908 return 0;
1909
1910 /* Supply already resolved? (fast-path without locking contention) */
1911 if (rdev->supply)
1912 return 0;
1913
1914 r = regulator_dev_lookup(dev, rdev->supply_name);
1915 if (IS_ERR(r)) {
1916 ret = PTR_ERR(r);
1917
1918 /* Did the lookup explicitly defer for us? */
1919 if (ret == -EPROBE_DEFER)
1920 goto out;
1921
1922 if (have_full_constraints()) {
1923 r = dummy_regulator_rdev;
1924 get_device(&r->dev);
1925 } else {
1926 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1927 rdev->supply_name, rdev->desc->name);
1928 ret = -EPROBE_DEFER;
1929 goto out;
1930 }
1931 }
1932
1933 if (r == rdev) {
1934 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1935 rdev->desc->name, rdev->supply_name);
1936 if (!have_full_constraints()) {
1937 ret = -EINVAL;
1938 goto out;
1939 }
1940 r = dummy_regulator_rdev;
1941 get_device(&r->dev);
1942 }
1943
1944 /*
1945 * If the supply's parent device is not the same as the
1946 * regulator's parent device, then ensure the parent device
1947 * is bound before we resolve the supply, in case the parent
1948 * device get probe deferred and unregisters the supply.
1949 */
1950 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1951 if (!device_is_bound(r->dev.parent)) {
1952 put_device(&r->dev);
1953 ret = -EPROBE_DEFER;
1954 goto out;
1955 }
1956 }
1957
1958 /* Recursively resolve the supply of the supply */
1959 ret = regulator_resolve_supply(r);
1960 if (ret < 0) {
1961 put_device(&r->dev);
1962 goto out;
1963 }
1964
1965 /*
1966 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1967 * between rdev->supply null check and setting rdev->supply in
1968 * set_supply() from concurrent tasks.
1969 */
1970 regulator_lock_two(rdev, r, &ww_ctx);
1971
1972 /* Supply just resolved by a concurrent task? */
1973 if (rdev->supply) {
1974 regulator_unlock_two(rdev, r, &ww_ctx);
1975 put_device(&r->dev);
1976 goto out;
1977 }
1978
1979 ret = set_supply(rdev, r);
1980 if (ret < 0) {
1981 regulator_unlock_two(rdev, r, &ww_ctx);
1982 put_device(&r->dev);
1983 goto out;
1984 }
1985
1986 regulator_unlock_two(rdev, r, &ww_ctx);
1987
1988 /*
1989 * In set_machine_constraints() we may have turned this regulator on
1990 * but we couldn't propagate to the supply if it hadn't been resolved
1991 * yet. Do it now.
1992 */
1993 if (rdev->use_count) {
1994 ret = regulator_enable(rdev->supply);
1995 if (ret < 0) {
1996 _regulator_put(rdev->supply);
1997 rdev->supply = NULL;
1998 goto out;
1999 }
2000 }
2001
2002 out:
2003 return ret;
2004 }
2005
2006 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2007 struct regulator *_regulator_get(struct device *dev, const char *id,
2008 enum regulator_get_type get_type)
2009 {
2010 struct regulator_dev *rdev;
2011 struct regulator *regulator;
2012 struct device_link *link;
2013 int ret;
2014
2015 if (get_type >= MAX_GET_TYPE) {
2016 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2017 return ERR_PTR(-EINVAL);
2018 }
2019
2020 if (id == NULL) {
2021 pr_err("get() with no identifier\n");
2022 return ERR_PTR(-EINVAL);
2023 }
2024
2025 rdev = regulator_dev_lookup(dev, id);
2026 if (IS_ERR(rdev)) {
2027 ret = PTR_ERR(rdev);
2028
2029 /*
2030 * If regulator_dev_lookup() fails with error other
2031 * than -ENODEV our job here is done, we simply return it.
2032 */
2033 if (ret != -ENODEV)
2034 return ERR_PTR(ret);
2035
2036 if (!have_full_constraints()) {
2037 dev_warn(dev,
2038 "incomplete constraints, dummy supplies not allowed\n");
2039 return ERR_PTR(-ENODEV);
2040 }
2041
2042 switch (get_type) {
2043 case NORMAL_GET:
2044 /*
2045 * Assume that a regulator is physically present and
2046 * enabled, even if it isn't hooked up, and just
2047 * provide a dummy.
2048 */
2049 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2050 rdev = dummy_regulator_rdev;
2051 get_device(&rdev->dev);
2052 break;
2053
2054 case EXCLUSIVE_GET:
2055 dev_warn(dev,
2056 "dummy supplies not allowed for exclusive requests\n");
2057 fallthrough;
2058
2059 default:
2060 return ERR_PTR(-ENODEV);
2061 }
2062 }
2063
2064 if (rdev->exclusive) {
2065 regulator = ERR_PTR(-EPERM);
2066 put_device(&rdev->dev);
2067 return regulator;
2068 }
2069
2070 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2071 regulator = ERR_PTR(-EBUSY);
2072 put_device(&rdev->dev);
2073 return regulator;
2074 }
2075
2076 mutex_lock(®ulator_list_mutex);
2077 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2078 mutex_unlock(®ulator_list_mutex);
2079
2080 if (ret != 0) {
2081 regulator = ERR_PTR(-EPROBE_DEFER);
2082 put_device(&rdev->dev);
2083 return regulator;
2084 }
2085
2086 ret = regulator_resolve_supply(rdev);
2087 if (ret < 0) {
2088 regulator = ERR_PTR(ret);
2089 put_device(&rdev->dev);
2090 return regulator;
2091 }
2092
2093 if (!try_module_get(rdev->owner)) {
2094 regulator = ERR_PTR(-EPROBE_DEFER);
2095 put_device(&rdev->dev);
2096 return regulator;
2097 }
2098
2099 regulator_lock(rdev);
2100 regulator = create_regulator(rdev, dev, id);
2101 regulator_unlock(rdev);
2102 if (regulator == NULL) {
2103 regulator = ERR_PTR(-ENOMEM);
2104 module_put(rdev->owner);
2105 put_device(&rdev->dev);
2106 return regulator;
2107 }
2108
2109 rdev->open_count++;
2110 if (get_type == EXCLUSIVE_GET) {
2111 rdev->exclusive = 1;
2112
2113 ret = _regulator_is_enabled(rdev);
2114 if (ret > 0) {
2115 rdev->use_count = 1;
2116 regulator->enable_count = 1;
2117 } else {
2118 rdev->use_count = 0;
2119 regulator->enable_count = 0;
2120 }
2121 }
2122
2123 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2124 if (!IS_ERR_OR_NULL(link))
2125 regulator->device_link = true;
2126
2127 return regulator;
2128 }
2129
2130 /**
2131 * regulator_get - lookup and obtain a reference to a regulator.
2132 * @dev: device for regulator "consumer"
2133 * @id: Supply name or regulator ID.
2134 *
2135 * Returns a struct regulator corresponding to the regulator producer,
2136 * or IS_ERR() condition containing errno.
2137 *
2138 * Use of supply names configured via regulator_set_device_supply() is
2139 * strongly encouraged. It is recommended that the supply name used
2140 * should match the name used for the supply and/or the relevant
2141 * device pins in the datasheet.
2142 */
regulator_get(struct device * dev,const char * id)2143 struct regulator *regulator_get(struct device *dev, const char *id)
2144 {
2145 return _regulator_get(dev, id, NORMAL_GET);
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_get);
2148
2149 /**
2150 * regulator_get_exclusive - obtain exclusive access to a regulator.
2151 * @dev: device for regulator "consumer"
2152 * @id: Supply name or regulator ID.
2153 *
2154 * Returns a struct regulator corresponding to the regulator producer,
2155 * or IS_ERR() condition containing errno. Other consumers will be
2156 * unable to obtain this regulator while this reference is held and the
2157 * use count for the regulator will be initialised to reflect the current
2158 * state of the regulator.
2159 *
2160 * This is intended for use by consumers which cannot tolerate shared
2161 * use of the regulator such as those which need to force the
2162 * regulator off for correct operation of the hardware they are
2163 * controlling.
2164 *
2165 * Use of supply names configured via regulator_set_device_supply() is
2166 * strongly encouraged. It is recommended that the supply name used
2167 * should match the name used for the supply and/or the relevant
2168 * device pins in the datasheet.
2169 */
regulator_get_exclusive(struct device * dev,const char * id)2170 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2171 {
2172 return _regulator_get(dev, id, EXCLUSIVE_GET);
2173 }
2174 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2175
2176 /**
2177 * regulator_get_optional - obtain optional access to a regulator.
2178 * @dev: device for regulator "consumer"
2179 * @id: Supply name or regulator ID.
2180 *
2181 * Returns a struct regulator corresponding to the regulator producer,
2182 * or IS_ERR() condition containing errno.
2183 *
2184 * This is intended for use by consumers for devices which can have
2185 * some supplies unconnected in normal use, such as some MMC devices.
2186 * It can allow the regulator core to provide stub supplies for other
2187 * supplies requested using normal regulator_get() calls without
2188 * disrupting the operation of drivers that can handle absent
2189 * supplies.
2190 *
2191 * Use of supply names configured via regulator_set_device_supply() is
2192 * strongly encouraged. It is recommended that the supply name used
2193 * should match the name used for the supply and/or the relevant
2194 * device pins in the datasheet.
2195 */
regulator_get_optional(struct device * dev,const char * id)2196 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2197 {
2198 return _regulator_get(dev, id, OPTIONAL_GET);
2199 }
2200 EXPORT_SYMBOL_GPL(regulator_get_optional);
2201
destroy_regulator(struct regulator * regulator)2202 static void destroy_regulator(struct regulator *regulator)
2203 {
2204 struct regulator_dev *rdev = regulator->rdev;
2205
2206 debugfs_remove_recursive(regulator->debugfs);
2207
2208 if (regulator->dev) {
2209 if (regulator->device_link)
2210 device_link_remove(regulator->dev, &rdev->dev);
2211
2212 /* remove any sysfs entries */
2213 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2214 }
2215
2216 regulator_lock(rdev);
2217 list_del(®ulator->list);
2218
2219 rdev->open_count--;
2220 rdev->exclusive = 0;
2221 regulator_unlock(rdev);
2222
2223 kfree_const(regulator->supply_name);
2224 kfree(regulator);
2225 }
2226
2227 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2228 static void _regulator_put(struct regulator *regulator)
2229 {
2230 struct regulator_dev *rdev;
2231
2232 if (IS_ERR_OR_NULL(regulator))
2233 return;
2234
2235 lockdep_assert_held_once(®ulator_list_mutex);
2236
2237 /* Docs say you must disable before calling regulator_put() */
2238 WARN_ON(regulator->enable_count);
2239
2240 rdev = regulator->rdev;
2241
2242 destroy_regulator(regulator);
2243
2244 module_put(rdev->owner);
2245 put_device(&rdev->dev);
2246 }
2247
2248 /**
2249 * regulator_put - "free" the regulator source
2250 * @regulator: regulator source
2251 *
2252 * Note: drivers must ensure that all regulator_enable calls made on this
2253 * regulator source are balanced by regulator_disable calls prior to calling
2254 * this function.
2255 */
regulator_put(struct regulator * regulator)2256 void regulator_put(struct regulator *regulator)
2257 {
2258 mutex_lock(®ulator_list_mutex);
2259 _regulator_put(regulator);
2260 mutex_unlock(®ulator_list_mutex);
2261 }
2262 EXPORT_SYMBOL_GPL(regulator_put);
2263
2264 /**
2265 * regulator_register_supply_alias - Provide device alias for supply lookup
2266 *
2267 * @dev: device that will be given as the regulator "consumer"
2268 * @id: Supply name or regulator ID
2269 * @alias_dev: device that should be used to lookup the supply
2270 * @alias_id: Supply name or regulator ID that should be used to lookup the
2271 * supply
2272 *
2273 * All lookups for id on dev will instead be conducted for alias_id on
2274 * alias_dev.
2275 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2276 int regulator_register_supply_alias(struct device *dev, const char *id,
2277 struct device *alias_dev,
2278 const char *alias_id)
2279 {
2280 struct regulator_supply_alias *map;
2281
2282 map = regulator_find_supply_alias(dev, id);
2283 if (map)
2284 return -EEXIST;
2285
2286 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2287 if (!map)
2288 return -ENOMEM;
2289
2290 map->src_dev = dev;
2291 map->src_supply = id;
2292 map->alias_dev = alias_dev;
2293 map->alias_supply = alias_id;
2294
2295 list_add(&map->list, ®ulator_supply_alias_list);
2296
2297 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2298 id, dev_name(dev), alias_id, dev_name(alias_dev));
2299
2300 return 0;
2301 }
2302 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2303
2304 /**
2305 * regulator_unregister_supply_alias - Remove device alias
2306 *
2307 * @dev: device that will be given as the regulator "consumer"
2308 * @id: Supply name or regulator ID
2309 *
2310 * Remove a lookup alias if one exists for id on dev.
2311 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2312 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2313 {
2314 struct regulator_supply_alias *map;
2315
2316 map = regulator_find_supply_alias(dev, id);
2317 if (map) {
2318 list_del(&map->list);
2319 kfree(map);
2320 }
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2323
2324 /**
2325 * regulator_bulk_register_supply_alias - register multiple aliases
2326 *
2327 * @dev: device that will be given as the regulator "consumer"
2328 * @id: List of supply names or regulator IDs
2329 * @alias_dev: device that should be used to lookup the supply
2330 * @alias_id: List of supply names or regulator IDs that should be used to
2331 * lookup the supply
2332 * @num_id: Number of aliases to register
2333 *
2334 * @return 0 on success, an errno on failure.
2335 *
2336 * This helper function allows drivers to register several supply
2337 * aliases in one operation. If any of the aliases cannot be
2338 * registered any aliases that were registered will be removed
2339 * before returning to the caller.
2340 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2341 int regulator_bulk_register_supply_alias(struct device *dev,
2342 const char *const *id,
2343 struct device *alias_dev,
2344 const char *const *alias_id,
2345 int num_id)
2346 {
2347 int i;
2348 int ret;
2349
2350 for (i = 0; i < num_id; ++i) {
2351 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2352 alias_id[i]);
2353 if (ret < 0)
2354 goto err;
2355 }
2356
2357 return 0;
2358
2359 err:
2360 dev_err(dev,
2361 "Failed to create supply alias %s,%s -> %s,%s\n",
2362 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2363
2364 while (--i >= 0)
2365 regulator_unregister_supply_alias(dev, id[i]);
2366
2367 return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2370
2371 /**
2372 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2373 *
2374 * @dev: device that will be given as the regulator "consumer"
2375 * @id: List of supply names or regulator IDs
2376 * @num_id: Number of aliases to unregister
2377 *
2378 * This helper function allows drivers to unregister several supply
2379 * aliases in one operation.
2380 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2381 void regulator_bulk_unregister_supply_alias(struct device *dev,
2382 const char *const *id,
2383 int num_id)
2384 {
2385 int i;
2386
2387 for (i = 0; i < num_id; ++i)
2388 regulator_unregister_supply_alias(dev, id[i]);
2389 }
2390 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2391
2392
2393 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2394 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2395 const struct regulator_config *config)
2396 {
2397 struct regulator_enable_gpio *pin, *new_pin;
2398 struct gpio_desc *gpiod;
2399
2400 gpiod = config->ena_gpiod;
2401 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2402
2403 mutex_lock(®ulator_list_mutex);
2404
2405 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2406 if (pin->gpiod == gpiod) {
2407 rdev_dbg(rdev, "GPIO is already used\n");
2408 goto update_ena_gpio_to_rdev;
2409 }
2410 }
2411
2412 if (new_pin == NULL) {
2413 mutex_unlock(®ulator_list_mutex);
2414 return -ENOMEM;
2415 }
2416
2417 pin = new_pin;
2418 new_pin = NULL;
2419
2420 pin->gpiod = gpiod;
2421 list_add(&pin->list, ®ulator_ena_gpio_list);
2422
2423 update_ena_gpio_to_rdev:
2424 pin->request_count++;
2425 rdev->ena_pin = pin;
2426
2427 mutex_unlock(®ulator_list_mutex);
2428 kfree(new_pin);
2429
2430 return 0;
2431 }
2432
regulator_ena_gpio_free(struct regulator_dev * rdev)2433 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2434 {
2435 struct regulator_enable_gpio *pin, *n;
2436
2437 if (!rdev->ena_pin)
2438 return;
2439
2440 /* Free the GPIO only in case of no use */
2441 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2442 if (pin != rdev->ena_pin)
2443 continue;
2444
2445 if (--pin->request_count)
2446 break;
2447
2448 gpiod_put(pin->gpiod);
2449 list_del(&pin->list);
2450 kfree(pin);
2451 break;
2452 }
2453
2454 rdev->ena_pin = NULL;
2455 }
2456
2457 /**
2458 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2459 * @rdev: regulator_dev structure
2460 * @enable: enable GPIO at initial use?
2461 *
2462 * GPIO is enabled in case of initial use. (enable_count is 0)
2463 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2464 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2465 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2466 {
2467 struct regulator_enable_gpio *pin = rdev->ena_pin;
2468
2469 if (!pin)
2470 return -EINVAL;
2471
2472 if (enable) {
2473 /* Enable GPIO at initial use */
2474 if (pin->enable_count == 0)
2475 gpiod_set_value_cansleep(pin->gpiod, 1);
2476
2477 pin->enable_count++;
2478 } else {
2479 if (pin->enable_count > 1) {
2480 pin->enable_count--;
2481 return 0;
2482 }
2483
2484 /* Disable GPIO if not used */
2485 if (pin->enable_count <= 1) {
2486 gpiod_set_value_cansleep(pin->gpiod, 0);
2487 pin->enable_count = 0;
2488 }
2489 }
2490
2491 return 0;
2492 }
2493
2494 /**
2495 * _regulator_enable_delay - a delay helper function
2496 * @delay: time to delay in microseconds
2497 *
2498 * Delay for the requested amount of time as per the guidelines in:
2499 *
2500 * Documentation/timers/timers-howto.rst
2501 *
2502 * The assumption here is that regulators will never be enabled in
2503 * atomic context and therefore sleeping functions can be used.
2504 */
_regulator_enable_delay(unsigned int delay)2505 static void _regulator_enable_delay(unsigned int delay)
2506 {
2507 unsigned int ms = delay / 1000;
2508 unsigned int us = delay % 1000;
2509
2510 if (ms > 0) {
2511 /*
2512 * For small enough values, handle super-millisecond
2513 * delays in the usleep_range() call below.
2514 */
2515 if (ms < 20)
2516 us += ms * 1000;
2517 else
2518 msleep(ms);
2519 }
2520
2521 /*
2522 * Give the scheduler some room to coalesce with any other
2523 * wakeup sources. For delays shorter than 10 us, don't even
2524 * bother setting up high-resolution timers and just busy-
2525 * loop.
2526 */
2527 if (us >= 10)
2528 usleep_range(us, us + 100);
2529 else
2530 udelay(us);
2531 }
2532
2533 /**
2534 * _regulator_check_status_enabled
2535 *
2536 * A helper function to check if the regulator status can be interpreted
2537 * as 'regulator is enabled'.
2538 * @rdev: the regulator device to check
2539 *
2540 * Return:
2541 * * 1 - if status shows regulator is in enabled state
2542 * * 0 - if not enabled state
2543 * * Error Value - as received from ops->get_status()
2544 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2545 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2546 {
2547 int ret = rdev->desc->ops->get_status(rdev);
2548
2549 if (ret < 0) {
2550 rdev_info(rdev, "get_status returned error: %d\n", ret);
2551 return ret;
2552 }
2553
2554 switch (ret) {
2555 case REGULATOR_STATUS_OFF:
2556 case REGULATOR_STATUS_ERROR:
2557 case REGULATOR_STATUS_UNDEFINED:
2558 return 0;
2559 default:
2560 return 1;
2561 }
2562 }
2563
_regulator_do_enable(struct regulator_dev * rdev)2564 static int _regulator_do_enable(struct regulator_dev *rdev)
2565 {
2566 int ret, delay;
2567
2568 /* Query before enabling in case configuration dependent. */
2569 ret = _regulator_get_enable_time(rdev);
2570 if (ret >= 0) {
2571 delay = ret;
2572 } else {
2573 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2574 delay = 0;
2575 }
2576
2577 trace_regulator_enable(rdev_get_name(rdev));
2578
2579 if (rdev->desc->off_on_delay) {
2580 /* if needed, keep a distance of off_on_delay from last time
2581 * this regulator was disabled.
2582 */
2583 unsigned long start_jiffy = jiffies;
2584 unsigned long intended, max_delay, remaining;
2585
2586 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2587 intended = rdev->last_off_jiffy + max_delay;
2588
2589 if (time_before(start_jiffy, intended)) {
2590 /* calc remaining jiffies to deal with one-time
2591 * timer wrapping.
2592 * in case of multiple timer wrapping, either it can be
2593 * detected by out-of-range remaining, or it cannot be
2594 * detected and we get a penalty of
2595 * _regulator_enable_delay().
2596 */
2597 remaining = intended - start_jiffy;
2598 if (remaining <= max_delay)
2599 _regulator_enable_delay(
2600 jiffies_to_usecs(remaining));
2601 }
2602 }
2603
2604 if (rdev->ena_pin) {
2605 if (!rdev->ena_gpio_state) {
2606 ret = regulator_ena_gpio_ctrl(rdev, true);
2607 if (ret < 0)
2608 return ret;
2609 rdev->ena_gpio_state = 1;
2610 }
2611 } else if (rdev->desc->ops->enable) {
2612 ret = rdev->desc->ops->enable(rdev);
2613 if (ret < 0)
2614 return ret;
2615 } else {
2616 return -EINVAL;
2617 }
2618
2619 /* Allow the regulator to ramp; it would be useful to extend
2620 * this for bulk operations so that the regulators can ramp
2621 * together. */
2622 trace_regulator_enable_delay(rdev_get_name(rdev));
2623
2624 /* If poll_enabled_time is set, poll upto the delay calculated
2625 * above, delaying poll_enabled_time uS to check if the regulator
2626 * actually got enabled.
2627 * If the regulator isn't enabled after enable_delay has
2628 * expired, return -ETIMEDOUT.
2629 */
2630 if (rdev->desc->poll_enabled_time) {
2631 int time_remaining = delay;
2632
2633 while (time_remaining > 0) {
2634 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2635
2636 if (rdev->desc->ops->get_status) {
2637 ret = _regulator_check_status_enabled(rdev);
2638 if (ret < 0)
2639 return ret;
2640 else if (ret)
2641 break;
2642 } else if (rdev->desc->ops->is_enabled(rdev))
2643 break;
2644
2645 time_remaining -= rdev->desc->poll_enabled_time;
2646 }
2647
2648 if (time_remaining <= 0) {
2649 rdev_err(rdev, "Enabled check timed out\n");
2650 return -ETIMEDOUT;
2651 }
2652 } else {
2653 _regulator_enable_delay(delay);
2654 }
2655
2656 trace_regulator_enable_complete(rdev_get_name(rdev));
2657
2658 return 0;
2659 }
2660
2661 /**
2662 * _regulator_handle_consumer_enable - handle that a consumer enabled
2663 * @regulator: regulator source
2664 *
2665 * Some things on a regulator consumer (like the contribution towards total
2666 * load on the regulator) only have an effect when the consumer wants the
2667 * regulator enabled. Explained in example with two consumers of the same
2668 * regulator:
2669 * consumer A: set_load(100); => total load = 0
2670 * consumer A: regulator_enable(); => total load = 100
2671 * consumer B: set_load(1000); => total load = 100
2672 * consumer B: regulator_enable(); => total load = 1100
2673 * consumer A: regulator_disable(); => total_load = 1000
2674 *
2675 * This function (together with _regulator_handle_consumer_disable) is
2676 * responsible for keeping track of the refcount for a given regulator consumer
2677 * and applying / unapplying these things.
2678 *
2679 * Returns 0 upon no error; -error upon error.
2680 */
_regulator_handle_consumer_enable(struct regulator * regulator)2681 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2682 {
2683 int ret;
2684 struct regulator_dev *rdev = regulator->rdev;
2685
2686 lockdep_assert_held_once(&rdev->mutex.base);
2687
2688 regulator->enable_count++;
2689 if (regulator->uA_load && regulator->enable_count == 1) {
2690 ret = drms_uA_update(rdev);
2691 if (ret)
2692 regulator->enable_count--;
2693 return ret;
2694 }
2695
2696 return 0;
2697 }
2698
2699 /**
2700 * _regulator_handle_consumer_disable - handle that a consumer disabled
2701 * @regulator: regulator source
2702 *
2703 * The opposite of _regulator_handle_consumer_enable().
2704 *
2705 * Returns 0 upon no error; -error upon error.
2706 */
_regulator_handle_consumer_disable(struct regulator * regulator)2707 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2708 {
2709 struct regulator_dev *rdev = regulator->rdev;
2710
2711 lockdep_assert_held_once(&rdev->mutex.base);
2712
2713 if (!regulator->enable_count) {
2714 rdev_err(rdev, "Underflow of regulator enable count\n");
2715 return -EINVAL;
2716 }
2717
2718 regulator->enable_count--;
2719 if (regulator->uA_load && regulator->enable_count == 0)
2720 return drms_uA_update(rdev);
2721
2722 return 0;
2723 }
2724
2725 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2726 static int _regulator_enable(struct regulator *regulator)
2727 {
2728 struct regulator_dev *rdev = regulator->rdev;
2729 int ret;
2730
2731 lockdep_assert_held_once(&rdev->mutex.base);
2732
2733 if (rdev->use_count == 0 && rdev->supply) {
2734 ret = _regulator_enable(rdev->supply);
2735 if (ret < 0)
2736 return ret;
2737 }
2738
2739 /* balance only if there are regulators coupled */
2740 if (rdev->coupling_desc.n_coupled > 1) {
2741 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2742 if (ret < 0)
2743 goto err_disable_supply;
2744 }
2745
2746 ret = _regulator_handle_consumer_enable(regulator);
2747 if (ret < 0)
2748 goto err_disable_supply;
2749
2750 if (rdev->use_count == 0) {
2751 /* The regulator may on if it's not switchable or left on */
2752 ret = _regulator_is_enabled(rdev);
2753 if (ret == -EINVAL || ret == 0) {
2754 if (!regulator_ops_is_valid(rdev,
2755 REGULATOR_CHANGE_STATUS)) {
2756 ret = -EPERM;
2757 goto err_consumer_disable;
2758 }
2759
2760 ret = _regulator_do_enable(rdev);
2761 if (ret < 0)
2762 goto err_consumer_disable;
2763
2764 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2765 NULL);
2766 } else if (ret < 0) {
2767 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2768 goto err_consumer_disable;
2769 }
2770 /* Fallthrough on positive return values - already enabled */
2771 }
2772
2773 rdev->use_count++;
2774
2775 return 0;
2776
2777 err_consumer_disable:
2778 _regulator_handle_consumer_disable(regulator);
2779
2780 err_disable_supply:
2781 if (rdev->use_count == 0 && rdev->supply)
2782 _regulator_disable(rdev->supply);
2783
2784 return ret;
2785 }
2786
2787 /**
2788 * regulator_enable - enable regulator output
2789 * @regulator: regulator source
2790 *
2791 * Request that the regulator be enabled with the regulator output at
2792 * the predefined voltage or current value. Calls to regulator_enable()
2793 * must be balanced with calls to regulator_disable().
2794 *
2795 * NOTE: the output value can be set by other drivers, boot loader or may be
2796 * hardwired in the regulator.
2797 */
regulator_enable(struct regulator * regulator)2798 int regulator_enable(struct regulator *regulator)
2799 {
2800 struct regulator_dev *rdev = regulator->rdev;
2801 struct ww_acquire_ctx ww_ctx;
2802 int ret;
2803
2804 regulator_lock_dependent(rdev, &ww_ctx);
2805 ret = _regulator_enable(regulator);
2806 regulator_unlock_dependent(rdev, &ww_ctx);
2807
2808 return ret;
2809 }
2810 EXPORT_SYMBOL_GPL(regulator_enable);
2811
_regulator_do_disable(struct regulator_dev * rdev)2812 static int _regulator_do_disable(struct regulator_dev *rdev)
2813 {
2814 int ret;
2815
2816 trace_regulator_disable(rdev_get_name(rdev));
2817
2818 if (rdev->ena_pin) {
2819 if (rdev->ena_gpio_state) {
2820 ret = regulator_ena_gpio_ctrl(rdev, false);
2821 if (ret < 0)
2822 return ret;
2823 rdev->ena_gpio_state = 0;
2824 }
2825
2826 } else if (rdev->desc->ops->disable) {
2827 ret = rdev->desc->ops->disable(rdev);
2828 if (ret != 0)
2829 return ret;
2830 }
2831
2832 /* cares about last_off_jiffy only if off_on_delay is required by
2833 * device.
2834 */
2835 if (rdev->desc->off_on_delay)
2836 rdev->last_off_jiffy = jiffies;
2837
2838 trace_regulator_disable_complete(rdev_get_name(rdev));
2839
2840 return 0;
2841 }
2842
2843 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2844 static int _regulator_disable(struct regulator *regulator)
2845 {
2846 struct regulator_dev *rdev = regulator->rdev;
2847 int ret = 0;
2848
2849 lockdep_assert_held_once(&rdev->mutex.base);
2850
2851 if (WARN(rdev->use_count <= 0,
2852 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2853 return -EIO;
2854
2855 /* are we the last user and permitted to disable ? */
2856 if (rdev->use_count == 1 &&
2857 (rdev->constraints && !rdev->constraints->always_on)) {
2858
2859 /* we are last user */
2860 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2861 ret = _notifier_call_chain(rdev,
2862 REGULATOR_EVENT_PRE_DISABLE,
2863 NULL);
2864 if (ret & NOTIFY_STOP_MASK)
2865 return -EINVAL;
2866
2867 ret = _regulator_do_disable(rdev);
2868 if (ret < 0) {
2869 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2870 _notifier_call_chain(rdev,
2871 REGULATOR_EVENT_ABORT_DISABLE,
2872 NULL);
2873 return ret;
2874 }
2875 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2876 NULL);
2877 }
2878
2879 rdev->use_count = 0;
2880 } else if (rdev->use_count > 1) {
2881 rdev->use_count--;
2882 }
2883
2884 if (ret == 0)
2885 ret = _regulator_handle_consumer_disable(regulator);
2886
2887 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2888 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889
2890 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2891 ret = _regulator_disable(rdev->supply);
2892
2893 return ret;
2894 }
2895
2896 /**
2897 * regulator_disable - disable regulator output
2898 * @regulator: regulator source
2899 *
2900 * Disable the regulator output voltage or current. Calls to
2901 * regulator_enable() must be balanced with calls to
2902 * regulator_disable().
2903 *
2904 * NOTE: this will only disable the regulator output if no other consumer
2905 * devices have it enabled, the regulator device supports disabling and
2906 * machine constraints permit this operation.
2907 */
regulator_disable(struct regulator * regulator)2908 int regulator_disable(struct regulator *regulator)
2909 {
2910 struct regulator_dev *rdev = regulator->rdev;
2911 struct ww_acquire_ctx ww_ctx;
2912 int ret;
2913
2914 regulator_lock_dependent(rdev, &ww_ctx);
2915 ret = _regulator_disable(regulator);
2916 regulator_unlock_dependent(rdev, &ww_ctx);
2917
2918 return ret;
2919 }
2920 EXPORT_SYMBOL_GPL(regulator_disable);
2921
2922 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2923 static int _regulator_force_disable(struct regulator_dev *rdev)
2924 {
2925 int ret = 0;
2926
2927 lockdep_assert_held_once(&rdev->mutex.base);
2928
2929 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2930 REGULATOR_EVENT_PRE_DISABLE, NULL);
2931 if (ret & NOTIFY_STOP_MASK)
2932 return -EINVAL;
2933
2934 ret = _regulator_do_disable(rdev);
2935 if (ret < 0) {
2936 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2937 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2938 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2939 return ret;
2940 }
2941
2942 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2943 REGULATOR_EVENT_DISABLE, NULL);
2944
2945 return 0;
2946 }
2947
2948 /**
2949 * regulator_force_disable - force disable regulator output
2950 * @regulator: regulator source
2951 *
2952 * Forcibly disable the regulator output voltage or current.
2953 * NOTE: this *will* disable the regulator output even if other consumer
2954 * devices have it enabled. This should be used for situations when device
2955 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2956 */
regulator_force_disable(struct regulator * regulator)2957 int regulator_force_disable(struct regulator *regulator)
2958 {
2959 struct regulator_dev *rdev = regulator->rdev;
2960 struct ww_acquire_ctx ww_ctx;
2961 int ret;
2962
2963 regulator_lock_dependent(rdev, &ww_ctx);
2964
2965 ret = _regulator_force_disable(regulator->rdev);
2966
2967 if (rdev->coupling_desc.n_coupled > 1)
2968 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2969
2970 if (regulator->uA_load) {
2971 regulator->uA_load = 0;
2972 ret = drms_uA_update(rdev);
2973 }
2974
2975 if (rdev->use_count != 0 && rdev->supply)
2976 _regulator_disable(rdev->supply);
2977
2978 regulator_unlock_dependent(rdev, &ww_ctx);
2979
2980 return ret;
2981 }
2982 EXPORT_SYMBOL_GPL(regulator_force_disable);
2983
regulator_disable_work(struct work_struct * work)2984 static void regulator_disable_work(struct work_struct *work)
2985 {
2986 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2987 disable_work.work);
2988 struct ww_acquire_ctx ww_ctx;
2989 int count, i, ret;
2990 struct regulator *regulator;
2991 int total_count = 0;
2992
2993 regulator_lock_dependent(rdev, &ww_ctx);
2994
2995 /*
2996 * Workqueue functions queue the new work instance while the previous
2997 * work instance is being processed. Cancel the queued work instance
2998 * as the work instance under processing does the job of the queued
2999 * work instance.
3000 */
3001 cancel_delayed_work(&rdev->disable_work);
3002
3003 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3004 count = regulator->deferred_disables;
3005
3006 if (!count)
3007 continue;
3008
3009 total_count += count;
3010 regulator->deferred_disables = 0;
3011
3012 for (i = 0; i < count; i++) {
3013 ret = _regulator_disable(regulator);
3014 if (ret != 0)
3015 rdev_err(rdev, "Deferred disable failed: %pe\n",
3016 ERR_PTR(ret));
3017 }
3018 }
3019 WARN_ON(!total_count);
3020
3021 if (rdev->coupling_desc.n_coupled > 1)
3022 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3023
3024 regulator_unlock_dependent(rdev, &ww_ctx);
3025 }
3026
3027 /**
3028 * regulator_disable_deferred - disable regulator output with delay
3029 * @regulator: regulator source
3030 * @ms: milliseconds until the regulator is disabled
3031 *
3032 * Execute regulator_disable() on the regulator after a delay. This
3033 * is intended for use with devices that require some time to quiesce.
3034 *
3035 * NOTE: this will only disable the regulator output if no other consumer
3036 * devices have it enabled, the regulator device supports disabling and
3037 * machine constraints permit this operation.
3038 */
regulator_disable_deferred(struct regulator * regulator,int ms)3039 int regulator_disable_deferred(struct regulator *regulator, int ms)
3040 {
3041 struct regulator_dev *rdev = regulator->rdev;
3042
3043 if (!ms)
3044 return regulator_disable(regulator);
3045
3046 regulator_lock(rdev);
3047 regulator->deferred_disables++;
3048 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3049 msecs_to_jiffies(ms));
3050 regulator_unlock(rdev);
3051
3052 return 0;
3053 }
3054 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3055
_regulator_is_enabled(struct regulator_dev * rdev)3056 static int _regulator_is_enabled(struct regulator_dev *rdev)
3057 {
3058 /* A GPIO control always takes precedence */
3059 if (rdev->ena_pin)
3060 return rdev->ena_gpio_state;
3061
3062 /* If we don't know then assume that the regulator is always on */
3063 if (!rdev->desc->ops->is_enabled)
3064 return 1;
3065
3066 return rdev->desc->ops->is_enabled(rdev);
3067 }
3068
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3069 static int _regulator_list_voltage(struct regulator_dev *rdev,
3070 unsigned selector, int lock)
3071 {
3072 const struct regulator_ops *ops = rdev->desc->ops;
3073 int ret;
3074
3075 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3076 return rdev->desc->fixed_uV;
3077
3078 if (ops->list_voltage) {
3079 if (selector >= rdev->desc->n_voltages)
3080 return -EINVAL;
3081 if (lock)
3082 regulator_lock(rdev);
3083 ret = ops->list_voltage(rdev, selector);
3084 if (lock)
3085 regulator_unlock(rdev);
3086 } else if (rdev->is_switch && rdev->supply) {
3087 ret = _regulator_list_voltage(rdev->supply->rdev,
3088 selector, lock);
3089 } else {
3090 return -EINVAL;
3091 }
3092
3093 if (ret > 0) {
3094 if (ret < rdev->constraints->min_uV)
3095 ret = 0;
3096 else if (ret > rdev->constraints->max_uV)
3097 ret = 0;
3098 }
3099
3100 return ret;
3101 }
3102
3103 /**
3104 * regulator_is_enabled - is the regulator output enabled
3105 * @regulator: regulator source
3106 *
3107 * Returns positive if the regulator driver backing the source/client
3108 * has requested that the device be enabled, zero if it hasn't, else a
3109 * negative errno code.
3110 *
3111 * Note that the device backing this regulator handle can have multiple
3112 * users, so it might be enabled even if regulator_enable() was never
3113 * called for this particular source.
3114 */
regulator_is_enabled(struct regulator * regulator)3115 int regulator_is_enabled(struct regulator *regulator)
3116 {
3117 int ret;
3118
3119 if (regulator->always_on)
3120 return 1;
3121
3122 regulator_lock(regulator->rdev);
3123 ret = _regulator_is_enabled(regulator->rdev);
3124 regulator_unlock(regulator->rdev);
3125
3126 return ret;
3127 }
3128 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3129
3130 /**
3131 * regulator_count_voltages - count regulator_list_voltage() selectors
3132 * @regulator: regulator source
3133 *
3134 * Returns number of selectors, or negative errno. Selectors are
3135 * numbered starting at zero, and typically correspond to bitfields
3136 * in hardware registers.
3137 */
regulator_count_voltages(struct regulator * regulator)3138 int regulator_count_voltages(struct regulator *regulator)
3139 {
3140 struct regulator_dev *rdev = regulator->rdev;
3141
3142 if (rdev->desc->n_voltages)
3143 return rdev->desc->n_voltages;
3144
3145 if (!rdev->is_switch || !rdev->supply)
3146 return -EINVAL;
3147
3148 return regulator_count_voltages(rdev->supply);
3149 }
3150 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3151
3152 /**
3153 * regulator_list_voltage - enumerate supported voltages
3154 * @regulator: regulator source
3155 * @selector: identify voltage to list
3156 * Context: can sleep
3157 *
3158 * Returns a voltage that can be passed to @regulator_set_voltage(),
3159 * zero if this selector code can't be used on this system, or a
3160 * negative errno.
3161 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3162 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3163 {
3164 return _regulator_list_voltage(regulator->rdev, selector, 1);
3165 }
3166 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3167
3168 /**
3169 * regulator_get_regmap - get the regulator's register map
3170 * @regulator: regulator source
3171 *
3172 * Returns the register map for the given regulator, or an ERR_PTR value
3173 * if the regulator doesn't use regmap.
3174 */
regulator_get_regmap(struct regulator * regulator)3175 struct regmap *regulator_get_regmap(struct regulator *regulator)
3176 {
3177 struct regmap *map = regulator->rdev->regmap;
3178
3179 return map ? map : ERR_PTR(-EOPNOTSUPP);
3180 }
3181
3182 /**
3183 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3184 * @regulator: regulator source
3185 * @vsel_reg: voltage selector register, output parameter
3186 * @vsel_mask: mask for voltage selector bitfield, output parameter
3187 *
3188 * Returns the hardware register offset and bitmask used for setting the
3189 * regulator voltage. This might be useful when configuring voltage-scaling
3190 * hardware or firmware that can make I2C requests behind the kernel's back,
3191 * for example.
3192 *
3193 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3194 * and 0 is returned, otherwise a negative errno is returned.
3195 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3196 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3197 unsigned *vsel_reg,
3198 unsigned *vsel_mask)
3199 {
3200 struct regulator_dev *rdev = regulator->rdev;
3201 const struct regulator_ops *ops = rdev->desc->ops;
3202
3203 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3204 return -EOPNOTSUPP;
3205
3206 *vsel_reg = rdev->desc->vsel_reg;
3207 *vsel_mask = rdev->desc->vsel_mask;
3208
3209 return 0;
3210 }
3211 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3212
3213 /**
3214 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3215 * @regulator: regulator source
3216 * @selector: identify voltage to list
3217 *
3218 * Converts the selector to a hardware-specific voltage selector that can be
3219 * directly written to the regulator registers. The address of the voltage
3220 * register can be determined by calling @regulator_get_hardware_vsel_register.
3221 *
3222 * On error a negative errno is returned.
3223 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3224 int regulator_list_hardware_vsel(struct regulator *regulator,
3225 unsigned selector)
3226 {
3227 struct regulator_dev *rdev = regulator->rdev;
3228 const struct regulator_ops *ops = rdev->desc->ops;
3229
3230 if (selector >= rdev->desc->n_voltages)
3231 return -EINVAL;
3232 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3233 return -EOPNOTSUPP;
3234
3235 return selector;
3236 }
3237 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3238
3239 /**
3240 * regulator_get_linear_step - return the voltage step size between VSEL values
3241 * @regulator: regulator source
3242 *
3243 * Returns the voltage step size between VSEL values for linear
3244 * regulators, or return 0 if the regulator isn't a linear regulator.
3245 */
regulator_get_linear_step(struct regulator * regulator)3246 unsigned int regulator_get_linear_step(struct regulator *regulator)
3247 {
3248 struct regulator_dev *rdev = regulator->rdev;
3249
3250 return rdev->desc->uV_step;
3251 }
3252 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3253
3254 /**
3255 * regulator_is_supported_voltage - check if a voltage range can be supported
3256 *
3257 * @regulator: Regulator to check.
3258 * @min_uV: Minimum required voltage in uV.
3259 * @max_uV: Maximum required voltage in uV.
3260 *
3261 * Returns a boolean.
3262 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3263 int regulator_is_supported_voltage(struct regulator *regulator,
3264 int min_uV, int max_uV)
3265 {
3266 struct regulator_dev *rdev = regulator->rdev;
3267 int i, voltages, ret;
3268
3269 /* If we can't change voltage check the current voltage */
3270 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3271 ret = regulator_get_voltage(regulator);
3272 if (ret >= 0)
3273 return min_uV <= ret && ret <= max_uV;
3274 else
3275 return ret;
3276 }
3277
3278 /* Any voltage within constrains range is fine? */
3279 if (rdev->desc->continuous_voltage_range)
3280 return min_uV >= rdev->constraints->min_uV &&
3281 max_uV <= rdev->constraints->max_uV;
3282
3283 ret = regulator_count_voltages(regulator);
3284 if (ret < 0)
3285 return 0;
3286 voltages = ret;
3287
3288 for (i = 0; i < voltages; i++) {
3289 ret = regulator_list_voltage(regulator, i);
3290
3291 if (ret >= min_uV && ret <= max_uV)
3292 return 1;
3293 }
3294
3295 return 0;
3296 }
3297 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3298
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3299 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3300 int max_uV)
3301 {
3302 const struct regulator_desc *desc = rdev->desc;
3303
3304 if (desc->ops->map_voltage)
3305 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3306
3307 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3308 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3309
3310 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3311 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3312
3313 if (desc->ops->list_voltage ==
3314 regulator_list_voltage_pickable_linear_range)
3315 return regulator_map_voltage_pickable_linear_range(rdev,
3316 min_uV, max_uV);
3317
3318 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3319 }
3320
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3321 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3322 int min_uV, int max_uV,
3323 unsigned *selector)
3324 {
3325 struct pre_voltage_change_data data;
3326 int ret;
3327
3328 data.old_uV = regulator_get_voltage_rdev(rdev);
3329 data.min_uV = min_uV;
3330 data.max_uV = max_uV;
3331 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3332 &data);
3333 if (ret & NOTIFY_STOP_MASK)
3334 return -EINVAL;
3335
3336 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3337 if (ret >= 0)
3338 return ret;
3339
3340 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3341 (void *)data.old_uV);
3342
3343 return ret;
3344 }
3345
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3346 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3347 int uV, unsigned selector)
3348 {
3349 struct pre_voltage_change_data data;
3350 int ret;
3351
3352 data.old_uV = regulator_get_voltage_rdev(rdev);
3353 data.min_uV = uV;
3354 data.max_uV = uV;
3355 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3356 &data);
3357 if (ret & NOTIFY_STOP_MASK)
3358 return -EINVAL;
3359
3360 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3361 if (ret >= 0)
3362 return ret;
3363
3364 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3365 (void *)data.old_uV);
3366
3367 return ret;
3368 }
3369
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3370 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3371 int uV, int new_selector)
3372 {
3373 const struct regulator_ops *ops = rdev->desc->ops;
3374 int diff, old_sel, curr_sel, ret;
3375
3376 /* Stepping is only needed if the regulator is enabled. */
3377 if (!_regulator_is_enabled(rdev))
3378 goto final_set;
3379
3380 if (!ops->get_voltage_sel)
3381 return -EINVAL;
3382
3383 old_sel = ops->get_voltage_sel(rdev);
3384 if (old_sel < 0)
3385 return old_sel;
3386
3387 diff = new_selector - old_sel;
3388 if (diff == 0)
3389 return 0; /* No change needed. */
3390
3391 if (diff > 0) {
3392 /* Stepping up. */
3393 for (curr_sel = old_sel + rdev->desc->vsel_step;
3394 curr_sel < new_selector;
3395 curr_sel += rdev->desc->vsel_step) {
3396 /*
3397 * Call the callback directly instead of using
3398 * _regulator_call_set_voltage_sel() as we don't
3399 * want to notify anyone yet. Same in the branch
3400 * below.
3401 */
3402 ret = ops->set_voltage_sel(rdev, curr_sel);
3403 if (ret)
3404 goto try_revert;
3405 }
3406 } else {
3407 /* Stepping down. */
3408 for (curr_sel = old_sel - rdev->desc->vsel_step;
3409 curr_sel > new_selector;
3410 curr_sel -= rdev->desc->vsel_step) {
3411 ret = ops->set_voltage_sel(rdev, curr_sel);
3412 if (ret)
3413 goto try_revert;
3414 }
3415 }
3416
3417 final_set:
3418 /* The final selector will trigger the notifiers. */
3419 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3420
3421 try_revert:
3422 /*
3423 * At least try to return to the previous voltage if setting a new
3424 * one failed.
3425 */
3426 (void)ops->set_voltage_sel(rdev, old_sel);
3427 return ret;
3428 }
3429
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3430 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3431 int old_uV, int new_uV)
3432 {
3433 unsigned int ramp_delay = 0;
3434
3435 if (rdev->constraints->ramp_delay)
3436 ramp_delay = rdev->constraints->ramp_delay;
3437 else if (rdev->desc->ramp_delay)
3438 ramp_delay = rdev->desc->ramp_delay;
3439 else if (rdev->constraints->settling_time)
3440 return rdev->constraints->settling_time;
3441 else if (rdev->constraints->settling_time_up &&
3442 (new_uV > old_uV))
3443 return rdev->constraints->settling_time_up;
3444 else if (rdev->constraints->settling_time_down &&
3445 (new_uV < old_uV))
3446 return rdev->constraints->settling_time_down;
3447
3448 if (ramp_delay == 0) {
3449 rdev_dbg(rdev, "ramp_delay not set\n");
3450 return 0;
3451 }
3452
3453 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3454 }
3455
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3456 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3457 int min_uV, int max_uV)
3458 {
3459 int ret;
3460 int delay = 0;
3461 int best_val = 0;
3462 unsigned int selector;
3463 int old_selector = -1;
3464 const struct regulator_ops *ops = rdev->desc->ops;
3465 int old_uV = regulator_get_voltage_rdev(rdev);
3466
3467 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3468
3469 min_uV += rdev->constraints->uV_offset;
3470 max_uV += rdev->constraints->uV_offset;
3471
3472 /*
3473 * If we can't obtain the old selector there is not enough
3474 * info to call set_voltage_time_sel().
3475 */
3476 if (_regulator_is_enabled(rdev) &&
3477 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3478 old_selector = ops->get_voltage_sel(rdev);
3479 if (old_selector < 0)
3480 return old_selector;
3481 }
3482
3483 if (ops->set_voltage) {
3484 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3485 &selector);
3486
3487 if (ret >= 0) {
3488 if (ops->list_voltage)
3489 best_val = ops->list_voltage(rdev,
3490 selector);
3491 else
3492 best_val = regulator_get_voltage_rdev(rdev);
3493 }
3494
3495 } else if (ops->set_voltage_sel) {
3496 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3497 if (ret >= 0) {
3498 best_val = ops->list_voltage(rdev, ret);
3499 if (min_uV <= best_val && max_uV >= best_val) {
3500 selector = ret;
3501 if (old_selector == selector)
3502 ret = 0;
3503 else if (rdev->desc->vsel_step)
3504 ret = _regulator_set_voltage_sel_step(
3505 rdev, best_val, selector);
3506 else
3507 ret = _regulator_call_set_voltage_sel(
3508 rdev, best_val, selector);
3509 } else {
3510 ret = -EINVAL;
3511 }
3512 }
3513 } else {
3514 ret = -EINVAL;
3515 }
3516
3517 if (ret)
3518 goto out;
3519
3520 if (ops->set_voltage_time_sel) {
3521 /*
3522 * Call set_voltage_time_sel if successfully obtained
3523 * old_selector
3524 */
3525 if (old_selector >= 0 && old_selector != selector)
3526 delay = ops->set_voltage_time_sel(rdev, old_selector,
3527 selector);
3528 } else {
3529 if (old_uV != best_val) {
3530 if (ops->set_voltage_time)
3531 delay = ops->set_voltage_time(rdev, old_uV,
3532 best_val);
3533 else
3534 delay = _regulator_set_voltage_time(rdev,
3535 old_uV,
3536 best_val);
3537 }
3538 }
3539
3540 if (delay < 0) {
3541 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3542 delay = 0;
3543 }
3544
3545 /* Insert any necessary delays */
3546 if (delay >= 1000) {
3547 mdelay(delay / 1000);
3548 udelay(delay % 1000);
3549 } else if (delay) {
3550 udelay(delay);
3551 }
3552
3553 if (best_val >= 0) {
3554 unsigned long data = best_val;
3555
3556 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3557 (void *)data);
3558 }
3559
3560 out:
3561 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3562
3563 return ret;
3564 }
3565
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3566 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3567 int min_uV, int max_uV, suspend_state_t state)
3568 {
3569 struct regulator_state *rstate;
3570 int uV, sel;
3571
3572 rstate = regulator_get_suspend_state(rdev, state);
3573 if (rstate == NULL)
3574 return -EINVAL;
3575
3576 if (min_uV < rstate->min_uV)
3577 min_uV = rstate->min_uV;
3578 if (max_uV > rstate->max_uV)
3579 max_uV = rstate->max_uV;
3580
3581 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3582 if (sel < 0)
3583 return sel;
3584
3585 uV = rdev->desc->ops->list_voltage(rdev, sel);
3586 if (uV >= min_uV && uV <= max_uV)
3587 rstate->uV = uV;
3588
3589 return 0;
3590 }
3591
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3592 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3593 int min_uV, int max_uV,
3594 suspend_state_t state)
3595 {
3596 struct regulator_dev *rdev = regulator->rdev;
3597 struct regulator_voltage *voltage = ®ulator->voltage[state];
3598 int ret = 0;
3599 int old_min_uV, old_max_uV;
3600 int current_uV;
3601
3602 /* If we're setting the same range as last time the change
3603 * should be a noop (some cpufreq implementations use the same
3604 * voltage for multiple frequencies, for example).
3605 */
3606 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3607 goto out;
3608
3609 /* If we're trying to set a range that overlaps the current voltage,
3610 * return successfully even though the regulator does not support
3611 * changing the voltage.
3612 */
3613 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3614 current_uV = regulator_get_voltage_rdev(rdev);
3615 if (min_uV <= current_uV && current_uV <= max_uV) {
3616 voltage->min_uV = min_uV;
3617 voltage->max_uV = max_uV;
3618 goto out;
3619 }
3620 }
3621
3622 /* sanity check */
3623 if (!rdev->desc->ops->set_voltage &&
3624 !rdev->desc->ops->set_voltage_sel) {
3625 ret = -EINVAL;
3626 goto out;
3627 }
3628
3629 /* constraints check */
3630 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3631 if (ret < 0)
3632 goto out;
3633
3634 /* restore original values in case of error */
3635 old_min_uV = voltage->min_uV;
3636 old_max_uV = voltage->max_uV;
3637 voltage->min_uV = min_uV;
3638 voltage->max_uV = max_uV;
3639
3640 /* for not coupled regulators this will just set the voltage */
3641 ret = regulator_balance_voltage(rdev, state);
3642 if (ret < 0) {
3643 voltage->min_uV = old_min_uV;
3644 voltage->max_uV = old_max_uV;
3645 }
3646
3647 out:
3648 return ret;
3649 }
3650
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3651 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3652 int max_uV, suspend_state_t state)
3653 {
3654 int best_supply_uV = 0;
3655 int supply_change_uV = 0;
3656 int ret;
3657
3658 if (rdev->supply &&
3659 regulator_ops_is_valid(rdev->supply->rdev,
3660 REGULATOR_CHANGE_VOLTAGE) &&
3661 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3662 rdev->desc->ops->get_voltage_sel))) {
3663 int current_supply_uV;
3664 int selector;
3665
3666 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3667 if (selector < 0) {
3668 ret = selector;
3669 goto out;
3670 }
3671
3672 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3673 if (best_supply_uV < 0) {
3674 ret = best_supply_uV;
3675 goto out;
3676 }
3677
3678 best_supply_uV += rdev->desc->min_dropout_uV;
3679
3680 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3681 if (current_supply_uV < 0) {
3682 ret = current_supply_uV;
3683 goto out;
3684 }
3685
3686 supply_change_uV = best_supply_uV - current_supply_uV;
3687 }
3688
3689 if (supply_change_uV > 0) {
3690 ret = regulator_set_voltage_unlocked(rdev->supply,
3691 best_supply_uV, INT_MAX, state);
3692 if (ret) {
3693 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3694 ERR_PTR(ret));
3695 goto out;
3696 }
3697 }
3698
3699 if (state == PM_SUSPEND_ON)
3700 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3701 else
3702 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3703 max_uV, state);
3704 if (ret < 0)
3705 goto out;
3706
3707 if (supply_change_uV < 0) {
3708 ret = regulator_set_voltage_unlocked(rdev->supply,
3709 best_supply_uV, INT_MAX, state);
3710 if (ret)
3711 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3712 ERR_PTR(ret));
3713 /* No need to fail here */
3714 ret = 0;
3715 }
3716
3717 out:
3718 return ret;
3719 }
3720 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3721
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3722 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3723 int *current_uV, int *min_uV)
3724 {
3725 struct regulation_constraints *constraints = rdev->constraints;
3726
3727 /* Limit voltage change only if necessary */
3728 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3729 return 1;
3730
3731 if (*current_uV < 0) {
3732 *current_uV = regulator_get_voltage_rdev(rdev);
3733
3734 if (*current_uV < 0)
3735 return *current_uV;
3736 }
3737
3738 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3739 return 1;
3740
3741 /* Clamp target voltage within the given step */
3742 if (*current_uV < *min_uV)
3743 *min_uV = min(*current_uV + constraints->max_uV_step,
3744 *min_uV);
3745 else
3746 *min_uV = max(*current_uV - constraints->max_uV_step,
3747 *min_uV);
3748
3749 return 0;
3750 }
3751
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3752 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3753 int *current_uV,
3754 int *min_uV, int *max_uV,
3755 suspend_state_t state,
3756 int n_coupled)
3757 {
3758 struct coupling_desc *c_desc = &rdev->coupling_desc;
3759 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3760 struct regulation_constraints *constraints = rdev->constraints;
3761 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3762 int max_current_uV = 0, min_current_uV = INT_MAX;
3763 int highest_min_uV = 0, target_uV, possible_uV;
3764 int i, ret, max_spread;
3765 bool done;
3766
3767 *current_uV = -1;
3768
3769 /*
3770 * If there are no coupled regulators, simply set the voltage
3771 * demanded by consumers.
3772 */
3773 if (n_coupled == 1) {
3774 /*
3775 * If consumers don't provide any demands, set voltage
3776 * to min_uV
3777 */
3778 desired_min_uV = constraints->min_uV;
3779 desired_max_uV = constraints->max_uV;
3780
3781 ret = regulator_check_consumers(rdev,
3782 &desired_min_uV,
3783 &desired_max_uV, state);
3784 if (ret < 0)
3785 return ret;
3786
3787 possible_uV = desired_min_uV;
3788 done = true;
3789
3790 goto finish;
3791 }
3792
3793 /* Find highest min desired voltage */
3794 for (i = 0; i < n_coupled; i++) {
3795 int tmp_min = 0;
3796 int tmp_max = INT_MAX;
3797
3798 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3799
3800 ret = regulator_check_consumers(c_rdevs[i],
3801 &tmp_min,
3802 &tmp_max, state);
3803 if (ret < 0)
3804 return ret;
3805
3806 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3807 if (ret < 0)
3808 return ret;
3809
3810 highest_min_uV = max(highest_min_uV, tmp_min);
3811
3812 if (i == 0) {
3813 desired_min_uV = tmp_min;
3814 desired_max_uV = tmp_max;
3815 }
3816 }
3817
3818 max_spread = constraints->max_spread[0];
3819
3820 /*
3821 * Let target_uV be equal to the desired one if possible.
3822 * If not, set it to minimum voltage, allowed by other coupled
3823 * regulators.
3824 */
3825 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3826
3827 /*
3828 * Find min and max voltages, which currently aren't violating
3829 * max_spread.
3830 */
3831 for (i = 1; i < n_coupled; i++) {
3832 int tmp_act;
3833
3834 if (!_regulator_is_enabled(c_rdevs[i]))
3835 continue;
3836
3837 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3838 if (tmp_act < 0)
3839 return tmp_act;
3840
3841 min_current_uV = min(tmp_act, min_current_uV);
3842 max_current_uV = max(tmp_act, max_current_uV);
3843 }
3844
3845 /* There aren't any other regulators enabled */
3846 if (max_current_uV == 0) {
3847 possible_uV = target_uV;
3848 } else {
3849 /*
3850 * Correct target voltage, so as it currently isn't
3851 * violating max_spread
3852 */
3853 possible_uV = max(target_uV, max_current_uV - max_spread);
3854 possible_uV = min(possible_uV, min_current_uV + max_spread);
3855 }
3856
3857 if (possible_uV > desired_max_uV)
3858 return -EINVAL;
3859
3860 done = (possible_uV == target_uV);
3861 desired_min_uV = possible_uV;
3862
3863 finish:
3864 /* Apply max_uV_step constraint if necessary */
3865 if (state == PM_SUSPEND_ON) {
3866 ret = regulator_limit_voltage_step(rdev, current_uV,
3867 &desired_min_uV);
3868 if (ret < 0)
3869 return ret;
3870
3871 if (ret == 0)
3872 done = false;
3873 }
3874
3875 /* Set current_uV if wasn't done earlier in the code and if necessary */
3876 if (n_coupled > 1 && *current_uV == -1) {
3877
3878 if (_regulator_is_enabled(rdev)) {
3879 ret = regulator_get_voltage_rdev(rdev);
3880 if (ret < 0)
3881 return ret;
3882
3883 *current_uV = ret;
3884 } else {
3885 *current_uV = desired_min_uV;
3886 }
3887 }
3888
3889 *min_uV = desired_min_uV;
3890 *max_uV = desired_max_uV;
3891
3892 return done;
3893 }
3894
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)3895 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3896 suspend_state_t state, bool skip_coupled)
3897 {
3898 struct regulator_dev **c_rdevs;
3899 struct regulator_dev *best_rdev;
3900 struct coupling_desc *c_desc = &rdev->coupling_desc;
3901 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3902 unsigned int delta, best_delta;
3903 unsigned long c_rdev_done = 0;
3904 bool best_c_rdev_done;
3905
3906 c_rdevs = c_desc->coupled_rdevs;
3907 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3908
3909 /*
3910 * Find the best possible voltage change on each loop. Leave the loop
3911 * if there isn't any possible change.
3912 */
3913 do {
3914 best_c_rdev_done = false;
3915 best_delta = 0;
3916 best_min_uV = 0;
3917 best_max_uV = 0;
3918 best_c_rdev = 0;
3919 best_rdev = NULL;
3920
3921 /*
3922 * Find highest difference between optimal voltage
3923 * and current voltage.
3924 */
3925 for (i = 0; i < n_coupled; i++) {
3926 /*
3927 * optimal_uV is the best voltage that can be set for
3928 * i-th regulator at the moment without violating
3929 * max_spread constraint in order to balance
3930 * the coupled voltages.
3931 */
3932 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3933
3934 if (test_bit(i, &c_rdev_done))
3935 continue;
3936
3937 ret = regulator_get_optimal_voltage(c_rdevs[i],
3938 ¤t_uV,
3939 &optimal_uV,
3940 &optimal_max_uV,
3941 state, n_coupled);
3942 if (ret < 0)
3943 goto out;
3944
3945 delta = abs(optimal_uV - current_uV);
3946
3947 if (delta && best_delta <= delta) {
3948 best_c_rdev_done = ret;
3949 best_delta = delta;
3950 best_rdev = c_rdevs[i];
3951 best_min_uV = optimal_uV;
3952 best_max_uV = optimal_max_uV;
3953 best_c_rdev = i;
3954 }
3955 }
3956
3957 /* Nothing to change, return successfully */
3958 if (!best_rdev) {
3959 ret = 0;
3960 goto out;
3961 }
3962
3963 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3964 best_max_uV, state);
3965
3966 if (ret < 0)
3967 goto out;
3968
3969 if (best_c_rdev_done)
3970 set_bit(best_c_rdev, &c_rdev_done);
3971
3972 } while (n_coupled > 1);
3973
3974 out:
3975 return ret;
3976 }
3977
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)3978 static int regulator_balance_voltage(struct regulator_dev *rdev,
3979 suspend_state_t state)
3980 {
3981 struct coupling_desc *c_desc = &rdev->coupling_desc;
3982 struct regulator_coupler *coupler = c_desc->coupler;
3983 bool skip_coupled = false;
3984
3985 /*
3986 * If system is in a state other than PM_SUSPEND_ON, don't check
3987 * other coupled regulators.
3988 */
3989 if (state != PM_SUSPEND_ON)
3990 skip_coupled = true;
3991
3992 if (c_desc->n_resolved < c_desc->n_coupled) {
3993 rdev_err(rdev, "Not all coupled regulators registered\n");
3994 return -EPERM;
3995 }
3996
3997 /* Invoke custom balancer for customized couplers */
3998 if (coupler && coupler->balance_voltage)
3999 return coupler->balance_voltage(coupler, rdev, state);
4000
4001 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4002 }
4003
4004 /**
4005 * regulator_set_voltage - set regulator output voltage
4006 * @regulator: regulator source
4007 * @min_uV: Minimum required voltage in uV
4008 * @max_uV: Maximum acceptable voltage in uV
4009 *
4010 * Sets a voltage regulator to the desired output voltage. This can be set
4011 * during any regulator state. IOW, regulator can be disabled or enabled.
4012 *
4013 * If the regulator is enabled then the voltage will change to the new value
4014 * immediately otherwise if the regulator is disabled the regulator will
4015 * output at the new voltage when enabled.
4016 *
4017 * NOTE: If the regulator is shared between several devices then the lowest
4018 * request voltage that meets the system constraints will be used.
4019 * Regulator system constraints must be set for this regulator before
4020 * calling this function otherwise this call will fail.
4021 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4022 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4023 {
4024 struct ww_acquire_ctx ww_ctx;
4025 int ret;
4026
4027 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4028
4029 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4030 PM_SUSPEND_ON);
4031
4032 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4033
4034 return ret;
4035 }
4036 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4037
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4038 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4039 suspend_state_t state, bool en)
4040 {
4041 struct regulator_state *rstate;
4042
4043 rstate = regulator_get_suspend_state(rdev, state);
4044 if (rstate == NULL)
4045 return -EINVAL;
4046
4047 if (!rstate->changeable)
4048 return -EPERM;
4049
4050 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4051
4052 return 0;
4053 }
4054
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4055 int regulator_suspend_enable(struct regulator_dev *rdev,
4056 suspend_state_t state)
4057 {
4058 return regulator_suspend_toggle(rdev, state, true);
4059 }
4060 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4061
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4062 int regulator_suspend_disable(struct regulator_dev *rdev,
4063 suspend_state_t state)
4064 {
4065 struct regulator *regulator;
4066 struct regulator_voltage *voltage;
4067
4068 /*
4069 * if any consumer wants this regulator device keeping on in
4070 * suspend states, don't set it as disabled.
4071 */
4072 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4073 voltage = ®ulator->voltage[state];
4074 if (voltage->min_uV || voltage->max_uV)
4075 return 0;
4076 }
4077
4078 return regulator_suspend_toggle(rdev, state, false);
4079 }
4080 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4081
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4082 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4083 int min_uV, int max_uV,
4084 suspend_state_t state)
4085 {
4086 struct regulator_dev *rdev = regulator->rdev;
4087 struct regulator_state *rstate;
4088
4089 rstate = regulator_get_suspend_state(rdev, state);
4090 if (rstate == NULL)
4091 return -EINVAL;
4092
4093 if (rstate->min_uV == rstate->max_uV) {
4094 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4095 return -EPERM;
4096 }
4097
4098 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4099 }
4100
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4101 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4102 int max_uV, suspend_state_t state)
4103 {
4104 struct ww_acquire_ctx ww_ctx;
4105 int ret;
4106
4107 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4108 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4109 return -EINVAL;
4110
4111 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4112
4113 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4114 max_uV, state);
4115
4116 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4117
4118 return ret;
4119 }
4120 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4121
4122 /**
4123 * regulator_set_voltage_time - get raise/fall time
4124 * @regulator: regulator source
4125 * @old_uV: starting voltage in microvolts
4126 * @new_uV: target voltage in microvolts
4127 *
4128 * Provided with the starting and ending voltage, this function attempts to
4129 * calculate the time in microseconds required to rise or fall to this new
4130 * voltage.
4131 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4132 int regulator_set_voltage_time(struct regulator *regulator,
4133 int old_uV, int new_uV)
4134 {
4135 struct regulator_dev *rdev = regulator->rdev;
4136 const struct regulator_ops *ops = rdev->desc->ops;
4137 int old_sel = -1;
4138 int new_sel = -1;
4139 int voltage;
4140 int i;
4141
4142 if (ops->set_voltage_time)
4143 return ops->set_voltage_time(rdev, old_uV, new_uV);
4144 else if (!ops->set_voltage_time_sel)
4145 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4146
4147 /* Currently requires operations to do this */
4148 if (!ops->list_voltage || !rdev->desc->n_voltages)
4149 return -EINVAL;
4150
4151 for (i = 0; i < rdev->desc->n_voltages; i++) {
4152 /* We only look for exact voltage matches here */
4153
4154 if (old_sel >= 0 && new_sel >= 0)
4155 break;
4156
4157 voltage = regulator_list_voltage(regulator, i);
4158 if (voltage < 0)
4159 return -EINVAL;
4160 if (voltage == 0)
4161 continue;
4162 if (voltage == old_uV)
4163 old_sel = i;
4164 if (voltage == new_uV)
4165 new_sel = i;
4166 }
4167
4168 if (old_sel < 0 || new_sel < 0)
4169 return -EINVAL;
4170
4171 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4172 }
4173 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4174
4175 /**
4176 * regulator_set_voltage_time_sel - get raise/fall time
4177 * @rdev: regulator source device
4178 * @old_selector: selector for starting voltage
4179 * @new_selector: selector for target voltage
4180 *
4181 * Provided with the starting and target voltage selectors, this function
4182 * returns time in microseconds required to rise or fall to this new voltage
4183 *
4184 * Drivers providing ramp_delay in regulation_constraints can use this as their
4185 * set_voltage_time_sel() operation.
4186 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4187 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4188 unsigned int old_selector,
4189 unsigned int new_selector)
4190 {
4191 int old_volt, new_volt;
4192
4193 /* sanity check */
4194 if (!rdev->desc->ops->list_voltage)
4195 return -EINVAL;
4196
4197 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4198 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4199
4200 if (rdev->desc->ops->set_voltage_time)
4201 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4202 new_volt);
4203 else
4204 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4205 }
4206 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4207
4208 /**
4209 * regulator_sync_voltage - re-apply last regulator output voltage
4210 * @regulator: regulator source
4211 *
4212 * Re-apply the last configured voltage. This is intended to be used
4213 * where some external control source the consumer is cooperating with
4214 * has caused the configured voltage to change.
4215 */
regulator_sync_voltage(struct regulator * regulator)4216 int regulator_sync_voltage(struct regulator *regulator)
4217 {
4218 struct regulator_dev *rdev = regulator->rdev;
4219 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4220 int ret, min_uV, max_uV;
4221
4222 regulator_lock(rdev);
4223
4224 if (!rdev->desc->ops->set_voltage &&
4225 !rdev->desc->ops->set_voltage_sel) {
4226 ret = -EINVAL;
4227 goto out;
4228 }
4229
4230 /* This is only going to work if we've had a voltage configured. */
4231 if (!voltage->min_uV && !voltage->max_uV) {
4232 ret = -EINVAL;
4233 goto out;
4234 }
4235
4236 min_uV = voltage->min_uV;
4237 max_uV = voltage->max_uV;
4238
4239 /* This should be a paranoia check... */
4240 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4241 if (ret < 0)
4242 goto out;
4243
4244 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4245 if (ret < 0)
4246 goto out;
4247
4248 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4249
4250 out:
4251 regulator_unlock(rdev);
4252 return ret;
4253 }
4254 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4255
regulator_get_voltage_rdev(struct regulator_dev * rdev)4256 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4257 {
4258 int sel, ret;
4259 bool bypassed;
4260
4261 if (rdev->desc->ops->get_bypass) {
4262 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4263 if (ret < 0)
4264 return ret;
4265 if (bypassed) {
4266 /* if bypassed the regulator must have a supply */
4267 if (!rdev->supply) {
4268 rdev_err(rdev,
4269 "bypassed regulator has no supply!\n");
4270 return -EPROBE_DEFER;
4271 }
4272
4273 return regulator_get_voltage_rdev(rdev->supply->rdev);
4274 }
4275 }
4276
4277 if (rdev->desc->ops->get_voltage_sel) {
4278 sel = rdev->desc->ops->get_voltage_sel(rdev);
4279 if (sel < 0)
4280 return sel;
4281 ret = rdev->desc->ops->list_voltage(rdev, sel);
4282 } else if (rdev->desc->ops->get_voltage) {
4283 ret = rdev->desc->ops->get_voltage(rdev);
4284 } else if (rdev->desc->ops->list_voltage) {
4285 ret = rdev->desc->ops->list_voltage(rdev, 0);
4286 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4287 ret = rdev->desc->fixed_uV;
4288 } else if (rdev->supply) {
4289 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4290 } else if (rdev->supply_name) {
4291 return -EPROBE_DEFER;
4292 } else {
4293 return -EINVAL;
4294 }
4295
4296 if (ret < 0)
4297 return ret;
4298 return ret - rdev->constraints->uV_offset;
4299 }
4300 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4301
4302 /**
4303 * regulator_get_voltage - get regulator output voltage
4304 * @regulator: regulator source
4305 *
4306 * This returns the current regulator voltage in uV.
4307 *
4308 * NOTE: If the regulator is disabled it will return the voltage value. This
4309 * function should not be used to determine regulator state.
4310 */
regulator_get_voltage(struct regulator * regulator)4311 int regulator_get_voltage(struct regulator *regulator)
4312 {
4313 struct ww_acquire_ctx ww_ctx;
4314 int ret;
4315
4316 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4317 ret = regulator_get_voltage_rdev(regulator->rdev);
4318 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4319
4320 return ret;
4321 }
4322 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4323
4324 /**
4325 * regulator_set_current_limit - set regulator output current limit
4326 * @regulator: regulator source
4327 * @min_uA: Minimum supported current in uA
4328 * @max_uA: Maximum supported current in uA
4329 *
4330 * Sets current sink to the desired output current. This can be set during
4331 * any regulator state. IOW, regulator can be disabled or enabled.
4332 *
4333 * If the regulator is enabled then the current will change to the new value
4334 * immediately otherwise if the regulator is disabled the regulator will
4335 * output at the new current when enabled.
4336 *
4337 * NOTE: Regulator system constraints must be set for this regulator before
4338 * calling this function otherwise this call will fail.
4339 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4340 int regulator_set_current_limit(struct regulator *regulator,
4341 int min_uA, int max_uA)
4342 {
4343 struct regulator_dev *rdev = regulator->rdev;
4344 int ret;
4345
4346 regulator_lock(rdev);
4347
4348 /* sanity check */
4349 if (!rdev->desc->ops->set_current_limit) {
4350 ret = -EINVAL;
4351 goto out;
4352 }
4353
4354 /* constraints check */
4355 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4356 if (ret < 0)
4357 goto out;
4358
4359 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4360 out:
4361 regulator_unlock(rdev);
4362 return ret;
4363 }
4364 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4365
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4366 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4367 {
4368 /* sanity check */
4369 if (!rdev->desc->ops->get_current_limit)
4370 return -EINVAL;
4371
4372 return rdev->desc->ops->get_current_limit(rdev);
4373 }
4374
_regulator_get_current_limit(struct regulator_dev * rdev)4375 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4376 {
4377 int ret;
4378
4379 regulator_lock(rdev);
4380 ret = _regulator_get_current_limit_unlocked(rdev);
4381 regulator_unlock(rdev);
4382
4383 return ret;
4384 }
4385
4386 /**
4387 * regulator_get_current_limit - get regulator output current
4388 * @regulator: regulator source
4389 *
4390 * This returns the current supplied by the specified current sink in uA.
4391 *
4392 * NOTE: If the regulator is disabled it will return the current value. This
4393 * function should not be used to determine regulator state.
4394 */
regulator_get_current_limit(struct regulator * regulator)4395 int regulator_get_current_limit(struct regulator *regulator)
4396 {
4397 return _regulator_get_current_limit(regulator->rdev);
4398 }
4399 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4400
4401 /**
4402 * regulator_set_mode - set regulator operating mode
4403 * @regulator: regulator source
4404 * @mode: operating mode - one of the REGULATOR_MODE constants
4405 *
4406 * Set regulator operating mode to increase regulator efficiency or improve
4407 * regulation performance.
4408 *
4409 * NOTE: Regulator system constraints must be set for this regulator before
4410 * calling this function otherwise this call will fail.
4411 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4412 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4413 {
4414 struct regulator_dev *rdev = regulator->rdev;
4415 int ret;
4416 int regulator_curr_mode;
4417
4418 regulator_lock(rdev);
4419
4420 /* sanity check */
4421 if (!rdev->desc->ops->set_mode) {
4422 ret = -EINVAL;
4423 goto out;
4424 }
4425
4426 /* return if the same mode is requested */
4427 if (rdev->desc->ops->get_mode) {
4428 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4429 if (regulator_curr_mode == mode) {
4430 ret = 0;
4431 goto out;
4432 }
4433 }
4434
4435 /* constraints check */
4436 ret = regulator_mode_constrain(rdev, &mode);
4437 if (ret < 0)
4438 goto out;
4439
4440 ret = rdev->desc->ops->set_mode(rdev, mode);
4441 out:
4442 regulator_unlock(rdev);
4443 return ret;
4444 }
4445 EXPORT_SYMBOL_GPL(regulator_set_mode);
4446
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4447 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4448 {
4449 /* sanity check */
4450 if (!rdev->desc->ops->get_mode)
4451 return -EINVAL;
4452
4453 return rdev->desc->ops->get_mode(rdev);
4454 }
4455
_regulator_get_mode(struct regulator_dev * rdev)4456 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4457 {
4458 int ret;
4459
4460 regulator_lock(rdev);
4461 ret = _regulator_get_mode_unlocked(rdev);
4462 regulator_unlock(rdev);
4463
4464 return ret;
4465 }
4466
4467 /**
4468 * regulator_get_mode - get regulator operating mode
4469 * @regulator: regulator source
4470 *
4471 * Get the current regulator operating mode.
4472 */
regulator_get_mode(struct regulator * regulator)4473 unsigned int regulator_get_mode(struct regulator *regulator)
4474 {
4475 return _regulator_get_mode(regulator->rdev);
4476 }
4477 EXPORT_SYMBOL_GPL(regulator_get_mode);
4478
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4479 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4480 unsigned int *flags)
4481 {
4482 int ret;
4483
4484 regulator_lock(rdev);
4485
4486 /* sanity check */
4487 if (!rdev->desc->ops->get_error_flags) {
4488 ret = -EINVAL;
4489 goto out;
4490 }
4491
4492 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4493 out:
4494 regulator_unlock(rdev);
4495 return ret;
4496 }
4497
4498 /**
4499 * regulator_get_error_flags - get regulator error information
4500 * @regulator: regulator source
4501 * @flags: pointer to store error flags
4502 *
4503 * Get the current regulator error information.
4504 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4505 int regulator_get_error_flags(struct regulator *regulator,
4506 unsigned int *flags)
4507 {
4508 return _regulator_get_error_flags(regulator->rdev, flags);
4509 }
4510 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4511
4512 /**
4513 * regulator_set_load - set regulator load
4514 * @regulator: regulator source
4515 * @uA_load: load current
4516 *
4517 * Notifies the regulator core of a new device load. This is then used by
4518 * DRMS (if enabled by constraints) to set the most efficient regulator
4519 * operating mode for the new regulator loading.
4520 *
4521 * Consumer devices notify their supply regulator of the maximum power
4522 * they will require (can be taken from device datasheet in the power
4523 * consumption tables) when they change operational status and hence power
4524 * state. Examples of operational state changes that can affect power
4525 * consumption are :-
4526 *
4527 * o Device is opened / closed.
4528 * o Device I/O is about to begin or has just finished.
4529 * o Device is idling in between work.
4530 *
4531 * This information is also exported via sysfs to userspace.
4532 *
4533 * DRMS will sum the total requested load on the regulator and change
4534 * to the most efficient operating mode if platform constraints allow.
4535 *
4536 * NOTE: when a regulator consumer requests to have a regulator
4537 * disabled then any load that consumer requested no longer counts
4538 * toward the total requested load. If the regulator is re-enabled
4539 * then the previously requested load will start counting again.
4540 *
4541 * If a regulator is an always-on regulator then an individual consumer's
4542 * load will still be removed if that consumer is fully disabled.
4543 *
4544 * On error a negative errno is returned.
4545 */
regulator_set_load(struct regulator * regulator,int uA_load)4546 int regulator_set_load(struct regulator *regulator, int uA_load)
4547 {
4548 struct regulator_dev *rdev = regulator->rdev;
4549 int old_uA_load;
4550 int ret = 0;
4551
4552 regulator_lock(rdev);
4553 old_uA_load = regulator->uA_load;
4554 regulator->uA_load = uA_load;
4555 if (regulator->enable_count && old_uA_load != uA_load) {
4556 ret = drms_uA_update(rdev);
4557 if (ret < 0)
4558 regulator->uA_load = old_uA_load;
4559 }
4560 regulator_unlock(rdev);
4561
4562 return ret;
4563 }
4564 EXPORT_SYMBOL_GPL(regulator_set_load);
4565
4566 /**
4567 * regulator_allow_bypass - allow the regulator to go into bypass mode
4568 *
4569 * @regulator: Regulator to configure
4570 * @enable: enable or disable bypass mode
4571 *
4572 * Allow the regulator to go into bypass mode if all other consumers
4573 * for the regulator also enable bypass mode and the machine
4574 * constraints allow this. Bypass mode means that the regulator is
4575 * simply passing the input directly to the output with no regulation.
4576 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4577 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4578 {
4579 struct regulator_dev *rdev = regulator->rdev;
4580 const char *name = rdev_get_name(rdev);
4581 int ret = 0;
4582
4583 if (!rdev->desc->ops->set_bypass)
4584 return 0;
4585
4586 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4587 return 0;
4588
4589 regulator_lock(rdev);
4590
4591 if (enable && !regulator->bypass) {
4592 rdev->bypass_count++;
4593
4594 if (rdev->bypass_count == rdev->open_count) {
4595 trace_regulator_bypass_enable(name);
4596
4597 ret = rdev->desc->ops->set_bypass(rdev, enable);
4598 if (ret != 0)
4599 rdev->bypass_count--;
4600 else
4601 trace_regulator_bypass_enable_complete(name);
4602 }
4603
4604 } else if (!enable && regulator->bypass) {
4605 rdev->bypass_count--;
4606
4607 if (rdev->bypass_count != rdev->open_count) {
4608 trace_regulator_bypass_disable(name);
4609
4610 ret = rdev->desc->ops->set_bypass(rdev, enable);
4611 if (ret != 0)
4612 rdev->bypass_count++;
4613 else
4614 trace_regulator_bypass_disable_complete(name);
4615 }
4616 }
4617
4618 if (ret == 0)
4619 regulator->bypass = enable;
4620
4621 regulator_unlock(rdev);
4622
4623 return ret;
4624 }
4625 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4626
4627 /**
4628 * regulator_register_notifier - register regulator event notifier
4629 * @regulator: regulator source
4630 * @nb: notifier block
4631 *
4632 * Register notifier block to receive regulator events.
4633 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4634 int regulator_register_notifier(struct regulator *regulator,
4635 struct notifier_block *nb)
4636 {
4637 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4638 nb);
4639 }
4640 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4641
4642 /**
4643 * regulator_unregister_notifier - unregister regulator event notifier
4644 * @regulator: regulator source
4645 * @nb: notifier block
4646 *
4647 * Unregister regulator event notifier block.
4648 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4649 int regulator_unregister_notifier(struct regulator *regulator,
4650 struct notifier_block *nb)
4651 {
4652 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4653 nb);
4654 }
4655 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4656
4657 /* notify regulator consumers and downstream regulator consumers.
4658 * Note mutex must be held by caller.
4659 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4660 static int _notifier_call_chain(struct regulator_dev *rdev,
4661 unsigned long event, void *data)
4662 {
4663 /* call rdev chain first */
4664 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4665 }
4666
4667 /**
4668 * regulator_bulk_get - get multiple regulator consumers
4669 *
4670 * @dev: Device to supply
4671 * @num_consumers: Number of consumers to register
4672 * @consumers: Configuration of consumers; clients are stored here.
4673 *
4674 * @return 0 on success, an errno on failure.
4675 *
4676 * This helper function allows drivers to get several regulator
4677 * consumers in one operation. If any of the regulators cannot be
4678 * acquired then any regulators that were allocated will be freed
4679 * before returning to the caller.
4680 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4681 int regulator_bulk_get(struct device *dev, int num_consumers,
4682 struct regulator_bulk_data *consumers)
4683 {
4684 int i;
4685 int ret;
4686
4687 for (i = 0; i < num_consumers; i++)
4688 consumers[i].consumer = NULL;
4689
4690 for (i = 0; i < num_consumers; i++) {
4691 consumers[i].consumer = regulator_get(dev,
4692 consumers[i].supply);
4693 if (IS_ERR(consumers[i].consumer)) {
4694 ret = PTR_ERR(consumers[i].consumer);
4695 consumers[i].consumer = NULL;
4696 goto err;
4697 }
4698 }
4699
4700 return 0;
4701
4702 err:
4703 if (ret != -EPROBE_DEFER)
4704 dev_err(dev, "Failed to get supply '%s': %pe\n",
4705 consumers[i].supply, ERR_PTR(ret));
4706 else
4707 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4708 consumers[i].supply);
4709
4710 while (--i >= 0)
4711 regulator_put(consumers[i].consumer);
4712
4713 return ret;
4714 }
4715 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4716
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4717 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4718 {
4719 struct regulator_bulk_data *bulk = data;
4720
4721 bulk->ret = regulator_enable(bulk->consumer);
4722 }
4723
4724 /**
4725 * regulator_bulk_enable - enable multiple regulator consumers
4726 *
4727 * @num_consumers: Number of consumers
4728 * @consumers: Consumer data; clients are stored here.
4729 * @return 0 on success, an errno on failure
4730 *
4731 * This convenience API allows consumers to enable multiple regulator
4732 * clients in a single API call. If any consumers cannot be enabled
4733 * then any others that were enabled will be disabled again prior to
4734 * return.
4735 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4736 int regulator_bulk_enable(int num_consumers,
4737 struct regulator_bulk_data *consumers)
4738 {
4739 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4740 int i;
4741 int ret = 0;
4742
4743 for (i = 0; i < num_consumers; i++) {
4744 async_schedule_domain(regulator_bulk_enable_async,
4745 &consumers[i], &async_domain);
4746 }
4747
4748 async_synchronize_full_domain(&async_domain);
4749
4750 /* If any consumer failed we need to unwind any that succeeded */
4751 for (i = 0; i < num_consumers; i++) {
4752 if (consumers[i].ret != 0) {
4753 ret = consumers[i].ret;
4754 goto err;
4755 }
4756 }
4757
4758 return 0;
4759
4760 err:
4761 for (i = 0; i < num_consumers; i++) {
4762 if (consumers[i].ret < 0)
4763 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4764 ERR_PTR(consumers[i].ret));
4765 else
4766 regulator_disable(consumers[i].consumer);
4767 }
4768
4769 return ret;
4770 }
4771 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4772
4773 /**
4774 * regulator_bulk_disable - disable multiple regulator consumers
4775 *
4776 * @num_consumers: Number of consumers
4777 * @consumers: Consumer data; clients are stored here.
4778 * @return 0 on success, an errno on failure
4779 *
4780 * This convenience API allows consumers to disable multiple regulator
4781 * clients in a single API call. If any consumers cannot be disabled
4782 * then any others that were disabled will be enabled again prior to
4783 * return.
4784 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4785 int regulator_bulk_disable(int num_consumers,
4786 struct regulator_bulk_data *consumers)
4787 {
4788 int i;
4789 int ret, r;
4790
4791 for (i = num_consumers - 1; i >= 0; --i) {
4792 ret = regulator_disable(consumers[i].consumer);
4793 if (ret != 0)
4794 goto err;
4795 }
4796
4797 return 0;
4798
4799 err:
4800 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4801 for (++i; i < num_consumers; ++i) {
4802 r = regulator_enable(consumers[i].consumer);
4803 if (r != 0)
4804 pr_err("Failed to re-enable %s: %pe\n",
4805 consumers[i].supply, ERR_PTR(r));
4806 }
4807
4808 return ret;
4809 }
4810 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4811
4812 /**
4813 * regulator_bulk_force_disable - force disable multiple regulator consumers
4814 *
4815 * @num_consumers: Number of consumers
4816 * @consumers: Consumer data; clients are stored here.
4817 * @return 0 on success, an errno on failure
4818 *
4819 * This convenience API allows consumers to forcibly disable multiple regulator
4820 * clients in a single API call.
4821 * NOTE: This should be used for situations when device damage will
4822 * likely occur if the regulators are not disabled (e.g. over temp).
4823 * Although regulator_force_disable function call for some consumers can
4824 * return error numbers, the function is called for all consumers.
4825 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)4826 int regulator_bulk_force_disable(int num_consumers,
4827 struct regulator_bulk_data *consumers)
4828 {
4829 int i;
4830 int ret = 0;
4831
4832 for (i = 0; i < num_consumers; i++) {
4833 consumers[i].ret =
4834 regulator_force_disable(consumers[i].consumer);
4835
4836 /* Store first error for reporting */
4837 if (consumers[i].ret && !ret)
4838 ret = consumers[i].ret;
4839 }
4840
4841 return ret;
4842 }
4843 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4844
4845 /**
4846 * regulator_bulk_free - free multiple regulator consumers
4847 *
4848 * @num_consumers: Number of consumers
4849 * @consumers: Consumer data; clients are stored here.
4850 *
4851 * This convenience API allows consumers to free multiple regulator
4852 * clients in a single API call.
4853 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)4854 void regulator_bulk_free(int num_consumers,
4855 struct regulator_bulk_data *consumers)
4856 {
4857 int i;
4858
4859 for (i = 0; i < num_consumers; i++) {
4860 regulator_put(consumers[i].consumer);
4861 consumers[i].consumer = NULL;
4862 }
4863 }
4864 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4865
4866 /**
4867 * regulator_notifier_call_chain - call regulator event notifier
4868 * @rdev: regulator source
4869 * @event: notifier block
4870 * @data: callback-specific data.
4871 *
4872 * Called by regulator drivers to notify clients a regulator event has
4873 * occurred.
4874 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4875 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4876 unsigned long event, void *data)
4877 {
4878 _notifier_call_chain(rdev, event, data);
4879 return NOTIFY_DONE;
4880
4881 }
4882 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4883
4884 /**
4885 * regulator_mode_to_status - convert a regulator mode into a status
4886 *
4887 * @mode: Mode to convert
4888 *
4889 * Convert a regulator mode into a status.
4890 */
regulator_mode_to_status(unsigned int mode)4891 int regulator_mode_to_status(unsigned int mode)
4892 {
4893 switch (mode) {
4894 case REGULATOR_MODE_FAST:
4895 return REGULATOR_STATUS_FAST;
4896 case REGULATOR_MODE_NORMAL:
4897 return REGULATOR_STATUS_NORMAL;
4898 case REGULATOR_MODE_IDLE:
4899 return REGULATOR_STATUS_IDLE;
4900 case REGULATOR_MODE_STANDBY:
4901 return REGULATOR_STATUS_STANDBY;
4902 default:
4903 return REGULATOR_STATUS_UNDEFINED;
4904 }
4905 }
4906 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4907
4908 static struct attribute *regulator_dev_attrs[] = {
4909 &dev_attr_name.attr,
4910 &dev_attr_num_users.attr,
4911 &dev_attr_type.attr,
4912 &dev_attr_microvolts.attr,
4913 &dev_attr_microamps.attr,
4914 &dev_attr_opmode.attr,
4915 &dev_attr_state.attr,
4916 &dev_attr_status.attr,
4917 &dev_attr_bypass.attr,
4918 &dev_attr_requested_microamps.attr,
4919 &dev_attr_min_microvolts.attr,
4920 &dev_attr_max_microvolts.attr,
4921 &dev_attr_min_microamps.attr,
4922 &dev_attr_max_microamps.attr,
4923 &dev_attr_suspend_standby_state.attr,
4924 &dev_attr_suspend_mem_state.attr,
4925 &dev_attr_suspend_disk_state.attr,
4926 &dev_attr_suspend_standby_microvolts.attr,
4927 &dev_attr_suspend_mem_microvolts.attr,
4928 &dev_attr_suspend_disk_microvolts.attr,
4929 &dev_attr_suspend_standby_mode.attr,
4930 &dev_attr_suspend_mem_mode.attr,
4931 &dev_attr_suspend_disk_mode.attr,
4932 NULL
4933 };
4934
4935 /*
4936 * To avoid cluttering sysfs (and memory) with useless state, only
4937 * create attributes that can be meaningfully displayed.
4938 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)4939 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4940 struct attribute *attr, int idx)
4941 {
4942 struct device *dev = kobj_to_dev(kobj);
4943 struct regulator_dev *rdev = dev_to_rdev(dev);
4944 const struct regulator_ops *ops = rdev->desc->ops;
4945 umode_t mode = attr->mode;
4946
4947 /* these three are always present */
4948 if (attr == &dev_attr_name.attr ||
4949 attr == &dev_attr_num_users.attr ||
4950 attr == &dev_attr_type.attr)
4951 return mode;
4952
4953 /* some attributes need specific methods to be displayed */
4954 if (attr == &dev_attr_microvolts.attr) {
4955 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4956 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4957 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4958 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4959 return mode;
4960 return 0;
4961 }
4962
4963 if (attr == &dev_attr_microamps.attr)
4964 return ops->get_current_limit ? mode : 0;
4965
4966 if (attr == &dev_attr_opmode.attr)
4967 return ops->get_mode ? mode : 0;
4968
4969 if (attr == &dev_attr_state.attr)
4970 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4971
4972 if (attr == &dev_attr_status.attr)
4973 return ops->get_status ? mode : 0;
4974
4975 if (attr == &dev_attr_bypass.attr)
4976 return ops->get_bypass ? mode : 0;
4977
4978 /* constraints need specific supporting methods */
4979 if (attr == &dev_attr_min_microvolts.attr ||
4980 attr == &dev_attr_max_microvolts.attr)
4981 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4982
4983 if (attr == &dev_attr_min_microamps.attr ||
4984 attr == &dev_attr_max_microamps.attr)
4985 return ops->set_current_limit ? mode : 0;
4986
4987 if (attr == &dev_attr_suspend_standby_state.attr ||
4988 attr == &dev_attr_suspend_mem_state.attr ||
4989 attr == &dev_attr_suspend_disk_state.attr)
4990 return mode;
4991
4992 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4993 attr == &dev_attr_suspend_mem_microvolts.attr ||
4994 attr == &dev_attr_suspend_disk_microvolts.attr)
4995 return ops->set_suspend_voltage ? mode : 0;
4996
4997 if (attr == &dev_attr_suspend_standby_mode.attr ||
4998 attr == &dev_attr_suspend_mem_mode.attr ||
4999 attr == &dev_attr_suspend_disk_mode.attr)
5000 return ops->set_suspend_mode ? mode : 0;
5001
5002 return mode;
5003 }
5004
5005 static const struct attribute_group regulator_dev_group = {
5006 .attrs = regulator_dev_attrs,
5007 .is_visible = regulator_attr_is_visible,
5008 };
5009
5010 static const struct attribute_group *regulator_dev_groups[] = {
5011 ®ulator_dev_group,
5012 NULL
5013 };
5014
regulator_dev_release(struct device * dev)5015 static void regulator_dev_release(struct device *dev)
5016 {
5017 struct regulator_dev *rdev = dev_get_drvdata(dev);
5018
5019 debugfs_remove_recursive(rdev->debugfs);
5020 kfree(rdev->constraints);
5021 of_node_put(rdev->dev.of_node);
5022 kfree(rdev);
5023 }
5024
rdev_init_debugfs(struct regulator_dev * rdev)5025 static void rdev_init_debugfs(struct regulator_dev *rdev)
5026 {
5027 struct device *parent = rdev->dev.parent;
5028 const char *rname = rdev_get_name(rdev);
5029 char name[NAME_MAX];
5030
5031 /* Avoid duplicate debugfs directory names */
5032 if (parent && rname == rdev->desc->name) {
5033 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5034 rname);
5035 rname = name;
5036 }
5037
5038 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5039 if (IS_ERR(rdev->debugfs))
5040 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5041
5042 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5043 &rdev->use_count);
5044 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5045 &rdev->open_count);
5046 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5047 &rdev->bypass_count);
5048 }
5049
regulator_register_resolve_supply(struct device * dev,void * data)5050 static int regulator_register_resolve_supply(struct device *dev, void *data)
5051 {
5052 struct regulator_dev *rdev = dev_to_rdev(dev);
5053
5054 if (regulator_resolve_supply(rdev))
5055 rdev_dbg(rdev, "unable to resolve supply\n");
5056
5057 return 0;
5058 }
5059
regulator_coupler_register(struct regulator_coupler * coupler)5060 int regulator_coupler_register(struct regulator_coupler *coupler)
5061 {
5062 mutex_lock(®ulator_list_mutex);
5063 list_add_tail(&coupler->list, ®ulator_coupler_list);
5064 mutex_unlock(®ulator_list_mutex);
5065
5066 return 0;
5067 }
5068
5069 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5070 regulator_find_coupler(struct regulator_dev *rdev)
5071 {
5072 struct regulator_coupler *coupler;
5073 int err;
5074
5075 /*
5076 * Note that regulators are appended to the list and the generic
5077 * coupler is registered first, hence it will be attached at last
5078 * if nobody cared.
5079 */
5080 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5081 err = coupler->attach_regulator(coupler, rdev);
5082 if (!err) {
5083 if (!coupler->balance_voltage &&
5084 rdev->coupling_desc.n_coupled > 2)
5085 goto err_unsupported;
5086
5087 return coupler;
5088 }
5089
5090 if (err < 0)
5091 return ERR_PTR(err);
5092
5093 if (err == 1)
5094 continue;
5095
5096 break;
5097 }
5098
5099 return ERR_PTR(-EINVAL);
5100
5101 err_unsupported:
5102 if (coupler->detach_regulator)
5103 coupler->detach_regulator(coupler, rdev);
5104
5105 rdev_err(rdev,
5106 "Voltage balancing for multiple regulator couples is unimplemented\n");
5107
5108 return ERR_PTR(-EPERM);
5109 }
5110
regulator_resolve_coupling(struct regulator_dev * rdev)5111 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5112 {
5113 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5114 struct coupling_desc *c_desc = &rdev->coupling_desc;
5115 int n_coupled = c_desc->n_coupled;
5116 struct regulator_dev *c_rdev;
5117 int i;
5118
5119 for (i = 1; i < n_coupled; i++) {
5120 /* already resolved */
5121 if (c_desc->coupled_rdevs[i])
5122 continue;
5123
5124 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5125
5126 if (!c_rdev)
5127 continue;
5128
5129 if (c_rdev->coupling_desc.coupler != coupler) {
5130 rdev_err(rdev, "coupler mismatch with %s\n",
5131 rdev_get_name(c_rdev));
5132 return;
5133 }
5134
5135 c_desc->coupled_rdevs[i] = c_rdev;
5136 c_desc->n_resolved++;
5137
5138 regulator_resolve_coupling(c_rdev);
5139 }
5140 }
5141
regulator_remove_coupling(struct regulator_dev * rdev)5142 static void regulator_remove_coupling(struct regulator_dev *rdev)
5143 {
5144 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5145 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5146 struct regulator_dev *__c_rdev, *c_rdev;
5147 unsigned int __n_coupled, n_coupled;
5148 int i, k;
5149 int err;
5150
5151 n_coupled = c_desc->n_coupled;
5152
5153 for (i = 1; i < n_coupled; i++) {
5154 c_rdev = c_desc->coupled_rdevs[i];
5155
5156 if (!c_rdev)
5157 continue;
5158
5159 regulator_lock(c_rdev);
5160
5161 __c_desc = &c_rdev->coupling_desc;
5162 __n_coupled = __c_desc->n_coupled;
5163
5164 for (k = 1; k < __n_coupled; k++) {
5165 __c_rdev = __c_desc->coupled_rdevs[k];
5166
5167 if (__c_rdev == rdev) {
5168 __c_desc->coupled_rdevs[k] = NULL;
5169 __c_desc->n_resolved--;
5170 break;
5171 }
5172 }
5173
5174 regulator_unlock(c_rdev);
5175
5176 c_desc->coupled_rdevs[i] = NULL;
5177 c_desc->n_resolved--;
5178 }
5179
5180 if (coupler && coupler->detach_regulator) {
5181 err = coupler->detach_regulator(coupler, rdev);
5182 if (err)
5183 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5184 ERR_PTR(err));
5185 }
5186
5187 kfree(rdev->coupling_desc.coupled_rdevs);
5188 rdev->coupling_desc.coupled_rdevs = NULL;
5189 }
5190
regulator_init_coupling(struct regulator_dev * rdev)5191 static int regulator_init_coupling(struct regulator_dev *rdev)
5192 {
5193 struct regulator_dev **coupled;
5194 int err, n_phandles;
5195
5196 if (!IS_ENABLED(CONFIG_OF))
5197 n_phandles = 0;
5198 else
5199 n_phandles = of_get_n_coupled(rdev);
5200
5201 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5202 if (!coupled)
5203 return -ENOMEM;
5204
5205 rdev->coupling_desc.coupled_rdevs = coupled;
5206
5207 /*
5208 * Every regulator should always have coupling descriptor filled with
5209 * at least pointer to itself.
5210 */
5211 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5212 rdev->coupling_desc.n_coupled = n_phandles + 1;
5213 rdev->coupling_desc.n_resolved++;
5214
5215 /* regulator isn't coupled */
5216 if (n_phandles == 0)
5217 return 0;
5218
5219 if (!of_check_coupling_data(rdev))
5220 return -EPERM;
5221
5222 mutex_lock(®ulator_list_mutex);
5223 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5224 mutex_unlock(®ulator_list_mutex);
5225
5226 if (IS_ERR(rdev->coupling_desc.coupler)) {
5227 err = PTR_ERR(rdev->coupling_desc.coupler);
5228 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5229 return err;
5230 }
5231
5232 return 0;
5233 }
5234
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5235 static int generic_coupler_attach(struct regulator_coupler *coupler,
5236 struct regulator_dev *rdev)
5237 {
5238 if (rdev->coupling_desc.n_coupled > 2) {
5239 rdev_err(rdev,
5240 "Voltage balancing for multiple regulator couples is unimplemented\n");
5241 return -EPERM;
5242 }
5243
5244 if (!rdev->constraints->always_on) {
5245 rdev_err(rdev,
5246 "Coupling of a non always-on regulator is unimplemented\n");
5247 return -ENOTSUPP;
5248 }
5249
5250 return 0;
5251 }
5252
5253 static struct regulator_coupler generic_regulator_coupler = {
5254 .attach_regulator = generic_coupler_attach,
5255 };
5256
5257 /**
5258 * regulator_register - register regulator
5259 * @regulator_desc: regulator to register
5260 * @cfg: runtime configuration for regulator
5261 *
5262 * Called by regulator drivers to register a regulator.
5263 * Returns a valid pointer to struct regulator_dev on success
5264 * or an ERR_PTR() on error.
5265 */
5266 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5267 regulator_register(const struct regulator_desc *regulator_desc,
5268 const struct regulator_config *cfg)
5269 {
5270 const struct regulator_init_data *init_data;
5271 struct regulator_config *config = NULL;
5272 static atomic_t regulator_no = ATOMIC_INIT(-1);
5273 struct regulator_dev *rdev;
5274 bool dangling_cfg_gpiod = false;
5275 bool dangling_of_gpiod = false;
5276 struct device *dev;
5277 int ret, i;
5278
5279 if (cfg == NULL)
5280 return ERR_PTR(-EINVAL);
5281 if (cfg->ena_gpiod)
5282 dangling_cfg_gpiod = true;
5283 if (regulator_desc == NULL) {
5284 ret = -EINVAL;
5285 goto rinse;
5286 }
5287
5288 dev = cfg->dev;
5289 WARN_ON(!dev);
5290
5291 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5292 ret = -EINVAL;
5293 goto rinse;
5294 }
5295
5296 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5297 regulator_desc->type != REGULATOR_CURRENT) {
5298 ret = -EINVAL;
5299 goto rinse;
5300 }
5301
5302 /* Only one of each should be implemented */
5303 WARN_ON(regulator_desc->ops->get_voltage &&
5304 regulator_desc->ops->get_voltage_sel);
5305 WARN_ON(regulator_desc->ops->set_voltage &&
5306 regulator_desc->ops->set_voltage_sel);
5307
5308 /* If we're using selectors we must implement list_voltage. */
5309 if (regulator_desc->ops->get_voltage_sel &&
5310 !regulator_desc->ops->list_voltage) {
5311 ret = -EINVAL;
5312 goto rinse;
5313 }
5314 if (regulator_desc->ops->set_voltage_sel &&
5315 !regulator_desc->ops->list_voltage) {
5316 ret = -EINVAL;
5317 goto rinse;
5318 }
5319
5320 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5321 if (rdev == NULL) {
5322 ret = -ENOMEM;
5323 goto rinse;
5324 }
5325 device_initialize(&rdev->dev);
5326
5327 /*
5328 * Duplicate the config so the driver could override it after
5329 * parsing init data.
5330 */
5331 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5332 if (config == NULL) {
5333 ret = -ENOMEM;
5334 goto clean;
5335 }
5336
5337 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5338 &rdev->dev.of_node);
5339
5340 /*
5341 * Sometimes not all resources are probed already so we need to take
5342 * that into account. This happens most the time if the ena_gpiod comes
5343 * from a gpio extender or something else.
5344 */
5345 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5346 ret = -EPROBE_DEFER;
5347 goto clean;
5348 }
5349
5350 /*
5351 * We need to keep track of any GPIO descriptor coming from the
5352 * device tree until we have handled it over to the core. If the
5353 * config that was passed in to this function DOES NOT contain
5354 * a descriptor, and the config after this call DOES contain
5355 * a descriptor, we definitely got one from parsing the device
5356 * tree.
5357 */
5358 if (!cfg->ena_gpiod && config->ena_gpiod)
5359 dangling_of_gpiod = true;
5360 if (!init_data) {
5361 init_data = config->init_data;
5362 rdev->dev.of_node = of_node_get(config->of_node);
5363 }
5364
5365 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5366 rdev->reg_data = config->driver_data;
5367 rdev->owner = regulator_desc->owner;
5368 rdev->desc = regulator_desc;
5369 if (config->regmap)
5370 rdev->regmap = config->regmap;
5371 else if (dev_get_regmap(dev, NULL))
5372 rdev->regmap = dev_get_regmap(dev, NULL);
5373 else if (dev->parent)
5374 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5375 INIT_LIST_HEAD(&rdev->consumer_list);
5376 INIT_LIST_HEAD(&rdev->list);
5377 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5378 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5379
5380 /* preform any regulator specific init */
5381 if (init_data && init_data->regulator_init) {
5382 ret = init_data->regulator_init(rdev->reg_data);
5383 if (ret < 0)
5384 goto clean;
5385 }
5386
5387 if (config->ena_gpiod) {
5388 ret = regulator_ena_gpio_request(rdev, config);
5389 if (ret != 0) {
5390 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5391 ERR_PTR(ret));
5392 goto clean;
5393 }
5394 /* The regulator core took over the GPIO descriptor */
5395 dangling_cfg_gpiod = false;
5396 dangling_of_gpiod = false;
5397 }
5398
5399 /* register with sysfs */
5400 rdev->dev.class = ®ulator_class;
5401 rdev->dev.parent = dev;
5402 dev_set_name(&rdev->dev, "regulator.%lu",
5403 (unsigned long) atomic_inc_return(®ulator_no));
5404 dev_set_drvdata(&rdev->dev, rdev);
5405
5406 /* set regulator constraints */
5407 if (init_data)
5408 rdev->constraints = kmemdup(&init_data->constraints,
5409 sizeof(*rdev->constraints),
5410 GFP_KERNEL);
5411 else
5412 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5413 GFP_KERNEL);
5414 if (!rdev->constraints) {
5415 ret = -ENOMEM;
5416 goto wash;
5417 }
5418
5419 if (init_data && init_data->supply_regulator)
5420 rdev->supply_name = init_data->supply_regulator;
5421 else if (regulator_desc->supply_name)
5422 rdev->supply_name = regulator_desc->supply_name;
5423
5424 ret = set_machine_constraints(rdev);
5425 if (ret == -EPROBE_DEFER) {
5426 /* Regulator might be in bypass mode and so needs its supply
5427 * to set the constraints */
5428 /* FIXME: this currently triggers a chicken-and-egg problem
5429 * when creating -SUPPLY symlink in sysfs to a regulator
5430 * that is just being created */
5431 ret = regulator_resolve_supply(rdev);
5432 if (!ret)
5433 ret = set_machine_constraints(rdev);
5434 else
5435 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5436 ERR_PTR(ret));
5437 }
5438 if (ret < 0)
5439 goto wash;
5440
5441 ret = regulator_init_coupling(rdev);
5442 if (ret < 0)
5443 goto wash;
5444
5445 /* add consumers devices */
5446 if (init_data) {
5447 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5448 ret = set_consumer_device_supply(rdev,
5449 init_data->consumer_supplies[i].dev_name,
5450 init_data->consumer_supplies[i].supply);
5451 if (ret < 0) {
5452 dev_err(dev, "Failed to set supply %s\n",
5453 init_data->consumer_supplies[i].supply);
5454 goto unset_supplies;
5455 }
5456 }
5457 }
5458
5459 if (!rdev->desc->ops->get_voltage &&
5460 !rdev->desc->ops->list_voltage &&
5461 !rdev->desc->fixed_uV)
5462 rdev->is_switch = true;
5463
5464 ret = device_add(&rdev->dev);
5465 if (ret != 0)
5466 goto unset_supplies;
5467
5468 rdev_init_debugfs(rdev);
5469
5470 /* try to resolve regulators coupling since a new one was registered */
5471 mutex_lock(®ulator_list_mutex);
5472 regulator_resolve_coupling(rdev);
5473 mutex_unlock(®ulator_list_mutex);
5474
5475 /* try to resolve regulators supply since a new one was registered */
5476 class_for_each_device(®ulator_class, NULL, NULL,
5477 regulator_register_resolve_supply);
5478 kfree(config);
5479 return rdev;
5480
5481 unset_supplies:
5482 mutex_lock(®ulator_list_mutex);
5483 unset_regulator_supplies(rdev);
5484 regulator_remove_coupling(rdev);
5485 mutex_unlock(®ulator_list_mutex);
5486 wash:
5487 regulator_put(rdev->supply);
5488 kfree(rdev->coupling_desc.coupled_rdevs);
5489 mutex_lock(®ulator_list_mutex);
5490 regulator_ena_gpio_free(rdev);
5491 mutex_unlock(®ulator_list_mutex);
5492 clean:
5493 if (dangling_of_gpiod)
5494 gpiod_put(config->ena_gpiod);
5495 kfree(config);
5496 put_device(&rdev->dev);
5497 rinse:
5498 if (dangling_cfg_gpiod)
5499 gpiod_put(cfg->ena_gpiod);
5500 return ERR_PTR(ret);
5501 }
5502 EXPORT_SYMBOL_GPL(regulator_register);
5503
5504 /**
5505 * regulator_unregister - unregister regulator
5506 * @rdev: regulator to unregister
5507 *
5508 * Called by regulator drivers to unregister a regulator.
5509 */
regulator_unregister(struct regulator_dev * rdev)5510 void regulator_unregister(struct regulator_dev *rdev)
5511 {
5512 if (rdev == NULL)
5513 return;
5514
5515 if (rdev->supply) {
5516 while (rdev->use_count--)
5517 regulator_disable(rdev->supply);
5518 regulator_put(rdev->supply);
5519 }
5520
5521 flush_work(&rdev->disable_work.work);
5522
5523 mutex_lock(®ulator_list_mutex);
5524
5525 WARN_ON(rdev->open_count);
5526 regulator_remove_coupling(rdev);
5527 unset_regulator_supplies(rdev);
5528 list_del(&rdev->list);
5529 regulator_ena_gpio_free(rdev);
5530 device_unregister(&rdev->dev);
5531
5532 mutex_unlock(®ulator_list_mutex);
5533 }
5534 EXPORT_SYMBOL_GPL(regulator_unregister);
5535
5536 #ifdef CONFIG_SUSPEND
5537 /**
5538 * regulator_suspend - prepare regulators for system wide suspend
5539 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5540 *
5541 * Configure each regulator with it's suspend operating parameters for state.
5542 */
regulator_suspend(struct device * dev)5543 static int regulator_suspend(struct device *dev)
5544 {
5545 struct regulator_dev *rdev = dev_to_rdev(dev);
5546 suspend_state_t state = pm_suspend_target_state;
5547 int ret;
5548 const struct regulator_state *rstate;
5549
5550 rstate = regulator_get_suspend_state_check(rdev, state);
5551 if (!rstate)
5552 return 0;
5553
5554 regulator_lock(rdev);
5555 ret = __suspend_set_state(rdev, rstate);
5556 regulator_unlock(rdev);
5557
5558 return ret;
5559 }
5560
regulator_resume(struct device * dev)5561 static int regulator_resume(struct device *dev)
5562 {
5563 suspend_state_t state = pm_suspend_target_state;
5564 struct regulator_dev *rdev = dev_to_rdev(dev);
5565 struct regulator_state *rstate;
5566 int ret = 0;
5567
5568 rstate = regulator_get_suspend_state(rdev, state);
5569 if (rstate == NULL)
5570 return 0;
5571
5572 /* Avoid grabbing the lock if we don't need to */
5573 if (!rdev->desc->ops->resume)
5574 return 0;
5575
5576 regulator_lock(rdev);
5577
5578 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5579 rstate->enabled == DISABLE_IN_SUSPEND)
5580 ret = rdev->desc->ops->resume(rdev);
5581
5582 regulator_unlock(rdev);
5583
5584 return ret;
5585 }
5586 #else /* !CONFIG_SUSPEND */
5587
5588 #define regulator_suspend NULL
5589 #define regulator_resume NULL
5590
5591 #endif /* !CONFIG_SUSPEND */
5592
5593 #ifdef CONFIG_PM
5594 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5595 .suspend = regulator_suspend,
5596 .resume = regulator_resume,
5597 };
5598 #endif
5599
5600 struct class regulator_class = {
5601 .name = "regulator",
5602 .dev_release = regulator_dev_release,
5603 .dev_groups = regulator_dev_groups,
5604 #ifdef CONFIG_PM
5605 .pm = ®ulator_pm_ops,
5606 #endif
5607 };
5608 /**
5609 * regulator_has_full_constraints - the system has fully specified constraints
5610 *
5611 * Calling this function will cause the regulator API to disable all
5612 * regulators which have a zero use count and don't have an always_on
5613 * constraint in a late_initcall.
5614 *
5615 * The intention is that this will become the default behaviour in a
5616 * future kernel release so users are encouraged to use this facility
5617 * now.
5618 */
regulator_has_full_constraints(void)5619 void regulator_has_full_constraints(void)
5620 {
5621 has_full_constraints = 1;
5622 }
5623 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5624
5625 /**
5626 * rdev_get_drvdata - get rdev regulator driver data
5627 * @rdev: regulator
5628 *
5629 * Get rdev regulator driver private data. This call can be used in the
5630 * regulator driver context.
5631 */
rdev_get_drvdata(struct regulator_dev * rdev)5632 void *rdev_get_drvdata(struct regulator_dev *rdev)
5633 {
5634 return rdev->reg_data;
5635 }
5636 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5637
5638 /**
5639 * regulator_get_drvdata - get regulator driver data
5640 * @regulator: regulator
5641 *
5642 * Get regulator driver private data. This call can be used in the consumer
5643 * driver context when non API regulator specific functions need to be called.
5644 */
regulator_get_drvdata(struct regulator * regulator)5645 void *regulator_get_drvdata(struct regulator *regulator)
5646 {
5647 return regulator->rdev->reg_data;
5648 }
5649 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5650
5651 /**
5652 * regulator_set_drvdata - set regulator driver data
5653 * @regulator: regulator
5654 * @data: data
5655 */
regulator_set_drvdata(struct regulator * regulator,void * data)5656 void regulator_set_drvdata(struct regulator *regulator, void *data)
5657 {
5658 regulator->rdev->reg_data = data;
5659 }
5660 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5661
5662 /**
5663 * regulator_get_id - get regulator ID
5664 * @rdev: regulator
5665 */
rdev_get_id(struct regulator_dev * rdev)5666 int rdev_get_id(struct regulator_dev *rdev)
5667 {
5668 return rdev->desc->id;
5669 }
5670 EXPORT_SYMBOL_GPL(rdev_get_id);
5671
rdev_get_dev(struct regulator_dev * rdev)5672 struct device *rdev_get_dev(struct regulator_dev *rdev)
5673 {
5674 return &rdev->dev;
5675 }
5676 EXPORT_SYMBOL_GPL(rdev_get_dev);
5677
rdev_get_regmap(struct regulator_dev * rdev)5678 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5679 {
5680 return rdev->regmap;
5681 }
5682 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5683
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5684 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5685 {
5686 return reg_init_data->driver_data;
5687 }
5688 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5689
5690 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5691 static int supply_map_show(struct seq_file *sf, void *data)
5692 {
5693 struct regulator_map *map;
5694
5695 list_for_each_entry(map, ®ulator_map_list, list) {
5696 seq_printf(sf, "%s -> %s.%s\n",
5697 rdev_get_name(map->regulator), map->dev_name,
5698 map->supply);
5699 }
5700
5701 return 0;
5702 }
5703 DEFINE_SHOW_ATTRIBUTE(supply_map);
5704
5705 struct summary_data {
5706 struct seq_file *s;
5707 struct regulator_dev *parent;
5708 int level;
5709 };
5710
5711 static void regulator_summary_show_subtree(struct seq_file *s,
5712 struct regulator_dev *rdev,
5713 int level);
5714
regulator_summary_show_children(struct device * dev,void * data)5715 static int regulator_summary_show_children(struct device *dev, void *data)
5716 {
5717 struct regulator_dev *rdev = dev_to_rdev(dev);
5718 struct summary_data *summary_data = data;
5719
5720 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5721 regulator_summary_show_subtree(summary_data->s, rdev,
5722 summary_data->level + 1);
5723
5724 return 0;
5725 }
5726
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5727 static void regulator_summary_show_subtree(struct seq_file *s,
5728 struct regulator_dev *rdev,
5729 int level)
5730 {
5731 struct regulation_constraints *c;
5732 struct regulator *consumer;
5733 struct summary_data summary_data;
5734 unsigned int opmode;
5735
5736 if (!rdev)
5737 return;
5738
5739 opmode = _regulator_get_mode_unlocked(rdev);
5740 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5741 level * 3 + 1, "",
5742 30 - level * 3, rdev_get_name(rdev),
5743 rdev->use_count, rdev->open_count, rdev->bypass_count,
5744 regulator_opmode_to_str(opmode));
5745
5746 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5747 seq_printf(s, "%5dmA ",
5748 _regulator_get_current_limit_unlocked(rdev) / 1000);
5749
5750 c = rdev->constraints;
5751 if (c) {
5752 switch (rdev->desc->type) {
5753 case REGULATOR_VOLTAGE:
5754 seq_printf(s, "%5dmV %5dmV ",
5755 c->min_uV / 1000, c->max_uV / 1000);
5756 break;
5757 case REGULATOR_CURRENT:
5758 seq_printf(s, "%5dmA %5dmA ",
5759 c->min_uA / 1000, c->max_uA / 1000);
5760 break;
5761 }
5762 }
5763
5764 seq_puts(s, "\n");
5765
5766 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5767 if (consumer->dev && consumer->dev->class == ®ulator_class)
5768 continue;
5769
5770 seq_printf(s, "%*s%-*s ",
5771 (level + 1) * 3 + 1, "",
5772 30 - (level + 1) * 3,
5773 consumer->supply_name ? consumer->supply_name :
5774 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5775
5776 switch (rdev->desc->type) {
5777 case REGULATOR_VOLTAGE:
5778 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5779 consumer->enable_count,
5780 consumer->uA_load / 1000,
5781 consumer->uA_load && !consumer->enable_count ?
5782 '*' : ' ',
5783 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5784 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5785 break;
5786 case REGULATOR_CURRENT:
5787 break;
5788 }
5789
5790 seq_puts(s, "\n");
5791 }
5792
5793 summary_data.s = s;
5794 summary_data.level = level;
5795 summary_data.parent = rdev;
5796
5797 class_for_each_device(®ulator_class, NULL, &summary_data,
5798 regulator_summary_show_children);
5799 }
5800
5801 struct summary_lock_data {
5802 struct ww_acquire_ctx *ww_ctx;
5803 struct regulator_dev **new_contended_rdev;
5804 struct regulator_dev **old_contended_rdev;
5805 };
5806
regulator_summary_lock_one(struct device * dev,void * data)5807 static int regulator_summary_lock_one(struct device *dev, void *data)
5808 {
5809 struct regulator_dev *rdev = dev_to_rdev(dev);
5810 struct summary_lock_data *lock_data = data;
5811 int ret = 0;
5812
5813 if (rdev != *lock_data->old_contended_rdev) {
5814 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5815
5816 if (ret == -EDEADLK)
5817 *lock_data->new_contended_rdev = rdev;
5818 else
5819 WARN_ON_ONCE(ret);
5820 } else {
5821 *lock_data->old_contended_rdev = NULL;
5822 }
5823
5824 return ret;
5825 }
5826
regulator_summary_unlock_one(struct device * dev,void * data)5827 static int regulator_summary_unlock_one(struct device *dev, void *data)
5828 {
5829 struct regulator_dev *rdev = dev_to_rdev(dev);
5830 struct summary_lock_data *lock_data = data;
5831
5832 if (lock_data) {
5833 if (rdev == *lock_data->new_contended_rdev)
5834 return -EDEADLK;
5835 }
5836
5837 regulator_unlock(rdev);
5838
5839 return 0;
5840 }
5841
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)5842 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5843 struct regulator_dev **new_contended_rdev,
5844 struct regulator_dev **old_contended_rdev)
5845 {
5846 struct summary_lock_data lock_data;
5847 int ret;
5848
5849 lock_data.ww_ctx = ww_ctx;
5850 lock_data.new_contended_rdev = new_contended_rdev;
5851 lock_data.old_contended_rdev = old_contended_rdev;
5852
5853 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5854 regulator_summary_lock_one);
5855 if (ret)
5856 class_for_each_device(®ulator_class, NULL, &lock_data,
5857 regulator_summary_unlock_one);
5858
5859 return ret;
5860 }
5861
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)5862 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5863 {
5864 struct regulator_dev *new_contended_rdev = NULL;
5865 struct regulator_dev *old_contended_rdev = NULL;
5866 int err;
5867
5868 mutex_lock(®ulator_list_mutex);
5869
5870 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5871
5872 do {
5873 if (new_contended_rdev) {
5874 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5875 old_contended_rdev = new_contended_rdev;
5876 old_contended_rdev->ref_cnt++;
5877 old_contended_rdev->mutex_owner = current;
5878 }
5879
5880 err = regulator_summary_lock_all(ww_ctx,
5881 &new_contended_rdev,
5882 &old_contended_rdev);
5883
5884 if (old_contended_rdev)
5885 regulator_unlock(old_contended_rdev);
5886
5887 } while (err == -EDEADLK);
5888
5889 ww_acquire_done(ww_ctx);
5890 }
5891
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)5892 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5893 {
5894 class_for_each_device(®ulator_class, NULL, NULL,
5895 regulator_summary_unlock_one);
5896 ww_acquire_fini(ww_ctx);
5897
5898 mutex_unlock(®ulator_list_mutex);
5899 }
5900
regulator_summary_show_roots(struct device * dev,void * data)5901 static int regulator_summary_show_roots(struct device *dev, void *data)
5902 {
5903 struct regulator_dev *rdev = dev_to_rdev(dev);
5904 struct seq_file *s = data;
5905
5906 if (!rdev->supply)
5907 regulator_summary_show_subtree(s, rdev, 0);
5908
5909 return 0;
5910 }
5911
regulator_summary_show(struct seq_file * s,void * data)5912 static int regulator_summary_show(struct seq_file *s, void *data)
5913 {
5914 struct ww_acquire_ctx ww_ctx;
5915
5916 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5917 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5918
5919 regulator_summary_lock(&ww_ctx);
5920
5921 class_for_each_device(®ulator_class, NULL, s,
5922 regulator_summary_show_roots);
5923
5924 regulator_summary_unlock(&ww_ctx);
5925
5926 return 0;
5927 }
5928 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5929 #endif /* CONFIG_DEBUG_FS */
5930
regulator_init(void)5931 static int __init regulator_init(void)
5932 {
5933 int ret;
5934
5935 ret = class_register(®ulator_class);
5936
5937 debugfs_root = debugfs_create_dir("regulator", NULL);
5938 if (IS_ERR(debugfs_root))
5939 pr_debug("regulator: Failed to create debugfs directory\n");
5940
5941 #ifdef CONFIG_DEBUG_FS
5942 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5943 &supply_map_fops);
5944
5945 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5946 NULL, ®ulator_summary_fops);
5947 #endif
5948 regulator_dummy_init();
5949
5950 regulator_coupler_register(&generic_regulator_coupler);
5951
5952 return ret;
5953 }
5954
5955 /* init early to allow our consumers to complete system booting */
5956 core_initcall(regulator_init);
5957
regulator_late_cleanup(struct device * dev,void * data)5958 static int regulator_late_cleanup(struct device *dev, void *data)
5959 {
5960 struct regulator_dev *rdev = dev_to_rdev(dev);
5961 struct regulation_constraints *c = rdev->constraints;
5962 int ret;
5963
5964 if (c && c->always_on)
5965 return 0;
5966
5967 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5968 return 0;
5969
5970 regulator_lock(rdev);
5971
5972 if (rdev->use_count)
5973 goto unlock;
5974
5975 /* If reading the status failed, assume that it's off. */
5976 if (_regulator_is_enabled(rdev) <= 0)
5977 goto unlock;
5978
5979 if (have_full_constraints()) {
5980 /* We log since this may kill the system if it goes
5981 * wrong. */
5982 rdev_info(rdev, "disabling\n");
5983 ret = _regulator_do_disable(rdev);
5984 if (ret != 0)
5985 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5986 } else {
5987 /* The intention is that in future we will
5988 * assume that full constraints are provided
5989 * so warn even if we aren't going to do
5990 * anything here.
5991 */
5992 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5993 }
5994
5995 unlock:
5996 regulator_unlock(rdev);
5997
5998 return 0;
5999 }
6000
regulator_init_complete_work_function(struct work_struct * work)6001 static void regulator_init_complete_work_function(struct work_struct *work)
6002 {
6003 /*
6004 * Regulators may had failed to resolve their input supplies
6005 * when were registered, either because the input supply was
6006 * not registered yet or because its parent device was not
6007 * bound yet. So attempt to resolve the input supplies for
6008 * pending regulators before trying to disable unused ones.
6009 */
6010 class_for_each_device(®ulator_class, NULL, NULL,
6011 regulator_register_resolve_supply);
6012
6013 /* If we have a full configuration then disable any regulators
6014 * we have permission to change the status for and which are
6015 * not in use or always_on. This is effectively the default
6016 * for DT and ACPI as they have full constraints.
6017 */
6018 class_for_each_device(®ulator_class, NULL, NULL,
6019 regulator_late_cleanup);
6020 }
6021
6022 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6023 regulator_init_complete_work_function);
6024
regulator_init_complete(void)6025 static int __init regulator_init_complete(void)
6026 {
6027 /*
6028 * Since DT doesn't provide an idiomatic mechanism for
6029 * enabling full constraints and since it's much more natural
6030 * with DT to provide them just assume that a DT enabled
6031 * system has full constraints.
6032 */
6033 if (of_have_populated_dt())
6034 has_full_constraints = true;
6035
6036 /*
6037 * We punt completion for an arbitrary amount of time since
6038 * systems like distros will load many drivers from userspace
6039 * so consumers might not always be ready yet, this is
6040 * particularly an issue with laptops where this might bounce
6041 * the display off then on. Ideally we'd get a notification
6042 * from userspace when this happens but we don't so just wait
6043 * a bit and hope we waited long enough. It'd be better if
6044 * we'd only do this on systems that need it, and a kernel
6045 * command line option might be useful.
6046 */
6047 schedule_delayed_work(®ulator_init_complete_work,
6048 msecs_to_jiffies(30000));
6049
6050 return 0;
6051 }
6052 late_initcall_sync(regulator_init_complete);
6053