• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51 
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85 
86 #include <uapi/linux/io_uring.h>
87 
88 #include "../fs/internal.h"
89 #include "io-wq.h"
90 
91 #define IORING_MAX_ENTRIES	32768
92 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94 
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES	(1U << 15)
97 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
98 				 IORING_REGISTER_LAST + IORING_OP_LAST)
99 
100 #define IO_RSRC_TAG_TABLE_SHIFT	(PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX	(1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK	(IO_RSRC_TAG_TABLE_MAX - 1)
103 
104 #define IORING_MAX_REG_BUFFERS	(1U << 14)
105 
106 #define SQE_VALID_FLAGS	(IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK|	\
107 				IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 				IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111 
112 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
113 
114 struct io_uring {
115 	u32 head ____cacheline_aligned_in_smp;
116 	u32 tail ____cacheline_aligned_in_smp;
117 };
118 
119 /*
120  * This data is shared with the application through the mmap at offsets
121  * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122  *
123  * The offsets to the member fields are published through struct
124  * io_sqring_offsets when calling io_uring_setup.
125  */
126 struct io_rings {
127 	/*
128 	 * Head and tail offsets into the ring; the offsets need to be
129 	 * masked to get valid indices.
130 	 *
131 	 * The kernel controls head of the sq ring and the tail of the cq ring,
132 	 * and the application controls tail of the sq ring and the head of the
133 	 * cq ring.
134 	 */
135 	struct io_uring		sq, cq;
136 	/*
137 	 * Bitmasks to apply to head and tail offsets (constant, equals
138 	 * ring_entries - 1)
139 	 */
140 	u32			sq_ring_mask, cq_ring_mask;
141 	/* Ring sizes (constant, power of 2) */
142 	u32			sq_ring_entries, cq_ring_entries;
143 	/*
144 	 * Number of invalid entries dropped by the kernel due to
145 	 * invalid index stored in array
146 	 *
147 	 * Written by the kernel, shouldn't be modified by the
148 	 * application (i.e. get number of "new events" by comparing to
149 	 * cached value).
150 	 *
151 	 * After a new SQ head value was read by the application this
152 	 * counter includes all submissions that were dropped reaching
153 	 * the new SQ head (and possibly more).
154 	 */
155 	u32			sq_dropped;
156 	/*
157 	 * Runtime SQ flags
158 	 *
159 	 * Written by the kernel, shouldn't be modified by the
160 	 * application.
161 	 *
162 	 * The application needs a full memory barrier before checking
163 	 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 	 */
165 	u32			sq_flags;
166 	/*
167 	 * Runtime CQ flags
168 	 *
169 	 * Written by the application, shouldn't be modified by the
170 	 * kernel.
171 	 */
172 	u32			cq_flags;
173 	/*
174 	 * Number of completion events lost because the queue was full;
175 	 * this should be avoided by the application by making sure
176 	 * there are not more requests pending than there is space in
177 	 * the completion queue.
178 	 *
179 	 * Written by the kernel, shouldn't be modified by the
180 	 * application (i.e. get number of "new events" by comparing to
181 	 * cached value).
182 	 *
183 	 * As completion events come in out of order this counter is not
184 	 * ordered with any other data.
185 	 */
186 	u32			cq_overflow;
187 	/*
188 	 * Ring buffer of completion events.
189 	 *
190 	 * The kernel writes completion events fresh every time they are
191 	 * produced, so the application is allowed to modify pending
192 	 * entries.
193 	 */
194 	struct io_uring_cqe	cqes[] ____cacheline_aligned_in_smp;
195 };
196 
197 enum io_uring_cmd_flags {
198 	IO_URING_F_NONBLOCK		= 1,
199 	IO_URING_F_COMPLETE_DEFER	= 2,
200 };
201 
202 struct io_mapped_ubuf {
203 	u64		ubuf;
204 	u64		ubuf_end;
205 	unsigned int	nr_bvecs;
206 	unsigned long	acct_pages;
207 	struct bio_vec	bvec[];
208 };
209 
210 struct io_ring_ctx;
211 
212 struct io_overflow_cqe {
213 	struct io_uring_cqe cqe;
214 	struct list_head list;
215 };
216 
217 struct io_fixed_file {
218 	/* file * with additional FFS_* flags */
219 	unsigned long file_ptr;
220 };
221 
222 struct io_rsrc_put {
223 	struct list_head list;
224 	u64 tag;
225 	union {
226 		void *rsrc;
227 		struct file *file;
228 		struct io_mapped_ubuf *buf;
229 	};
230 };
231 
232 struct io_file_table {
233 	struct io_fixed_file *files;
234 };
235 
236 struct io_rsrc_node {
237 	struct percpu_ref		refs;
238 	struct list_head		node;
239 	struct list_head		rsrc_list;
240 	struct io_rsrc_data		*rsrc_data;
241 	struct llist_node		llist;
242 	bool				done;
243 };
244 
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246 
247 struct io_rsrc_data {
248 	struct io_ring_ctx		*ctx;
249 
250 	u64				**tags;
251 	unsigned int			nr;
252 	rsrc_put_fn			*do_put;
253 	atomic_t			refs;
254 	struct completion		done;
255 	bool				quiesce;
256 };
257 
258 struct io_buffer {
259 	struct list_head list;
260 	__u64 addr;
261 	__u32 len;
262 	__u16 bid;
263 };
264 
265 struct io_restriction {
266 	DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 	DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 	u8 sqe_flags_allowed;
269 	u8 sqe_flags_required;
270 	bool registered;
271 };
272 
273 enum {
274 	IO_SQ_THREAD_SHOULD_STOP = 0,
275 	IO_SQ_THREAD_SHOULD_PARK,
276 };
277 
278 struct io_sq_data {
279 	refcount_t		refs;
280 	atomic_t		park_pending;
281 	struct mutex		lock;
282 
283 	/* ctx's that are using this sqd */
284 	struct list_head	ctx_list;
285 
286 	struct task_struct	*thread;
287 	struct wait_queue_head	wait;
288 
289 	unsigned		sq_thread_idle;
290 	int			sq_cpu;
291 	pid_t			task_pid;
292 	pid_t			task_tgid;
293 
294 	unsigned long		state;
295 	struct completion	exited;
296 };
297 
298 #define IO_COMPL_BATCH			32
299 #define IO_REQ_CACHE_SIZE		32
300 #define IO_REQ_ALLOC_BATCH		8
301 
302 struct io_submit_link {
303 	struct io_kiocb		*head;
304 	struct io_kiocb		*last;
305 };
306 
307 struct io_submit_state {
308 	struct blk_plug		plug;
309 	struct io_submit_link	link;
310 
311 	/*
312 	 * io_kiocb alloc cache
313 	 */
314 	void			*reqs[IO_REQ_CACHE_SIZE];
315 	unsigned int		free_reqs;
316 
317 	bool			plug_started;
318 
319 	/*
320 	 * Batch completion logic
321 	 */
322 	struct io_kiocb		*compl_reqs[IO_COMPL_BATCH];
323 	unsigned int		compl_nr;
324 	/* inline/task_work completion list, under ->uring_lock */
325 	struct list_head	free_list;
326 
327 	unsigned int		ios_left;
328 };
329 
330 struct io_ring_ctx {
331 	/* const or read-mostly hot data */
332 	struct {
333 		struct percpu_ref	refs;
334 
335 		struct io_rings		*rings;
336 		unsigned int		flags;
337 		unsigned int		compat: 1;
338 		unsigned int		drain_next: 1;
339 		unsigned int		eventfd_async: 1;
340 		unsigned int		restricted: 1;
341 		unsigned int		off_timeout_used: 1;
342 		unsigned int		drain_active: 1;
343 	} ____cacheline_aligned_in_smp;
344 
345 	/* submission data */
346 	struct {
347 		struct mutex		uring_lock;
348 
349 		/*
350 		 * Ring buffer of indices into array of io_uring_sqe, which is
351 		 * mmapped by the application using the IORING_OFF_SQES offset.
352 		 *
353 		 * This indirection could e.g. be used to assign fixed
354 		 * io_uring_sqe entries to operations and only submit them to
355 		 * the queue when needed.
356 		 *
357 		 * The kernel modifies neither the indices array nor the entries
358 		 * array.
359 		 */
360 		u32			*sq_array;
361 		struct io_uring_sqe	*sq_sqes;
362 		unsigned		cached_sq_head;
363 		unsigned		sq_entries;
364 		struct list_head	defer_list;
365 
366 		/*
367 		 * Fixed resources fast path, should be accessed only under
368 		 * uring_lock, and updated through io_uring_register(2)
369 		 */
370 		struct io_rsrc_node	*rsrc_node;
371 		struct io_file_table	file_table;
372 		unsigned		nr_user_files;
373 		unsigned		nr_user_bufs;
374 		struct io_mapped_ubuf	**user_bufs;
375 
376 		struct io_submit_state	submit_state;
377 		struct list_head	timeout_list;
378 		struct list_head	ltimeout_list;
379 		struct list_head	cq_overflow_list;
380 		struct xarray		io_buffers;
381 		struct xarray		personalities;
382 		u32			pers_next;
383 		unsigned		sq_thread_idle;
384 	} ____cacheline_aligned_in_smp;
385 
386 	/* IRQ completion list, under ->completion_lock */
387 	struct list_head	locked_free_list;
388 	unsigned int		locked_free_nr;
389 
390 	const struct cred	*sq_creds;	/* cred used for __io_sq_thread() */
391 	struct io_sq_data	*sq_data;	/* if using sq thread polling */
392 
393 	struct wait_queue_head	sqo_sq_wait;
394 	struct list_head	sqd_list;
395 
396 	unsigned long		check_cq_overflow;
397 
398 	struct {
399 		unsigned		cached_cq_tail;
400 		unsigned		cq_entries;
401 		struct eventfd_ctx	*cq_ev_fd;
402 		struct wait_queue_head	poll_wait;
403 		struct wait_queue_head	cq_wait;
404 		unsigned		cq_extra;
405 		atomic_t		cq_timeouts;
406 		unsigned		cq_last_tm_flush;
407 	} ____cacheline_aligned_in_smp;
408 
409 	struct {
410 		spinlock_t		completion_lock;
411 
412 		spinlock_t		timeout_lock;
413 
414 		/*
415 		 * ->iopoll_list is protected by the ctx->uring_lock for
416 		 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 		 * For SQPOLL, only the single threaded io_sq_thread() will
418 		 * manipulate the list, hence no extra locking is needed there.
419 		 */
420 		struct list_head	iopoll_list;
421 		struct hlist_head	*cancel_hash;
422 		unsigned		cancel_hash_bits;
423 		bool			poll_multi_queue;
424 	} ____cacheline_aligned_in_smp;
425 
426 	struct io_restriction		restrictions;
427 
428 	/* slow path rsrc auxilary data, used by update/register */
429 	struct {
430 		struct io_rsrc_node		*rsrc_backup_node;
431 		struct io_mapped_ubuf		*dummy_ubuf;
432 		struct io_rsrc_data		*file_data;
433 		struct io_rsrc_data		*buf_data;
434 
435 		struct delayed_work		rsrc_put_work;
436 		struct llist_head		rsrc_put_llist;
437 		struct list_head		rsrc_ref_list;
438 		spinlock_t			rsrc_ref_lock;
439 	};
440 
441 	/* Keep this last, we don't need it for the fast path */
442 	struct {
443 		#if defined(CONFIG_UNIX)
444 			struct socket		*ring_sock;
445 		#endif
446 		/* hashed buffered write serialization */
447 		struct io_wq_hash		*hash_map;
448 
449 		/* Only used for accounting purposes */
450 		struct user_struct		*user;
451 		struct mm_struct		*mm_account;
452 
453 		/* ctx exit and cancelation */
454 		struct llist_head		fallback_llist;
455 		struct delayed_work		fallback_work;
456 		struct work_struct		exit_work;
457 		struct list_head		tctx_list;
458 		struct completion		ref_comp;
459 		u32				iowq_limits[2];
460 		bool				iowq_limits_set;
461 	};
462 };
463 
464 struct io_uring_task {
465 	/* submission side */
466 	int			cached_refs;
467 	struct xarray		xa;
468 	struct wait_queue_head	wait;
469 	const struct io_ring_ctx *last;
470 	struct io_wq		*io_wq;
471 	struct percpu_counter	inflight;
472 	atomic_t		inflight_tracked;
473 	atomic_t		in_idle;
474 
475 	spinlock_t		task_lock;
476 	struct io_wq_work_list	task_list;
477 	struct callback_head	task_work;
478 	bool			task_running;
479 };
480 
481 /*
482  * First field must be the file pointer in all the
483  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484  */
485 struct io_poll_iocb {
486 	struct file			*file;
487 	struct wait_queue_head		*head;
488 	__poll_t			events;
489 	int				retries;
490 	struct wait_queue_entry		wait;
491 };
492 
493 struct io_poll_update {
494 	struct file			*file;
495 	u64				old_user_data;
496 	u64				new_user_data;
497 	__poll_t			events;
498 	bool				update_events;
499 	bool				update_user_data;
500 };
501 
502 struct io_close {
503 	struct file			*file;
504 	int				fd;
505 	u32				file_slot;
506 };
507 
508 struct io_timeout_data {
509 	struct io_kiocb			*req;
510 	struct hrtimer			timer;
511 	struct timespec64		ts;
512 	enum hrtimer_mode		mode;
513 	u32				flags;
514 };
515 
516 struct io_accept {
517 	struct file			*file;
518 	struct sockaddr __user		*addr;
519 	int __user			*addr_len;
520 	int				flags;
521 	u32				file_slot;
522 	unsigned long			nofile;
523 };
524 
525 struct io_sync {
526 	struct file			*file;
527 	loff_t				len;
528 	loff_t				off;
529 	int				flags;
530 	int				mode;
531 };
532 
533 struct io_cancel {
534 	struct file			*file;
535 	u64				addr;
536 };
537 
538 struct io_timeout {
539 	struct file			*file;
540 	u32				off;
541 	u32				target_seq;
542 	struct list_head		list;
543 	/* head of the link, used by linked timeouts only */
544 	struct io_kiocb			*head;
545 	/* for linked completions */
546 	struct io_kiocb			*prev;
547 };
548 
549 struct io_timeout_rem {
550 	struct file			*file;
551 	u64				addr;
552 
553 	/* timeout update */
554 	struct timespec64		ts;
555 	u32				flags;
556 	bool				ltimeout;
557 };
558 
559 struct io_rw {
560 	/* NOTE: kiocb has the file as the first member, so don't do it here */
561 	struct kiocb			kiocb;
562 	u64				addr;
563 	u64				len;
564 };
565 
566 struct io_connect {
567 	struct file			*file;
568 	struct sockaddr __user		*addr;
569 	int				addr_len;
570 };
571 
572 struct io_sr_msg {
573 	struct file			*file;
574 	union {
575 		struct compat_msghdr __user	*umsg_compat;
576 		struct user_msghdr __user	*umsg;
577 		void __user			*buf;
578 	};
579 	int				msg_flags;
580 	int				bgid;
581 	size_t				len;
582 	size_t				done_io;
583 	struct io_buffer		*kbuf;
584 	void __user			*msg_control;
585 };
586 
587 struct io_open {
588 	struct file			*file;
589 	int				dfd;
590 	u32				file_slot;
591 	struct filename			*filename;
592 	struct open_how			how;
593 	unsigned long			nofile;
594 };
595 
596 struct io_rsrc_update {
597 	struct file			*file;
598 	u64				arg;
599 	u32				nr_args;
600 	u32				offset;
601 };
602 
603 struct io_fadvise {
604 	struct file			*file;
605 	u64				offset;
606 	u32				len;
607 	u32				advice;
608 };
609 
610 struct io_madvise {
611 	struct file			*file;
612 	u64				addr;
613 	u32				len;
614 	u32				advice;
615 };
616 
617 struct io_epoll {
618 	struct file			*file;
619 	int				epfd;
620 	int				op;
621 	int				fd;
622 	struct epoll_event		event;
623 };
624 
625 struct io_splice {
626 	struct file			*file_out;
627 	loff_t				off_out;
628 	loff_t				off_in;
629 	u64				len;
630 	int				splice_fd_in;
631 	unsigned int			flags;
632 };
633 
634 struct io_provide_buf {
635 	struct file			*file;
636 	__u64				addr;
637 	__u32				len;
638 	__u32				bgid;
639 	__u16				nbufs;
640 	__u16				bid;
641 };
642 
643 struct io_statx {
644 	struct file			*file;
645 	int				dfd;
646 	unsigned int			mask;
647 	unsigned int			flags;
648 	const char __user		*filename;
649 	struct statx __user		*buffer;
650 };
651 
652 struct io_shutdown {
653 	struct file			*file;
654 	int				how;
655 };
656 
657 struct io_rename {
658 	struct file			*file;
659 	int				old_dfd;
660 	int				new_dfd;
661 	struct filename			*oldpath;
662 	struct filename			*newpath;
663 	int				flags;
664 };
665 
666 struct io_unlink {
667 	struct file			*file;
668 	int				dfd;
669 	int				flags;
670 	struct filename			*filename;
671 };
672 
673 struct io_mkdir {
674 	struct file			*file;
675 	int				dfd;
676 	umode_t				mode;
677 	struct filename			*filename;
678 };
679 
680 struct io_symlink {
681 	struct file			*file;
682 	int				new_dfd;
683 	struct filename			*oldpath;
684 	struct filename			*newpath;
685 };
686 
687 struct io_hardlink {
688 	struct file			*file;
689 	int				old_dfd;
690 	int				new_dfd;
691 	struct filename			*oldpath;
692 	struct filename			*newpath;
693 	int				flags;
694 };
695 
696 struct io_completion {
697 	struct file			*file;
698 	u32				cflags;
699 };
700 
701 struct io_async_connect {
702 	struct sockaddr_storage		address;
703 };
704 
705 struct io_async_msghdr {
706 	struct iovec			fast_iov[UIO_FASTIOV];
707 	/* points to an allocated iov, if NULL we use fast_iov instead */
708 	struct iovec			*free_iov;
709 	struct sockaddr __user		*uaddr;
710 	struct msghdr			msg;
711 	struct sockaddr_storage		addr;
712 };
713 
714 struct io_async_rw {
715 	struct iovec			fast_iov[UIO_FASTIOV];
716 	const struct iovec		*free_iovec;
717 	struct iov_iter			iter;
718 	struct iov_iter_state		iter_state;
719 	size_t				bytes_done;
720 	struct wait_page_queue		wpq;
721 };
722 
723 enum {
724 	REQ_F_FIXED_FILE_BIT	= IOSQE_FIXED_FILE_BIT,
725 	REQ_F_IO_DRAIN_BIT	= IOSQE_IO_DRAIN_BIT,
726 	REQ_F_LINK_BIT		= IOSQE_IO_LINK_BIT,
727 	REQ_F_HARDLINK_BIT	= IOSQE_IO_HARDLINK_BIT,
728 	REQ_F_FORCE_ASYNC_BIT	= IOSQE_ASYNC_BIT,
729 	REQ_F_BUFFER_SELECT_BIT	= IOSQE_BUFFER_SELECT_BIT,
730 
731 	/* first byte is taken by user flags, shift it to not overlap */
732 	REQ_F_FAIL_BIT		= 8,
733 	REQ_F_INFLIGHT_BIT,
734 	REQ_F_CUR_POS_BIT,
735 	REQ_F_NOWAIT_BIT,
736 	REQ_F_LINK_TIMEOUT_BIT,
737 	REQ_F_NEED_CLEANUP_BIT,
738 	REQ_F_POLLED_BIT,
739 	REQ_F_BUFFER_SELECTED_BIT,
740 	REQ_F_COMPLETE_INLINE_BIT,
741 	REQ_F_REISSUE_BIT,
742 	REQ_F_CREDS_BIT,
743 	REQ_F_REFCOUNT_BIT,
744 	REQ_F_ARM_LTIMEOUT_BIT,
745 	REQ_F_PARTIAL_IO_BIT,
746 	/* keep async read/write and isreg together and in order */
747 	REQ_F_NOWAIT_READ_BIT,
748 	REQ_F_NOWAIT_WRITE_BIT,
749 	REQ_F_ISREG_BIT,
750 
751 	/* not a real bit, just to check we're not overflowing the space */
752 	__REQ_F_LAST_BIT,
753 };
754 
755 enum {
756 	/* ctx owns file */
757 	REQ_F_FIXED_FILE	= BIT(REQ_F_FIXED_FILE_BIT),
758 	/* drain existing IO first */
759 	REQ_F_IO_DRAIN		= BIT(REQ_F_IO_DRAIN_BIT),
760 	/* linked sqes */
761 	REQ_F_LINK		= BIT(REQ_F_LINK_BIT),
762 	/* doesn't sever on completion < 0 */
763 	REQ_F_HARDLINK		= BIT(REQ_F_HARDLINK_BIT),
764 	/* IOSQE_ASYNC */
765 	REQ_F_FORCE_ASYNC	= BIT(REQ_F_FORCE_ASYNC_BIT),
766 	/* IOSQE_BUFFER_SELECT */
767 	REQ_F_BUFFER_SELECT	= BIT(REQ_F_BUFFER_SELECT_BIT),
768 
769 	/* fail rest of links */
770 	REQ_F_FAIL		= BIT(REQ_F_FAIL_BIT),
771 	/* on inflight list, should be cancelled and waited on exit reliably */
772 	REQ_F_INFLIGHT		= BIT(REQ_F_INFLIGHT_BIT),
773 	/* read/write uses file position */
774 	REQ_F_CUR_POS		= BIT(REQ_F_CUR_POS_BIT),
775 	/* must not punt to workers */
776 	REQ_F_NOWAIT		= BIT(REQ_F_NOWAIT_BIT),
777 	/* has or had linked timeout */
778 	REQ_F_LINK_TIMEOUT	= BIT(REQ_F_LINK_TIMEOUT_BIT),
779 	/* needs cleanup */
780 	REQ_F_NEED_CLEANUP	= BIT(REQ_F_NEED_CLEANUP_BIT),
781 	/* already went through poll handler */
782 	REQ_F_POLLED		= BIT(REQ_F_POLLED_BIT),
783 	/* buffer already selected */
784 	REQ_F_BUFFER_SELECTED	= BIT(REQ_F_BUFFER_SELECTED_BIT),
785 	/* completion is deferred through io_comp_state */
786 	REQ_F_COMPLETE_INLINE	= BIT(REQ_F_COMPLETE_INLINE_BIT),
787 	/* caller should reissue async */
788 	REQ_F_REISSUE		= BIT(REQ_F_REISSUE_BIT),
789 	/* supports async reads */
790 	REQ_F_NOWAIT_READ	= BIT(REQ_F_NOWAIT_READ_BIT),
791 	/* supports async writes */
792 	REQ_F_NOWAIT_WRITE	= BIT(REQ_F_NOWAIT_WRITE_BIT),
793 	/* regular file */
794 	REQ_F_ISREG		= BIT(REQ_F_ISREG_BIT),
795 	/* has creds assigned */
796 	REQ_F_CREDS		= BIT(REQ_F_CREDS_BIT),
797 	/* skip refcounting if not set */
798 	REQ_F_REFCOUNT		= BIT(REQ_F_REFCOUNT_BIT),
799 	/* there is a linked timeout that has to be armed */
800 	REQ_F_ARM_LTIMEOUT	= BIT(REQ_F_ARM_LTIMEOUT_BIT),
801 	/* request has already done partial IO */
802 	REQ_F_PARTIAL_IO	= BIT(REQ_F_PARTIAL_IO_BIT),
803 };
804 
805 struct async_poll {
806 	struct io_poll_iocb	poll;
807 	struct io_poll_iocb	*double_poll;
808 };
809 
810 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
811 
812 struct io_task_work {
813 	union {
814 		struct io_wq_work_node	node;
815 		struct llist_node	fallback_node;
816 	};
817 	io_req_tw_func_t		func;
818 };
819 
820 enum {
821 	IORING_RSRC_FILE		= 0,
822 	IORING_RSRC_BUFFER		= 1,
823 };
824 
825 /*
826  * NOTE! Each of the iocb union members has the file pointer
827  * as the first entry in their struct definition. So you can
828  * access the file pointer through any of the sub-structs,
829  * or directly as just 'ki_filp' in this struct.
830  */
831 struct io_kiocb {
832 	union {
833 		struct file		*file;
834 		struct io_rw		rw;
835 		struct io_poll_iocb	poll;
836 		struct io_poll_update	poll_update;
837 		struct io_accept	accept;
838 		struct io_sync		sync;
839 		struct io_cancel	cancel;
840 		struct io_timeout	timeout;
841 		struct io_timeout_rem	timeout_rem;
842 		struct io_connect	connect;
843 		struct io_sr_msg	sr_msg;
844 		struct io_open		open;
845 		struct io_close		close;
846 		struct io_rsrc_update	rsrc_update;
847 		struct io_fadvise	fadvise;
848 		struct io_madvise	madvise;
849 		struct io_epoll		epoll;
850 		struct io_splice	splice;
851 		struct io_provide_buf	pbuf;
852 		struct io_statx		statx;
853 		struct io_shutdown	shutdown;
854 		struct io_rename	rename;
855 		struct io_unlink	unlink;
856 		struct io_mkdir		mkdir;
857 		struct io_symlink	symlink;
858 		struct io_hardlink	hardlink;
859 		/* use only after cleaning per-op data, see io_clean_op() */
860 		struct io_completion	compl;
861 	};
862 
863 	/* opcode allocated if it needs to store data for async defer */
864 	void				*async_data;
865 	u8				opcode;
866 	/* polled IO has completed */
867 	u8				iopoll_completed;
868 
869 	u16				buf_index;
870 	u32				result;
871 
872 	struct io_ring_ctx		*ctx;
873 	unsigned int			flags;
874 	atomic_t			refs;
875 	struct task_struct		*task;
876 	u64				user_data;
877 
878 	struct io_kiocb			*link;
879 	struct percpu_ref		*fixed_rsrc_refs;
880 
881 	/* used with ctx->iopoll_list with reads/writes */
882 	struct list_head		inflight_entry;
883 	struct io_task_work		io_task_work;
884 	/* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
885 	struct hlist_node		hash_node;
886 	struct async_poll		*apoll;
887 	struct io_wq_work		work;
888 	const struct cred		*creds;
889 
890 	/* store used ubuf, so we can prevent reloading */
891 	struct io_mapped_ubuf		*imu;
892 	/* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
893 	struct io_buffer		*kbuf;
894 	atomic_t			poll_refs;
895 };
896 
897 struct io_tctx_node {
898 	struct list_head	ctx_node;
899 	struct task_struct	*task;
900 	struct io_ring_ctx	*ctx;
901 };
902 
903 struct io_defer_entry {
904 	struct list_head	list;
905 	struct io_kiocb		*req;
906 	u32			seq;
907 };
908 
909 struct io_op_def {
910 	/* needs req->file assigned */
911 	unsigned		needs_file : 1;
912 	/* hash wq insertion if file is a regular file */
913 	unsigned		hash_reg_file : 1;
914 	/* unbound wq insertion if file is a non-regular file */
915 	unsigned		unbound_nonreg_file : 1;
916 	/* opcode is not supported by this kernel */
917 	unsigned		not_supported : 1;
918 	/* set if opcode supports polled "wait" */
919 	unsigned		pollin : 1;
920 	unsigned		pollout : 1;
921 	/* op supports buffer selection */
922 	unsigned		buffer_select : 1;
923 	/* do prep async if is going to be punted */
924 	unsigned		needs_async_setup : 1;
925 	/* should block plug */
926 	unsigned		plug : 1;
927 	/* size of async data needed, if any */
928 	unsigned short		async_size;
929 };
930 
931 static const struct io_op_def io_op_defs[] = {
932 	[IORING_OP_NOP] = {},
933 	[IORING_OP_READV] = {
934 		.needs_file		= 1,
935 		.unbound_nonreg_file	= 1,
936 		.pollin			= 1,
937 		.buffer_select		= 1,
938 		.needs_async_setup	= 1,
939 		.plug			= 1,
940 		.async_size		= sizeof(struct io_async_rw),
941 	},
942 	[IORING_OP_WRITEV] = {
943 		.needs_file		= 1,
944 		.hash_reg_file		= 1,
945 		.unbound_nonreg_file	= 1,
946 		.pollout		= 1,
947 		.needs_async_setup	= 1,
948 		.plug			= 1,
949 		.async_size		= sizeof(struct io_async_rw),
950 	},
951 	[IORING_OP_FSYNC] = {
952 		.needs_file		= 1,
953 	},
954 	[IORING_OP_READ_FIXED] = {
955 		.needs_file		= 1,
956 		.unbound_nonreg_file	= 1,
957 		.pollin			= 1,
958 		.plug			= 1,
959 		.async_size		= sizeof(struct io_async_rw),
960 	},
961 	[IORING_OP_WRITE_FIXED] = {
962 		.needs_file		= 1,
963 		.hash_reg_file		= 1,
964 		.unbound_nonreg_file	= 1,
965 		.pollout		= 1,
966 		.plug			= 1,
967 		.async_size		= sizeof(struct io_async_rw),
968 	},
969 	[IORING_OP_POLL_ADD] = {
970 		.needs_file		= 1,
971 		.unbound_nonreg_file	= 1,
972 	},
973 	[IORING_OP_POLL_REMOVE] = {},
974 	[IORING_OP_SYNC_FILE_RANGE] = {
975 		.needs_file		= 1,
976 	},
977 	[IORING_OP_SENDMSG] = {
978 		.needs_file		= 1,
979 		.unbound_nonreg_file	= 1,
980 		.pollout		= 1,
981 		.needs_async_setup	= 1,
982 		.async_size		= sizeof(struct io_async_msghdr),
983 	},
984 	[IORING_OP_RECVMSG] = {
985 		.needs_file		= 1,
986 		.unbound_nonreg_file	= 1,
987 		.pollin			= 1,
988 		.buffer_select		= 1,
989 		.needs_async_setup	= 1,
990 		.async_size		= sizeof(struct io_async_msghdr),
991 	},
992 	[IORING_OP_TIMEOUT] = {
993 		.async_size		= sizeof(struct io_timeout_data),
994 	},
995 	[IORING_OP_TIMEOUT_REMOVE] = {
996 		/* used by timeout updates' prep() */
997 	},
998 	[IORING_OP_ACCEPT] = {
999 		.needs_file		= 1,
1000 		.unbound_nonreg_file	= 1,
1001 		.pollin			= 1,
1002 	},
1003 	[IORING_OP_ASYNC_CANCEL] = {},
1004 	[IORING_OP_LINK_TIMEOUT] = {
1005 		.async_size		= sizeof(struct io_timeout_data),
1006 	},
1007 	[IORING_OP_CONNECT] = {
1008 		.needs_file		= 1,
1009 		.unbound_nonreg_file	= 1,
1010 		.pollout		= 1,
1011 		.needs_async_setup	= 1,
1012 		.async_size		= sizeof(struct io_async_connect),
1013 	},
1014 	[IORING_OP_FALLOCATE] = {
1015 		.needs_file		= 1,
1016 	},
1017 	[IORING_OP_OPENAT] = {},
1018 	[IORING_OP_CLOSE] = {},
1019 	[IORING_OP_FILES_UPDATE] = {},
1020 	[IORING_OP_STATX] = {},
1021 	[IORING_OP_READ] = {
1022 		.needs_file		= 1,
1023 		.unbound_nonreg_file	= 1,
1024 		.pollin			= 1,
1025 		.buffer_select		= 1,
1026 		.plug			= 1,
1027 		.async_size		= sizeof(struct io_async_rw),
1028 	},
1029 	[IORING_OP_WRITE] = {
1030 		.needs_file		= 1,
1031 		.hash_reg_file		= 1,
1032 		.unbound_nonreg_file	= 1,
1033 		.pollout		= 1,
1034 		.plug			= 1,
1035 		.async_size		= sizeof(struct io_async_rw),
1036 	},
1037 	[IORING_OP_FADVISE] = {
1038 		.needs_file		= 1,
1039 	},
1040 	[IORING_OP_MADVISE] = {},
1041 	[IORING_OP_SEND] = {
1042 		.needs_file		= 1,
1043 		.unbound_nonreg_file	= 1,
1044 		.pollout		= 1,
1045 	},
1046 	[IORING_OP_RECV] = {
1047 		.needs_file		= 1,
1048 		.unbound_nonreg_file	= 1,
1049 		.pollin			= 1,
1050 		.buffer_select		= 1,
1051 	},
1052 	[IORING_OP_OPENAT2] = {
1053 	},
1054 	[IORING_OP_EPOLL_CTL] = {
1055 		.unbound_nonreg_file	= 1,
1056 	},
1057 	[IORING_OP_SPLICE] = {
1058 		.needs_file		= 1,
1059 		.hash_reg_file		= 1,
1060 		.unbound_nonreg_file	= 1,
1061 	},
1062 	[IORING_OP_PROVIDE_BUFFERS] = {},
1063 	[IORING_OP_REMOVE_BUFFERS] = {},
1064 	[IORING_OP_TEE] = {
1065 		.needs_file		= 1,
1066 		.hash_reg_file		= 1,
1067 		.unbound_nonreg_file	= 1,
1068 	},
1069 	[IORING_OP_SHUTDOWN] = {
1070 		.needs_file		= 1,
1071 	},
1072 	[IORING_OP_RENAMEAT] = {},
1073 	[IORING_OP_UNLINKAT] = {},
1074 };
1075 
1076 /* requests with any of those set should undergo io_disarm_next() */
1077 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1078 
1079 static bool io_disarm_next(struct io_kiocb *req);
1080 static void io_uring_del_tctx_node(unsigned long index);
1081 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1082 					 struct task_struct *task,
1083 					 bool cancel_all);
1084 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1085 
1086 static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags);
1087 
1088 static void io_put_req(struct io_kiocb *req);
1089 static void io_put_req_deferred(struct io_kiocb *req);
1090 static void io_dismantle_req(struct io_kiocb *req);
1091 static void io_queue_linked_timeout(struct io_kiocb *req);
1092 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1093 				     struct io_uring_rsrc_update2 *up,
1094 				     unsigned nr_args);
1095 static void io_clean_op(struct io_kiocb *req);
1096 static struct file *io_file_get(struct io_ring_ctx *ctx,
1097 				struct io_kiocb *req, int fd, bool fixed,
1098 				unsigned int issue_flags);
1099 static void __io_queue_sqe(struct io_kiocb *req);
1100 static void io_rsrc_put_work(struct work_struct *work);
1101 
1102 static void io_req_task_queue(struct io_kiocb *req);
1103 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1104 static int io_req_prep_async(struct io_kiocb *req);
1105 
1106 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1107 				 unsigned int issue_flags, u32 slot_index);
1108 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1109 
1110 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1111 
1112 static struct kmem_cache *req_cachep;
1113 
1114 static const struct file_operations io_uring_fops;
1115 
io_uring_get_socket(struct file * file)1116 struct sock *io_uring_get_socket(struct file *file)
1117 {
1118 #if defined(CONFIG_UNIX)
1119 	if (file->f_op == &io_uring_fops) {
1120 		struct io_ring_ctx *ctx = file->private_data;
1121 
1122 		return ctx->ring_sock->sk;
1123 	}
1124 #endif
1125 	return NULL;
1126 }
1127 EXPORT_SYMBOL(io_uring_get_socket);
1128 
io_tw_lock(struct io_ring_ctx * ctx,bool * locked)1129 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1130 {
1131 	if (!*locked) {
1132 		mutex_lock(&ctx->uring_lock);
1133 		*locked = true;
1134 	}
1135 }
1136 
1137 #define io_for_each_link(pos, head) \
1138 	for (pos = (head); pos; pos = pos->link)
1139 
1140 /*
1141  * Shamelessly stolen from the mm implementation of page reference checking,
1142  * see commit f958d7b528b1 for details.
1143  */
1144 #define req_ref_zero_or_close_to_overflow(req)	\
1145 	((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1146 
req_ref_inc_not_zero(struct io_kiocb * req)1147 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1148 {
1149 	WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1150 	return atomic_inc_not_zero(&req->refs);
1151 }
1152 
req_ref_put_and_test(struct io_kiocb * req)1153 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1154 {
1155 	if (likely(!(req->flags & REQ_F_REFCOUNT)))
1156 		return true;
1157 
1158 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1159 	return atomic_dec_and_test(&req->refs);
1160 }
1161 
req_ref_get(struct io_kiocb * req)1162 static inline void req_ref_get(struct io_kiocb *req)
1163 {
1164 	WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1165 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1166 	atomic_inc(&req->refs);
1167 }
1168 
__io_req_set_refcount(struct io_kiocb * req,int nr)1169 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1170 {
1171 	if (!(req->flags & REQ_F_REFCOUNT)) {
1172 		req->flags |= REQ_F_REFCOUNT;
1173 		atomic_set(&req->refs, nr);
1174 	}
1175 }
1176 
io_req_set_refcount(struct io_kiocb * req)1177 static inline void io_req_set_refcount(struct io_kiocb *req)
1178 {
1179 	__io_req_set_refcount(req, 1);
1180 }
1181 
io_req_set_rsrc_node(struct io_kiocb * req)1182 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1183 {
1184 	struct io_ring_ctx *ctx = req->ctx;
1185 
1186 	if (!req->fixed_rsrc_refs) {
1187 		req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1188 		percpu_ref_get(req->fixed_rsrc_refs);
1189 	}
1190 }
1191 
io_refs_resurrect(struct percpu_ref * ref,struct completion * compl)1192 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1193 {
1194 	bool got = percpu_ref_tryget(ref);
1195 
1196 	/* already at zero, wait for ->release() */
1197 	if (!got)
1198 		wait_for_completion(compl);
1199 	percpu_ref_resurrect(ref);
1200 	if (got)
1201 		percpu_ref_put(ref);
1202 }
1203 
io_match_task(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1204 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1205 			  bool cancel_all)
1206 	__must_hold(&req->ctx->timeout_lock)
1207 {
1208 	struct io_kiocb *req;
1209 
1210 	if (task && head->task != task)
1211 		return false;
1212 	if (cancel_all)
1213 		return true;
1214 
1215 	io_for_each_link(req, head) {
1216 		if (req->flags & REQ_F_INFLIGHT)
1217 			return true;
1218 	}
1219 	return false;
1220 }
1221 
io_match_linked(struct io_kiocb * head)1222 static bool io_match_linked(struct io_kiocb *head)
1223 {
1224 	struct io_kiocb *req;
1225 
1226 	io_for_each_link(req, head) {
1227 		if (req->flags & REQ_F_INFLIGHT)
1228 			return true;
1229 	}
1230 	return false;
1231 }
1232 
1233 /*
1234  * As io_match_task() but protected against racing with linked timeouts.
1235  * User must not hold timeout_lock.
1236  */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1237 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1238 			       bool cancel_all)
1239 {
1240 	bool matched;
1241 
1242 	if (task && head->task != task)
1243 		return false;
1244 	if (cancel_all)
1245 		return true;
1246 
1247 	if (head->flags & REQ_F_LINK_TIMEOUT) {
1248 		struct io_ring_ctx *ctx = head->ctx;
1249 
1250 		/* protect against races with linked timeouts */
1251 		spin_lock_irq(&ctx->timeout_lock);
1252 		matched = io_match_linked(head);
1253 		spin_unlock_irq(&ctx->timeout_lock);
1254 	} else {
1255 		matched = io_match_linked(head);
1256 	}
1257 	return matched;
1258 }
1259 
req_set_fail(struct io_kiocb * req)1260 static inline void req_set_fail(struct io_kiocb *req)
1261 {
1262 	req->flags |= REQ_F_FAIL;
1263 }
1264 
req_fail_link_node(struct io_kiocb * req,int res)1265 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1266 {
1267 	req_set_fail(req);
1268 	req->result = res;
1269 }
1270 
io_ring_ctx_ref_free(struct percpu_ref * ref)1271 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1272 {
1273 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1274 
1275 	complete(&ctx->ref_comp);
1276 }
1277 
io_is_timeout_noseq(struct io_kiocb * req)1278 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1279 {
1280 	return !req->timeout.off;
1281 }
1282 
io_fallback_req_func(struct work_struct * work)1283 static void io_fallback_req_func(struct work_struct *work)
1284 {
1285 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1286 						fallback_work.work);
1287 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1288 	struct io_kiocb *req, *tmp;
1289 	bool locked = false;
1290 
1291 	percpu_ref_get(&ctx->refs);
1292 	llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1293 		req->io_task_work.func(req, &locked);
1294 
1295 	if (locked) {
1296 		if (ctx->submit_state.compl_nr)
1297 			io_submit_flush_completions(ctx);
1298 		mutex_unlock(&ctx->uring_lock);
1299 	}
1300 	percpu_ref_put(&ctx->refs);
1301 
1302 }
1303 
io_ring_ctx_alloc(struct io_uring_params * p)1304 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1305 {
1306 	struct io_ring_ctx *ctx;
1307 	int hash_bits;
1308 
1309 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1310 	if (!ctx)
1311 		return NULL;
1312 
1313 	/*
1314 	 * Use 5 bits less than the max cq entries, that should give us around
1315 	 * 32 entries per hash list if totally full and uniformly spread.
1316 	 */
1317 	hash_bits = ilog2(p->cq_entries);
1318 	hash_bits -= 5;
1319 	if (hash_bits <= 0)
1320 		hash_bits = 1;
1321 	ctx->cancel_hash_bits = hash_bits;
1322 	ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1323 					GFP_KERNEL);
1324 	if (!ctx->cancel_hash)
1325 		goto err;
1326 	__hash_init(ctx->cancel_hash, 1U << hash_bits);
1327 
1328 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1329 	if (!ctx->dummy_ubuf)
1330 		goto err;
1331 	/* set invalid range, so io_import_fixed() fails meeting it */
1332 	ctx->dummy_ubuf->ubuf = -1UL;
1333 
1334 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1335 			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1336 		goto err;
1337 
1338 	ctx->flags = p->flags;
1339 	init_waitqueue_head(&ctx->sqo_sq_wait);
1340 	INIT_LIST_HEAD(&ctx->sqd_list);
1341 	init_waitqueue_head(&ctx->poll_wait);
1342 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
1343 	init_completion(&ctx->ref_comp);
1344 	xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1345 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1346 	mutex_init(&ctx->uring_lock);
1347 	init_waitqueue_head(&ctx->cq_wait);
1348 	spin_lock_init(&ctx->completion_lock);
1349 	spin_lock_init(&ctx->timeout_lock);
1350 	INIT_LIST_HEAD(&ctx->iopoll_list);
1351 	INIT_LIST_HEAD(&ctx->defer_list);
1352 	INIT_LIST_HEAD(&ctx->timeout_list);
1353 	INIT_LIST_HEAD(&ctx->ltimeout_list);
1354 	spin_lock_init(&ctx->rsrc_ref_lock);
1355 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1356 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1357 	init_llist_head(&ctx->rsrc_put_llist);
1358 	INIT_LIST_HEAD(&ctx->tctx_list);
1359 	INIT_LIST_HEAD(&ctx->submit_state.free_list);
1360 	INIT_LIST_HEAD(&ctx->locked_free_list);
1361 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1362 	return ctx;
1363 err:
1364 	kfree(ctx->dummy_ubuf);
1365 	kfree(ctx->cancel_hash);
1366 	kfree(ctx);
1367 	return NULL;
1368 }
1369 
io_account_cq_overflow(struct io_ring_ctx * ctx)1370 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1371 {
1372 	struct io_rings *r = ctx->rings;
1373 
1374 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1375 	ctx->cq_extra--;
1376 }
1377 
req_need_defer(struct io_kiocb * req,u32 seq)1378 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1379 {
1380 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1381 		struct io_ring_ctx *ctx = req->ctx;
1382 
1383 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1384 	}
1385 
1386 	return false;
1387 }
1388 
1389 #define FFS_ASYNC_READ		0x1UL
1390 #define FFS_ASYNC_WRITE		0x2UL
1391 #ifdef CONFIG_64BIT
1392 #define FFS_ISREG		0x4UL
1393 #else
1394 #define FFS_ISREG		0x0UL
1395 #endif
1396 #define FFS_MASK		~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1397 
io_req_ffs_set(struct io_kiocb * req)1398 static inline bool io_req_ffs_set(struct io_kiocb *req)
1399 {
1400 	return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1401 }
1402 
io_req_track_inflight(struct io_kiocb * req)1403 static void io_req_track_inflight(struct io_kiocb *req)
1404 {
1405 	if (!(req->flags & REQ_F_INFLIGHT)) {
1406 		req->flags |= REQ_F_INFLIGHT;
1407 		atomic_inc(&req->task->io_uring->inflight_tracked);
1408 	}
1409 }
1410 
__io_prep_linked_timeout(struct io_kiocb * req)1411 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1412 {
1413 	if (WARN_ON_ONCE(!req->link))
1414 		return NULL;
1415 
1416 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
1417 	req->flags |= REQ_F_LINK_TIMEOUT;
1418 
1419 	/* linked timeouts should have two refs once prep'ed */
1420 	io_req_set_refcount(req);
1421 	__io_req_set_refcount(req->link, 2);
1422 	return req->link;
1423 }
1424 
io_prep_linked_timeout(struct io_kiocb * req)1425 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1426 {
1427 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1428 		return NULL;
1429 	return __io_prep_linked_timeout(req);
1430 }
1431 
io_prep_async_work(struct io_kiocb * req)1432 static void io_prep_async_work(struct io_kiocb *req)
1433 {
1434 	const struct io_op_def *def = &io_op_defs[req->opcode];
1435 	struct io_ring_ctx *ctx = req->ctx;
1436 
1437 	if (!(req->flags & REQ_F_CREDS)) {
1438 		req->flags |= REQ_F_CREDS;
1439 		req->creds = get_current_cred();
1440 	}
1441 
1442 	req->work.list.next = NULL;
1443 	req->work.flags = 0;
1444 	if (req->flags & REQ_F_FORCE_ASYNC)
1445 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
1446 
1447 	if (req->flags & REQ_F_ISREG) {
1448 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1449 			io_wq_hash_work(&req->work, file_inode(req->file));
1450 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1451 		if (def->unbound_nonreg_file)
1452 			req->work.flags |= IO_WQ_WORK_UNBOUND;
1453 	}
1454 }
1455 
io_prep_async_link(struct io_kiocb * req)1456 static void io_prep_async_link(struct io_kiocb *req)
1457 {
1458 	struct io_kiocb *cur;
1459 
1460 	if (req->flags & REQ_F_LINK_TIMEOUT) {
1461 		struct io_ring_ctx *ctx = req->ctx;
1462 
1463 		spin_lock_irq(&ctx->timeout_lock);
1464 		io_for_each_link(cur, req)
1465 			io_prep_async_work(cur);
1466 		spin_unlock_irq(&ctx->timeout_lock);
1467 	} else {
1468 		io_for_each_link(cur, req)
1469 			io_prep_async_work(cur);
1470 	}
1471 }
1472 
io_queue_async_work(struct io_kiocb * req,bool * locked)1473 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1474 {
1475 	struct io_ring_ctx *ctx = req->ctx;
1476 	struct io_kiocb *link = io_prep_linked_timeout(req);
1477 	struct io_uring_task *tctx = req->task->io_uring;
1478 
1479 	/* must not take the lock, NULL it as a precaution */
1480 	locked = NULL;
1481 
1482 	BUG_ON(!tctx);
1483 	BUG_ON(!tctx->io_wq);
1484 
1485 	/* init ->work of the whole link before punting */
1486 	io_prep_async_link(req);
1487 
1488 	/*
1489 	 * Not expected to happen, but if we do have a bug where this _can_
1490 	 * happen, catch it here and ensure the request is marked as
1491 	 * canceled. That will make io-wq go through the usual work cancel
1492 	 * procedure rather than attempt to run this request (or create a new
1493 	 * worker for it).
1494 	 */
1495 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1496 		req->work.flags |= IO_WQ_WORK_CANCEL;
1497 
1498 	trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1499 					&req->work, req->flags);
1500 	io_wq_enqueue(tctx->io_wq, &req->work);
1501 	if (link)
1502 		io_queue_linked_timeout(link);
1503 }
1504 
io_kill_timeout(struct io_kiocb * req,int status)1505 static void io_kill_timeout(struct io_kiocb *req, int status)
1506 	__must_hold(&req->ctx->completion_lock)
1507 	__must_hold(&req->ctx->timeout_lock)
1508 {
1509 	struct io_timeout_data *io = req->async_data;
1510 
1511 	if (hrtimer_try_to_cancel(&io->timer) != -1) {
1512 		if (status)
1513 			req_set_fail(req);
1514 		atomic_set(&req->ctx->cq_timeouts,
1515 			atomic_read(&req->ctx->cq_timeouts) + 1);
1516 		list_del_init(&req->timeout.list);
1517 		io_fill_cqe_req(req, status, 0);
1518 		io_put_req_deferred(req);
1519 	}
1520 }
1521 
io_queue_deferred(struct io_ring_ctx * ctx)1522 static void io_queue_deferred(struct io_ring_ctx *ctx)
1523 {
1524 	lockdep_assert_held(&ctx->completion_lock);
1525 
1526 	while (!list_empty(&ctx->defer_list)) {
1527 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1528 						struct io_defer_entry, list);
1529 
1530 		if (req_need_defer(de->req, de->seq))
1531 			break;
1532 		list_del_init(&de->list);
1533 		io_req_task_queue(de->req);
1534 		kfree(de);
1535 	}
1536 }
1537 
io_flush_timeouts(struct io_ring_ctx * ctx)1538 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1539 	__must_hold(&ctx->completion_lock)
1540 {
1541 	u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1542 	struct io_kiocb *req, *tmp;
1543 
1544 	spin_lock_irq(&ctx->timeout_lock);
1545 	list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1546 		u32 events_needed, events_got;
1547 
1548 		if (io_is_timeout_noseq(req))
1549 			break;
1550 
1551 		/*
1552 		 * Since seq can easily wrap around over time, subtract
1553 		 * the last seq at which timeouts were flushed before comparing.
1554 		 * Assuming not more than 2^31-1 events have happened since,
1555 		 * these subtractions won't have wrapped, so we can check if
1556 		 * target is in [last_seq, current_seq] by comparing the two.
1557 		 */
1558 		events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1559 		events_got = seq - ctx->cq_last_tm_flush;
1560 		if (events_got < events_needed)
1561 			break;
1562 
1563 		io_kill_timeout(req, 0);
1564 	}
1565 	ctx->cq_last_tm_flush = seq;
1566 	spin_unlock_irq(&ctx->timeout_lock);
1567 }
1568 
__io_commit_cqring_flush(struct io_ring_ctx * ctx)1569 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1570 {
1571 	if (ctx->off_timeout_used)
1572 		io_flush_timeouts(ctx);
1573 	if (ctx->drain_active)
1574 		io_queue_deferred(ctx);
1575 }
1576 
io_commit_needs_flush(struct io_ring_ctx * ctx)1577 static inline bool io_commit_needs_flush(struct io_ring_ctx *ctx)
1578 {
1579 	return ctx->off_timeout_used || ctx->drain_active;
1580 }
1581 
__io_commit_cqring(struct io_ring_ctx * ctx)1582 static inline void __io_commit_cqring(struct io_ring_ctx *ctx)
1583 {
1584 	/* order cqe stores with ring update */
1585 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1586 }
1587 
io_commit_cqring(struct io_ring_ctx * ctx)1588 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1589 {
1590 	if (unlikely(io_commit_needs_flush(ctx)))
1591 		__io_commit_cqring_flush(ctx);
1592 	__io_commit_cqring(ctx);
1593 }
1594 
io_sqring_full(struct io_ring_ctx * ctx)1595 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1596 {
1597 	struct io_rings *r = ctx->rings;
1598 
1599 	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1600 }
1601 
__io_cqring_events(struct io_ring_ctx * ctx)1602 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1603 {
1604 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1605 }
1606 
io_get_cqe(struct io_ring_ctx * ctx)1607 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1608 {
1609 	struct io_rings *rings = ctx->rings;
1610 	unsigned tail, mask = ctx->cq_entries - 1;
1611 
1612 	/*
1613 	 * writes to the cq entry need to come after reading head; the
1614 	 * control dependency is enough as we're using WRITE_ONCE to
1615 	 * fill the cq entry
1616 	 */
1617 	if (__io_cqring_events(ctx) == ctx->cq_entries)
1618 		return NULL;
1619 
1620 	tail = ctx->cached_cq_tail++;
1621 	return &rings->cqes[tail & mask];
1622 }
1623 
io_should_trigger_evfd(struct io_ring_ctx * ctx)1624 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1625 {
1626 	if (likely(!ctx->cq_ev_fd))
1627 		return false;
1628 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1629 		return false;
1630 	return !ctx->eventfd_async || io_wq_current_is_worker();
1631 }
1632 
1633 /*
1634  * This should only get called when at least one event has been posted.
1635  * Some applications rely on the eventfd notification count only changing
1636  * IFF a new CQE has been added to the CQ ring. There's no depedency on
1637  * 1:1 relationship between how many times this function is called (and
1638  * hence the eventfd count) and number of CQEs posted to the CQ ring.
1639  */
io_cqring_ev_posted(struct io_ring_ctx * ctx)1640 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1641 {
1642 	/*
1643 	 * wake_up_all() may seem excessive, but io_wake_function() and
1644 	 * io_should_wake() handle the termination of the loop and only
1645 	 * wake as many waiters as we need to.
1646 	 */
1647 	if (wq_has_sleeper(&ctx->cq_wait))
1648 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1649 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1650 	if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1651 		wake_up(&ctx->sq_data->wait);
1652 	if (io_should_trigger_evfd(ctx))
1653 		eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1654 	if (waitqueue_active(&ctx->poll_wait))
1655 		__wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1656 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1657 }
1658 
io_cqring_ev_posted_iopoll(struct io_ring_ctx * ctx)1659 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1660 {
1661 	/* see waitqueue_active() comment */
1662 	smp_mb();
1663 
1664 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1665 		if (waitqueue_active(&ctx->cq_wait))
1666 			__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1667 				  poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1668 	}
1669 	if (io_should_trigger_evfd(ctx))
1670 		eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1671 	if (waitqueue_active(&ctx->poll_wait))
1672 		__wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1673 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1674 }
1675 
1676 /* Returns true if there are no backlogged entries after the flush */
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool force)1677 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1678 {
1679 	bool all_flushed, posted;
1680 
1681 	if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1682 		return false;
1683 
1684 	posted = false;
1685 	spin_lock(&ctx->completion_lock);
1686 	while (!list_empty(&ctx->cq_overflow_list)) {
1687 		struct io_uring_cqe *cqe = io_get_cqe(ctx);
1688 		struct io_overflow_cqe *ocqe;
1689 
1690 		if (!cqe && !force)
1691 			break;
1692 		ocqe = list_first_entry(&ctx->cq_overflow_list,
1693 					struct io_overflow_cqe, list);
1694 		if (cqe)
1695 			memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1696 		else
1697 			io_account_cq_overflow(ctx);
1698 
1699 		posted = true;
1700 		list_del(&ocqe->list);
1701 		kfree(ocqe);
1702 	}
1703 
1704 	all_flushed = list_empty(&ctx->cq_overflow_list);
1705 	if (all_flushed) {
1706 		clear_bit(0, &ctx->check_cq_overflow);
1707 		WRITE_ONCE(ctx->rings->sq_flags,
1708 			   ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1709 	}
1710 
1711 	if (posted)
1712 		io_commit_cqring(ctx);
1713 	spin_unlock(&ctx->completion_lock);
1714 	if (posted)
1715 		io_cqring_ev_posted(ctx);
1716 	return all_flushed;
1717 }
1718 
io_cqring_overflow_flush(struct io_ring_ctx * ctx)1719 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1720 {
1721 	bool ret = true;
1722 
1723 	if (test_bit(0, &ctx->check_cq_overflow)) {
1724 		/* iopoll syncs against uring_lock, not completion_lock */
1725 		if (ctx->flags & IORING_SETUP_IOPOLL)
1726 			mutex_lock(&ctx->uring_lock);
1727 		ret = __io_cqring_overflow_flush(ctx, false);
1728 		if (ctx->flags & IORING_SETUP_IOPOLL)
1729 			mutex_unlock(&ctx->uring_lock);
1730 	}
1731 
1732 	return ret;
1733 }
1734 
1735 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task,int nr)1736 static inline void io_put_task(struct task_struct *task, int nr)
1737 {
1738 	struct io_uring_task *tctx = task->io_uring;
1739 
1740 	if (likely(task == current)) {
1741 		tctx->cached_refs += nr;
1742 	} else {
1743 		percpu_counter_sub(&tctx->inflight, nr);
1744 		if (unlikely(atomic_read(&tctx->in_idle)))
1745 			wake_up(&tctx->wait);
1746 		put_task_struct_many(task, nr);
1747 	}
1748 }
1749 
io_task_refs_refill(struct io_uring_task * tctx)1750 static void io_task_refs_refill(struct io_uring_task *tctx)
1751 {
1752 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1753 
1754 	percpu_counter_add(&tctx->inflight, refill);
1755 	refcount_add(refill, &current->usage);
1756 	tctx->cached_refs += refill;
1757 }
1758 
io_get_task_refs(int nr)1759 static inline void io_get_task_refs(int nr)
1760 {
1761 	struct io_uring_task *tctx = current->io_uring;
1762 
1763 	tctx->cached_refs -= nr;
1764 	if (unlikely(tctx->cached_refs < 0))
1765 		io_task_refs_refill(tctx);
1766 }
1767 
io_uring_drop_tctx_refs(struct task_struct * task)1768 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1769 {
1770 	struct io_uring_task *tctx = task->io_uring;
1771 	unsigned int refs = tctx->cached_refs;
1772 
1773 	if (refs) {
1774 		tctx->cached_refs = 0;
1775 		percpu_counter_sub(&tctx->inflight, refs);
1776 		put_task_struct_many(task, refs);
1777 	}
1778 }
1779 
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1780 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1781 				     s32 res, u32 cflags)
1782 {
1783 	struct io_overflow_cqe *ocqe;
1784 
1785 	ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1786 	if (!ocqe) {
1787 		/*
1788 		 * If we're in ring overflow flush mode, or in task cancel mode,
1789 		 * or cannot allocate an overflow entry, then we need to drop it
1790 		 * on the floor.
1791 		 */
1792 		io_account_cq_overflow(ctx);
1793 		return false;
1794 	}
1795 	if (list_empty(&ctx->cq_overflow_list)) {
1796 		set_bit(0, &ctx->check_cq_overflow);
1797 		WRITE_ONCE(ctx->rings->sq_flags,
1798 			   ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1799 
1800 	}
1801 	ocqe->cqe.user_data = user_data;
1802 	ocqe->cqe.res = res;
1803 	ocqe->cqe.flags = cflags;
1804 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1805 	return true;
1806 }
1807 
__io_fill_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1808 static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data,
1809 				 s32 res, u32 cflags)
1810 {
1811 	struct io_uring_cqe *cqe;
1812 
1813 	trace_io_uring_complete(ctx, user_data, res, cflags);
1814 
1815 	/*
1816 	 * If we can't get a cq entry, userspace overflowed the
1817 	 * submission (by quite a lot). Increment the overflow count in
1818 	 * the ring.
1819 	 */
1820 	cqe = io_get_cqe(ctx);
1821 	if (likely(cqe)) {
1822 		WRITE_ONCE(cqe->user_data, user_data);
1823 		WRITE_ONCE(cqe->res, res);
1824 		WRITE_ONCE(cqe->flags, cflags);
1825 		return true;
1826 	}
1827 	return io_cqring_event_overflow(ctx, user_data, res, cflags);
1828 }
1829 
io_fill_cqe_req(struct io_kiocb * req,s32 res,u32 cflags)1830 static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
1831 {
1832 	__io_fill_cqe(req->ctx, req->user_data, res, cflags);
1833 }
1834 
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1835 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
1836 				     s32 res, u32 cflags)
1837 {
1838 	ctx->cq_extra++;
1839 	return __io_fill_cqe(ctx, user_data, res, cflags);
1840 }
1841 
io_req_complete_post(struct io_kiocb * req,s32 res,u32 cflags)1842 static void io_req_complete_post(struct io_kiocb *req, s32 res,
1843 				 u32 cflags)
1844 {
1845 	struct io_ring_ctx *ctx = req->ctx;
1846 
1847 	spin_lock(&ctx->completion_lock);
1848 	__io_fill_cqe(ctx, req->user_data, res, cflags);
1849 	/*
1850 	 * If we're the last reference to this request, add to our locked
1851 	 * free_list cache.
1852 	 */
1853 	if (req_ref_put_and_test(req)) {
1854 		if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1855 			if (req->flags & IO_DISARM_MASK)
1856 				io_disarm_next(req);
1857 			if (req->link) {
1858 				io_req_task_queue(req->link);
1859 				req->link = NULL;
1860 			}
1861 		}
1862 		io_dismantle_req(req);
1863 		io_put_task(req->task, 1);
1864 		list_add(&req->inflight_entry, &ctx->locked_free_list);
1865 		ctx->locked_free_nr++;
1866 	} else {
1867 		if (!percpu_ref_tryget(&ctx->refs))
1868 			req = NULL;
1869 	}
1870 	io_commit_cqring(ctx);
1871 	spin_unlock(&ctx->completion_lock);
1872 
1873 	if (req) {
1874 		io_cqring_ev_posted(ctx);
1875 		percpu_ref_put(&ctx->refs);
1876 	}
1877 }
1878 
io_req_needs_clean(struct io_kiocb * req)1879 static inline bool io_req_needs_clean(struct io_kiocb *req)
1880 {
1881 	return req->flags & IO_REQ_CLEAN_FLAGS;
1882 }
1883 
io_req_complete_state(struct io_kiocb * req,s32 res,u32 cflags)1884 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
1885 					 u32 cflags)
1886 {
1887 	if (io_req_needs_clean(req))
1888 		io_clean_op(req);
1889 	req->result = res;
1890 	req->compl.cflags = cflags;
1891 	req->flags |= REQ_F_COMPLETE_INLINE;
1892 }
1893 
__io_req_complete(struct io_kiocb * req,unsigned issue_flags,s32 res,u32 cflags)1894 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1895 				     s32 res, u32 cflags)
1896 {
1897 	if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1898 		io_req_complete_state(req, res, cflags);
1899 	else
1900 		io_req_complete_post(req, res, cflags);
1901 }
1902 
io_req_complete(struct io_kiocb * req,s32 res)1903 static inline void io_req_complete(struct io_kiocb *req, s32 res)
1904 {
1905 	__io_req_complete(req, 0, res, 0);
1906 }
1907 
io_req_complete_failed(struct io_kiocb * req,s32 res)1908 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
1909 {
1910 	req_set_fail(req);
1911 	io_req_complete_post(req, res, 0);
1912 }
1913 
io_req_complete_fail_submit(struct io_kiocb * req)1914 static void io_req_complete_fail_submit(struct io_kiocb *req)
1915 {
1916 	/*
1917 	 * We don't submit, fail them all, for that replace hardlinks with
1918 	 * normal links. Extra REQ_F_LINK is tolerated.
1919 	 */
1920 	req->flags &= ~REQ_F_HARDLINK;
1921 	req->flags |= REQ_F_LINK;
1922 	io_req_complete_failed(req, req->result);
1923 }
1924 
1925 /*
1926  * Don't initialise the fields below on every allocation, but do that in
1927  * advance and keep them valid across allocations.
1928  */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1929 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1930 {
1931 	req->ctx = ctx;
1932 	req->link = NULL;
1933 	req->async_data = NULL;
1934 	/* not necessary, but safer to zero */
1935 	req->result = 0;
1936 }
1937 
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1938 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1939 					struct io_submit_state *state)
1940 {
1941 	spin_lock(&ctx->completion_lock);
1942 	list_splice_init(&ctx->locked_free_list, &state->free_list);
1943 	ctx->locked_free_nr = 0;
1944 	spin_unlock(&ctx->completion_lock);
1945 }
1946 
1947 /* Returns true IFF there are requests in the cache */
io_flush_cached_reqs(struct io_ring_ctx * ctx)1948 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1949 {
1950 	struct io_submit_state *state = &ctx->submit_state;
1951 	int nr;
1952 
1953 	/*
1954 	 * If we have more than a batch's worth of requests in our IRQ side
1955 	 * locked cache, grab the lock and move them over to our submission
1956 	 * side cache.
1957 	 */
1958 	if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1959 		io_flush_cached_locked_reqs(ctx, state);
1960 
1961 	nr = state->free_reqs;
1962 	while (!list_empty(&state->free_list)) {
1963 		struct io_kiocb *req = list_first_entry(&state->free_list,
1964 					struct io_kiocb, inflight_entry);
1965 
1966 		list_del(&req->inflight_entry);
1967 		state->reqs[nr++] = req;
1968 		if (nr == ARRAY_SIZE(state->reqs))
1969 			break;
1970 	}
1971 
1972 	state->free_reqs = nr;
1973 	return nr != 0;
1974 }
1975 
1976 /*
1977  * A request might get retired back into the request caches even before opcode
1978  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1979  * Because of that, io_alloc_req() should be called only under ->uring_lock
1980  * and with extra caution to not get a request that is still worked on.
1981  */
io_alloc_req(struct io_ring_ctx * ctx)1982 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1983 	__must_hold(&ctx->uring_lock)
1984 {
1985 	struct io_submit_state *state = &ctx->submit_state;
1986 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1987 	int ret, i;
1988 
1989 	BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1990 
1991 	if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1992 		goto got_req;
1993 
1994 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1995 				    state->reqs);
1996 
1997 	/*
1998 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1999 	 * retry single alloc to be on the safe side.
2000 	 */
2001 	if (unlikely(ret <= 0)) {
2002 		state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2003 		if (!state->reqs[0])
2004 			return NULL;
2005 		ret = 1;
2006 	}
2007 
2008 	for (i = 0; i < ret; i++)
2009 		io_preinit_req(state->reqs[i], ctx);
2010 	state->free_reqs = ret;
2011 got_req:
2012 	state->free_reqs--;
2013 	return state->reqs[state->free_reqs];
2014 }
2015 
io_put_file(struct file * file)2016 static inline void io_put_file(struct file *file)
2017 {
2018 	if (file)
2019 		fput(file);
2020 }
2021 
io_dismantle_req(struct io_kiocb * req)2022 static void io_dismantle_req(struct io_kiocb *req)
2023 {
2024 	unsigned int flags = req->flags;
2025 
2026 	if (io_req_needs_clean(req))
2027 		io_clean_op(req);
2028 	if (!(flags & REQ_F_FIXED_FILE))
2029 		io_put_file(req->file);
2030 	if (req->fixed_rsrc_refs)
2031 		percpu_ref_put(req->fixed_rsrc_refs);
2032 	if (req->async_data) {
2033 		kfree(req->async_data);
2034 		req->async_data = NULL;
2035 	}
2036 }
2037 
__io_free_req(struct io_kiocb * req)2038 static void __io_free_req(struct io_kiocb *req)
2039 {
2040 	struct io_ring_ctx *ctx = req->ctx;
2041 
2042 	io_dismantle_req(req);
2043 	io_put_task(req->task, 1);
2044 
2045 	spin_lock(&ctx->completion_lock);
2046 	list_add(&req->inflight_entry, &ctx->locked_free_list);
2047 	ctx->locked_free_nr++;
2048 	spin_unlock(&ctx->completion_lock);
2049 
2050 	percpu_ref_put(&ctx->refs);
2051 }
2052 
io_remove_next_linked(struct io_kiocb * req)2053 static inline void io_remove_next_linked(struct io_kiocb *req)
2054 {
2055 	struct io_kiocb *nxt = req->link;
2056 
2057 	req->link = nxt->link;
2058 	nxt->link = NULL;
2059 }
2060 
io_kill_linked_timeout(struct io_kiocb * req)2061 static bool io_kill_linked_timeout(struct io_kiocb *req)
2062 	__must_hold(&req->ctx->completion_lock)
2063 	__must_hold(&req->ctx->timeout_lock)
2064 {
2065 	struct io_kiocb *link = req->link;
2066 
2067 	if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2068 		struct io_timeout_data *io = link->async_data;
2069 
2070 		io_remove_next_linked(req);
2071 		link->timeout.head = NULL;
2072 		if (hrtimer_try_to_cancel(&io->timer) != -1) {
2073 			list_del(&link->timeout.list);
2074 			io_fill_cqe_req(link, -ECANCELED, 0);
2075 			io_put_req_deferred(link);
2076 			return true;
2077 		}
2078 	}
2079 	return false;
2080 }
2081 
io_fail_links(struct io_kiocb * req)2082 static void io_fail_links(struct io_kiocb *req)
2083 	__must_hold(&req->ctx->completion_lock)
2084 {
2085 	struct io_kiocb *nxt, *link = req->link;
2086 
2087 	req->link = NULL;
2088 	while (link) {
2089 		long res = -ECANCELED;
2090 
2091 		if (link->flags & REQ_F_FAIL)
2092 			res = link->result;
2093 
2094 		nxt = link->link;
2095 		link->link = NULL;
2096 
2097 		trace_io_uring_fail_link(req, link);
2098 		io_fill_cqe_req(link, res, 0);
2099 		io_put_req_deferred(link);
2100 		link = nxt;
2101 	}
2102 }
2103 
io_disarm_next(struct io_kiocb * req)2104 static bool io_disarm_next(struct io_kiocb *req)
2105 	__must_hold(&req->ctx->completion_lock)
2106 {
2107 	bool posted = false;
2108 
2109 	if (req->flags & REQ_F_ARM_LTIMEOUT) {
2110 		struct io_kiocb *link = req->link;
2111 
2112 		req->flags &= ~REQ_F_ARM_LTIMEOUT;
2113 		if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2114 			io_remove_next_linked(req);
2115 			io_fill_cqe_req(link, -ECANCELED, 0);
2116 			io_put_req_deferred(link);
2117 			posted = true;
2118 		}
2119 	} else if (req->flags & REQ_F_LINK_TIMEOUT) {
2120 		struct io_ring_ctx *ctx = req->ctx;
2121 
2122 		spin_lock_irq(&ctx->timeout_lock);
2123 		posted = io_kill_linked_timeout(req);
2124 		spin_unlock_irq(&ctx->timeout_lock);
2125 	}
2126 	if (unlikely((req->flags & REQ_F_FAIL) &&
2127 		     !(req->flags & REQ_F_HARDLINK))) {
2128 		posted |= (req->link != NULL);
2129 		io_fail_links(req);
2130 	}
2131 	return posted;
2132 }
2133 
__io_req_find_next(struct io_kiocb * req)2134 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2135 {
2136 	struct io_kiocb *nxt;
2137 
2138 	/*
2139 	 * If LINK is set, we have dependent requests in this chain. If we
2140 	 * didn't fail this request, queue the first one up, moving any other
2141 	 * dependencies to the next request. In case of failure, fail the rest
2142 	 * of the chain.
2143 	 */
2144 	if (req->flags & IO_DISARM_MASK) {
2145 		struct io_ring_ctx *ctx = req->ctx;
2146 		bool posted;
2147 
2148 		spin_lock(&ctx->completion_lock);
2149 		posted = io_disarm_next(req);
2150 		if (posted)
2151 			io_commit_cqring(req->ctx);
2152 		spin_unlock(&ctx->completion_lock);
2153 		if (posted)
2154 			io_cqring_ev_posted(ctx);
2155 	}
2156 	nxt = req->link;
2157 	req->link = NULL;
2158 	return nxt;
2159 }
2160 
io_req_find_next(struct io_kiocb * req)2161 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2162 {
2163 	if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2164 		return NULL;
2165 	return __io_req_find_next(req);
2166 }
2167 
ctx_flush_and_put(struct io_ring_ctx * ctx,bool * locked)2168 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2169 {
2170 	if (!ctx)
2171 		return;
2172 	if (*locked) {
2173 		if (ctx->submit_state.compl_nr)
2174 			io_submit_flush_completions(ctx);
2175 		mutex_unlock(&ctx->uring_lock);
2176 		*locked = false;
2177 	}
2178 	percpu_ref_put(&ctx->refs);
2179 }
2180 
tctx_task_work(struct callback_head * cb)2181 static void tctx_task_work(struct callback_head *cb)
2182 {
2183 	bool locked = false;
2184 	struct io_ring_ctx *ctx = NULL;
2185 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2186 						  task_work);
2187 
2188 	while (1) {
2189 		struct io_wq_work_node *node;
2190 
2191 		if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2192 			io_submit_flush_completions(ctx);
2193 
2194 		spin_lock_irq(&tctx->task_lock);
2195 		node = tctx->task_list.first;
2196 		INIT_WQ_LIST(&tctx->task_list);
2197 		if (!node)
2198 			tctx->task_running = false;
2199 		spin_unlock_irq(&tctx->task_lock);
2200 		if (!node)
2201 			break;
2202 
2203 		do {
2204 			struct io_wq_work_node *next = node->next;
2205 			struct io_kiocb *req = container_of(node, struct io_kiocb,
2206 							    io_task_work.node);
2207 
2208 			if (req->ctx != ctx) {
2209 				ctx_flush_and_put(ctx, &locked);
2210 				ctx = req->ctx;
2211 				/* if not contended, grab and improve batching */
2212 				locked = mutex_trylock(&ctx->uring_lock);
2213 				percpu_ref_get(&ctx->refs);
2214 			}
2215 			req->io_task_work.func(req, &locked);
2216 			node = next;
2217 			if (unlikely(need_resched())) {
2218 				ctx_flush_and_put(ctx, &locked);
2219 				ctx = NULL;
2220 				cond_resched();
2221 			}
2222 		} while (node);
2223 	}
2224 
2225 	ctx_flush_and_put(ctx, &locked);
2226 
2227 	/* relaxed read is enough as only the task itself sets ->in_idle */
2228 	if (unlikely(atomic_read(&tctx->in_idle)))
2229 		io_uring_drop_tctx_refs(current);
2230 }
2231 
io_req_task_work_add(struct io_kiocb * req)2232 static void io_req_task_work_add(struct io_kiocb *req)
2233 {
2234 	struct task_struct *tsk = req->task;
2235 	struct io_uring_task *tctx = tsk->io_uring;
2236 	enum task_work_notify_mode notify;
2237 	struct io_wq_work_node *node;
2238 	unsigned long flags;
2239 	bool running;
2240 
2241 	WARN_ON_ONCE(!tctx);
2242 
2243 	spin_lock_irqsave(&tctx->task_lock, flags);
2244 	wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2245 	running = tctx->task_running;
2246 	if (!running)
2247 		tctx->task_running = true;
2248 	spin_unlock_irqrestore(&tctx->task_lock, flags);
2249 
2250 	/* task_work already pending, we're done */
2251 	if (running)
2252 		return;
2253 
2254 	/*
2255 	 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2256 	 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2257 	 * processing task_work. There's no reliable way to tell if TWA_RESUME
2258 	 * will do the job.
2259 	 */
2260 	notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2261 	if (!task_work_add(tsk, &tctx->task_work, notify)) {
2262 		wake_up_process(tsk);
2263 		return;
2264 	}
2265 
2266 	spin_lock_irqsave(&tctx->task_lock, flags);
2267 	tctx->task_running = false;
2268 	node = tctx->task_list.first;
2269 	INIT_WQ_LIST(&tctx->task_list);
2270 	spin_unlock_irqrestore(&tctx->task_lock, flags);
2271 
2272 	while (node) {
2273 		req = container_of(node, struct io_kiocb, io_task_work.node);
2274 		node = node->next;
2275 		if (llist_add(&req->io_task_work.fallback_node,
2276 			      &req->ctx->fallback_llist))
2277 			schedule_delayed_work(&req->ctx->fallback_work, 1);
2278 	}
2279 }
2280 
io_req_task_cancel(struct io_kiocb * req,bool * locked)2281 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2282 {
2283 	struct io_ring_ctx *ctx = req->ctx;
2284 
2285 	/* not needed for normal modes, but SQPOLL depends on it */
2286 	io_tw_lock(ctx, locked);
2287 	io_req_complete_failed(req, req->result);
2288 }
2289 
io_req_task_submit(struct io_kiocb * req,bool * locked)2290 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2291 {
2292 	struct io_ring_ctx *ctx = req->ctx;
2293 
2294 	io_tw_lock(ctx, locked);
2295 	/* req->task == current here, checking PF_EXITING is safe */
2296 	if (likely(!(req->task->flags & PF_EXITING)))
2297 		__io_queue_sqe(req);
2298 	else
2299 		io_req_complete_failed(req, -EFAULT);
2300 }
2301 
io_req_task_queue_fail(struct io_kiocb * req,int ret)2302 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2303 {
2304 	req->result = ret;
2305 	req->io_task_work.func = io_req_task_cancel;
2306 	io_req_task_work_add(req);
2307 }
2308 
io_req_task_queue(struct io_kiocb * req)2309 static void io_req_task_queue(struct io_kiocb *req)
2310 {
2311 	req->io_task_work.func = io_req_task_submit;
2312 	io_req_task_work_add(req);
2313 }
2314 
io_req_task_queue_reissue(struct io_kiocb * req)2315 static void io_req_task_queue_reissue(struct io_kiocb *req)
2316 {
2317 	req->io_task_work.func = io_queue_async_work;
2318 	io_req_task_work_add(req);
2319 }
2320 
io_queue_next(struct io_kiocb * req)2321 static inline void io_queue_next(struct io_kiocb *req)
2322 {
2323 	struct io_kiocb *nxt = io_req_find_next(req);
2324 
2325 	if (nxt)
2326 		io_req_task_queue(nxt);
2327 }
2328 
io_free_req(struct io_kiocb * req)2329 static void io_free_req(struct io_kiocb *req)
2330 {
2331 	io_queue_next(req);
2332 	__io_free_req(req);
2333 }
2334 
io_free_req_work(struct io_kiocb * req,bool * locked)2335 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2336 {
2337 	io_free_req(req);
2338 }
2339 
2340 struct req_batch {
2341 	struct task_struct	*task;
2342 	int			task_refs;
2343 	int			ctx_refs;
2344 };
2345 
io_init_req_batch(struct req_batch * rb)2346 static inline void io_init_req_batch(struct req_batch *rb)
2347 {
2348 	rb->task_refs = 0;
2349 	rb->ctx_refs = 0;
2350 	rb->task = NULL;
2351 }
2352 
io_req_free_batch_finish(struct io_ring_ctx * ctx,struct req_batch * rb)2353 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2354 				     struct req_batch *rb)
2355 {
2356 	if (rb->ctx_refs)
2357 		percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2358 	if (rb->task)
2359 		io_put_task(rb->task, rb->task_refs);
2360 }
2361 
io_req_free_batch(struct req_batch * rb,struct io_kiocb * req,struct io_submit_state * state)2362 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2363 			      struct io_submit_state *state)
2364 {
2365 	io_queue_next(req);
2366 	io_dismantle_req(req);
2367 
2368 	if (req->task != rb->task) {
2369 		if (rb->task)
2370 			io_put_task(rb->task, rb->task_refs);
2371 		rb->task = req->task;
2372 		rb->task_refs = 0;
2373 	}
2374 	rb->task_refs++;
2375 	rb->ctx_refs++;
2376 
2377 	if (state->free_reqs != ARRAY_SIZE(state->reqs))
2378 		state->reqs[state->free_reqs++] = req;
2379 	else
2380 		list_add(&req->inflight_entry, &state->free_list);
2381 }
2382 
io_submit_flush_completions(struct io_ring_ctx * ctx)2383 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2384 	__must_hold(&ctx->uring_lock)
2385 {
2386 	struct io_submit_state *state = &ctx->submit_state;
2387 	int i, nr = state->compl_nr;
2388 	struct req_batch rb;
2389 
2390 	spin_lock(&ctx->completion_lock);
2391 	for (i = 0; i < nr; i++) {
2392 		struct io_kiocb *req = state->compl_reqs[i];
2393 
2394 		__io_fill_cqe(ctx, req->user_data, req->result,
2395 			      req->compl.cflags);
2396 	}
2397 	io_commit_cqring(ctx);
2398 	spin_unlock(&ctx->completion_lock);
2399 	io_cqring_ev_posted(ctx);
2400 
2401 	io_init_req_batch(&rb);
2402 	for (i = 0; i < nr; i++) {
2403 		struct io_kiocb *req = state->compl_reqs[i];
2404 
2405 		if (req_ref_put_and_test(req))
2406 			io_req_free_batch(&rb, req, &ctx->submit_state);
2407 	}
2408 
2409 	io_req_free_batch_finish(ctx, &rb);
2410 	state->compl_nr = 0;
2411 }
2412 
2413 /*
2414  * Drop reference to request, return next in chain (if there is one) if this
2415  * was the last reference to this request.
2416  */
io_put_req_find_next(struct io_kiocb * req)2417 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2418 {
2419 	struct io_kiocb *nxt = NULL;
2420 
2421 	if (req_ref_put_and_test(req)) {
2422 		nxt = io_req_find_next(req);
2423 		__io_free_req(req);
2424 	}
2425 	return nxt;
2426 }
2427 
io_put_req(struct io_kiocb * req)2428 static inline void io_put_req(struct io_kiocb *req)
2429 {
2430 	if (req_ref_put_and_test(req))
2431 		io_free_req(req);
2432 }
2433 
io_put_req_deferred(struct io_kiocb * req)2434 static inline void io_put_req_deferred(struct io_kiocb *req)
2435 {
2436 	if (req_ref_put_and_test(req)) {
2437 		req->io_task_work.func = io_free_req_work;
2438 		io_req_task_work_add(req);
2439 	}
2440 }
2441 
io_cqring_events(struct io_ring_ctx * ctx)2442 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2443 {
2444 	/* See comment at the top of this file */
2445 	smp_rmb();
2446 	return __io_cqring_events(ctx);
2447 }
2448 
io_sqring_entries(struct io_ring_ctx * ctx)2449 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2450 {
2451 	struct io_rings *rings = ctx->rings;
2452 
2453 	/* make sure SQ entry isn't read before tail */
2454 	return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2455 }
2456 
io_put_kbuf(struct io_kiocb * req,struct io_buffer * kbuf)2457 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2458 {
2459 	unsigned int cflags;
2460 
2461 	cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2462 	cflags |= IORING_CQE_F_BUFFER;
2463 	req->flags &= ~REQ_F_BUFFER_SELECTED;
2464 	kfree(kbuf);
2465 	return cflags;
2466 }
2467 
io_put_rw_kbuf(struct io_kiocb * req)2468 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2469 {
2470 	struct io_buffer *kbuf;
2471 
2472 	if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2473 		return 0;
2474 	kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2475 	return io_put_kbuf(req, kbuf);
2476 }
2477 
io_run_task_work(void)2478 static inline bool io_run_task_work(void)
2479 {
2480 	/*
2481 	 * PF_IO_WORKER never returns to userspace, so check here if we have
2482 	 * notify work that needs processing.
2483 	 */
2484 	if (current->flags & PF_IO_WORKER &&
2485 	    test_thread_flag(TIF_NOTIFY_RESUME)) {
2486 		__set_current_state(TASK_RUNNING);
2487 		tracehook_notify_resume(NULL);
2488 	}
2489 	if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2490 		__set_current_state(TASK_RUNNING);
2491 		tracehook_notify_signal();
2492 		return true;
2493 	}
2494 
2495 	return false;
2496 }
2497 
2498 /*
2499  * Find and free completed poll iocbs
2500  */
io_iopoll_complete(struct io_ring_ctx * ctx,unsigned int * nr_events,struct list_head * done)2501 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2502 			       struct list_head *done)
2503 {
2504 	struct req_batch rb;
2505 	struct io_kiocb *req;
2506 
2507 	/* order with ->result store in io_complete_rw_iopoll() */
2508 	smp_rmb();
2509 
2510 	io_init_req_batch(&rb);
2511 	while (!list_empty(done)) {
2512 		struct io_uring_cqe *cqe;
2513 		unsigned cflags;
2514 
2515 		req = list_first_entry(done, struct io_kiocb, inflight_entry);
2516 		list_del(&req->inflight_entry);
2517 		cflags = io_put_rw_kbuf(req);
2518 		(*nr_events)++;
2519 
2520 		cqe = io_get_cqe(ctx);
2521 		if (cqe) {
2522 			WRITE_ONCE(cqe->user_data, req->user_data);
2523 			WRITE_ONCE(cqe->res, req->result);
2524 			WRITE_ONCE(cqe->flags, cflags);
2525 		} else {
2526 			spin_lock(&ctx->completion_lock);
2527 			io_cqring_event_overflow(ctx, req->user_data,
2528 							req->result, cflags);
2529 			spin_unlock(&ctx->completion_lock);
2530 		}
2531 
2532 		if (req_ref_put_and_test(req))
2533 			io_req_free_batch(&rb, req, &ctx->submit_state);
2534 	}
2535 
2536 	if (io_commit_needs_flush(ctx)) {
2537 		spin_lock(&ctx->completion_lock);
2538 		__io_commit_cqring_flush(ctx);
2539 		spin_unlock(&ctx->completion_lock);
2540 	}
2541 	__io_commit_cqring(ctx);
2542 	io_cqring_ev_posted_iopoll(ctx);
2543 	io_req_free_batch_finish(ctx, &rb);
2544 }
2545 
io_do_iopoll(struct io_ring_ctx * ctx,unsigned int * nr_events,long min)2546 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2547 			long min)
2548 {
2549 	struct io_kiocb *req, *tmp;
2550 	LIST_HEAD(done);
2551 	bool spin;
2552 
2553 	/*
2554 	 * Only spin for completions if we don't have multiple devices hanging
2555 	 * off our complete list, and we're under the requested amount.
2556 	 */
2557 	spin = !ctx->poll_multi_queue && *nr_events < min;
2558 
2559 	list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2560 		struct kiocb *kiocb = &req->rw.kiocb;
2561 		int ret;
2562 
2563 		/*
2564 		 * Move completed and retryable entries to our local lists.
2565 		 * If we find a request that requires polling, break out
2566 		 * and complete those lists first, if we have entries there.
2567 		 */
2568 		if (READ_ONCE(req->iopoll_completed)) {
2569 			list_move_tail(&req->inflight_entry, &done);
2570 			continue;
2571 		}
2572 		if (!list_empty(&done))
2573 			break;
2574 
2575 		ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2576 		if (unlikely(ret < 0))
2577 			return ret;
2578 		else if (ret)
2579 			spin = false;
2580 
2581 		/* iopoll may have completed current req */
2582 		if (READ_ONCE(req->iopoll_completed))
2583 			list_move_tail(&req->inflight_entry, &done);
2584 	}
2585 
2586 	if (!list_empty(&done))
2587 		io_iopoll_complete(ctx, nr_events, &done);
2588 
2589 	return 0;
2590 }
2591 
2592 /*
2593  * We can't just wait for polled events to come to us, we have to actively
2594  * find and complete them.
2595  */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)2596 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2597 {
2598 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
2599 		return;
2600 
2601 	mutex_lock(&ctx->uring_lock);
2602 	while (!list_empty(&ctx->iopoll_list)) {
2603 		unsigned int nr_events = 0;
2604 
2605 		io_do_iopoll(ctx, &nr_events, 0);
2606 
2607 		/* let it sleep and repeat later if can't complete a request */
2608 		if (nr_events == 0)
2609 			break;
2610 		/*
2611 		 * Ensure we allow local-to-the-cpu processing to take place,
2612 		 * in this case we need to ensure that we reap all events.
2613 		 * Also let task_work, etc. to progress by releasing the mutex
2614 		 */
2615 		if (need_resched()) {
2616 			mutex_unlock(&ctx->uring_lock);
2617 			cond_resched();
2618 			mutex_lock(&ctx->uring_lock);
2619 		}
2620 	}
2621 	mutex_unlock(&ctx->uring_lock);
2622 }
2623 
io_iopoll_check(struct io_ring_ctx * ctx,long min)2624 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2625 {
2626 	unsigned int nr_events = 0;
2627 	int ret = 0;
2628 
2629 	/*
2630 	 * We disallow the app entering submit/complete with polling, but we
2631 	 * still need to lock the ring to prevent racing with polled issue
2632 	 * that got punted to a workqueue.
2633 	 */
2634 	mutex_lock(&ctx->uring_lock);
2635 	/*
2636 	 * Don't enter poll loop if we already have events pending.
2637 	 * If we do, we can potentially be spinning for commands that
2638 	 * already triggered a CQE (eg in error).
2639 	 */
2640 	if (test_bit(0, &ctx->check_cq_overflow))
2641 		__io_cqring_overflow_flush(ctx, false);
2642 	if (io_cqring_events(ctx))
2643 		goto out;
2644 	do {
2645 		/*
2646 		 * If a submit got punted to a workqueue, we can have the
2647 		 * application entering polling for a command before it gets
2648 		 * issued. That app will hold the uring_lock for the duration
2649 		 * of the poll right here, so we need to take a breather every
2650 		 * now and then to ensure that the issue has a chance to add
2651 		 * the poll to the issued list. Otherwise we can spin here
2652 		 * forever, while the workqueue is stuck trying to acquire the
2653 		 * very same mutex.
2654 		 */
2655 		if (list_empty(&ctx->iopoll_list)) {
2656 			u32 tail = ctx->cached_cq_tail;
2657 
2658 			mutex_unlock(&ctx->uring_lock);
2659 			io_run_task_work();
2660 			mutex_lock(&ctx->uring_lock);
2661 
2662 			/* some requests don't go through iopoll_list */
2663 			if (tail != ctx->cached_cq_tail ||
2664 			    list_empty(&ctx->iopoll_list))
2665 				break;
2666 		}
2667 		ret = io_do_iopoll(ctx, &nr_events, min);
2668 
2669 		if (task_sigpending(current)) {
2670 			ret = -EINTR;
2671 			goto out;
2672 		}
2673 	} while (!ret && nr_events < min && !need_resched());
2674 out:
2675 	mutex_unlock(&ctx->uring_lock);
2676 	return ret;
2677 }
2678 
kiocb_end_write(struct io_kiocb * req)2679 static void kiocb_end_write(struct io_kiocb *req)
2680 {
2681 	/*
2682 	 * Tell lockdep we inherited freeze protection from submission
2683 	 * thread.
2684 	 */
2685 	if (req->flags & REQ_F_ISREG) {
2686 		struct super_block *sb = file_inode(req->file)->i_sb;
2687 
2688 		__sb_writers_acquired(sb, SB_FREEZE_WRITE);
2689 		sb_end_write(sb);
2690 	}
2691 }
2692 
2693 #ifdef CONFIG_BLOCK
io_resubmit_prep(struct io_kiocb * req)2694 static bool io_resubmit_prep(struct io_kiocb *req)
2695 {
2696 	struct io_async_rw *rw = req->async_data;
2697 
2698 	if (!rw)
2699 		return !io_req_prep_async(req);
2700 	iov_iter_restore(&rw->iter, &rw->iter_state);
2701 	return true;
2702 }
2703 
io_rw_should_reissue(struct io_kiocb * req)2704 static bool io_rw_should_reissue(struct io_kiocb *req)
2705 {
2706 	umode_t mode = file_inode(req->file)->i_mode;
2707 	struct io_ring_ctx *ctx = req->ctx;
2708 
2709 	if (!S_ISBLK(mode) && !S_ISREG(mode))
2710 		return false;
2711 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2712 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
2713 		return false;
2714 	/*
2715 	 * If ref is dying, we might be running poll reap from the exit work.
2716 	 * Don't attempt to reissue from that path, just let it fail with
2717 	 * -EAGAIN.
2718 	 */
2719 	if (percpu_ref_is_dying(&ctx->refs))
2720 		return false;
2721 	/*
2722 	 * Play it safe and assume not safe to re-import and reissue if we're
2723 	 * not in the original thread group (or in task context).
2724 	 */
2725 	if (!same_thread_group(req->task, current) || !in_task())
2726 		return false;
2727 	return true;
2728 }
2729 #else
io_resubmit_prep(struct io_kiocb * req)2730 static bool io_resubmit_prep(struct io_kiocb *req)
2731 {
2732 	return false;
2733 }
io_rw_should_reissue(struct io_kiocb * req)2734 static bool io_rw_should_reissue(struct io_kiocb *req)
2735 {
2736 	return false;
2737 }
2738 #endif
2739 
2740 /*
2741  * Trigger the notifications after having done some IO, and finish the write
2742  * accounting, if any.
2743  */
io_req_io_end(struct io_kiocb * req)2744 static void io_req_io_end(struct io_kiocb *req)
2745 {
2746 	struct io_rw *rw = &req->rw;
2747 
2748 	if (rw->kiocb.ki_flags & IOCB_WRITE) {
2749 		kiocb_end_write(req);
2750 		fsnotify_modify(req->file);
2751 	} else {
2752 		fsnotify_access(req->file);
2753 	}
2754 }
2755 
__io_complete_rw_common(struct io_kiocb * req,long res)2756 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2757 {
2758 	if (res != req->result) {
2759 		if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2760 		    io_rw_should_reissue(req)) {
2761 			/*
2762 			 * Reissue will start accounting again, finish the
2763 			 * current cycle.
2764 			 */
2765 			io_req_io_end(req);
2766 			req->flags |= REQ_F_REISSUE;
2767 			return true;
2768 		}
2769 		req_set_fail(req);
2770 		req->result = res;
2771 	}
2772 	return false;
2773 }
2774 
io_fixup_rw_res(struct io_kiocb * req,long res)2775 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
2776 {
2777 	struct io_async_rw *io = req->async_data;
2778 
2779 	/* add previously done IO, if any */
2780 	if (io && io->bytes_done > 0) {
2781 		if (res < 0)
2782 			res = io->bytes_done;
2783 		else
2784 			res += io->bytes_done;
2785 	}
2786 	return res;
2787 }
2788 
io_req_task_complete(struct io_kiocb * req,bool * locked)2789 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2790 {
2791 	unsigned int cflags = io_put_rw_kbuf(req);
2792 	int res = req->result;
2793 
2794 	if (*locked) {
2795 		struct io_ring_ctx *ctx = req->ctx;
2796 		struct io_submit_state *state = &ctx->submit_state;
2797 
2798 		io_req_complete_state(req, res, cflags);
2799 		state->compl_reqs[state->compl_nr++] = req;
2800 		if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2801 			io_submit_flush_completions(ctx);
2802 	} else {
2803 		io_req_complete_post(req, res, cflags);
2804 	}
2805 }
2806 
io_req_rw_complete(struct io_kiocb * req,bool * locked)2807 static void io_req_rw_complete(struct io_kiocb *req, bool *locked)
2808 {
2809 	io_req_io_end(req);
2810 	io_req_task_complete(req, locked);
2811 }
2812 
io_complete_rw(struct kiocb * kiocb,long res,long res2)2813 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2814 {
2815 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2816 
2817 	if (__io_complete_rw_common(req, res))
2818 		return;
2819 	req->result = io_fixup_rw_res(req, res);
2820 	req->io_task_work.func = io_req_rw_complete;
2821 	io_req_task_work_add(req);
2822 }
2823 
io_complete_rw_iopoll(struct kiocb * kiocb,long res,long res2)2824 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2825 {
2826 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2827 
2828 	if (kiocb->ki_flags & IOCB_WRITE)
2829 		kiocb_end_write(req);
2830 	if (unlikely(res != req->result)) {
2831 		if (res == -EAGAIN && io_rw_should_reissue(req)) {
2832 			req->flags |= REQ_F_REISSUE;
2833 			return;
2834 		}
2835 	}
2836 
2837 	WRITE_ONCE(req->result, res);
2838 	/* order with io_iopoll_complete() checking ->result */
2839 	smp_wmb();
2840 	WRITE_ONCE(req->iopoll_completed, 1);
2841 }
2842 
2843 /*
2844  * After the iocb has been issued, it's safe to be found on the poll list.
2845  * Adding the kiocb to the list AFTER submission ensures that we don't
2846  * find it from a io_do_iopoll() thread before the issuer is done
2847  * accessing the kiocb cookie.
2848  */
io_iopoll_req_issued(struct io_kiocb * req)2849 static void io_iopoll_req_issued(struct io_kiocb *req)
2850 {
2851 	struct io_ring_ctx *ctx = req->ctx;
2852 	const bool in_async = io_wq_current_is_worker();
2853 
2854 	/* workqueue context doesn't hold uring_lock, grab it now */
2855 	if (unlikely(in_async))
2856 		mutex_lock(&ctx->uring_lock);
2857 
2858 	/*
2859 	 * Track whether we have multiple files in our lists. This will impact
2860 	 * how we do polling eventually, not spinning if we're on potentially
2861 	 * different devices.
2862 	 */
2863 	if (list_empty(&ctx->iopoll_list)) {
2864 		ctx->poll_multi_queue = false;
2865 	} else if (!ctx->poll_multi_queue) {
2866 		struct io_kiocb *list_req;
2867 		unsigned int queue_num0, queue_num1;
2868 
2869 		list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2870 						inflight_entry);
2871 
2872 		if (list_req->file != req->file) {
2873 			ctx->poll_multi_queue = true;
2874 		} else {
2875 			queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2876 			queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2877 			if (queue_num0 != queue_num1)
2878 				ctx->poll_multi_queue = true;
2879 		}
2880 	}
2881 
2882 	/*
2883 	 * For fast devices, IO may have already completed. If it has, add
2884 	 * it to the front so we find it first.
2885 	 */
2886 	if (READ_ONCE(req->iopoll_completed))
2887 		list_add(&req->inflight_entry, &ctx->iopoll_list);
2888 	else
2889 		list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2890 
2891 	if (unlikely(in_async)) {
2892 		/*
2893 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2894 		 * in sq thread task context or in io worker task context. If
2895 		 * current task context is sq thread, we don't need to check
2896 		 * whether should wake up sq thread.
2897 		 */
2898 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2899 		    wq_has_sleeper(&ctx->sq_data->wait))
2900 			wake_up(&ctx->sq_data->wait);
2901 
2902 		mutex_unlock(&ctx->uring_lock);
2903 	}
2904 }
2905 
io_bdev_nowait(struct block_device * bdev)2906 static bool io_bdev_nowait(struct block_device *bdev)
2907 {
2908 	return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2909 }
2910 
2911 /*
2912  * If we tracked the file through the SCM inflight mechanism, we could support
2913  * any file. For now, just ensure that anything potentially problematic is done
2914  * inline.
2915  */
__io_file_supports_nowait(struct file * file,int rw)2916 static bool __io_file_supports_nowait(struct file *file, int rw)
2917 {
2918 	umode_t mode = file_inode(file)->i_mode;
2919 
2920 	if (S_ISBLK(mode)) {
2921 		if (IS_ENABLED(CONFIG_BLOCK) &&
2922 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2923 			return true;
2924 		return false;
2925 	}
2926 	if (S_ISSOCK(mode))
2927 		return true;
2928 	if (S_ISREG(mode)) {
2929 		if (IS_ENABLED(CONFIG_BLOCK) &&
2930 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2931 		    file->f_op != &io_uring_fops)
2932 			return true;
2933 		return false;
2934 	}
2935 
2936 	/* any ->read/write should understand O_NONBLOCK */
2937 	if (file->f_flags & O_NONBLOCK)
2938 		return true;
2939 
2940 	if (!(file->f_mode & FMODE_NOWAIT))
2941 		return false;
2942 
2943 	if (rw == READ)
2944 		return file->f_op->read_iter != NULL;
2945 
2946 	return file->f_op->write_iter != NULL;
2947 }
2948 
io_file_supports_nowait(struct io_kiocb * req,int rw)2949 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2950 {
2951 	if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2952 		return true;
2953 	else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2954 		return true;
2955 
2956 	return __io_file_supports_nowait(req->file, rw);
2957 }
2958 
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int rw)2959 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2960 		      int rw)
2961 {
2962 	struct io_ring_ctx *ctx = req->ctx;
2963 	struct kiocb *kiocb = &req->rw.kiocb;
2964 	struct file *file = req->file;
2965 	unsigned ioprio;
2966 	int ret;
2967 
2968 	if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2969 		req->flags |= REQ_F_ISREG;
2970 
2971 	kiocb->ki_pos = READ_ONCE(sqe->off);
2972 	kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2973 	kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2974 	ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2975 	if (unlikely(ret))
2976 		return ret;
2977 
2978 	/*
2979 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
2980 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2981 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2982 	 */
2983 	if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2984 	    ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2985 		req->flags |= REQ_F_NOWAIT;
2986 
2987 	ioprio = READ_ONCE(sqe->ioprio);
2988 	if (ioprio) {
2989 		ret = ioprio_check_cap(ioprio);
2990 		if (ret)
2991 			return ret;
2992 
2993 		kiocb->ki_ioprio = ioprio;
2994 	} else
2995 		kiocb->ki_ioprio = get_current_ioprio();
2996 
2997 	if (ctx->flags & IORING_SETUP_IOPOLL) {
2998 		if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2999 		    !kiocb->ki_filp->f_op->iopoll)
3000 			return -EOPNOTSUPP;
3001 
3002 		kiocb->ki_flags |= IOCB_HIPRI;
3003 		kiocb->ki_complete = io_complete_rw_iopoll;
3004 		req->iopoll_completed = 0;
3005 	} else {
3006 		if (kiocb->ki_flags & IOCB_HIPRI)
3007 			return -EINVAL;
3008 		kiocb->ki_complete = io_complete_rw;
3009 	}
3010 
3011 	/* used for fixed read/write too - just read unconditionally */
3012 	req->buf_index = READ_ONCE(sqe->buf_index);
3013 	req->imu = NULL;
3014 
3015 	if (req->opcode == IORING_OP_READ_FIXED ||
3016 	    req->opcode == IORING_OP_WRITE_FIXED) {
3017 		struct io_ring_ctx *ctx = req->ctx;
3018 		u16 index;
3019 
3020 		if (unlikely(req->buf_index >= ctx->nr_user_bufs))
3021 			return -EFAULT;
3022 		index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
3023 		req->imu = ctx->user_bufs[index];
3024 		io_req_set_rsrc_node(req);
3025 	}
3026 
3027 	req->rw.addr = READ_ONCE(sqe->addr);
3028 	req->rw.len = READ_ONCE(sqe->len);
3029 	return 0;
3030 }
3031 
io_rw_done(struct kiocb * kiocb,ssize_t ret)3032 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3033 {
3034 	switch (ret) {
3035 	case -EIOCBQUEUED:
3036 		break;
3037 	case -ERESTARTSYS:
3038 	case -ERESTARTNOINTR:
3039 	case -ERESTARTNOHAND:
3040 	case -ERESTART_RESTARTBLOCK:
3041 		/*
3042 		 * We can't just restart the syscall, since previously
3043 		 * submitted sqes may already be in progress. Just fail this
3044 		 * IO with EINTR.
3045 		 */
3046 		ret = -EINTR;
3047 		fallthrough;
3048 	default:
3049 		kiocb->ki_complete(kiocb, ret, 0);
3050 	}
3051 }
3052 
io_kiocb_update_pos(struct io_kiocb * req)3053 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
3054 {
3055 	struct kiocb *kiocb = &req->rw.kiocb;
3056 
3057 	if (kiocb->ki_pos != -1)
3058 		return &kiocb->ki_pos;
3059 
3060 	if (!(req->file->f_mode & FMODE_STREAM)) {
3061 		req->flags |= REQ_F_CUR_POS;
3062 		kiocb->ki_pos = req->file->f_pos;
3063 		return &kiocb->ki_pos;
3064 	}
3065 
3066 	kiocb->ki_pos = 0;
3067 	return NULL;
3068 }
3069 
kiocb_done(struct kiocb * kiocb,ssize_t ret,unsigned int issue_flags)3070 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
3071 		       unsigned int issue_flags)
3072 {
3073 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3074 
3075 	if (req->flags & REQ_F_CUR_POS)
3076 		req->file->f_pos = kiocb->ki_pos;
3077 	if (ret >= 0 && (kiocb->ki_complete == io_complete_rw)) {
3078 		if (!__io_complete_rw_common(req, ret)) {
3079 			/*
3080 			 * Safe to call io_end from here as we're inline
3081 			 * from the submission path.
3082 			 */
3083 			io_req_io_end(req);
3084 			__io_req_complete(req, issue_flags,
3085 					  io_fixup_rw_res(req, ret),
3086 					  io_put_rw_kbuf(req));
3087 		}
3088 	} else {
3089 		io_rw_done(kiocb, ret);
3090 	}
3091 
3092 	if (req->flags & REQ_F_REISSUE) {
3093 		req->flags &= ~REQ_F_REISSUE;
3094 		if (io_resubmit_prep(req)) {
3095 			io_req_task_queue_reissue(req);
3096 		} else {
3097 			unsigned int cflags = io_put_rw_kbuf(req);
3098 			struct io_ring_ctx *ctx = req->ctx;
3099 
3100 			ret = io_fixup_rw_res(req, ret);
3101 			req_set_fail(req);
3102 			if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3103 				mutex_lock(&ctx->uring_lock);
3104 				__io_req_complete(req, issue_flags, ret, cflags);
3105 				mutex_unlock(&ctx->uring_lock);
3106 			} else {
3107 				__io_req_complete(req, issue_flags, ret, cflags);
3108 			}
3109 		}
3110 	}
3111 }
3112 
__io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter,struct io_mapped_ubuf * imu)3113 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3114 			     struct io_mapped_ubuf *imu)
3115 {
3116 	size_t len = req->rw.len;
3117 	u64 buf_end, buf_addr = req->rw.addr;
3118 	size_t offset;
3119 
3120 	if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3121 		return -EFAULT;
3122 	/* not inside the mapped region */
3123 	if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3124 		return -EFAULT;
3125 
3126 	/*
3127 	 * May not be a start of buffer, set size appropriately
3128 	 * and advance us to the beginning.
3129 	 */
3130 	offset = buf_addr - imu->ubuf;
3131 	iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3132 
3133 	if (offset) {
3134 		/*
3135 		 * Don't use iov_iter_advance() here, as it's really slow for
3136 		 * using the latter parts of a big fixed buffer - it iterates
3137 		 * over each segment manually. We can cheat a bit here, because
3138 		 * we know that:
3139 		 *
3140 		 * 1) it's a BVEC iter, we set it up
3141 		 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3142 		 *    first and last bvec
3143 		 *
3144 		 * So just find our index, and adjust the iterator afterwards.
3145 		 * If the offset is within the first bvec (or the whole first
3146 		 * bvec, just use iov_iter_advance(). This makes it easier
3147 		 * since we can just skip the first segment, which may not
3148 		 * be PAGE_SIZE aligned.
3149 		 */
3150 		const struct bio_vec *bvec = imu->bvec;
3151 
3152 		if (offset < bvec->bv_len) {
3153 			iov_iter_advance(iter, offset);
3154 		} else {
3155 			unsigned long seg_skip;
3156 
3157 			/* skip first vec */
3158 			offset -= bvec->bv_len;
3159 			seg_skip = 1 + (offset >> PAGE_SHIFT);
3160 
3161 			iter->bvec = bvec + seg_skip;
3162 			iter->nr_segs -= seg_skip;
3163 			iter->count -= bvec->bv_len + offset;
3164 			iter->iov_offset = offset & ~PAGE_MASK;
3165 		}
3166 	}
3167 
3168 	return 0;
3169 }
3170 
io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter)3171 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3172 {
3173 	if (WARN_ON_ONCE(!req->imu))
3174 		return -EFAULT;
3175 	return __io_import_fixed(req, rw, iter, req->imu);
3176 }
3177 
io_ring_submit_unlock(struct io_ring_ctx * ctx,bool needs_lock)3178 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3179 {
3180 	if (needs_lock)
3181 		mutex_unlock(&ctx->uring_lock);
3182 }
3183 
io_ring_submit_lock(struct io_ring_ctx * ctx,bool needs_lock)3184 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3185 {
3186 	/*
3187 	 * "Normal" inline submissions always hold the uring_lock, since we
3188 	 * grab it from the system call. Same is true for the SQPOLL offload.
3189 	 * The only exception is when we've detached the request and issue it
3190 	 * from an async worker thread, grab the lock for that case.
3191 	 */
3192 	if (needs_lock)
3193 		mutex_lock(&ctx->uring_lock);
3194 }
3195 
io_buffer_select(struct io_kiocb * req,size_t * len,int bgid,struct io_buffer * kbuf,bool needs_lock)3196 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3197 					  int bgid, struct io_buffer *kbuf,
3198 					  bool needs_lock)
3199 {
3200 	struct io_buffer *head;
3201 
3202 	if (req->flags & REQ_F_BUFFER_SELECTED)
3203 		return kbuf;
3204 
3205 	io_ring_submit_lock(req->ctx, needs_lock);
3206 
3207 	lockdep_assert_held(&req->ctx->uring_lock);
3208 
3209 	head = xa_load(&req->ctx->io_buffers, bgid);
3210 	if (head) {
3211 		if (!list_empty(&head->list)) {
3212 			kbuf = list_last_entry(&head->list, struct io_buffer,
3213 							list);
3214 			list_del(&kbuf->list);
3215 		} else {
3216 			kbuf = head;
3217 			xa_erase(&req->ctx->io_buffers, bgid);
3218 		}
3219 		if (*len > kbuf->len)
3220 			*len = kbuf->len;
3221 	} else {
3222 		kbuf = ERR_PTR(-ENOBUFS);
3223 	}
3224 
3225 	io_ring_submit_unlock(req->ctx, needs_lock);
3226 
3227 	return kbuf;
3228 }
3229 
io_rw_buffer_select(struct io_kiocb * req,size_t * len,bool needs_lock)3230 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3231 					bool needs_lock)
3232 {
3233 	struct io_buffer *kbuf;
3234 	u16 bgid;
3235 
3236 	kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3237 	bgid = req->buf_index;
3238 	kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3239 	if (IS_ERR(kbuf))
3240 		return kbuf;
3241 	req->rw.addr = (u64) (unsigned long) kbuf;
3242 	req->flags |= REQ_F_BUFFER_SELECTED;
3243 	return u64_to_user_ptr(kbuf->addr);
3244 }
3245 
3246 #ifdef CONFIG_COMPAT
io_compat_import(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3247 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3248 				bool needs_lock)
3249 {
3250 	struct compat_iovec __user *uiov;
3251 	compat_ssize_t clen;
3252 	void __user *buf;
3253 	ssize_t len;
3254 
3255 	uiov = u64_to_user_ptr(req->rw.addr);
3256 	if (!access_ok(uiov, sizeof(*uiov)))
3257 		return -EFAULT;
3258 	if (__get_user(clen, &uiov->iov_len))
3259 		return -EFAULT;
3260 	if (clen < 0)
3261 		return -EINVAL;
3262 
3263 	len = clen;
3264 	buf = io_rw_buffer_select(req, &len, needs_lock);
3265 	if (IS_ERR(buf))
3266 		return PTR_ERR(buf);
3267 	iov[0].iov_base = buf;
3268 	iov[0].iov_len = (compat_size_t) len;
3269 	return 0;
3270 }
3271 #endif
3272 
__io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3273 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3274 				      bool needs_lock)
3275 {
3276 	struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3277 	void __user *buf;
3278 	ssize_t len;
3279 
3280 	if (copy_from_user(iov, uiov, sizeof(*uiov)))
3281 		return -EFAULT;
3282 
3283 	len = iov[0].iov_len;
3284 	if (len < 0)
3285 		return -EINVAL;
3286 	buf = io_rw_buffer_select(req, &len, needs_lock);
3287 	if (IS_ERR(buf))
3288 		return PTR_ERR(buf);
3289 	iov[0].iov_base = buf;
3290 	iov[0].iov_len = len;
3291 	return 0;
3292 }
3293 
io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3294 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3295 				    bool needs_lock)
3296 {
3297 	if (req->flags & REQ_F_BUFFER_SELECTED) {
3298 		struct io_buffer *kbuf;
3299 
3300 		kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3301 		iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3302 		iov[0].iov_len = kbuf->len;
3303 		return 0;
3304 	}
3305 	if (req->rw.len != 1)
3306 		return -EINVAL;
3307 
3308 #ifdef CONFIG_COMPAT
3309 	if (req->ctx->compat)
3310 		return io_compat_import(req, iov, needs_lock);
3311 #endif
3312 
3313 	return __io_iov_buffer_select(req, iov, needs_lock);
3314 }
3315 
io_import_iovec(int rw,struct io_kiocb * req,struct iovec ** iovec,struct iov_iter * iter,bool needs_lock)3316 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3317 			   struct iov_iter *iter, bool needs_lock)
3318 {
3319 	void __user *buf = u64_to_user_ptr(req->rw.addr);
3320 	size_t sqe_len = req->rw.len;
3321 	u8 opcode = req->opcode;
3322 	ssize_t ret;
3323 
3324 	if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3325 		*iovec = NULL;
3326 		return io_import_fixed(req, rw, iter);
3327 	}
3328 
3329 	/* buffer index only valid with fixed read/write, or buffer select  */
3330 	if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3331 		return -EINVAL;
3332 
3333 	if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3334 		if (req->flags & REQ_F_BUFFER_SELECT) {
3335 			buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3336 			if (IS_ERR(buf))
3337 				return PTR_ERR(buf);
3338 			req->rw.len = sqe_len;
3339 		}
3340 
3341 		ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3342 		*iovec = NULL;
3343 		return ret;
3344 	}
3345 
3346 	if (req->flags & REQ_F_BUFFER_SELECT) {
3347 		ret = io_iov_buffer_select(req, *iovec, needs_lock);
3348 		if (!ret)
3349 			iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3350 		*iovec = NULL;
3351 		return ret;
3352 	}
3353 
3354 	return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3355 			      req->ctx->compat);
3356 }
3357 
io_kiocb_ppos(struct kiocb * kiocb)3358 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3359 {
3360 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3361 }
3362 
3363 /*
3364  * For files that don't have ->read_iter() and ->write_iter(), handle them
3365  * by looping over ->read() or ->write() manually.
3366  */
loop_rw_iter(int rw,struct io_kiocb * req,struct iov_iter * iter)3367 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3368 {
3369 	struct kiocb *kiocb = &req->rw.kiocb;
3370 	struct file *file = req->file;
3371 	ssize_t ret = 0;
3372 	loff_t *ppos;
3373 
3374 	/*
3375 	 * Don't support polled IO through this interface, and we can't
3376 	 * support non-blocking either. For the latter, this just causes
3377 	 * the kiocb to be handled from an async context.
3378 	 */
3379 	if (kiocb->ki_flags & IOCB_HIPRI)
3380 		return -EOPNOTSUPP;
3381 	if (kiocb->ki_flags & IOCB_NOWAIT)
3382 		return -EAGAIN;
3383 
3384 	ppos = io_kiocb_ppos(kiocb);
3385 
3386 	while (iov_iter_count(iter)) {
3387 		struct iovec iovec;
3388 		ssize_t nr;
3389 
3390 		if (!iov_iter_is_bvec(iter)) {
3391 			iovec = iov_iter_iovec(iter);
3392 		} else {
3393 			iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3394 			iovec.iov_len = req->rw.len;
3395 		}
3396 
3397 		if (rw == READ) {
3398 			nr = file->f_op->read(file, iovec.iov_base,
3399 					      iovec.iov_len, ppos);
3400 		} else {
3401 			nr = file->f_op->write(file, iovec.iov_base,
3402 					       iovec.iov_len, ppos);
3403 		}
3404 
3405 		if (nr < 0) {
3406 			if (!ret)
3407 				ret = nr;
3408 			break;
3409 		}
3410 		ret += nr;
3411 		if (!iov_iter_is_bvec(iter)) {
3412 			iov_iter_advance(iter, nr);
3413 		} else {
3414 			req->rw.addr += nr;
3415 			req->rw.len -= nr;
3416 			if (!req->rw.len)
3417 				break;
3418 		}
3419 		if (nr != iovec.iov_len)
3420 			break;
3421 	}
3422 
3423 	return ret;
3424 }
3425 
io_req_map_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter)3426 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3427 			  const struct iovec *fast_iov, struct iov_iter *iter)
3428 {
3429 	struct io_async_rw *rw = req->async_data;
3430 
3431 	memcpy(&rw->iter, iter, sizeof(*iter));
3432 	rw->free_iovec = iovec;
3433 	rw->bytes_done = 0;
3434 	/* can only be fixed buffers, no need to do anything */
3435 	if (iov_iter_is_bvec(iter))
3436 		return;
3437 	if (!iovec) {
3438 		unsigned iov_off = 0;
3439 
3440 		rw->iter.iov = rw->fast_iov;
3441 		if (iter->iov != fast_iov) {
3442 			iov_off = iter->iov - fast_iov;
3443 			rw->iter.iov += iov_off;
3444 		}
3445 		if (rw->fast_iov != fast_iov)
3446 			memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3447 			       sizeof(struct iovec) * iter->nr_segs);
3448 	} else {
3449 		req->flags |= REQ_F_NEED_CLEANUP;
3450 	}
3451 }
3452 
io_alloc_async_data(struct io_kiocb * req)3453 static inline int io_alloc_async_data(struct io_kiocb *req)
3454 {
3455 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3456 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3457 	return req->async_data == NULL;
3458 }
3459 
io_setup_async_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter,bool force)3460 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3461 			     const struct iovec *fast_iov,
3462 			     struct iov_iter *iter, bool force)
3463 {
3464 	if (!force && !io_op_defs[req->opcode].needs_async_setup)
3465 		return 0;
3466 	if (!req->async_data) {
3467 		struct io_async_rw *iorw;
3468 
3469 		if (io_alloc_async_data(req)) {
3470 			kfree(iovec);
3471 			return -ENOMEM;
3472 		}
3473 
3474 		io_req_map_rw(req, iovec, fast_iov, iter);
3475 		iorw = req->async_data;
3476 		/* we've copied and mapped the iter, ensure state is saved */
3477 		iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3478 	}
3479 	return 0;
3480 }
3481 
io_rw_prep_async(struct io_kiocb * req,int rw)3482 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3483 {
3484 	struct io_async_rw *iorw = req->async_data;
3485 	struct iovec *iov = iorw->fast_iov;
3486 	int ret;
3487 
3488 	ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3489 	if (unlikely(ret < 0))
3490 		return ret;
3491 
3492 	iorw->bytes_done = 0;
3493 	iorw->free_iovec = iov;
3494 	if (iov)
3495 		req->flags |= REQ_F_NEED_CLEANUP;
3496 	iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3497 	return 0;
3498 }
3499 
io_read_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3500 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3501 {
3502 	if (unlikely(!(req->file->f_mode & FMODE_READ)))
3503 		return -EBADF;
3504 	return io_prep_rw(req, sqe, READ);
3505 }
3506 
3507 /*
3508  * This is our waitqueue callback handler, registered through lock_page_async()
3509  * when we initially tried to do the IO with the iocb armed our waitqueue.
3510  * This gets called when the page is unlocked, and we generally expect that to
3511  * happen when the page IO is completed and the page is now uptodate. This will
3512  * queue a task_work based retry of the operation, attempting to copy the data
3513  * again. If the latter fails because the page was NOT uptodate, then we will
3514  * do a thread based blocking retry of the operation. That's the unexpected
3515  * slow path.
3516  */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)3517 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3518 			     int sync, void *arg)
3519 {
3520 	struct wait_page_queue *wpq;
3521 	struct io_kiocb *req = wait->private;
3522 	struct wait_page_key *key = arg;
3523 
3524 	wpq = container_of(wait, struct wait_page_queue, wait);
3525 
3526 	if (!wake_page_match(wpq, key))
3527 		return 0;
3528 
3529 	req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3530 	list_del_init(&wait->entry);
3531 	io_req_task_queue(req);
3532 	return 1;
3533 }
3534 
3535 /*
3536  * This controls whether a given IO request should be armed for async page
3537  * based retry. If we return false here, the request is handed to the async
3538  * worker threads for retry. If we're doing buffered reads on a regular file,
3539  * we prepare a private wait_page_queue entry and retry the operation. This
3540  * will either succeed because the page is now uptodate and unlocked, or it
3541  * will register a callback when the page is unlocked at IO completion. Through
3542  * that callback, io_uring uses task_work to setup a retry of the operation.
3543  * That retry will attempt the buffered read again. The retry will generally
3544  * succeed, or in rare cases where it fails, we then fall back to using the
3545  * async worker threads for a blocking retry.
3546  */
io_rw_should_retry(struct io_kiocb * req)3547 static bool io_rw_should_retry(struct io_kiocb *req)
3548 {
3549 	struct io_async_rw *rw = req->async_data;
3550 	struct wait_page_queue *wait = &rw->wpq;
3551 	struct kiocb *kiocb = &req->rw.kiocb;
3552 
3553 	/* never retry for NOWAIT, we just complete with -EAGAIN */
3554 	if (req->flags & REQ_F_NOWAIT)
3555 		return false;
3556 
3557 	/* Only for buffered IO */
3558 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3559 		return false;
3560 
3561 	/*
3562 	 * just use poll if we can, and don't attempt if the fs doesn't
3563 	 * support callback based unlocks
3564 	 */
3565 	if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3566 		return false;
3567 
3568 	wait->wait.func = io_async_buf_func;
3569 	wait->wait.private = req;
3570 	wait->wait.flags = 0;
3571 	INIT_LIST_HEAD(&wait->wait.entry);
3572 	kiocb->ki_flags |= IOCB_WAITQ;
3573 	kiocb->ki_flags &= ~IOCB_NOWAIT;
3574 	kiocb->ki_waitq = wait;
3575 	return true;
3576 }
3577 
io_iter_do_read(struct io_kiocb * req,struct iov_iter * iter)3578 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3579 {
3580 	if (req->file->f_op->read_iter)
3581 		return call_read_iter(req->file, &req->rw.kiocb, iter);
3582 	else if (req->file->f_op->read)
3583 		return loop_rw_iter(READ, req, iter);
3584 	else
3585 		return -EINVAL;
3586 }
3587 
need_read_all(struct io_kiocb * req)3588 static bool need_read_all(struct io_kiocb *req)
3589 {
3590 	return req->flags & REQ_F_ISREG ||
3591 		S_ISBLK(file_inode(req->file)->i_mode);
3592 }
3593 
io_read(struct io_kiocb * req,unsigned int issue_flags)3594 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3595 {
3596 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3597 	struct kiocb *kiocb = &req->rw.kiocb;
3598 	struct iov_iter __iter, *iter = &__iter;
3599 	struct io_async_rw *rw = req->async_data;
3600 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3601 	struct iov_iter_state __state, *state;
3602 	ssize_t ret, ret2;
3603 	loff_t *ppos;
3604 
3605 	if (rw) {
3606 		iter = &rw->iter;
3607 		state = &rw->iter_state;
3608 		/*
3609 		 * We come here from an earlier attempt, restore our state to
3610 		 * match in case it doesn't. It's cheap enough that we don't
3611 		 * need to make this conditional.
3612 		 */
3613 		iov_iter_restore(iter, state);
3614 		iovec = NULL;
3615 	} else {
3616 		ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3617 		if (ret < 0)
3618 			return ret;
3619 		state = &__state;
3620 		iov_iter_save_state(iter, state);
3621 	}
3622 	req->result = iov_iter_count(iter);
3623 
3624 	/* Ensure we clear previously set non-block flag */
3625 	if (!force_nonblock)
3626 		kiocb->ki_flags &= ~IOCB_NOWAIT;
3627 	else
3628 		kiocb->ki_flags |= IOCB_NOWAIT;
3629 
3630 	/* If the file doesn't support async, just async punt */
3631 	if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3632 		ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3633 		return ret ?: -EAGAIN;
3634 	}
3635 
3636 	ppos = io_kiocb_update_pos(req);
3637 
3638 	ret = rw_verify_area(READ, req->file, ppos, req->result);
3639 	if (unlikely(ret)) {
3640 		kfree(iovec);
3641 		return ret;
3642 	}
3643 
3644 	ret = io_iter_do_read(req, iter);
3645 
3646 	if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3647 		req->flags &= ~REQ_F_REISSUE;
3648 		/* IOPOLL retry should happen for io-wq threads */
3649 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3650 			goto done;
3651 		/* no retry on NONBLOCK nor RWF_NOWAIT */
3652 		if (req->flags & REQ_F_NOWAIT)
3653 			goto done;
3654 		ret = 0;
3655 	} else if (ret == -EIOCBQUEUED) {
3656 		goto out_free;
3657 	} else if (ret <= 0 || ret == req->result || !force_nonblock ||
3658 		   (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3659 		/* read all, failed, already did sync or don't want to retry */
3660 		goto done;
3661 	}
3662 
3663 	/*
3664 	 * Don't depend on the iter state matching what was consumed, or being
3665 	 * untouched in case of error. Restore it and we'll advance it
3666 	 * manually if we need to.
3667 	 */
3668 	iov_iter_restore(iter, state);
3669 
3670 	ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3671 	if (ret2)
3672 		return ret2;
3673 
3674 	iovec = NULL;
3675 	rw = req->async_data;
3676 	/*
3677 	 * Now use our persistent iterator and state, if we aren't already.
3678 	 * We've restored and mapped the iter to match.
3679 	 */
3680 	if (iter != &rw->iter) {
3681 		iter = &rw->iter;
3682 		state = &rw->iter_state;
3683 	}
3684 
3685 	do {
3686 		/*
3687 		 * We end up here because of a partial read, either from
3688 		 * above or inside this loop. Advance the iter by the bytes
3689 		 * that were consumed.
3690 		 */
3691 		iov_iter_advance(iter, ret);
3692 		if (!iov_iter_count(iter))
3693 			break;
3694 		rw->bytes_done += ret;
3695 		iov_iter_save_state(iter, state);
3696 
3697 		/* if we can retry, do so with the callbacks armed */
3698 		if (!io_rw_should_retry(req)) {
3699 			kiocb->ki_flags &= ~IOCB_WAITQ;
3700 			return -EAGAIN;
3701 		}
3702 
3703 		req->result = iov_iter_count(iter);
3704 		/*
3705 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3706 		 * we get -EIOCBQUEUED, then we'll get a notification when the
3707 		 * desired page gets unlocked. We can also get a partial read
3708 		 * here, and if we do, then just retry at the new offset.
3709 		 */
3710 		ret = io_iter_do_read(req, iter);
3711 		if (ret == -EIOCBQUEUED)
3712 			return 0;
3713 		/* we got some bytes, but not all. retry. */
3714 		kiocb->ki_flags &= ~IOCB_WAITQ;
3715 		iov_iter_restore(iter, state);
3716 	} while (ret > 0);
3717 done:
3718 	kiocb_done(kiocb, ret, issue_flags);
3719 out_free:
3720 	/* it's faster to check here then delegate to kfree */
3721 	if (iovec)
3722 		kfree(iovec);
3723 	return 0;
3724 }
3725 
io_write_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3726 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3727 {
3728 	if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3729 		return -EBADF;
3730 	return io_prep_rw(req, sqe, WRITE);
3731 }
3732 
io_write(struct io_kiocb * req,unsigned int issue_flags)3733 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3734 {
3735 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3736 	struct kiocb *kiocb = &req->rw.kiocb;
3737 	struct iov_iter __iter, *iter = &__iter;
3738 	struct io_async_rw *rw = req->async_data;
3739 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3740 	struct iov_iter_state __state, *state;
3741 	ssize_t ret, ret2;
3742 	loff_t *ppos;
3743 
3744 	if (rw) {
3745 		iter = &rw->iter;
3746 		state = &rw->iter_state;
3747 		iov_iter_restore(iter, state);
3748 		iovec = NULL;
3749 	} else {
3750 		ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3751 		if (ret < 0)
3752 			return ret;
3753 		state = &__state;
3754 		iov_iter_save_state(iter, state);
3755 	}
3756 	req->result = iov_iter_count(iter);
3757 
3758 	/* Ensure we clear previously set non-block flag */
3759 	if (!force_nonblock)
3760 		kiocb->ki_flags &= ~IOCB_NOWAIT;
3761 	else
3762 		kiocb->ki_flags |= IOCB_NOWAIT;
3763 
3764 	/* If the file doesn't support async, just async punt */
3765 	if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3766 		goto copy_iov;
3767 
3768 	/* file path doesn't support NOWAIT for non-direct_IO */
3769 	if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3770 	    (req->flags & REQ_F_ISREG))
3771 		goto copy_iov;
3772 
3773 	ppos = io_kiocb_update_pos(req);
3774 
3775 	ret = rw_verify_area(WRITE, req->file, ppos, req->result);
3776 	if (unlikely(ret))
3777 		goto out_free;
3778 
3779 	/*
3780 	 * Open-code file_start_write here to grab freeze protection,
3781 	 * which will be released by another thread in
3782 	 * io_complete_rw().  Fool lockdep by telling it the lock got
3783 	 * released so that it doesn't complain about the held lock when
3784 	 * we return to userspace.
3785 	 */
3786 	if (req->flags & REQ_F_ISREG) {
3787 		sb_start_write(file_inode(req->file)->i_sb);
3788 		__sb_writers_release(file_inode(req->file)->i_sb,
3789 					SB_FREEZE_WRITE);
3790 	}
3791 	kiocb->ki_flags |= IOCB_WRITE;
3792 
3793 	if (req->file->f_op->write_iter)
3794 		ret2 = call_write_iter(req->file, kiocb, iter);
3795 	else if (req->file->f_op->write)
3796 		ret2 = loop_rw_iter(WRITE, req, iter);
3797 	else
3798 		ret2 = -EINVAL;
3799 
3800 	if (req->flags & REQ_F_REISSUE) {
3801 		req->flags &= ~REQ_F_REISSUE;
3802 		ret2 = -EAGAIN;
3803 	}
3804 
3805 	/*
3806 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3807 	 * retry them without IOCB_NOWAIT.
3808 	 */
3809 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3810 		ret2 = -EAGAIN;
3811 	/* no retry on NONBLOCK nor RWF_NOWAIT */
3812 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3813 		goto done;
3814 	if (!force_nonblock || ret2 != -EAGAIN) {
3815 		/* IOPOLL retry should happen for io-wq threads */
3816 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3817 			goto copy_iov;
3818 done:
3819 		kiocb_done(kiocb, ret2, issue_flags);
3820 	} else {
3821 copy_iov:
3822 		iov_iter_restore(iter, state);
3823 		ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3824 		if (!ret) {
3825 			if (kiocb->ki_flags & IOCB_WRITE)
3826 				kiocb_end_write(req);
3827 			return -EAGAIN;
3828 		}
3829 		return ret;
3830 	}
3831 out_free:
3832 	/* it's reportedly faster than delegating the null check to kfree() */
3833 	if (iovec)
3834 		kfree(iovec);
3835 	return ret;
3836 }
3837 
io_renameat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3838 static int io_renameat_prep(struct io_kiocb *req,
3839 			    const struct io_uring_sqe *sqe)
3840 {
3841 	struct io_rename *ren = &req->rename;
3842 	const char __user *oldf, *newf;
3843 
3844 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3845 		return -EINVAL;
3846 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3847 		return -EINVAL;
3848 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3849 		return -EBADF;
3850 
3851 	ren->old_dfd = READ_ONCE(sqe->fd);
3852 	oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3853 	newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3854 	ren->new_dfd = READ_ONCE(sqe->len);
3855 	ren->flags = READ_ONCE(sqe->rename_flags);
3856 
3857 	ren->oldpath = getname(oldf);
3858 	if (IS_ERR(ren->oldpath))
3859 		return PTR_ERR(ren->oldpath);
3860 
3861 	ren->newpath = getname(newf);
3862 	if (IS_ERR(ren->newpath)) {
3863 		putname(ren->oldpath);
3864 		return PTR_ERR(ren->newpath);
3865 	}
3866 
3867 	req->flags |= REQ_F_NEED_CLEANUP;
3868 	return 0;
3869 }
3870 
io_renameat(struct io_kiocb * req,unsigned int issue_flags)3871 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3872 {
3873 	struct io_rename *ren = &req->rename;
3874 	int ret;
3875 
3876 	if (issue_flags & IO_URING_F_NONBLOCK)
3877 		return -EAGAIN;
3878 
3879 	ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3880 				ren->newpath, ren->flags);
3881 
3882 	req->flags &= ~REQ_F_NEED_CLEANUP;
3883 	if (ret < 0)
3884 		req_set_fail(req);
3885 	io_req_complete(req, ret);
3886 	return 0;
3887 }
3888 
io_unlinkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3889 static int io_unlinkat_prep(struct io_kiocb *req,
3890 			    const struct io_uring_sqe *sqe)
3891 {
3892 	struct io_unlink *un = &req->unlink;
3893 	const char __user *fname;
3894 
3895 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3896 		return -EINVAL;
3897 	if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3898 	    sqe->splice_fd_in)
3899 		return -EINVAL;
3900 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3901 		return -EBADF;
3902 
3903 	un->dfd = READ_ONCE(sqe->fd);
3904 
3905 	un->flags = READ_ONCE(sqe->unlink_flags);
3906 	if (un->flags & ~AT_REMOVEDIR)
3907 		return -EINVAL;
3908 
3909 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3910 	un->filename = getname(fname);
3911 	if (IS_ERR(un->filename))
3912 		return PTR_ERR(un->filename);
3913 
3914 	req->flags |= REQ_F_NEED_CLEANUP;
3915 	return 0;
3916 }
3917 
io_unlinkat(struct io_kiocb * req,unsigned int issue_flags)3918 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3919 {
3920 	struct io_unlink *un = &req->unlink;
3921 	int ret;
3922 
3923 	if (issue_flags & IO_URING_F_NONBLOCK)
3924 		return -EAGAIN;
3925 
3926 	if (un->flags & AT_REMOVEDIR)
3927 		ret = do_rmdir(un->dfd, un->filename);
3928 	else
3929 		ret = do_unlinkat(un->dfd, un->filename);
3930 
3931 	req->flags &= ~REQ_F_NEED_CLEANUP;
3932 	if (ret < 0)
3933 		req_set_fail(req);
3934 	io_req_complete(req, ret);
3935 	return 0;
3936 }
3937 
io_shutdown_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3938 static int io_shutdown_prep(struct io_kiocb *req,
3939 			    const struct io_uring_sqe *sqe)
3940 {
3941 #if defined(CONFIG_NET)
3942 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3943 		return -EINVAL;
3944 	if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3945 		     sqe->buf_index || sqe->splice_fd_in))
3946 		return -EINVAL;
3947 
3948 	req->shutdown.how = READ_ONCE(sqe->len);
3949 	return 0;
3950 #else
3951 	return -EOPNOTSUPP;
3952 #endif
3953 }
3954 
io_shutdown(struct io_kiocb * req,unsigned int issue_flags)3955 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3956 {
3957 #if defined(CONFIG_NET)
3958 	struct socket *sock;
3959 	int ret;
3960 
3961 	if (issue_flags & IO_URING_F_NONBLOCK)
3962 		return -EAGAIN;
3963 
3964 	sock = sock_from_file(req->file, &ret);
3965 	if (unlikely(!sock))
3966 		return ret;
3967 
3968 	ret = __sys_shutdown_sock(sock, req->shutdown.how);
3969 	if (ret < 0)
3970 		req_set_fail(req);
3971 	io_req_complete(req, ret);
3972 	return 0;
3973 #else
3974 	return -EOPNOTSUPP;
3975 #endif
3976 }
3977 
__io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3978 static int __io_splice_prep(struct io_kiocb *req,
3979 			    const struct io_uring_sqe *sqe)
3980 {
3981 	struct io_splice *sp = &req->splice;
3982 	unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3983 
3984 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3985 		return -EINVAL;
3986 
3987 	sp->len = READ_ONCE(sqe->len);
3988 	sp->flags = READ_ONCE(sqe->splice_flags);
3989 	if (unlikely(sp->flags & ~valid_flags))
3990 		return -EINVAL;
3991 	sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
3992 	return 0;
3993 }
3994 
io_tee_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3995 static int io_tee_prep(struct io_kiocb *req,
3996 		       const struct io_uring_sqe *sqe)
3997 {
3998 	if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3999 		return -EINVAL;
4000 	return __io_splice_prep(req, sqe);
4001 }
4002 
io_tee(struct io_kiocb * req,unsigned int issue_flags)4003 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4004 {
4005 	struct io_splice *sp = &req->splice;
4006 	struct file *out = sp->file_out;
4007 	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4008 	struct file *in;
4009 	long ret = 0;
4010 
4011 	if (issue_flags & IO_URING_F_NONBLOCK)
4012 		return -EAGAIN;
4013 
4014 	in = io_file_get(req->ctx, req, sp->splice_fd_in,
4015 			 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
4016 	if (!in) {
4017 		ret = -EBADF;
4018 		goto done;
4019 	}
4020 
4021 	if (sp->len)
4022 		ret = do_tee(in, out, sp->len, flags);
4023 
4024 	if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4025 		io_put_file(in);
4026 done:
4027 	if (ret != sp->len)
4028 		req_set_fail(req);
4029 	io_req_complete(req, ret);
4030 	return 0;
4031 }
4032 
io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4033 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4034 {
4035 	struct io_splice *sp = &req->splice;
4036 
4037 	sp->off_in = READ_ONCE(sqe->splice_off_in);
4038 	sp->off_out = READ_ONCE(sqe->off);
4039 	return __io_splice_prep(req, sqe);
4040 }
4041 
io_splice(struct io_kiocb * req,unsigned int issue_flags)4042 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4043 {
4044 	struct io_splice *sp = &req->splice;
4045 	struct file *out = sp->file_out;
4046 	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4047 	loff_t *poff_in, *poff_out;
4048 	struct file *in;
4049 	long ret = 0;
4050 
4051 	if (issue_flags & IO_URING_F_NONBLOCK)
4052 		return -EAGAIN;
4053 
4054 	in = io_file_get(req->ctx, req, sp->splice_fd_in,
4055 			 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
4056 	if (!in) {
4057 		ret = -EBADF;
4058 		goto done;
4059 	}
4060 
4061 	poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4062 	poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4063 
4064 	if (sp->len)
4065 		ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4066 
4067 	if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4068 		io_put_file(in);
4069 done:
4070 	if (ret != sp->len)
4071 		req_set_fail(req);
4072 	io_req_complete(req, ret);
4073 	return 0;
4074 }
4075 
4076 /*
4077  * IORING_OP_NOP just posts a completion event, nothing else.
4078  */
io_nop(struct io_kiocb * req,unsigned int issue_flags)4079 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4080 {
4081 	struct io_ring_ctx *ctx = req->ctx;
4082 
4083 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4084 		return -EINVAL;
4085 
4086 	__io_req_complete(req, issue_flags, 0, 0);
4087 	return 0;
4088 }
4089 
io_fsync_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4090 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4091 {
4092 	struct io_ring_ctx *ctx = req->ctx;
4093 
4094 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4095 		return -EINVAL;
4096 	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4097 		     sqe->splice_fd_in))
4098 		return -EINVAL;
4099 
4100 	req->sync.flags = READ_ONCE(sqe->fsync_flags);
4101 	if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4102 		return -EINVAL;
4103 
4104 	req->sync.off = READ_ONCE(sqe->off);
4105 	req->sync.len = READ_ONCE(sqe->len);
4106 	return 0;
4107 }
4108 
io_fsync(struct io_kiocb * req,unsigned int issue_flags)4109 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4110 {
4111 	loff_t end = req->sync.off + req->sync.len;
4112 	int ret;
4113 
4114 	/* fsync always requires a blocking context */
4115 	if (issue_flags & IO_URING_F_NONBLOCK)
4116 		return -EAGAIN;
4117 
4118 	ret = vfs_fsync_range(req->file, req->sync.off,
4119 				end > 0 ? end : LLONG_MAX,
4120 				req->sync.flags & IORING_FSYNC_DATASYNC);
4121 	if (ret < 0)
4122 		req_set_fail(req);
4123 	io_req_complete(req, ret);
4124 	return 0;
4125 }
4126 
io_fallocate_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4127 static int io_fallocate_prep(struct io_kiocb *req,
4128 			     const struct io_uring_sqe *sqe)
4129 {
4130 	if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4131 	    sqe->splice_fd_in)
4132 		return -EINVAL;
4133 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4134 		return -EINVAL;
4135 
4136 	req->sync.off = READ_ONCE(sqe->off);
4137 	req->sync.len = READ_ONCE(sqe->addr);
4138 	req->sync.mode = READ_ONCE(sqe->len);
4139 	return 0;
4140 }
4141 
io_fallocate(struct io_kiocb * req,unsigned int issue_flags)4142 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4143 {
4144 	int ret;
4145 
4146 	/* fallocate always requiring blocking context */
4147 	if (issue_flags & IO_URING_F_NONBLOCK)
4148 		return -EAGAIN;
4149 	ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4150 				req->sync.len);
4151 	if (ret < 0)
4152 		req_set_fail(req);
4153 	else
4154 		fsnotify_modify(req->file);
4155 	io_req_complete(req, ret);
4156 	return 0;
4157 }
4158 
__io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4159 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4160 {
4161 	const char __user *fname;
4162 	int ret;
4163 
4164 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4165 		return -EINVAL;
4166 	if (unlikely(sqe->ioprio || sqe->buf_index))
4167 		return -EINVAL;
4168 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4169 		return -EBADF;
4170 
4171 	/* open.how should be already initialised */
4172 	if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4173 		req->open.how.flags |= O_LARGEFILE;
4174 
4175 	req->open.dfd = READ_ONCE(sqe->fd);
4176 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4177 	req->open.filename = getname(fname);
4178 	if (IS_ERR(req->open.filename)) {
4179 		ret = PTR_ERR(req->open.filename);
4180 		req->open.filename = NULL;
4181 		return ret;
4182 	}
4183 
4184 	req->open.file_slot = READ_ONCE(sqe->file_index);
4185 	if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4186 		return -EINVAL;
4187 
4188 	req->open.nofile = rlimit(RLIMIT_NOFILE);
4189 	req->flags |= REQ_F_NEED_CLEANUP;
4190 	return 0;
4191 }
4192 
io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4193 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4194 {
4195 	u64 mode = READ_ONCE(sqe->len);
4196 	u64 flags = READ_ONCE(sqe->open_flags);
4197 
4198 	req->open.how = build_open_how(flags, mode);
4199 	return __io_openat_prep(req, sqe);
4200 }
4201 
io_openat2_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4202 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4203 {
4204 	struct open_how __user *how;
4205 	size_t len;
4206 	int ret;
4207 
4208 	how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4209 	len = READ_ONCE(sqe->len);
4210 	if (len < OPEN_HOW_SIZE_VER0)
4211 		return -EINVAL;
4212 
4213 	ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4214 					len);
4215 	if (ret)
4216 		return ret;
4217 
4218 	return __io_openat_prep(req, sqe);
4219 }
4220 
io_openat2(struct io_kiocb * req,unsigned int issue_flags)4221 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4222 {
4223 	struct open_flags op;
4224 	struct file *file;
4225 	bool resolve_nonblock, nonblock_set;
4226 	bool fixed = !!req->open.file_slot;
4227 	int ret;
4228 
4229 	ret = build_open_flags(&req->open.how, &op);
4230 	if (ret)
4231 		goto err;
4232 	nonblock_set = op.open_flag & O_NONBLOCK;
4233 	resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4234 	if (issue_flags & IO_URING_F_NONBLOCK) {
4235 		/*
4236 		 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4237 		 * it'll always -EAGAIN. Note that we test for __O_TMPFILE
4238 		 * because O_TMPFILE includes O_DIRECTORY, which isn't a flag
4239 		 * we need to force async for.
4240 		 */
4241 		if (req->open.how.flags & (O_TRUNC | O_CREAT | __O_TMPFILE))
4242 			return -EAGAIN;
4243 		op.lookup_flags |= LOOKUP_CACHED;
4244 		op.open_flag |= O_NONBLOCK;
4245 	}
4246 
4247 	if (!fixed) {
4248 		ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4249 		if (ret < 0)
4250 			goto err;
4251 	}
4252 
4253 	file = do_filp_open(req->open.dfd, req->open.filename, &op);
4254 	if (IS_ERR(file)) {
4255 		/*
4256 		 * We could hang on to this 'fd' on retrying, but seems like
4257 		 * marginal gain for something that is now known to be a slower
4258 		 * path. So just put it, and we'll get a new one when we retry.
4259 		 */
4260 		if (!fixed)
4261 			put_unused_fd(ret);
4262 
4263 		ret = PTR_ERR(file);
4264 		/* only retry if RESOLVE_CACHED wasn't already set by application */
4265 		if (ret == -EAGAIN &&
4266 		    (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4267 			return -EAGAIN;
4268 		goto err;
4269 	}
4270 
4271 	if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4272 		file->f_flags &= ~O_NONBLOCK;
4273 	fsnotify_open(file);
4274 
4275 	if (!fixed)
4276 		fd_install(ret, file);
4277 	else
4278 		ret = io_install_fixed_file(req, file, issue_flags,
4279 					    req->open.file_slot - 1);
4280 err:
4281 	putname(req->open.filename);
4282 	req->flags &= ~REQ_F_NEED_CLEANUP;
4283 	if (ret < 0)
4284 		req_set_fail(req);
4285 	__io_req_complete(req, issue_flags, ret, 0);
4286 	return 0;
4287 }
4288 
io_openat(struct io_kiocb * req,unsigned int issue_flags)4289 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4290 {
4291 	return io_openat2(req, issue_flags);
4292 }
4293 
io_remove_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4294 static int io_remove_buffers_prep(struct io_kiocb *req,
4295 				  const struct io_uring_sqe *sqe)
4296 {
4297 	struct io_provide_buf *p = &req->pbuf;
4298 	u64 tmp;
4299 
4300 	if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4301 	    sqe->splice_fd_in)
4302 		return -EINVAL;
4303 
4304 	tmp = READ_ONCE(sqe->fd);
4305 	if (!tmp || tmp > USHRT_MAX)
4306 		return -EINVAL;
4307 
4308 	memset(p, 0, sizeof(*p));
4309 	p->nbufs = tmp;
4310 	p->bgid = READ_ONCE(sqe->buf_group);
4311 	return 0;
4312 }
4313 
__io_remove_buffers(struct io_ring_ctx * ctx,struct io_buffer * buf,int bgid,unsigned nbufs)4314 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4315 			       int bgid, unsigned nbufs)
4316 {
4317 	unsigned i = 0;
4318 
4319 	/* shouldn't happen */
4320 	if (!nbufs)
4321 		return 0;
4322 
4323 	/* the head kbuf is the list itself */
4324 	while (!list_empty(&buf->list)) {
4325 		struct io_buffer *nxt;
4326 
4327 		nxt = list_first_entry(&buf->list, struct io_buffer, list);
4328 		list_del(&nxt->list);
4329 		kfree(nxt);
4330 		if (++i == nbufs)
4331 			return i;
4332 		cond_resched();
4333 	}
4334 	i++;
4335 	kfree(buf);
4336 	xa_erase(&ctx->io_buffers, bgid);
4337 
4338 	return i;
4339 }
4340 
io_remove_buffers(struct io_kiocb * req,unsigned int issue_flags)4341 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4342 {
4343 	struct io_provide_buf *p = &req->pbuf;
4344 	struct io_ring_ctx *ctx = req->ctx;
4345 	struct io_buffer *head;
4346 	int ret = 0;
4347 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4348 
4349 	io_ring_submit_lock(ctx, !force_nonblock);
4350 
4351 	lockdep_assert_held(&ctx->uring_lock);
4352 
4353 	ret = -ENOENT;
4354 	head = xa_load(&ctx->io_buffers, p->bgid);
4355 	if (head)
4356 		ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4357 	if (ret < 0)
4358 		req_set_fail(req);
4359 
4360 	/* complete before unlock, IOPOLL may need the lock */
4361 	__io_req_complete(req, issue_flags, ret, 0);
4362 	io_ring_submit_unlock(ctx, !force_nonblock);
4363 	return 0;
4364 }
4365 
io_provide_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4366 static int io_provide_buffers_prep(struct io_kiocb *req,
4367 				   const struct io_uring_sqe *sqe)
4368 {
4369 	unsigned long size, tmp_check;
4370 	struct io_provide_buf *p = &req->pbuf;
4371 	u64 tmp;
4372 
4373 	if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4374 		return -EINVAL;
4375 
4376 	tmp = READ_ONCE(sqe->fd);
4377 	if (!tmp || tmp > USHRT_MAX)
4378 		return -E2BIG;
4379 	p->nbufs = tmp;
4380 	p->addr = READ_ONCE(sqe->addr);
4381 	p->len = READ_ONCE(sqe->len);
4382 
4383 	if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4384 				&size))
4385 		return -EOVERFLOW;
4386 	if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4387 		return -EOVERFLOW;
4388 
4389 	size = (unsigned long)p->len * p->nbufs;
4390 	if (!access_ok(u64_to_user_ptr(p->addr), size))
4391 		return -EFAULT;
4392 
4393 	p->bgid = READ_ONCE(sqe->buf_group);
4394 	tmp = READ_ONCE(sqe->off);
4395 	if (tmp > USHRT_MAX)
4396 		return -E2BIG;
4397 	p->bid = tmp;
4398 	return 0;
4399 }
4400 
io_add_buffers(struct io_provide_buf * pbuf,struct io_buffer ** head)4401 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4402 {
4403 	struct io_buffer *buf;
4404 	u64 addr = pbuf->addr;
4405 	int i, bid = pbuf->bid;
4406 
4407 	for (i = 0; i < pbuf->nbufs; i++) {
4408 		buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4409 		if (!buf)
4410 			break;
4411 
4412 		buf->addr = addr;
4413 		buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4414 		buf->bid = bid;
4415 		addr += pbuf->len;
4416 		bid++;
4417 		if (!*head) {
4418 			INIT_LIST_HEAD(&buf->list);
4419 			*head = buf;
4420 		} else {
4421 			list_add_tail(&buf->list, &(*head)->list);
4422 		}
4423 		cond_resched();
4424 	}
4425 
4426 	return i ? i : -ENOMEM;
4427 }
4428 
io_provide_buffers(struct io_kiocb * req,unsigned int issue_flags)4429 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4430 {
4431 	struct io_provide_buf *p = &req->pbuf;
4432 	struct io_ring_ctx *ctx = req->ctx;
4433 	struct io_buffer *head, *list;
4434 	int ret = 0;
4435 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4436 
4437 	io_ring_submit_lock(ctx, !force_nonblock);
4438 
4439 	lockdep_assert_held(&ctx->uring_lock);
4440 
4441 	list = head = xa_load(&ctx->io_buffers, p->bgid);
4442 
4443 	ret = io_add_buffers(p, &head);
4444 	if (ret >= 0 && !list) {
4445 		ret = xa_insert(&ctx->io_buffers, p->bgid, head,
4446 				GFP_KERNEL_ACCOUNT);
4447 		if (ret < 0)
4448 			__io_remove_buffers(ctx, head, p->bgid, -1U);
4449 	}
4450 	if (ret < 0)
4451 		req_set_fail(req);
4452 	/* complete before unlock, IOPOLL may need the lock */
4453 	__io_req_complete(req, issue_flags, ret, 0);
4454 	io_ring_submit_unlock(ctx, !force_nonblock);
4455 	return 0;
4456 }
4457 
io_epoll_ctl_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4458 static int io_epoll_ctl_prep(struct io_kiocb *req,
4459 			     const struct io_uring_sqe *sqe)
4460 {
4461 #if defined(CONFIG_EPOLL)
4462 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4463 		return -EINVAL;
4464 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4465 		return -EINVAL;
4466 
4467 	req->epoll.epfd = READ_ONCE(sqe->fd);
4468 	req->epoll.op = READ_ONCE(sqe->len);
4469 	req->epoll.fd = READ_ONCE(sqe->off);
4470 
4471 	if (ep_op_has_event(req->epoll.op)) {
4472 		struct epoll_event __user *ev;
4473 
4474 		ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4475 		if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4476 			return -EFAULT;
4477 	}
4478 
4479 	return 0;
4480 #else
4481 	return -EOPNOTSUPP;
4482 #endif
4483 }
4484 
io_epoll_ctl(struct io_kiocb * req,unsigned int issue_flags)4485 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4486 {
4487 #if defined(CONFIG_EPOLL)
4488 	struct io_epoll *ie = &req->epoll;
4489 	int ret;
4490 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4491 
4492 	ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4493 	if (force_nonblock && ret == -EAGAIN)
4494 		return -EAGAIN;
4495 
4496 	if (ret < 0)
4497 		req_set_fail(req);
4498 	__io_req_complete(req, issue_flags, ret, 0);
4499 	return 0;
4500 #else
4501 	return -EOPNOTSUPP;
4502 #endif
4503 }
4504 
io_madvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4505 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4506 {
4507 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4508 	if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4509 		return -EINVAL;
4510 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4511 		return -EINVAL;
4512 
4513 	req->madvise.addr = READ_ONCE(sqe->addr);
4514 	req->madvise.len = READ_ONCE(sqe->len);
4515 	req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4516 	return 0;
4517 #else
4518 	return -EOPNOTSUPP;
4519 #endif
4520 }
4521 
io_madvise(struct io_kiocb * req,unsigned int issue_flags)4522 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4523 {
4524 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4525 	struct io_madvise *ma = &req->madvise;
4526 	int ret;
4527 
4528 	if (issue_flags & IO_URING_F_NONBLOCK)
4529 		return -EAGAIN;
4530 
4531 	ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4532 	if (ret < 0)
4533 		req_set_fail(req);
4534 	io_req_complete(req, ret);
4535 	return 0;
4536 #else
4537 	return -EOPNOTSUPP;
4538 #endif
4539 }
4540 
io_fadvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4541 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4542 {
4543 	if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4544 		return -EINVAL;
4545 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4546 		return -EINVAL;
4547 
4548 	req->fadvise.offset = READ_ONCE(sqe->off);
4549 	req->fadvise.len = READ_ONCE(sqe->len);
4550 	req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4551 	return 0;
4552 }
4553 
io_fadvise(struct io_kiocb * req,unsigned int issue_flags)4554 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4555 {
4556 	struct io_fadvise *fa = &req->fadvise;
4557 	int ret;
4558 
4559 	if (issue_flags & IO_URING_F_NONBLOCK) {
4560 		switch (fa->advice) {
4561 		case POSIX_FADV_NORMAL:
4562 		case POSIX_FADV_RANDOM:
4563 		case POSIX_FADV_SEQUENTIAL:
4564 			break;
4565 		default:
4566 			return -EAGAIN;
4567 		}
4568 	}
4569 
4570 	ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4571 	if (ret < 0)
4572 		req_set_fail(req);
4573 	__io_req_complete(req, issue_flags, ret, 0);
4574 	return 0;
4575 }
4576 
io_statx_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4577 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4578 {
4579 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4580 		return -EINVAL;
4581 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4582 		return -EINVAL;
4583 	if (req->flags & REQ_F_FIXED_FILE)
4584 		return -EBADF;
4585 
4586 	req->statx.dfd = READ_ONCE(sqe->fd);
4587 	req->statx.mask = READ_ONCE(sqe->len);
4588 	req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4589 	req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4590 	req->statx.flags = READ_ONCE(sqe->statx_flags);
4591 
4592 	return 0;
4593 }
4594 
io_statx(struct io_kiocb * req,unsigned int issue_flags)4595 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4596 {
4597 	struct io_statx *ctx = &req->statx;
4598 	int ret;
4599 
4600 	if (issue_flags & IO_URING_F_NONBLOCK)
4601 		return -EAGAIN;
4602 
4603 	ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4604 		       ctx->buffer);
4605 
4606 	if (ret < 0)
4607 		req_set_fail(req);
4608 	io_req_complete(req, ret);
4609 	return 0;
4610 }
4611 
io_close_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4612 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4613 {
4614 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4615 		return -EINVAL;
4616 	if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4617 	    sqe->rw_flags || sqe->buf_index)
4618 		return -EINVAL;
4619 	if (req->flags & REQ_F_FIXED_FILE)
4620 		return -EBADF;
4621 
4622 	req->close.fd = READ_ONCE(sqe->fd);
4623 	req->close.file_slot = READ_ONCE(sqe->file_index);
4624 	if (req->close.file_slot && req->close.fd)
4625 		return -EINVAL;
4626 
4627 	return 0;
4628 }
4629 
io_close(struct io_kiocb * req,unsigned int issue_flags)4630 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4631 {
4632 	struct files_struct *files = current->files;
4633 	struct io_close *close = &req->close;
4634 	struct fdtable *fdt;
4635 	struct file *file = NULL;
4636 	int ret = -EBADF;
4637 
4638 	if (req->close.file_slot) {
4639 		ret = io_close_fixed(req, issue_flags);
4640 		goto err;
4641 	}
4642 
4643 	spin_lock(&files->file_lock);
4644 	fdt = files_fdtable(files);
4645 	if (close->fd >= fdt->max_fds) {
4646 		spin_unlock(&files->file_lock);
4647 		goto err;
4648 	}
4649 	file = fdt->fd[close->fd];
4650 	if (!file || file->f_op == &io_uring_fops) {
4651 		spin_unlock(&files->file_lock);
4652 		file = NULL;
4653 		goto err;
4654 	}
4655 
4656 	/* if the file has a flush method, be safe and punt to async */
4657 	if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4658 		spin_unlock(&files->file_lock);
4659 		return -EAGAIN;
4660 	}
4661 
4662 	ret = __close_fd_get_file(close->fd, &file);
4663 	spin_unlock(&files->file_lock);
4664 	if (ret < 0) {
4665 		if (ret == -ENOENT)
4666 			ret = -EBADF;
4667 		goto err;
4668 	}
4669 
4670 	/* No ->flush() or already async, safely close from here */
4671 	ret = filp_close(file, current->files);
4672 err:
4673 	if (ret < 0)
4674 		req_set_fail(req);
4675 	if (file)
4676 		fput(file);
4677 	__io_req_complete(req, issue_flags, ret, 0);
4678 	return 0;
4679 }
4680 
io_sfr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4681 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4682 {
4683 	struct io_ring_ctx *ctx = req->ctx;
4684 
4685 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4686 		return -EINVAL;
4687 	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4688 		     sqe->splice_fd_in))
4689 		return -EINVAL;
4690 
4691 	req->sync.off = READ_ONCE(sqe->off);
4692 	req->sync.len = READ_ONCE(sqe->len);
4693 	req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4694 	return 0;
4695 }
4696 
io_sync_file_range(struct io_kiocb * req,unsigned int issue_flags)4697 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4698 {
4699 	int ret;
4700 
4701 	/* sync_file_range always requires a blocking context */
4702 	if (issue_flags & IO_URING_F_NONBLOCK)
4703 		return -EAGAIN;
4704 
4705 	ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4706 				req->sync.flags);
4707 	if (ret < 0)
4708 		req_set_fail(req);
4709 	io_req_complete(req, ret);
4710 	return 0;
4711 }
4712 
4713 #if defined(CONFIG_NET)
io_net_retry(struct socket * sock,int flags)4714 static bool io_net_retry(struct socket *sock, int flags)
4715 {
4716 	if (!(flags & MSG_WAITALL))
4717 		return false;
4718 	return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
4719 }
4720 
io_setup_async_msg(struct io_kiocb * req,struct io_async_msghdr * kmsg)4721 static int io_setup_async_msg(struct io_kiocb *req,
4722 			      struct io_async_msghdr *kmsg)
4723 {
4724 	struct io_async_msghdr *async_msg = req->async_data;
4725 
4726 	if (async_msg)
4727 		return -EAGAIN;
4728 	if (io_alloc_async_data(req)) {
4729 		kfree(kmsg->free_iov);
4730 		return -ENOMEM;
4731 	}
4732 	async_msg = req->async_data;
4733 	req->flags |= REQ_F_NEED_CLEANUP;
4734 	memcpy(async_msg, kmsg, sizeof(*kmsg));
4735 	if (async_msg->msg.msg_name)
4736 		async_msg->msg.msg_name = &async_msg->addr;
4737 	/* if were using fast_iov, set it to the new one */
4738 	if (!kmsg->free_iov) {
4739 		size_t fast_idx = kmsg->msg.msg_iter.iov - kmsg->fast_iov;
4740 		async_msg->msg.msg_iter.iov = &async_msg->fast_iov[fast_idx];
4741 	}
4742 
4743 	return -EAGAIN;
4744 }
4745 
io_sendmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4746 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4747 			       struct io_async_msghdr *iomsg)
4748 {
4749 	struct io_sr_msg *sr = &req->sr_msg;
4750 	int ret;
4751 
4752 	iomsg->msg.msg_name = &iomsg->addr;
4753 	iomsg->free_iov = iomsg->fast_iov;
4754 	ret = sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4755 				   req->sr_msg.msg_flags, &iomsg->free_iov);
4756 	/* save msg_control as sys_sendmsg() overwrites it */
4757 	sr->msg_control = iomsg->msg.msg_control;
4758 	return ret;
4759 }
4760 
io_sendmsg_prep_async(struct io_kiocb * req)4761 static int io_sendmsg_prep_async(struct io_kiocb *req)
4762 {
4763 	int ret;
4764 
4765 	ret = io_sendmsg_copy_hdr(req, req->async_data);
4766 	if (!ret)
4767 		req->flags |= REQ_F_NEED_CLEANUP;
4768 	return ret;
4769 }
4770 
io_sendmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4771 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4772 {
4773 	struct io_sr_msg *sr = &req->sr_msg;
4774 
4775 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4776 		return -EINVAL;
4777 	if (unlikely(sqe->addr2 || sqe->file_index))
4778 		return -EINVAL;
4779 	if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4780 		return -EINVAL;
4781 
4782 	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4783 	sr->len = READ_ONCE(sqe->len);
4784 	sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4785 	if (sr->msg_flags & MSG_DONTWAIT)
4786 		req->flags |= REQ_F_NOWAIT;
4787 
4788 #ifdef CONFIG_COMPAT
4789 	if (req->ctx->compat)
4790 		sr->msg_flags |= MSG_CMSG_COMPAT;
4791 #endif
4792 	sr->done_io = 0;
4793 	return 0;
4794 }
4795 
io_sendmsg(struct io_kiocb * req,unsigned int issue_flags)4796 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4797 {
4798 	struct io_async_msghdr iomsg, *kmsg;
4799 	struct io_sr_msg *sr = &req->sr_msg;
4800 	struct socket *sock;
4801 	unsigned flags;
4802 	int min_ret = 0;
4803 	int ret;
4804 
4805 	sock = sock_from_file(req->file, &ret);
4806 	if (unlikely(!sock))
4807 		return ret;
4808 
4809 	kmsg = req->async_data;
4810 	if (!kmsg) {
4811 		ret = io_sendmsg_copy_hdr(req, &iomsg);
4812 		if (ret)
4813 			return ret;
4814 		kmsg = &iomsg;
4815 	} else {
4816 		kmsg->msg.msg_control = sr->msg_control;
4817 	}
4818 
4819 	flags = req->sr_msg.msg_flags;
4820 	if (issue_flags & IO_URING_F_NONBLOCK)
4821 		flags |= MSG_DONTWAIT;
4822 	if (flags & MSG_WAITALL)
4823 		min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4824 
4825 	ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4826 
4827 	if (ret < min_ret) {
4828 		if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
4829 			return io_setup_async_msg(req, kmsg);
4830 		if (ret == -ERESTARTSYS)
4831 			ret = -EINTR;
4832 		if (ret > 0 && io_net_retry(sock, flags)) {
4833 			sr->done_io += ret;
4834 			req->flags |= REQ_F_PARTIAL_IO;
4835 			return io_setup_async_msg(req, kmsg);
4836 		}
4837 		req_set_fail(req);
4838 	}
4839 	/* fast path, check for non-NULL to avoid function call */
4840 	if (kmsg->free_iov)
4841 		kfree(kmsg->free_iov);
4842 	req->flags &= ~REQ_F_NEED_CLEANUP;
4843 	if (ret >= 0)
4844 		ret += sr->done_io;
4845 	else if (sr->done_io)
4846 		ret = sr->done_io;
4847 	__io_req_complete(req, issue_flags, ret, 0);
4848 	return 0;
4849 }
4850 
io_send(struct io_kiocb * req,unsigned int issue_flags)4851 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4852 {
4853 	struct io_sr_msg *sr = &req->sr_msg;
4854 	struct msghdr msg;
4855 	struct iovec iov;
4856 	struct socket *sock;
4857 	unsigned flags;
4858 	int min_ret = 0;
4859 	int ret;
4860 
4861 	sock = sock_from_file(req->file, &ret);
4862 	if (unlikely(!sock))
4863 		return ret;
4864 
4865 	ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4866 	if (unlikely(ret))
4867 		return ret;
4868 
4869 	msg.msg_name = NULL;
4870 	msg.msg_control = NULL;
4871 	msg.msg_controllen = 0;
4872 	msg.msg_namelen = 0;
4873 
4874 	flags = req->sr_msg.msg_flags;
4875 	if (issue_flags & IO_URING_F_NONBLOCK)
4876 		flags |= MSG_DONTWAIT;
4877 	if (flags & MSG_WAITALL)
4878 		min_ret = iov_iter_count(&msg.msg_iter);
4879 
4880 	msg.msg_flags = flags;
4881 	ret = sock_sendmsg(sock, &msg);
4882 	if (ret < min_ret) {
4883 		if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
4884 			return -EAGAIN;
4885 		if (ret == -ERESTARTSYS)
4886 			ret = -EINTR;
4887 		if (ret > 0 && io_net_retry(sock, flags)) {
4888 			sr->len -= ret;
4889 			sr->buf += ret;
4890 			sr->done_io += ret;
4891 			req->flags |= REQ_F_PARTIAL_IO;
4892 			return -EAGAIN;
4893 		}
4894 		req_set_fail(req);
4895 	}
4896 	if (ret >= 0)
4897 		ret += sr->done_io;
4898 	else if (sr->done_io)
4899 		ret = sr->done_io;
4900 	__io_req_complete(req, issue_flags, ret, 0);
4901 	return 0;
4902 }
4903 
__io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4904 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4905 				 struct io_async_msghdr *iomsg)
4906 {
4907 	struct io_sr_msg *sr = &req->sr_msg;
4908 	struct iovec __user *uiov;
4909 	size_t iov_len;
4910 	int ret;
4911 
4912 	ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4913 					&iomsg->uaddr, &uiov, &iov_len);
4914 	if (ret)
4915 		return ret;
4916 
4917 	if (req->flags & REQ_F_BUFFER_SELECT) {
4918 		if (iov_len > 1)
4919 			return -EINVAL;
4920 		if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4921 			return -EFAULT;
4922 		sr->len = iomsg->fast_iov[0].iov_len;
4923 		iomsg->free_iov = NULL;
4924 	} else {
4925 		iomsg->free_iov = iomsg->fast_iov;
4926 		ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4927 				     &iomsg->free_iov, &iomsg->msg.msg_iter,
4928 				     false);
4929 		if (ret > 0)
4930 			ret = 0;
4931 	}
4932 
4933 	return ret;
4934 }
4935 
4936 #ifdef CONFIG_COMPAT
__io_compat_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4937 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4938 					struct io_async_msghdr *iomsg)
4939 {
4940 	struct io_sr_msg *sr = &req->sr_msg;
4941 	struct compat_iovec __user *uiov;
4942 	compat_uptr_t ptr;
4943 	compat_size_t len;
4944 	int ret;
4945 
4946 	ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4947 				  &ptr, &len);
4948 	if (ret)
4949 		return ret;
4950 
4951 	uiov = compat_ptr(ptr);
4952 	if (req->flags & REQ_F_BUFFER_SELECT) {
4953 		compat_ssize_t clen;
4954 
4955 		if (len > 1)
4956 			return -EINVAL;
4957 		if (!access_ok(uiov, sizeof(*uiov)))
4958 			return -EFAULT;
4959 		if (__get_user(clen, &uiov->iov_len))
4960 			return -EFAULT;
4961 		if (clen < 0)
4962 			return -EINVAL;
4963 		sr->len = clen;
4964 		iomsg->free_iov = NULL;
4965 	} else {
4966 		iomsg->free_iov = iomsg->fast_iov;
4967 		ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4968 				   UIO_FASTIOV, &iomsg->free_iov,
4969 				   &iomsg->msg.msg_iter, true);
4970 		if (ret < 0)
4971 			return ret;
4972 	}
4973 
4974 	return 0;
4975 }
4976 #endif
4977 
io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4978 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4979 			       struct io_async_msghdr *iomsg)
4980 {
4981 	iomsg->msg.msg_name = &iomsg->addr;
4982 
4983 #ifdef CONFIG_COMPAT
4984 	if (req->ctx->compat)
4985 		return __io_compat_recvmsg_copy_hdr(req, iomsg);
4986 #endif
4987 
4988 	return __io_recvmsg_copy_hdr(req, iomsg);
4989 }
4990 
io_recv_buffer_select(struct io_kiocb * req,bool needs_lock)4991 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4992 					       bool needs_lock)
4993 {
4994 	struct io_sr_msg *sr = &req->sr_msg;
4995 	struct io_buffer *kbuf;
4996 
4997 	kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4998 	if (IS_ERR(kbuf))
4999 		return kbuf;
5000 
5001 	sr->kbuf = kbuf;
5002 	req->flags |= REQ_F_BUFFER_SELECTED;
5003 	return kbuf;
5004 }
5005 
io_put_recv_kbuf(struct io_kiocb * req)5006 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
5007 {
5008 	return io_put_kbuf(req, req->sr_msg.kbuf);
5009 }
5010 
io_recvmsg_prep_async(struct io_kiocb * req)5011 static int io_recvmsg_prep_async(struct io_kiocb *req)
5012 {
5013 	int ret;
5014 
5015 	ret = io_recvmsg_copy_hdr(req, req->async_data);
5016 	if (!ret)
5017 		req->flags |= REQ_F_NEED_CLEANUP;
5018 	return ret;
5019 }
5020 
io_recvmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5021 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5022 {
5023 	struct io_sr_msg *sr = &req->sr_msg;
5024 
5025 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5026 		return -EINVAL;
5027 	if (unlikely(sqe->addr2 || sqe->file_index))
5028 		return -EINVAL;
5029 	if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
5030 		return -EINVAL;
5031 
5032 	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5033 	sr->len = READ_ONCE(sqe->len);
5034 	sr->bgid = READ_ONCE(sqe->buf_group);
5035 	sr->msg_flags = READ_ONCE(sqe->msg_flags);
5036 	if (sr->msg_flags & MSG_DONTWAIT)
5037 		req->flags |= REQ_F_NOWAIT;
5038 
5039 #ifdef CONFIG_COMPAT
5040 	if (req->ctx->compat)
5041 		sr->msg_flags |= MSG_CMSG_COMPAT;
5042 #endif
5043 	sr->done_io = 0;
5044 	return 0;
5045 }
5046 
io_recvmsg(struct io_kiocb * req,unsigned int issue_flags)5047 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5048 {
5049 	struct io_async_msghdr iomsg, *kmsg;
5050 	struct io_sr_msg *sr = &req->sr_msg;
5051 	struct socket *sock;
5052 	struct io_buffer *kbuf;
5053 	unsigned flags;
5054 	int min_ret = 0;
5055 	int ret, cflags = 0;
5056 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5057 
5058 	sock = sock_from_file(req->file, &ret);
5059 	if (unlikely(!sock))
5060 		return ret;
5061 
5062 	kmsg = req->async_data;
5063 	if (!kmsg) {
5064 		ret = io_recvmsg_copy_hdr(req, &iomsg);
5065 		if (ret)
5066 			return ret;
5067 		kmsg = &iomsg;
5068 	}
5069 
5070 	if (req->flags & REQ_F_BUFFER_SELECT) {
5071 		kbuf = io_recv_buffer_select(req, !force_nonblock);
5072 		if (IS_ERR(kbuf))
5073 			return PTR_ERR(kbuf);
5074 		kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5075 		kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5076 		iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5077 				1, req->sr_msg.len);
5078 	}
5079 
5080 	flags = req->sr_msg.msg_flags;
5081 	if (force_nonblock)
5082 		flags |= MSG_DONTWAIT;
5083 	if (flags & MSG_WAITALL && !kmsg->msg.msg_controllen)
5084 		min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5085 
5086 	ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5087 					kmsg->uaddr, flags);
5088 	if (ret < min_ret) {
5089 		if (ret == -EAGAIN && force_nonblock)
5090 			return io_setup_async_msg(req, kmsg);
5091 		if (ret == -ERESTARTSYS)
5092 			ret = -EINTR;
5093 		if (ret > 0 && io_net_retry(sock, flags)) {
5094 			kmsg->msg.msg_controllen = 0;
5095 			kmsg->msg.msg_control = NULL;
5096 			sr->done_io += ret;
5097 			req->flags |= REQ_F_PARTIAL_IO;
5098 			return io_setup_async_msg(req, kmsg);
5099 		}
5100 		req_set_fail(req);
5101 	} else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5102 		req_set_fail(req);
5103 	}
5104 
5105 	if (req->flags & REQ_F_BUFFER_SELECTED)
5106 		cflags = io_put_recv_kbuf(req);
5107 	/* fast path, check for non-NULL to avoid function call */
5108 	if (kmsg->free_iov)
5109 		kfree(kmsg->free_iov);
5110 	req->flags &= ~REQ_F_NEED_CLEANUP;
5111 	if (ret >= 0)
5112 		ret += sr->done_io;
5113 	else if (sr->done_io)
5114 		ret = sr->done_io;
5115 	__io_req_complete(req, issue_flags, ret, cflags);
5116 	return 0;
5117 }
5118 
io_recv(struct io_kiocb * req,unsigned int issue_flags)5119 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5120 {
5121 	struct io_buffer *kbuf;
5122 	struct io_sr_msg *sr = &req->sr_msg;
5123 	struct msghdr msg;
5124 	void __user *buf = sr->buf;
5125 	struct socket *sock;
5126 	struct iovec iov;
5127 	unsigned flags;
5128 	int min_ret = 0;
5129 	int ret, cflags = 0;
5130 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5131 
5132 	sock = sock_from_file(req->file, &ret);
5133 	if (unlikely(!sock))
5134 		return ret;
5135 
5136 	if (req->flags & REQ_F_BUFFER_SELECT) {
5137 		kbuf = io_recv_buffer_select(req, !force_nonblock);
5138 		if (IS_ERR(kbuf))
5139 			return PTR_ERR(kbuf);
5140 		buf = u64_to_user_ptr(kbuf->addr);
5141 	}
5142 
5143 	ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5144 	if (unlikely(ret))
5145 		goto out_free;
5146 
5147 	msg.msg_name = NULL;
5148 	msg.msg_control = NULL;
5149 	msg.msg_controllen = 0;
5150 	msg.msg_namelen = 0;
5151 	msg.msg_iocb = NULL;
5152 	msg.msg_flags = 0;
5153 
5154 	flags = req->sr_msg.msg_flags;
5155 	if (force_nonblock)
5156 		flags |= MSG_DONTWAIT;
5157 	if (flags & MSG_WAITALL)
5158 		min_ret = iov_iter_count(&msg.msg_iter);
5159 
5160 	ret = sock_recvmsg(sock, &msg, flags);
5161 	if (ret < min_ret) {
5162 		if (ret == -EAGAIN && force_nonblock)
5163 			return -EAGAIN;
5164 		if (ret == -ERESTARTSYS)
5165 			ret = -EINTR;
5166 		if (ret > 0 && io_net_retry(sock, flags)) {
5167 			sr->len -= ret;
5168 			sr->buf += ret;
5169 			sr->done_io += ret;
5170 			req->flags |= REQ_F_PARTIAL_IO;
5171 			return -EAGAIN;
5172 		}
5173 		req_set_fail(req);
5174 	} else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5175 out_free:
5176 		req_set_fail(req);
5177 	}
5178 	if (req->flags & REQ_F_BUFFER_SELECTED)
5179 		cflags = io_put_recv_kbuf(req);
5180 	if (ret >= 0)
5181 		ret += sr->done_io;
5182 	else if (sr->done_io)
5183 		ret = sr->done_io;
5184 	__io_req_complete(req, issue_flags, ret, cflags);
5185 	return 0;
5186 }
5187 
io_accept_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5188 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5189 {
5190 	struct io_accept *accept = &req->accept;
5191 
5192 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5193 		return -EINVAL;
5194 	if (sqe->ioprio || sqe->len || sqe->buf_index)
5195 		return -EINVAL;
5196 
5197 	accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5198 	accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5199 	accept->flags = READ_ONCE(sqe->accept_flags);
5200 	accept->nofile = rlimit(RLIMIT_NOFILE);
5201 
5202 	accept->file_slot = READ_ONCE(sqe->file_index);
5203 	if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5204 		return -EINVAL;
5205 	if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5206 		return -EINVAL;
5207 	if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5208 		accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5209 	return 0;
5210 }
5211 
io_accept(struct io_kiocb * req,unsigned int issue_flags)5212 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5213 {
5214 	struct io_accept *accept = &req->accept;
5215 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5216 	unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5217 	bool fixed = !!accept->file_slot;
5218 	struct file *file;
5219 	int ret, fd;
5220 
5221 	if (!fixed) {
5222 		fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5223 		if (unlikely(fd < 0))
5224 			return fd;
5225 	}
5226 	file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5227 			 accept->flags);
5228 
5229 	if (IS_ERR(file)) {
5230 		if (!fixed)
5231 			put_unused_fd(fd);
5232 		ret = PTR_ERR(file);
5233 		/* safe to retry */
5234 		req->flags |= REQ_F_PARTIAL_IO;
5235 		if (ret == -EAGAIN && force_nonblock)
5236 			return -EAGAIN;
5237 		if (ret == -ERESTARTSYS)
5238 			ret = -EINTR;
5239 		req_set_fail(req);
5240 	} else if (!fixed) {
5241 		fd_install(fd, file);
5242 		ret = fd;
5243 	} else {
5244 		ret = io_install_fixed_file(req, file, issue_flags,
5245 					    accept->file_slot - 1);
5246 	}
5247 	__io_req_complete(req, issue_flags, ret, 0);
5248 	return 0;
5249 }
5250 
io_connect_prep_async(struct io_kiocb * req)5251 static int io_connect_prep_async(struct io_kiocb *req)
5252 {
5253 	struct io_async_connect *io = req->async_data;
5254 	struct io_connect *conn = &req->connect;
5255 
5256 	return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5257 }
5258 
io_connect_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5259 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5260 {
5261 	struct io_connect *conn = &req->connect;
5262 
5263 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5264 		return -EINVAL;
5265 	if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5266 	    sqe->splice_fd_in)
5267 		return -EINVAL;
5268 
5269 	conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5270 	conn->addr_len =  READ_ONCE(sqe->addr2);
5271 	return 0;
5272 }
5273 
io_connect(struct io_kiocb * req,unsigned int issue_flags)5274 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5275 {
5276 	struct io_async_connect __io, *io;
5277 	unsigned file_flags;
5278 	int ret;
5279 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5280 
5281 	if (req->async_data) {
5282 		io = req->async_data;
5283 	} else {
5284 		ret = move_addr_to_kernel(req->connect.addr,
5285 						req->connect.addr_len,
5286 						&__io.address);
5287 		if (ret)
5288 			goto out;
5289 		io = &__io;
5290 	}
5291 
5292 	file_flags = force_nonblock ? O_NONBLOCK : 0;
5293 
5294 	ret = __sys_connect_file(req->file, &io->address,
5295 					req->connect.addr_len, file_flags);
5296 	if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5297 		if (req->async_data)
5298 			return -EAGAIN;
5299 		if (io_alloc_async_data(req)) {
5300 			ret = -ENOMEM;
5301 			goto out;
5302 		}
5303 		memcpy(req->async_data, &__io, sizeof(__io));
5304 		return -EAGAIN;
5305 	}
5306 	if (ret == -ERESTARTSYS)
5307 		ret = -EINTR;
5308 out:
5309 	if (ret < 0)
5310 		req_set_fail(req);
5311 	__io_req_complete(req, issue_flags, ret, 0);
5312 	return 0;
5313 }
5314 #else /* !CONFIG_NET */
5315 #define IO_NETOP_FN(op)							\
5316 static int io_##op(struct io_kiocb *req, unsigned int issue_flags)	\
5317 {									\
5318 	return -EOPNOTSUPP;						\
5319 }
5320 
5321 #define IO_NETOP_PREP(op)						\
5322 IO_NETOP_FN(op)								\
5323 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5324 {									\
5325 	return -EOPNOTSUPP;						\
5326 }									\
5327 
5328 #define IO_NETOP_PREP_ASYNC(op)						\
5329 IO_NETOP_PREP(op)							\
5330 static int io_##op##_prep_async(struct io_kiocb *req)			\
5331 {									\
5332 	return -EOPNOTSUPP;						\
5333 }
5334 
5335 IO_NETOP_PREP_ASYNC(sendmsg);
5336 IO_NETOP_PREP_ASYNC(recvmsg);
5337 IO_NETOP_PREP_ASYNC(connect);
5338 IO_NETOP_PREP(accept);
5339 IO_NETOP_FN(send);
5340 IO_NETOP_FN(recv);
5341 #endif /* CONFIG_NET */
5342 
5343 struct io_poll_table {
5344 	struct poll_table_struct pt;
5345 	struct io_kiocb *req;
5346 	int nr_entries;
5347 	int error;
5348 };
5349 
5350 #define IO_POLL_CANCEL_FLAG	BIT(31)
5351 #define IO_POLL_RETRY_FLAG	BIT(30)
5352 #define IO_POLL_REF_MASK	GENMASK(29, 0)
5353 
5354 /*
5355  * We usually have 1-2 refs taken, 128 is more than enough and we want to
5356  * maximise the margin between this amount and the moment when it overflows.
5357  */
5358 #define IO_POLL_REF_BIAS       128
5359 
io_poll_get_ownership_slowpath(struct io_kiocb * req)5360 static bool io_poll_get_ownership_slowpath(struct io_kiocb *req)
5361 {
5362 	int v;
5363 
5364 	/*
5365 	 * poll_refs are already elevated and we don't have much hope for
5366 	 * grabbing the ownership. Instead of incrementing set a retry flag
5367 	 * to notify the loop that there might have been some change.
5368 	 */
5369 	v = atomic_fetch_or(IO_POLL_RETRY_FLAG, &req->poll_refs);
5370 	if (v & IO_POLL_REF_MASK)
5371 		return false;
5372 	return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5373 }
5374 
5375 /*
5376  * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
5377  * bump it and acquire ownership. It's disallowed to modify requests while not
5378  * owning it, that prevents from races for enqueueing task_work's and b/w
5379  * arming poll and wakeups.
5380  */
io_poll_get_ownership(struct io_kiocb * req)5381 static inline bool io_poll_get_ownership(struct io_kiocb *req)
5382 {
5383 	if (unlikely(atomic_read(&req->poll_refs) >= IO_POLL_REF_BIAS))
5384 		return io_poll_get_ownership_slowpath(req);
5385 	return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5386 }
5387 
io_poll_mark_cancelled(struct io_kiocb * req)5388 static void io_poll_mark_cancelled(struct io_kiocb *req)
5389 {
5390 	atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
5391 }
5392 
io_poll_get_double(struct io_kiocb * req)5393 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5394 {
5395 	/* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5396 	if (req->opcode == IORING_OP_POLL_ADD)
5397 		return req->async_data;
5398 	return req->apoll->double_poll;
5399 }
5400 
io_poll_get_single(struct io_kiocb * req)5401 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5402 {
5403 	if (req->opcode == IORING_OP_POLL_ADD)
5404 		return &req->poll;
5405 	return &req->apoll->poll;
5406 }
5407 
io_poll_req_insert(struct io_kiocb * req)5408 static void io_poll_req_insert(struct io_kiocb *req)
5409 {
5410 	struct io_ring_ctx *ctx = req->ctx;
5411 	struct hlist_head *list;
5412 
5413 	list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5414 	hlist_add_head(&req->hash_node, list);
5415 }
5416 
io_init_poll_iocb(struct io_poll_iocb * poll,__poll_t events,wait_queue_func_t wake_func)5417 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5418 			      wait_queue_func_t wake_func)
5419 {
5420 	poll->head = NULL;
5421 #define IO_POLL_UNMASK	(EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5422 	/* mask in events that we always want/need */
5423 	poll->events = events | IO_POLL_UNMASK;
5424 	INIT_LIST_HEAD(&poll->wait.entry);
5425 	init_waitqueue_func_entry(&poll->wait, wake_func);
5426 }
5427 
io_poll_remove_entry(struct io_poll_iocb * poll)5428 static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
5429 {
5430 	struct wait_queue_head *head = smp_load_acquire(&poll->head);
5431 
5432 	if (head) {
5433 		spin_lock_irq(&head->lock);
5434 		list_del_init(&poll->wait.entry);
5435 		poll->head = NULL;
5436 		spin_unlock_irq(&head->lock);
5437 	}
5438 }
5439 
io_poll_remove_entries(struct io_kiocb * req)5440 static void io_poll_remove_entries(struct io_kiocb *req)
5441 {
5442 	struct io_poll_iocb *poll = io_poll_get_single(req);
5443 	struct io_poll_iocb *poll_double = io_poll_get_double(req);
5444 
5445 	/*
5446 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
5447 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
5448 	 * lock in the first place can race with the waitqueue being freed.
5449 	 *
5450 	 * We solve this as eventpoll does: by taking advantage of the fact that
5451 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
5452 	 * we enter rcu_read_lock() and see that the pointer to the queue is
5453 	 * non-NULL, we can then lock it without the memory being freed out from
5454 	 * under us.
5455 	 *
5456 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
5457 	 * case the caller deletes the entry from the queue, leaving it empty.
5458 	 * In that case, only RCU prevents the queue memory from being freed.
5459 	 */
5460 	rcu_read_lock();
5461 	io_poll_remove_entry(poll);
5462 	if (poll_double)
5463 		io_poll_remove_entry(poll_double);
5464 	rcu_read_unlock();
5465 }
5466 
5467 /*
5468  * All poll tw should go through this. Checks for poll events, manages
5469  * references, does rewait, etc.
5470  *
5471  * Returns a negative error on failure. >0 when no action require, which is
5472  * either spurious wakeup or multishot CQE is served. 0 when it's done with
5473  * the request, then the mask is stored in req->result.
5474  */
io_poll_check_events(struct io_kiocb * req)5475 static int io_poll_check_events(struct io_kiocb *req)
5476 {
5477 	struct io_ring_ctx *ctx = req->ctx;
5478 	struct io_poll_iocb *poll = io_poll_get_single(req);
5479 	int v;
5480 
5481 	/* req->task == current here, checking PF_EXITING is safe */
5482 	if (unlikely(req->task->flags & PF_EXITING))
5483 		io_poll_mark_cancelled(req);
5484 
5485 	do {
5486 		v = atomic_read(&req->poll_refs);
5487 
5488 		/* tw handler should be the owner, and so have some references */
5489 		if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
5490 			return 0;
5491 		if (v & IO_POLL_CANCEL_FLAG)
5492 			return -ECANCELED;
5493 		/*
5494 		 * cqe.res contains only events of the first wake up
5495 		 * and all others are be lost. Redo vfs_poll() to get
5496 		 * up to date state.
5497 		 */
5498 		if ((v & IO_POLL_REF_MASK) != 1)
5499 			req->result = 0;
5500 		if (v & IO_POLL_RETRY_FLAG) {
5501 			req->result = 0;
5502 			/*
5503 			 * We won't find new events that came in between
5504 			 * vfs_poll and the ref put unless we clear the
5505 			 * flag in advance.
5506 			 */
5507 			atomic_andnot(IO_POLL_RETRY_FLAG, &req->poll_refs);
5508 			v &= ~IO_POLL_RETRY_FLAG;
5509 		}
5510 
5511 		if (!req->result) {
5512 			struct poll_table_struct pt = { ._key = poll->events };
5513 
5514 			req->result = vfs_poll(req->file, &pt) & poll->events;
5515 		}
5516 
5517 		/* multishot, just fill an CQE and proceed */
5518 		if (req->result && !(poll->events & EPOLLONESHOT)) {
5519 			__poll_t mask = mangle_poll(req->result & poll->events);
5520 			bool filled;
5521 
5522 			spin_lock(&ctx->completion_lock);
5523 			filled = io_fill_cqe_aux(ctx, req->user_data, mask,
5524 						 IORING_CQE_F_MORE);
5525 			io_commit_cqring(ctx);
5526 			spin_unlock(&ctx->completion_lock);
5527 			if (unlikely(!filled))
5528 				return -ECANCELED;
5529 			io_cqring_ev_posted(ctx);
5530 		} else if (req->result) {
5531 			return 0;
5532 		}
5533 
5534 		/* force the next iteration to vfs_poll() */
5535 		req->result = 0;
5536 
5537 		/*
5538 		 * Release all references, retry if someone tried to restart
5539 		 * task_work while we were executing it.
5540 		 */
5541 	} while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs) &
5542 					IO_POLL_REF_MASK);
5543 
5544 	return 1;
5545 }
5546 
io_poll_task_func(struct io_kiocb * req,bool * locked)5547 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5548 {
5549 	struct io_ring_ctx *ctx = req->ctx;
5550 	int ret;
5551 
5552 	ret = io_poll_check_events(req);
5553 	if (ret > 0)
5554 		return;
5555 
5556 	if (!ret) {
5557 		req->result = mangle_poll(req->result & req->poll.events);
5558 	} else {
5559 		req->result = ret;
5560 		req_set_fail(req);
5561 	}
5562 
5563 	io_poll_remove_entries(req);
5564 	spin_lock(&ctx->completion_lock);
5565 	hash_del(&req->hash_node);
5566 	spin_unlock(&ctx->completion_lock);
5567 	io_req_complete_post(req, req->result, 0);
5568 }
5569 
io_apoll_task_func(struct io_kiocb * req,bool * locked)5570 static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
5571 {
5572 	struct io_ring_ctx *ctx = req->ctx;
5573 	int ret;
5574 
5575 	ret = io_poll_check_events(req);
5576 	if (ret > 0)
5577 		return;
5578 
5579 	io_tw_lock(req->ctx, locked);
5580 	io_poll_remove_entries(req);
5581 	spin_lock(&ctx->completion_lock);
5582 	hash_del(&req->hash_node);
5583 	spin_unlock(&ctx->completion_lock);
5584 
5585 	if (!ret)
5586 		io_req_task_submit(req, locked);
5587 	else
5588 		io_req_complete_failed(req, ret);
5589 }
5590 
__io_poll_execute(struct io_kiocb * req,int mask)5591 static void __io_poll_execute(struct io_kiocb *req, int mask)
5592 {
5593 	req->result = mask;
5594 	if (req->opcode == IORING_OP_POLL_ADD)
5595 		req->io_task_work.func = io_poll_task_func;
5596 	else
5597 		req->io_task_work.func = io_apoll_task_func;
5598 
5599 	trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5600 	io_req_task_work_add(req);
5601 }
5602 
io_poll_execute(struct io_kiocb * req,int res)5603 static inline void io_poll_execute(struct io_kiocb *req, int res)
5604 {
5605 	if (io_poll_get_ownership(req))
5606 		__io_poll_execute(req, res);
5607 }
5608 
io_poll_cancel_req(struct io_kiocb * req)5609 static void io_poll_cancel_req(struct io_kiocb *req)
5610 {
5611 	io_poll_mark_cancelled(req);
5612 	/* kick tw, which should complete the request */
5613 	io_poll_execute(req, 0);
5614 }
5615 
io_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)5616 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5617 			void *key)
5618 {
5619 	struct io_kiocb *req = wait->private;
5620 	struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
5621 						 wait);
5622 	__poll_t mask = key_to_poll(key);
5623 
5624 	if (unlikely(mask & POLLFREE)) {
5625 		io_poll_mark_cancelled(req);
5626 		/* we have to kick tw in case it's not already */
5627 		io_poll_execute(req, 0);
5628 
5629 		/*
5630 		 * If the waitqueue is being freed early but someone is already
5631 		 * holds ownership over it, we have to tear down the request as
5632 		 * best we can. That means immediately removing the request from
5633 		 * its waitqueue and preventing all further accesses to the
5634 		 * waitqueue via the request.
5635 		 */
5636 		list_del_init(&poll->wait.entry);
5637 
5638 		/*
5639 		 * Careful: this *must* be the last step, since as soon
5640 		 * as req->head is NULL'ed out, the request can be
5641 		 * completed and freed, since aio_poll_complete_work()
5642 		 * will no longer need to take the waitqueue lock.
5643 		 */
5644 		smp_store_release(&poll->head, NULL);
5645 		return 1;
5646 	}
5647 
5648 	/* for instances that support it check for an event match first */
5649 	if (mask && !(mask & poll->events))
5650 		return 0;
5651 
5652 	if (io_poll_get_ownership(req)) {
5653 		/*
5654 		 * If we trigger a multishot poll off our own wakeup path,
5655 		 * disable multishot as there is a circular dependency between
5656 		 * CQ posting and triggering the event.
5657 		 */
5658 		if (mask & EPOLL_URING_WAKE)
5659 			poll->events |= EPOLLONESHOT;
5660 
5661 		__io_poll_execute(req, mask);
5662 	}
5663 	return 1;
5664 }
5665 
__io_queue_proc(struct io_poll_iocb * poll,struct io_poll_table * pt,struct wait_queue_head * head,struct io_poll_iocb ** poll_ptr)5666 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5667 			    struct wait_queue_head *head,
5668 			    struct io_poll_iocb **poll_ptr)
5669 {
5670 	struct io_kiocb *req = pt->req;
5671 
5672 	/*
5673 	 * The file being polled uses multiple waitqueues for poll handling
5674 	 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5675 	 * if this happens.
5676 	 */
5677 	if (unlikely(pt->nr_entries)) {
5678 		struct io_poll_iocb *first = poll;
5679 
5680 		/* double add on the same waitqueue head, ignore */
5681 		if (first->head == head)
5682 			return;
5683 		/* already have a 2nd entry, fail a third attempt */
5684 		if (*poll_ptr) {
5685 			if ((*poll_ptr)->head == head)
5686 				return;
5687 			pt->error = -EINVAL;
5688 			return;
5689 		}
5690 
5691 		poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5692 		if (!poll) {
5693 			pt->error = -ENOMEM;
5694 			return;
5695 		}
5696 		io_init_poll_iocb(poll, first->events, first->wait.func);
5697 		*poll_ptr = poll;
5698 	}
5699 
5700 	pt->nr_entries++;
5701 	poll->head = head;
5702 	poll->wait.private = req;
5703 
5704 	if (poll->events & EPOLLEXCLUSIVE)
5705 		add_wait_queue_exclusive(head, &poll->wait);
5706 	else
5707 		add_wait_queue(head, &poll->wait);
5708 }
5709 
io_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5710 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5711 			       struct poll_table_struct *p)
5712 {
5713 	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5714 
5715 	__io_queue_proc(&pt->req->poll, pt, head,
5716 			(struct io_poll_iocb **) &pt->req->async_data);
5717 }
5718 
__io_arm_poll_handler(struct io_kiocb * req,struct io_poll_iocb * poll,struct io_poll_table * ipt,__poll_t mask)5719 static int __io_arm_poll_handler(struct io_kiocb *req,
5720 				 struct io_poll_iocb *poll,
5721 				 struct io_poll_table *ipt, __poll_t mask)
5722 {
5723 	struct io_ring_ctx *ctx = req->ctx;
5724 
5725 	INIT_HLIST_NODE(&req->hash_node);
5726 	io_init_poll_iocb(poll, mask, io_poll_wake);
5727 	poll->file = req->file;
5728 	poll->wait.private = req;
5729 
5730 	ipt->pt._key = mask;
5731 	ipt->req = req;
5732 	ipt->error = 0;
5733 	ipt->nr_entries = 0;
5734 
5735 	/*
5736 	 * Take the ownership to delay any tw execution up until we're done
5737 	 * with poll arming. see io_poll_get_ownership().
5738 	 */
5739 	atomic_set(&req->poll_refs, 1);
5740 	mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5741 
5742 	if (mask && (poll->events & EPOLLONESHOT)) {
5743 		io_poll_remove_entries(req);
5744 		/* no one else has access to the req, forget about the ref */
5745 		return mask;
5746 	}
5747 	if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
5748 		io_poll_remove_entries(req);
5749 		if (!ipt->error)
5750 			ipt->error = -EINVAL;
5751 		return 0;
5752 	}
5753 
5754 	spin_lock(&ctx->completion_lock);
5755 	io_poll_req_insert(req);
5756 	spin_unlock(&ctx->completion_lock);
5757 
5758 	if (mask) {
5759 		/* can't multishot if failed, just queue the event we've got */
5760 		if (unlikely(ipt->error || !ipt->nr_entries)) {
5761 			poll->events |= EPOLLONESHOT;
5762 			ipt->error = 0;
5763 		}
5764 		__io_poll_execute(req, mask);
5765 		return 0;
5766 	}
5767 
5768 	/*
5769 	 * Try to release ownership. If we see a change of state, e.g.
5770 	 * poll was waken up, queue up a tw, it'll deal with it.
5771 	 */
5772 	if (atomic_cmpxchg(&req->poll_refs, 1, 0) != 1)
5773 		__io_poll_execute(req, 0);
5774 	return 0;
5775 }
5776 
io_async_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5777 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5778 			       struct poll_table_struct *p)
5779 {
5780 	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5781 	struct async_poll *apoll = pt->req->apoll;
5782 
5783 	__io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5784 }
5785 
5786 enum {
5787 	IO_APOLL_OK,
5788 	IO_APOLL_ABORTED,
5789 	IO_APOLL_READY
5790 };
5791 
5792 /*
5793  * We can't reliably detect loops in repeated poll triggers and issue
5794  * subsequently failing. But rather than fail these immediately, allow a
5795  * certain amount of retries before we give up. Given that this condition
5796  * should _rarely_ trigger even once, we should be fine with a larger value.
5797  */
5798 #define APOLL_MAX_RETRY		128
5799 
io_arm_poll_handler(struct io_kiocb * req)5800 static int io_arm_poll_handler(struct io_kiocb *req)
5801 {
5802 	const struct io_op_def *def = &io_op_defs[req->opcode];
5803 	struct io_ring_ctx *ctx = req->ctx;
5804 	struct async_poll *apoll;
5805 	struct io_poll_table ipt;
5806 	__poll_t mask = EPOLLONESHOT | POLLERR | POLLPRI;
5807 	int ret;
5808 
5809 	if (!req->file || !file_can_poll(req->file))
5810 		return IO_APOLL_ABORTED;
5811 	if (!def->pollin && !def->pollout)
5812 		return IO_APOLL_ABORTED;
5813 
5814 	if (def->pollin) {
5815 		mask |= POLLIN | POLLRDNORM;
5816 
5817 		/* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5818 		if ((req->opcode == IORING_OP_RECVMSG) &&
5819 		    (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5820 			mask &= ~POLLIN;
5821 	} else {
5822 		mask |= POLLOUT | POLLWRNORM;
5823 	}
5824 
5825 	if (req->flags & REQ_F_POLLED) {
5826 		apoll = req->apoll;
5827 		kfree(apoll->double_poll);
5828 		if (unlikely(!--apoll->poll.retries)) {
5829 			apoll->double_poll = NULL;
5830 			return IO_APOLL_ABORTED;
5831 		}
5832 	} else {
5833 		apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5834 		if (unlikely(!apoll))
5835 			return IO_APOLL_ABORTED;
5836 		apoll->poll.retries = APOLL_MAX_RETRY;
5837 	}
5838 	apoll->double_poll = NULL;
5839 	req->apoll = apoll;
5840 	req->flags |= REQ_F_POLLED;
5841 	ipt.pt._qproc = io_async_queue_proc;
5842 
5843 	ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
5844 	if (ret || ipt.error)
5845 		return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5846 
5847 	trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5848 				mask, apoll->poll.events);
5849 	return IO_APOLL_OK;
5850 }
5851 
5852 /*
5853  * Returns true if we found and killed one or more poll requests
5854  */
io_poll_remove_all(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)5855 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5856 			       bool cancel_all)
5857 {
5858 	struct hlist_node *tmp;
5859 	struct io_kiocb *req;
5860 	bool found = false;
5861 	int i;
5862 
5863 	spin_lock(&ctx->completion_lock);
5864 	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5865 		struct hlist_head *list;
5866 
5867 		list = &ctx->cancel_hash[i];
5868 		hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5869 			if (io_match_task_safe(req, tsk, cancel_all)) {
5870 				hlist_del_init(&req->hash_node);
5871 				io_poll_cancel_req(req);
5872 				found = true;
5873 			}
5874 		}
5875 	}
5876 	spin_unlock(&ctx->completion_lock);
5877 	return found;
5878 }
5879 
io_poll_find(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)5880 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5881 				     bool poll_only)
5882 	__must_hold(&ctx->completion_lock)
5883 {
5884 	struct hlist_head *list;
5885 	struct io_kiocb *req;
5886 
5887 	list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5888 	hlist_for_each_entry(req, list, hash_node) {
5889 		if (sqe_addr != req->user_data)
5890 			continue;
5891 		if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5892 			continue;
5893 		return req;
5894 	}
5895 	return NULL;
5896 }
5897 
io_poll_disarm(struct io_kiocb * req)5898 static bool io_poll_disarm(struct io_kiocb *req)
5899 	__must_hold(&ctx->completion_lock)
5900 {
5901 	if (!io_poll_get_ownership(req))
5902 		return false;
5903 	io_poll_remove_entries(req);
5904 	hash_del(&req->hash_node);
5905 	return true;
5906 }
5907 
io_poll_cancel(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)5908 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5909 			  bool poll_only)
5910 	__must_hold(&ctx->completion_lock)
5911 {
5912 	struct io_kiocb *req = io_poll_find(ctx, sqe_addr, poll_only);
5913 
5914 	if (!req)
5915 		return -ENOENT;
5916 	io_poll_cancel_req(req);
5917 	return 0;
5918 }
5919 
io_poll_parse_events(const struct io_uring_sqe * sqe,unsigned int flags)5920 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5921 				     unsigned int flags)
5922 {
5923 	u32 events;
5924 
5925 	events = READ_ONCE(sqe->poll32_events);
5926 #ifdef __BIG_ENDIAN
5927 	events = swahw32(events);
5928 #endif
5929 	if (!(flags & IORING_POLL_ADD_MULTI))
5930 		events |= EPOLLONESHOT;
5931 	return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5932 }
5933 
io_poll_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5934 static int io_poll_update_prep(struct io_kiocb *req,
5935 			       const struct io_uring_sqe *sqe)
5936 {
5937 	struct io_poll_update *upd = &req->poll_update;
5938 	u32 flags;
5939 
5940 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5941 		return -EINVAL;
5942 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5943 		return -EINVAL;
5944 	flags = READ_ONCE(sqe->len);
5945 	if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5946 		      IORING_POLL_ADD_MULTI))
5947 		return -EINVAL;
5948 	/* meaningless without update */
5949 	if (flags == IORING_POLL_ADD_MULTI)
5950 		return -EINVAL;
5951 
5952 	upd->old_user_data = READ_ONCE(sqe->addr);
5953 	upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5954 	upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5955 
5956 	upd->new_user_data = READ_ONCE(sqe->off);
5957 	if (!upd->update_user_data && upd->new_user_data)
5958 		return -EINVAL;
5959 	if (upd->update_events)
5960 		upd->events = io_poll_parse_events(sqe, flags);
5961 	else if (sqe->poll32_events)
5962 		return -EINVAL;
5963 
5964 	return 0;
5965 }
5966 
io_poll_add_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5967 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5968 {
5969 	struct io_poll_iocb *poll = &req->poll;
5970 	u32 flags;
5971 
5972 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5973 		return -EINVAL;
5974 	if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5975 		return -EINVAL;
5976 	flags = READ_ONCE(sqe->len);
5977 	if (flags & ~IORING_POLL_ADD_MULTI)
5978 		return -EINVAL;
5979 
5980 	io_req_set_refcount(req);
5981 	poll->events = io_poll_parse_events(sqe, flags);
5982 	return 0;
5983 }
5984 
io_poll_add(struct io_kiocb * req,unsigned int issue_flags)5985 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5986 {
5987 	struct io_poll_iocb *poll = &req->poll;
5988 	struct io_poll_table ipt;
5989 	int ret;
5990 
5991 	ipt.pt._qproc = io_poll_queue_proc;
5992 
5993 	ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
5994 	if (!ret && ipt.error)
5995 		req_set_fail(req);
5996 	ret = ret ?: ipt.error;
5997 	if (ret)
5998 		__io_req_complete(req, issue_flags, ret, 0);
5999 	return 0;
6000 }
6001 
io_poll_update(struct io_kiocb * req,unsigned int issue_flags)6002 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
6003 {
6004 	struct io_ring_ctx *ctx = req->ctx;
6005 	struct io_kiocb *preq;
6006 	int ret2, ret = 0;
6007 
6008 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6009 
6010 	spin_lock(&ctx->completion_lock);
6011 	preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
6012 	if (!preq || !io_poll_disarm(preq)) {
6013 		spin_unlock(&ctx->completion_lock);
6014 		ret = preq ? -EALREADY : -ENOENT;
6015 		goto out;
6016 	}
6017 	spin_unlock(&ctx->completion_lock);
6018 
6019 	if (req->poll_update.update_events || req->poll_update.update_user_data) {
6020 		/* only mask one event flags, keep behavior flags */
6021 		if (req->poll_update.update_events) {
6022 			preq->poll.events &= ~0xffff;
6023 			preq->poll.events |= req->poll_update.events & 0xffff;
6024 			preq->poll.events |= IO_POLL_UNMASK;
6025 		}
6026 		if (req->poll_update.update_user_data)
6027 			preq->user_data = req->poll_update.new_user_data;
6028 
6029 		ret2 = io_poll_add(preq, issue_flags);
6030 		/* successfully updated, don't complete poll request */
6031 		if (!ret2)
6032 			goto out;
6033 	}
6034 	req_set_fail(preq);
6035 	io_req_complete(preq, -ECANCELED);
6036 out:
6037 	if (ret < 0)
6038 		req_set_fail(req);
6039 	/* complete update request, we're done with it */
6040 	io_req_complete(req, ret);
6041 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6042 	return 0;
6043 }
6044 
io_req_task_timeout(struct io_kiocb * req,bool * locked)6045 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
6046 {
6047 	req_set_fail(req);
6048 	io_req_complete_post(req, -ETIME, 0);
6049 }
6050 
io_timeout_fn(struct hrtimer * timer)6051 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
6052 {
6053 	struct io_timeout_data *data = container_of(timer,
6054 						struct io_timeout_data, timer);
6055 	struct io_kiocb *req = data->req;
6056 	struct io_ring_ctx *ctx = req->ctx;
6057 	unsigned long flags;
6058 
6059 	spin_lock_irqsave(&ctx->timeout_lock, flags);
6060 	list_del_init(&req->timeout.list);
6061 	atomic_set(&req->ctx->cq_timeouts,
6062 		atomic_read(&req->ctx->cq_timeouts) + 1);
6063 	spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6064 
6065 	req->io_task_work.func = io_req_task_timeout;
6066 	io_req_task_work_add(req);
6067 	return HRTIMER_NORESTART;
6068 }
6069 
io_timeout_extract(struct io_ring_ctx * ctx,__u64 user_data)6070 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6071 					   __u64 user_data)
6072 	__must_hold(&ctx->timeout_lock)
6073 {
6074 	struct io_timeout_data *io;
6075 	struct io_kiocb *req;
6076 	bool found = false;
6077 
6078 	list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6079 		found = user_data == req->user_data;
6080 		if (found)
6081 			break;
6082 	}
6083 	if (!found)
6084 		return ERR_PTR(-ENOENT);
6085 
6086 	io = req->async_data;
6087 	if (hrtimer_try_to_cancel(&io->timer) == -1)
6088 		return ERR_PTR(-EALREADY);
6089 	list_del_init(&req->timeout.list);
6090 	return req;
6091 }
6092 
io_timeout_cancel(struct io_ring_ctx * ctx,__u64 user_data)6093 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6094 	__must_hold(&ctx->completion_lock)
6095 	__must_hold(&ctx->timeout_lock)
6096 {
6097 	struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6098 
6099 	if (IS_ERR(req))
6100 		return PTR_ERR(req);
6101 
6102 	req_set_fail(req);
6103 	io_fill_cqe_req(req, -ECANCELED, 0);
6104 	io_put_req_deferred(req);
6105 	return 0;
6106 }
6107 
io_timeout_get_clock(struct io_timeout_data * data)6108 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6109 {
6110 	switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6111 	case IORING_TIMEOUT_BOOTTIME:
6112 		return CLOCK_BOOTTIME;
6113 	case IORING_TIMEOUT_REALTIME:
6114 		return CLOCK_REALTIME;
6115 	default:
6116 		/* can't happen, vetted at prep time */
6117 		WARN_ON_ONCE(1);
6118 		fallthrough;
6119 	case 0:
6120 		return CLOCK_MONOTONIC;
6121 	}
6122 }
6123 
io_linked_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)6124 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6125 				    struct timespec64 *ts, enum hrtimer_mode mode)
6126 	__must_hold(&ctx->timeout_lock)
6127 {
6128 	struct io_timeout_data *io;
6129 	struct io_kiocb *req;
6130 	bool found = false;
6131 
6132 	list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6133 		found = user_data == req->user_data;
6134 		if (found)
6135 			break;
6136 	}
6137 	if (!found)
6138 		return -ENOENT;
6139 
6140 	io = req->async_data;
6141 	if (hrtimer_try_to_cancel(&io->timer) == -1)
6142 		return -EALREADY;
6143 	hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6144 	io->timer.function = io_link_timeout_fn;
6145 	hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6146 	return 0;
6147 }
6148 
io_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)6149 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6150 			     struct timespec64 *ts, enum hrtimer_mode mode)
6151 	__must_hold(&ctx->timeout_lock)
6152 {
6153 	struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6154 	struct io_timeout_data *data;
6155 
6156 	if (IS_ERR(req))
6157 		return PTR_ERR(req);
6158 
6159 	req->timeout.off = 0; /* noseq */
6160 	data = req->async_data;
6161 	list_add_tail(&req->timeout.list, &ctx->timeout_list);
6162 	hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6163 	data->timer.function = io_timeout_fn;
6164 	hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6165 	return 0;
6166 }
6167 
io_timeout_remove_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6168 static int io_timeout_remove_prep(struct io_kiocb *req,
6169 				  const struct io_uring_sqe *sqe)
6170 {
6171 	struct io_timeout_rem *tr = &req->timeout_rem;
6172 
6173 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6174 		return -EINVAL;
6175 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6176 		return -EINVAL;
6177 	if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6178 		return -EINVAL;
6179 
6180 	tr->ltimeout = false;
6181 	tr->addr = READ_ONCE(sqe->addr);
6182 	tr->flags = READ_ONCE(sqe->timeout_flags);
6183 	if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6184 		if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6185 			return -EINVAL;
6186 		if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6187 			tr->ltimeout = true;
6188 		if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6189 			return -EINVAL;
6190 		if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6191 			return -EFAULT;
6192 	} else if (tr->flags) {
6193 		/* timeout removal doesn't support flags */
6194 		return -EINVAL;
6195 	}
6196 
6197 	return 0;
6198 }
6199 
io_translate_timeout_mode(unsigned int flags)6200 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6201 {
6202 	return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6203 					    : HRTIMER_MODE_REL;
6204 }
6205 
6206 /*
6207  * Remove or update an existing timeout command
6208  */
io_timeout_remove(struct io_kiocb * req,unsigned int issue_flags)6209 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6210 {
6211 	struct io_timeout_rem *tr = &req->timeout_rem;
6212 	struct io_ring_ctx *ctx = req->ctx;
6213 	int ret;
6214 
6215 	if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6216 		spin_lock(&ctx->completion_lock);
6217 		spin_lock_irq(&ctx->timeout_lock);
6218 		ret = io_timeout_cancel(ctx, tr->addr);
6219 		spin_unlock_irq(&ctx->timeout_lock);
6220 		spin_unlock(&ctx->completion_lock);
6221 	} else {
6222 		enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6223 
6224 		spin_lock_irq(&ctx->timeout_lock);
6225 		if (tr->ltimeout)
6226 			ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6227 		else
6228 			ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6229 		spin_unlock_irq(&ctx->timeout_lock);
6230 	}
6231 
6232 	if (ret < 0)
6233 		req_set_fail(req);
6234 	io_req_complete_post(req, ret, 0);
6235 	return 0;
6236 }
6237 
io_timeout_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool is_timeout_link)6238 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6239 			   bool is_timeout_link)
6240 {
6241 	struct io_timeout_data *data;
6242 	unsigned flags;
6243 	u32 off = READ_ONCE(sqe->off);
6244 
6245 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6246 		return -EINVAL;
6247 	if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6248 	    sqe->splice_fd_in)
6249 		return -EINVAL;
6250 	if (off && is_timeout_link)
6251 		return -EINVAL;
6252 	flags = READ_ONCE(sqe->timeout_flags);
6253 	if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6254 		return -EINVAL;
6255 	/* more than one clock specified is invalid, obviously */
6256 	if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6257 		return -EINVAL;
6258 
6259 	INIT_LIST_HEAD(&req->timeout.list);
6260 	req->timeout.off = off;
6261 	if (unlikely(off && !req->ctx->off_timeout_used))
6262 		req->ctx->off_timeout_used = true;
6263 
6264 	if (!req->async_data && io_alloc_async_data(req))
6265 		return -ENOMEM;
6266 
6267 	data = req->async_data;
6268 	data->req = req;
6269 	data->flags = flags;
6270 
6271 	if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6272 		return -EFAULT;
6273 
6274 	INIT_LIST_HEAD(&req->timeout.list);
6275 	data->mode = io_translate_timeout_mode(flags);
6276 	hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6277 
6278 	if (is_timeout_link) {
6279 		struct io_submit_link *link = &req->ctx->submit_state.link;
6280 
6281 		if (!link->head)
6282 			return -EINVAL;
6283 		if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6284 			return -EINVAL;
6285 		req->timeout.head = link->last;
6286 		link->last->flags |= REQ_F_ARM_LTIMEOUT;
6287 	}
6288 	return 0;
6289 }
6290 
io_timeout(struct io_kiocb * req,unsigned int issue_flags)6291 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6292 {
6293 	struct io_ring_ctx *ctx = req->ctx;
6294 	struct io_timeout_data *data = req->async_data;
6295 	struct list_head *entry;
6296 	u32 tail, off = req->timeout.off;
6297 
6298 	spin_lock_irq(&ctx->timeout_lock);
6299 
6300 	/*
6301 	 * sqe->off holds how many events that need to occur for this
6302 	 * timeout event to be satisfied. If it isn't set, then this is
6303 	 * a pure timeout request, sequence isn't used.
6304 	 */
6305 	if (io_is_timeout_noseq(req)) {
6306 		entry = ctx->timeout_list.prev;
6307 		goto add;
6308 	}
6309 
6310 	tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6311 	req->timeout.target_seq = tail + off;
6312 
6313 	/* Update the last seq here in case io_flush_timeouts() hasn't.
6314 	 * This is safe because ->completion_lock is held, and submissions
6315 	 * and completions are never mixed in the same ->completion_lock section.
6316 	 */
6317 	ctx->cq_last_tm_flush = tail;
6318 
6319 	/*
6320 	 * Insertion sort, ensuring the first entry in the list is always
6321 	 * the one we need first.
6322 	 */
6323 	list_for_each_prev(entry, &ctx->timeout_list) {
6324 		struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6325 						  timeout.list);
6326 
6327 		if (io_is_timeout_noseq(nxt))
6328 			continue;
6329 		/* nxt.seq is behind @tail, otherwise would've been completed */
6330 		if (off >= nxt->timeout.target_seq - tail)
6331 			break;
6332 	}
6333 add:
6334 	list_add(&req->timeout.list, entry);
6335 	data->timer.function = io_timeout_fn;
6336 	hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6337 	spin_unlock_irq(&ctx->timeout_lock);
6338 	return 0;
6339 }
6340 
6341 struct io_cancel_data {
6342 	struct io_ring_ctx *ctx;
6343 	u64 user_data;
6344 };
6345 
io_cancel_cb(struct io_wq_work * work,void * data)6346 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6347 {
6348 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6349 	struct io_cancel_data *cd = data;
6350 
6351 	return req->ctx == cd->ctx && req->user_data == cd->user_data;
6352 }
6353 
io_async_cancel_one(struct io_uring_task * tctx,u64 user_data,struct io_ring_ctx * ctx)6354 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6355 			       struct io_ring_ctx *ctx)
6356 {
6357 	struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6358 	enum io_wq_cancel cancel_ret;
6359 	int ret = 0;
6360 
6361 	if (!tctx || !tctx->io_wq)
6362 		return -ENOENT;
6363 
6364 	cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6365 	switch (cancel_ret) {
6366 	case IO_WQ_CANCEL_OK:
6367 		ret = 0;
6368 		break;
6369 	case IO_WQ_CANCEL_RUNNING:
6370 		ret = -EALREADY;
6371 		break;
6372 	case IO_WQ_CANCEL_NOTFOUND:
6373 		ret = -ENOENT;
6374 		break;
6375 	}
6376 
6377 	return ret;
6378 }
6379 
io_try_cancel_userdata(struct io_kiocb * req,u64 sqe_addr)6380 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6381 {
6382 	struct io_ring_ctx *ctx = req->ctx;
6383 	int ret;
6384 
6385 	WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6386 
6387 	ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6388 	if (ret != -ENOENT)
6389 		return ret;
6390 
6391 	spin_lock(&ctx->completion_lock);
6392 	spin_lock_irq(&ctx->timeout_lock);
6393 	ret = io_timeout_cancel(ctx, sqe_addr);
6394 	spin_unlock_irq(&ctx->timeout_lock);
6395 	if (ret != -ENOENT)
6396 		goto out;
6397 	ret = io_poll_cancel(ctx, sqe_addr, false);
6398 out:
6399 	spin_unlock(&ctx->completion_lock);
6400 	return ret;
6401 }
6402 
io_async_cancel_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6403 static int io_async_cancel_prep(struct io_kiocb *req,
6404 				const struct io_uring_sqe *sqe)
6405 {
6406 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6407 		return -EINVAL;
6408 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6409 		return -EINVAL;
6410 	if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6411 	    sqe->splice_fd_in)
6412 		return -EINVAL;
6413 
6414 	req->cancel.addr = READ_ONCE(sqe->addr);
6415 	return 0;
6416 }
6417 
io_async_cancel(struct io_kiocb * req,unsigned int issue_flags)6418 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6419 {
6420 	struct io_ring_ctx *ctx = req->ctx;
6421 	u64 sqe_addr = req->cancel.addr;
6422 	struct io_tctx_node *node;
6423 	int ret;
6424 
6425 	ret = io_try_cancel_userdata(req, sqe_addr);
6426 	if (ret != -ENOENT)
6427 		goto done;
6428 
6429 	/* slow path, try all io-wq's */
6430 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6431 	ret = -ENOENT;
6432 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6433 		struct io_uring_task *tctx = node->task->io_uring;
6434 
6435 		ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6436 		if (ret != -ENOENT)
6437 			break;
6438 	}
6439 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6440 done:
6441 	if (ret < 0)
6442 		req_set_fail(req);
6443 	io_req_complete_post(req, ret, 0);
6444 	return 0;
6445 }
6446 
io_rsrc_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6447 static int io_rsrc_update_prep(struct io_kiocb *req,
6448 				const struct io_uring_sqe *sqe)
6449 {
6450 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6451 		return -EINVAL;
6452 	if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6453 		return -EINVAL;
6454 
6455 	req->rsrc_update.offset = READ_ONCE(sqe->off);
6456 	req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6457 	if (!req->rsrc_update.nr_args)
6458 		return -EINVAL;
6459 	req->rsrc_update.arg = READ_ONCE(sqe->addr);
6460 	return 0;
6461 }
6462 
io_files_update(struct io_kiocb * req,unsigned int issue_flags)6463 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6464 {
6465 	struct io_ring_ctx *ctx = req->ctx;
6466 	struct io_uring_rsrc_update2 up;
6467 	int ret;
6468 
6469 	up.offset = req->rsrc_update.offset;
6470 	up.data = req->rsrc_update.arg;
6471 	up.nr = 0;
6472 	up.tags = 0;
6473 	up.resv = 0;
6474 	up.resv2 = 0;
6475 
6476 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6477 	ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6478 					&up, req->rsrc_update.nr_args);
6479 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6480 
6481 	if (ret < 0)
6482 		req_set_fail(req);
6483 	__io_req_complete(req, issue_flags, ret, 0);
6484 	return 0;
6485 }
6486 
io_req_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6487 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6488 {
6489 	switch (req->opcode) {
6490 	case IORING_OP_NOP:
6491 		return 0;
6492 	case IORING_OP_READV:
6493 	case IORING_OP_READ_FIXED:
6494 	case IORING_OP_READ:
6495 		return io_read_prep(req, sqe);
6496 	case IORING_OP_WRITEV:
6497 	case IORING_OP_WRITE_FIXED:
6498 	case IORING_OP_WRITE:
6499 		return io_write_prep(req, sqe);
6500 	case IORING_OP_POLL_ADD:
6501 		return io_poll_add_prep(req, sqe);
6502 	case IORING_OP_POLL_REMOVE:
6503 		return io_poll_update_prep(req, sqe);
6504 	case IORING_OP_FSYNC:
6505 		return io_fsync_prep(req, sqe);
6506 	case IORING_OP_SYNC_FILE_RANGE:
6507 		return io_sfr_prep(req, sqe);
6508 	case IORING_OP_SENDMSG:
6509 	case IORING_OP_SEND:
6510 		return io_sendmsg_prep(req, sqe);
6511 	case IORING_OP_RECVMSG:
6512 	case IORING_OP_RECV:
6513 		return io_recvmsg_prep(req, sqe);
6514 	case IORING_OP_CONNECT:
6515 		return io_connect_prep(req, sqe);
6516 	case IORING_OP_TIMEOUT:
6517 		return io_timeout_prep(req, sqe, false);
6518 	case IORING_OP_TIMEOUT_REMOVE:
6519 		return io_timeout_remove_prep(req, sqe);
6520 	case IORING_OP_ASYNC_CANCEL:
6521 		return io_async_cancel_prep(req, sqe);
6522 	case IORING_OP_LINK_TIMEOUT:
6523 		return io_timeout_prep(req, sqe, true);
6524 	case IORING_OP_ACCEPT:
6525 		return io_accept_prep(req, sqe);
6526 	case IORING_OP_FALLOCATE:
6527 		return io_fallocate_prep(req, sqe);
6528 	case IORING_OP_OPENAT:
6529 		return io_openat_prep(req, sqe);
6530 	case IORING_OP_CLOSE:
6531 		return io_close_prep(req, sqe);
6532 	case IORING_OP_FILES_UPDATE:
6533 		return io_rsrc_update_prep(req, sqe);
6534 	case IORING_OP_STATX:
6535 		return io_statx_prep(req, sqe);
6536 	case IORING_OP_FADVISE:
6537 		return io_fadvise_prep(req, sqe);
6538 	case IORING_OP_MADVISE:
6539 		return io_madvise_prep(req, sqe);
6540 	case IORING_OP_OPENAT2:
6541 		return io_openat2_prep(req, sqe);
6542 	case IORING_OP_EPOLL_CTL:
6543 		return io_epoll_ctl_prep(req, sqe);
6544 	case IORING_OP_SPLICE:
6545 		return io_splice_prep(req, sqe);
6546 	case IORING_OP_PROVIDE_BUFFERS:
6547 		return io_provide_buffers_prep(req, sqe);
6548 	case IORING_OP_REMOVE_BUFFERS:
6549 		return io_remove_buffers_prep(req, sqe);
6550 	case IORING_OP_TEE:
6551 		return io_tee_prep(req, sqe);
6552 	case IORING_OP_SHUTDOWN:
6553 		return io_shutdown_prep(req, sqe);
6554 	case IORING_OP_RENAMEAT:
6555 		return io_renameat_prep(req, sqe);
6556 	case IORING_OP_UNLINKAT:
6557 		return io_unlinkat_prep(req, sqe);
6558 	}
6559 
6560 	printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6561 			req->opcode);
6562 	return -EINVAL;
6563 }
6564 
io_req_prep_async(struct io_kiocb * req)6565 static int io_req_prep_async(struct io_kiocb *req)
6566 {
6567 	if (!io_op_defs[req->opcode].needs_async_setup)
6568 		return 0;
6569 	if (WARN_ON_ONCE(req->async_data))
6570 		return -EFAULT;
6571 	if (io_alloc_async_data(req))
6572 		return -EAGAIN;
6573 
6574 	switch (req->opcode) {
6575 	case IORING_OP_READV:
6576 		return io_rw_prep_async(req, READ);
6577 	case IORING_OP_WRITEV:
6578 		return io_rw_prep_async(req, WRITE);
6579 	case IORING_OP_SENDMSG:
6580 		return io_sendmsg_prep_async(req);
6581 	case IORING_OP_RECVMSG:
6582 		return io_recvmsg_prep_async(req);
6583 	case IORING_OP_CONNECT:
6584 		return io_connect_prep_async(req);
6585 	}
6586 	printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6587 		    req->opcode);
6588 	return -EFAULT;
6589 }
6590 
io_get_sequence(struct io_kiocb * req)6591 static u32 io_get_sequence(struct io_kiocb *req)
6592 {
6593 	u32 seq = req->ctx->cached_sq_head;
6594 
6595 	/* need original cached_sq_head, but it was increased for each req */
6596 	io_for_each_link(req, req)
6597 		seq--;
6598 	return seq;
6599 }
6600 
io_drain_req(struct io_kiocb * req)6601 static bool io_drain_req(struct io_kiocb *req)
6602 {
6603 	struct io_kiocb *pos;
6604 	struct io_ring_ctx *ctx = req->ctx;
6605 	struct io_defer_entry *de;
6606 	int ret;
6607 	u32 seq;
6608 
6609 	if (req->flags & REQ_F_FAIL) {
6610 		io_req_complete_fail_submit(req);
6611 		return true;
6612 	}
6613 
6614 	/*
6615 	 * If we need to drain a request in the middle of a link, drain the
6616 	 * head request and the next request/link after the current link.
6617 	 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6618 	 * maintained for every request of our link.
6619 	 */
6620 	if (ctx->drain_next) {
6621 		req->flags |= REQ_F_IO_DRAIN;
6622 		ctx->drain_next = false;
6623 	}
6624 	/* not interested in head, start from the first linked */
6625 	io_for_each_link(pos, req->link) {
6626 		if (pos->flags & REQ_F_IO_DRAIN) {
6627 			ctx->drain_next = true;
6628 			req->flags |= REQ_F_IO_DRAIN;
6629 			break;
6630 		}
6631 	}
6632 
6633 	/* Still need defer if there is pending req in defer list. */
6634 	spin_lock(&ctx->completion_lock);
6635 	if (likely(list_empty_careful(&ctx->defer_list) &&
6636 		!(req->flags & REQ_F_IO_DRAIN))) {
6637 		spin_unlock(&ctx->completion_lock);
6638 		ctx->drain_active = false;
6639 		return false;
6640 	}
6641 	spin_unlock(&ctx->completion_lock);
6642 
6643 	seq = io_get_sequence(req);
6644 	/* Still a chance to pass the sequence check */
6645 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6646 		return false;
6647 
6648 	ret = io_req_prep_async(req);
6649 	if (ret)
6650 		goto fail;
6651 	io_prep_async_link(req);
6652 	de = kmalloc(sizeof(*de), GFP_KERNEL);
6653 	if (!de) {
6654 		ret = -ENOMEM;
6655 fail:
6656 		io_req_complete_failed(req, ret);
6657 		return true;
6658 	}
6659 
6660 	spin_lock(&ctx->completion_lock);
6661 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6662 		spin_unlock(&ctx->completion_lock);
6663 		kfree(de);
6664 		io_queue_async_work(req, NULL);
6665 		return true;
6666 	}
6667 
6668 	trace_io_uring_defer(ctx, req, req->user_data);
6669 	de->req = req;
6670 	de->seq = seq;
6671 	list_add_tail(&de->list, &ctx->defer_list);
6672 	spin_unlock(&ctx->completion_lock);
6673 	return true;
6674 }
6675 
io_clean_op(struct io_kiocb * req)6676 static void io_clean_op(struct io_kiocb *req)
6677 {
6678 	if (req->flags & REQ_F_BUFFER_SELECTED) {
6679 		switch (req->opcode) {
6680 		case IORING_OP_READV:
6681 		case IORING_OP_READ_FIXED:
6682 		case IORING_OP_READ:
6683 			kfree((void *)(unsigned long)req->rw.addr);
6684 			break;
6685 		case IORING_OP_RECVMSG:
6686 		case IORING_OP_RECV:
6687 			kfree(req->sr_msg.kbuf);
6688 			break;
6689 		}
6690 	}
6691 
6692 	if (req->flags & REQ_F_NEED_CLEANUP) {
6693 		switch (req->opcode) {
6694 		case IORING_OP_READV:
6695 		case IORING_OP_READ_FIXED:
6696 		case IORING_OP_READ:
6697 		case IORING_OP_WRITEV:
6698 		case IORING_OP_WRITE_FIXED:
6699 		case IORING_OP_WRITE: {
6700 			struct io_async_rw *io = req->async_data;
6701 
6702 			kfree(io->free_iovec);
6703 			break;
6704 			}
6705 		case IORING_OP_RECVMSG:
6706 		case IORING_OP_SENDMSG: {
6707 			struct io_async_msghdr *io = req->async_data;
6708 
6709 			kfree(io->free_iov);
6710 			break;
6711 			}
6712 		case IORING_OP_OPENAT:
6713 		case IORING_OP_OPENAT2:
6714 			if (req->open.filename)
6715 				putname(req->open.filename);
6716 			break;
6717 		case IORING_OP_RENAMEAT:
6718 			putname(req->rename.oldpath);
6719 			putname(req->rename.newpath);
6720 			break;
6721 		case IORING_OP_UNLINKAT:
6722 			putname(req->unlink.filename);
6723 			break;
6724 		}
6725 	}
6726 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
6727 		kfree(req->apoll->double_poll);
6728 		kfree(req->apoll);
6729 		req->apoll = NULL;
6730 	}
6731 	if (req->flags & REQ_F_INFLIGHT) {
6732 		struct io_uring_task *tctx = req->task->io_uring;
6733 
6734 		atomic_dec(&tctx->inflight_tracked);
6735 	}
6736 	if (req->flags & REQ_F_CREDS)
6737 		put_cred(req->creds);
6738 
6739 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
6740 }
6741 
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)6742 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6743 {
6744 	struct io_ring_ctx *ctx = req->ctx;
6745 	const struct cred *creds = NULL;
6746 	int ret;
6747 
6748 	if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6749 		creds = override_creds(req->creds);
6750 
6751 	switch (req->opcode) {
6752 	case IORING_OP_NOP:
6753 		ret = io_nop(req, issue_flags);
6754 		break;
6755 	case IORING_OP_READV:
6756 	case IORING_OP_READ_FIXED:
6757 	case IORING_OP_READ:
6758 		ret = io_read(req, issue_flags);
6759 		break;
6760 	case IORING_OP_WRITEV:
6761 	case IORING_OP_WRITE_FIXED:
6762 	case IORING_OP_WRITE:
6763 		ret = io_write(req, issue_flags);
6764 		break;
6765 	case IORING_OP_FSYNC:
6766 		ret = io_fsync(req, issue_flags);
6767 		break;
6768 	case IORING_OP_POLL_ADD:
6769 		ret = io_poll_add(req, issue_flags);
6770 		break;
6771 	case IORING_OP_POLL_REMOVE:
6772 		ret = io_poll_update(req, issue_flags);
6773 		break;
6774 	case IORING_OP_SYNC_FILE_RANGE:
6775 		ret = io_sync_file_range(req, issue_flags);
6776 		break;
6777 	case IORING_OP_SENDMSG:
6778 		ret = io_sendmsg(req, issue_flags);
6779 		break;
6780 	case IORING_OP_SEND:
6781 		ret = io_send(req, issue_flags);
6782 		break;
6783 	case IORING_OP_RECVMSG:
6784 		ret = io_recvmsg(req, issue_flags);
6785 		break;
6786 	case IORING_OP_RECV:
6787 		ret = io_recv(req, issue_flags);
6788 		break;
6789 	case IORING_OP_TIMEOUT:
6790 		ret = io_timeout(req, issue_flags);
6791 		break;
6792 	case IORING_OP_TIMEOUT_REMOVE:
6793 		ret = io_timeout_remove(req, issue_flags);
6794 		break;
6795 	case IORING_OP_ACCEPT:
6796 		ret = io_accept(req, issue_flags);
6797 		break;
6798 	case IORING_OP_CONNECT:
6799 		ret = io_connect(req, issue_flags);
6800 		break;
6801 	case IORING_OP_ASYNC_CANCEL:
6802 		ret = io_async_cancel(req, issue_flags);
6803 		break;
6804 	case IORING_OP_FALLOCATE:
6805 		ret = io_fallocate(req, issue_flags);
6806 		break;
6807 	case IORING_OP_OPENAT:
6808 		ret = io_openat(req, issue_flags);
6809 		break;
6810 	case IORING_OP_CLOSE:
6811 		ret = io_close(req, issue_flags);
6812 		break;
6813 	case IORING_OP_FILES_UPDATE:
6814 		ret = io_files_update(req, issue_flags);
6815 		break;
6816 	case IORING_OP_STATX:
6817 		ret = io_statx(req, issue_flags);
6818 		break;
6819 	case IORING_OP_FADVISE:
6820 		ret = io_fadvise(req, issue_flags);
6821 		break;
6822 	case IORING_OP_MADVISE:
6823 		ret = io_madvise(req, issue_flags);
6824 		break;
6825 	case IORING_OP_OPENAT2:
6826 		ret = io_openat2(req, issue_flags);
6827 		break;
6828 	case IORING_OP_EPOLL_CTL:
6829 		ret = io_epoll_ctl(req, issue_flags);
6830 		break;
6831 	case IORING_OP_SPLICE:
6832 		ret = io_splice(req, issue_flags);
6833 		break;
6834 	case IORING_OP_PROVIDE_BUFFERS:
6835 		ret = io_provide_buffers(req, issue_flags);
6836 		break;
6837 	case IORING_OP_REMOVE_BUFFERS:
6838 		ret = io_remove_buffers(req, issue_flags);
6839 		break;
6840 	case IORING_OP_TEE:
6841 		ret = io_tee(req, issue_flags);
6842 		break;
6843 	case IORING_OP_SHUTDOWN:
6844 		ret = io_shutdown(req, issue_flags);
6845 		break;
6846 	case IORING_OP_RENAMEAT:
6847 		ret = io_renameat(req, issue_flags);
6848 		break;
6849 	case IORING_OP_UNLINKAT:
6850 		ret = io_unlinkat(req, issue_flags);
6851 		break;
6852 	default:
6853 		ret = -EINVAL;
6854 		break;
6855 	}
6856 
6857 	if (creds)
6858 		revert_creds(creds);
6859 	if (ret)
6860 		return ret;
6861 	/* If the op doesn't have a file, we're not polling for it */
6862 	if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6863 		io_iopoll_req_issued(req);
6864 
6865 	return 0;
6866 }
6867 
io_wq_free_work(struct io_wq_work * work)6868 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6869 {
6870 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6871 
6872 	req = io_put_req_find_next(req);
6873 	return req ? &req->work : NULL;
6874 }
6875 
io_wq_submit_work(struct io_wq_work * work)6876 static void io_wq_submit_work(struct io_wq_work *work)
6877 {
6878 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6879 	struct io_kiocb *timeout;
6880 	int ret = 0;
6881 
6882 	/* one will be dropped by ->io_free_work() after returning to io-wq */
6883 	if (!(req->flags & REQ_F_REFCOUNT))
6884 		__io_req_set_refcount(req, 2);
6885 	else
6886 		req_ref_get(req);
6887 
6888 	timeout = io_prep_linked_timeout(req);
6889 	if (timeout)
6890 		io_queue_linked_timeout(timeout);
6891 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6892 	if (work->flags & IO_WQ_WORK_CANCEL)
6893 		ret = -ECANCELED;
6894 
6895 	if (!ret) {
6896 		do {
6897 			ret = io_issue_sqe(req, 0);
6898 			/*
6899 			 * We can get EAGAIN for polled IO even though we're
6900 			 * forcing a sync submission from here, since we can't
6901 			 * wait for request slots on the block side.
6902 			 */
6903 			if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
6904 				break;
6905 			if (io_wq_worker_stopped())
6906 				break;
6907 			/*
6908 			 * If REQ_F_NOWAIT is set, then don't wait or retry with
6909 			 * poll. -EAGAIN is final for that case.
6910 			 */
6911 			if (req->flags & REQ_F_NOWAIT)
6912 				break;
6913 
6914 			cond_resched();
6915 		} while (1);
6916 	}
6917 
6918 	/* avoid locking problems by failing it from a clean context */
6919 	if (ret)
6920 		io_req_task_queue_fail(req, ret);
6921 }
6922 
io_fixed_file_slot(struct io_file_table * table,unsigned i)6923 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6924 						       unsigned i)
6925 {
6926 	return &table->files[i];
6927 }
6928 
io_file_from_index(struct io_ring_ctx * ctx,int index)6929 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6930 					      int index)
6931 {
6932 	struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6933 
6934 	return (struct file *) (slot->file_ptr & FFS_MASK);
6935 }
6936 
io_fixed_file_set(struct io_fixed_file * file_slot,struct file * file)6937 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6938 {
6939 	unsigned long file_ptr = (unsigned long) file;
6940 
6941 	if (__io_file_supports_nowait(file, READ))
6942 		file_ptr |= FFS_ASYNC_READ;
6943 	if (__io_file_supports_nowait(file, WRITE))
6944 		file_ptr |= FFS_ASYNC_WRITE;
6945 	if (S_ISREG(file_inode(file)->i_mode))
6946 		file_ptr |= FFS_ISREG;
6947 	file_slot->file_ptr = file_ptr;
6948 }
6949 
io_file_get_fixed(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd,unsigned int issue_flags)6950 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6951 					     struct io_kiocb *req, int fd,
6952 					     unsigned int issue_flags)
6953 {
6954 	struct file *file = NULL;
6955 	unsigned long file_ptr;
6956 
6957 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6958 
6959 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6960 		goto out;
6961 	fd = array_index_nospec(fd, ctx->nr_user_files);
6962 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6963 	file = (struct file *) (file_ptr & FFS_MASK);
6964 	file_ptr &= ~FFS_MASK;
6965 	/* mask in overlapping REQ_F and FFS bits */
6966 	req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6967 	io_req_set_rsrc_node(req);
6968 out:
6969 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6970 	return file;
6971 }
6972 
io_file_get_normal(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd)6973 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6974 				       struct io_kiocb *req, int fd)
6975 {
6976 	struct file *file = fget(fd);
6977 
6978 	trace_io_uring_file_get(ctx, fd);
6979 
6980 	/* we don't allow fixed io_uring files */
6981 	if (file && unlikely(file->f_op == &io_uring_fops))
6982 		io_req_track_inflight(req);
6983 	return file;
6984 }
6985 
io_file_get(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd,bool fixed,unsigned int issue_flags)6986 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6987 				       struct io_kiocb *req, int fd, bool fixed,
6988 				       unsigned int issue_flags)
6989 {
6990 	if (fixed)
6991 		return io_file_get_fixed(ctx, req, fd, issue_flags);
6992 	else
6993 		return io_file_get_normal(ctx, req, fd);
6994 }
6995 
io_req_task_link_timeout(struct io_kiocb * req,bool * locked)6996 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6997 {
6998 	struct io_kiocb *prev = req->timeout.prev;
6999 	int ret = -ENOENT;
7000 
7001 	if (prev) {
7002 		if (!(req->task->flags & PF_EXITING))
7003 			ret = io_try_cancel_userdata(req, prev->user_data);
7004 		io_req_complete_post(req, ret ?: -ETIME, 0);
7005 		io_put_req(prev);
7006 	} else {
7007 		io_req_complete_post(req, -ETIME, 0);
7008 	}
7009 }
7010 
io_link_timeout_fn(struct hrtimer * timer)7011 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
7012 {
7013 	struct io_timeout_data *data = container_of(timer,
7014 						struct io_timeout_data, timer);
7015 	struct io_kiocb *prev, *req = data->req;
7016 	struct io_ring_ctx *ctx = req->ctx;
7017 	unsigned long flags;
7018 
7019 	spin_lock_irqsave(&ctx->timeout_lock, flags);
7020 	prev = req->timeout.head;
7021 	req->timeout.head = NULL;
7022 
7023 	/*
7024 	 * We don't expect the list to be empty, that will only happen if we
7025 	 * race with the completion of the linked work.
7026 	 */
7027 	if (prev) {
7028 		io_remove_next_linked(prev);
7029 		if (!req_ref_inc_not_zero(prev))
7030 			prev = NULL;
7031 	}
7032 	list_del(&req->timeout.list);
7033 	req->timeout.prev = prev;
7034 	spin_unlock_irqrestore(&ctx->timeout_lock, flags);
7035 
7036 	req->io_task_work.func = io_req_task_link_timeout;
7037 	io_req_task_work_add(req);
7038 	return HRTIMER_NORESTART;
7039 }
7040 
io_queue_linked_timeout(struct io_kiocb * req)7041 static void io_queue_linked_timeout(struct io_kiocb *req)
7042 {
7043 	struct io_ring_ctx *ctx = req->ctx;
7044 
7045 	spin_lock_irq(&ctx->timeout_lock);
7046 	/*
7047 	 * If the back reference is NULL, then our linked request finished
7048 	 * before we got a chance to setup the timer
7049 	 */
7050 	if (req->timeout.head) {
7051 		struct io_timeout_data *data = req->async_data;
7052 
7053 		data->timer.function = io_link_timeout_fn;
7054 		hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
7055 				data->mode);
7056 		list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
7057 	}
7058 	spin_unlock_irq(&ctx->timeout_lock);
7059 	/* drop submission reference */
7060 	io_put_req(req);
7061 }
7062 
__io_queue_sqe(struct io_kiocb * req)7063 static void __io_queue_sqe(struct io_kiocb *req)
7064 	__must_hold(&req->ctx->uring_lock)
7065 {
7066 	struct io_kiocb *linked_timeout;
7067 	int ret;
7068 
7069 issue_sqe:
7070 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7071 
7072 	/*
7073 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
7074 	 * doesn't support non-blocking read/write attempts
7075 	 */
7076 	if (likely(!ret)) {
7077 		if (req->flags & REQ_F_COMPLETE_INLINE) {
7078 			struct io_ring_ctx *ctx = req->ctx;
7079 			struct io_submit_state *state = &ctx->submit_state;
7080 
7081 			state->compl_reqs[state->compl_nr++] = req;
7082 			if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7083 				io_submit_flush_completions(ctx);
7084 			return;
7085 		}
7086 
7087 		linked_timeout = io_prep_linked_timeout(req);
7088 		if (linked_timeout)
7089 			io_queue_linked_timeout(linked_timeout);
7090 	} else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7091 		linked_timeout = io_prep_linked_timeout(req);
7092 
7093 		switch (io_arm_poll_handler(req)) {
7094 		case IO_APOLL_READY:
7095 			if (linked_timeout)
7096 				io_queue_linked_timeout(linked_timeout);
7097 			goto issue_sqe;
7098 		case IO_APOLL_ABORTED:
7099 			/*
7100 			 * Queued up for async execution, worker will release
7101 			 * submit reference when the iocb is actually submitted.
7102 			 */
7103 			io_queue_async_work(req, NULL);
7104 			break;
7105 		}
7106 
7107 		if (linked_timeout)
7108 			io_queue_linked_timeout(linked_timeout);
7109 	} else {
7110 		io_req_complete_failed(req, ret);
7111 	}
7112 }
7113 
io_queue_sqe(struct io_kiocb * req)7114 static inline void io_queue_sqe(struct io_kiocb *req)
7115 	__must_hold(&req->ctx->uring_lock)
7116 {
7117 	if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7118 		return;
7119 
7120 	if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7121 		__io_queue_sqe(req);
7122 	} else if (req->flags & REQ_F_FAIL) {
7123 		io_req_complete_fail_submit(req);
7124 	} else {
7125 		int ret = io_req_prep_async(req);
7126 
7127 		if (unlikely(ret))
7128 			io_req_complete_failed(req, ret);
7129 		else
7130 			io_queue_async_work(req, NULL);
7131 	}
7132 }
7133 
7134 /*
7135  * Check SQE restrictions (opcode and flags).
7136  *
7137  * Returns 'true' if SQE is allowed, 'false' otherwise.
7138  */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)7139 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7140 					struct io_kiocb *req,
7141 					unsigned int sqe_flags)
7142 {
7143 	if (likely(!ctx->restricted))
7144 		return true;
7145 
7146 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7147 		return false;
7148 
7149 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7150 	    ctx->restrictions.sqe_flags_required)
7151 		return false;
7152 
7153 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7154 			  ctx->restrictions.sqe_flags_required))
7155 		return false;
7156 
7157 	return true;
7158 }
7159 
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)7160 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7161 		       const struct io_uring_sqe *sqe)
7162 	__must_hold(&ctx->uring_lock)
7163 {
7164 	struct io_submit_state *state;
7165 	unsigned int sqe_flags;
7166 	int personality, ret = 0;
7167 
7168 	/* req is partially pre-initialised, see io_preinit_req() */
7169 	req->opcode = READ_ONCE(sqe->opcode);
7170 	/* same numerical values with corresponding REQ_F_*, safe to copy */
7171 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
7172 	req->user_data = READ_ONCE(sqe->user_data);
7173 	req->file = NULL;
7174 	req->fixed_rsrc_refs = NULL;
7175 	req->task = current;
7176 
7177 	/* enforce forwards compatibility on users */
7178 	if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7179 		return -EINVAL;
7180 	if (unlikely(req->opcode >= IORING_OP_LAST))
7181 		return -EINVAL;
7182 	if (!io_check_restriction(ctx, req, sqe_flags))
7183 		return -EACCES;
7184 
7185 	if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7186 	    !io_op_defs[req->opcode].buffer_select)
7187 		return -EOPNOTSUPP;
7188 	if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7189 		ctx->drain_active = true;
7190 
7191 	personality = READ_ONCE(sqe->personality);
7192 	if (personality) {
7193 		req->creds = xa_load(&ctx->personalities, personality);
7194 		if (!req->creds)
7195 			return -EINVAL;
7196 		get_cred(req->creds);
7197 		req->flags |= REQ_F_CREDS;
7198 	}
7199 	state = &ctx->submit_state;
7200 
7201 	/*
7202 	 * Plug now if we have more than 1 IO left after this, and the target
7203 	 * is potentially a read/write to block based storage.
7204 	 */
7205 	if (!state->plug_started && state->ios_left > 1 &&
7206 	    io_op_defs[req->opcode].plug) {
7207 		blk_start_plug(&state->plug);
7208 		state->plug_started = true;
7209 	}
7210 
7211 	if (io_op_defs[req->opcode].needs_file) {
7212 		req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7213 					(sqe_flags & IOSQE_FIXED_FILE),
7214 					IO_URING_F_NONBLOCK);
7215 		if (unlikely(!req->file))
7216 			ret = -EBADF;
7217 	}
7218 
7219 	state->ios_left--;
7220 	return ret;
7221 }
7222 
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)7223 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7224 			 const struct io_uring_sqe *sqe)
7225 	__must_hold(&ctx->uring_lock)
7226 {
7227 	struct io_submit_link *link = &ctx->submit_state.link;
7228 	int ret;
7229 
7230 	ret = io_init_req(ctx, req, sqe);
7231 	if (unlikely(ret)) {
7232 fail_req:
7233 		/* fail even hard links since we don't submit */
7234 		if (link->head) {
7235 			/*
7236 			 * we can judge a link req is failed or cancelled by if
7237 			 * REQ_F_FAIL is set, but the head is an exception since
7238 			 * it may be set REQ_F_FAIL because of other req's failure
7239 			 * so let's leverage req->result to distinguish if a head
7240 			 * is set REQ_F_FAIL because of its failure or other req's
7241 			 * failure so that we can set the correct ret code for it.
7242 			 * init result here to avoid affecting the normal path.
7243 			 */
7244 			if (!(link->head->flags & REQ_F_FAIL))
7245 				req_fail_link_node(link->head, -ECANCELED);
7246 		} else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7247 			/*
7248 			 * the current req is a normal req, we should return
7249 			 * error and thus break the submittion loop.
7250 			 */
7251 			io_req_complete_failed(req, ret);
7252 			return ret;
7253 		}
7254 		req_fail_link_node(req, ret);
7255 	} else {
7256 		ret = io_req_prep(req, sqe);
7257 		if (unlikely(ret))
7258 			goto fail_req;
7259 	}
7260 
7261 	/* don't need @sqe from now on */
7262 	trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7263 				  req->flags, true,
7264 				  ctx->flags & IORING_SETUP_SQPOLL);
7265 
7266 	/*
7267 	 * If we already have a head request, queue this one for async
7268 	 * submittal once the head completes. If we don't have a head but
7269 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7270 	 * submitted sync once the chain is complete. If none of those
7271 	 * conditions are true (normal request), then just queue it.
7272 	 */
7273 	if (link->head) {
7274 		struct io_kiocb *head = link->head;
7275 
7276 		if (!(req->flags & REQ_F_FAIL)) {
7277 			ret = io_req_prep_async(req);
7278 			if (unlikely(ret)) {
7279 				req_fail_link_node(req, ret);
7280 				if (!(head->flags & REQ_F_FAIL))
7281 					req_fail_link_node(head, -ECANCELED);
7282 			}
7283 		}
7284 		trace_io_uring_link(ctx, req, head);
7285 		link->last->link = req;
7286 		link->last = req;
7287 
7288 		/* last request of a link, enqueue the link */
7289 		if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7290 			link->head = NULL;
7291 			io_queue_sqe(head);
7292 		}
7293 	} else {
7294 		if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7295 			link->head = req;
7296 			link->last = req;
7297 		} else {
7298 			io_queue_sqe(req);
7299 		}
7300 	}
7301 
7302 	return 0;
7303 }
7304 
7305 /*
7306  * Batched submission is done, ensure local IO is flushed out.
7307  */
io_submit_state_end(struct io_submit_state * state,struct io_ring_ctx * ctx)7308 static void io_submit_state_end(struct io_submit_state *state,
7309 				struct io_ring_ctx *ctx)
7310 {
7311 	if (state->link.head)
7312 		io_queue_sqe(state->link.head);
7313 	if (state->compl_nr)
7314 		io_submit_flush_completions(ctx);
7315 	if (state->plug_started)
7316 		blk_finish_plug(&state->plug);
7317 }
7318 
7319 /*
7320  * Start submission side cache.
7321  */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)7322 static void io_submit_state_start(struct io_submit_state *state,
7323 				  unsigned int max_ios)
7324 {
7325 	state->plug_started = false;
7326 	state->ios_left = max_ios;
7327 	/* set only head, no need to init link_last in advance */
7328 	state->link.head = NULL;
7329 }
7330 
io_commit_sqring(struct io_ring_ctx * ctx)7331 static void io_commit_sqring(struct io_ring_ctx *ctx)
7332 {
7333 	struct io_rings *rings = ctx->rings;
7334 
7335 	/*
7336 	 * Ensure any loads from the SQEs are done at this point,
7337 	 * since once we write the new head, the application could
7338 	 * write new data to them.
7339 	 */
7340 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7341 }
7342 
7343 /*
7344  * Fetch an sqe, if one is available. Note this returns a pointer to memory
7345  * that is mapped by userspace. This means that care needs to be taken to
7346  * ensure that reads are stable, as we cannot rely on userspace always
7347  * being a good citizen. If members of the sqe are validated and then later
7348  * used, it's important that those reads are done through READ_ONCE() to
7349  * prevent a re-load down the line.
7350  */
io_get_sqe(struct io_ring_ctx * ctx)7351 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7352 {
7353 	unsigned head, mask = ctx->sq_entries - 1;
7354 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
7355 
7356 	/*
7357 	 * The cached sq head (or cq tail) serves two purposes:
7358 	 *
7359 	 * 1) allows us to batch the cost of updating the user visible
7360 	 *    head updates.
7361 	 * 2) allows the kernel side to track the head on its own, even
7362 	 *    though the application is the one updating it.
7363 	 */
7364 	head = READ_ONCE(ctx->sq_array[sq_idx]);
7365 	if (likely(head < ctx->sq_entries))
7366 		return &ctx->sq_sqes[head];
7367 
7368 	/* drop invalid entries */
7369 	ctx->cq_extra--;
7370 	WRITE_ONCE(ctx->rings->sq_dropped,
7371 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
7372 	return NULL;
7373 }
7374 
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)7375 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7376 	__must_hold(&ctx->uring_lock)
7377 {
7378 	int submitted = 0;
7379 
7380 	/* make sure SQ entry isn't read before tail */
7381 	nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7382 	if (!percpu_ref_tryget_many(&ctx->refs, nr))
7383 		return -EAGAIN;
7384 	io_get_task_refs(nr);
7385 
7386 	io_submit_state_start(&ctx->submit_state, nr);
7387 	while (submitted < nr) {
7388 		const struct io_uring_sqe *sqe;
7389 		struct io_kiocb *req;
7390 
7391 		req = io_alloc_req(ctx);
7392 		if (unlikely(!req)) {
7393 			if (!submitted)
7394 				submitted = -EAGAIN;
7395 			break;
7396 		}
7397 		sqe = io_get_sqe(ctx);
7398 		if (unlikely(!sqe)) {
7399 			list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7400 			break;
7401 		}
7402 		/* will complete beyond this point, count as submitted */
7403 		submitted++;
7404 		if (io_submit_sqe(ctx, req, sqe))
7405 			break;
7406 	}
7407 
7408 	if (unlikely(submitted != nr)) {
7409 		int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7410 		int unused = nr - ref_used;
7411 
7412 		current->io_uring->cached_refs += unused;
7413 		percpu_ref_put_many(&ctx->refs, unused);
7414 	}
7415 
7416 	io_submit_state_end(&ctx->submit_state, ctx);
7417 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7418 	io_commit_sqring(ctx);
7419 
7420 	return submitted;
7421 }
7422 
io_sqd_events_pending(struct io_sq_data * sqd)7423 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7424 {
7425 	return READ_ONCE(sqd->state);
7426 }
7427 
io_ring_set_wakeup_flag(struct io_ring_ctx * ctx)7428 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7429 {
7430 	/* Tell userspace we may need a wakeup call */
7431 	spin_lock(&ctx->completion_lock);
7432 	WRITE_ONCE(ctx->rings->sq_flags,
7433 		   ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7434 	spin_unlock(&ctx->completion_lock);
7435 }
7436 
io_ring_clear_wakeup_flag(struct io_ring_ctx * ctx)7437 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7438 {
7439 	spin_lock(&ctx->completion_lock);
7440 	WRITE_ONCE(ctx->rings->sq_flags,
7441 		   ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7442 	spin_unlock(&ctx->completion_lock);
7443 }
7444 
__io_sq_thread(struct io_ring_ctx * ctx,bool cap_entries)7445 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7446 {
7447 	unsigned int to_submit;
7448 	int ret = 0;
7449 
7450 	to_submit = io_sqring_entries(ctx);
7451 	/* if we're handling multiple rings, cap submit size for fairness */
7452 	if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7453 		to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7454 
7455 	if (!list_empty(&ctx->iopoll_list) || to_submit) {
7456 		unsigned nr_events = 0;
7457 		const struct cred *creds = NULL;
7458 
7459 		if (ctx->sq_creds != current_cred())
7460 			creds = override_creds(ctx->sq_creds);
7461 
7462 		mutex_lock(&ctx->uring_lock);
7463 		if (!list_empty(&ctx->iopoll_list))
7464 			io_do_iopoll(ctx, &nr_events, 0);
7465 
7466 		/*
7467 		 * Don't submit if refs are dying, good for io_uring_register(),
7468 		 * but also it is relied upon by io_ring_exit_work()
7469 		 */
7470 		if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7471 		    !(ctx->flags & IORING_SETUP_R_DISABLED))
7472 			ret = io_submit_sqes(ctx, to_submit);
7473 		mutex_unlock(&ctx->uring_lock);
7474 
7475 		if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7476 			wake_up(&ctx->sqo_sq_wait);
7477 		if (creds)
7478 			revert_creds(creds);
7479 	}
7480 
7481 	return ret;
7482 }
7483 
io_sqd_update_thread_idle(struct io_sq_data * sqd)7484 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7485 {
7486 	struct io_ring_ctx *ctx;
7487 	unsigned sq_thread_idle = 0;
7488 
7489 	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7490 		sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7491 	sqd->sq_thread_idle = sq_thread_idle;
7492 }
7493 
io_sqd_handle_event(struct io_sq_data * sqd)7494 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7495 {
7496 	bool did_sig = false;
7497 	struct ksignal ksig;
7498 
7499 	if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7500 	    signal_pending(current)) {
7501 		mutex_unlock(&sqd->lock);
7502 		if (signal_pending(current))
7503 			did_sig = get_signal(&ksig);
7504 		cond_resched();
7505 		mutex_lock(&sqd->lock);
7506 	}
7507 	return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7508 }
7509 
io_sq_thread(void * data)7510 static int io_sq_thread(void *data)
7511 {
7512 	struct io_sq_data *sqd = data;
7513 	struct io_ring_ctx *ctx;
7514 	unsigned long timeout = 0;
7515 	char buf[TASK_COMM_LEN];
7516 	DEFINE_WAIT(wait);
7517 
7518 	snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7519 	set_task_comm(current, buf);
7520 
7521 	if (sqd->sq_cpu != -1)
7522 		set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7523 	else
7524 		set_cpus_allowed_ptr(current, cpu_online_mask);
7525 	current->flags |= PF_NO_SETAFFINITY;
7526 
7527 	mutex_lock(&sqd->lock);
7528 	while (1) {
7529 		bool cap_entries, sqt_spin = false;
7530 
7531 		if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7532 			if (io_sqd_handle_event(sqd))
7533 				break;
7534 			timeout = jiffies + sqd->sq_thread_idle;
7535 		}
7536 
7537 		cap_entries = !list_is_singular(&sqd->ctx_list);
7538 		list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7539 			int ret = __io_sq_thread(ctx, cap_entries);
7540 
7541 			if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7542 				sqt_spin = true;
7543 		}
7544 		if (io_run_task_work())
7545 			sqt_spin = true;
7546 
7547 		if (sqt_spin || !time_after(jiffies, timeout)) {
7548 			cond_resched();
7549 			if (sqt_spin)
7550 				timeout = jiffies + sqd->sq_thread_idle;
7551 			continue;
7552 		}
7553 
7554 		prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7555 		if (!io_sqd_events_pending(sqd) && !current->task_works) {
7556 			bool needs_sched = true;
7557 
7558 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7559 				io_ring_set_wakeup_flag(ctx);
7560 
7561 				if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7562 				    !list_empty_careful(&ctx->iopoll_list)) {
7563 					needs_sched = false;
7564 					break;
7565 				}
7566 				if (io_sqring_entries(ctx)) {
7567 					needs_sched = false;
7568 					break;
7569 				}
7570 			}
7571 
7572 			if (needs_sched) {
7573 				mutex_unlock(&sqd->lock);
7574 				schedule();
7575 				mutex_lock(&sqd->lock);
7576 			}
7577 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7578 				io_ring_clear_wakeup_flag(ctx);
7579 		}
7580 
7581 		finish_wait(&sqd->wait, &wait);
7582 		timeout = jiffies + sqd->sq_thread_idle;
7583 	}
7584 
7585 	io_uring_cancel_generic(true, sqd);
7586 	sqd->thread = NULL;
7587 	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7588 		io_ring_set_wakeup_flag(ctx);
7589 	io_run_task_work();
7590 	mutex_unlock(&sqd->lock);
7591 
7592 	complete(&sqd->exited);
7593 	do_exit(0);
7594 }
7595 
7596 struct io_wait_queue {
7597 	struct wait_queue_entry wq;
7598 	struct io_ring_ctx *ctx;
7599 	unsigned cq_tail;
7600 	unsigned nr_timeouts;
7601 };
7602 
io_should_wake(struct io_wait_queue * iowq)7603 static inline bool io_should_wake(struct io_wait_queue *iowq)
7604 {
7605 	struct io_ring_ctx *ctx = iowq->ctx;
7606 	int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7607 
7608 	/*
7609 	 * Wake up if we have enough events, or if a timeout occurred since we
7610 	 * started waiting. For timeouts, we always want to return to userspace,
7611 	 * regardless of event count.
7612 	 */
7613 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7614 }
7615 
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)7616 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7617 			    int wake_flags, void *key)
7618 {
7619 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7620 							wq);
7621 
7622 	/*
7623 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7624 	 * the task, and the next invocation will do it.
7625 	 */
7626 	if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7627 		return autoremove_wake_function(curr, mode, wake_flags, key);
7628 	return -1;
7629 }
7630 
io_run_task_work_sig(void)7631 static int io_run_task_work_sig(void)
7632 {
7633 	if (io_run_task_work())
7634 		return 1;
7635 	if (!signal_pending(current))
7636 		return 0;
7637 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7638 		return -ERESTARTSYS;
7639 	return -EINTR;
7640 }
7641 
current_pending_io(void)7642 static bool current_pending_io(void)
7643 {
7644 	struct io_uring_task *tctx = current->io_uring;
7645 
7646 	if (!tctx)
7647 		return false;
7648 	return percpu_counter_read_positive(&tctx->inflight);
7649 }
7650 
7651 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t * timeout)7652 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7653 					  struct io_wait_queue *iowq,
7654 					  ktime_t *timeout)
7655 {
7656 	int io_wait, ret;
7657 
7658 	/* make sure we run task_work before checking for signals */
7659 	ret = io_run_task_work_sig();
7660 	if (ret || io_should_wake(iowq))
7661 		return ret;
7662 	/* let the caller flush overflows, retry */
7663 	if (test_bit(0, &ctx->check_cq_overflow))
7664 		return 1;
7665 
7666 	/*
7667 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
7668 	 * can take into account that the task is waiting for IO - turns out
7669 	 * to be important for low QD IO.
7670 	 */
7671 	io_wait = current->in_iowait;
7672 	if (current_pending_io())
7673 		current->in_iowait = 1;
7674 	ret = 1;
7675 	if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS))
7676 		ret = -ETIME;
7677 	current->in_iowait = io_wait;
7678 	return ret;
7679 }
7680 
7681 /*
7682  * Wait until events become available, if we don't already have some. The
7683  * application must reap them itself, as they reside on the shared cq ring.
7684  */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)7685 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7686 			  const sigset_t __user *sig, size_t sigsz,
7687 			  struct __kernel_timespec __user *uts)
7688 {
7689 	struct io_wait_queue iowq;
7690 	struct io_rings *rings = ctx->rings;
7691 	ktime_t timeout = KTIME_MAX;
7692 	int ret;
7693 
7694 	do {
7695 		io_cqring_overflow_flush(ctx);
7696 		if (io_cqring_events(ctx) >= min_events)
7697 			return 0;
7698 		if (!io_run_task_work())
7699 			break;
7700 	} while (1);
7701 
7702 	if (uts) {
7703 		struct timespec64 ts;
7704 
7705 		if (get_timespec64(&ts, uts))
7706 			return -EFAULT;
7707 		timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7708 	}
7709 
7710 	if (sig) {
7711 #ifdef CONFIG_COMPAT
7712 		if (in_compat_syscall())
7713 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7714 						      sigsz);
7715 		else
7716 #endif
7717 			ret = set_user_sigmask(sig, sigsz);
7718 
7719 		if (ret)
7720 			return ret;
7721 	}
7722 
7723 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7724 	iowq.wq.private = current;
7725 	INIT_LIST_HEAD(&iowq.wq.entry);
7726 	iowq.ctx = ctx;
7727 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7728 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7729 
7730 	trace_io_uring_cqring_wait(ctx, min_events);
7731 	do {
7732 		/* if we can't even flush overflow, don't wait for more */
7733 		if (!io_cqring_overflow_flush(ctx)) {
7734 			ret = -EBUSY;
7735 			break;
7736 		}
7737 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7738 						TASK_INTERRUPTIBLE);
7739 		ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7740 		finish_wait(&ctx->cq_wait, &iowq.wq);
7741 		cond_resched();
7742 	} while (ret > 0);
7743 
7744 	restore_saved_sigmask_unless(ret == -EINTR);
7745 
7746 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7747 }
7748 
io_free_page_table(void ** table,size_t size)7749 static void io_free_page_table(void **table, size_t size)
7750 {
7751 	unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7752 
7753 	for (i = 0; i < nr_tables; i++)
7754 		kfree(table[i]);
7755 	kfree(table);
7756 }
7757 
io_alloc_page_table(size_t size)7758 static void **io_alloc_page_table(size_t size)
7759 {
7760 	unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7761 	size_t init_size = size;
7762 	void **table;
7763 
7764 	table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7765 	if (!table)
7766 		return NULL;
7767 
7768 	for (i = 0; i < nr_tables; i++) {
7769 		unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7770 
7771 		table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7772 		if (!table[i]) {
7773 			io_free_page_table(table, init_size);
7774 			return NULL;
7775 		}
7776 		size -= this_size;
7777 	}
7778 	return table;
7779 }
7780 
io_rsrc_node_destroy(struct io_rsrc_node * ref_node)7781 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7782 {
7783 	percpu_ref_exit(&ref_node->refs);
7784 	kfree(ref_node);
7785 }
7786 
io_rsrc_node_ref_zero(struct percpu_ref * ref)7787 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7788 {
7789 	struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7790 	struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7791 	unsigned long flags;
7792 	bool first_add = false;
7793 	unsigned long delay = HZ;
7794 
7795 	spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7796 	node->done = true;
7797 
7798 	/* if we are mid-quiesce then do not delay */
7799 	if (node->rsrc_data->quiesce)
7800 		delay = 0;
7801 
7802 	while (!list_empty(&ctx->rsrc_ref_list)) {
7803 		node = list_first_entry(&ctx->rsrc_ref_list,
7804 					    struct io_rsrc_node, node);
7805 		/* recycle ref nodes in order */
7806 		if (!node->done)
7807 			break;
7808 		list_del(&node->node);
7809 		first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7810 	}
7811 	spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7812 
7813 	if (first_add)
7814 		mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7815 }
7816 
io_rsrc_node_alloc(struct io_ring_ctx * ctx)7817 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7818 {
7819 	struct io_rsrc_node *ref_node;
7820 
7821 	ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7822 	if (!ref_node)
7823 		return NULL;
7824 
7825 	if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7826 			    0, GFP_KERNEL)) {
7827 		kfree(ref_node);
7828 		return NULL;
7829 	}
7830 	INIT_LIST_HEAD(&ref_node->node);
7831 	INIT_LIST_HEAD(&ref_node->rsrc_list);
7832 	ref_node->done = false;
7833 	return ref_node;
7834 }
7835 
io_rsrc_node_switch(struct io_ring_ctx * ctx,struct io_rsrc_data * data_to_kill)7836 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7837 				struct io_rsrc_data *data_to_kill)
7838 {
7839 	WARN_ON_ONCE(!ctx->rsrc_backup_node);
7840 	WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7841 
7842 	if (data_to_kill) {
7843 		struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7844 
7845 		rsrc_node->rsrc_data = data_to_kill;
7846 		spin_lock_irq(&ctx->rsrc_ref_lock);
7847 		list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7848 		spin_unlock_irq(&ctx->rsrc_ref_lock);
7849 
7850 		atomic_inc(&data_to_kill->refs);
7851 		percpu_ref_kill(&rsrc_node->refs);
7852 		ctx->rsrc_node = NULL;
7853 	}
7854 
7855 	if (!ctx->rsrc_node) {
7856 		ctx->rsrc_node = ctx->rsrc_backup_node;
7857 		ctx->rsrc_backup_node = NULL;
7858 	}
7859 }
7860 
io_rsrc_node_switch_start(struct io_ring_ctx * ctx)7861 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7862 {
7863 	if (ctx->rsrc_backup_node)
7864 		return 0;
7865 	ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7866 	return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7867 }
7868 
io_rsrc_ref_quiesce(struct io_rsrc_data * data,struct io_ring_ctx * ctx)7869 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7870 {
7871 	int ret;
7872 
7873 	/* As we may drop ->uring_lock, other task may have started quiesce */
7874 	if (data->quiesce)
7875 		return -ENXIO;
7876 
7877 	data->quiesce = true;
7878 	do {
7879 		ret = io_rsrc_node_switch_start(ctx);
7880 		if (ret)
7881 			break;
7882 		io_rsrc_node_switch(ctx, data);
7883 
7884 		/* kill initial ref, already quiesced if zero */
7885 		if (atomic_dec_and_test(&data->refs))
7886 			break;
7887 		mutex_unlock(&ctx->uring_lock);
7888 		flush_delayed_work(&ctx->rsrc_put_work);
7889 		ret = wait_for_completion_interruptible(&data->done);
7890 		if (!ret) {
7891 			mutex_lock(&ctx->uring_lock);
7892 			if (atomic_read(&data->refs) > 0) {
7893 				/*
7894 				 * it has been revived by another thread while
7895 				 * we were unlocked
7896 				 */
7897 				mutex_unlock(&ctx->uring_lock);
7898 			} else {
7899 				break;
7900 			}
7901 		}
7902 
7903 		atomic_inc(&data->refs);
7904 		/* wait for all works potentially completing data->done */
7905 		flush_delayed_work(&ctx->rsrc_put_work);
7906 		reinit_completion(&data->done);
7907 
7908 		ret = io_run_task_work_sig();
7909 		mutex_lock(&ctx->uring_lock);
7910 	} while (ret >= 0);
7911 	data->quiesce = false;
7912 
7913 	return ret;
7914 }
7915 
io_get_tag_slot(struct io_rsrc_data * data,unsigned int idx)7916 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7917 {
7918 	unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7919 	unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7920 
7921 	return &data->tags[table_idx][off];
7922 }
7923 
io_rsrc_data_free(struct io_rsrc_data * data)7924 static void io_rsrc_data_free(struct io_rsrc_data *data)
7925 {
7926 	size_t size = data->nr * sizeof(data->tags[0][0]);
7927 
7928 	if (data->tags)
7929 		io_free_page_table((void **)data->tags, size);
7930 	kfree(data);
7931 }
7932 
io_rsrc_data_alloc(struct io_ring_ctx * ctx,rsrc_put_fn * do_put,u64 __user * utags,unsigned nr,struct io_rsrc_data ** pdata)7933 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7934 			      u64 __user *utags, unsigned nr,
7935 			      struct io_rsrc_data **pdata)
7936 {
7937 	struct io_rsrc_data *data;
7938 	int ret = -ENOMEM;
7939 	unsigned i;
7940 
7941 	data = kzalloc(sizeof(*data), GFP_KERNEL);
7942 	if (!data)
7943 		return -ENOMEM;
7944 	data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7945 	if (!data->tags) {
7946 		kfree(data);
7947 		return -ENOMEM;
7948 	}
7949 
7950 	data->nr = nr;
7951 	data->ctx = ctx;
7952 	data->do_put = do_put;
7953 	if (utags) {
7954 		ret = -EFAULT;
7955 		for (i = 0; i < nr; i++) {
7956 			u64 *tag_slot = io_get_tag_slot(data, i);
7957 
7958 			if (copy_from_user(tag_slot, &utags[i],
7959 					   sizeof(*tag_slot)))
7960 				goto fail;
7961 		}
7962 	}
7963 
7964 	atomic_set(&data->refs, 1);
7965 	init_completion(&data->done);
7966 	*pdata = data;
7967 	return 0;
7968 fail:
7969 	io_rsrc_data_free(data);
7970 	return ret;
7971 }
7972 
io_alloc_file_tables(struct io_file_table * table,unsigned nr_files)7973 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7974 {
7975 	table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7976 				GFP_KERNEL_ACCOUNT);
7977 	return !!table->files;
7978 }
7979 
io_free_file_tables(struct io_file_table * table)7980 static void io_free_file_tables(struct io_file_table *table)
7981 {
7982 	kvfree(table->files);
7983 	table->files = NULL;
7984 }
7985 
__io_sqe_files_unregister(struct io_ring_ctx * ctx)7986 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7987 {
7988 #if defined(CONFIG_UNIX)
7989 	if (ctx->ring_sock) {
7990 		struct sock *sock = ctx->ring_sock->sk;
7991 		struct sk_buff *skb;
7992 
7993 		while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7994 			kfree_skb(skb);
7995 	}
7996 #else
7997 	int i;
7998 
7999 	for (i = 0; i < ctx->nr_user_files; i++) {
8000 		struct file *file;
8001 
8002 		file = io_file_from_index(ctx, i);
8003 		if (file)
8004 			fput(file);
8005 	}
8006 #endif
8007 	io_free_file_tables(&ctx->file_table);
8008 	io_rsrc_data_free(ctx->file_data);
8009 	ctx->file_data = NULL;
8010 	ctx->nr_user_files = 0;
8011 }
8012 
io_sqe_files_unregister(struct io_ring_ctx * ctx)8013 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
8014 {
8015 	unsigned nr = ctx->nr_user_files;
8016 	int ret;
8017 
8018 	if (!ctx->file_data)
8019 		return -ENXIO;
8020 
8021 	/*
8022 	 * Quiesce may unlock ->uring_lock, and while it's not held
8023 	 * prevent new requests using the table.
8024 	 */
8025 	ctx->nr_user_files = 0;
8026 	ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
8027 	ctx->nr_user_files = nr;
8028 	if (!ret)
8029 		__io_sqe_files_unregister(ctx);
8030 	return ret;
8031 }
8032 
io_sq_thread_unpark(struct io_sq_data * sqd)8033 static void io_sq_thread_unpark(struct io_sq_data *sqd)
8034 	__releases(&sqd->lock)
8035 {
8036 	WARN_ON_ONCE(sqd->thread == current);
8037 
8038 	/*
8039 	 * Do the dance but not conditional clear_bit() because it'd race with
8040 	 * other threads incrementing park_pending and setting the bit.
8041 	 */
8042 	clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8043 	if (atomic_dec_return(&sqd->park_pending))
8044 		set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8045 	mutex_unlock(&sqd->lock);
8046 }
8047 
io_sq_thread_park(struct io_sq_data * sqd)8048 static void io_sq_thread_park(struct io_sq_data *sqd)
8049 	__acquires(&sqd->lock)
8050 {
8051 	WARN_ON_ONCE(sqd->thread == current);
8052 
8053 	atomic_inc(&sqd->park_pending);
8054 	set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8055 	mutex_lock(&sqd->lock);
8056 	if (sqd->thread)
8057 		wake_up_process(sqd->thread);
8058 }
8059 
io_sq_thread_stop(struct io_sq_data * sqd)8060 static void io_sq_thread_stop(struct io_sq_data *sqd)
8061 {
8062 	WARN_ON_ONCE(sqd->thread == current);
8063 	WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
8064 
8065 	set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
8066 	mutex_lock(&sqd->lock);
8067 	if (sqd->thread)
8068 		wake_up_process(sqd->thread);
8069 	mutex_unlock(&sqd->lock);
8070 	wait_for_completion(&sqd->exited);
8071 }
8072 
io_put_sq_data(struct io_sq_data * sqd)8073 static void io_put_sq_data(struct io_sq_data *sqd)
8074 {
8075 	if (refcount_dec_and_test(&sqd->refs)) {
8076 		WARN_ON_ONCE(atomic_read(&sqd->park_pending));
8077 
8078 		io_sq_thread_stop(sqd);
8079 		kfree(sqd);
8080 	}
8081 }
8082 
io_sq_thread_finish(struct io_ring_ctx * ctx)8083 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
8084 {
8085 	struct io_sq_data *sqd = ctx->sq_data;
8086 
8087 	if (sqd) {
8088 		io_sq_thread_park(sqd);
8089 		list_del_init(&ctx->sqd_list);
8090 		io_sqd_update_thread_idle(sqd);
8091 		io_sq_thread_unpark(sqd);
8092 
8093 		io_put_sq_data(sqd);
8094 		ctx->sq_data = NULL;
8095 	}
8096 }
8097 
io_attach_sq_data(struct io_uring_params * p)8098 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8099 {
8100 	struct io_ring_ctx *ctx_attach;
8101 	struct io_sq_data *sqd;
8102 	struct fd f;
8103 
8104 	f = fdget(p->wq_fd);
8105 	if (!f.file)
8106 		return ERR_PTR(-ENXIO);
8107 	if (f.file->f_op != &io_uring_fops) {
8108 		fdput(f);
8109 		return ERR_PTR(-EINVAL);
8110 	}
8111 
8112 	ctx_attach = f.file->private_data;
8113 	sqd = ctx_attach->sq_data;
8114 	if (!sqd) {
8115 		fdput(f);
8116 		return ERR_PTR(-EINVAL);
8117 	}
8118 	if (sqd->task_tgid != current->tgid) {
8119 		fdput(f);
8120 		return ERR_PTR(-EPERM);
8121 	}
8122 
8123 	refcount_inc(&sqd->refs);
8124 	fdput(f);
8125 	return sqd;
8126 }
8127 
io_get_sq_data(struct io_uring_params * p,bool * attached)8128 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8129 					 bool *attached)
8130 {
8131 	struct io_sq_data *sqd;
8132 
8133 	*attached = false;
8134 	if (p->flags & IORING_SETUP_ATTACH_WQ) {
8135 		sqd = io_attach_sq_data(p);
8136 		if (!IS_ERR(sqd)) {
8137 			*attached = true;
8138 			return sqd;
8139 		}
8140 		/* fall through for EPERM case, setup new sqd/task */
8141 		if (PTR_ERR(sqd) != -EPERM)
8142 			return sqd;
8143 	}
8144 
8145 	sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8146 	if (!sqd)
8147 		return ERR_PTR(-ENOMEM);
8148 
8149 	atomic_set(&sqd->park_pending, 0);
8150 	refcount_set(&sqd->refs, 1);
8151 	INIT_LIST_HEAD(&sqd->ctx_list);
8152 	mutex_init(&sqd->lock);
8153 	init_waitqueue_head(&sqd->wait);
8154 	init_completion(&sqd->exited);
8155 	return sqd;
8156 }
8157 
8158 #if defined(CONFIG_UNIX)
8159 /*
8160  * Ensure the UNIX gc is aware of our file set, so we are certain that
8161  * the io_uring can be safely unregistered on process exit, even if we have
8162  * loops in the file referencing.
8163  */
__io_sqe_files_scm(struct io_ring_ctx * ctx,int nr,int offset)8164 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8165 {
8166 	struct sock *sk = ctx->ring_sock->sk;
8167 	struct scm_fp_list *fpl;
8168 	struct sk_buff *skb;
8169 	int i, nr_files;
8170 
8171 	fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8172 	if (!fpl)
8173 		return -ENOMEM;
8174 
8175 	skb = alloc_skb(0, GFP_KERNEL);
8176 	if (!skb) {
8177 		kfree(fpl);
8178 		return -ENOMEM;
8179 	}
8180 
8181 	skb->sk = sk;
8182 	skb->scm_io_uring = 1;
8183 
8184 	nr_files = 0;
8185 	fpl->user = get_uid(current_user());
8186 	for (i = 0; i < nr; i++) {
8187 		struct file *file = io_file_from_index(ctx, i + offset);
8188 
8189 		if (!file)
8190 			continue;
8191 		fpl->fp[nr_files] = get_file(file);
8192 		unix_inflight(fpl->user, fpl->fp[nr_files]);
8193 		nr_files++;
8194 	}
8195 
8196 	if (nr_files) {
8197 		fpl->max = SCM_MAX_FD;
8198 		fpl->count = nr_files;
8199 		UNIXCB(skb).fp = fpl;
8200 		skb->destructor = unix_destruct_scm;
8201 		refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8202 		skb_queue_head(&sk->sk_receive_queue, skb);
8203 
8204 		for (i = 0; i < nr; i++) {
8205 			struct file *file = io_file_from_index(ctx, i + offset);
8206 
8207 			if (file)
8208 				fput(file);
8209 		}
8210 	} else {
8211 		kfree_skb(skb);
8212 		free_uid(fpl->user);
8213 		kfree(fpl);
8214 	}
8215 
8216 	return 0;
8217 }
8218 
8219 /*
8220  * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8221  * causes regular reference counting to break down. We rely on the UNIX
8222  * garbage collection to take care of this problem for us.
8223  */
io_sqe_files_scm(struct io_ring_ctx * ctx)8224 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8225 {
8226 	unsigned left, total;
8227 	int ret = 0;
8228 
8229 	total = 0;
8230 	left = ctx->nr_user_files;
8231 	while (left) {
8232 		unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8233 
8234 		ret = __io_sqe_files_scm(ctx, this_files, total);
8235 		if (ret)
8236 			break;
8237 		left -= this_files;
8238 		total += this_files;
8239 	}
8240 
8241 	if (!ret)
8242 		return 0;
8243 
8244 	while (total < ctx->nr_user_files) {
8245 		struct file *file = io_file_from_index(ctx, total);
8246 
8247 		if (file)
8248 			fput(file);
8249 		total++;
8250 	}
8251 
8252 	return ret;
8253 }
8254 #else
io_sqe_files_scm(struct io_ring_ctx * ctx)8255 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8256 {
8257 	return 0;
8258 }
8259 #endif
8260 
io_rsrc_file_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)8261 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8262 {
8263 	struct file *file = prsrc->file;
8264 #if defined(CONFIG_UNIX)
8265 	struct sock *sock = ctx->ring_sock->sk;
8266 	struct sk_buff_head list, *head = &sock->sk_receive_queue;
8267 	struct sk_buff *skb;
8268 	int i;
8269 
8270 	__skb_queue_head_init(&list);
8271 
8272 	/*
8273 	 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8274 	 * remove this entry and rearrange the file array.
8275 	 */
8276 	skb = skb_dequeue(head);
8277 	while (skb) {
8278 		struct scm_fp_list *fp;
8279 
8280 		fp = UNIXCB(skb).fp;
8281 		for (i = 0; i < fp->count; i++) {
8282 			int left;
8283 
8284 			if (fp->fp[i] != file)
8285 				continue;
8286 
8287 			unix_notinflight(fp->user, fp->fp[i]);
8288 			left = fp->count - 1 - i;
8289 			if (left) {
8290 				memmove(&fp->fp[i], &fp->fp[i + 1],
8291 						left * sizeof(struct file *));
8292 			}
8293 			fp->count--;
8294 			if (!fp->count) {
8295 				kfree_skb(skb);
8296 				skb = NULL;
8297 			} else {
8298 				__skb_queue_tail(&list, skb);
8299 			}
8300 			fput(file);
8301 			file = NULL;
8302 			break;
8303 		}
8304 
8305 		if (!file)
8306 			break;
8307 
8308 		__skb_queue_tail(&list, skb);
8309 
8310 		skb = skb_dequeue(head);
8311 	}
8312 
8313 	if (skb_peek(&list)) {
8314 		spin_lock_irq(&head->lock);
8315 		while ((skb = __skb_dequeue(&list)) != NULL)
8316 			__skb_queue_tail(head, skb);
8317 		spin_unlock_irq(&head->lock);
8318 	}
8319 #else
8320 	fput(file);
8321 #endif
8322 }
8323 
__io_rsrc_put_work(struct io_rsrc_node * ref_node)8324 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8325 {
8326 	struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8327 	struct io_ring_ctx *ctx = rsrc_data->ctx;
8328 	struct io_rsrc_put *prsrc, *tmp;
8329 
8330 	list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8331 		list_del(&prsrc->list);
8332 
8333 		if (prsrc->tag) {
8334 			bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8335 
8336 			io_ring_submit_lock(ctx, lock_ring);
8337 			spin_lock(&ctx->completion_lock);
8338 			io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
8339 			io_commit_cqring(ctx);
8340 			spin_unlock(&ctx->completion_lock);
8341 			io_cqring_ev_posted(ctx);
8342 			io_ring_submit_unlock(ctx, lock_ring);
8343 		}
8344 
8345 		rsrc_data->do_put(ctx, prsrc);
8346 		kfree(prsrc);
8347 	}
8348 
8349 	io_rsrc_node_destroy(ref_node);
8350 	if (atomic_dec_and_test(&rsrc_data->refs))
8351 		complete(&rsrc_data->done);
8352 }
8353 
io_rsrc_put_work(struct work_struct * work)8354 static void io_rsrc_put_work(struct work_struct *work)
8355 {
8356 	struct io_ring_ctx *ctx;
8357 	struct llist_node *node;
8358 
8359 	ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8360 	node = llist_del_all(&ctx->rsrc_put_llist);
8361 
8362 	while (node) {
8363 		struct io_rsrc_node *ref_node;
8364 		struct llist_node *next = node->next;
8365 
8366 		ref_node = llist_entry(node, struct io_rsrc_node, llist);
8367 		__io_rsrc_put_work(ref_node);
8368 		node = next;
8369 	}
8370 }
8371 
io_sqe_files_register(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args,u64 __user * tags)8372 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8373 				 unsigned nr_args, u64 __user *tags)
8374 {
8375 	__s32 __user *fds = (__s32 __user *) arg;
8376 	struct file *file;
8377 	int fd, ret;
8378 	unsigned i;
8379 
8380 	if (ctx->file_data)
8381 		return -EBUSY;
8382 	if (!nr_args)
8383 		return -EINVAL;
8384 	if (nr_args > IORING_MAX_FIXED_FILES)
8385 		return -EMFILE;
8386 	if (nr_args > rlimit(RLIMIT_NOFILE))
8387 		return -EMFILE;
8388 	ret = io_rsrc_node_switch_start(ctx);
8389 	if (ret)
8390 		return ret;
8391 	ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8392 				 &ctx->file_data);
8393 	if (ret)
8394 		return ret;
8395 
8396 	ret = -ENOMEM;
8397 	if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8398 		goto out_free;
8399 
8400 	for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8401 		if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8402 			ret = -EFAULT;
8403 			goto out_fput;
8404 		}
8405 		/* allow sparse sets */
8406 		if (fd == -1) {
8407 			ret = -EINVAL;
8408 			if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8409 				goto out_fput;
8410 			continue;
8411 		}
8412 
8413 		file = fget(fd);
8414 		ret = -EBADF;
8415 		if (unlikely(!file))
8416 			goto out_fput;
8417 
8418 		/*
8419 		 * Don't allow io_uring instances to be registered. If UNIX
8420 		 * isn't enabled, then this causes a reference cycle and this
8421 		 * instance can never get freed. If UNIX is enabled we'll
8422 		 * handle it just fine, but there's still no point in allowing
8423 		 * a ring fd as it doesn't support regular read/write anyway.
8424 		 */
8425 		if (file->f_op == &io_uring_fops) {
8426 			fput(file);
8427 			goto out_fput;
8428 		}
8429 		io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8430 	}
8431 
8432 	ret = io_sqe_files_scm(ctx);
8433 	if (ret) {
8434 		__io_sqe_files_unregister(ctx);
8435 		return ret;
8436 	}
8437 
8438 	io_rsrc_node_switch(ctx, NULL);
8439 	return ret;
8440 out_fput:
8441 	for (i = 0; i < ctx->nr_user_files; i++) {
8442 		file = io_file_from_index(ctx, i);
8443 		if (file)
8444 			fput(file);
8445 	}
8446 	io_free_file_tables(&ctx->file_table);
8447 	ctx->nr_user_files = 0;
8448 out_free:
8449 	io_rsrc_data_free(ctx->file_data);
8450 	ctx->file_data = NULL;
8451 	return ret;
8452 }
8453 
io_queue_rsrc_removal(struct io_rsrc_data * data,unsigned idx,struct io_rsrc_node * node,void * rsrc)8454 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8455 				 struct io_rsrc_node *node, void *rsrc)
8456 {
8457 	u64 *tag_slot = io_get_tag_slot(data, idx);
8458 	struct io_rsrc_put *prsrc;
8459 
8460 	prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8461 	if (!prsrc)
8462 		return -ENOMEM;
8463 
8464 	prsrc->tag = *tag_slot;
8465 	*tag_slot = 0;
8466 	prsrc->rsrc = rsrc;
8467 	list_add(&prsrc->list, &node->rsrc_list);
8468 	return 0;
8469 }
8470 
io_install_fixed_file(struct io_kiocb * req,struct file * file,unsigned int issue_flags,u32 slot_index)8471 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8472 				 unsigned int issue_flags, u32 slot_index)
8473 {
8474 	struct io_ring_ctx *ctx = req->ctx;
8475 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8476 	bool needs_switch = false;
8477 	struct io_fixed_file *file_slot;
8478 	int ret = -EBADF;
8479 
8480 	io_ring_submit_lock(ctx, !force_nonblock);
8481 	if (file->f_op == &io_uring_fops)
8482 		goto err;
8483 	ret = -ENXIO;
8484 	if (!ctx->file_data)
8485 		goto err;
8486 	ret = -EINVAL;
8487 	if (slot_index >= ctx->nr_user_files)
8488 		goto err;
8489 
8490 	slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8491 	file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8492 
8493 	if (file_slot->file_ptr) {
8494 		struct file *old_file;
8495 
8496 		ret = io_rsrc_node_switch_start(ctx);
8497 		if (ret)
8498 			goto err;
8499 
8500 		old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8501 		ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8502 					    ctx->rsrc_node, old_file);
8503 		if (ret)
8504 			goto err;
8505 		file_slot->file_ptr = 0;
8506 		needs_switch = true;
8507 	}
8508 
8509 	*io_get_tag_slot(ctx->file_data, slot_index) = 0;
8510 	io_fixed_file_set(file_slot, file);
8511 	ret = 0;
8512 err:
8513 	if (needs_switch)
8514 		io_rsrc_node_switch(ctx, ctx->file_data);
8515 	io_ring_submit_unlock(ctx, !force_nonblock);
8516 	if (ret)
8517 		fput(file);
8518 	return ret;
8519 }
8520 
io_close_fixed(struct io_kiocb * req,unsigned int issue_flags)8521 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8522 {
8523 	unsigned int offset = req->close.file_slot - 1;
8524 	struct io_ring_ctx *ctx = req->ctx;
8525 	struct io_fixed_file *file_slot;
8526 	struct file *file;
8527 	int ret;
8528 
8529 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8530 	ret = -ENXIO;
8531 	if (unlikely(!ctx->file_data))
8532 		goto out;
8533 	ret = -EINVAL;
8534 	if (offset >= ctx->nr_user_files)
8535 		goto out;
8536 	ret = io_rsrc_node_switch_start(ctx);
8537 	if (ret)
8538 		goto out;
8539 
8540 	offset = array_index_nospec(offset, ctx->nr_user_files);
8541 	file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8542 	ret = -EBADF;
8543 	if (!file_slot->file_ptr)
8544 		goto out;
8545 
8546 	file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8547 	ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8548 	if (ret)
8549 		goto out;
8550 
8551 	file_slot->file_ptr = 0;
8552 	io_rsrc_node_switch(ctx, ctx->file_data);
8553 	ret = 0;
8554 out:
8555 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8556 	return ret;
8557 }
8558 
__io_sqe_files_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned nr_args)8559 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8560 				 struct io_uring_rsrc_update2 *up,
8561 				 unsigned nr_args)
8562 {
8563 	u64 __user *tags = u64_to_user_ptr(up->tags);
8564 	__s32 __user *fds = u64_to_user_ptr(up->data);
8565 	struct io_rsrc_data *data = ctx->file_data;
8566 	struct io_fixed_file *file_slot;
8567 	struct file *file;
8568 	int fd, i, err = 0;
8569 	unsigned int done;
8570 	bool needs_switch = false;
8571 
8572 	if (!ctx->file_data)
8573 		return -ENXIO;
8574 	if (up->offset + nr_args > ctx->nr_user_files)
8575 		return -EINVAL;
8576 
8577 	for (done = 0; done < nr_args; done++) {
8578 		u64 tag = 0;
8579 
8580 		if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8581 		    copy_from_user(&fd, &fds[done], sizeof(fd))) {
8582 			err = -EFAULT;
8583 			break;
8584 		}
8585 		if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8586 			err = -EINVAL;
8587 			break;
8588 		}
8589 		if (fd == IORING_REGISTER_FILES_SKIP)
8590 			continue;
8591 
8592 		i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8593 		file_slot = io_fixed_file_slot(&ctx->file_table, i);
8594 
8595 		if (file_slot->file_ptr) {
8596 			file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8597 			err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8598 			if (err)
8599 				break;
8600 			file_slot->file_ptr = 0;
8601 			needs_switch = true;
8602 		}
8603 		if (fd != -1) {
8604 			file = fget(fd);
8605 			if (!file) {
8606 				err = -EBADF;
8607 				break;
8608 			}
8609 			/*
8610 			 * Don't allow io_uring instances to be registered. If
8611 			 * UNIX isn't enabled, then this causes a reference
8612 			 * cycle and this instance can never get freed. If UNIX
8613 			 * is enabled we'll handle it just fine, but there's
8614 			 * still no point in allowing a ring fd as it doesn't
8615 			 * support regular read/write anyway.
8616 			 */
8617 			if (file->f_op == &io_uring_fops) {
8618 				fput(file);
8619 				err = -EBADF;
8620 				break;
8621 			}
8622 			*io_get_tag_slot(data, i) = tag;
8623 			io_fixed_file_set(file_slot, file);
8624 		}
8625 	}
8626 
8627 	if (needs_switch)
8628 		io_rsrc_node_switch(ctx, data);
8629 	return done ? done : err;
8630 }
8631 
io_init_wq_offload(struct io_ring_ctx * ctx,struct task_struct * task)8632 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8633 					struct task_struct *task)
8634 {
8635 	struct io_wq_hash *hash;
8636 	struct io_wq_data data;
8637 	unsigned int concurrency;
8638 
8639 	mutex_lock(&ctx->uring_lock);
8640 	hash = ctx->hash_map;
8641 	if (!hash) {
8642 		hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8643 		if (!hash) {
8644 			mutex_unlock(&ctx->uring_lock);
8645 			return ERR_PTR(-ENOMEM);
8646 		}
8647 		refcount_set(&hash->refs, 1);
8648 		init_waitqueue_head(&hash->wait);
8649 		ctx->hash_map = hash;
8650 	}
8651 	mutex_unlock(&ctx->uring_lock);
8652 
8653 	data.hash = hash;
8654 	data.task = task;
8655 	data.free_work = io_wq_free_work;
8656 	data.do_work = io_wq_submit_work;
8657 
8658 	/* Do QD, or 4 * CPUS, whatever is smallest */
8659 	concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8660 
8661 	return io_wq_create(concurrency, &data);
8662 }
8663 
io_uring_alloc_task_context(struct task_struct * task,struct io_ring_ctx * ctx)8664 static int io_uring_alloc_task_context(struct task_struct *task,
8665 				       struct io_ring_ctx *ctx)
8666 {
8667 	struct io_uring_task *tctx;
8668 	int ret;
8669 
8670 	tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8671 	if (unlikely(!tctx))
8672 		return -ENOMEM;
8673 
8674 	ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8675 	if (unlikely(ret)) {
8676 		kfree(tctx);
8677 		return ret;
8678 	}
8679 
8680 	tctx->io_wq = io_init_wq_offload(ctx, task);
8681 	if (IS_ERR(tctx->io_wq)) {
8682 		ret = PTR_ERR(tctx->io_wq);
8683 		percpu_counter_destroy(&tctx->inflight);
8684 		kfree(tctx);
8685 		return ret;
8686 	}
8687 
8688 	xa_init(&tctx->xa);
8689 	init_waitqueue_head(&tctx->wait);
8690 	atomic_set(&tctx->in_idle, 0);
8691 	atomic_set(&tctx->inflight_tracked, 0);
8692 	task->io_uring = tctx;
8693 	spin_lock_init(&tctx->task_lock);
8694 	INIT_WQ_LIST(&tctx->task_list);
8695 	init_task_work(&tctx->task_work, tctx_task_work);
8696 	return 0;
8697 }
8698 
__io_uring_free(struct task_struct * tsk)8699 void __io_uring_free(struct task_struct *tsk)
8700 {
8701 	struct io_uring_task *tctx = tsk->io_uring;
8702 
8703 	WARN_ON_ONCE(!xa_empty(&tctx->xa));
8704 	WARN_ON_ONCE(tctx->io_wq);
8705 	WARN_ON_ONCE(tctx->cached_refs);
8706 
8707 	percpu_counter_destroy(&tctx->inflight);
8708 	kfree(tctx);
8709 	tsk->io_uring = NULL;
8710 }
8711 
io_sq_offload_create(struct io_ring_ctx * ctx,struct io_uring_params * p)8712 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8713 				struct io_uring_params *p)
8714 {
8715 	int ret;
8716 
8717 	/* Retain compatibility with failing for an invalid attach attempt */
8718 	if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8719 				IORING_SETUP_ATTACH_WQ) {
8720 		struct fd f;
8721 
8722 		f = fdget(p->wq_fd);
8723 		if (!f.file)
8724 			return -ENXIO;
8725 		if (f.file->f_op != &io_uring_fops) {
8726 			fdput(f);
8727 			return -EINVAL;
8728 		}
8729 		fdput(f);
8730 	}
8731 	if (ctx->flags & IORING_SETUP_SQPOLL) {
8732 		struct task_struct *tsk;
8733 		struct io_sq_data *sqd;
8734 		bool attached;
8735 
8736 		sqd = io_get_sq_data(p, &attached);
8737 		if (IS_ERR(sqd)) {
8738 			ret = PTR_ERR(sqd);
8739 			goto err;
8740 		}
8741 
8742 		ctx->sq_creds = get_current_cred();
8743 		ctx->sq_data = sqd;
8744 		ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8745 		if (!ctx->sq_thread_idle)
8746 			ctx->sq_thread_idle = HZ;
8747 
8748 		io_sq_thread_park(sqd);
8749 		list_add(&ctx->sqd_list, &sqd->ctx_list);
8750 		io_sqd_update_thread_idle(sqd);
8751 		/* don't attach to a dying SQPOLL thread, would be racy */
8752 		ret = (attached && !sqd->thread) ? -ENXIO : 0;
8753 		io_sq_thread_unpark(sqd);
8754 
8755 		if (ret < 0)
8756 			goto err;
8757 		if (attached)
8758 			return 0;
8759 
8760 		if (p->flags & IORING_SETUP_SQ_AFF) {
8761 			int cpu = p->sq_thread_cpu;
8762 
8763 			ret = -EINVAL;
8764 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8765 				goto err_sqpoll;
8766 			sqd->sq_cpu = cpu;
8767 		} else {
8768 			sqd->sq_cpu = -1;
8769 		}
8770 
8771 		sqd->task_pid = current->pid;
8772 		sqd->task_tgid = current->tgid;
8773 		tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8774 		if (IS_ERR(tsk)) {
8775 			ret = PTR_ERR(tsk);
8776 			goto err_sqpoll;
8777 		}
8778 
8779 		sqd->thread = tsk;
8780 		ret = io_uring_alloc_task_context(tsk, ctx);
8781 		wake_up_new_task(tsk);
8782 		if (ret)
8783 			goto err;
8784 	} else if (p->flags & IORING_SETUP_SQ_AFF) {
8785 		/* Can't have SQ_AFF without SQPOLL */
8786 		ret = -EINVAL;
8787 		goto err;
8788 	}
8789 
8790 	return 0;
8791 err_sqpoll:
8792 	complete(&ctx->sq_data->exited);
8793 err:
8794 	io_sq_thread_finish(ctx);
8795 	return ret;
8796 }
8797 
__io_unaccount_mem(struct user_struct * user,unsigned long nr_pages)8798 static inline void __io_unaccount_mem(struct user_struct *user,
8799 				      unsigned long nr_pages)
8800 {
8801 	atomic_long_sub(nr_pages, &user->locked_vm);
8802 }
8803 
__io_account_mem(struct user_struct * user,unsigned long nr_pages)8804 static inline int __io_account_mem(struct user_struct *user,
8805 				   unsigned long nr_pages)
8806 {
8807 	unsigned long page_limit, cur_pages, new_pages;
8808 
8809 	/* Don't allow more pages than we can safely lock */
8810 	page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8811 
8812 	do {
8813 		cur_pages = atomic_long_read(&user->locked_vm);
8814 		new_pages = cur_pages + nr_pages;
8815 		if (new_pages > page_limit)
8816 			return -ENOMEM;
8817 	} while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8818 					new_pages) != cur_pages);
8819 
8820 	return 0;
8821 }
8822 
io_unaccount_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)8823 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8824 {
8825 	if (ctx->user)
8826 		__io_unaccount_mem(ctx->user, nr_pages);
8827 
8828 	if (ctx->mm_account)
8829 		atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8830 }
8831 
io_account_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)8832 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8833 {
8834 	int ret;
8835 
8836 	if (ctx->user) {
8837 		ret = __io_account_mem(ctx->user, nr_pages);
8838 		if (ret)
8839 			return ret;
8840 	}
8841 
8842 	if (ctx->mm_account)
8843 		atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8844 
8845 	return 0;
8846 }
8847 
io_mem_free(void * ptr)8848 static void io_mem_free(void *ptr)
8849 {
8850 	struct page *page;
8851 
8852 	if (!ptr)
8853 		return;
8854 
8855 	page = virt_to_head_page(ptr);
8856 	if (put_page_testzero(page))
8857 		free_compound_page(page);
8858 }
8859 
io_mem_alloc(size_t size)8860 static void *io_mem_alloc(size_t size)
8861 {
8862 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8863 
8864 	return (void *) __get_free_pages(gfp, get_order(size));
8865 }
8866 
rings_size(unsigned sq_entries,unsigned cq_entries,size_t * sq_offset)8867 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8868 				size_t *sq_offset)
8869 {
8870 	struct io_rings *rings;
8871 	size_t off, sq_array_size;
8872 
8873 	off = struct_size(rings, cqes, cq_entries);
8874 	if (off == SIZE_MAX)
8875 		return SIZE_MAX;
8876 
8877 #ifdef CONFIG_SMP
8878 	off = ALIGN(off, SMP_CACHE_BYTES);
8879 	if (off == 0)
8880 		return SIZE_MAX;
8881 #endif
8882 
8883 	if (sq_offset)
8884 		*sq_offset = off;
8885 
8886 	sq_array_size = array_size(sizeof(u32), sq_entries);
8887 	if (sq_array_size == SIZE_MAX)
8888 		return SIZE_MAX;
8889 
8890 	if (check_add_overflow(off, sq_array_size, &off))
8891 		return SIZE_MAX;
8892 
8893 	return off;
8894 }
8895 
io_buffer_unmap(struct io_ring_ctx * ctx,struct io_mapped_ubuf ** slot)8896 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8897 {
8898 	struct io_mapped_ubuf *imu = *slot;
8899 	unsigned int i;
8900 
8901 	if (imu != ctx->dummy_ubuf) {
8902 		for (i = 0; i < imu->nr_bvecs; i++)
8903 			unpin_user_page(imu->bvec[i].bv_page);
8904 		if (imu->acct_pages)
8905 			io_unaccount_mem(ctx, imu->acct_pages);
8906 		kvfree(imu);
8907 	}
8908 	*slot = NULL;
8909 }
8910 
io_rsrc_buf_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)8911 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8912 {
8913 	io_buffer_unmap(ctx, &prsrc->buf);
8914 	prsrc->buf = NULL;
8915 }
8916 
__io_sqe_buffers_unregister(struct io_ring_ctx * ctx)8917 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8918 {
8919 	unsigned int i;
8920 
8921 	for (i = 0; i < ctx->nr_user_bufs; i++)
8922 		io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8923 	kfree(ctx->user_bufs);
8924 	io_rsrc_data_free(ctx->buf_data);
8925 	ctx->user_bufs = NULL;
8926 	ctx->buf_data = NULL;
8927 	ctx->nr_user_bufs = 0;
8928 }
8929 
io_sqe_buffers_unregister(struct io_ring_ctx * ctx)8930 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8931 {
8932 	unsigned nr = ctx->nr_user_bufs;
8933 	int ret;
8934 
8935 	if (!ctx->buf_data)
8936 		return -ENXIO;
8937 
8938 	/*
8939 	 * Quiesce may unlock ->uring_lock, and while it's not held
8940 	 * prevent new requests using the table.
8941 	 */
8942 	ctx->nr_user_bufs = 0;
8943 	ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8944 	ctx->nr_user_bufs = nr;
8945 	if (!ret)
8946 		__io_sqe_buffers_unregister(ctx);
8947 	return ret;
8948 }
8949 
io_copy_iov(struct io_ring_ctx * ctx,struct iovec * dst,void __user * arg,unsigned index)8950 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8951 		       void __user *arg, unsigned index)
8952 {
8953 	struct iovec __user *src;
8954 
8955 #ifdef CONFIG_COMPAT
8956 	if (ctx->compat) {
8957 		struct compat_iovec __user *ciovs;
8958 		struct compat_iovec ciov;
8959 
8960 		ciovs = (struct compat_iovec __user *) arg;
8961 		if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8962 			return -EFAULT;
8963 
8964 		dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8965 		dst->iov_len = ciov.iov_len;
8966 		return 0;
8967 	}
8968 #endif
8969 	src = (struct iovec __user *) arg;
8970 	if (copy_from_user(dst, &src[index], sizeof(*dst)))
8971 		return -EFAULT;
8972 	return 0;
8973 }
8974 
8975 /*
8976  * Not super efficient, but this is just a registration time. And we do cache
8977  * the last compound head, so generally we'll only do a full search if we don't
8978  * match that one.
8979  *
8980  * We check if the given compound head page has already been accounted, to
8981  * avoid double accounting it. This allows us to account the full size of the
8982  * page, not just the constituent pages of a huge page.
8983  */
headpage_already_acct(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct page * hpage)8984 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8985 				  int nr_pages, struct page *hpage)
8986 {
8987 	int i, j;
8988 
8989 	/* check current page array */
8990 	for (i = 0; i < nr_pages; i++) {
8991 		if (!PageCompound(pages[i]))
8992 			continue;
8993 		if (compound_head(pages[i]) == hpage)
8994 			return true;
8995 	}
8996 
8997 	/* check previously registered pages */
8998 	for (i = 0; i < ctx->nr_user_bufs; i++) {
8999 		struct io_mapped_ubuf *imu = ctx->user_bufs[i];
9000 
9001 		for (j = 0; j < imu->nr_bvecs; j++) {
9002 			if (!PageCompound(imu->bvec[j].bv_page))
9003 				continue;
9004 			if (compound_head(imu->bvec[j].bv_page) == hpage)
9005 				return true;
9006 		}
9007 	}
9008 
9009 	return false;
9010 }
9011 
io_buffer_account_pin(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct io_mapped_ubuf * imu,struct page ** last_hpage)9012 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
9013 				 int nr_pages, struct io_mapped_ubuf *imu,
9014 				 struct page **last_hpage)
9015 {
9016 	int i, ret;
9017 
9018 	imu->acct_pages = 0;
9019 	for (i = 0; i < nr_pages; i++) {
9020 		if (!PageCompound(pages[i])) {
9021 			imu->acct_pages++;
9022 		} else {
9023 			struct page *hpage;
9024 
9025 			hpage = compound_head(pages[i]);
9026 			if (hpage == *last_hpage)
9027 				continue;
9028 			*last_hpage = hpage;
9029 			if (headpage_already_acct(ctx, pages, i, hpage))
9030 				continue;
9031 			imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
9032 		}
9033 	}
9034 
9035 	if (!imu->acct_pages)
9036 		return 0;
9037 
9038 	ret = io_account_mem(ctx, imu->acct_pages);
9039 	if (ret)
9040 		imu->acct_pages = 0;
9041 	return ret;
9042 }
9043 
io_sqe_buffer_register(struct io_ring_ctx * ctx,struct iovec * iov,struct io_mapped_ubuf ** pimu,struct page ** last_hpage)9044 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9045 				  struct io_mapped_ubuf **pimu,
9046 				  struct page **last_hpage)
9047 {
9048 	struct io_mapped_ubuf *imu = NULL;
9049 	struct vm_area_struct **vmas = NULL;
9050 	struct page **pages = NULL;
9051 	unsigned long off, start, end, ubuf;
9052 	size_t size;
9053 	int ret, pret, nr_pages, i;
9054 
9055 	if (!iov->iov_base) {
9056 		*pimu = ctx->dummy_ubuf;
9057 		return 0;
9058 	}
9059 
9060 	ubuf = (unsigned long) iov->iov_base;
9061 	end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9062 	start = ubuf >> PAGE_SHIFT;
9063 	nr_pages = end - start;
9064 
9065 	*pimu = NULL;
9066 	ret = -ENOMEM;
9067 
9068 	pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9069 	if (!pages)
9070 		goto done;
9071 
9072 	vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9073 			      GFP_KERNEL);
9074 	if (!vmas)
9075 		goto done;
9076 
9077 	imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9078 	if (!imu)
9079 		goto done;
9080 
9081 	ret = 0;
9082 	mmap_read_lock(current->mm);
9083 	pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9084 			      pages, vmas);
9085 	if (pret == nr_pages) {
9086 		struct file *file = vmas[0]->vm_file;
9087 
9088 		/* don't support file backed memory */
9089 		for (i = 0; i < nr_pages; i++) {
9090 			if (vmas[i]->vm_file != file) {
9091 				ret = -EINVAL;
9092 				break;
9093 			}
9094 			if (!file)
9095 				continue;
9096 			if (!vma_is_shmem(vmas[i]) && !is_file_hugepages(file)) {
9097 				ret = -EOPNOTSUPP;
9098 				break;
9099 			}
9100 		}
9101 	} else {
9102 		ret = pret < 0 ? pret : -EFAULT;
9103 	}
9104 	mmap_read_unlock(current->mm);
9105 	if (ret) {
9106 		/*
9107 		 * if we did partial map, or found file backed vmas,
9108 		 * release any pages we did get
9109 		 */
9110 		if (pret > 0)
9111 			unpin_user_pages(pages, pret);
9112 		goto done;
9113 	}
9114 
9115 	ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9116 	if (ret) {
9117 		unpin_user_pages(pages, pret);
9118 		goto done;
9119 	}
9120 
9121 	off = ubuf & ~PAGE_MASK;
9122 	size = iov->iov_len;
9123 	for (i = 0; i < nr_pages; i++) {
9124 		size_t vec_len;
9125 
9126 		vec_len = min_t(size_t, size, PAGE_SIZE - off);
9127 		imu->bvec[i].bv_page = pages[i];
9128 		imu->bvec[i].bv_len = vec_len;
9129 		imu->bvec[i].bv_offset = off;
9130 		off = 0;
9131 		size -= vec_len;
9132 	}
9133 	/* store original address for later verification */
9134 	imu->ubuf = ubuf;
9135 	imu->ubuf_end = ubuf + iov->iov_len;
9136 	imu->nr_bvecs = nr_pages;
9137 	*pimu = imu;
9138 	ret = 0;
9139 done:
9140 	if (ret)
9141 		kvfree(imu);
9142 	kvfree(pages);
9143 	kvfree(vmas);
9144 	return ret;
9145 }
9146 
io_buffers_map_alloc(struct io_ring_ctx * ctx,unsigned int nr_args)9147 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9148 {
9149 	ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9150 	return ctx->user_bufs ? 0 : -ENOMEM;
9151 }
9152 
io_buffer_validate(struct iovec * iov)9153 static int io_buffer_validate(struct iovec *iov)
9154 {
9155 	unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9156 
9157 	/*
9158 	 * Don't impose further limits on the size and buffer
9159 	 * constraints here, we'll -EINVAL later when IO is
9160 	 * submitted if they are wrong.
9161 	 */
9162 	if (!iov->iov_base)
9163 		return iov->iov_len ? -EFAULT : 0;
9164 	if (!iov->iov_len)
9165 		return -EFAULT;
9166 
9167 	/* arbitrary limit, but we need something */
9168 	if (iov->iov_len > SZ_1G)
9169 		return -EFAULT;
9170 
9171 	if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9172 		return -EOVERFLOW;
9173 
9174 	return 0;
9175 }
9176 
io_sqe_buffers_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args,u64 __user * tags)9177 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9178 				   unsigned int nr_args, u64 __user *tags)
9179 {
9180 	struct page *last_hpage = NULL;
9181 	struct io_rsrc_data *data;
9182 	int i, ret;
9183 	struct iovec iov;
9184 
9185 	if (ctx->user_bufs)
9186 		return -EBUSY;
9187 	if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9188 		return -EINVAL;
9189 	ret = io_rsrc_node_switch_start(ctx);
9190 	if (ret)
9191 		return ret;
9192 	ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9193 	if (ret)
9194 		return ret;
9195 	ret = io_buffers_map_alloc(ctx, nr_args);
9196 	if (ret) {
9197 		io_rsrc_data_free(data);
9198 		return ret;
9199 	}
9200 
9201 	for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9202 		ret = io_copy_iov(ctx, &iov, arg, i);
9203 		if (ret)
9204 			break;
9205 		ret = io_buffer_validate(&iov);
9206 		if (ret)
9207 			break;
9208 		if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9209 			ret = -EINVAL;
9210 			break;
9211 		}
9212 
9213 		ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9214 					     &last_hpage);
9215 		if (ret)
9216 			break;
9217 	}
9218 
9219 	WARN_ON_ONCE(ctx->buf_data);
9220 
9221 	ctx->buf_data = data;
9222 	if (ret)
9223 		__io_sqe_buffers_unregister(ctx);
9224 	else
9225 		io_rsrc_node_switch(ctx, NULL);
9226 	return ret;
9227 }
9228 
__io_sqe_buffers_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned int nr_args)9229 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9230 				   struct io_uring_rsrc_update2 *up,
9231 				   unsigned int nr_args)
9232 {
9233 	u64 __user *tags = u64_to_user_ptr(up->tags);
9234 	struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9235 	struct page *last_hpage = NULL;
9236 	bool needs_switch = false;
9237 	__u32 done;
9238 	int i, err;
9239 
9240 	if (!ctx->buf_data)
9241 		return -ENXIO;
9242 	if (up->offset + nr_args > ctx->nr_user_bufs)
9243 		return -EINVAL;
9244 
9245 	for (done = 0; done < nr_args; done++) {
9246 		struct io_mapped_ubuf *imu;
9247 		int offset = up->offset + done;
9248 		u64 tag = 0;
9249 
9250 		err = io_copy_iov(ctx, &iov, iovs, done);
9251 		if (err)
9252 			break;
9253 		if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9254 			err = -EFAULT;
9255 			break;
9256 		}
9257 		err = io_buffer_validate(&iov);
9258 		if (err)
9259 			break;
9260 		if (!iov.iov_base && tag) {
9261 			err = -EINVAL;
9262 			break;
9263 		}
9264 		err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9265 		if (err)
9266 			break;
9267 
9268 		i = array_index_nospec(offset, ctx->nr_user_bufs);
9269 		if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9270 			err = io_queue_rsrc_removal(ctx->buf_data, i,
9271 						    ctx->rsrc_node, ctx->user_bufs[i]);
9272 			if (unlikely(err)) {
9273 				io_buffer_unmap(ctx, &imu);
9274 				break;
9275 			}
9276 			ctx->user_bufs[i] = NULL;
9277 			needs_switch = true;
9278 		}
9279 
9280 		ctx->user_bufs[i] = imu;
9281 		*io_get_tag_slot(ctx->buf_data, offset) = tag;
9282 	}
9283 
9284 	if (needs_switch)
9285 		io_rsrc_node_switch(ctx, ctx->buf_data);
9286 	return done ? done : err;
9287 }
9288 
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg)9289 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9290 {
9291 	__s32 __user *fds = arg;
9292 	int fd;
9293 
9294 	if (ctx->cq_ev_fd)
9295 		return -EBUSY;
9296 
9297 	if (copy_from_user(&fd, fds, sizeof(*fds)))
9298 		return -EFAULT;
9299 
9300 	ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9301 	if (IS_ERR(ctx->cq_ev_fd)) {
9302 		int ret = PTR_ERR(ctx->cq_ev_fd);
9303 
9304 		ctx->cq_ev_fd = NULL;
9305 		return ret;
9306 	}
9307 
9308 	return 0;
9309 }
9310 
io_eventfd_unregister(struct io_ring_ctx * ctx)9311 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9312 {
9313 	if (ctx->cq_ev_fd) {
9314 		eventfd_ctx_put(ctx->cq_ev_fd);
9315 		ctx->cq_ev_fd = NULL;
9316 		return 0;
9317 	}
9318 
9319 	return -ENXIO;
9320 }
9321 
io_destroy_buffers(struct io_ring_ctx * ctx)9322 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9323 {
9324 	struct io_buffer *buf;
9325 	unsigned long index;
9326 
9327 	xa_for_each(&ctx->io_buffers, index, buf)
9328 		__io_remove_buffers(ctx, buf, index, -1U);
9329 }
9330 
io_req_cache_free(struct list_head * list)9331 static void io_req_cache_free(struct list_head *list)
9332 {
9333 	struct io_kiocb *req, *nxt;
9334 
9335 	list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9336 		list_del(&req->inflight_entry);
9337 		kmem_cache_free(req_cachep, req);
9338 	}
9339 }
9340 
io_req_caches_free(struct io_ring_ctx * ctx)9341 static void io_req_caches_free(struct io_ring_ctx *ctx)
9342 {
9343 	struct io_submit_state *state = &ctx->submit_state;
9344 
9345 	mutex_lock(&ctx->uring_lock);
9346 
9347 	if (state->free_reqs) {
9348 		kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9349 		state->free_reqs = 0;
9350 	}
9351 
9352 	io_flush_cached_locked_reqs(ctx, state);
9353 	io_req_cache_free(&state->free_list);
9354 	mutex_unlock(&ctx->uring_lock);
9355 }
9356 
io_wait_rsrc_data(struct io_rsrc_data * data)9357 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9358 {
9359 	if (data && !atomic_dec_and_test(&data->refs))
9360 		wait_for_completion(&data->done);
9361 }
9362 
io_ring_ctx_free(struct io_ring_ctx * ctx)9363 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9364 {
9365 	io_sq_thread_finish(ctx);
9366 
9367 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9368 	io_wait_rsrc_data(ctx->buf_data);
9369 	io_wait_rsrc_data(ctx->file_data);
9370 
9371 	mutex_lock(&ctx->uring_lock);
9372 	if (ctx->buf_data)
9373 		__io_sqe_buffers_unregister(ctx);
9374 	if (ctx->file_data)
9375 		__io_sqe_files_unregister(ctx);
9376 	if (ctx->rings)
9377 		__io_cqring_overflow_flush(ctx, true);
9378 	mutex_unlock(&ctx->uring_lock);
9379 	io_eventfd_unregister(ctx);
9380 	io_destroy_buffers(ctx);
9381 	if (ctx->sq_creds)
9382 		put_cred(ctx->sq_creds);
9383 
9384 	/* there are no registered resources left, nobody uses it */
9385 	if (ctx->rsrc_node)
9386 		io_rsrc_node_destroy(ctx->rsrc_node);
9387 	if (ctx->rsrc_backup_node)
9388 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
9389 	flush_delayed_work(&ctx->rsrc_put_work);
9390 
9391 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9392 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9393 
9394 #if defined(CONFIG_UNIX)
9395 	if (ctx->ring_sock) {
9396 		ctx->ring_sock->file = NULL; /* so that iput() is called */
9397 		sock_release(ctx->ring_sock);
9398 	}
9399 #endif
9400 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9401 
9402 	if (ctx->mm_account) {
9403 		mmdrop(ctx->mm_account);
9404 		ctx->mm_account = NULL;
9405 	}
9406 
9407 	io_mem_free(ctx->rings);
9408 	io_mem_free(ctx->sq_sqes);
9409 
9410 	percpu_ref_exit(&ctx->refs);
9411 	free_uid(ctx->user);
9412 	io_req_caches_free(ctx);
9413 	if (ctx->hash_map)
9414 		io_wq_put_hash(ctx->hash_map);
9415 	kfree(ctx->cancel_hash);
9416 	kfree(ctx->dummy_ubuf);
9417 	kfree(ctx);
9418 }
9419 
io_uring_poll(struct file * file,poll_table * wait)9420 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9421 {
9422 	struct io_ring_ctx *ctx = file->private_data;
9423 	__poll_t mask = 0;
9424 
9425 	poll_wait(file, &ctx->poll_wait, wait);
9426 	/*
9427 	 * synchronizes with barrier from wq_has_sleeper call in
9428 	 * io_commit_cqring
9429 	 */
9430 	smp_rmb();
9431 	if (!io_sqring_full(ctx))
9432 		mask |= EPOLLOUT | EPOLLWRNORM;
9433 
9434 	/*
9435 	 * Don't flush cqring overflow list here, just do a simple check.
9436 	 * Otherwise there could possible be ABBA deadlock:
9437 	 *      CPU0                    CPU1
9438 	 *      ----                    ----
9439 	 * lock(&ctx->uring_lock);
9440 	 *                              lock(&ep->mtx);
9441 	 *                              lock(&ctx->uring_lock);
9442 	 * lock(&ep->mtx);
9443 	 *
9444 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9445 	 * pushs them to do the flush.
9446 	 */
9447 	if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9448 		mask |= EPOLLIN | EPOLLRDNORM;
9449 
9450 	return mask;
9451 }
9452 
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)9453 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9454 {
9455 	const struct cred *creds;
9456 
9457 	creds = xa_erase(&ctx->personalities, id);
9458 	if (creds) {
9459 		put_cred(creds);
9460 		return 0;
9461 	}
9462 
9463 	return -EINVAL;
9464 }
9465 
9466 struct io_tctx_exit {
9467 	struct callback_head		task_work;
9468 	struct completion		completion;
9469 	struct io_ring_ctx		*ctx;
9470 };
9471 
io_tctx_exit_cb(struct callback_head * cb)9472 static void io_tctx_exit_cb(struct callback_head *cb)
9473 {
9474 	struct io_uring_task *tctx = current->io_uring;
9475 	struct io_tctx_exit *work;
9476 
9477 	work = container_of(cb, struct io_tctx_exit, task_work);
9478 	/*
9479 	 * When @in_idle, we're in cancellation and it's racy to remove the
9480 	 * node. It'll be removed by the end of cancellation, just ignore it.
9481 	 * tctx can be NULL if the queueing of this task_work raced with
9482 	 * work cancelation off the exec path.
9483 	 */
9484 	if (tctx && !atomic_read(&tctx->in_idle))
9485 		io_uring_del_tctx_node((unsigned long)work->ctx);
9486 	complete(&work->completion);
9487 }
9488 
io_cancel_ctx_cb(struct io_wq_work * work,void * data)9489 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9490 {
9491 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9492 
9493 	return req->ctx == data;
9494 }
9495 
io_ring_exit_work(struct work_struct * work)9496 static void io_ring_exit_work(struct work_struct *work)
9497 {
9498 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9499 	unsigned long timeout = jiffies + HZ * 60 * 5;
9500 	unsigned long interval = HZ / 20;
9501 	struct io_tctx_exit exit;
9502 	struct io_tctx_node *node;
9503 	int ret;
9504 
9505 	/*
9506 	 * If we're doing polled IO and end up having requests being
9507 	 * submitted async (out-of-line), then completions can come in while
9508 	 * we're waiting for refs to drop. We need to reap these manually,
9509 	 * as nobody else will be looking for them.
9510 	 */
9511 	do {
9512 		io_uring_try_cancel_requests(ctx, NULL, true);
9513 		if (ctx->sq_data) {
9514 			struct io_sq_data *sqd = ctx->sq_data;
9515 			struct task_struct *tsk;
9516 
9517 			io_sq_thread_park(sqd);
9518 			tsk = sqd->thread;
9519 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9520 				io_wq_cancel_cb(tsk->io_uring->io_wq,
9521 						io_cancel_ctx_cb, ctx, true);
9522 			io_sq_thread_unpark(sqd);
9523 		}
9524 
9525 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9526 			/* there is little hope left, don't run it too often */
9527 			interval = HZ * 60;
9528 		}
9529 		/*
9530 		 * This is really an uninterruptible wait, as it has to be
9531 		 * complete. But it's also run from a kworker, which doesn't
9532 		 * take signals, so it's fine to make it interruptible. This
9533 		 * avoids scenarios where we knowingly can wait much longer
9534 		 * on completions, for example if someone does a SIGSTOP on
9535 		 * a task that needs to finish task_work to make this loop
9536 		 * complete. That's a synthetic situation that should not
9537 		 * cause a stuck task backtrace, and hence a potential panic
9538 		 * on stuck tasks if that is enabled.
9539 		 */
9540 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
9541 
9542 	init_completion(&exit.completion);
9543 	init_task_work(&exit.task_work, io_tctx_exit_cb);
9544 	exit.ctx = ctx;
9545 	/*
9546 	 * Some may use context even when all refs and requests have been put,
9547 	 * and they are free to do so while still holding uring_lock or
9548 	 * completion_lock, see io_req_task_submit(). Apart from other work,
9549 	 * this lock/unlock section also waits them to finish.
9550 	 */
9551 	mutex_lock(&ctx->uring_lock);
9552 	while (!list_empty(&ctx->tctx_list)) {
9553 		WARN_ON_ONCE(time_after(jiffies, timeout));
9554 
9555 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9556 					ctx_node);
9557 		/* don't spin on a single task if cancellation failed */
9558 		list_rotate_left(&ctx->tctx_list);
9559 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9560 		if (WARN_ON_ONCE(ret))
9561 			continue;
9562 		wake_up_process(node->task);
9563 
9564 		mutex_unlock(&ctx->uring_lock);
9565 		/*
9566 		 * See comment above for
9567 		 * wait_for_completion_interruptible_timeout() on why this
9568 		 * wait is marked as interruptible.
9569 		 */
9570 		wait_for_completion_interruptible(&exit.completion);
9571 		mutex_lock(&ctx->uring_lock);
9572 	}
9573 	mutex_unlock(&ctx->uring_lock);
9574 	spin_lock(&ctx->completion_lock);
9575 	spin_unlock(&ctx->completion_lock);
9576 
9577 	io_ring_ctx_free(ctx);
9578 }
9579 
9580 /* Returns true if we found and killed one or more timeouts */
io_kill_timeouts(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)9581 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9582 			     bool cancel_all)
9583 {
9584 	struct io_kiocb *req, *tmp;
9585 	int canceled = 0;
9586 
9587 	spin_lock(&ctx->completion_lock);
9588 	spin_lock_irq(&ctx->timeout_lock);
9589 	list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9590 		if (io_match_task(req, tsk, cancel_all)) {
9591 			io_kill_timeout(req, -ECANCELED);
9592 			canceled++;
9593 		}
9594 	}
9595 	spin_unlock_irq(&ctx->timeout_lock);
9596 	if (canceled != 0)
9597 		io_commit_cqring(ctx);
9598 	spin_unlock(&ctx->completion_lock);
9599 	if (canceled != 0)
9600 		io_cqring_ev_posted(ctx);
9601 	return canceled != 0;
9602 }
9603 
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)9604 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9605 {
9606 	unsigned long index;
9607 	struct creds *creds;
9608 
9609 	mutex_lock(&ctx->uring_lock);
9610 	percpu_ref_kill(&ctx->refs);
9611 	if (ctx->rings)
9612 		__io_cqring_overflow_flush(ctx, true);
9613 	xa_for_each(&ctx->personalities, index, creds)
9614 		io_unregister_personality(ctx, index);
9615 	mutex_unlock(&ctx->uring_lock);
9616 
9617 	io_kill_timeouts(ctx, NULL, true);
9618 	io_poll_remove_all(ctx, NULL, true);
9619 
9620 	/* if we failed setting up the ctx, we might not have any rings */
9621 	io_iopoll_try_reap_events(ctx);
9622 
9623 	/* drop cached put refs after potentially doing completions */
9624 	if (current->io_uring)
9625 		io_uring_drop_tctx_refs(current);
9626 
9627 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9628 	/*
9629 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
9630 	 * if we're exiting a ton of rings at the same time. It just adds
9631 	 * noise and overhead, there's no discernable change in runtime
9632 	 * over using system_wq.
9633 	 */
9634 	queue_work(system_unbound_wq, &ctx->exit_work);
9635 }
9636 
io_uring_release(struct inode * inode,struct file * file)9637 static int io_uring_release(struct inode *inode, struct file *file)
9638 {
9639 	struct io_ring_ctx *ctx = file->private_data;
9640 
9641 	file->private_data = NULL;
9642 	io_ring_ctx_wait_and_kill(ctx);
9643 	return 0;
9644 }
9645 
9646 struct io_task_cancel {
9647 	struct task_struct *task;
9648 	bool all;
9649 };
9650 
io_cancel_task_cb(struct io_wq_work * work,void * data)9651 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9652 {
9653 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9654 	struct io_task_cancel *cancel = data;
9655 
9656 	return io_match_task_safe(req, cancel->task, cancel->all);
9657 }
9658 
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9659 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9660 				  struct task_struct *task, bool cancel_all)
9661 {
9662 	struct io_defer_entry *de;
9663 	LIST_HEAD(list);
9664 
9665 	spin_lock(&ctx->completion_lock);
9666 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9667 		if (io_match_task_safe(de->req, task, cancel_all)) {
9668 			list_cut_position(&list, &ctx->defer_list, &de->list);
9669 			break;
9670 		}
9671 	}
9672 	spin_unlock(&ctx->completion_lock);
9673 	if (list_empty(&list))
9674 		return false;
9675 
9676 	while (!list_empty(&list)) {
9677 		de = list_first_entry(&list, struct io_defer_entry, list);
9678 		list_del_init(&de->list);
9679 		io_req_complete_failed(de->req, -ECANCELED);
9680 		kfree(de);
9681 	}
9682 	return true;
9683 }
9684 
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)9685 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9686 {
9687 	struct io_tctx_node *node;
9688 	enum io_wq_cancel cret;
9689 	bool ret = false;
9690 
9691 	mutex_lock(&ctx->uring_lock);
9692 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9693 		struct io_uring_task *tctx = node->task->io_uring;
9694 
9695 		/*
9696 		 * io_wq will stay alive while we hold uring_lock, because it's
9697 		 * killed after ctx nodes, which requires to take the lock.
9698 		 */
9699 		if (!tctx || !tctx->io_wq)
9700 			continue;
9701 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9702 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9703 	}
9704 	mutex_unlock(&ctx->uring_lock);
9705 
9706 	return ret;
9707 }
9708 
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9709 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9710 					 struct task_struct *task,
9711 					 bool cancel_all)
9712 {
9713 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9714 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
9715 
9716 	while (1) {
9717 		enum io_wq_cancel cret;
9718 		bool ret = false;
9719 
9720 		if (!task) {
9721 			ret |= io_uring_try_cancel_iowq(ctx);
9722 		} else if (tctx && tctx->io_wq) {
9723 			/*
9724 			 * Cancels requests of all rings, not only @ctx, but
9725 			 * it's fine as the task is in exit/exec.
9726 			 */
9727 			cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9728 					       &cancel, true);
9729 			ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9730 		}
9731 
9732 		/* SQPOLL thread does its own polling */
9733 		if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9734 		    (ctx->sq_data && ctx->sq_data->thread == current)) {
9735 			while (!list_empty_careful(&ctx->iopoll_list)) {
9736 				io_iopoll_try_reap_events(ctx);
9737 				ret = true;
9738 				cond_resched();
9739 			}
9740 		}
9741 
9742 		ret |= io_cancel_defer_files(ctx, task, cancel_all);
9743 		ret |= io_poll_remove_all(ctx, task, cancel_all);
9744 		ret |= io_kill_timeouts(ctx, task, cancel_all);
9745 		if (task)
9746 			ret |= io_run_task_work();
9747 		if (!ret)
9748 			break;
9749 		cond_resched();
9750 	}
9751 }
9752 
__io_uring_add_tctx_node(struct io_ring_ctx * ctx)9753 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9754 {
9755 	struct io_uring_task *tctx = current->io_uring;
9756 	struct io_tctx_node *node;
9757 	int ret;
9758 
9759 	if (unlikely(!tctx)) {
9760 		ret = io_uring_alloc_task_context(current, ctx);
9761 		if (unlikely(ret))
9762 			return ret;
9763 
9764 		tctx = current->io_uring;
9765 		if (ctx->iowq_limits_set) {
9766 			unsigned int limits[2] = { ctx->iowq_limits[0],
9767 						   ctx->iowq_limits[1], };
9768 
9769 			ret = io_wq_max_workers(tctx->io_wq, limits);
9770 			if (ret)
9771 				return ret;
9772 		}
9773 	}
9774 	if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9775 		node = kmalloc(sizeof(*node), GFP_KERNEL);
9776 		if (!node)
9777 			return -ENOMEM;
9778 		node->ctx = ctx;
9779 		node->task = current;
9780 
9781 		ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9782 					node, GFP_KERNEL));
9783 		if (ret) {
9784 			kfree(node);
9785 			return ret;
9786 		}
9787 
9788 		mutex_lock(&ctx->uring_lock);
9789 		list_add(&node->ctx_node, &ctx->tctx_list);
9790 		mutex_unlock(&ctx->uring_lock);
9791 	}
9792 	tctx->last = ctx;
9793 	return 0;
9794 }
9795 
9796 /*
9797  * Note that this task has used io_uring. We use it for cancelation purposes.
9798  */
io_uring_add_tctx_node(struct io_ring_ctx * ctx)9799 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9800 {
9801 	struct io_uring_task *tctx = current->io_uring;
9802 
9803 	if (likely(tctx && tctx->last == ctx))
9804 		return 0;
9805 	return __io_uring_add_tctx_node(ctx);
9806 }
9807 
9808 /*
9809  * Remove this io_uring_file -> task mapping.
9810  */
io_uring_del_tctx_node(unsigned long index)9811 static void io_uring_del_tctx_node(unsigned long index)
9812 {
9813 	struct io_uring_task *tctx = current->io_uring;
9814 	struct io_tctx_node *node;
9815 
9816 	if (!tctx)
9817 		return;
9818 	node = xa_erase(&tctx->xa, index);
9819 	if (!node)
9820 		return;
9821 
9822 	WARN_ON_ONCE(current != node->task);
9823 	WARN_ON_ONCE(list_empty(&node->ctx_node));
9824 
9825 	mutex_lock(&node->ctx->uring_lock);
9826 	list_del(&node->ctx_node);
9827 	mutex_unlock(&node->ctx->uring_lock);
9828 
9829 	if (tctx->last == node->ctx)
9830 		tctx->last = NULL;
9831 	kfree(node);
9832 }
9833 
io_uring_clean_tctx(struct io_uring_task * tctx)9834 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9835 {
9836 	struct io_wq *wq = tctx->io_wq;
9837 	struct io_tctx_node *node;
9838 	unsigned long index;
9839 
9840 	xa_for_each(&tctx->xa, index, node) {
9841 		io_uring_del_tctx_node(index);
9842 		cond_resched();
9843 	}
9844 	if (wq) {
9845 		/*
9846 		 * Must be after io_uring_del_task_file() (removes nodes under
9847 		 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9848 		 */
9849 		io_wq_put_and_exit(wq);
9850 		tctx->io_wq = NULL;
9851 	}
9852 }
9853 
tctx_inflight(struct io_uring_task * tctx,bool tracked)9854 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9855 {
9856 	if (tracked)
9857 		return atomic_read(&tctx->inflight_tracked);
9858 	return percpu_counter_sum(&tctx->inflight);
9859 }
9860 
9861 /*
9862  * Find any io_uring ctx that this task has registered or done IO on, and cancel
9863  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9864  */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)9865 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9866 {
9867 	struct io_uring_task *tctx = current->io_uring;
9868 	struct io_ring_ctx *ctx;
9869 	s64 inflight;
9870 	DEFINE_WAIT(wait);
9871 
9872 	WARN_ON_ONCE(sqd && sqd->thread != current);
9873 
9874 	if (!current->io_uring)
9875 		return;
9876 	if (tctx->io_wq)
9877 		io_wq_exit_start(tctx->io_wq);
9878 
9879 	atomic_inc(&tctx->in_idle);
9880 	do {
9881 		io_uring_drop_tctx_refs(current);
9882 		/* read completions before cancelations */
9883 		inflight = tctx_inflight(tctx, !cancel_all);
9884 		if (!inflight)
9885 			break;
9886 
9887 		if (!sqd) {
9888 			struct io_tctx_node *node;
9889 			unsigned long index;
9890 
9891 			xa_for_each(&tctx->xa, index, node) {
9892 				/* sqpoll task will cancel all its requests */
9893 				if (node->ctx->sq_data)
9894 					continue;
9895 				io_uring_try_cancel_requests(node->ctx, current,
9896 							     cancel_all);
9897 			}
9898 		} else {
9899 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9900 				io_uring_try_cancel_requests(ctx, current,
9901 							     cancel_all);
9902 		}
9903 
9904 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9905 		io_run_task_work();
9906 		io_uring_drop_tctx_refs(current);
9907 
9908 		/*
9909 		 * If we've seen completions, retry without waiting. This
9910 		 * avoids a race where a completion comes in before we did
9911 		 * prepare_to_wait().
9912 		 */
9913 		if (inflight == tctx_inflight(tctx, !cancel_all))
9914 			schedule();
9915 		finish_wait(&tctx->wait, &wait);
9916 	} while (1);
9917 
9918 	io_uring_clean_tctx(tctx);
9919 	if (cancel_all) {
9920 		/*
9921 		 * We shouldn't run task_works after cancel, so just leave
9922 		 * ->in_idle set for normal exit.
9923 		 */
9924 		atomic_dec(&tctx->in_idle);
9925 		/* for exec all current's requests should be gone, kill tctx */
9926 		__io_uring_free(current);
9927 	}
9928 }
9929 
__io_uring_cancel(bool cancel_all)9930 void __io_uring_cancel(bool cancel_all)
9931 {
9932 	io_uring_cancel_generic(cancel_all, NULL);
9933 }
9934 
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)9935 static void *io_uring_validate_mmap_request(struct file *file,
9936 					    loff_t pgoff, size_t sz)
9937 {
9938 	struct io_ring_ctx *ctx = file->private_data;
9939 	loff_t offset = pgoff << PAGE_SHIFT;
9940 	struct page *page;
9941 	void *ptr;
9942 
9943 	switch (offset) {
9944 	case IORING_OFF_SQ_RING:
9945 	case IORING_OFF_CQ_RING:
9946 		ptr = ctx->rings;
9947 		break;
9948 	case IORING_OFF_SQES:
9949 		ptr = ctx->sq_sqes;
9950 		break;
9951 	default:
9952 		return ERR_PTR(-EINVAL);
9953 	}
9954 
9955 	page = virt_to_head_page(ptr);
9956 	if (sz > page_size(page))
9957 		return ERR_PTR(-EINVAL);
9958 
9959 	return ptr;
9960 }
9961 
9962 #ifdef CONFIG_MMU
9963 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)9964 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9965 {
9966 	size_t sz = vma->vm_end - vma->vm_start;
9967 	unsigned long pfn;
9968 	void *ptr;
9969 
9970 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9971 	if (IS_ERR(ptr))
9972 		return PTR_ERR(ptr);
9973 
9974 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9975 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9976 }
9977 
9978 #else /* !CONFIG_MMU */
9979 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)9980 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9981 {
9982 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9983 }
9984 
io_uring_nommu_mmap_capabilities(struct file * file)9985 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9986 {
9987 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9988 }
9989 
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)9990 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9991 	unsigned long addr, unsigned long len,
9992 	unsigned long pgoff, unsigned long flags)
9993 {
9994 	void *ptr;
9995 
9996 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
9997 	if (IS_ERR(ptr))
9998 		return PTR_ERR(ptr);
9999 
10000 	return (unsigned long) ptr;
10001 }
10002 
10003 #endif /* !CONFIG_MMU */
10004 
io_sqpoll_wait_sq(struct io_ring_ctx * ctx)10005 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
10006 {
10007 	DEFINE_WAIT(wait);
10008 
10009 	do {
10010 		if (!io_sqring_full(ctx))
10011 			break;
10012 		prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
10013 
10014 		if (!io_sqring_full(ctx))
10015 			break;
10016 		schedule();
10017 	} while (!signal_pending(current));
10018 
10019 	finish_wait(&ctx->sqo_sq_wait, &wait);
10020 	return 0;
10021 }
10022 
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)10023 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
10024 			  struct __kernel_timespec __user **ts,
10025 			  const sigset_t __user **sig)
10026 {
10027 	struct io_uring_getevents_arg arg;
10028 
10029 	/*
10030 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
10031 	 * is just a pointer to the sigset_t.
10032 	 */
10033 	if (!(flags & IORING_ENTER_EXT_ARG)) {
10034 		*sig = (const sigset_t __user *) argp;
10035 		*ts = NULL;
10036 		return 0;
10037 	}
10038 
10039 	/*
10040 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
10041 	 * timespec and sigset_t pointers if good.
10042 	 */
10043 	if (*argsz != sizeof(arg))
10044 		return -EINVAL;
10045 	if (copy_from_user(&arg, argp, sizeof(arg)))
10046 		return -EFAULT;
10047 	if (arg.pad)
10048 		return -EINVAL;
10049 	*sig = u64_to_user_ptr(arg.sigmask);
10050 	*argsz = arg.sigmask_sz;
10051 	*ts = u64_to_user_ptr(arg.ts);
10052 	return 0;
10053 }
10054 
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)10055 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
10056 		u32, min_complete, u32, flags, const void __user *, argp,
10057 		size_t, argsz)
10058 {
10059 	struct io_ring_ctx *ctx;
10060 	int submitted = 0;
10061 	struct fd f;
10062 	long ret;
10063 
10064 	io_run_task_work();
10065 
10066 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10067 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10068 		return -EINVAL;
10069 
10070 	f = fdget(fd);
10071 	if (unlikely(!f.file))
10072 		return -EBADF;
10073 
10074 	ret = -EOPNOTSUPP;
10075 	if (unlikely(f.file->f_op != &io_uring_fops))
10076 		goto out_fput;
10077 
10078 	ret = -ENXIO;
10079 	ctx = f.file->private_data;
10080 	if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10081 		goto out_fput;
10082 
10083 	ret = -EBADFD;
10084 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10085 		goto out;
10086 
10087 	/*
10088 	 * For SQ polling, the thread will do all submissions and completions.
10089 	 * Just return the requested submit count, and wake the thread if
10090 	 * we were asked to.
10091 	 */
10092 	ret = 0;
10093 	if (ctx->flags & IORING_SETUP_SQPOLL) {
10094 		io_cqring_overflow_flush(ctx);
10095 
10096 		if (unlikely(ctx->sq_data->thread == NULL)) {
10097 			ret = -EOWNERDEAD;
10098 			goto out;
10099 		}
10100 		if (flags & IORING_ENTER_SQ_WAKEUP)
10101 			wake_up(&ctx->sq_data->wait);
10102 		if (flags & IORING_ENTER_SQ_WAIT) {
10103 			ret = io_sqpoll_wait_sq(ctx);
10104 			if (ret)
10105 				goto out;
10106 		}
10107 		submitted = to_submit;
10108 	} else if (to_submit) {
10109 		ret = io_uring_add_tctx_node(ctx);
10110 		if (unlikely(ret))
10111 			goto out;
10112 		mutex_lock(&ctx->uring_lock);
10113 		submitted = io_submit_sqes(ctx, to_submit);
10114 		mutex_unlock(&ctx->uring_lock);
10115 
10116 		if (submitted != to_submit)
10117 			goto out;
10118 	}
10119 	if (flags & IORING_ENTER_GETEVENTS) {
10120 		const sigset_t __user *sig;
10121 		struct __kernel_timespec __user *ts;
10122 
10123 		ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10124 		if (unlikely(ret))
10125 			goto out;
10126 
10127 		min_complete = min(min_complete, ctx->cq_entries);
10128 
10129 		/*
10130 		 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10131 		 * space applications don't need to do io completion events
10132 		 * polling again, they can rely on io_sq_thread to do polling
10133 		 * work, which can reduce cpu usage and uring_lock contention.
10134 		 */
10135 		if (ctx->flags & IORING_SETUP_IOPOLL &&
10136 		    !(ctx->flags & IORING_SETUP_SQPOLL)) {
10137 			ret = io_iopoll_check(ctx, min_complete);
10138 		} else {
10139 			ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10140 		}
10141 	}
10142 
10143 out:
10144 	percpu_ref_put(&ctx->refs);
10145 out_fput:
10146 	fdput(f);
10147 	return submitted ? submitted : ret;
10148 }
10149 
10150 #ifdef CONFIG_PROC_FS
io_uring_show_cred(struct seq_file * m,unsigned int id,const struct cred * cred)10151 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10152 		const struct cred *cred)
10153 {
10154 	struct user_namespace *uns = seq_user_ns(m);
10155 	struct group_info *gi;
10156 	kernel_cap_t cap;
10157 	unsigned __capi;
10158 	int g;
10159 
10160 	seq_printf(m, "%5d\n", id);
10161 	seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10162 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10163 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10164 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10165 	seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10166 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10167 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10168 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10169 	seq_puts(m, "\n\tGroups:\t");
10170 	gi = cred->group_info;
10171 	for (g = 0; g < gi->ngroups; g++) {
10172 		seq_put_decimal_ull(m, g ? " " : "",
10173 					from_kgid_munged(uns, gi->gid[g]));
10174 	}
10175 	seq_puts(m, "\n\tCapEff:\t");
10176 	cap = cred->cap_effective;
10177 	CAP_FOR_EACH_U32(__capi)
10178 		seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10179 	seq_putc(m, '\n');
10180 	return 0;
10181 }
10182 
__io_uring_show_fdinfo(struct io_ring_ctx * ctx,struct seq_file * m)10183 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10184 {
10185 	int sq_pid = -1, sq_cpu = -1;
10186 	bool has_lock;
10187 	int i;
10188 
10189 	/*
10190 	 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10191 	 * since fdinfo case grabs it in the opposite direction of normal use
10192 	 * cases. If we fail to get the lock, we just don't iterate any
10193 	 * structures that could be going away outside the io_uring mutex.
10194 	 */
10195 	has_lock = mutex_trylock(&ctx->uring_lock);
10196 
10197 	if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10198 		struct io_sq_data *sq = ctx->sq_data;
10199 
10200 		if (mutex_trylock(&sq->lock)) {
10201 			if (sq->thread) {
10202 				sq_pid = task_pid_nr(sq->thread);
10203 				sq_cpu = task_cpu(sq->thread);
10204 			}
10205 			mutex_unlock(&sq->lock);
10206 		}
10207 	}
10208 
10209 	seq_printf(m, "SqThread:\t%d\n", sq_pid);
10210 	seq_printf(m, "SqThreadCpu:\t%d\n", sq_cpu);
10211 	seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10212 	for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10213 		struct file *f = io_file_from_index(ctx, i);
10214 
10215 		if (f)
10216 			seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10217 		else
10218 			seq_printf(m, "%5u: <none>\n", i);
10219 	}
10220 	seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10221 	for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10222 		struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10223 		unsigned int len = buf->ubuf_end - buf->ubuf;
10224 
10225 		seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10226 	}
10227 	if (has_lock && !xa_empty(&ctx->personalities)) {
10228 		unsigned long index;
10229 		const struct cred *cred;
10230 
10231 		seq_printf(m, "Personalities:\n");
10232 		xa_for_each(&ctx->personalities, index, cred)
10233 			io_uring_show_cred(m, index, cred);
10234 	}
10235 	seq_printf(m, "PollList:\n");
10236 	spin_lock(&ctx->completion_lock);
10237 	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10238 		struct hlist_head *list = &ctx->cancel_hash[i];
10239 		struct io_kiocb *req;
10240 
10241 		hlist_for_each_entry(req, list, hash_node)
10242 			seq_printf(m, "  op=%d, task_works=%d\n", req->opcode,
10243 					req->task->task_works != NULL);
10244 	}
10245 	spin_unlock(&ctx->completion_lock);
10246 	if (has_lock)
10247 		mutex_unlock(&ctx->uring_lock);
10248 }
10249 
io_uring_show_fdinfo(struct seq_file * m,struct file * f)10250 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10251 {
10252 	struct io_ring_ctx *ctx = f->private_data;
10253 
10254 	if (percpu_ref_tryget(&ctx->refs)) {
10255 		__io_uring_show_fdinfo(ctx, m);
10256 		percpu_ref_put(&ctx->refs);
10257 	}
10258 }
10259 #endif
10260 
10261 static const struct file_operations io_uring_fops = {
10262 	.release	= io_uring_release,
10263 	.mmap		= io_uring_mmap,
10264 #ifndef CONFIG_MMU
10265 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
10266 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
10267 #endif
10268 	.poll		= io_uring_poll,
10269 #ifdef CONFIG_PROC_FS
10270 	.show_fdinfo	= io_uring_show_fdinfo,
10271 #endif
10272 };
10273 
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)10274 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10275 				  struct io_uring_params *p)
10276 {
10277 	struct io_rings *rings;
10278 	size_t size, sq_array_offset;
10279 
10280 	/* make sure these are sane, as we already accounted them */
10281 	ctx->sq_entries = p->sq_entries;
10282 	ctx->cq_entries = p->cq_entries;
10283 
10284 	size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10285 	if (size == SIZE_MAX)
10286 		return -EOVERFLOW;
10287 
10288 	rings = io_mem_alloc(size);
10289 	if (!rings)
10290 		return -ENOMEM;
10291 
10292 	ctx->rings = rings;
10293 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10294 	rings->sq_ring_mask = p->sq_entries - 1;
10295 	rings->cq_ring_mask = p->cq_entries - 1;
10296 	rings->sq_ring_entries = p->sq_entries;
10297 	rings->cq_ring_entries = p->cq_entries;
10298 
10299 	size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10300 	if (size == SIZE_MAX) {
10301 		io_mem_free(ctx->rings);
10302 		ctx->rings = NULL;
10303 		return -EOVERFLOW;
10304 	}
10305 
10306 	ctx->sq_sqes = io_mem_alloc(size);
10307 	if (!ctx->sq_sqes) {
10308 		io_mem_free(ctx->rings);
10309 		ctx->rings = NULL;
10310 		return -ENOMEM;
10311 	}
10312 
10313 	return 0;
10314 }
10315 
io_uring_install_fd(struct io_ring_ctx * ctx,struct file * file)10316 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10317 {
10318 	int ret, fd;
10319 
10320 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10321 	if (fd < 0)
10322 		return fd;
10323 
10324 	ret = io_uring_add_tctx_node(ctx);
10325 	if (ret) {
10326 		put_unused_fd(fd);
10327 		return ret;
10328 	}
10329 	fd_install(fd, file);
10330 	return fd;
10331 }
10332 
10333 /*
10334  * Allocate an anonymous fd, this is what constitutes the application
10335  * visible backing of an io_uring instance. The application mmaps this
10336  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10337  * we have to tie this fd to a socket for file garbage collection purposes.
10338  */
io_uring_get_file(struct io_ring_ctx * ctx)10339 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10340 {
10341 	struct file *file;
10342 #if defined(CONFIG_UNIX)
10343 	int ret;
10344 
10345 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10346 				&ctx->ring_sock);
10347 	if (ret)
10348 		return ERR_PTR(ret);
10349 #endif
10350 
10351 	file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10352 					O_RDWR | O_CLOEXEC);
10353 #if defined(CONFIG_UNIX)
10354 	if (IS_ERR(file)) {
10355 		sock_release(ctx->ring_sock);
10356 		ctx->ring_sock = NULL;
10357 	} else {
10358 		ctx->ring_sock->file = file;
10359 	}
10360 #endif
10361 	return file;
10362 }
10363 
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)10364 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10365 			   struct io_uring_params __user *params)
10366 {
10367 	struct io_ring_ctx *ctx;
10368 	struct file *file;
10369 	int ret;
10370 
10371 	if (!entries)
10372 		return -EINVAL;
10373 	if (entries > IORING_MAX_ENTRIES) {
10374 		if (!(p->flags & IORING_SETUP_CLAMP))
10375 			return -EINVAL;
10376 		entries = IORING_MAX_ENTRIES;
10377 	}
10378 
10379 	/*
10380 	 * Use twice as many entries for the CQ ring. It's possible for the
10381 	 * application to drive a higher depth than the size of the SQ ring,
10382 	 * since the sqes are only used at submission time. This allows for
10383 	 * some flexibility in overcommitting a bit. If the application has
10384 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10385 	 * of CQ ring entries manually.
10386 	 */
10387 	p->sq_entries = roundup_pow_of_two(entries);
10388 	if (p->flags & IORING_SETUP_CQSIZE) {
10389 		/*
10390 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10391 		 * to a power-of-two, if it isn't already. We do NOT impose
10392 		 * any cq vs sq ring sizing.
10393 		 */
10394 		if (!p->cq_entries)
10395 			return -EINVAL;
10396 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10397 			if (!(p->flags & IORING_SETUP_CLAMP))
10398 				return -EINVAL;
10399 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
10400 		}
10401 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
10402 		if (p->cq_entries < p->sq_entries)
10403 			return -EINVAL;
10404 	} else {
10405 		p->cq_entries = 2 * p->sq_entries;
10406 	}
10407 
10408 	ctx = io_ring_ctx_alloc(p);
10409 	if (!ctx)
10410 		return -ENOMEM;
10411 	ctx->compat = in_compat_syscall();
10412 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
10413 		ctx->user = get_uid(current_user());
10414 
10415 	/*
10416 	 * This is just grabbed for accounting purposes. When a process exits,
10417 	 * the mm is exited and dropped before the files, hence we need to hang
10418 	 * on to this mm purely for the purposes of being able to unaccount
10419 	 * memory (locked/pinned vm). It's not used for anything else.
10420 	 */
10421 	mmgrab(current->mm);
10422 	ctx->mm_account = current->mm;
10423 
10424 	ret = io_allocate_scq_urings(ctx, p);
10425 	if (ret)
10426 		goto err;
10427 
10428 	ret = io_sq_offload_create(ctx, p);
10429 	if (ret)
10430 		goto err;
10431 	/* always set a rsrc node */
10432 	ret = io_rsrc_node_switch_start(ctx);
10433 	if (ret)
10434 		goto err;
10435 	io_rsrc_node_switch(ctx, NULL);
10436 
10437 	memset(&p->sq_off, 0, sizeof(p->sq_off));
10438 	p->sq_off.head = offsetof(struct io_rings, sq.head);
10439 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10440 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10441 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10442 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10443 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10444 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10445 
10446 	memset(&p->cq_off, 0, sizeof(p->cq_off));
10447 	p->cq_off.head = offsetof(struct io_rings, cq.head);
10448 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10449 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10450 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10451 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10452 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
10453 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10454 
10455 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10456 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10457 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10458 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10459 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10460 			IORING_FEAT_RSRC_TAGS;
10461 
10462 	if (copy_to_user(params, p, sizeof(*p))) {
10463 		ret = -EFAULT;
10464 		goto err;
10465 	}
10466 
10467 	file = io_uring_get_file(ctx);
10468 	if (IS_ERR(file)) {
10469 		ret = PTR_ERR(file);
10470 		goto err;
10471 	}
10472 
10473 	/*
10474 	 * Install ring fd as the very last thing, so we don't risk someone
10475 	 * having closed it before we finish setup
10476 	 */
10477 	ret = io_uring_install_fd(ctx, file);
10478 	if (ret < 0) {
10479 		/* fput will clean it up */
10480 		fput(file);
10481 		return ret;
10482 	}
10483 
10484 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10485 	return ret;
10486 err:
10487 	io_ring_ctx_wait_and_kill(ctx);
10488 	return ret;
10489 }
10490 
10491 /*
10492  * Sets up an aio uring context, and returns the fd. Applications asks for a
10493  * ring size, we return the actual sq/cq ring sizes (among other things) in the
10494  * params structure passed in.
10495  */
io_uring_setup(u32 entries,struct io_uring_params __user * params)10496 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10497 {
10498 	struct io_uring_params p;
10499 	int i;
10500 
10501 	if (copy_from_user(&p, params, sizeof(p)))
10502 		return -EFAULT;
10503 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10504 		if (p.resv[i])
10505 			return -EINVAL;
10506 	}
10507 
10508 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10509 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10510 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10511 			IORING_SETUP_R_DISABLED))
10512 		return -EINVAL;
10513 
10514 	return  io_uring_create(entries, &p, params);
10515 }
10516 
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)10517 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10518 		struct io_uring_params __user *, params)
10519 {
10520 	return io_uring_setup(entries, params);
10521 }
10522 
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10523 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10524 {
10525 	struct io_uring_probe *p;
10526 	size_t size;
10527 	int i, ret;
10528 
10529 	size = struct_size(p, ops, nr_args);
10530 	if (size == SIZE_MAX)
10531 		return -EOVERFLOW;
10532 	p = kzalloc(size, GFP_KERNEL);
10533 	if (!p)
10534 		return -ENOMEM;
10535 
10536 	ret = -EFAULT;
10537 	if (copy_from_user(p, arg, size))
10538 		goto out;
10539 	ret = -EINVAL;
10540 	if (memchr_inv(p, 0, size))
10541 		goto out;
10542 
10543 	p->last_op = IORING_OP_LAST - 1;
10544 	if (nr_args > IORING_OP_LAST)
10545 		nr_args = IORING_OP_LAST;
10546 
10547 	for (i = 0; i < nr_args; i++) {
10548 		p->ops[i].op = i;
10549 		if (!io_op_defs[i].not_supported)
10550 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
10551 	}
10552 	p->ops_len = i;
10553 
10554 	ret = 0;
10555 	if (copy_to_user(arg, p, size))
10556 		ret = -EFAULT;
10557 out:
10558 	kfree(p);
10559 	return ret;
10560 }
10561 
io_register_personality(struct io_ring_ctx * ctx)10562 static int io_register_personality(struct io_ring_ctx *ctx)
10563 {
10564 	const struct cred *creds;
10565 	u32 id;
10566 	int ret;
10567 
10568 	creds = get_current_cred();
10569 
10570 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10571 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10572 	if (ret < 0) {
10573 		put_cred(creds);
10574 		return ret;
10575 	}
10576 	return id;
10577 }
10578 
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)10579 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10580 				    unsigned int nr_args)
10581 {
10582 	struct io_uring_restriction *res;
10583 	size_t size;
10584 	int i, ret;
10585 
10586 	/* Restrictions allowed only if rings started disabled */
10587 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10588 		return -EBADFD;
10589 
10590 	/* We allow only a single restrictions registration */
10591 	if (ctx->restrictions.registered)
10592 		return -EBUSY;
10593 
10594 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10595 		return -EINVAL;
10596 
10597 	size = array_size(nr_args, sizeof(*res));
10598 	if (size == SIZE_MAX)
10599 		return -EOVERFLOW;
10600 
10601 	res = memdup_user(arg, size);
10602 	if (IS_ERR(res))
10603 		return PTR_ERR(res);
10604 
10605 	ret = 0;
10606 
10607 	for (i = 0; i < nr_args; i++) {
10608 		switch (res[i].opcode) {
10609 		case IORING_RESTRICTION_REGISTER_OP:
10610 			if (res[i].register_op >= IORING_REGISTER_LAST) {
10611 				ret = -EINVAL;
10612 				goto out;
10613 			}
10614 
10615 			__set_bit(res[i].register_op,
10616 				  ctx->restrictions.register_op);
10617 			break;
10618 		case IORING_RESTRICTION_SQE_OP:
10619 			if (res[i].sqe_op >= IORING_OP_LAST) {
10620 				ret = -EINVAL;
10621 				goto out;
10622 			}
10623 
10624 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10625 			break;
10626 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10627 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10628 			break;
10629 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10630 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10631 			break;
10632 		default:
10633 			ret = -EINVAL;
10634 			goto out;
10635 		}
10636 	}
10637 
10638 out:
10639 	/* Reset all restrictions if an error happened */
10640 	if (ret != 0)
10641 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10642 	else
10643 		ctx->restrictions.registered = true;
10644 
10645 	kfree(res);
10646 	return ret;
10647 }
10648 
io_register_enable_rings(struct io_ring_ctx * ctx)10649 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10650 {
10651 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10652 		return -EBADFD;
10653 
10654 	if (ctx->restrictions.registered)
10655 		ctx->restricted = 1;
10656 
10657 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
10658 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10659 		wake_up(&ctx->sq_data->wait);
10660 	return 0;
10661 }
10662 
__io_register_rsrc_update(struct io_ring_ctx * ctx,unsigned type,struct io_uring_rsrc_update2 * up,unsigned nr_args)10663 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10664 				     struct io_uring_rsrc_update2 *up,
10665 				     unsigned nr_args)
10666 {
10667 	__u32 tmp;
10668 	int err;
10669 
10670 	if (check_add_overflow(up->offset, nr_args, &tmp))
10671 		return -EOVERFLOW;
10672 	err = io_rsrc_node_switch_start(ctx);
10673 	if (err)
10674 		return err;
10675 
10676 	switch (type) {
10677 	case IORING_RSRC_FILE:
10678 		return __io_sqe_files_update(ctx, up, nr_args);
10679 	case IORING_RSRC_BUFFER:
10680 		return __io_sqe_buffers_update(ctx, up, nr_args);
10681 	}
10682 	return -EINVAL;
10683 }
10684 
io_register_files_update(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10685 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10686 				    unsigned nr_args)
10687 {
10688 	struct io_uring_rsrc_update2 up;
10689 
10690 	if (!nr_args)
10691 		return -EINVAL;
10692 	memset(&up, 0, sizeof(up));
10693 	if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10694 		return -EFAULT;
10695 	if (up.resv || up.resv2)
10696 		return -EINVAL;
10697 	return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10698 }
10699 
io_register_rsrc_update(struct io_ring_ctx * ctx,void __user * arg,unsigned size,unsigned type)10700 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10701 				   unsigned size, unsigned type)
10702 {
10703 	struct io_uring_rsrc_update2 up;
10704 
10705 	if (size != sizeof(up))
10706 		return -EINVAL;
10707 	if (copy_from_user(&up, arg, sizeof(up)))
10708 		return -EFAULT;
10709 	if (!up.nr || up.resv || up.resv2)
10710 		return -EINVAL;
10711 	return __io_register_rsrc_update(ctx, type, &up, up.nr);
10712 }
10713 
io_register_rsrc(struct io_ring_ctx * ctx,void __user * arg,unsigned int size,unsigned int type)10714 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10715 			    unsigned int size, unsigned int type)
10716 {
10717 	struct io_uring_rsrc_register rr;
10718 
10719 	/* keep it extendible */
10720 	if (size != sizeof(rr))
10721 		return -EINVAL;
10722 
10723 	memset(&rr, 0, sizeof(rr));
10724 	if (copy_from_user(&rr, arg, size))
10725 		return -EFAULT;
10726 	if (!rr.nr || rr.resv || rr.resv2)
10727 		return -EINVAL;
10728 
10729 	switch (type) {
10730 	case IORING_RSRC_FILE:
10731 		return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10732 					     rr.nr, u64_to_user_ptr(rr.tags));
10733 	case IORING_RSRC_BUFFER:
10734 		return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10735 					       rr.nr, u64_to_user_ptr(rr.tags));
10736 	}
10737 	return -EINVAL;
10738 }
10739 
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)10740 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10741 				unsigned len)
10742 {
10743 	struct io_uring_task *tctx = current->io_uring;
10744 	cpumask_var_t new_mask;
10745 	int ret;
10746 
10747 	if (!tctx || !tctx->io_wq)
10748 		return -EINVAL;
10749 
10750 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10751 		return -ENOMEM;
10752 
10753 	cpumask_clear(new_mask);
10754 	if (len > cpumask_size())
10755 		len = cpumask_size();
10756 
10757 #ifdef CONFIG_COMPAT
10758 	if (in_compat_syscall()) {
10759 		ret = compat_get_bitmap(cpumask_bits(new_mask),
10760 					(const compat_ulong_t __user *)arg,
10761 					len * 8 /* CHAR_BIT */);
10762 	} else {
10763 		ret = copy_from_user(new_mask, arg, len);
10764 	}
10765 #else
10766 	ret = copy_from_user(new_mask, arg, len);
10767 #endif
10768 
10769 	if (ret) {
10770 		free_cpumask_var(new_mask);
10771 		return -EFAULT;
10772 	}
10773 
10774 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10775 	free_cpumask_var(new_mask);
10776 	return ret;
10777 }
10778 
io_unregister_iowq_aff(struct io_ring_ctx * ctx)10779 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10780 {
10781 	struct io_uring_task *tctx = current->io_uring;
10782 
10783 	if (!tctx || !tctx->io_wq)
10784 		return -EINVAL;
10785 
10786 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
10787 }
10788 
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)10789 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10790 					void __user *arg)
10791 	__must_hold(&ctx->uring_lock)
10792 {
10793 	struct io_tctx_node *node;
10794 	struct io_uring_task *tctx = NULL;
10795 	struct io_sq_data *sqd = NULL;
10796 	__u32 new_count[2];
10797 	int i, ret;
10798 
10799 	if (copy_from_user(new_count, arg, sizeof(new_count)))
10800 		return -EFAULT;
10801 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
10802 		if (new_count[i] > INT_MAX)
10803 			return -EINVAL;
10804 
10805 	if (ctx->flags & IORING_SETUP_SQPOLL) {
10806 		sqd = ctx->sq_data;
10807 		if (sqd) {
10808 			/*
10809 			 * Observe the correct sqd->lock -> ctx->uring_lock
10810 			 * ordering. Fine to drop uring_lock here, we hold
10811 			 * a ref to the ctx.
10812 			 */
10813 			refcount_inc(&sqd->refs);
10814 			mutex_unlock(&ctx->uring_lock);
10815 			mutex_lock(&sqd->lock);
10816 			mutex_lock(&ctx->uring_lock);
10817 			if (sqd->thread)
10818 				tctx = sqd->thread->io_uring;
10819 		}
10820 	} else {
10821 		tctx = current->io_uring;
10822 	}
10823 
10824 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10825 
10826 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
10827 		if (new_count[i])
10828 			ctx->iowq_limits[i] = new_count[i];
10829 	ctx->iowq_limits_set = true;
10830 
10831 	ret = -EINVAL;
10832 	if (tctx && tctx->io_wq) {
10833 		ret = io_wq_max_workers(tctx->io_wq, new_count);
10834 		if (ret)
10835 			goto err;
10836 	} else {
10837 		memset(new_count, 0, sizeof(new_count));
10838 	}
10839 
10840 	if (sqd) {
10841 		mutex_unlock(&sqd->lock);
10842 		io_put_sq_data(sqd);
10843 	}
10844 
10845 	if (copy_to_user(arg, new_count, sizeof(new_count)))
10846 		return -EFAULT;
10847 
10848 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
10849 	if (sqd)
10850 		return 0;
10851 
10852 	/* now propagate the restriction to all registered users */
10853 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10854 		struct io_uring_task *tctx = node->task->io_uring;
10855 
10856 		if (WARN_ON_ONCE(!tctx->io_wq))
10857 			continue;
10858 
10859 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
10860 			new_count[i] = ctx->iowq_limits[i];
10861 		/* ignore errors, it always returns zero anyway */
10862 		(void)io_wq_max_workers(tctx->io_wq, new_count);
10863 	}
10864 	return 0;
10865 err:
10866 	if (sqd) {
10867 		mutex_unlock(&sqd->lock);
10868 		io_put_sq_data(sqd);
10869 	}
10870 	return ret;
10871 }
10872 
io_register_op_must_quiesce(int op)10873 static bool io_register_op_must_quiesce(int op)
10874 {
10875 	switch (op) {
10876 	case IORING_REGISTER_BUFFERS:
10877 	case IORING_UNREGISTER_BUFFERS:
10878 	case IORING_REGISTER_FILES:
10879 	case IORING_UNREGISTER_FILES:
10880 	case IORING_REGISTER_FILES_UPDATE:
10881 	case IORING_REGISTER_PROBE:
10882 	case IORING_REGISTER_PERSONALITY:
10883 	case IORING_UNREGISTER_PERSONALITY:
10884 	case IORING_REGISTER_FILES2:
10885 	case IORING_REGISTER_FILES_UPDATE2:
10886 	case IORING_REGISTER_BUFFERS2:
10887 	case IORING_REGISTER_BUFFERS_UPDATE:
10888 	case IORING_REGISTER_IOWQ_AFF:
10889 	case IORING_UNREGISTER_IOWQ_AFF:
10890 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
10891 		return false;
10892 	default:
10893 		return true;
10894 	}
10895 }
10896 
io_ctx_quiesce(struct io_ring_ctx * ctx)10897 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10898 {
10899 	long ret;
10900 
10901 	percpu_ref_kill(&ctx->refs);
10902 
10903 	/*
10904 	 * Drop uring mutex before waiting for references to exit. If another
10905 	 * thread is currently inside io_uring_enter() it might need to grab the
10906 	 * uring_lock to make progress. If we hold it here across the drain
10907 	 * wait, then we can deadlock. It's safe to drop the mutex here, since
10908 	 * no new references will come in after we've killed the percpu ref.
10909 	 */
10910 	mutex_unlock(&ctx->uring_lock);
10911 	do {
10912 		ret = wait_for_completion_interruptible(&ctx->ref_comp);
10913 		if (!ret)
10914 			break;
10915 		ret = io_run_task_work_sig();
10916 	} while (ret >= 0);
10917 	mutex_lock(&ctx->uring_lock);
10918 
10919 	if (ret)
10920 		io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10921 	return ret;
10922 }
10923 
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)10924 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10925 			       void __user *arg, unsigned nr_args)
10926 	__releases(ctx->uring_lock)
10927 	__acquires(ctx->uring_lock)
10928 {
10929 	int ret;
10930 
10931 	/*
10932 	 * We're inside the ring mutex, if the ref is already dying, then
10933 	 * someone else killed the ctx or is already going through
10934 	 * io_uring_register().
10935 	 */
10936 	if (percpu_ref_is_dying(&ctx->refs))
10937 		return -ENXIO;
10938 
10939 	if (ctx->restricted) {
10940 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10941 		if (!test_bit(opcode, ctx->restrictions.register_op))
10942 			return -EACCES;
10943 	}
10944 
10945 	if (io_register_op_must_quiesce(opcode)) {
10946 		ret = io_ctx_quiesce(ctx);
10947 		if (ret)
10948 			return ret;
10949 	}
10950 
10951 	switch (opcode) {
10952 	case IORING_REGISTER_BUFFERS:
10953 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10954 		break;
10955 	case IORING_UNREGISTER_BUFFERS:
10956 		ret = -EINVAL;
10957 		if (arg || nr_args)
10958 			break;
10959 		ret = io_sqe_buffers_unregister(ctx);
10960 		break;
10961 	case IORING_REGISTER_FILES:
10962 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10963 		break;
10964 	case IORING_UNREGISTER_FILES:
10965 		ret = -EINVAL;
10966 		if (arg || nr_args)
10967 			break;
10968 		ret = io_sqe_files_unregister(ctx);
10969 		break;
10970 	case IORING_REGISTER_FILES_UPDATE:
10971 		ret = io_register_files_update(ctx, arg, nr_args);
10972 		break;
10973 	case IORING_REGISTER_EVENTFD:
10974 	case IORING_REGISTER_EVENTFD_ASYNC:
10975 		ret = -EINVAL;
10976 		if (nr_args != 1)
10977 			break;
10978 		ret = io_eventfd_register(ctx, arg);
10979 		if (ret)
10980 			break;
10981 		if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10982 			ctx->eventfd_async = 1;
10983 		else
10984 			ctx->eventfd_async = 0;
10985 		break;
10986 	case IORING_UNREGISTER_EVENTFD:
10987 		ret = -EINVAL;
10988 		if (arg || nr_args)
10989 			break;
10990 		ret = io_eventfd_unregister(ctx);
10991 		break;
10992 	case IORING_REGISTER_PROBE:
10993 		ret = -EINVAL;
10994 		if (!arg || nr_args > 256)
10995 			break;
10996 		ret = io_probe(ctx, arg, nr_args);
10997 		break;
10998 	case IORING_REGISTER_PERSONALITY:
10999 		ret = -EINVAL;
11000 		if (arg || nr_args)
11001 			break;
11002 		ret = io_register_personality(ctx);
11003 		break;
11004 	case IORING_UNREGISTER_PERSONALITY:
11005 		ret = -EINVAL;
11006 		if (arg)
11007 			break;
11008 		ret = io_unregister_personality(ctx, nr_args);
11009 		break;
11010 	case IORING_REGISTER_ENABLE_RINGS:
11011 		ret = -EINVAL;
11012 		if (arg || nr_args)
11013 			break;
11014 		ret = io_register_enable_rings(ctx);
11015 		break;
11016 	case IORING_REGISTER_RESTRICTIONS:
11017 		ret = io_register_restrictions(ctx, arg, nr_args);
11018 		break;
11019 	case IORING_REGISTER_FILES2:
11020 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
11021 		break;
11022 	case IORING_REGISTER_FILES_UPDATE2:
11023 		ret = io_register_rsrc_update(ctx, arg, nr_args,
11024 					      IORING_RSRC_FILE);
11025 		break;
11026 	case IORING_REGISTER_BUFFERS2:
11027 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
11028 		break;
11029 	case IORING_REGISTER_BUFFERS_UPDATE:
11030 		ret = io_register_rsrc_update(ctx, arg, nr_args,
11031 					      IORING_RSRC_BUFFER);
11032 		break;
11033 	case IORING_REGISTER_IOWQ_AFF:
11034 		ret = -EINVAL;
11035 		if (!arg || !nr_args)
11036 			break;
11037 		ret = io_register_iowq_aff(ctx, arg, nr_args);
11038 		break;
11039 	case IORING_UNREGISTER_IOWQ_AFF:
11040 		ret = -EINVAL;
11041 		if (arg || nr_args)
11042 			break;
11043 		ret = io_unregister_iowq_aff(ctx);
11044 		break;
11045 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
11046 		ret = -EINVAL;
11047 		if (!arg || nr_args != 2)
11048 			break;
11049 		ret = io_register_iowq_max_workers(ctx, arg);
11050 		break;
11051 	default:
11052 		ret = -EINVAL;
11053 		break;
11054 	}
11055 
11056 	if (io_register_op_must_quiesce(opcode)) {
11057 		/* bring the ctx back to life */
11058 		percpu_ref_reinit(&ctx->refs);
11059 		reinit_completion(&ctx->ref_comp);
11060 	}
11061 	return ret;
11062 }
11063 
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)11064 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
11065 		void __user *, arg, unsigned int, nr_args)
11066 {
11067 	struct io_ring_ctx *ctx;
11068 	long ret = -EBADF;
11069 	struct fd f;
11070 
11071 	if (opcode >= IORING_REGISTER_LAST)
11072 		return -EINVAL;
11073 
11074 	f = fdget(fd);
11075 	if (!f.file)
11076 		return -EBADF;
11077 
11078 	ret = -EOPNOTSUPP;
11079 	if (f.file->f_op != &io_uring_fops)
11080 		goto out_fput;
11081 
11082 	ctx = f.file->private_data;
11083 
11084 	io_run_task_work();
11085 
11086 	mutex_lock(&ctx->uring_lock);
11087 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
11088 	mutex_unlock(&ctx->uring_lock);
11089 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11090 							ctx->cq_ev_fd != NULL, ret);
11091 out_fput:
11092 	fdput(f);
11093 	return ret;
11094 }
11095 
io_uring_init(void)11096 static int __init io_uring_init(void)
11097 {
11098 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11099 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11100 	BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11101 } while (0)
11102 
11103 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11104 	__BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11105 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11106 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
11107 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
11108 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
11109 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
11110 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
11111 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
11112 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
11113 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
11114 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
11115 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
11116 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
11117 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11118 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
11119 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
11120 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
11121 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
11122 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
11123 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
11124 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
11125 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
11126 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
11127 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
11128 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
11129 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
11130 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
11131 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
11132 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
11133 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
11134 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
11135 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
11136 
11137 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11138 		     sizeof(struct io_uring_rsrc_update));
11139 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11140 		     sizeof(struct io_uring_rsrc_update2));
11141 
11142 	/* ->buf_index is u16 */
11143 	BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11144 
11145 	/* should fit into one byte */
11146 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11147 
11148 	BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11149 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11150 
11151 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11152 				SLAB_ACCOUNT);
11153 	return 0;
11154 };
11155 __initcall(io_uring_init);
11156