1 // Copyright 2008, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 #include "gtest/internal/gtest-port.h"
31
32 #include <limits.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36
37 #include <cstdint>
38 #include <fstream>
39 #include <memory>
40 #include <ostream>
41 #include <string>
42 #include <utility>
43 #include <vector>
44
45 #ifdef GTEST_OS_WINDOWS
46 #include <io.h>
47 #include <sys/stat.h>
48 #include <windows.h>
49
50 #include <map> // Used in ThreadLocal.
51 #ifdef _MSC_VER
52 #include <crtdbg.h>
53 #endif // _MSC_VER
54 #else
55 #include <unistd.h>
56 #endif // GTEST_OS_WINDOWS
57
58 #ifdef GTEST_OS_MAC
59 #include <mach/mach_init.h>
60 #include <mach/task.h>
61 #include <mach/vm_map.h>
62 #endif // GTEST_OS_MAC
63
64 #if defined(GTEST_OS_DRAGONFLY) || defined(GTEST_OS_FREEBSD) || \
65 defined(GTEST_OS_GNU_KFREEBSD) || defined(GTEST_OS_NETBSD) || \
66 defined(GTEST_OS_OPENBSD)
67 #include <sys/sysctl.h>
68 #if defined(GTEST_OS_DRAGONFLY) || defined(GTEST_OS_FREEBSD) || \
69 defined(GTEST_OS_GNU_KFREEBSD)
70 #include <sys/user.h>
71 #endif
72 #endif
73
74 #ifdef GTEST_OS_QNX
75 #include <devctl.h>
76 #include <fcntl.h>
77 #include <sys/procfs.h>
78 #endif // GTEST_OS_QNX
79
80 #ifdef GTEST_OS_AIX
81 #include <procinfo.h>
82 #include <sys/types.h>
83 #endif // GTEST_OS_AIX
84
85 #ifdef GTEST_OS_FUCHSIA
86 #include <zircon/process.h>
87 #include <zircon/syscalls.h>
88 #endif // GTEST_OS_FUCHSIA
89
90 #include "gtest/gtest-message.h"
91 #include "gtest/gtest-spi.h"
92 #include "gtest/internal/gtest-internal.h"
93 #include "gtest/internal/gtest-string.h"
94 #include "src/gtest-internal-inl.h"
95
96 namespace testing {
97 namespace internal {
98
99 #if defined(GTEST_OS_LINUX) || defined(GTEST_OS_GNU_HURD)
100
101 namespace {
102 template <typename T>
ReadProcFileField(const std::string & filename,int field)103 T ReadProcFileField(const std::string& filename, int field) {
104 std::string dummy;
105 std::ifstream file(filename.c_str());
106 while (field-- > 0) {
107 file >> dummy;
108 }
109 T output = 0;
110 file >> output;
111 return output;
112 }
113 } // namespace
114
115 // Returns the number of active threads, or 0 when there is an error.
GetThreadCount()116 size_t GetThreadCount() {
117 const std::string filename =
118 (Message() << "/proc/" << getpid() << "/stat").GetString();
119 return ReadProcFileField<size_t>(filename, 19);
120 }
121
122 #elif defined(GTEST_OS_MAC)
123
124 size_t GetThreadCount() {
125 const task_t task = mach_task_self();
126 mach_msg_type_number_t thread_count;
127 thread_act_array_t thread_list;
128 const kern_return_t status = task_threads(task, &thread_list, &thread_count);
129 if (status == KERN_SUCCESS) {
130 // task_threads allocates resources in thread_list and we need to free them
131 // to avoid leaks.
132 vm_deallocate(task, reinterpret_cast<vm_address_t>(thread_list),
133 sizeof(thread_t) * thread_count);
134 return static_cast<size_t>(thread_count);
135 } else {
136 return 0;
137 }
138 }
139
140 #elif defined(GTEST_OS_DRAGONFLY) || defined(GTEST_OS_FREEBSD) || \
141 defined(GTEST_OS_GNU_KFREEBSD) || defined(GTEST_OS_NETBSD)
142
143 #ifdef GTEST_OS_NETBSD
144 #undef KERN_PROC
145 #define KERN_PROC KERN_PROC2
146 #define kinfo_proc kinfo_proc2
147 #endif
148
149 #ifdef GTEST_OS_DRAGONFLY
150 #define KP_NLWP(kp) (kp.kp_nthreads)
151 #elif defined(GTEST_OS_FREEBSD) || defined(GTEST_OS_GNU_KFREEBSD)
152 #define KP_NLWP(kp) (kp.ki_numthreads)
153 #elif defined(GTEST_OS_NETBSD)
154 #define KP_NLWP(kp) (kp.p_nlwps)
155 #endif
156
157 // Returns the number of threads running in the process, or 0 to indicate that
158 // we cannot detect it.
159 size_t GetThreadCount() {
160 int mib[] = {
161 CTL_KERN,
162 KERN_PROC,
163 KERN_PROC_PID,
164 getpid(),
165 #ifdef GTEST_OS_NETBSD
166 sizeof(struct kinfo_proc),
167 1,
168 #endif
169 };
170 u_int miblen = sizeof(mib) / sizeof(mib[0]);
171 struct kinfo_proc info;
172 size_t size = sizeof(info);
173 if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
174 return 0;
175 }
176 return static_cast<size_t>(KP_NLWP(info));
177 }
178 #elif defined(GTEST_OS_OPENBSD)
179
180 // Returns the number of threads running in the process, or 0 to indicate that
181 // we cannot detect it.
182 size_t GetThreadCount() {
183 int mib[] = {
184 CTL_KERN,
185 KERN_PROC,
186 KERN_PROC_PID | KERN_PROC_SHOW_THREADS,
187 getpid(),
188 sizeof(struct kinfo_proc),
189 0,
190 };
191 u_int miblen = sizeof(mib) / sizeof(mib[0]);
192
193 // get number of structs
194 size_t size;
195 if (sysctl(mib, miblen, NULL, &size, NULL, 0)) {
196 return 0;
197 }
198
199 mib[5] = static_cast<int>(size / static_cast<size_t>(mib[4]));
200
201 // populate array of structs
202 std::vector<struct kinfo_proc> info(mib[5]);
203 if (sysctl(mib, miblen, info.data(), &size, NULL, 0)) {
204 return 0;
205 }
206
207 // exclude empty members
208 size_t nthreads = 0;
209 for (size_t i = 0; i < size / static_cast<size_t>(mib[4]); i++) {
210 if (info[i].p_tid != -1) nthreads++;
211 }
212 return nthreads;
213 }
214
215 #elif defined(GTEST_OS_QNX)
216
217 // Returns the number of threads running in the process, or 0 to indicate that
218 // we cannot detect it.
219 size_t GetThreadCount() {
220 const int fd = open("/proc/self/as", O_RDONLY);
221 if (fd < 0) {
222 return 0;
223 }
224 procfs_info process_info;
225 const int status =
226 devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), nullptr);
227 close(fd);
228 if (status == EOK) {
229 return static_cast<size_t>(process_info.num_threads);
230 } else {
231 return 0;
232 }
233 }
234
235 #elif defined(GTEST_OS_AIX)
236
237 size_t GetThreadCount() {
238 struct procentry64 entry;
239 pid_t pid = getpid();
240 int status = getprocs64(&entry, sizeof(entry), nullptr, 0, &pid, 1);
241 if (status == 1) {
242 return entry.pi_thcount;
243 } else {
244 return 0;
245 }
246 }
247
248 #elif defined(GTEST_OS_FUCHSIA)
249
250 size_t GetThreadCount() {
251 int dummy_buffer;
252 size_t avail;
253 zx_status_t status =
254 zx_object_get_info(zx_process_self(), ZX_INFO_PROCESS_THREADS,
255 &dummy_buffer, 0, nullptr, &avail);
256 if (status == ZX_OK) {
257 return avail;
258 } else {
259 return 0;
260 }
261 }
262
263 #else
264
265 size_t GetThreadCount() {
266 // There's no portable way to detect the number of threads, so we just
267 // return 0 to indicate that we cannot detect it.
268 return 0;
269 }
270
271 #endif // GTEST_OS_LINUX
272
273 #if defined(GTEST_IS_THREADSAFE) && defined(GTEST_OS_WINDOWS)
274
AutoHandle()275 AutoHandle::AutoHandle() : handle_(INVALID_HANDLE_VALUE) {}
276
AutoHandle(Handle handle)277 AutoHandle::AutoHandle(Handle handle) : handle_(handle) {}
278
~AutoHandle()279 AutoHandle::~AutoHandle() { Reset(); }
280
Get() const281 AutoHandle::Handle AutoHandle::Get() const { return handle_; }
282
Reset()283 void AutoHandle::Reset() { Reset(INVALID_HANDLE_VALUE); }
284
Reset(HANDLE handle)285 void AutoHandle::Reset(HANDLE handle) {
286 // Resetting with the same handle we already own is invalid.
287 if (handle_ != handle) {
288 if (IsCloseable()) {
289 ::CloseHandle(handle_);
290 }
291 handle_ = handle;
292 } else {
293 GTEST_CHECK_(!IsCloseable())
294 << "Resetting a valid handle to itself is likely a programmer error "
295 "and thus not allowed.";
296 }
297 }
298
IsCloseable() const299 bool AutoHandle::IsCloseable() const {
300 // Different Windows APIs may use either of these values to represent an
301 // invalid handle.
302 return handle_ != nullptr && handle_ != INVALID_HANDLE_VALUE;
303 }
304
Mutex()305 Mutex::Mutex()
306 : owner_thread_id_(0),
307 type_(kDynamic),
308 critical_section_init_phase_(0),
309 critical_section_(new CRITICAL_SECTION) {
310 ::InitializeCriticalSection(critical_section_);
311 }
312
~Mutex()313 Mutex::~Mutex() {
314 // Static mutexes are leaked intentionally. It is not thread-safe to try
315 // to clean them up.
316 if (type_ == kDynamic) {
317 ::DeleteCriticalSection(critical_section_);
318 delete critical_section_;
319 critical_section_ = nullptr;
320 }
321 }
322
Lock()323 void Mutex::Lock() {
324 ThreadSafeLazyInit();
325 ::EnterCriticalSection(critical_section_);
326 owner_thread_id_ = ::GetCurrentThreadId();
327 }
328
Unlock()329 void Mutex::Unlock() {
330 ThreadSafeLazyInit();
331 // We don't protect writing to owner_thread_id_ here, as it's the
332 // caller's responsibility to ensure that the current thread holds the
333 // mutex when this is called.
334 owner_thread_id_ = 0;
335 ::LeaveCriticalSection(critical_section_);
336 }
337
338 // Does nothing if the current thread holds the mutex. Otherwise, crashes
339 // with high probability.
AssertHeld()340 void Mutex::AssertHeld() {
341 ThreadSafeLazyInit();
342 GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId())
343 << "The current thread is not holding the mutex @" << this;
344 }
345
346 namespace {
347
348 #ifdef _MSC_VER
349 // Use the RAII idiom to flag mem allocs that are intentionally never
350 // deallocated. The motivation is to silence the false positive mem leaks
351 // that are reported by the debug version of MS's CRT which can only detect
352 // if an alloc is missing a matching deallocation.
353 // Example:
354 // MemoryIsNotDeallocated memory_is_not_deallocated;
355 // critical_section_ = new CRITICAL_SECTION;
356 //
357 class MemoryIsNotDeallocated {
358 public:
MemoryIsNotDeallocated()359 MemoryIsNotDeallocated() : old_crtdbg_flag_(0) {
360 old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
361 // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT
362 // doesn't report mem leak if there's no matching deallocation.
363 (void)_CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF);
364 }
365
~MemoryIsNotDeallocated()366 ~MemoryIsNotDeallocated() {
367 // Restore the original _CRTDBG_ALLOC_MEM_DF flag
368 (void)_CrtSetDbgFlag(old_crtdbg_flag_);
369 }
370
371 private:
372 int old_crtdbg_flag_;
373
374 MemoryIsNotDeallocated(const MemoryIsNotDeallocated&) = delete;
375 MemoryIsNotDeallocated& operator=(const MemoryIsNotDeallocated&) = delete;
376 };
377 #endif // _MSC_VER
378
379 } // namespace
380
381 // Initializes owner_thread_id_ and critical_section_ in static mutexes.
ThreadSafeLazyInit()382 void Mutex::ThreadSafeLazyInit() {
383 // Dynamic mutexes are initialized in the constructor.
384 if (type_ == kStatic) {
385 switch (
386 ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) {
387 case 0:
388 // If critical_section_init_phase_ was 0 before the exchange, we
389 // are the first to test it and need to perform the initialization.
390 owner_thread_id_ = 0;
391 {
392 // Use RAII to flag that following mem alloc is never deallocated.
393 #ifdef _MSC_VER
394 MemoryIsNotDeallocated memory_is_not_deallocated;
395 #endif // _MSC_VER
396 critical_section_ = new CRITICAL_SECTION;
397 }
398 ::InitializeCriticalSection(critical_section_);
399 // Updates the critical_section_init_phase_ to 2 to signal
400 // initialization complete.
401 GTEST_CHECK_(::InterlockedCompareExchange(&critical_section_init_phase_,
402 2L, 1L) == 1L);
403 break;
404 case 1:
405 // Somebody else is already initializing the mutex; spin until they
406 // are done.
407 while (::InterlockedCompareExchange(&critical_section_init_phase_, 2L,
408 2L) != 2L) {
409 // Possibly yields the rest of the thread's time slice to other
410 // threads.
411 ::Sleep(0);
412 }
413 break;
414
415 case 2:
416 break; // The mutex is already initialized and ready for use.
417
418 default:
419 GTEST_CHECK_(false)
420 << "Unexpected value of critical_section_init_phase_ "
421 << "while initializing a static mutex.";
422 }
423 }
424 }
425
426 namespace {
427
428 class ThreadWithParamSupport : public ThreadWithParamBase {
429 public:
CreateThread(Runnable * runnable,Notification * thread_can_start)430 static HANDLE CreateThread(Runnable* runnable,
431 Notification* thread_can_start) {
432 ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start);
433 DWORD thread_id;
434 HANDLE thread_handle = ::CreateThread(
435 nullptr, // Default security.
436 0, // Default stack size.
437 &ThreadWithParamSupport::ThreadMain,
438 param, // Parameter to ThreadMainStatic
439 0x0, // Default creation flags.
440 &thread_id); // Need a valid pointer for the call to work under Win98.
441 GTEST_CHECK_(thread_handle != nullptr)
442 << "CreateThread failed with error " << ::GetLastError() << ".";
443 if (thread_handle == nullptr) {
444 delete param;
445 }
446 return thread_handle;
447 }
448
449 private:
450 struct ThreadMainParam {
ThreadMainParamtesting::internal::__anon5b08cc640311::ThreadWithParamSupport::ThreadMainParam451 ThreadMainParam(Runnable* runnable, Notification* thread_can_start)
452 : runnable_(runnable), thread_can_start_(thread_can_start) {}
453 std::unique_ptr<Runnable> runnable_;
454 // Does not own.
455 Notification* thread_can_start_;
456 };
457
ThreadMain(void * ptr)458 static DWORD WINAPI ThreadMain(void* ptr) {
459 // Transfers ownership.
460 std::unique_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr));
461 if (param->thread_can_start_ != nullptr)
462 param->thread_can_start_->WaitForNotification();
463 param->runnable_->Run();
464 return 0;
465 }
466
467 // Prohibit instantiation.
468 ThreadWithParamSupport();
469
470 ThreadWithParamSupport(const ThreadWithParamSupport&) = delete;
471 ThreadWithParamSupport& operator=(const ThreadWithParamSupport&) = delete;
472 };
473
474 } // namespace
475
ThreadWithParamBase(Runnable * runnable,Notification * thread_can_start)476 ThreadWithParamBase::ThreadWithParamBase(Runnable* runnable,
477 Notification* thread_can_start)
478 : thread_(
479 ThreadWithParamSupport::CreateThread(runnable, thread_can_start)) {}
480
~ThreadWithParamBase()481 ThreadWithParamBase::~ThreadWithParamBase() { Join(); }
482
Join()483 void ThreadWithParamBase::Join() {
484 GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0)
485 << "Failed to join the thread with error " << ::GetLastError() << ".";
486 }
487
488 // Maps a thread to a set of ThreadIdToThreadLocals that have values
489 // instantiated on that thread and notifies them when the thread exits. A
490 // ThreadLocal instance is expected to persist until all threads it has
491 // values on have terminated.
492 class ThreadLocalRegistryImpl {
493 public:
494 // Registers thread_local_instance as having value on the current thread.
495 // Returns a value that can be used to identify the thread from other threads.
GetValueOnCurrentThread(const ThreadLocalBase * thread_local_instance)496 static ThreadLocalValueHolderBase* GetValueOnCurrentThread(
497 const ThreadLocalBase* thread_local_instance) {
498 #ifdef _MSC_VER
499 MemoryIsNotDeallocated memory_is_not_deallocated;
500 #endif // _MSC_VER
501 DWORD current_thread = ::GetCurrentThreadId();
502 MutexLock lock(&mutex_);
503 ThreadIdToThreadLocals* const thread_to_thread_locals =
504 GetThreadLocalsMapLocked();
505 ThreadIdToThreadLocals::iterator thread_local_pos =
506 thread_to_thread_locals->find(current_thread);
507 if (thread_local_pos == thread_to_thread_locals->end()) {
508 thread_local_pos =
509 thread_to_thread_locals
510 ->insert(std::make_pair(current_thread, ThreadLocalValues()))
511 .first;
512 StartWatcherThreadFor(current_thread);
513 }
514 ThreadLocalValues& thread_local_values = thread_local_pos->second;
515 ThreadLocalValues::iterator value_pos =
516 thread_local_values.find(thread_local_instance);
517 if (value_pos == thread_local_values.end()) {
518 value_pos =
519 thread_local_values
520 .insert(std::make_pair(
521 thread_local_instance,
522 std::shared_ptr<ThreadLocalValueHolderBase>(
523 thread_local_instance->NewValueForCurrentThread())))
524 .first;
525 }
526 return value_pos->second.get();
527 }
528
OnThreadLocalDestroyed(const ThreadLocalBase * thread_local_instance)529 static void OnThreadLocalDestroyed(
530 const ThreadLocalBase* thread_local_instance) {
531 std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
532 // Clean up the ThreadLocalValues data structure while holding the lock, but
533 // defer the destruction of the ThreadLocalValueHolderBases.
534 {
535 MutexLock lock(&mutex_);
536 ThreadIdToThreadLocals* const thread_to_thread_locals =
537 GetThreadLocalsMapLocked();
538 for (ThreadIdToThreadLocals::iterator it =
539 thread_to_thread_locals->begin();
540 it != thread_to_thread_locals->end(); ++it) {
541 ThreadLocalValues& thread_local_values = it->second;
542 ThreadLocalValues::iterator value_pos =
543 thread_local_values.find(thread_local_instance);
544 if (value_pos != thread_local_values.end()) {
545 value_holders.push_back(value_pos->second);
546 thread_local_values.erase(value_pos);
547 // This 'if' can only be successful at most once, so theoretically we
548 // could break out of the loop here, but we don't bother doing so.
549 }
550 }
551 }
552 // Outside the lock, let the destructor for 'value_holders' deallocate the
553 // ThreadLocalValueHolderBases.
554 }
555
OnThreadExit(DWORD thread_id)556 static void OnThreadExit(DWORD thread_id) {
557 GTEST_CHECK_(thread_id != 0) << ::GetLastError();
558 std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
559 // Clean up the ThreadIdToThreadLocals data structure while holding the
560 // lock, but defer the destruction of the ThreadLocalValueHolderBases.
561 {
562 MutexLock lock(&mutex_);
563 ThreadIdToThreadLocals* const thread_to_thread_locals =
564 GetThreadLocalsMapLocked();
565 ThreadIdToThreadLocals::iterator thread_local_pos =
566 thread_to_thread_locals->find(thread_id);
567 if (thread_local_pos != thread_to_thread_locals->end()) {
568 ThreadLocalValues& thread_local_values = thread_local_pos->second;
569 for (ThreadLocalValues::iterator value_pos =
570 thread_local_values.begin();
571 value_pos != thread_local_values.end(); ++value_pos) {
572 value_holders.push_back(value_pos->second);
573 }
574 thread_to_thread_locals->erase(thread_local_pos);
575 }
576 }
577 // Outside the lock, let the destructor for 'value_holders' deallocate the
578 // ThreadLocalValueHolderBases.
579 }
580
581 private:
582 // In a particular thread, maps a ThreadLocal object to its value.
583 typedef std::map<const ThreadLocalBase*,
584 std::shared_ptr<ThreadLocalValueHolderBase> >
585 ThreadLocalValues;
586 // Stores all ThreadIdToThreadLocals having values in a thread, indexed by
587 // thread's ID.
588 typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals;
589
590 // Holds the thread id and thread handle that we pass from
591 // StartWatcherThreadFor to WatcherThreadFunc.
592 typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle;
593
StartWatcherThreadFor(DWORD thread_id)594 static void StartWatcherThreadFor(DWORD thread_id) {
595 // The returned handle will be kept in thread_map and closed by
596 // watcher_thread in WatcherThreadFunc.
597 HANDLE thread =
598 ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION, FALSE, thread_id);
599 GTEST_CHECK_(thread != nullptr);
600 // We need to pass a valid thread ID pointer into CreateThread for it
601 // to work correctly under Win98.
602 DWORD watcher_thread_id;
603 HANDLE watcher_thread = ::CreateThread(
604 nullptr, // Default security.
605 0, // Default stack size
606 &ThreadLocalRegistryImpl::WatcherThreadFunc,
607 reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)),
608 CREATE_SUSPENDED, &watcher_thread_id);
609 GTEST_CHECK_(watcher_thread != nullptr)
610 << "CreateThread failed with error " << ::GetLastError() << ".";
611 // Give the watcher thread the same priority as ours to avoid being
612 // blocked by it.
613 ::SetThreadPriority(watcher_thread,
614 ::GetThreadPriority(::GetCurrentThread()));
615 ::ResumeThread(watcher_thread);
616 ::CloseHandle(watcher_thread);
617 }
618
619 // Monitors exit from a given thread and notifies those
620 // ThreadIdToThreadLocals about thread termination.
WatcherThreadFunc(LPVOID param)621 static DWORD WINAPI WatcherThreadFunc(LPVOID param) {
622 const ThreadIdAndHandle* tah =
623 reinterpret_cast<const ThreadIdAndHandle*>(param);
624 GTEST_CHECK_(::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0);
625 OnThreadExit(tah->first);
626 ::CloseHandle(tah->second);
627 delete tah;
628 return 0;
629 }
630
631 // Returns map of thread local instances.
GetThreadLocalsMapLocked()632 static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() {
633 mutex_.AssertHeld();
634 #ifdef _MSC_VER
635 MemoryIsNotDeallocated memory_is_not_deallocated;
636 #endif // _MSC_VER
637 static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals();
638 return map;
639 }
640
641 // Protects access to GetThreadLocalsMapLocked() and its return value.
642 static Mutex mutex_;
643 // Protects access to GetThreadMapLocked() and its return value.
644 static Mutex thread_map_mutex_;
645 };
646
647 Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex); // NOLINT
648 Mutex ThreadLocalRegistryImpl::thread_map_mutex_(
649 Mutex::kStaticMutex); // NOLINT
650
GetValueOnCurrentThread(const ThreadLocalBase * thread_local_instance)651 ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread(
652 const ThreadLocalBase* thread_local_instance) {
653 return ThreadLocalRegistryImpl::GetValueOnCurrentThread(
654 thread_local_instance);
655 }
656
OnThreadLocalDestroyed(const ThreadLocalBase * thread_local_instance)657 void ThreadLocalRegistry::OnThreadLocalDestroyed(
658 const ThreadLocalBase* thread_local_instance) {
659 ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance);
660 }
661
662 #endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
663
664 #ifdef GTEST_USES_POSIX_RE
665
666 // Implements RE. Currently only needed for death tests.
667
~RE()668 RE::~RE() {
669 if (is_valid_) {
670 // regfree'ing an invalid regex might crash because the content
671 // of the regex is undefined. Since the regex's are essentially
672 // the same, one cannot be valid (or invalid) without the other
673 // being so too.
674 regfree(&partial_regex_);
675 regfree(&full_regex_);
676 }
677 }
678
679 // Returns true if and only if regular expression re matches the entire str.
FullMatch(const char * str,const RE & re)680 bool RE::FullMatch(const char* str, const RE& re) {
681 if (!re.is_valid_) return false;
682
683 regmatch_t match;
684 return regexec(&re.full_regex_, str, 1, &match, 0) == 0;
685 }
686
687 // Returns true if and only if regular expression re matches a substring of
688 // str (including str itself).
PartialMatch(const char * str,const RE & re)689 bool RE::PartialMatch(const char* str, const RE& re) {
690 if (!re.is_valid_) return false;
691
692 regmatch_t match;
693 return regexec(&re.partial_regex_, str, 1, &match, 0) == 0;
694 }
695
696 // Initializes an RE from its string representation.
Init(const char * regex)697 void RE::Init(const char* regex) {
698 pattern_ = regex;
699
700 // NetBSD (and Android, which takes its regex implemntation from NetBSD) does
701 // not include the GNU regex extensions (such as Perl style character classes
702 // like \w) in REG_EXTENDED. REG_EXTENDED is only specified to include the
703 // [[:alpha:]] style character classes. Enable REG_GNU wherever it is defined
704 // so users can use those extensions.
705 #if defined(REG_GNU)
706 constexpr int reg_flags = REG_EXTENDED | REG_GNU;
707 #else
708 constexpr int reg_flags = REG_EXTENDED;
709 #endif
710
711 // Reserves enough bytes to hold the regular expression used for a
712 // full match.
713 const size_t full_regex_len = strlen(regex) + 10;
714 char* const full_pattern = new char[full_regex_len];
715
716 snprintf(full_pattern, full_regex_len, "^(%s)$", regex);
717 is_valid_ = regcomp(&full_regex_, full_pattern, reg_flags) == 0;
718 // We want to call regcomp(&partial_regex_, ...) even if the
719 // previous expression returns false. Otherwise partial_regex_ may
720 // not be properly initialized can may cause trouble when it's
721 // freed.
722 //
723 // Some implementation of POSIX regex (e.g. on at least some
724 // versions of Cygwin) doesn't accept the empty string as a valid
725 // regex. We change it to an equivalent form "()" to be safe.
726 if (is_valid_) {
727 const char* const partial_regex = (*regex == '\0') ? "()" : regex;
728 is_valid_ = regcomp(&partial_regex_, partial_regex, reg_flags) == 0;
729 }
730 EXPECT_TRUE(is_valid_)
731 << "Regular expression \"" << regex
732 << "\" is not a valid POSIX Extended regular expression.";
733
734 delete[] full_pattern;
735 }
736
737 #elif defined(GTEST_USES_SIMPLE_RE)
738
739 // Returns true if and only if ch appears anywhere in str (excluding the
740 // terminating '\0' character).
IsInSet(char ch,const char * str)741 bool IsInSet(char ch, const char* str) {
742 return ch != '\0' && strchr(str, ch) != nullptr;
743 }
744
745 // Returns true if and only if ch belongs to the given classification.
746 // Unlike similar functions in <ctype.h>, these aren't affected by the
747 // current locale.
IsAsciiDigit(char ch)748 bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; }
IsAsciiPunct(char ch)749 bool IsAsciiPunct(char ch) {
750 return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~");
751 }
IsRepeat(char ch)752 bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); }
IsAsciiWhiteSpace(char ch)753 bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); }
IsAsciiWordChar(char ch)754 bool IsAsciiWordChar(char ch) {
755 return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') ||
756 ('0' <= ch && ch <= '9') || ch == '_';
757 }
758
759 // Returns true if and only if "\\c" is a supported escape sequence.
IsValidEscape(char c)760 bool IsValidEscape(char c) {
761 return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW"));
762 }
763
764 // Returns true if and only if the given atom (specified by escaped and
765 // pattern) matches ch. The result is undefined if the atom is invalid.
AtomMatchesChar(bool escaped,char pattern_char,char ch)766 bool AtomMatchesChar(bool escaped, char pattern_char, char ch) {
767 if (escaped) { // "\\p" where p is pattern_char.
768 switch (pattern_char) {
769 case 'd':
770 return IsAsciiDigit(ch);
771 case 'D':
772 return !IsAsciiDigit(ch);
773 case 'f':
774 return ch == '\f';
775 case 'n':
776 return ch == '\n';
777 case 'r':
778 return ch == '\r';
779 case 's':
780 return IsAsciiWhiteSpace(ch);
781 case 'S':
782 return !IsAsciiWhiteSpace(ch);
783 case 't':
784 return ch == '\t';
785 case 'v':
786 return ch == '\v';
787 case 'w':
788 return IsAsciiWordChar(ch);
789 case 'W':
790 return !IsAsciiWordChar(ch);
791 }
792 return IsAsciiPunct(pattern_char) && pattern_char == ch;
793 }
794
795 return (pattern_char == '.' && ch != '\n') || pattern_char == ch;
796 }
797
798 // Helper function used by ValidateRegex() to format error messages.
FormatRegexSyntaxError(const char * regex,int index)799 static std::string FormatRegexSyntaxError(const char* regex, int index) {
800 return (Message() << "Syntax error at index " << index
801 << " in simple regular expression \"" << regex << "\": ")
802 .GetString();
803 }
804
805 // Generates non-fatal failures and returns false if regex is invalid;
806 // otherwise returns true.
ValidateRegex(const char * regex)807 bool ValidateRegex(const char* regex) {
808 if (regex == nullptr) {
809 ADD_FAILURE() << "NULL is not a valid simple regular expression.";
810 return false;
811 }
812
813 bool is_valid = true;
814
815 // True if and only if ?, *, or + can follow the previous atom.
816 bool prev_repeatable = false;
817 for (int i = 0; regex[i]; i++) {
818 if (regex[i] == '\\') { // An escape sequence
819 i++;
820 if (regex[i] == '\0') {
821 ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
822 << "'\\' cannot appear at the end.";
823 return false;
824 }
825
826 if (!IsValidEscape(regex[i])) {
827 ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
828 << "invalid escape sequence \"\\" << regex[i] << "\".";
829 is_valid = false;
830 }
831 prev_repeatable = true;
832 } else { // Not an escape sequence.
833 const char ch = regex[i];
834
835 if (ch == '^' && i > 0) {
836 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
837 << "'^' can only appear at the beginning.";
838 is_valid = false;
839 } else if (ch == '$' && regex[i + 1] != '\0') {
840 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
841 << "'$' can only appear at the end.";
842 is_valid = false;
843 } else if (IsInSet(ch, "()[]{}|")) {
844 ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'" << ch
845 << "' is unsupported.";
846 is_valid = false;
847 } else if (IsRepeat(ch) && !prev_repeatable) {
848 ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'" << ch
849 << "' can only follow a repeatable token.";
850 is_valid = false;
851 }
852
853 prev_repeatable = !IsInSet(ch, "^$?*+");
854 }
855 }
856
857 return is_valid;
858 }
859
860 // Matches a repeated regex atom followed by a valid simple regular
861 // expression. The regex atom is defined as c if escaped is false,
862 // or \c otherwise. repeat is the repetition meta character (?, *,
863 // or +). The behavior is undefined if str contains too many
864 // characters to be indexable by size_t, in which case the test will
865 // probably time out anyway. We are fine with this limitation as
866 // std::string has it too.
MatchRepetitionAndRegexAtHead(bool escaped,char c,char repeat,const char * regex,const char * str)867 bool MatchRepetitionAndRegexAtHead(bool escaped, char c, char repeat,
868 const char* regex, const char* str) {
869 const size_t min_count = (repeat == '+') ? 1 : 0;
870 const size_t max_count = (repeat == '?') ? 1 : static_cast<size_t>(-1) - 1;
871 // We cannot call numeric_limits::max() as it conflicts with the
872 // max() macro on Windows.
873
874 for (size_t i = 0; i <= max_count; ++i) {
875 // We know that the atom matches each of the first i characters in str.
876 if (i >= min_count && MatchRegexAtHead(regex, str + i)) {
877 // We have enough matches at the head, and the tail matches too.
878 // Since we only care about *whether* the pattern matches str
879 // (as opposed to *how* it matches), there is no need to find a
880 // greedy match.
881 return true;
882 }
883 if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i])) return false;
884 }
885 return false;
886 }
887
888 // Returns true if and only if regex matches a prefix of str. regex must
889 // be a valid simple regular expression and not start with "^", or the
890 // result is undefined.
MatchRegexAtHead(const char * regex,const char * str)891 bool MatchRegexAtHead(const char* regex, const char* str) {
892 if (*regex == '\0') // An empty regex matches a prefix of anything.
893 return true;
894
895 // "$" only matches the end of a string. Note that regex being
896 // valid guarantees that there's nothing after "$" in it.
897 if (*regex == '$') return *str == '\0';
898
899 // Is the first thing in regex an escape sequence?
900 const bool escaped = *regex == '\\';
901 if (escaped) ++regex;
902 if (IsRepeat(regex[1])) {
903 // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so
904 // here's an indirect recursion. It terminates as the regex gets
905 // shorter in each recursion.
906 return MatchRepetitionAndRegexAtHead(escaped, regex[0], regex[1], regex + 2,
907 str);
908 } else {
909 // regex isn't empty, isn't "$", and doesn't start with a
910 // repetition. We match the first atom of regex with the first
911 // character of str and recurse.
912 return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) &&
913 MatchRegexAtHead(regex + 1, str + 1);
914 }
915 }
916
917 // Returns true if and only if regex matches any substring of str. regex must
918 // be a valid simple regular expression, or the result is undefined.
919 //
920 // The algorithm is recursive, but the recursion depth doesn't exceed
921 // the regex length, so we won't need to worry about running out of
922 // stack space normally. In rare cases the time complexity can be
923 // exponential with respect to the regex length + the string length,
924 // but usually it's must faster (often close to linear).
MatchRegexAnywhere(const char * regex,const char * str)925 bool MatchRegexAnywhere(const char* regex, const char* str) {
926 if (regex == nullptr || str == nullptr) return false;
927
928 if (*regex == '^') return MatchRegexAtHead(regex + 1, str);
929
930 // A successful match can be anywhere in str.
931 do {
932 if (MatchRegexAtHead(regex, str)) return true;
933 } while (*str++ != '\0');
934 return false;
935 }
936
937 // Implements the RE class.
938
939 RE::~RE() = default;
940
941 // Returns true if and only if regular expression re matches the entire str.
FullMatch(const char * str,const RE & re)942 bool RE::FullMatch(const char* str, const RE& re) {
943 return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_.c_str(), str);
944 }
945
946 // Returns true if and only if regular expression re matches a substring of
947 // str (including str itself).
PartialMatch(const char * str,const RE & re)948 bool RE::PartialMatch(const char* str, const RE& re) {
949 return re.is_valid_ && MatchRegexAnywhere(re.pattern_.c_str(), str);
950 }
951
952 // Initializes an RE from its string representation.
Init(const char * regex)953 void RE::Init(const char* regex) {
954 full_pattern_.clear();
955 pattern_.clear();
956
957 if (regex != nullptr) {
958 pattern_ = regex;
959 }
960
961 is_valid_ = ValidateRegex(regex);
962 if (!is_valid_) {
963 // No need to calculate the full pattern when the regex is invalid.
964 return;
965 }
966
967 // Reserves enough bytes to hold the regular expression used for a
968 // full match: we need space to prepend a '^' and append a '$'.
969 full_pattern_.reserve(pattern_.size() + 2);
970
971 if (pattern_.empty() || pattern_.front() != '^') {
972 full_pattern_.push_back('^'); // Makes sure full_pattern_ starts with '^'.
973 }
974
975 full_pattern_.append(pattern_);
976
977 if (pattern_.empty() || pattern_.back() != '$') {
978 full_pattern_.push_back('$'); // Makes sure full_pattern_ ends with '$'.
979 }
980 }
981
982 #endif // GTEST_USES_POSIX_RE
983
984 const char kUnknownFile[] = "unknown file";
985
986 // Formats a source file path and a line number as they would appear
987 // in an error message from the compiler used to compile this code.
FormatFileLocation(const char * file,int line)988 GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) {
989 const std::string file_name(file == nullptr ? kUnknownFile : file);
990
991 if (line < 0) {
992 return file_name + ":";
993 }
994 #ifdef _MSC_VER
995 return file_name + "(" + StreamableToString(line) + "):";
996 #else
997 return file_name + ":" + StreamableToString(line) + ":";
998 #endif // _MSC_VER
999 }
1000
1001 // Formats a file location for compiler-independent XML output.
1002 // Although this function is not platform dependent, we put it next to
1003 // FormatFileLocation in order to contrast the two functions.
1004 // Note that FormatCompilerIndependentFileLocation() does NOT append colon
1005 // to the file location it produces, unlike FormatFileLocation().
FormatCompilerIndependentFileLocation(const char * file,int line)1006 GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(const char* file,
1007 int line) {
1008 const std::string file_name(file == nullptr ? kUnknownFile : file);
1009
1010 if (line < 0)
1011 return file_name;
1012 else
1013 return file_name + ":" + StreamableToString(line);
1014 }
1015
GTestLog(GTestLogSeverity severity,const char * file,int line)1016 GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line)
1017 : severity_(severity) {
1018 const char* const marker = severity == GTEST_INFO ? "[ INFO ]"
1019 : severity == GTEST_WARNING ? "[WARNING]"
1020 : severity == GTEST_ERROR ? "[ ERROR ]"
1021 : "[ FATAL ]";
1022 GetStream() << ::std::endl
1023 << marker << " " << FormatFileLocation(file, line).c_str()
1024 << ": ";
1025 }
1026
1027 // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program.
~GTestLog()1028 GTestLog::~GTestLog() {
1029 GetStream() << ::std::endl;
1030 if (severity_ == GTEST_FATAL) {
1031 fflush(stderr);
1032 posix::Abort();
1033 }
1034 }
1035
1036 // Disable Microsoft deprecation warnings for POSIX functions called from
1037 // this class (creat, dup, dup2, and close)
1038 GTEST_DISABLE_MSC_DEPRECATED_PUSH_()
1039
1040 #if GTEST_HAS_STREAM_REDIRECTION
1041
1042 namespace {
1043
1044 #if defined(GTEST_OS_LINUX_ANDROID) || defined(GTEST_OS_IOS)
EndsWithPathSeparator(const std::string & path)1045 bool EndsWithPathSeparator(const std::string& path) {
1046 return !path.empty() && path.back() == GTEST_PATH_SEP_[0];
1047 }
1048 #endif
1049
1050 } // namespace
1051
1052 // Object that captures an output stream (stdout/stderr).
1053 class CapturedStream {
1054 public:
1055 // The ctor redirects the stream to a temporary file.
CapturedStream(int fd)1056 explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) {
1057 #ifdef GTEST_OS_WINDOWS
1058 char temp_dir_path[MAX_PATH + 1] = {'\0'}; // NOLINT
1059 char temp_file_path[MAX_PATH + 1] = {'\0'}; // NOLINT
1060
1061 ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path);
1062 const UINT success = ::GetTempFileNameA(temp_dir_path, "gtest_redir",
1063 0, // Generate unique file name.
1064 temp_file_path);
1065 GTEST_CHECK_(success != 0)
1066 << "Unable to create a temporary file in " << temp_dir_path;
1067 const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE);
1068 GTEST_CHECK_(captured_fd != -1)
1069 << "Unable to open temporary file " << temp_file_path;
1070 filename_ = temp_file_path;
1071 #else
1072 // There's no guarantee that a test has write access to the current
1073 // directory, so we create the temporary file in a temporary directory.
1074 std::string name_template;
1075
1076 #ifdef GTEST_OS_LINUX_ANDROID
1077 // Note: Android applications are expected to call the framework's
1078 // Context.getExternalStorageDirectory() method through JNI to get
1079 // the location of the world-writable SD Card directory. However,
1080 // this requires a Context handle, which cannot be retrieved
1081 // globally from native code. Doing so also precludes running the
1082 // code as part of a regular standalone executable, which doesn't
1083 // run in a Dalvik process (e.g. when running it through 'adb shell').
1084 //
1085 // The location /data/local/tmp is directly accessible from native code.
1086 // '/sdcard' and other variants cannot be relied on, as they are not
1087 // guaranteed to be mounted, or may have a delay in mounting.
1088 //
1089 // However, prefer using the TMPDIR environment variable if set, as newer
1090 // devices may have /data/local/tmp read-only.
1091 name_template = TempDir();
1092 if (!EndsWithPathSeparator(name_template))
1093 name_template.push_back(GTEST_PATH_SEP_[0]);
1094
1095 #elif defined(GTEST_OS_IOS)
1096 char user_temp_dir[PATH_MAX + 1];
1097
1098 // Documented alternative to NSTemporaryDirectory() (for obtaining creating
1099 // a temporary directory) at
1100 // https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/Articles/RaceConditions.html#//apple_ref/doc/uid/TP40002585-SW10
1101 //
1102 // _CS_DARWIN_USER_TEMP_DIR (as well as _CS_DARWIN_USER_CACHE_DIR) is not
1103 // documented in the confstr() man page at
1104 // https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/confstr.3.html#//apple_ref/doc/man/3/confstr
1105 // but are still available, according to the WebKit patches at
1106 // https://trac.webkit.org/changeset/262004/webkit
1107 // https://trac.webkit.org/changeset/263705/webkit
1108 //
1109 // The confstr() implementation falls back to getenv("TMPDIR"). See
1110 // https://opensource.apple.com/source/Libc/Libc-1439.100.3/gen/confstr.c.auto.html
1111 ::confstr(_CS_DARWIN_USER_TEMP_DIR, user_temp_dir, sizeof(user_temp_dir));
1112
1113 name_template = user_temp_dir;
1114 if (!EndsWithPathSeparator(name_template))
1115 name_template.push_back(GTEST_PATH_SEP_[0]);
1116 #else
1117 name_template = "/tmp/";
1118 #endif
1119 name_template.append("gtest_captured_stream.XXXXXX");
1120
1121 // mkstemp() modifies the string bytes in place, and does not go beyond the
1122 // string's length. This results in well-defined behavior in C++17.
1123 //
1124 // The const_cast is needed below C++17. The constraints on std::string
1125 // implementations in C++11 and above make assumption behind the const_cast
1126 // fairly safe.
1127 const int captured_fd = ::mkstemp(const_cast<char*>(name_template.data()));
1128 if (captured_fd == -1) {
1129 GTEST_LOG_(WARNING)
1130 << "Failed to create tmp file " << name_template
1131 << " for test; does the test have access to the /tmp directory?";
1132 }
1133 filename_ = std::move(name_template);
1134 #endif // GTEST_OS_WINDOWS
1135 fflush(nullptr);
1136 dup2(captured_fd, fd_);
1137 close(captured_fd);
1138 }
1139
~CapturedStream()1140 ~CapturedStream() { remove(filename_.c_str()); }
1141
GetCapturedString()1142 std::string GetCapturedString() {
1143 if (uncaptured_fd_ != -1) {
1144 // Restores the original stream.
1145 fflush(nullptr);
1146 dup2(uncaptured_fd_, fd_);
1147 close(uncaptured_fd_);
1148 uncaptured_fd_ = -1;
1149 }
1150
1151 FILE* const file = posix::FOpen(filename_.c_str(), "r");
1152 if (file == nullptr) {
1153 GTEST_LOG_(FATAL) << "Failed to open tmp file " << filename_
1154 << " for capturing stream.";
1155 }
1156 const std::string content = ReadEntireFile(file);
1157 posix::FClose(file);
1158 return content;
1159 }
1160
1161 private:
1162 const int fd_; // A stream to capture.
1163 int uncaptured_fd_;
1164 // Name of the temporary file holding the stderr output.
1165 ::std::string filename_;
1166
1167 CapturedStream(const CapturedStream&) = delete;
1168 CapturedStream& operator=(const CapturedStream&) = delete;
1169 };
1170
1171 GTEST_DISABLE_MSC_DEPRECATED_POP_()
1172
1173 static CapturedStream* g_captured_stderr = nullptr;
1174 static CapturedStream* g_captured_stdout = nullptr;
1175
1176 // Starts capturing an output stream (stdout/stderr).
CaptureStream(int fd,const char * stream_name,CapturedStream ** stream)1177 static void CaptureStream(int fd, const char* stream_name,
1178 CapturedStream** stream) {
1179 if (*stream != nullptr) {
1180 GTEST_LOG_(FATAL) << "Only one " << stream_name
1181 << " capturer can exist at a time.";
1182 }
1183 *stream = new CapturedStream(fd);
1184 }
1185
1186 // Stops capturing the output stream and returns the captured string.
GetCapturedStream(CapturedStream ** captured_stream)1187 static std::string GetCapturedStream(CapturedStream** captured_stream) {
1188 const std::string content = (*captured_stream)->GetCapturedString();
1189
1190 delete *captured_stream;
1191 *captured_stream = nullptr;
1192
1193 return content;
1194 }
1195
1196 #if defined(_MSC_VER) || defined(__BORLANDC__)
1197 // MSVC and C++Builder do not provide a definition of STDERR_FILENO.
1198 const int kStdOutFileno = 1;
1199 const int kStdErrFileno = 2;
1200 #else
1201 const int kStdOutFileno = STDOUT_FILENO;
1202 const int kStdErrFileno = STDERR_FILENO;
1203 #endif // defined(_MSC_VER) || defined(__BORLANDC__)
1204
1205 // Starts capturing stdout.
CaptureStdout()1206 void CaptureStdout() {
1207 CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout);
1208 }
1209
1210 // Starts capturing stderr.
CaptureStderr()1211 void CaptureStderr() {
1212 CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr);
1213 }
1214
1215 // Stops capturing stdout and returns the captured string.
GetCapturedStdout()1216 std::string GetCapturedStdout() {
1217 return GetCapturedStream(&g_captured_stdout);
1218 }
1219
1220 // Stops capturing stderr and returns the captured string.
GetCapturedStderr()1221 std::string GetCapturedStderr() {
1222 return GetCapturedStream(&g_captured_stderr);
1223 }
1224
1225 #endif // GTEST_HAS_STREAM_REDIRECTION
1226
GetFileSize(FILE * file)1227 size_t GetFileSize(FILE* file) {
1228 fseek(file, 0, SEEK_END);
1229 return static_cast<size_t>(ftell(file));
1230 }
1231
ReadEntireFile(FILE * file)1232 std::string ReadEntireFile(FILE* file) {
1233 const size_t file_size = GetFileSize(file);
1234 char* const buffer = new char[file_size];
1235
1236 size_t bytes_last_read = 0; // # of bytes read in the last fread()
1237 size_t bytes_read = 0; // # of bytes read so far
1238
1239 fseek(file, 0, SEEK_SET);
1240
1241 // Keeps reading the file until we cannot read further or the
1242 // pre-determined file size is reached.
1243 do {
1244 bytes_last_read =
1245 fread(buffer + bytes_read, 1, file_size - bytes_read, file);
1246 bytes_read += bytes_last_read;
1247 } while (bytes_last_read > 0 && bytes_read < file_size);
1248
1249 const std::string content(buffer, bytes_read);
1250 delete[] buffer;
1251
1252 return content;
1253 }
1254
1255 #ifdef GTEST_HAS_DEATH_TEST
1256 static const std::vector<std::string>* g_injected_test_argvs =
1257 nullptr; // Owned.
1258
GetInjectableArgvs()1259 std::vector<std::string> GetInjectableArgvs() {
1260 if (g_injected_test_argvs != nullptr) {
1261 return *g_injected_test_argvs;
1262 }
1263 return GetArgvs();
1264 }
1265
SetInjectableArgvs(const std::vector<std::string> * new_argvs)1266 void SetInjectableArgvs(const std::vector<std::string>* new_argvs) {
1267 if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs;
1268 g_injected_test_argvs = new_argvs;
1269 }
1270
SetInjectableArgvs(const std::vector<std::string> & new_argvs)1271 void SetInjectableArgvs(const std::vector<std::string>& new_argvs) {
1272 SetInjectableArgvs(
1273 new std::vector<std::string>(new_argvs.begin(), new_argvs.end()));
1274 }
1275
ClearInjectableArgvs()1276 void ClearInjectableArgvs() {
1277 delete g_injected_test_argvs;
1278 g_injected_test_argvs = nullptr;
1279 }
1280 #endif // GTEST_HAS_DEATH_TEST
1281
1282 #ifdef GTEST_OS_WINDOWS_MOBILE
1283 namespace posix {
Abort()1284 void Abort() {
1285 DebugBreak();
1286 TerminateProcess(GetCurrentProcess(), 1);
1287 }
1288 } // namespace posix
1289 #endif // GTEST_OS_WINDOWS_MOBILE
1290
1291 // Returns the name of the environment variable corresponding to the
1292 // given flag. For example, FlagToEnvVar("foo") will return
1293 // "GTEST_FOO" in the open-source version.
FlagToEnvVar(const char * flag)1294 static std::string FlagToEnvVar(const char* flag) {
1295 const std::string full_flag =
1296 (Message() << GTEST_FLAG_PREFIX_ << flag).GetString();
1297
1298 Message env_var;
1299 for (size_t i = 0; i != full_flag.length(); i++) {
1300 env_var << ToUpper(full_flag.c_str()[i]);
1301 }
1302
1303 return env_var.GetString();
1304 }
1305
1306 // Parses 'str' for a 32-bit signed integer. If successful, writes
1307 // the result to *value and returns true; otherwise leaves *value
1308 // unchanged and returns false.
ParseInt32(const Message & src_text,const char * str,int32_t * value)1309 bool ParseInt32(const Message& src_text, const char* str, int32_t* value) {
1310 // Parses the environment variable as a decimal integer.
1311 char* end = nullptr;
1312 const long long_value = strtol(str, &end, 10); // NOLINT
1313
1314 // Has strtol() consumed all characters in the string?
1315 if (*end != '\0') {
1316 // No - an invalid character was encountered.
1317 Message msg;
1318 msg << "WARNING: " << src_text
1319 << " is expected to be a 32-bit integer, but actually"
1320 << " has value \"" << str << "\".\n";
1321 printf("%s", msg.GetString().c_str());
1322 fflush(stdout);
1323 return false;
1324 }
1325
1326 // Is the parsed value in the range of an int32_t?
1327 const auto result = static_cast<int32_t>(long_value);
1328 if (long_value == LONG_MAX || long_value == LONG_MIN ||
1329 // The parsed value overflows as a long. (strtol() returns
1330 // LONG_MAX or LONG_MIN when the input overflows.)
1331 result != long_value
1332 // The parsed value overflows as an int32_t.
1333 ) {
1334 Message msg;
1335 msg << "WARNING: " << src_text
1336 << " is expected to be a 32-bit integer, but actually"
1337 << " has value " << str << ", which overflows.\n";
1338 printf("%s", msg.GetString().c_str());
1339 fflush(stdout);
1340 return false;
1341 }
1342
1343 *value = result;
1344 return true;
1345 }
1346
1347 // Reads and returns the Boolean environment variable corresponding to
1348 // the given flag; if it's not set, returns default_value.
1349 //
1350 // The value is considered true if and only if it's not "0".
BoolFromGTestEnv(const char * flag,bool default_value)1351 bool BoolFromGTestEnv(const char* flag, bool default_value) {
1352 #if defined(GTEST_GET_BOOL_FROM_ENV_)
1353 return GTEST_GET_BOOL_FROM_ENV_(flag, default_value);
1354 #else
1355 const std::string env_var = FlagToEnvVar(flag);
1356 const char* const string_value = posix::GetEnv(env_var.c_str());
1357 return string_value == nullptr ? default_value
1358 : strcmp(string_value, "0") != 0;
1359 #endif // defined(GTEST_GET_BOOL_FROM_ENV_)
1360 }
1361
1362 // Reads and returns a 32-bit integer stored in the environment
1363 // variable corresponding to the given flag; if it isn't set or
1364 // doesn't represent a valid 32-bit integer, returns default_value.
Int32FromGTestEnv(const char * flag,int32_t default_value)1365 int32_t Int32FromGTestEnv(const char* flag, int32_t default_value) {
1366 #if defined(GTEST_GET_INT32_FROM_ENV_)
1367 return GTEST_GET_INT32_FROM_ENV_(flag, default_value);
1368 #else
1369 const std::string env_var = FlagToEnvVar(flag);
1370 const char* const string_value = posix::GetEnv(env_var.c_str());
1371 if (string_value == nullptr) {
1372 // The environment variable is not set.
1373 return default_value;
1374 }
1375
1376 int32_t result = default_value;
1377 if (!ParseInt32(Message() << "Environment variable " << env_var, string_value,
1378 &result)) {
1379 printf("The default value %s is used.\n",
1380 (Message() << default_value).GetString().c_str());
1381 fflush(stdout);
1382 return default_value;
1383 }
1384
1385 return result;
1386 #endif // defined(GTEST_GET_INT32_FROM_ENV_)
1387 }
1388
1389 // As a special case for the 'output' flag, if GTEST_OUTPUT is not
1390 // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build
1391 // system. The value of XML_OUTPUT_FILE is a filename without the
1392 // "xml:" prefix of GTEST_OUTPUT.
1393 // Note that this is meant to be called at the call site so it does
1394 // not check that the flag is 'output'
1395 // In essence this checks an env variable called XML_OUTPUT_FILE
1396 // and if it is set we prepend "xml:" to its value, if it not set we return ""
OutputFlagAlsoCheckEnvVar()1397 std::string OutputFlagAlsoCheckEnvVar() {
1398 std::string default_value_for_output_flag = "";
1399 const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE");
1400 if (nullptr != xml_output_file_env) {
1401 default_value_for_output_flag = std::string("xml:") + xml_output_file_env;
1402 }
1403 return default_value_for_output_flag;
1404 }
1405
1406 // Reads and returns the string environment variable corresponding to
1407 // the given flag; if it's not set, returns default_value.
StringFromGTestEnv(const char * flag,const char * default_value)1408 const char* StringFromGTestEnv(const char* flag, const char* default_value) {
1409 #if defined(GTEST_GET_STRING_FROM_ENV_)
1410 return GTEST_GET_STRING_FROM_ENV_(flag, default_value);
1411 #else
1412 const std::string env_var = FlagToEnvVar(flag);
1413 const char* const value = posix::GetEnv(env_var.c_str());
1414 return value == nullptr ? default_value : value;
1415 #endif // defined(GTEST_GET_STRING_FROM_ENV_)
1416 }
1417
1418 } // namespace internal
1419 } // namespace testing
1420