1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22 /*
23 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
24 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
25 * will perform wakeups when releasing console_sem. Holding rename_lock
26 * will introduce deadlock if the scheduler reads the kernfs_name in the
27 * wakeup path.
28 */
29 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
30 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
31 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
32
33 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
34
kernfs_active(struct kernfs_node * kn)35 static bool kernfs_active(struct kernfs_node *kn)
36 {
37 lockdep_assert_held(&kernfs_mutex);
38 return atomic_read(&kn->active) >= 0;
39 }
40
kernfs_lockdep(struct kernfs_node * kn)41 static bool kernfs_lockdep(struct kernfs_node *kn)
42 {
43 #ifdef CONFIG_DEBUG_LOCK_ALLOC
44 return kn->flags & KERNFS_LOCKDEP;
45 #else
46 return false;
47 #endif
48 }
49
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)50 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
51 {
52 if (!kn)
53 return strlcpy(buf, "(null)", buflen);
54
55 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
56 }
57
58 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)59 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
60 {
61 size_t depth = 0;
62
63 while (to->parent && to != from) {
64 depth++;
65 to = to->parent;
66 }
67 return depth;
68 }
69
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)70 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
71 struct kernfs_node *b)
72 {
73 size_t da, db;
74 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
75
76 if (ra != rb)
77 return NULL;
78
79 da = kernfs_depth(ra->kn, a);
80 db = kernfs_depth(rb->kn, b);
81
82 while (da > db) {
83 a = a->parent;
84 da--;
85 }
86 while (db > da) {
87 b = b->parent;
88 db--;
89 }
90
91 /* worst case b and a will be the same at root */
92 while (b != a) {
93 b = b->parent;
94 a = a->parent;
95 }
96
97 return a;
98 }
99
100 /**
101 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
102 * where kn_from is treated as root of the path.
103 * @kn_from: kernfs node which should be treated as root for the path
104 * @kn_to: kernfs node to which path is needed
105 * @buf: buffer to copy the path into
106 * @buflen: size of @buf
107 *
108 * We need to handle couple of scenarios here:
109 * [1] when @kn_from is an ancestor of @kn_to at some level
110 * kn_from: /n1/n2/n3
111 * kn_to: /n1/n2/n3/n4/n5
112 * result: /n4/n5
113 *
114 * [2] when @kn_from is on a different hierarchy and we need to find common
115 * ancestor between @kn_from and @kn_to.
116 * kn_from: /n1/n2/n3/n4
117 * kn_to: /n1/n2/n5
118 * result: /../../n5
119 * OR
120 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
121 * kn_to: /n1/n2/n3 [depth=3]
122 * result: /../..
123 *
124 * [3] when @kn_to is NULL result will be "(null)"
125 *
126 * Returns the length of the full path. If the full length is equal to or
127 * greater than @buflen, @buf contains the truncated path with the trailing
128 * '\0'. On error, -errno is returned.
129 */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)130 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
131 struct kernfs_node *kn_from,
132 char *buf, size_t buflen)
133 {
134 struct kernfs_node *kn, *common;
135 const char parent_str[] = "/..";
136 size_t depth_from, depth_to, len = 0;
137 int i, j;
138
139 if (!kn_to)
140 return strlcpy(buf, "(null)", buflen);
141
142 if (!kn_from)
143 kn_from = kernfs_root(kn_to)->kn;
144
145 if (kn_from == kn_to)
146 return strlcpy(buf, "/", buflen);
147
148 if (!buf)
149 return -EINVAL;
150
151 common = kernfs_common_ancestor(kn_from, kn_to);
152 if (WARN_ON(!common))
153 return -EINVAL;
154
155 depth_to = kernfs_depth(common, kn_to);
156 depth_from = kernfs_depth(common, kn_from);
157
158 buf[0] = '\0';
159
160 for (i = 0; i < depth_from; i++)
161 len += strlcpy(buf + len, parent_str,
162 len < buflen ? buflen - len : 0);
163
164 /* Calculate how many bytes we need for the rest */
165 for (i = depth_to - 1; i >= 0; i--) {
166 for (kn = kn_to, j = 0; j < i; j++)
167 kn = kn->parent;
168 len += strlcpy(buf + len, "/",
169 len < buflen ? buflen - len : 0);
170 len += strlcpy(buf + len, kn->name,
171 len < buflen ? buflen - len : 0);
172 }
173
174 return len;
175 }
176
177 /**
178 * kernfs_name - obtain the name of a given node
179 * @kn: kernfs_node of interest
180 * @buf: buffer to copy @kn's name into
181 * @buflen: size of @buf
182 *
183 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
184 * similar to strlcpy(). It returns the length of @kn's name and if @buf
185 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
186 *
187 * Fills buffer with "(null)" if @kn is NULL.
188 *
189 * This function can be called from any context.
190 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)191 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
192 {
193 unsigned long flags;
194 int ret;
195
196 spin_lock_irqsave(&kernfs_rename_lock, flags);
197 ret = kernfs_name_locked(kn, buf, buflen);
198 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
199 return ret;
200 }
201
202 /**
203 * kernfs_path_from_node - build path of node @to relative to @from.
204 * @from: parent kernfs_node relative to which we need to build the path
205 * @to: kernfs_node of interest
206 * @buf: buffer to copy @to's path into
207 * @buflen: size of @buf
208 *
209 * Builds @to's path relative to @from in @buf. @from and @to must
210 * be on the same kernfs-root. If @from is not parent of @to, then a relative
211 * path (which includes '..'s) as needed to reach from @from to @to is
212 * returned.
213 *
214 * Returns the length of the full path. If the full length is equal to or
215 * greater than @buflen, @buf contains the truncated path with the trailing
216 * '\0'. On error, -errno is returned.
217 */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)218 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
219 char *buf, size_t buflen)
220 {
221 unsigned long flags;
222 int ret;
223
224 spin_lock_irqsave(&kernfs_rename_lock, flags);
225 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
226 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
227 return ret;
228 }
229 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
230
231 /**
232 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
233 * @kn: kernfs_node of interest
234 *
235 * This function can be called from any context.
236 */
pr_cont_kernfs_name(struct kernfs_node * kn)237 void pr_cont_kernfs_name(struct kernfs_node *kn)
238 {
239 unsigned long flags;
240
241 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
242
243 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
244 pr_cont("%s", kernfs_pr_cont_buf);
245
246 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
247 }
248
249 /**
250 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
251 * @kn: kernfs_node of interest
252 *
253 * This function can be called from any context.
254 */
pr_cont_kernfs_path(struct kernfs_node * kn)255 void pr_cont_kernfs_path(struct kernfs_node *kn)
256 {
257 unsigned long flags;
258 int sz;
259
260 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
261
262 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
263 sizeof(kernfs_pr_cont_buf));
264 if (sz < 0) {
265 pr_cont("(error)");
266 goto out;
267 }
268
269 if (sz >= sizeof(kernfs_pr_cont_buf)) {
270 pr_cont("(name too long)");
271 goto out;
272 }
273
274 pr_cont("%s", kernfs_pr_cont_buf);
275
276 out:
277 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
278 }
279
280 /**
281 * kernfs_get_parent - determine the parent node and pin it
282 * @kn: kernfs_node of interest
283 *
284 * Determines @kn's parent, pins and returns it. This function can be
285 * called from any context.
286 */
kernfs_get_parent(struct kernfs_node * kn)287 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
288 {
289 struct kernfs_node *parent;
290 unsigned long flags;
291
292 spin_lock_irqsave(&kernfs_rename_lock, flags);
293 parent = kn->parent;
294 kernfs_get(parent);
295 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
296
297 return parent;
298 }
299
300 /**
301 * kernfs_name_hash
302 * @name: Null terminated string to hash
303 * @ns: Namespace tag to hash
304 *
305 * Returns 31 bit hash of ns + name (so it fits in an off_t )
306 */
kernfs_name_hash(const char * name,const void * ns)307 static unsigned int kernfs_name_hash(const char *name, const void *ns)
308 {
309 unsigned long hash = init_name_hash(ns);
310 unsigned int len = strlen(name);
311 while (len--)
312 hash = partial_name_hash(*name++, hash);
313 hash = end_name_hash(hash);
314 hash &= 0x7fffffffU;
315 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
316 if (hash < 2)
317 hash += 2;
318 if (hash >= INT_MAX)
319 hash = INT_MAX - 1;
320 return hash;
321 }
322
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)323 static int kernfs_name_compare(unsigned int hash, const char *name,
324 const void *ns, const struct kernfs_node *kn)
325 {
326 if (hash < kn->hash)
327 return -1;
328 if (hash > kn->hash)
329 return 1;
330 if (ns < kn->ns)
331 return -1;
332 if (ns > kn->ns)
333 return 1;
334 return strcmp(name, kn->name);
335 }
336
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)337 static int kernfs_sd_compare(const struct kernfs_node *left,
338 const struct kernfs_node *right)
339 {
340 return kernfs_name_compare(left->hash, left->name, left->ns, right);
341 }
342
343 /**
344 * kernfs_link_sibling - link kernfs_node into sibling rbtree
345 * @kn: kernfs_node of interest
346 *
347 * Link @kn into its sibling rbtree which starts from
348 * @kn->parent->dir.children.
349 *
350 * Locking:
351 * mutex_lock(kernfs_mutex)
352 *
353 * RETURNS:
354 * 0 on susccess -EEXIST on failure.
355 */
kernfs_link_sibling(struct kernfs_node * kn)356 static int kernfs_link_sibling(struct kernfs_node *kn)
357 {
358 struct rb_node **node = &kn->parent->dir.children.rb_node;
359 struct rb_node *parent = NULL;
360
361 while (*node) {
362 struct kernfs_node *pos;
363 int result;
364
365 pos = rb_to_kn(*node);
366 parent = *node;
367 result = kernfs_sd_compare(kn, pos);
368 if (result < 0)
369 node = &pos->rb.rb_left;
370 else if (result > 0)
371 node = &pos->rb.rb_right;
372 else
373 return -EEXIST;
374 }
375
376 /* add new node and rebalance the tree */
377 rb_link_node(&kn->rb, parent, node);
378 rb_insert_color(&kn->rb, &kn->parent->dir.children);
379
380 /* successfully added, account subdir number */
381 if (kernfs_type(kn) == KERNFS_DIR)
382 kn->parent->dir.subdirs++;
383
384 return 0;
385 }
386
387 /**
388 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
389 * @kn: kernfs_node of interest
390 *
391 * Try to unlink @kn from its sibling rbtree which starts from
392 * kn->parent->dir.children. Returns %true if @kn was actually
393 * removed, %false if @kn wasn't on the rbtree.
394 *
395 * Locking:
396 * mutex_lock(kernfs_mutex)
397 */
kernfs_unlink_sibling(struct kernfs_node * kn)398 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
399 {
400 if (RB_EMPTY_NODE(&kn->rb))
401 return false;
402
403 if (kernfs_type(kn) == KERNFS_DIR)
404 kn->parent->dir.subdirs--;
405
406 rb_erase(&kn->rb, &kn->parent->dir.children);
407 RB_CLEAR_NODE(&kn->rb);
408 return true;
409 }
410
411 /**
412 * kernfs_get_active - get an active reference to kernfs_node
413 * @kn: kernfs_node to get an active reference to
414 *
415 * Get an active reference of @kn. This function is noop if @kn
416 * is NULL.
417 *
418 * RETURNS:
419 * Pointer to @kn on success, NULL on failure.
420 */
kernfs_get_active(struct kernfs_node * kn)421 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
422 {
423 if (unlikely(!kn))
424 return NULL;
425
426 if (!atomic_inc_unless_negative(&kn->active))
427 return NULL;
428
429 if (kernfs_lockdep(kn))
430 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
431 return kn;
432 }
433
434 /**
435 * kernfs_put_active - put an active reference to kernfs_node
436 * @kn: kernfs_node to put an active reference to
437 *
438 * Put an active reference to @kn. This function is noop if @kn
439 * is NULL.
440 */
kernfs_put_active(struct kernfs_node * kn)441 void kernfs_put_active(struct kernfs_node *kn)
442 {
443 int v;
444
445 if (unlikely(!kn))
446 return;
447
448 if (kernfs_lockdep(kn))
449 rwsem_release(&kn->dep_map, _RET_IP_);
450 v = atomic_dec_return(&kn->active);
451 if (likely(v != KN_DEACTIVATED_BIAS))
452 return;
453
454 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
455 }
456
457 /**
458 * kernfs_drain - drain kernfs_node
459 * @kn: kernfs_node to drain
460 *
461 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
462 * removers may invoke this function concurrently on @kn and all will
463 * return after draining is complete.
464 */
kernfs_drain(struct kernfs_node * kn)465 static void kernfs_drain(struct kernfs_node *kn)
466 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
467 {
468 struct kernfs_root *root = kernfs_root(kn);
469
470 lockdep_assert_held(&kernfs_mutex);
471 WARN_ON_ONCE(kernfs_active(kn));
472
473 mutex_unlock(&kernfs_mutex);
474
475 if (kernfs_lockdep(kn)) {
476 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
477 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
478 lock_contended(&kn->dep_map, _RET_IP_);
479 }
480
481 /* but everyone should wait for draining */
482 wait_event(root->deactivate_waitq,
483 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
484
485 if (kernfs_lockdep(kn)) {
486 lock_acquired(&kn->dep_map, _RET_IP_);
487 rwsem_release(&kn->dep_map, _RET_IP_);
488 }
489
490 kernfs_drain_open_files(kn);
491
492 mutex_lock(&kernfs_mutex);
493 }
494
495 /**
496 * kernfs_get - get a reference count on a kernfs_node
497 * @kn: the target kernfs_node
498 */
kernfs_get(struct kernfs_node * kn)499 void kernfs_get(struct kernfs_node *kn)
500 {
501 if (kn) {
502 WARN_ON(!atomic_read(&kn->count));
503 atomic_inc(&kn->count);
504 }
505 }
506 EXPORT_SYMBOL_GPL(kernfs_get);
507
508 /**
509 * kernfs_put - put a reference count on a kernfs_node
510 * @kn: the target kernfs_node
511 *
512 * Put a reference count of @kn and destroy it if it reached zero.
513 */
kernfs_put(struct kernfs_node * kn)514 void kernfs_put(struct kernfs_node *kn)
515 {
516 struct kernfs_node *parent;
517 struct kernfs_root *root;
518
519 if (!kn || !atomic_dec_and_test(&kn->count))
520 return;
521 root = kernfs_root(kn);
522 repeat:
523 /*
524 * Moving/renaming is always done while holding reference.
525 * kn->parent won't change beneath us.
526 */
527 parent = kn->parent;
528
529 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
530 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
531 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
532
533 if (kernfs_type(kn) == KERNFS_LINK)
534 kernfs_put(kn->symlink.target_kn);
535
536 kfree_const(kn->name);
537
538 if (kn->iattr) {
539 simple_xattrs_free(&kn->iattr->xattrs);
540 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
541 }
542 spin_lock(&kernfs_idr_lock);
543 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
544 spin_unlock(&kernfs_idr_lock);
545 kmem_cache_free(kernfs_node_cache, kn);
546
547 kn = parent;
548 if (kn) {
549 if (atomic_dec_and_test(&kn->count))
550 goto repeat;
551 } else {
552 /* just released the root kn, free @root too */
553 idr_destroy(&root->ino_idr);
554 kfree(root);
555 }
556 }
557 EXPORT_SYMBOL_GPL(kernfs_put);
558
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)559 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
560 {
561 struct kernfs_node *kn;
562
563 if (flags & LOOKUP_RCU)
564 return -ECHILD;
565
566 /* Always perform fresh lookup for negatives */
567 if (d_really_is_negative(dentry))
568 goto out_bad_unlocked;
569
570 kn = kernfs_dentry_node(dentry);
571 mutex_lock(&kernfs_mutex);
572
573 /* The kernfs node has been deactivated */
574 if (!kernfs_active(kn))
575 goto out_bad;
576
577 /* The kernfs node has been moved? */
578 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
579 goto out_bad;
580
581 /* The kernfs node has been renamed */
582 if (strcmp(dentry->d_name.name, kn->name) != 0)
583 goto out_bad;
584
585 /* The kernfs node has been moved to a different namespace */
586 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
587 kernfs_info(dentry->d_sb)->ns != kn->ns)
588 goto out_bad;
589
590 mutex_unlock(&kernfs_mutex);
591 return 1;
592 out_bad:
593 mutex_unlock(&kernfs_mutex);
594 out_bad_unlocked:
595 return 0;
596 }
597
598 const struct dentry_operations kernfs_dops = {
599 .d_revalidate = kernfs_dop_revalidate,
600 };
601
602 /**
603 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
604 * @dentry: the dentry in question
605 *
606 * Return the kernfs_node associated with @dentry. If @dentry is not a
607 * kernfs one, %NULL is returned.
608 *
609 * While the returned kernfs_node will stay accessible as long as @dentry
610 * is accessible, the returned node can be in any state and the caller is
611 * fully responsible for determining what's accessible.
612 */
kernfs_node_from_dentry(struct dentry * dentry)613 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
614 {
615 if (dentry->d_sb->s_op == &kernfs_sops &&
616 !d_really_is_negative(dentry))
617 return kernfs_dentry_node(dentry);
618 return NULL;
619 }
620
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)621 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
622 struct kernfs_node *parent,
623 const char *name, umode_t mode,
624 kuid_t uid, kgid_t gid,
625 unsigned flags)
626 {
627 struct kernfs_node *kn;
628 u32 id_highbits;
629 int ret;
630
631 name = kstrdup_const(name, GFP_KERNEL);
632 if (!name)
633 return NULL;
634
635 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
636 if (!kn)
637 goto err_out1;
638
639 idr_preload(GFP_KERNEL);
640 spin_lock(&kernfs_idr_lock);
641 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
642 if (ret >= 0 && ret < root->last_id_lowbits)
643 root->id_highbits++;
644 id_highbits = root->id_highbits;
645 root->last_id_lowbits = ret;
646 spin_unlock(&kernfs_idr_lock);
647 idr_preload_end();
648 if (ret < 0)
649 goto err_out2;
650
651 kn->id = (u64)id_highbits << 32 | ret;
652
653 atomic_set(&kn->count, 1);
654 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
655 RB_CLEAR_NODE(&kn->rb);
656
657 kn->name = name;
658 kn->mode = mode;
659 kn->flags = flags;
660
661 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
662 struct iattr iattr = {
663 .ia_valid = ATTR_UID | ATTR_GID,
664 .ia_uid = uid,
665 .ia_gid = gid,
666 };
667
668 ret = __kernfs_setattr(kn, &iattr);
669 if (ret < 0)
670 goto err_out3;
671 }
672
673 if (parent) {
674 ret = security_kernfs_init_security(parent, kn);
675 if (ret)
676 goto err_out3;
677 }
678
679 return kn;
680
681 err_out3:
682 spin_lock(&kernfs_idr_lock);
683 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
684 spin_unlock(&kernfs_idr_lock);
685 err_out2:
686 kmem_cache_free(kernfs_node_cache, kn);
687 err_out1:
688 kfree_const(name);
689 return NULL;
690 }
691
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)692 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
693 const char *name, umode_t mode,
694 kuid_t uid, kgid_t gid,
695 unsigned flags)
696 {
697 struct kernfs_node *kn;
698
699 kn = __kernfs_new_node(kernfs_root(parent), parent,
700 name, mode, uid, gid, flags);
701 if (kn) {
702 kernfs_get(parent);
703 kn->parent = parent;
704 }
705 return kn;
706 }
707
708 /*
709 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
710 * @root: the kernfs root
711 * @id: the target node id
712 *
713 * @id's lower 32bits encode ino and upper gen. If the gen portion is
714 * zero, all generations are matched.
715 *
716 * RETURNS:
717 * NULL on failure. Return a kernfs node with reference counter incremented
718 */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)719 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
720 u64 id)
721 {
722 struct kernfs_node *kn;
723 ino_t ino = kernfs_id_ino(id);
724 u32 gen = kernfs_id_gen(id);
725
726 spin_lock(&kernfs_idr_lock);
727
728 kn = idr_find(&root->ino_idr, (u32)ino);
729 if (!kn)
730 goto err_unlock;
731
732 if (sizeof(ino_t) >= sizeof(u64)) {
733 /* we looked up with the low 32bits, compare the whole */
734 if (kernfs_ino(kn) != ino)
735 goto err_unlock;
736 } else {
737 /* 0 matches all generations */
738 if (unlikely(gen && kernfs_gen(kn) != gen))
739 goto err_unlock;
740 }
741
742 /*
743 * ACTIVATED is protected with kernfs_mutex but it was clear when
744 * @kn was added to idr and we just wanna see it set. No need to
745 * grab kernfs_mutex.
746 */
747 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
748 !atomic_inc_not_zero(&kn->count)))
749 goto err_unlock;
750
751 spin_unlock(&kernfs_idr_lock);
752 return kn;
753 err_unlock:
754 spin_unlock(&kernfs_idr_lock);
755 return NULL;
756 }
757
758 /**
759 * kernfs_add_one - add kernfs_node to parent without warning
760 * @kn: kernfs_node to be added
761 *
762 * The caller must already have initialized @kn->parent. This
763 * function increments nlink of the parent's inode if @kn is a
764 * directory and link into the children list of the parent.
765 *
766 * RETURNS:
767 * 0 on success, -EEXIST if entry with the given name already
768 * exists.
769 */
kernfs_add_one(struct kernfs_node * kn)770 int kernfs_add_one(struct kernfs_node *kn)
771 {
772 struct kernfs_node *parent = kn->parent;
773 struct kernfs_iattrs *ps_iattr;
774 bool has_ns;
775 int ret;
776
777 mutex_lock(&kernfs_mutex);
778
779 ret = -EINVAL;
780 has_ns = kernfs_ns_enabled(parent);
781 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
782 has_ns ? "required" : "invalid", parent->name, kn->name))
783 goto out_unlock;
784
785 if (kernfs_type(parent) != KERNFS_DIR)
786 goto out_unlock;
787
788 ret = -ENOENT;
789 if (parent->flags & KERNFS_EMPTY_DIR)
790 goto out_unlock;
791
792 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
793 goto out_unlock;
794
795 kn->hash = kernfs_name_hash(kn->name, kn->ns);
796
797 ret = kernfs_link_sibling(kn);
798 if (ret)
799 goto out_unlock;
800
801 /* Update timestamps on the parent */
802 ps_iattr = parent->iattr;
803 if (ps_iattr) {
804 ktime_get_real_ts64(&ps_iattr->ia_ctime);
805 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
806 }
807
808 mutex_unlock(&kernfs_mutex);
809
810 /*
811 * Activate the new node unless CREATE_DEACTIVATED is requested.
812 * If not activated here, the kernfs user is responsible for
813 * activating the node with kernfs_activate(). A node which hasn't
814 * been activated is not visible to userland and its removal won't
815 * trigger deactivation.
816 */
817 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
818 kernfs_activate(kn);
819 return 0;
820
821 out_unlock:
822 mutex_unlock(&kernfs_mutex);
823 return ret;
824 }
825
826 /**
827 * kernfs_find_ns - find kernfs_node with the given name
828 * @parent: kernfs_node to search under
829 * @name: name to look for
830 * @ns: the namespace tag to use
831 *
832 * Look for kernfs_node with name @name under @parent. Returns pointer to
833 * the found kernfs_node on success, %NULL on failure.
834 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)835 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
836 const unsigned char *name,
837 const void *ns)
838 {
839 struct rb_node *node = parent->dir.children.rb_node;
840 bool has_ns = kernfs_ns_enabled(parent);
841 unsigned int hash;
842
843 lockdep_assert_held(&kernfs_mutex);
844
845 if (has_ns != (bool)ns) {
846 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
847 has_ns ? "required" : "invalid", parent->name, name);
848 return NULL;
849 }
850
851 hash = kernfs_name_hash(name, ns);
852 while (node) {
853 struct kernfs_node *kn;
854 int result;
855
856 kn = rb_to_kn(node);
857 result = kernfs_name_compare(hash, name, ns, kn);
858 if (result < 0)
859 node = node->rb_left;
860 else if (result > 0)
861 node = node->rb_right;
862 else
863 return kn;
864 }
865 return NULL;
866 }
867
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)868 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
869 const unsigned char *path,
870 const void *ns)
871 {
872 size_t len;
873 char *p, *name;
874
875 lockdep_assert_held(&kernfs_mutex);
876
877 spin_lock_irq(&kernfs_pr_cont_lock);
878
879 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
880
881 if (len >= sizeof(kernfs_pr_cont_buf)) {
882 spin_unlock_irq(&kernfs_pr_cont_lock);
883 return NULL;
884 }
885
886 p = kernfs_pr_cont_buf;
887
888 while ((name = strsep(&p, "/")) && parent) {
889 if (*name == '\0')
890 continue;
891 parent = kernfs_find_ns(parent, name, ns);
892 }
893
894 spin_unlock_irq(&kernfs_pr_cont_lock);
895
896 return parent;
897 }
898
899 /**
900 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
901 * @parent: kernfs_node to search under
902 * @name: name to look for
903 * @ns: the namespace tag to use
904 *
905 * Look for kernfs_node with name @name under @parent and get a reference
906 * if found. This function may sleep and returns pointer to the found
907 * kernfs_node on success, %NULL on failure.
908 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)909 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
910 const char *name, const void *ns)
911 {
912 struct kernfs_node *kn;
913
914 mutex_lock(&kernfs_mutex);
915 kn = kernfs_find_ns(parent, name, ns);
916 kernfs_get(kn);
917 mutex_unlock(&kernfs_mutex);
918
919 return kn;
920 }
921 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
922
923 /**
924 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
925 * @parent: kernfs_node to search under
926 * @path: path to look for
927 * @ns: the namespace tag to use
928 *
929 * Look for kernfs_node with path @path under @parent and get a reference
930 * if found. This function may sleep and returns pointer to the found
931 * kernfs_node on success, %NULL on failure.
932 */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)933 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
934 const char *path, const void *ns)
935 {
936 struct kernfs_node *kn;
937
938 mutex_lock(&kernfs_mutex);
939 kn = kernfs_walk_ns(parent, path, ns);
940 kernfs_get(kn);
941 mutex_unlock(&kernfs_mutex);
942
943 return kn;
944 }
945
946 /**
947 * kernfs_create_root - create a new kernfs hierarchy
948 * @scops: optional syscall operations for the hierarchy
949 * @flags: KERNFS_ROOT_* flags
950 * @priv: opaque data associated with the new directory
951 *
952 * Returns the root of the new hierarchy on success, ERR_PTR() value on
953 * failure.
954 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)955 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
956 unsigned int flags, void *priv)
957 {
958 struct kernfs_root *root;
959 struct kernfs_node *kn;
960
961 root = kzalloc(sizeof(*root), GFP_KERNEL);
962 if (!root)
963 return ERR_PTR(-ENOMEM);
964
965 idr_init(&root->ino_idr);
966 INIT_LIST_HEAD(&root->supers);
967
968 /*
969 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
970 * High bits generation. The starting value for both ino and
971 * genenration is 1. Initialize upper 32bit allocation
972 * accordingly.
973 */
974 if (sizeof(ino_t) >= sizeof(u64))
975 root->id_highbits = 0;
976 else
977 root->id_highbits = 1;
978
979 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
980 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
981 KERNFS_DIR);
982 if (!kn) {
983 idr_destroy(&root->ino_idr);
984 kfree(root);
985 return ERR_PTR(-ENOMEM);
986 }
987
988 kn->priv = priv;
989 kn->dir.root = root;
990
991 root->syscall_ops = scops;
992 root->flags = flags;
993 root->kn = kn;
994 init_waitqueue_head(&root->deactivate_waitq);
995
996 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
997 kernfs_activate(kn);
998
999 return root;
1000 }
1001
1002 /**
1003 * kernfs_destroy_root - destroy a kernfs hierarchy
1004 * @root: root of the hierarchy to destroy
1005 *
1006 * Destroy the hierarchy anchored at @root by removing all existing
1007 * directories and destroying @root.
1008 */
kernfs_destroy_root(struct kernfs_root * root)1009 void kernfs_destroy_root(struct kernfs_root *root)
1010 {
1011 kernfs_remove(root->kn); /* will also free @root */
1012 }
1013
1014 /**
1015 * kernfs_create_dir_ns - create a directory
1016 * @parent: parent in which to create a new directory
1017 * @name: name of the new directory
1018 * @mode: mode of the new directory
1019 * @uid: uid of the new directory
1020 * @gid: gid of the new directory
1021 * @priv: opaque data associated with the new directory
1022 * @ns: optional namespace tag of the directory
1023 *
1024 * Returns the created node on success, ERR_PTR() value on failure.
1025 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1026 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1027 const char *name, umode_t mode,
1028 kuid_t uid, kgid_t gid,
1029 void *priv, const void *ns)
1030 {
1031 struct kernfs_node *kn;
1032 int rc;
1033
1034 /* allocate */
1035 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1036 uid, gid, KERNFS_DIR);
1037 if (!kn)
1038 return ERR_PTR(-ENOMEM);
1039
1040 kn->dir.root = parent->dir.root;
1041 kn->ns = ns;
1042 kn->priv = priv;
1043
1044 /* link in */
1045 rc = kernfs_add_one(kn);
1046 if (!rc)
1047 return kn;
1048
1049 kernfs_put(kn);
1050 return ERR_PTR(rc);
1051 }
1052
1053 /**
1054 * kernfs_create_empty_dir - create an always empty directory
1055 * @parent: parent in which to create a new directory
1056 * @name: name of the new directory
1057 *
1058 * Returns the created node on success, ERR_PTR() value on failure.
1059 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1060 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1061 const char *name)
1062 {
1063 struct kernfs_node *kn;
1064 int rc;
1065
1066 /* allocate */
1067 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1068 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1069 if (!kn)
1070 return ERR_PTR(-ENOMEM);
1071
1072 kn->flags |= KERNFS_EMPTY_DIR;
1073 kn->dir.root = parent->dir.root;
1074 kn->ns = NULL;
1075 kn->priv = NULL;
1076
1077 /* link in */
1078 rc = kernfs_add_one(kn);
1079 if (!rc)
1080 return kn;
1081
1082 kernfs_put(kn);
1083 return ERR_PTR(rc);
1084 }
1085
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1086 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1087 struct dentry *dentry,
1088 unsigned int flags)
1089 {
1090 struct dentry *ret;
1091 struct kernfs_node *parent = dir->i_private;
1092 struct kernfs_node *kn;
1093 struct inode *inode;
1094 const void *ns = NULL;
1095
1096 mutex_lock(&kernfs_mutex);
1097
1098 if (kernfs_ns_enabled(parent))
1099 ns = kernfs_info(dir->i_sb)->ns;
1100
1101 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1102
1103 /* no such entry */
1104 if (!kn || !kernfs_active(kn)) {
1105 ret = NULL;
1106 goto out_unlock;
1107 }
1108
1109 /* attach dentry and inode */
1110 inode = kernfs_get_inode(dir->i_sb, kn);
1111 if (!inode) {
1112 ret = ERR_PTR(-ENOMEM);
1113 goto out_unlock;
1114 }
1115
1116 /* instantiate and hash dentry */
1117 ret = d_splice_alias(inode, dentry);
1118 out_unlock:
1119 mutex_unlock(&kernfs_mutex);
1120 return ret;
1121 }
1122
kernfs_iop_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1123 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1124 umode_t mode)
1125 {
1126 struct kernfs_node *parent = dir->i_private;
1127 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1128 int ret;
1129
1130 if (!scops || !scops->mkdir)
1131 return -EPERM;
1132
1133 if (!kernfs_get_active(parent))
1134 return -ENODEV;
1135
1136 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1137
1138 kernfs_put_active(parent);
1139 return ret;
1140 }
1141
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1142 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1143 {
1144 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1145 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1146 int ret;
1147
1148 if (!scops || !scops->rmdir)
1149 return -EPERM;
1150
1151 if (!kernfs_get_active(kn))
1152 return -ENODEV;
1153
1154 ret = scops->rmdir(kn);
1155
1156 kernfs_put_active(kn);
1157 return ret;
1158 }
1159
kernfs_iop_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1160 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1161 struct inode *new_dir, struct dentry *new_dentry,
1162 unsigned int flags)
1163 {
1164 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1165 struct kernfs_node *new_parent = new_dir->i_private;
1166 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1167 int ret;
1168
1169 if (flags)
1170 return -EINVAL;
1171
1172 if (!scops || !scops->rename)
1173 return -EPERM;
1174
1175 if (!kernfs_get_active(kn))
1176 return -ENODEV;
1177
1178 if (!kernfs_get_active(new_parent)) {
1179 kernfs_put_active(kn);
1180 return -ENODEV;
1181 }
1182
1183 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1184
1185 kernfs_put_active(new_parent);
1186 kernfs_put_active(kn);
1187 return ret;
1188 }
1189
1190 const struct inode_operations kernfs_dir_iops = {
1191 .lookup = kernfs_iop_lookup,
1192 .permission = kernfs_iop_permission,
1193 .setattr = kernfs_iop_setattr,
1194 .getattr = kernfs_iop_getattr,
1195 .listxattr = kernfs_iop_listxattr,
1196
1197 .mkdir = kernfs_iop_mkdir,
1198 .rmdir = kernfs_iop_rmdir,
1199 .rename = kernfs_iop_rename,
1200 };
1201
kernfs_leftmost_descendant(struct kernfs_node * pos)1202 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1203 {
1204 struct kernfs_node *last;
1205
1206 while (true) {
1207 struct rb_node *rbn;
1208
1209 last = pos;
1210
1211 if (kernfs_type(pos) != KERNFS_DIR)
1212 break;
1213
1214 rbn = rb_first(&pos->dir.children);
1215 if (!rbn)
1216 break;
1217
1218 pos = rb_to_kn(rbn);
1219 }
1220
1221 return last;
1222 }
1223
1224 /**
1225 * kernfs_next_descendant_post - find the next descendant for post-order walk
1226 * @pos: the current position (%NULL to initiate traversal)
1227 * @root: kernfs_node whose descendants to walk
1228 *
1229 * Find the next descendant to visit for post-order traversal of @root's
1230 * descendants. @root is included in the iteration and the last node to be
1231 * visited.
1232 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1233 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1234 struct kernfs_node *root)
1235 {
1236 struct rb_node *rbn;
1237
1238 lockdep_assert_held(&kernfs_mutex);
1239
1240 /* if first iteration, visit leftmost descendant which may be root */
1241 if (!pos)
1242 return kernfs_leftmost_descendant(root);
1243
1244 /* if we visited @root, we're done */
1245 if (pos == root)
1246 return NULL;
1247
1248 /* if there's an unvisited sibling, visit its leftmost descendant */
1249 rbn = rb_next(&pos->rb);
1250 if (rbn)
1251 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1252
1253 /* no sibling left, visit parent */
1254 return pos->parent;
1255 }
1256
1257 /**
1258 * kernfs_activate - activate a node which started deactivated
1259 * @kn: kernfs_node whose subtree is to be activated
1260 *
1261 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1262 * needs to be explicitly activated. A node which hasn't been activated
1263 * isn't visible to userland and deactivation is skipped during its
1264 * removal. This is useful to construct atomic init sequences where
1265 * creation of multiple nodes should either succeed or fail atomically.
1266 *
1267 * The caller is responsible for ensuring that this function is not called
1268 * after kernfs_remove*() is invoked on @kn.
1269 */
kernfs_activate(struct kernfs_node * kn)1270 void kernfs_activate(struct kernfs_node *kn)
1271 {
1272 struct kernfs_node *pos;
1273
1274 mutex_lock(&kernfs_mutex);
1275
1276 pos = NULL;
1277 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1278 if (pos->flags & KERNFS_ACTIVATED)
1279 continue;
1280
1281 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1282 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1283
1284 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1285 pos->flags |= KERNFS_ACTIVATED;
1286 }
1287
1288 mutex_unlock(&kernfs_mutex);
1289 }
1290
__kernfs_remove(struct kernfs_node * kn)1291 static void __kernfs_remove(struct kernfs_node *kn)
1292 {
1293 struct kernfs_node *pos;
1294
1295 lockdep_assert_held(&kernfs_mutex);
1296
1297 /*
1298 * Short-circuit if non-root @kn has already finished removal.
1299 * This is for kernfs_remove_self() which plays with active ref
1300 * after removal.
1301 */
1302 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1303 return;
1304
1305 pr_debug("kernfs %s: removing\n", kn->name);
1306
1307 /* prevent any new usage under @kn by deactivating all nodes */
1308 pos = NULL;
1309 while ((pos = kernfs_next_descendant_post(pos, kn)))
1310 if (kernfs_active(pos))
1311 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1312
1313 /* deactivate and unlink the subtree node-by-node */
1314 do {
1315 pos = kernfs_leftmost_descendant(kn);
1316
1317 /*
1318 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1319 * base ref could have been put by someone else by the time
1320 * the function returns. Make sure it doesn't go away
1321 * underneath us.
1322 */
1323 kernfs_get(pos);
1324
1325 /*
1326 * Drain iff @kn was activated. This avoids draining and
1327 * its lockdep annotations for nodes which have never been
1328 * activated and allows embedding kernfs_remove() in create
1329 * error paths without worrying about draining.
1330 */
1331 if (kn->flags & KERNFS_ACTIVATED)
1332 kernfs_drain(pos);
1333 else
1334 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1335
1336 /*
1337 * kernfs_unlink_sibling() succeeds once per node. Use it
1338 * to decide who's responsible for cleanups.
1339 */
1340 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1341 struct kernfs_iattrs *ps_iattr =
1342 pos->parent ? pos->parent->iattr : NULL;
1343
1344 /* update timestamps on the parent */
1345 if (ps_iattr) {
1346 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1347 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1348 }
1349
1350 kernfs_put(pos);
1351 }
1352
1353 kernfs_put(pos);
1354 } while (pos != kn);
1355 }
1356
1357 /**
1358 * kernfs_remove - remove a kernfs_node recursively
1359 * @kn: the kernfs_node to remove
1360 *
1361 * Remove @kn along with all its subdirectories and files.
1362 */
kernfs_remove(struct kernfs_node * kn)1363 void kernfs_remove(struct kernfs_node *kn)
1364 {
1365 mutex_lock(&kernfs_mutex);
1366 __kernfs_remove(kn);
1367 mutex_unlock(&kernfs_mutex);
1368 }
1369
1370 /**
1371 * kernfs_break_active_protection - break out of active protection
1372 * @kn: the self kernfs_node
1373 *
1374 * The caller must be running off of a kernfs operation which is invoked
1375 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1376 * this function must also be matched with an invocation of
1377 * kernfs_unbreak_active_protection().
1378 *
1379 * This function releases the active reference of @kn the caller is
1380 * holding. Once this function is called, @kn may be removed at any point
1381 * and the caller is solely responsible for ensuring that the objects it
1382 * dereferences are accessible.
1383 */
kernfs_break_active_protection(struct kernfs_node * kn)1384 void kernfs_break_active_protection(struct kernfs_node *kn)
1385 {
1386 /*
1387 * Take out ourself out of the active ref dependency chain. If
1388 * we're called without an active ref, lockdep will complain.
1389 */
1390 kernfs_put_active(kn);
1391 }
1392
1393 /**
1394 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1395 * @kn: the self kernfs_node
1396 *
1397 * If kernfs_break_active_protection() was called, this function must be
1398 * invoked before finishing the kernfs operation. Note that while this
1399 * function restores the active reference, it doesn't and can't actually
1400 * restore the active protection - @kn may already or be in the process of
1401 * being removed. Once kernfs_break_active_protection() is invoked, that
1402 * protection is irreversibly gone for the kernfs operation instance.
1403 *
1404 * While this function may be called at any point after
1405 * kernfs_break_active_protection() is invoked, its most useful location
1406 * would be right before the enclosing kernfs operation returns.
1407 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1408 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1409 {
1410 /*
1411 * @kn->active could be in any state; however, the increment we do
1412 * here will be undone as soon as the enclosing kernfs operation
1413 * finishes and this temporary bump can't break anything. If @kn
1414 * is alive, nothing changes. If @kn is being deactivated, the
1415 * soon-to-follow put will either finish deactivation or restore
1416 * deactivated state. If @kn is already removed, the temporary
1417 * bump is guaranteed to be gone before @kn is released.
1418 */
1419 atomic_inc(&kn->active);
1420 if (kernfs_lockdep(kn))
1421 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1422 }
1423
1424 /**
1425 * kernfs_remove_self - remove a kernfs_node from its own method
1426 * @kn: the self kernfs_node to remove
1427 *
1428 * The caller must be running off of a kernfs operation which is invoked
1429 * with an active reference - e.g. one of kernfs_ops. This can be used to
1430 * implement a file operation which deletes itself.
1431 *
1432 * For example, the "delete" file for a sysfs device directory can be
1433 * implemented by invoking kernfs_remove_self() on the "delete" file
1434 * itself. This function breaks the circular dependency of trying to
1435 * deactivate self while holding an active ref itself. It isn't necessary
1436 * to modify the usual removal path to use kernfs_remove_self(). The
1437 * "delete" implementation can simply invoke kernfs_remove_self() on self
1438 * before proceeding with the usual removal path. kernfs will ignore later
1439 * kernfs_remove() on self.
1440 *
1441 * kernfs_remove_self() can be called multiple times concurrently on the
1442 * same kernfs_node. Only the first one actually performs removal and
1443 * returns %true. All others will wait until the kernfs operation which
1444 * won self-removal finishes and return %false. Note that the losers wait
1445 * for the completion of not only the winning kernfs_remove_self() but also
1446 * the whole kernfs_ops which won the arbitration. This can be used to
1447 * guarantee, for example, all concurrent writes to a "delete" file to
1448 * finish only after the whole operation is complete.
1449 */
kernfs_remove_self(struct kernfs_node * kn)1450 bool kernfs_remove_self(struct kernfs_node *kn)
1451 {
1452 bool ret;
1453
1454 mutex_lock(&kernfs_mutex);
1455 kernfs_break_active_protection(kn);
1456
1457 /*
1458 * SUICIDAL is used to arbitrate among competing invocations. Only
1459 * the first one will actually perform removal. When the removal
1460 * is complete, SUICIDED is set and the active ref is restored
1461 * while holding kernfs_mutex. The ones which lost arbitration
1462 * waits for SUICDED && drained which can happen only after the
1463 * enclosing kernfs operation which executed the winning instance
1464 * of kernfs_remove_self() finished.
1465 */
1466 if (!(kn->flags & KERNFS_SUICIDAL)) {
1467 kn->flags |= KERNFS_SUICIDAL;
1468 __kernfs_remove(kn);
1469 kn->flags |= KERNFS_SUICIDED;
1470 ret = true;
1471 } else {
1472 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1473 DEFINE_WAIT(wait);
1474
1475 while (true) {
1476 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1477
1478 if ((kn->flags & KERNFS_SUICIDED) &&
1479 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1480 break;
1481
1482 mutex_unlock(&kernfs_mutex);
1483 schedule();
1484 mutex_lock(&kernfs_mutex);
1485 }
1486 finish_wait(waitq, &wait);
1487 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1488 ret = false;
1489 }
1490
1491 /*
1492 * This must be done while holding kernfs_mutex; otherwise, waiting
1493 * for SUICIDED && deactivated could finish prematurely.
1494 */
1495 kernfs_unbreak_active_protection(kn);
1496
1497 mutex_unlock(&kernfs_mutex);
1498 return ret;
1499 }
1500
1501 /**
1502 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1503 * @parent: parent of the target
1504 * @name: name of the kernfs_node to remove
1505 * @ns: namespace tag of the kernfs_node to remove
1506 *
1507 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1508 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1509 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1510 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1511 const void *ns)
1512 {
1513 struct kernfs_node *kn;
1514
1515 if (!parent) {
1516 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1517 name);
1518 return -ENOENT;
1519 }
1520
1521 mutex_lock(&kernfs_mutex);
1522
1523 kn = kernfs_find_ns(parent, name, ns);
1524 if (kn) {
1525 kernfs_get(kn);
1526 __kernfs_remove(kn);
1527 kernfs_put(kn);
1528 }
1529
1530 mutex_unlock(&kernfs_mutex);
1531
1532 if (kn)
1533 return 0;
1534 else
1535 return -ENOENT;
1536 }
1537
1538 /**
1539 * kernfs_rename_ns - move and rename a kernfs_node
1540 * @kn: target node
1541 * @new_parent: new parent to put @sd under
1542 * @new_name: new name
1543 * @new_ns: new namespace tag
1544 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1545 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1546 const char *new_name, const void *new_ns)
1547 {
1548 struct kernfs_node *old_parent;
1549 const char *old_name = NULL;
1550 int error;
1551
1552 /* can't move or rename root */
1553 if (!kn->parent)
1554 return -EINVAL;
1555
1556 mutex_lock(&kernfs_mutex);
1557
1558 error = -ENOENT;
1559 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1560 (new_parent->flags & KERNFS_EMPTY_DIR))
1561 goto out;
1562
1563 error = 0;
1564 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1565 (strcmp(kn->name, new_name) == 0))
1566 goto out; /* nothing to rename */
1567
1568 error = -EEXIST;
1569 if (kernfs_find_ns(new_parent, new_name, new_ns))
1570 goto out;
1571
1572 /* rename kernfs_node */
1573 if (strcmp(kn->name, new_name) != 0) {
1574 error = -ENOMEM;
1575 new_name = kstrdup_const(new_name, GFP_KERNEL);
1576 if (!new_name)
1577 goto out;
1578 } else {
1579 new_name = NULL;
1580 }
1581
1582 /*
1583 * Move to the appropriate place in the appropriate directories rbtree.
1584 */
1585 kernfs_unlink_sibling(kn);
1586 kernfs_get(new_parent);
1587
1588 /* rename_lock protects ->parent and ->name accessors */
1589 spin_lock_irq(&kernfs_rename_lock);
1590
1591 old_parent = kn->parent;
1592 kn->parent = new_parent;
1593
1594 kn->ns = new_ns;
1595 if (new_name) {
1596 old_name = kn->name;
1597 kn->name = new_name;
1598 }
1599
1600 spin_unlock_irq(&kernfs_rename_lock);
1601
1602 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1603 kernfs_link_sibling(kn);
1604
1605 kernfs_put(old_parent);
1606 kfree_const(old_name);
1607
1608 error = 0;
1609 out:
1610 mutex_unlock(&kernfs_mutex);
1611 return error;
1612 }
1613
1614 /* Relationship between s_mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1615 static inline unsigned char dt_type(struct kernfs_node *kn)
1616 {
1617 return (kn->mode >> 12) & 15;
1618 }
1619
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1620 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1621 {
1622 kernfs_put(filp->private_data);
1623 return 0;
1624 }
1625
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1626 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1627 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1628 {
1629 if (pos) {
1630 int valid = kernfs_active(pos) &&
1631 pos->parent == parent && hash == pos->hash;
1632 kernfs_put(pos);
1633 if (!valid)
1634 pos = NULL;
1635 }
1636 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1637 struct rb_node *node = parent->dir.children.rb_node;
1638 while (node) {
1639 pos = rb_to_kn(node);
1640
1641 if (hash < pos->hash)
1642 node = node->rb_left;
1643 else if (hash > pos->hash)
1644 node = node->rb_right;
1645 else
1646 break;
1647 }
1648 }
1649 /* Skip over entries which are dying/dead or in the wrong namespace */
1650 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1651 struct rb_node *node = rb_next(&pos->rb);
1652 if (!node)
1653 pos = NULL;
1654 else
1655 pos = rb_to_kn(node);
1656 }
1657 return pos;
1658 }
1659
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1660 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1661 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1662 {
1663 pos = kernfs_dir_pos(ns, parent, ino, pos);
1664 if (pos) {
1665 do {
1666 struct rb_node *node = rb_next(&pos->rb);
1667 if (!node)
1668 pos = NULL;
1669 else
1670 pos = rb_to_kn(node);
1671 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1672 }
1673 return pos;
1674 }
1675
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1676 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1677 {
1678 struct dentry *dentry = file->f_path.dentry;
1679 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1680 struct kernfs_node *pos = file->private_data;
1681 const void *ns = NULL;
1682
1683 if (!dir_emit_dots(file, ctx))
1684 return 0;
1685 mutex_lock(&kernfs_mutex);
1686
1687 if (kernfs_ns_enabled(parent))
1688 ns = kernfs_info(dentry->d_sb)->ns;
1689
1690 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1691 pos;
1692 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1693 const char *name = pos->name;
1694 unsigned int type = dt_type(pos);
1695 int len = strlen(name);
1696 ino_t ino = kernfs_ino(pos);
1697
1698 ctx->pos = pos->hash;
1699 file->private_data = pos;
1700 kernfs_get(pos);
1701
1702 mutex_unlock(&kernfs_mutex);
1703 if (!dir_emit(ctx, name, len, ino, type))
1704 return 0;
1705 mutex_lock(&kernfs_mutex);
1706 }
1707 mutex_unlock(&kernfs_mutex);
1708 file->private_data = NULL;
1709 ctx->pos = INT_MAX;
1710 return 0;
1711 }
1712
1713 const struct file_operations kernfs_dir_fops = {
1714 .read = generic_read_dir,
1715 .iterate_shared = kernfs_fop_readdir,
1716 .release = kernfs_dir_fop_release,
1717 .llseek = generic_file_llseek,
1718 };
1719