• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
22 /*
23  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
24  * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
25  * will perform wakeups when releasing console_sem. Holding rename_lock
26  * will introduce deadlock if the scheduler reads the kernfs_name in the
27  * wakeup path.
28  */
29 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
30 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
31 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
32 
33 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
34 
kernfs_active(struct kernfs_node * kn)35 static bool kernfs_active(struct kernfs_node *kn)
36 {
37 	lockdep_assert_held(&kernfs_mutex);
38 	return atomic_read(&kn->active) >= 0;
39 }
40 
kernfs_lockdep(struct kernfs_node * kn)41 static bool kernfs_lockdep(struct kernfs_node *kn)
42 {
43 #ifdef CONFIG_DEBUG_LOCK_ALLOC
44 	return kn->flags & KERNFS_LOCKDEP;
45 #else
46 	return false;
47 #endif
48 }
49 
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)50 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
51 {
52 	if (!kn)
53 		return strlcpy(buf, "(null)", buflen);
54 
55 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
56 }
57 
58 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)59 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
60 {
61 	size_t depth = 0;
62 
63 	while (to->parent && to != from) {
64 		depth++;
65 		to = to->parent;
66 	}
67 	return depth;
68 }
69 
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)70 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
71 						  struct kernfs_node *b)
72 {
73 	size_t da, db;
74 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
75 
76 	if (ra != rb)
77 		return NULL;
78 
79 	da = kernfs_depth(ra->kn, a);
80 	db = kernfs_depth(rb->kn, b);
81 
82 	while (da > db) {
83 		a = a->parent;
84 		da--;
85 	}
86 	while (db > da) {
87 		b = b->parent;
88 		db--;
89 	}
90 
91 	/* worst case b and a will be the same at root */
92 	while (b != a) {
93 		b = b->parent;
94 		a = a->parent;
95 	}
96 
97 	return a;
98 }
99 
100 /**
101  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
102  * where kn_from is treated as root of the path.
103  * @kn_from: kernfs node which should be treated as root for the path
104  * @kn_to: kernfs node to which path is needed
105  * @buf: buffer to copy the path into
106  * @buflen: size of @buf
107  *
108  * We need to handle couple of scenarios here:
109  * [1] when @kn_from is an ancestor of @kn_to at some level
110  * kn_from: /n1/n2/n3
111  * kn_to:   /n1/n2/n3/n4/n5
112  * result:  /n4/n5
113  *
114  * [2] when @kn_from is on a different hierarchy and we need to find common
115  * ancestor between @kn_from and @kn_to.
116  * kn_from: /n1/n2/n3/n4
117  * kn_to:   /n1/n2/n5
118  * result:  /../../n5
119  * OR
120  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
121  * kn_to:   /n1/n2/n3         [depth=3]
122  * result:  /../..
123  *
124  * [3] when @kn_to is NULL result will be "(null)"
125  *
126  * Returns the length of the full path.  If the full length is equal to or
127  * greater than @buflen, @buf contains the truncated path with the trailing
128  * '\0'.  On error, -errno is returned.
129  */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)130 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
131 					struct kernfs_node *kn_from,
132 					char *buf, size_t buflen)
133 {
134 	struct kernfs_node *kn, *common;
135 	const char parent_str[] = "/..";
136 	size_t depth_from, depth_to, len = 0;
137 	int i, j;
138 
139 	if (!kn_to)
140 		return strlcpy(buf, "(null)", buflen);
141 
142 	if (!kn_from)
143 		kn_from = kernfs_root(kn_to)->kn;
144 
145 	if (kn_from == kn_to)
146 		return strlcpy(buf, "/", buflen);
147 
148 	if (!buf)
149 		return -EINVAL;
150 
151 	common = kernfs_common_ancestor(kn_from, kn_to);
152 	if (WARN_ON(!common))
153 		return -EINVAL;
154 
155 	depth_to = kernfs_depth(common, kn_to);
156 	depth_from = kernfs_depth(common, kn_from);
157 
158 	buf[0] = '\0';
159 
160 	for (i = 0; i < depth_from; i++)
161 		len += strlcpy(buf + len, parent_str,
162 			       len < buflen ? buflen - len : 0);
163 
164 	/* Calculate how many bytes we need for the rest */
165 	for (i = depth_to - 1; i >= 0; i--) {
166 		for (kn = kn_to, j = 0; j < i; j++)
167 			kn = kn->parent;
168 		len += strlcpy(buf + len, "/",
169 			       len < buflen ? buflen - len : 0);
170 		len += strlcpy(buf + len, kn->name,
171 			       len < buflen ? buflen - len : 0);
172 	}
173 
174 	return len;
175 }
176 
177 /**
178  * kernfs_name - obtain the name of a given node
179  * @kn: kernfs_node of interest
180  * @buf: buffer to copy @kn's name into
181  * @buflen: size of @buf
182  *
183  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
184  * similar to strlcpy().  It returns the length of @kn's name and if @buf
185  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
186  *
187  * Fills buffer with "(null)" if @kn is NULL.
188  *
189  * This function can be called from any context.
190  */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)191 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
192 {
193 	unsigned long flags;
194 	int ret;
195 
196 	spin_lock_irqsave(&kernfs_rename_lock, flags);
197 	ret = kernfs_name_locked(kn, buf, buflen);
198 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
199 	return ret;
200 }
201 
202 /**
203  * kernfs_path_from_node - build path of node @to relative to @from.
204  * @from: parent kernfs_node relative to which we need to build the path
205  * @to: kernfs_node of interest
206  * @buf: buffer to copy @to's path into
207  * @buflen: size of @buf
208  *
209  * Builds @to's path relative to @from in @buf. @from and @to must
210  * be on the same kernfs-root. If @from is not parent of @to, then a relative
211  * path (which includes '..'s) as needed to reach from @from to @to is
212  * returned.
213  *
214  * Returns the length of the full path.  If the full length is equal to or
215  * greater than @buflen, @buf contains the truncated path with the trailing
216  * '\0'.  On error, -errno is returned.
217  */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)218 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
219 			  char *buf, size_t buflen)
220 {
221 	unsigned long flags;
222 	int ret;
223 
224 	spin_lock_irqsave(&kernfs_rename_lock, flags);
225 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
226 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
227 	return ret;
228 }
229 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
230 
231 /**
232  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
233  * @kn: kernfs_node of interest
234  *
235  * This function can be called from any context.
236  */
pr_cont_kernfs_name(struct kernfs_node * kn)237 void pr_cont_kernfs_name(struct kernfs_node *kn)
238 {
239 	unsigned long flags;
240 
241 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
242 
243 	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
244 	pr_cont("%s", kernfs_pr_cont_buf);
245 
246 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
247 }
248 
249 /**
250  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
251  * @kn: kernfs_node of interest
252  *
253  * This function can be called from any context.
254  */
pr_cont_kernfs_path(struct kernfs_node * kn)255 void pr_cont_kernfs_path(struct kernfs_node *kn)
256 {
257 	unsigned long flags;
258 	int sz;
259 
260 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
261 
262 	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
263 				   sizeof(kernfs_pr_cont_buf));
264 	if (sz < 0) {
265 		pr_cont("(error)");
266 		goto out;
267 	}
268 
269 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
270 		pr_cont("(name too long)");
271 		goto out;
272 	}
273 
274 	pr_cont("%s", kernfs_pr_cont_buf);
275 
276 out:
277 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
278 }
279 
280 /**
281  * kernfs_get_parent - determine the parent node and pin it
282  * @kn: kernfs_node of interest
283  *
284  * Determines @kn's parent, pins and returns it.  This function can be
285  * called from any context.
286  */
kernfs_get_parent(struct kernfs_node * kn)287 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
288 {
289 	struct kernfs_node *parent;
290 	unsigned long flags;
291 
292 	spin_lock_irqsave(&kernfs_rename_lock, flags);
293 	parent = kn->parent;
294 	kernfs_get(parent);
295 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
296 
297 	return parent;
298 }
299 
300 /**
301  *	kernfs_name_hash
302  *	@name: Null terminated string to hash
303  *	@ns:   Namespace tag to hash
304  *
305  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
306  */
kernfs_name_hash(const char * name,const void * ns)307 static unsigned int kernfs_name_hash(const char *name, const void *ns)
308 {
309 	unsigned long hash = init_name_hash(ns);
310 	unsigned int len = strlen(name);
311 	while (len--)
312 		hash = partial_name_hash(*name++, hash);
313 	hash = end_name_hash(hash);
314 	hash &= 0x7fffffffU;
315 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
316 	if (hash < 2)
317 		hash += 2;
318 	if (hash >= INT_MAX)
319 		hash = INT_MAX - 1;
320 	return hash;
321 }
322 
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)323 static int kernfs_name_compare(unsigned int hash, const char *name,
324 			       const void *ns, const struct kernfs_node *kn)
325 {
326 	if (hash < kn->hash)
327 		return -1;
328 	if (hash > kn->hash)
329 		return 1;
330 	if (ns < kn->ns)
331 		return -1;
332 	if (ns > kn->ns)
333 		return 1;
334 	return strcmp(name, kn->name);
335 }
336 
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)337 static int kernfs_sd_compare(const struct kernfs_node *left,
338 			     const struct kernfs_node *right)
339 {
340 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
341 }
342 
343 /**
344  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
345  *	@kn: kernfs_node of interest
346  *
347  *	Link @kn into its sibling rbtree which starts from
348  *	@kn->parent->dir.children.
349  *
350  *	Locking:
351  *	mutex_lock(kernfs_mutex)
352  *
353  *	RETURNS:
354  *	0 on susccess -EEXIST on failure.
355  */
kernfs_link_sibling(struct kernfs_node * kn)356 static int kernfs_link_sibling(struct kernfs_node *kn)
357 {
358 	struct rb_node **node = &kn->parent->dir.children.rb_node;
359 	struct rb_node *parent = NULL;
360 
361 	while (*node) {
362 		struct kernfs_node *pos;
363 		int result;
364 
365 		pos = rb_to_kn(*node);
366 		parent = *node;
367 		result = kernfs_sd_compare(kn, pos);
368 		if (result < 0)
369 			node = &pos->rb.rb_left;
370 		else if (result > 0)
371 			node = &pos->rb.rb_right;
372 		else
373 			return -EEXIST;
374 	}
375 
376 	/* add new node and rebalance the tree */
377 	rb_link_node(&kn->rb, parent, node);
378 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
379 
380 	/* successfully added, account subdir number */
381 	if (kernfs_type(kn) == KERNFS_DIR)
382 		kn->parent->dir.subdirs++;
383 
384 	return 0;
385 }
386 
387 /**
388  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
389  *	@kn: kernfs_node of interest
390  *
391  *	Try to unlink @kn from its sibling rbtree which starts from
392  *	kn->parent->dir.children.  Returns %true if @kn was actually
393  *	removed, %false if @kn wasn't on the rbtree.
394  *
395  *	Locking:
396  *	mutex_lock(kernfs_mutex)
397  */
kernfs_unlink_sibling(struct kernfs_node * kn)398 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
399 {
400 	if (RB_EMPTY_NODE(&kn->rb))
401 		return false;
402 
403 	if (kernfs_type(kn) == KERNFS_DIR)
404 		kn->parent->dir.subdirs--;
405 
406 	rb_erase(&kn->rb, &kn->parent->dir.children);
407 	RB_CLEAR_NODE(&kn->rb);
408 	return true;
409 }
410 
411 /**
412  *	kernfs_get_active - get an active reference to kernfs_node
413  *	@kn: kernfs_node to get an active reference to
414  *
415  *	Get an active reference of @kn.  This function is noop if @kn
416  *	is NULL.
417  *
418  *	RETURNS:
419  *	Pointer to @kn on success, NULL on failure.
420  */
kernfs_get_active(struct kernfs_node * kn)421 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
422 {
423 	if (unlikely(!kn))
424 		return NULL;
425 
426 	if (!atomic_inc_unless_negative(&kn->active))
427 		return NULL;
428 
429 	if (kernfs_lockdep(kn))
430 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
431 	return kn;
432 }
433 
434 /**
435  *	kernfs_put_active - put an active reference to kernfs_node
436  *	@kn: kernfs_node to put an active reference to
437  *
438  *	Put an active reference to @kn.  This function is noop if @kn
439  *	is NULL.
440  */
kernfs_put_active(struct kernfs_node * kn)441 void kernfs_put_active(struct kernfs_node *kn)
442 {
443 	int v;
444 
445 	if (unlikely(!kn))
446 		return;
447 
448 	if (kernfs_lockdep(kn))
449 		rwsem_release(&kn->dep_map, _RET_IP_);
450 	v = atomic_dec_return(&kn->active);
451 	if (likely(v != KN_DEACTIVATED_BIAS))
452 		return;
453 
454 	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
455 }
456 
457 /**
458  * kernfs_drain - drain kernfs_node
459  * @kn: kernfs_node to drain
460  *
461  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
462  * removers may invoke this function concurrently on @kn and all will
463  * return after draining is complete.
464  */
kernfs_drain(struct kernfs_node * kn)465 static void kernfs_drain(struct kernfs_node *kn)
466 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
467 {
468 	struct kernfs_root *root = kernfs_root(kn);
469 
470 	lockdep_assert_held(&kernfs_mutex);
471 	WARN_ON_ONCE(kernfs_active(kn));
472 
473 	mutex_unlock(&kernfs_mutex);
474 
475 	if (kernfs_lockdep(kn)) {
476 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
477 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
478 			lock_contended(&kn->dep_map, _RET_IP_);
479 	}
480 
481 	/* but everyone should wait for draining */
482 	wait_event(root->deactivate_waitq,
483 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
484 
485 	if (kernfs_lockdep(kn)) {
486 		lock_acquired(&kn->dep_map, _RET_IP_);
487 		rwsem_release(&kn->dep_map, _RET_IP_);
488 	}
489 
490 	kernfs_drain_open_files(kn);
491 
492 	mutex_lock(&kernfs_mutex);
493 }
494 
495 /**
496  * kernfs_get - get a reference count on a kernfs_node
497  * @kn: the target kernfs_node
498  */
kernfs_get(struct kernfs_node * kn)499 void kernfs_get(struct kernfs_node *kn)
500 {
501 	if (kn) {
502 		WARN_ON(!atomic_read(&kn->count));
503 		atomic_inc(&kn->count);
504 	}
505 }
506 EXPORT_SYMBOL_GPL(kernfs_get);
507 
508 /**
509  * kernfs_put - put a reference count on a kernfs_node
510  * @kn: the target kernfs_node
511  *
512  * Put a reference count of @kn and destroy it if it reached zero.
513  */
kernfs_put(struct kernfs_node * kn)514 void kernfs_put(struct kernfs_node *kn)
515 {
516 	struct kernfs_node *parent;
517 	struct kernfs_root *root;
518 
519 	if (!kn || !atomic_dec_and_test(&kn->count))
520 		return;
521 	root = kernfs_root(kn);
522  repeat:
523 	/*
524 	 * Moving/renaming is always done while holding reference.
525 	 * kn->parent won't change beneath us.
526 	 */
527 	parent = kn->parent;
528 
529 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
530 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
531 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
532 
533 	if (kernfs_type(kn) == KERNFS_LINK)
534 		kernfs_put(kn->symlink.target_kn);
535 
536 	kfree_const(kn->name);
537 
538 	if (kn->iattr) {
539 		simple_xattrs_free(&kn->iattr->xattrs);
540 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
541 	}
542 	spin_lock(&kernfs_idr_lock);
543 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
544 	spin_unlock(&kernfs_idr_lock);
545 	kmem_cache_free(kernfs_node_cache, kn);
546 
547 	kn = parent;
548 	if (kn) {
549 		if (atomic_dec_and_test(&kn->count))
550 			goto repeat;
551 	} else {
552 		/* just released the root kn, free @root too */
553 		idr_destroy(&root->ino_idr);
554 		kfree(root);
555 	}
556 }
557 EXPORT_SYMBOL_GPL(kernfs_put);
558 
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)559 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
560 {
561 	struct kernfs_node *kn;
562 
563 	if (flags & LOOKUP_RCU)
564 		return -ECHILD;
565 
566 	/* Always perform fresh lookup for negatives */
567 	if (d_really_is_negative(dentry))
568 		goto out_bad_unlocked;
569 
570 	kn = kernfs_dentry_node(dentry);
571 	mutex_lock(&kernfs_mutex);
572 
573 	/* The kernfs node has been deactivated */
574 	if (!kernfs_active(kn))
575 		goto out_bad;
576 
577 	/* The kernfs node has been moved? */
578 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
579 		goto out_bad;
580 
581 	/* The kernfs node has been renamed */
582 	if (strcmp(dentry->d_name.name, kn->name) != 0)
583 		goto out_bad;
584 
585 	/* The kernfs node has been moved to a different namespace */
586 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
587 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
588 		goto out_bad;
589 
590 	mutex_unlock(&kernfs_mutex);
591 	return 1;
592 out_bad:
593 	mutex_unlock(&kernfs_mutex);
594 out_bad_unlocked:
595 	return 0;
596 }
597 
598 const struct dentry_operations kernfs_dops = {
599 	.d_revalidate	= kernfs_dop_revalidate,
600 };
601 
602 /**
603  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
604  * @dentry: the dentry in question
605  *
606  * Return the kernfs_node associated with @dentry.  If @dentry is not a
607  * kernfs one, %NULL is returned.
608  *
609  * While the returned kernfs_node will stay accessible as long as @dentry
610  * is accessible, the returned node can be in any state and the caller is
611  * fully responsible for determining what's accessible.
612  */
kernfs_node_from_dentry(struct dentry * dentry)613 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
614 {
615 	if (dentry->d_sb->s_op == &kernfs_sops &&
616 	    !d_really_is_negative(dentry))
617 		return kernfs_dentry_node(dentry);
618 	return NULL;
619 }
620 
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)621 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
622 					     struct kernfs_node *parent,
623 					     const char *name, umode_t mode,
624 					     kuid_t uid, kgid_t gid,
625 					     unsigned flags)
626 {
627 	struct kernfs_node *kn;
628 	u32 id_highbits;
629 	int ret;
630 
631 	name = kstrdup_const(name, GFP_KERNEL);
632 	if (!name)
633 		return NULL;
634 
635 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
636 	if (!kn)
637 		goto err_out1;
638 
639 	idr_preload(GFP_KERNEL);
640 	spin_lock(&kernfs_idr_lock);
641 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
642 	if (ret >= 0 && ret < root->last_id_lowbits)
643 		root->id_highbits++;
644 	id_highbits = root->id_highbits;
645 	root->last_id_lowbits = ret;
646 	spin_unlock(&kernfs_idr_lock);
647 	idr_preload_end();
648 	if (ret < 0)
649 		goto err_out2;
650 
651 	kn->id = (u64)id_highbits << 32 | ret;
652 
653 	atomic_set(&kn->count, 1);
654 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
655 	RB_CLEAR_NODE(&kn->rb);
656 
657 	kn->name = name;
658 	kn->mode = mode;
659 	kn->flags = flags;
660 
661 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
662 		struct iattr iattr = {
663 			.ia_valid = ATTR_UID | ATTR_GID,
664 			.ia_uid = uid,
665 			.ia_gid = gid,
666 		};
667 
668 		ret = __kernfs_setattr(kn, &iattr);
669 		if (ret < 0)
670 			goto err_out3;
671 	}
672 
673 	if (parent) {
674 		ret = security_kernfs_init_security(parent, kn);
675 		if (ret)
676 			goto err_out3;
677 	}
678 
679 	return kn;
680 
681  err_out3:
682 	spin_lock(&kernfs_idr_lock);
683 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
684 	spin_unlock(&kernfs_idr_lock);
685  err_out2:
686 	kmem_cache_free(kernfs_node_cache, kn);
687  err_out1:
688 	kfree_const(name);
689 	return NULL;
690 }
691 
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)692 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
693 				    const char *name, umode_t mode,
694 				    kuid_t uid, kgid_t gid,
695 				    unsigned flags)
696 {
697 	struct kernfs_node *kn;
698 
699 	kn = __kernfs_new_node(kernfs_root(parent), parent,
700 			       name, mode, uid, gid, flags);
701 	if (kn) {
702 		kernfs_get(parent);
703 		kn->parent = parent;
704 	}
705 	return kn;
706 }
707 
708 /*
709  * kernfs_find_and_get_node_by_id - get kernfs_node from node id
710  * @root: the kernfs root
711  * @id: the target node id
712  *
713  * @id's lower 32bits encode ino and upper gen.  If the gen portion is
714  * zero, all generations are matched.
715  *
716  * RETURNS:
717  * NULL on failure. Return a kernfs node with reference counter incremented
718  */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)719 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
720 						   u64 id)
721 {
722 	struct kernfs_node *kn;
723 	ino_t ino = kernfs_id_ino(id);
724 	u32 gen = kernfs_id_gen(id);
725 
726 	spin_lock(&kernfs_idr_lock);
727 
728 	kn = idr_find(&root->ino_idr, (u32)ino);
729 	if (!kn)
730 		goto err_unlock;
731 
732 	if (sizeof(ino_t) >= sizeof(u64)) {
733 		/* we looked up with the low 32bits, compare the whole */
734 		if (kernfs_ino(kn) != ino)
735 			goto err_unlock;
736 	} else {
737 		/* 0 matches all generations */
738 		if (unlikely(gen && kernfs_gen(kn) != gen))
739 			goto err_unlock;
740 	}
741 
742 	/*
743 	 * ACTIVATED is protected with kernfs_mutex but it was clear when
744 	 * @kn was added to idr and we just wanna see it set.  No need to
745 	 * grab kernfs_mutex.
746 	 */
747 	if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
748 		     !atomic_inc_not_zero(&kn->count)))
749 		goto err_unlock;
750 
751 	spin_unlock(&kernfs_idr_lock);
752 	return kn;
753 err_unlock:
754 	spin_unlock(&kernfs_idr_lock);
755 	return NULL;
756 }
757 
758 /**
759  *	kernfs_add_one - add kernfs_node to parent without warning
760  *	@kn: kernfs_node to be added
761  *
762  *	The caller must already have initialized @kn->parent.  This
763  *	function increments nlink of the parent's inode if @kn is a
764  *	directory and link into the children list of the parent.
765  *
766  *	RETURNS:
767  *	0 on success, -EEXIST if entry with the given name already
768  *	exists.
769  */
kernfs_add_one(struct kernfs_node * kn)770 int kernfs_add_one(struct kernfs_node *kn)
771 {
772 	struct kernfs_node *parent = kn->parent;
773 	struct kernfs_iattrs *ps_iattr;
774 	bool has_ns;
775 	int ret;
776 
777 	mutex_lock(&kernfs_mutex);
778 
779 	ret = -EINVAL;
780 	has_ns = kernfs_ns_enabled(parent);
781 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
782 		 has_ns ? "required" : "invalid", parent->name, kn->name))
783 		goto out_unlock;
784 
785 	if (kernfs_type(parent) != KERNFS_DIR)
786 		goto out_unlock;
787 
788 	ret = -ENOENT;
789 	if (parent->flags & KERNFS_EMPTY_DIR)
790 		goto out_unlock;
791 
792 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
793 		goto out_unlock;
794 
795 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
796 
797 	ret = kernfs_link_sibling(kn);
798 	if (ret)
799 		goto out_unlock;
800 
801 	/* Update timestamps on the parent */
802 	ps_iattr = parent->iattr;
803 	if (ps_iattr) {
804 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
805 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
806 	}
807 
808 	mutex_unlock(&kernfs_mutex);
809 
810 	/*
811 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
812 	 * If not activated here, the kernfs user is responsible for
813 	 * activating the node with kernfs_activate().  A node which hasn't
814 	 * been activated is not visible to userland and its removal won't
815 	 * trigger deactivation.
816 	 */
817 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
818 		kernfs_activate(kn);
819 	return 0;
820 
821 out_unlock:
822 	mutex_unlock(&kernfs_mutex);
823 	return ret;
824 }
825 
826 /**
827  * kernfs_find_ns - find kernfs_node with the given name
828  * @parent: kernfs_node to search under
829  * @name: name to look for
830  * @ns: the namespace tag to use
831  *
832  * Look for kernfs_node with name @name under @parent.  Returns pointer to
833  * the found kernfs_node on success, %NULL on failure.
834  */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)835 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
836 					  const unsigned char *name,
837 					  const void *ns)
838 {
839 	struct rb_node *node = parent->dir.children.rb_node;
840 	bool has_ns = kernfs_ns_enabled(parent);
841 	unsigned int hash;
842 
843 	lockdep_assert_held(&kernfs_mutex);
844 
845 	if (has_ns != (bool)ns) {
846 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
847 		     has_ns ? "required" : "invalid", parent->name, name);
848 		return NULL;
849 	}
850 
851 	hash = kernfs_name_hash(name, ns);
852 	while (node) {
853 		struct kernfs_node *kn;
854 		int result;
855 
856 		kn = rb_to_kn(node);
857 		result = kernfs_name_compare(hash, name, ns, kn);
858 		if (result < 0)
859 			node = node->rb_left;
860 		else if (result > 0)
861 			node = node->rb_right;
862 		else
863 			return kn;
864 	}
865 	return NULL;
866 }
867 
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)868 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
869 					  const unsigned char *path,
870 					  const void *ns)
871 {
872 	size_t len;
873 	char *p, *name;
874 
875 	lockdep_assert_held(&kernfs_mutex);
876 
877 	spin_lock_irq(&kernfs_pr_cont_lock);
878 
879 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
880 
881 	if (len >= sizeof(kernfs_pr_cont_buf)) {
882 		spin_unlock_irq(&kernfs_pr_cont_lock);
883 		return NULL;
884 	}
885 
886 	p = kernfs_pr_cont_buf;
887 
888 	while ((name = strsep(&p, "/")) && parent) {
889 		if (*name == '\0')
890 			continue;
891 		parent = kernfs_find_ns(parent, name, ns);
892 	}
893 
894 	spin_unlock_irq(&kernfs_pr_cont_lock);
895 
896 	return parent;
897 }
898 
899 /**
900  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
901  * @parent: kernfs_node to search under
902  * @name: name to look for
903  * @ns: the namespace tag to use
904  *
905  * Look for kernfs_node with name @name under @parent and get a reference
906  * if found.  This function may sleep and returns pointer to the found
907  * kernfs_node on success, %NULL on failure.
908  */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)909 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
910 					   const char *name, const void *ns)
911 {
912 	struct kernfs_node *kn;
913 
914 	mutex_lock(&kernfs_mutex);
915 	kn = kernfs_find_ns(parent, name, ns);
916 	kernfs_get(kn);
917 	mutex_unlock(&kernfs_mutex);
918 
919 	return kn;
920 }
921 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
922 
923 /**
924  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
925  * @parent: kernfs_node to search under
926  * @path: path to look for
927  * @ns: the namespace tag to use
928  *
929  * Look for kernfs_node with path @path under @parent and get a reference
930  * if found.  This function may sleep and returns pointer to the found
931  * kernfs_node on success, %NULL on failure.
932  */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)933 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
934 					   const char *path, const void *ns)
935 {
936 	struct kernfs_node *kn;
937 
938 	mutex_lock(&kernfs_mutex);
939 	kn = kernfs_walk_ns(parent, path, ns);
940 	kernfs_get(kn);
941 	mutex_unlock(&kernfs_mutex);
942 
943 	return kn;
944 }
945 
946 /**
947  * kernfs_create_root - create a new kernfs hierarchy
948  * @scops: optional syscall operations for the hierarchy
949  * @flags: KERNFS_ROOT_* flags
950  * @priv: opaque data associated with the new directory
951  *
952  * Returns the root of the new hierarchy on success, ERR_PTR() value on
953  * failure.
954  */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)955 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
956 				       unsigned int flags, void *priv)
957 {
958 	struct kernfs_root *root;
959 	struct kernfs_node *kn;
960 
961 	root = kzalloc(sizeof(*root), GFP_KERNEL);
962 	if (!root)
963 		return ERR_PTR(-ENOMEM);
964 
965 	idr_init(&root->ino_idr);
966 	INIT_LIST_HEAD(&root->supers);
967 
968 	/*
969 	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
970 	 * High bits generation.  The starting value for both ino and
971 	 * genenration is 1.  Initialize upper 32bit allocation
972 	 * accordingly.
973 	 */
974 	if (sizeof(ino_t) >= sizeof(u64))
975 		root->id_highbits = 0;
976 	else
977 		root->id_highbits = 1;
978 
979 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
980 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
981 			       KERNFS_DIR);
982 	if (!kn) {
983 		idr_destroy(&root->ino_idr);
984 		kfree(root);
985 		return ERR_PTR(-ENOMEM);
986 	}
987 
988 	kn->priv = priv;
989 	kn->dir.root = root;
990 
991 	root->syscall_ops = scops;
992 	root->flags = flags;
993 	root->kn = kn;
994 	init_waitqueue_head(&root->deactivate_waitq);
995 
996 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
997 		kernfs_activate(kn);
998 
999 	return root;
1000 }
1001 
1002 /**
1003  * kernfs_destroy_root - destroy a kernfs hierarchy
1004  * @root: root of the hierarchy to destroy
1005  *
1006  * Destroy the hierarchy anchored at @root by removing all existing
1007  * directories and destroying @root.
1008  */
kernfs_destroy_root(struct kernfs_root * root)1009 void kernfs_destroy_root(struct kernfs_root *root)
1010 {
1011 	kernfs_remove(root->kn);	/* will also free @root */
1012 }
1013 
1014 /**
1015  * kernfs_create_dir_ns - create a directory
1016  * @parent: parent in which to create a new directory
1017  * @name: name of the new directory
1018  * @mode: mode of the new directory
1019  * @uid: uid of the new directory
1020  * @gid: gid of the new directory
1021  * @priv: opaque data associated with the new directory
1022  * @ns: optional namespace tag of the directory
1023  *
1024  * Returns the created node on success, ERR_PTR() value on failure.
1025  */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1026 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1027 					 const char *name, umode_t mode,
1028 					 kuid_t uid, kgid_t gid,
1029 					 void *priv, const void *ns)
1030 {
1031 	struct kernfs_node *kn;
1032 	int rc;
1033 
1034 	/* allocate */
1035 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1036 			     uid, gid, KERNFS_DIR);
1037 	if (!kn)
1038 		return ERR_PTR(-ENOMEM);
1039 
1040 	kn->dir.root = parent->dir.root;
1041 	kn->ns = ns;
1042 	kn->priv = priv;
1043 
1044 	/* link in */
1045 	rc = kernfs_add_one(kn);
1046 	if (!rc)
1047 		return kn;
1048 
1049 	kernfs_put(kn);
1050 	return ERR_PTR(rc);
1051 }
1052 
1053 /**
1054  * kernfs_create_empty_dir - create an always empty directory
1055  * @parent: parent in which to create a new directory
1056  * @name: name of the new directory
1057  *
1058  * Returns the created node on success, ERR_PTR() value on failure.
1059  */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1060 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1061 					    const char *name)
1062 {
1063 	struct kernfs_node *kn;
1064 	int rc;
1065 
1066 	/* allocate */
1067 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1068 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1069 	if (!kn)
1070 		return ERR_PTR(-ENOMEM);
1071 
1072 	kn->flags |= KERNFS_EMPTY_DIR;
1073 	kn->dir.root = parent->dir.root;
1074 	kn->ns = NULL;
1075 	kn->priv = NULL;
1076 
1077 	/* link in */
1078 	rc = kernfs_add_one(kn);
1079 	if (!rc)
1080 		return kn;
1081 
1082 	kernfs_put(kn);
1083 	return ERR_PTR(rc);
1084 }
1085 
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1086 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1087 					struct dentry *dentry,
1088 					unsigned int flags)
1089 {
1090 	struct dentry *ret;
1091 	struct kernfs_node *parent = dir->i_private;
1092 	struct kernfs_node *kn;
1093 	struct inode *inode;
1094 	const void *ns = NULL;
1095 
1096 	mutex_lock(&kernfs_mutex);
1097 
1098 	if (kernfs_ns_enabled(parent))
1099 		ns = kernfs_info(dir->i_sb)->ns;
1100 
1101 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1102 
1103 	/* no such entry */
1104 	if (!kn || !kernfs_active(kn)) {
1105 		ret = NULL;
1106 		goto out_unlock;
1107 	}
1108 
1109 	/* attach dentry and inode */
1110 	inode = kernfs_get_inode(dir->i_sb, kn);
1111 	if (!inode) {
1112 		ret = ERR_PTR(-ENOMEM);
1113 		goto out_unlock;
1114 	}
1115 
1116 	/* instantiate and hash dentry */
1117 	ret = d_splice_alias(inode, dentry);
1118  out_unlock:
1119 	mutex_unlock(&kernfs_mutex);
1120 	return ret;
1121 }
1122 
kernfs_iop_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1123 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1124 			    umode_t mode)
1125 {
1126 	struct kernfs_node *parent = dir->i_private;
1127 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1128 	int ret;
1129 
1130 	if (!scops || !scops->mkdir)
1131 		return -EPERM;
1132 
1133 	if (!kernfs_get_active(parent))
1134 		return -ENODEV;
1135 
1136 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1137 
1138 	kernfs_put_active(parent);
1139 	return ret;
1140 }
1141 
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1142 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1143 {
1144 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1145 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1146 	int ret;
1147 
1148 	if (!scops || !scops->rmdir)
1149 		return -EPERM;
1150 
1151 	if (!kernfs_get_active(kn))
1152 		return -ENODEV;
1153 
1154 	ret = scops->rmdir(kn);
1155 
1156 	kernfs_put_active(kn);
1157 	return ret;
1158 }
1159 
kernfs_iop_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1160 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1161 			     struct inode *new_dir, struct dentry *new_dentry,
1162 			     unsigned int flags)
1163 {
1164 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1165 	struct kernfs_node *new_parent = new_dir->i_private;
1166 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1167 	int ret;
1168 
1169 	if (flags)
1170 		return -EINVAL;
1171 
1172 	if (!scops || !scops->rename)
1173 		return -EPERM;
1174 
1175 	if (!kernfs_get_active(kn))
1176 		return -ENODEV;
1177 
1178 	if (!kernfs_get_active(new_parent)) {
1179 		kernfs_put_active(kn);
1180 		return -ENODEV;
1181 	}
1182 
1183 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1184 
1185 	kernfs_put_active(new_parent);
1186 	kernfs_put_active(kn);
1187 	return ret;
1188 }
1189 
1190 const struct inode_operations kernfs_dir_iops = {
1191 	.lookup		= kernfs_iop_lookup,
1192 	.permission	= kernfs_iop_permission,
1193 	.setattr	= kernfs_iop_setattr,
1194 	.getattr	= kernfs_iop_getattr,
1195 	.listxattr	= kernfs_iop_listxattr,
1196 
1197 	.mkdir		= kernfs_iop_mkdir,
1198 	.rmdir		= kernfs_iop_rmdir,
1199 	.rename		= kernfs_iop_rename,
1200 };
1201 
kernfs_leftmost_descendant(struct kernfs_node * pos)1202 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1203 {
1204 	struct kernfs_node *last;
1205 
1206 	while (true) {
1207 		struct rb_node *rbn;
1208 
1209 		last = pos;
1210 
1211 		if (kernfs_type(pos) != KERNFS_DIR)
1212 			break;
1213 
1214 		rbn = rb_first(&pos->dir.children);
1215 		if (!rbn)
1216 			break;
1217 
1218 		pos = rb_to_kn(rbn);
1219 	}
1220 
1221 	return last;
1222 }
1223 
1224 /**
1225  * kernfs_next_descendant_post - find the next descendant for post-order walk
1226  * @pos: the current position (%NULL to initiate traversal)
1227  * @root: kernfs_node whose descendants to walk
1228  *
1229  * Find the next descendant to visit for post-order traversal of @root's
1230  * descendants.  @root is included in the iteration and the last node to be
1231  * visited.
1232  */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1233 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1234 						       struct kernfs_node *root)
1235 {
1236 	struct rb_node *rbn;
1237 
1238 	lockdep_assert_held(&kernfs_mutex);
1239 
1240 	/* if first iteration, visit leftmost descendant which may be root */
1241 	if (!pos)
1242 		return kernfs_leftmost_descendant(root);
1243 
1244 	/* if we visited @root, we're done */
1245 	if (pos == root)
1246 		return NULL;
1247 
1248 	/* if there's an unvisited sibling, visit its leftmost descendant */
1249 	rbn = rb_next(&pos->rb);
1250 	if (rbn)
1251 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1252 
1253 	/* no sibling left, visit parent */
1254 	return pos->parent;
1255 }
1256 
1257 /**
1258  * kernfs_activate - activate a node which started deactivated
1259  * @kn: kernfs_node whose subtree is to be activated
1260  *
1261  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1262  * needs to be explicitly activated.  A node which hasn't been activated
1263  * isn't visible to userland and deactivation is skipped during its
1264  * removal.  This is useful to construct atomic init sequences where
1265  * creation of multiple nodes should either succeed or fail atomically.
1266  *
1267  * The caller is responsible for ensuring that this function is not called
1268  * after kernfs_remove*() is invoked on @kn.
1269  */
kernfs_activate(struct kernfs_node * kn)1270 void kernfs_activate(struct kernfs_node *kn)
1271 {
1272 	struct kernfs_node *pos;
1273 
1274 	mutex_lock(&kernfs_mutex);
1275 
1276 	pos = NULL;
1277 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1278 		if (pos->flags & KERNFS_ACTIVATED)
1279 			continue;
1280 
1281 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1282 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1283 
1284 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1285 		pos->flags |= KERNFS_ACTIVATED;
1286 	}
1287 
1288 	mutex_unlock(&kernfs_mutex);
1289 }
1290 
__kernfs_remove(struct kernfs_node * kn)1291 static void __kernfs_remove(struct kernfs_node *kn)
1292 {
1293 	struct kernfs_node *pos;
1294 
1295 	lockdep_assert_held(&kernfs_mutex);
1296 
1297 	/*
1298 	 * Short-circuit if non-root @kn has already finished removal.
1299 	 * This is for kernfs_remove_self() which plays with active ref
1300 	 * after removal.
1301 	 */
1302 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1303 		return;
1304 
1305 	pr_debug("kernfs %s: removing\n", kn->name);
1306 
1307 	/* prevent any new usage under @kn by deactivating all nodes */
1308 	pos = NULL;
1309 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1310 		if (kernfs_active(pos))
1311 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1312 
1313 	/* deactivate and unlink the subtree node-by-node */
1314 	do {
1315 		pos = kernfs_leftmost_descendant(kn);
1316 
1317 		/*
1318 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1319 		 * base ref could have been put by someone else by the time
1320 		 * the function returns.  Make sure it doesn't go away
1321 		 * underneath us.
1322 		 */
1323 		kernfs_get(pos);
1324 
1325 		/*
1326 		 * Drain iff @kn was activated.  This avoids draining and
1327 		 * its lockdep annotations for nodes which have never been
1328 		 * activated and allows embedding kernfs_remove() in create
1329 		 * error paths without worrying about draining.
1330 		 */
1331 		if (kn->flags & KERNFS_ACTIVATED)
1332 			kernfs_drain(pos);
1333 		else
1334 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1335 
1336 		/*
1337 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1338 		 * to decide who's responsible for cleanups.
1339 		 */
1340 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1341 			struct kernfs_iattrs *ps_iattr =
1342 				pos->parent ? pos->parent->iattr : NULL;
1343 
1344 			/* update timestamps on the parent */
1345 			if (ps_iattr) {
1346 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1347 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1348 			}
1349 
1350 			kernfs_put(pos);
1351 		}
1352 
1353 		kernfs_put(pos);
1354 	} while (pos != kn);
1355 }
1356 
1357 /**
1358  * kernfs_remove - remove a kernfs_node recursively
1359  * @kn: the kernfs_node to remove
1360  *
1361  * Remove @kn along with all its subdirectories and files.
1362  */
kernfs_remove(struct kernfs_node * kn)1363 void kernfs_remove(struct kernfs_node *kn)
1364 {
1365 	mutex_lock(&kernfs_mutex);
1366 	__kernfs_remove(kn);
1367 	mutex_unlock(&kernfs_mutex);
1368 }
1369 
1370 /**
1371  * kernfs_break_active_protection - break out of active protection
1372  * @kn: the self kernfs_node
1373  *
1374  * The caller must be running off of a kernfs operation which is invoked
1375  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1376  * this function must also be matched with an invocation of
1377  * kernfs_unbreak_active_protection().
1378  *
1379  * This function releases the active reference of @kn the caller is
1380  * holding.  Once this function is called, @kn may be removed at any point
1381  * and the caller is solely responsible for ensuring that the objects it
1382  * dereferences are accessible.
1383  */
kernfs_break_active_protection(struct kernfs_node * kn)1384 void kernfs_break_active_protection(struct kernfs_node *kn)
1385 {
1386 	/*
1387 	 * Take out ourself out of the active ref dependency chain.  If
1388 	 * we're called without an active ref, lockdep will complain.
1389 	 */
1390 	kernfs_put_active(kn);
1391 }
1392 
1393 /**
1394  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1395  * @kn: the self kernfs_node
1396  *
1397  * If kernfs_break_active_protection() was called, this function must be
1398  * invoked before finishing the kernfs operation.  Note that while this
1399  * function restores the active reference, it doesn't and can't actually
1400  * restore the active protection - @kn may already or be in the process of
1401  * being removed.  Once kernfs_break_active_protection() is invoked, that
1402  * protection is irreversibly gone for the kernfs operation instance.
1403  *
1404  * While this function may be called at any point after
1405  * kernfs_break_active_protection() is invoked, its most useful location
1406  * would be right before the enclosing kernfs operation returns.
1407  */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1408 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1409 {
1410 	/*
1411 	 * @kn->active could be in any state; however, the increment we do
1412 	 * here will be undone as soon as the enclosing kernfs operation
1413 	 * finishes and this temporary bump can't break anything.  If @kn
1414 	 * is alive, nothing changes.  If @kn is being deactivated, the
1415 	 * soon-to-follow put will either finish deactivation or restore
1416 	 * deactivated state.  If @kn is already removed, the temporary
1417 	 * bump is guaranteed to be gone before @kn is released.
1418 	 */
1419 	atomic_inc(&kn->active);
1420 	if (kernfs_lockdep(kn))
1421 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1422 }
1423 
1424 /**
1425  * kernfs_remove_self - remove a kernfs_node from its own method
1426  * @kn: the self kernfs_node to remove
1427  *
1428  * The caller must be running off of a kernfs operation which is invoked
1429  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1430  * implement a file operation which deletes itself.
1431  *
1432  * For example, the "delete" file for a sysfs device directory can be
1433  * implemented by invoking kernfs_remove_self() on the "delete" file
1434  * itself.  This function breaks the circular dependency of trying to
1435  * deactivate self while holding an active ref itself.  It isn't necessary
1436  * to modify the usual removal path to use kernfs_remove_self().  The
1437  * "delete" implementation can simply invoke kernfs_remove_self() on self
1438  * before proceeding with the usual removal path.  kernfs will ignore later
1439  * kernfs_remove() on self.
1440  *
1441  * kernfs_remove_self() can be called multiple times concurrently on the
1442  * same kernfs_node.  Only the first one actually performs removal and
1443  * returns %true.  All others will wait until the kernfs operation which
1444  * won self-removal finishes and return %false.  Note that the losers wait
1445  * for the completion of not only the winning kernfs_remove_self() but also
1446  * the whole kernfs_ops which won the arbitration.  This can be used to
1447  * guarantee, for example, all concurrent writes to a "delete" file to
1448  * finish only after the whole operation is complete.
1449  */
kernfs_remove_self(struct kernfs_node * kn)1450 bool kernfs_remove_self(struct kernfs_node *kn)
1451 {
1452 	bool ret;
1453 
1454 	mutex_lock(&kernfs_mutex);
1455 	kernfs_break_active_protection(kn);
1456 
1457 	/*
1458 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1459 	 * the first one will actually perform removal.  When the removal
1460 	 * is complete, SUICIDED is set and the active ref is restored
1461 	 * while holding kernfs_mutex.  The ones which lost arbitration
1462 	 * waits for SUICDED && drained which can happen only after the
1463 	 * enclosing kernfs operation which executed the winning instance
1464 	 * of kernfs_remove_self() finished.
1465 	 */
1466 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1467 		kn->flags |= KERNFS_SUICIDAL;
1468 		__kernfs_remove(kn);
1469 		kn->flags |= KERNFS_SUICIDED;
1470 		ret = true;
1471 	} else {
1472 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1473 		DEFINE_WAIT(wait);
1474 
1475 		while (true) {
1476 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1477 
1478 			if ((kn->flags & KERNFS_SUICIDED) &&
1479 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1480 				break;
1481 
1482 			mutex_unlock(&kernfs_mutex);
1483 			schedule();
1484 			mutex_lock(&kernfs_mutex);
1485 		}
1486 		finish_wait(waitq, &wait);
1487 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1488 		ret = false;
1489 	}
1490 
1491 	/*
1492 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1493 	 * for SUICIDED && deactivated could finish prematurely.
1494 	 */
1495 	kernfs_unbreak_active_protection(kn);
1496 
1497 	mutex_unlock(&kernfs_mutex);
1498 	return ret;
1499 }
1500 
1501 /**
1502  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1503  * @parent: parent of the target
1504  * @name: name of the kernfs_node to remove
1505  * @ns: namespace tag of the kernfs_node to remove
1506  *
1507  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1508  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1509  */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1510 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1511 			     const void *ns)
1512 {
1513 	struct kernfs_node *kn;
1514 
1515 	if (!parent) {
1516 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1517 			name);
1518 		return -ENOENT;
1519 	}
1520 
1521 	mutex_lock(&kernfs_mutex);
1522 
1523 	kn = kernfs_find_ns(parent, name, ns);
1524 	if (kn) {
1525 		kernfs_get(kn);
1526 		__kernfs_remove(kn);
1527 		kernfs_put(kn);
1528 	}
1529 
1530 	mutex_unlock(&kernfs_mutex);
1531 
1532 	if (kn)
1533 		return 0;
1534 	else
1535 		return -ENOENT;
1536 }
1537 
1538 /**
1539  * kernfs_rename_ns - move and rename a kernfs_node
1540  * @kn: target node
1541  * @new_parent: new parent to put @sd under
1542  * @new_name: new name
1543  * @new_ns: new namespace tag
1544  */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1545 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1546 		     const char *new_name, const void *new_ns)
1547 {
1548 	struct kernfs_node *old_parent;
1549 	const char *old_name = NULL;
1550 	int error;
1551 
1552 	/* can't move or rename root */
1553 	if (!kn->parent)
1554 		return -EINVAL;
1555 
1556 	mutex_lock(&kernfs_mutex);
1557 
1558 	error = -ENOENT;
1559 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1560 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1561 		goto out;
1562 
1563 	error = 0;
1564 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1565 	    (strcmp(kn->name, new_name) == 0))
1566 		goto out;	/* nothing to rename */
1567 
1568 	error = -EEXIST;
1569 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1570 		goto out;
1571 
1572 	/* rename kernfs_node */
1573 	if (strcmp(kn->name, new_name) != 0) {
1574 		error = -ENOMEM;
1575 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1576 		if (!new_name)
1577 			goto out;
1578 	} else {
1579 		new_name = NULL;
1580 	}
1581 
1582 	/*
1583 	 * Move to the appropriate place in the appropriate directories rbtree.
1584 	 */
1585 	kernfs_unlink_sibling(kn);
1586 	kernfs_get(new_parent);
1587 
1588 	/* rename_lock protects ->parent and ->name accessors */
1589 	spin_lock_irq(&kernfs_rename_lock);
1590 
1591 	old_parent = kn->parent;
1592 	kn->parent = new_parent;
1593 
1594 	kn->ns = new_ns;
1595 	if (new_name) {
1596 		old_name = kn->name;
1597 		kn->name = new_name;
1598 	}
1599 
1600 	spin_unlock_irq(&kernfs_rename_lock);
1601 
1602 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1603 	kernfs_link_sibling(kn);
1604 
1605 	kernfs_put(old_parent);
1606 	kfree_const(old_name);
1607 
1608 	error = 0;
1609  out:
1610 	mutex_unlock(&kernfs_mutex);
1611 	return error;
1612 }
1613 
1614 /* Relationship between s_mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1615 static inline unsigned char dt_type(struct kernfs_node *kn)
1616 {
1617 	return (kn->mode >> 12) & 15;
1618 }
1619 
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1620 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1621 {
1622 	kernfs_put(filp->private_data);
1623 	return 0;
1624 }
1625 
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1626 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1627 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1628 {
1629 	if (pos) {
1630 		int valid = kernfs_active(pos) &&
1631 			pos->parent == parent && hash == pos->hash;
1632 		kernfs_put(pos);
1633 		if (!valid)
1634 			pos = NULL;
1635 	}
1636 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1637 		struct rb_node *node = parent->dir.children.rb_node;
1638 		while (node) {
1639 			pos = rb_to_kn(node);
1640 
1641 			if (hash < pos->hash)
1642 				node = node->rb_left;
1643 			else if (hash > pos->hash)
1644 				node = node->rb_right;
1645 			else
1646 				break;
1647 		}
1648 	}
1649 	/* Skip over entries which are dying/dead or in the wrong namespace */
1650 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1651 		struct rb_node *node = rb_next(&pos->rb);
1652 		if (!node)
1653 			pos = NULL;
1654 		else
1655 			pos = rb_to_kn(node);
1656 	}
1657 	return pos;
1658 }
1659 
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1660 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1661 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1662 {
1663 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1664 	if (pos) {
1665 		do {
1666 			struct rb_node *node = rb_next(&pos->rb);
1667 			if (!node)
1668 				pos = NULL;
1669 			else
1670 				pos = rb_to_kn(node);
1671 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1672 	}
1673 	return pos;
1674 }
1675 
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1676 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1677 {
1678 	struct dentry *dentry = file->f_path.dentry;
1679 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1680 	struct kernfs_node *pos = file->private_data;
1681 	const void *ns = NULL;
1682 
1683 	if (!dir_emit_dots(file, ctx))
1684 		return 0;
1685 	mutex_lock(&kernfs_mutex);
1686 
1687 	if (kernfs_ns_enabled(parent))
1688 		ns = kernfs_info(dentry->d_sb)->ns;
1689 
1690 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1691 	     pos;
1692 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1693 		const char *name = pos->name;
1694 		unsigned int type = dt_type(pos);
1695 		int len = strlen(name);
1696 		ino_t ino = kernfs_ino(pos);
1697 
1698 		ctx->pos = pos->hash;
1699 		file->private_data = pos;
1700 		kernfs_get(pos);
1701 
1702 		mutex_unlock(&kernfs_mutex);
1703 		if (!dir_emit(ctx, name, len, ino, type))
1704 			return 0;
1705 		mutex_lock(&kernfs_mutex);
1706 	}
1707 	mutex_unlock(&kernfs_mutex);
1708 	file->private_data = NULL;
1709 	ctx->pos = INT_MAX;
1710 	return 0;
1711 }
1712 
1713 const struct file_operations kernfs_dir_fops = {
1714 	.read		= generic_read_dir,
1715 	.iterate_shared	= kernfs_fop_readdir,
1716 	.release	= kernfs_dir_fop_release,
1717 	.llseek		= generic_file_llseek,
1718 };
1719