1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkBitmap.h"
9 #include "include/core/SkMaskFilter.h"
10 #include "include/core/SkPathBuilder.h"
11 #include "include/core/SkRRect.h"
12 #include "include/core/SkStrokeRec.h"
13 #include "include/core/SkVertices.h"
14 #include "src/core/SkBlurMask.h"
15 #include "src/core/SkGpuBlurUtils.h"
16 #include "src/core/SkMaskFilterBase.h"
17 #include "src/core/SkMathPriv.h"
18 #include "src/core/SkMatrixProvider.h"
19 #include "src/core/SkRRectPriv.h"
20 #include "src/core/SkReadBuffer.h"
21 #include "src/core/SkStringUtils.h"
22 #include "src/core/SkSDFFilter.h"
23 #include "src/core/SkWriteBuffer.h"
24
25 #if SK_SUPPORT_GPU
26 #include "include/gpu/GrRecordingContext.h"
27 #include "src/core/SkRuntimeEffectPriv.h"
28 #include "src/gpu/GrFragmentProcessor.h"
29 #include "src/gpu/GrRecordingContextPriv.h"
30 #include "src/gpu/GrResourceProvider.h"
31 #include "src/gpu/GrShaderCaps.h"
32 #include "src/gpu/GrStyle.h"
33 #include "src/gpu/GrTextureProxy.h"
34 #include "src/gpu/GrThreadSafeCache.h"
35 #include "src/gpu/SkGr.h"
36 #include "src/gpu/effects/GrMatrixEffect.h"
37 #include "src/gpu/effects/GrSkSLFP.h"
38 #include "src/gpu/effects/GrTextureEffect.h"
39 #include "src/gpu/geometry/GrStyledShape.h"
40 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
41 #include "src/gpu/glsl/GrGLSLProgramDataManager.h"
42 #include "src/gpu/glsl/GrGLSLUniformHandler.h"
43 #if SK_GPU_V1
44 #include "src/gpu/v1/SurfaceDrawContext_v1.h"
45 #endif // SK_GPU_V1
46 #endif // SK_SUPPORT_GPU
47
48 class SkBlurMaskFilterImpl : public SkMaskFilterBase {
49 public:
50 SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle, bool respectCTM);
51
52 // overrides from SkMaskFilter
53 SkMask::Format getFormat() const override;
54 bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&,
55 SkIPoint* margin) const override;
56
57 #if SK_SUPPORT_GPU && SK_GPU_V1
58 bool canFilterMaskGPU(const GrStyledShape& shape,
59 const SkIRect& devSpaceShapeBounds,
60 const SkIRect& clipBounds,
61 const SkMatrix& ctm,
62 SkIRect* maskRect,
63 const bool canUseSDFBlur = false) const override;
64 bool directFilterMaskGPU(GrRecordingContext*,
65 skgpu::v1::SurfaceDrawContext*,
66 GrPaint&&,
67 const GrClip*,
68 const SkMatrix& viewMatrix,
69 const GrStyledShape&) const override;
70 GrSurfaceProxyView filterMaskGPU(GrRecordingContext*,
71 GrSurfaceProxyView srcView,
72 GrColorType srcColorType,
73 SkAlphaType srcAlphaType,
74 const SkMatrix& ctm,
75 const SkIRect& maskRect) const override;
76
77 float getNoxFormedSigma3() const override;
78
79 GrSurfaceProxyView filterMaskGPUNoxFormed(GrRecordingContext*, GrSurfaceProxyView srcView,
80 GrColorType srcColorType, SkAlphaType srcAlphaType, const SkMatrix& viewMatrix, const SkIRect& maskRect,
81 const SkRRect& srcRRect) const override;
82 #endif
83
84 void computeFastBounds(const SkRect&, SkRect*) const override;
85 bool asABlur(BlurRec*) const override;
86
87
88 protected:
89 FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&,
90 const SkIRect& clipBounds,
91 NinePatch*) const override;
92
93 FilterReturn filterRRectToNine(const SkRRect&, const SkMatrix&,
94 const SkIRect& clipBounds,
95 NinePatch*) const override;
96
97 bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix,
98 SkIPoint* margin, SkMask::CreateMode createMode) const;
99 bool filterRRectMask(SkMask* dstM, const SkRRect& r, const SkMatrix& matrix,
100 SkIPoint* margin, SkMask::CreateMode createMode) const;
101
ignoreXform() const102 bool ignoreXform() const { return !fRespectCTM; }
103
104 private:
105 SK_FLATTENABLE_HOOKS(SkBlurMaskFilterImpl)
106 // To avoid unseemly allocation requests (esp. for finite platforms like
107 // handset) we limit the radius so something manageable. (as opposed to
108 // a request like 10,000)
109 static const SkScalar kMAX_BLUR_SIGMA;
110
111 SkScalar fSigma;
112 SkBlurStyle fBlurStyle;
113 bool fRespectCTM;
114
115 SkBlurMaskFilterImpl(SkReadBuffer&);
116 void flatten(SkWriteBuffer&) const override;
117
computeXformedSigma(const SkMatrix & ctm) const118 SkScalar computeXformedSigma(const SkMatrix& ctm) const {
119 SkScalar xformedSigma = this->ignoreXform() ? fSigma : ctm.mapRadius(fSigma);
120 return std::min(xformedSigma, kMAX_BLUR_SIGMA);
121 }
122
123 friend class SkBlurMaskFilter;
124
125 using INHERITED = SkMaskFilter;
126 friend void sk_register_blur_maskfilter_createproc();
127 };
128
129 const SkScalar SkBlurMaskFilterImpl::kMAX_BLUR_SIGMA = SkIntToScalar(128);
130
131 ///////////////////////////////////////////////////////////////////////////////
132
SkBlurMaskFilterImpl(SkScalar sigma,SkBlurStyle style,bool respectCTM)133 SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle style, bool respectCTM)
134 : fSigma(sigma)
135 , fBlurStyle(style)
136 , fRespectCTM(respectCTM) {
137 SkASSERT(fSigma > 0);
138 SkASSERT((unsigned)style <= kLastEnum_SkBlurStyle);
139 }
140
getFormat() const141 SkMask::Format SkBlurMaskFilterImpl::getFormat() const {
142 return SkMask::kA8_Format;
143 }
144
asABlur(BlurRec * rec) const145 bool SkBlurMaskFilterImpl::asABlur(BlurRec* rec) const {
146 if (this->ignoreXform()) {
147 return false;
148 }
149
150 if (rec) {
151 rec->fSigma = fSigma;
152 rec->fStyle = fBlurStyle;
153 }
154 return true;
155 }
156
filterMask(SkMask * dst,const SkMask & src,const SkMatrix & matrix,SkIPoint * margin) const157 bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src,
158 const SkMatrix& matrix,
159 SkIPoint* margin) const {
160 SkScalar sigma = this->computeXformedSigma(matrix);
161 return SkBlurMask::BoxBlur(dst, src, sigma, fBlurStyle, margin);
162 }
163
filterRectMask(SkMask * dst,const SkRect & r,const SkMatrix & matrix,SkIPoint * margin,SkMask::CreateMode createMode) const164 bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r,
165 const SkMatrix& matrix,
166 SkIPoint* margin, SkMask::CreateMode createMode) const {
167 SkScalar sigma = computeXformedSigma(matrix);
168
169 return SkBlurMask::BlurRect(sigma, dst, r, fBlurStyle, margin, createMode);
170 }
171
filterRRectMask(SkMask * dst,const SkRRect & r,const SkMatrix & matrix,SkIPoint * margin,SkMask::CreateMode createMode) const172 bool SkBlurMaskFilterImpl::filterRRectMask(SkMask* dst, const SkRRect& r,
173 const SkMatrix& matrix,
174 SkIPoint* margin, SkMask::CreateMode createMode) const {
175 SkScalar sigma = computeXformedSigma(matrix);
176
177 return SkBlurMask::BlurRRect(sigma, dst, r, fBlurStyle, margin, createMode);
178 }
179
180 #include "include/core/SkCanvas.h"
181
prepare_to_draw_into_mask(const SkRect & bounds,SkMask * mask)182 static bool prepare_to_draw_into_mask(const SkRect& bounds, SkMask* mask) {
183 SkASSERT(mask != nullptr);
184
185 mask->fBounds = bounds.roundOut();
186 mask->fRowBytes = SkAlign4(mask->fBounds.width());
187 mask->fFormat = SkMask::kA8_Format;
188 const size_t size = mask->computeImageSize();
189 if (size == 0) {
190 return false;
191 }
192 mask->fImage = SkMask::AllocImage(size, SkMask::kZeroInit_Alloc);
193 if (nullptr == mask->fImage) {
194 return false;
195 }
196 return true;
197 }
198
draw_rrect_into_mask(const SkRRect rrect,SkMask * mask)199 static bool draw_rrect_into_mask(const SkRRect rrect, SkMask* mask) {
200 if (!prepare_to_draw_into_mask(rrect.rect(), mask)) {
201 return false;
202 }
203
204 // FIXME: This code duplicates code in draw_rects_into_mask, below. Is there a
205 // clean way to share more code?
206 SkBitmap bitmap;
207 bitmap.installMaskPixels(*mask);
208
209 SkCanvas canvas(bitmap);
210 canvas.translate(-SkIntToScalar(mask->fBounds.left()),
211 -SkIntToScalar(mask->fBounds.top()));
212
213 SkPaint paint;
214 paint.setAntiAlias(true);
215 canvas.drawRRect(rrect, paint);
216 return true;
217 }
218
draw_rects_into_mask(const SkRect rects[],int count,SkMask * mask)219 static bool draw_rects_into_mask(const SkRect rects[], int count, SkMask* mask) {
220 if (!prepare_to_draw_into_mask(rects[0], mask)) {
221 return false;
222 }
223
224 SkBitmap bitmap;
225 bitmap.installPixels(SkImageInfo::Make(mask->fBounds.width(),
226 mask->fBounds.height(),
227 kAlpha_8_SkColorType,
228 kPremul_SkAlphaType),
229 mask->fImage, mask->fRowBytes);
230
231 SkCanvas canvas(bitmap);
232 canvas.translate(-SkIntToScalar(mask->fBounds.left()),
233 -SkIntToScalar(mask->fBounds.top()));
234
235 SkPaint paint;
236 paint.setAntiAlias(true);
237
238 if (1 == count) {
239 canvas.drawRect(rects[0], paint);
240 } else {
241 // todo: do I need a fast way to do this?
242 SkPath path = SkPathBuilder().addRect(rects[0])
243 .addRect(rects[1])
244 .setFillType(SkPathFillType::kEvenOdd)
245 .detach();
246 canvas.drawPath(path, paint);
247 }
248 return true;
249 }
250
rect_exceeds(const SkRect & r,SkScalar v)251 static bool rect_exceeds(const SkRect& r, SkScalar v) {
252 return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v ||
253 r.width() > v || r.height() > v;
254 }
255
256 #include "src/core/SkMaskCache.h"
257
copy_mask_to_cacheddata(SkMask * mask)258 static SkCachedData* copy_mask_to_cacheddata(SkMask* mask) {
259 const size_t size = mask->computeTotalImageSize();
260 SkCachedData* data = SkResourceCache::NewCachedData(size);
261 if (data) {
262 memcpy(data->writable_data(), mask->fImage, size);
263 SkMask::FreeImage(mask->fImage);
264 mask->fImage = (uint8_t*)data->data();
265 }
266 return data;
267 }
268
find_cached_rrect(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRRect & rrect)269 static SkCachedData* find_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
270 const SkRRect& rrect) {
271 return SkMaskCache::FindAndRef(sigma, style, rrect, mask);
272 }
273
add_cached_rrect(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRRect & rrect)274 static SkCachedData* add_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
275 const SkRRect& rrect) {
276 SkCachedData* cache = copy_mask_to_cacheddata(mask);
277 if (cache) {
278 SkMaskCache::Add(sigma, style, rrect, *mask, cache);
279 }
280 return cache;
281 }
282
find_cached_rects(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRect rects[],int count)283 static SkCachedData* find_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
284 const SkRect rects[], int count) {
285 return SkMaskCache::FindAndRef(sigma, style, rects, count, mask);
286 }
287
add_cached_rects(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRect rects[],int count)288 static SkCachedData* add_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
289 const SkRect rects[], int count) {
290 SkCachedData* cache = copy_mask_to_cacheddata(mask);
291 if (cache) {
292 SkMaskCache::Add(sigma, style, rects, count, *mask, cache);
293 }
294 return cache;
295 }
296
297 static const bool c_analyticBlurRRect{true};
298
299 SkMaskFilterBase::FilterReturn
filterRRectToNine(const SkRRect & rrect,const SkMatrix & matrix,const SkIRect & clipBounds,NinePatch * patch) const300 SkBlurMaskFilterImpl::filterRRectToNine(const SkRRect& rrect, const SkMatrix& matrix,
301 const SkIRect& clipBounds,
302 NinePatch* patch) const {
303 SkASSERT(patch != nullptr);
304 switch (rrect.getType()) {
305 case SkRRect::kEmpty_Type:
306 // Nothing to draw.
307 return kFalse_FilterReturn;
308
309 case SkRRect::kRect_Type:
310 // We should have caught this earlier.
311 SkASSERT(false);
312 [[fallthrough]];
313 case SkRRect::kOval_Type:
314 // The nine patch special case does not handle ovals, and we
315 // already have code for rectangles.
316 return kUnimplemented_FilterReturn;
317
318 // These three can take advantage of this fast path.
319 case SkRRect::kSimple_Type:
320 case SkRRect::kNinePatch_Type:
321 case SkRRect::kComplex_Type:
322 break;
323 }
324
325 // TODO: report correct metrics for innerstyle, where we do not grow the
326 // total bounds, but we do need an inset the size of our blur-radius
327 if (kInner_SkBlurStyle == fBlurStyle) {
328 return kUnimplemented_FilterReturn;
329 }
330
331 // TODO: take clipBounds into account to limit our coordinates up front
332 // for now, just skip too-large src rects (to take the old code path).
333 if (rect_exceeds(rrect.rect(), SkIntToScalar(32767))) {
334 return kUnimplemented_FilterReturn;
335 }
336
337 SkIPoint margin;
338 SkMask srcM, dstM;
339 srcM.fBounds = rrect.rect().roundOut();
340 srcM.fFormat = SkMask::kA8_Format;
341 srcM.fRowBytes = 0;
342
343 bool filterResult = false;
344 if (c_analyticBlurRRect) {
345 // special case for fast round rect blur
346 // don't actually do the blur the first time, just compute the correct size
347 filterResult = this->filterRRectMask(&dstM, rrect, matrix, &margin,
348 SkMask::kJustComputeBounds_CreateMode);
349 }
350
351 if (!filterResult) {
352 filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
353 }
354
355 if (!filterResult) {
356 return kFalse_FilterReturn;
357 }
358
359 // Now figure out the appropriate width and height of the smaller round rectangle
360 // to stretch. It will take into account the larger radius per side as well as double
361 // the margin, to account for inner and outer blur.
362 const SkVector& UL = rrect.radii(SkRRect::kUpperLeft_Corner);
363 const SkVector& UR = rrect.radii(SkRRect::kUpperRight_Corner);
364 const SkVector& LR = rrect.radii(SkRRect::kLowerRight_Corner);
365 const SkVector& LL = rrect.radii(SkRRect::kLowerLeft_Corner);
366
367 const SkScalar leftUnstretched = std::max(UL.fX, LL.fX) + SkIntToScalar(2 * margin.fX);
368 const SkScalar rightUnstretched = std::max(UR.fX, LR.fX) + SkIntToScalar(2 * margin.fX);
369
370 // Extra space in the middle to ensure an unchanging piece for stretching. Use 3 to cover
371 // any fractional space on either side plus 1 for the part to stretch.
372 const SkScalar stretchSize = SkIntToScalar(3);
373
374 const SkScalar totalSmallWidth = leftUnstretched + rightUnstretched + stretchSize;
375 if (totalSmallWidth >= rrect.rect().width()) {
376 // There is no valid piece to stretch.
377 return kUnimplemented_FilterReturn;
378 }
379
380 const SkScalar topUnstretched = std::max(UL.fY, UR.fY) + SkIntToScalar(2 * margin.fY);
381 const SkScalar bottomUnstretched = std::max(LL.fY, LR.fY) + SkIntToScalar(2 * margin.fY);
382
383 const SkScalar totalSmallHeight = topUnstretched + bottomUnstretched + stretchSize;
384 if (totalSmallHeight >= rrect.rect().height()) {
385 // There is no valid piece to stretch.
386 return kUnimplemented_FilterReturn;
387 }
388
389 SkRect smallR = SkRect::MakeWH(totalSmallWidth, totalSmallHeight);
390
391 SkRRect smallRR;
392 SkVector radii[4];
393 radii[SkRRect::kUpperLeft_Corner] = UL;
394 radii[SkRRect::kUpperRight_Corner] = UR;
395 radii[SkRRect::kLowerRight_Corner] = LR;
396 radii[SkRRect::kLowerLeft_Corner] = LL;
397 smallRR.setRectRadii(smallR, radii);
398
399 const SkScalar sigma = this->computeXformedSigma(matrix);
400 SkCachedData* cache = find_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR);
401 if (!cache) {
402 bool analyticBlurWorked = false;
403 if (c_analyticBlurRRect) {
404 analyticBlurWorked =
405 this->filterRRectMask(&patch->fMask, smallRR, matrix, &margin,
406 SkMask::kComputeBoundsAndRenderImage_CreateMode);
407 }
408
409 if (!analyticBlurWorked) {
410 if (!draw_rrect_into_mask(smallRR, &srcM)) {
411 return kFalse_FilterReturn;
412 }
413
414 SkAutoMaskFreeImage amf(srcM.fImage);
415
416 if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
417 return kFalse_FilterReturn;
418 }
419 }
420 cache = add_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR);
421 }
422
423 patch->fMask.fBounds.offsetTo(0, 0);
424 patch->fOuterRect = dstM.fBounds;
425 patch->fCenter.fX = SkScalarCeilToInt(leftUnstretched) + 1;
426 patch->fCenter.fY = SkScalarCeilToInt(topUnstretched) + 1;
427 SkASSERT(nullptr == patch->fCache);
428 patch->fCache = cache; // transfer ownership to patch
429 return kTrue_FilterReturn;
430 }
431
432 // Use the faster analytic blur approach for ninepatch rects
433 static const bool c_analyticBlurNinepatch{true};
434
435 SkMaskFilterBase::FilterReturn
filterRectsToNine(const SkRect rects[],int count,const SkMatrix & matrix,const SkIRect & clipBounds,NinePatch * patch) const436 SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count,
437 const SkMatrix& matrix,
438 const SkIRect& clipBounds,
439 NinePatch* patch) const {
440 if (count < 1 || count > 2) {
441 return kUnimplemented_FilterReturn;
442 }
443
444 // TODO: report correct metrics for innerstyle, where we do not grow the
445 // total bounds, but we do need an inset the size of our blur-radius
446 if (kInner_SkBlurStyle == fBlurStyle || kOuter_SkBlurStyle == fBlurStyle) {
447 return kUnimplemented_FilterReturn;
448 }
449
450 // TODO: take clipBounds into account to limit our coordinates up front
451 // for now, just skip too-large src rects (to take the old code path).
452 if (rect_exceeds(rects[0], SkIntToScalar(32767))) {
453 return kUnimplemented_FilterReturn;
454 }
455
456 SkIPoint margin;
457 SkMask srcM, dstM;
458 srcM.fBounds = rects[0].roundOut();
459 srcM.fFormat = SkMask::kA8_Format;
460 srcM.fRowBytes = 0;
461
462 bool filterResult = false;
463 if (count == 1 && c_analyticBlurNinepatch) {
464 // special case for fast rect blur
465 // don't actually do the blur the first time, just compute the correct size
466 filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin,
467 SkMask::kJustComputeBounds_CreateMode);
468 } else {
469 filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
470 }
471
472 if (!filterResult) {
473 return kFalse_FilterReturn;
474 }
475
476 /*
477 * smallR is the smallest version of 'rect' that will still guarantee that
478 * we get the same blur results on all edges, plus 1 center row/col that is
479 * representative of the extendible/stretchable edges of the ninepatch.
480 * Since our actual edge may be fractional we inset 1 more to be sure we
481 * don't miss any interior blur.
482 * x is an added pixel of blur, and { and } are the (fractional) edge
483 * pixels from the original rect.
484 *
485 * x x { x x .... x x } x x
486 *
487 * Thus, in this case, we inset by a total of 5 (on each side) beginning
488 * with our outer-rect (dstM.fBounds)
489 */
490 SkRect smallR[2];
491 SkIPoint center;
492
493 // +2 is from +1 for each edge (to account for possible fractional edges
494 int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2;
495 int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2;
496 SkIRect innerIR;
497
498 if (1 == count) {
499 innerIR = srcM.fBounds;
500 center.set(smallW, smallH);
501 } else {
502 SkASSERT(2 == count);
503 rects[1].roundIn(&innerIR);
504 center.set(smallW + (innerIR.left() - srcM.fBounds.left()),
505 smallH + (innerIR.top() - srcM.fBounds.top()));
506 }
507
508 // +1 so we get a clean, stretchable, center row/col
509 smallW += 1;
510 smallH += 1;
511
512 // we want the inset amounts to be integral, so we don't change any
513 // fractional phase on the fRight or fBottom of our smallR.
514 const SkScalar dx = SkIntToScalar(innerIR.width() - smallW);
515 const SkScalar dy = SkIntToScalar(innerIR.height() - smallH);
516 if (dx < 0 || dy < 0) {
517 // we're too small, relative to our blur, to break into nine-patch,
518 // so we ask to have our normal filterMask() be called.
519 return kUnimplemented_FilterReturn;
520 }
521
522 smallR[0].setLTRB(rects[0].left(), rects[0].top(),
523 rects[0].right() - dx, rects[0].bottom() - dy);
524 if (smallR[0].width() < 2 || smallR[0].height() < 2) {
525 return kUnimplemented_FilterReturn;
526 }
527 if (2 == count) {
528 smallR[1].setLTRB(rects[1].left(), rects[1].top(),
529 rects[1].right() - dx, rects[1].bottom() - dy);
530 SkASSERT(!smallR[1].isEmpty());
531 }
532
533 const SkScalar sigma = this->computeXformedSigma(matrix);
534 SkCachedData* cache = find_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count);
535 if (!cache) {
536 if (count > 1 || !c_analyticBlurNinepatch) {
537 if (!draw_rects_into_mask(smallR, count, &srcM)) {
538 return kFalse_FilterReturn;
539 }
540
541 SkAutoMaskFreeImage amf(srcM.fImage);
542
543 if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
544 return kFalse_FilterReturn;
545 }
546 } else {
547 if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin,
548 SkMask::kComputeBoundsAndRenderImage_CreateMode)) {
549 return kFalse_FilterReturn;
550 }
551 }
552 cache = add_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count);
553 }
554 patch->fMask.fBounds.offsetTo(0, 0);
555 patch->fOuterRect = dstM.fBounds;
556 patch->fCenter = center;
557 SkASSERT(nullptr == patch->fCache);
558 patch->fCache = cache; // transfer ownership to patch
559 return kTrue_FilterReturn;
560 }
561
computeFastBounds(const SkRect & src,SkRect * dst) const562 void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src,
563 SkRect* dst) const {
564 // TODO: if we're doing kInner blur, should we return a different outset?
565 // i.e. pad == 0 ?
566
567 SkScalar pad = 3.0f * fSigma;
568
569 dst->setLTRB(src.fLeft - pad, src.fTop - pad,
570 src.fRight + pad, src.fBottom + pad);
571 }
572
CreateProc(SkReadBuffer & buffer)573 sk_sp<SkFlattenable> SkBlurMaskFilterImpl::CreateProc(SkReadBuffer& buffer) {
574 const SkScalar sigma = buffer.readScalar();
575 SkBlurStyle style = buffer.read32LE(kLastEnum_SkBlurStyle);
576
577 uint32_t flags = buffer.read32LE(0x3); // historically we only recorded 2 bits
578 bool respectCTM = !(flags & 1); // historically we stored ignoreCTM in low bit
579
580 return SkMaskFilter::MakeBlur((SkBlurStyle)style, sigma, respectCTM);
581 }
582
flatten(SkWriteBuffer & buffer) const583 void SkBlurMaskFilterImpl::flatten(SkWriteBuffer& buffer) const {
584 buffer.writeScalar(fSigma);
585 buffer.writeUInt(fBlurStyle);
586 buffer.writeUInt(!fRespectCTM); // historically we recorded ignoreCTM
587 }
588
589
590 #if SK_SUPPORT_GPU && SK_GPU_V1
591
592 ///////////////////////////////////////////////////////////////////////////////
593 // Circle Blur
594 ///////////////////////////////////////////////////////////////////////////////
595
596 // Computes an unnormalized half kernel (right side). Returns the summation of all the half
597 // kernel values.
make_unnormalized_half_kernel(float * halfKernel,int halfKernelSize,float sigma)598 static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
599 const float invSigma = 1.f / sigma;
600 const float b = -0.5f * invSigma * invSigma;
601 float tot = 0.0f;
602 // Compute half kernel values at half pixel steps out from the center.
603 float t = 0.5f;
604 for (int i = 0; i < halfKernelSize; ++i) {
605 float value = expf(t * t * b);
606 tot += value;
607 halfKernel[i] = value;
608 t += 1.f;
609 }
610 return tot;
611 }
612
613 // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
614 // of discrete steps. The half kernel is normalized to sum to 0.5.
make_half_kernel_and_summed_table(float * halfKernel,float * summedHalfKernel,int halfKernelSize,float sigma)615 static void make_half_kernel_and_summed_table(float* halfKernel,
616 float* summedHalfKernel,
617 int halfKernelSize,
618 float sigma) {
619 // The half kernel should sum to 0.5 not 1.0.
620 const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
621 float sum = 0.f;
622 for (int i = 0; i < halfKernelSize; ++i) {
623 halfKernel[i] /= tot;
624 sum += halfKernel[i];
625 summedHalfKernel[i] = sum;
626 }
627 }
628
629 // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
630 // origin with radius circleR.
apply_kernel_in_y(float * results,int numSteps,float firstX,float circleR,int halfKernelSize,const float * summedHalfKernelTable)631 void apply_kernel_in_y(float* results,
632 int numSteps,
633 float firstX,
634 float circleR,
635 int halfKernelSize,
636 const float* summedHalfKernelTable) {
637 float x = firstX;
638 for (int i = 0; i < numSteps; ++i, x += 1.f) {
639 if (x < -circleR || x > circleR) {
640 results[i] = 0;
641 continue;
642 }
643 float y = sqrtf(circleR * circleR - x * x);
644 // In the column at x we exit the circle at +y and -y
645 // The summed table entry j is actually reflects an offset of j + 0.5.
646 y -= 0.5f;
647 int yInt = SkScalarFloorToInt(y);
648 SkASSERT(yInt >= -1);
649 if (y < 0) {
650 results[i] = (y + 0.5f) * summedHalfKernelTable[0];
651 } else if (yInt >= halfKernelSize - 1) {
652 results[i] = 0.5f;
653 } else {
654 float yFrac = y - yInt;
655 results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
656 yFrac * summedHalfKernelTable[yInt + 1];
657 }
658 }
659 }
660
661 // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
662 // This relies on having a half kernel computed for the Gaussian and a table of applications of
663 // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
664 // halfKernel) passed in as yKernelEvaluations.
eval_at(float evalX,float circleR,const float * halfKernel,int halfKernelSize,const float * yKernelEvaluations)665 static uint8_t eval_at(float evalX,
666 float circleR,
667 const float* halfKernel,
668 int halfKernelSize,
669 const float* yKernelEvaluations) {
670 float acc = 0;
671
672 float x = evalX - halfKernelSize;
673 for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
674 if (x < -circleR || x > circleR) {
675 continue;
676 }
677 float verticalEval = yKernelEvaluations[i];
678 acc += verticalEval * halfKernel[halfKernelSize - i - 1];
679 }
680 for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
681 if (x < -circleR || x > circleR) {
682 continue;
683 }
684 float verticalEval = yKernelEvaluations[i + halfKernelSize];
685 acc += verticalEval * halfKernel[i];
686 }
687 // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
688 // the x axis).
689 return SkUnitScalarClampToByte(2.f * acc);
690 }
691
692 // This function creates a profile of a blurred circle. It does this by computing a kernel for
693 // half the Gaussian and a matching summed area table. The summed area table is used to compute
694 // an array of vertical applications of the half kernel to the circle along the x axis. The
695 // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
696 // the size of the profile being computed. Then for each of the n profile entries we walk out k
697 // steps in each horizontal direction multiplying the corresponding y evaluation by the half
698 // kernel entry and sum these values to compute the profile entry.
create_circle_profile(uint8_t * weights,float sigma,float circleR,int profileTextureWidth)699 static void create_circle_profile(uint8_t* weights,
700 float sigma,
701 float circleR,
702 int profileTextureWidth) {
703 const int numSteps = profileTextureWidth;
704
705 // The full kernel is 6 sigmas wide.
706 int halfKernelSize = SkScalarCeilToInt(6.0f * sigma);
707 // round up to next multiple of 2 and then divide by 2
708 halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
709
710 // Number of x steps at which to apply kernel in y to cover all the profile samples in x.
711 int numYSteps = numSteps + 2 * halfKernelSize;
712
713 SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
714 float* halfKernel = bulkAlloc.get();
715 float* summedKernel = bulkAlloc.get() + halfKernelSize;
716 float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
717 make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
718
719 float firstX = -halfKernelSize + 0.5f;
720 apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
721
722 for (int i = 0; i < numSteps - 1; ++i) {
723 float evalX = i + 0.5f;
724 weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
725 }
726 // Ensure the tail of the Gaussian goes to zero.
727 weights[numSteps - 1] = 0;
728 }
729
create_half_plane_profile(uint8_t * profile,int profileWidth)730 static void create_half_plane_profile(uint8_t* profile, int profileWidth) {
731 SkASSERT(!(profileWidth & 0x1));
732 // The full kernel is 6 sigmas wide.
733 float sigma = profileWidth / 6.f;
734 int halfKernelSize = profileWidth / 2;
735
736 SkAutoTArray<float> halfKernel(halfKernelSize);
737
738 // The half kernel should sum to 0.5.
739 const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
740 float sum = 0.f;
741 // Populate the profile from the right edge to the middle.
742 for (int i = 0; i < halfKernelSize; ++i) {
743 halfKernel[halfKernelSize - i - 1] /= tot;
744 sum += halfKernel[halfKernelSize - i - 1];
745 profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
746 }
747 // Populate the profile from the middle to the left edge (by flipping the half kernel and
748 // continuing the summation).
749 for (int i = 0; i < halfKernelSize; ++i) {
750 sum += halfKernel[i];
751 profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
752 }
753 // Ensure tail goes to 0.
754 profile[profileWidth - 1] = 0;
755 }
756
create_profile_effect(GrRecordingContext * rContext,const SkRect & circle,float sigma,float * solidRadius,float * textureRadius)757 static std::unique_ptr<GrFragmentProcessor> create_profile_effect(GrRecordingContext* rContext,
758 const SkRect& circle,
759 float sigma,
760 float* solidRadius,
761 float* textureRadius) {
762 float circleR = circle.width() / 2.0f;
763 if (!sk_float_isfinite(circleR) || circleR < SK_ScalarNearlyZero) {
764 return nullptr;
765 }
766
767 auto threadSafeCache = rContext->priv().threadSafeCache();
768
769 // Profile textures are cached by the ratio of sigma to circle radius and by the size of the
770 // profile texture (binned by powers of 2).
771 SkScalar sigmaToCircleRRatio = sigma / circleR;
772 // When sigma is really small this becomes a equivalent to convolving a Gaussian with a
773 // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
774 // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
775 // implemented this latter optimization.
776 sigmaToCircleRRatio = std::min(sigmaToCircleRRatio, 8.f);
777 SkFixed sigmaToCircleRRatioFixed;
778 static const SkScalar kHalfPlaneThreshold = 0.1f;
779 bool useHalfPlaneApprox = false;
780 if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
781 useHalfPlaneApprox = true;
782 sigmaToCircleRRatioFixed = 0;
783 *solidRadius = circleR - 3 * sigma;
784 *textureRadius = 6 * sigma;
785 } else {
786 // Convert to fixed point for the key.
787 sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
788 // We shave off some bits to reduce the number of unique entries. We could probably
789 // shave off more than we do.
790 sigmaToCircleRRatioFixed &= ~0xff;
791 sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
792 sigma = circleR * sigmaToCircleRRatio;
793 *solidRadius = 0;
794 *textureRadius = circleR + 3 * sigma;
795 }
796
797 static constexpr int kProfileTextureWidth = 512;
798 // This would be kProfileTextureWidth/textureRadius if it weren't for the fact that we do
799 // the calculation of the profile coord in a coord space that has already been scaled by
800 // 1 / textureRadius. This is done to avoid overflow in length().
801 SkMatrix texM = SkMatrix::Scale(kProfileTextureWidth, 1.f);
802
803 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
804 GrUniqueKey key;
805 GrUniqueKey::Builder builder(&key, kDomain, 1, "1-D Circular Blur");
806 builder[0] = sigmaToCircleRRatioFixed;
807 builder.finish();
808
809 GrSurfaceProxyView profileView = threadSafeCache->find(key);
810 if (profileView) {
811 SkASSERT(profileView.asTextureProxy());
812 SkASSERT(profileView.origin() == kTopLeft_GrSurfaceOrigin);
813 return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM);
814 }
815
816 SkBitmap bm;
817 if (!bm.tryAllocPixels(SkImageInfo::MakeA8(kProfileTextureWidth, 1))) {
818 return nullptr;
819 }
820
821 if (useHalfPlaneApprox) {
822 create_half_plane_profile(bm.getAddr8(0, 0), kProfileTextureWidth);
823 } else {
824 // Rescale params to the size of the texture we're creating.
825 SkScalar scale = kProfileTextureWidth / *textureRadius;
826 create_circle_profile(
827 bm.getAddr8(0, 0), sigma * scale, circleR * scale, kProfileTextureWidth);
828 }
829 bm.setImmutable();
830
831 profileView = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bm));
832 if (!profileView) {
833 return nullptr;
834 }
835
836 profileView = threadSafeCache->add(key, profileView);
837 return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM);
838 }
839
make_circle_blur(GrRecordingContext * context,const SkRect & circle,float sigma)840 static std::unique_ptr<GrFragmentProcessor> make_circle_blur(GrRecordingContext* context,
841 const SkRect& circle,
842 float sigma) {
843 if (SkGpuBlurUtils::IsEffectivelyZeroSigma(sigma)) {
844 return nullptr;
845 }
846
847 float solidRadius;
848 float textureRadius;
849 std::unique_ptr<GrFragmentProcessor> profile =
850 create_profile_effect(context, circle, sigma, &solidRadius, &textureRadius);
851 if (!profile) {
852 return nullptr;
853 }
854
855 static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
856 uniform shader blurProfile;
857 uniform float4 circleData;
858
859 half4 main(float2 xy, half4 inColor) {
860 // We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need
861 // to rearrange to avoid passing large values to length() that would overflow.
862 half4 halfCircleData = circleData;
863 half2 vec = (sk_FragCoord.xy - halfCircleData.xy) * circleData.w;
864 half dist = length(vec) + (0.5 - halfCircleData.z) * halfCircleData.w;
865 return inColor * blurProfile.eval(half2(dist, 0.5)).a;
866 }
867 )");
868
869 SkV4 circleData = {circle.centerX(), circle.centerY(), solidRadius, 1.f / textureRadius};
870 return GrSkSLFP::Make(effect, "CircleBlur", /*inputFP=*/nullptr,
871 GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
872 "blurProfile", GrSkSLFP::IgnoreOptFlags(std::move(profile)),
873 "circleData", circleData);
874 }
875
876 ///////////////////////////////////////////////////////////////////////////////
877 // Rect Blur
878 ///////////////////////////////////////////////////////////////////////////////
879
make_rect_integral_fp(GrRecordingContext * rContext,float sixSigma)880 static std::unique_ptr<GrFragmentProcessor> make_rect_integral_fp(GrRecordingContext* rContext,
881 float sixSigma) {
882 SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(sixSigma / 6.f));
883 auto threadSafeCache = rContext->priv().threadSafeCache();
884
885 int width = SkGpuBlurUtils::CreateIntegralTable(sixSigma, nullptr);
886
887 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
888 GrUniqueKey key;
889 GrUniqueKey::Builder builder(&key, kDomain, 1, "Rect Blur Mask");
890 builder[0] = width;
891 builder.finish();
892
893 SkMatrix m = SkMatrix::Scale(width / sixSigma, 1.f);
894
895 GrSurfaceProxyView view = threadSafeCache->find(key);
896
897 if (view) {
898 SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin);
899 return GrTextureEffect::Make(
900 std::move(view), kPremul_SkAlphaType, m, GrSamplerState::Filter::kLinear);
901 }
902
903 SkBitmap bitmap;
904 if (!SkGpuBlurUtils::CreateIntegralTable(sixSigma, &bitmap)) {
905 return {};
906 }
907
908 view = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bitmap));
909 if (!view) {
910 return {};
911 }
912
913 view = threadSafeCache->add(key, view);
914
915 SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin);
916 return GrTextureEffect::Make(
917 std::move(view), kPremul_SkAlphaType, m, GrSamplerState::Filter::kLinear);
918 }
919
make_rect_blur(GrRecordingContext * context,const GrShaderCaps & caps,const SkRect & srcRect,const SkMatrix & viewMatrix,float transformedSigma)920 static std::unique_ptr<GrFragmentProcessor> make_rect_blur(GrRecordingContext* context,
921 const GrShaderCaps& caps,
922 const SkRect& srcRect,
923 const SkMatrix& viewMatrix,
924 float transformedSigma) {
925 SkASSERT(viewMatrix.preservesRightAngles());
926 SkASSERT(srcRect.isSorted());
927
928 if (SkGpuBlurUtils::IsEffectivelyZeroSigma(transformedSigma)) {
929 // No need to blur the rect
930 return nullptr;
931 }
932
933 SkMatrix invM;
934 SkRect rect;
935 if (viewMatrix.rectStaysRect()) {
936 invM = SkMatrix::I();
937 // We can do everything in device space when the src rect projects to a rect in device space
938 SkAssertResult(viewMatrix.mapRect(&rect, srcRect));
939 } else {
940 // The view matrix may scale, perhaps anisotropically. But we want to apply our device space
941 // "transformedSigma" to the delta of frag coord from the rect edges. Factor out the scaling
942 // to define a space that is purely rotation/translation from device space (and scale from
943 // src space) We'll meet in the middle: pre-scale the src rect to be in this space and then
944 // apply the inverse of the rotation/translation portion to the frag coord.
945 SkMatrix m;
946 SkSize scale;
947 if (!viewMatrix.decomposeScale(&scale, &m)) {
948 return nullptr;
949 }
950 if (!m.invert(&invM)) {
951 return nullptr;
952 }
953 rect = {srcRect.left() * scale.width(),
954 srcRect.top() * scale.height(),
955 srcRect.right() * scale.width(),
956 srcRect.bottom() * scale.height()};
957 }
958
959 if (!caps.floatIs32Bits()) {
960 // We promote the math that gets us into the Gaussian space to full float when the rect
961 // coords are large. If we don't have full float then fail. We could probably clip the rect
962 // to an outset device bounds instead.
963 if (SkScalarAbs(rect.fLeft) > 16000.f || SkScalarAbs(rect.fTop) > 16000.f ||
964 SkScalarAbs(rect.fRight) > 16000.f || SkScalarAbs(rect.fBottom) > 16000.f) {
965 return nullptr;
966 }
967 }
968
969 const float sixSigma = 6 * transformedSigma;
970 std::unique_ptr<GrFragmentProcessor> integral = make_rect_integral_fp(context, sixSigma);
971 if (!integral) {
972 return nullptr;
973 }
974
975 // In the fast variant we think of the midpoint of the integral texture as aligning with the
976 // closest rect edge both in x and y. To simplify texture coord calculation we inset the rect so
977 // that the edge of the inset rect corresponds to t = 0 in the texture. It actually simplifies
978 // things a bit in the !isFast case, too.
979 float threeSigma = sixSigma / 2;
980 SkRect insetRect = {rect.left() + threeSigma,
981 rect.top() + threeSigma,
982 rect.right() - threeSigma,
983 rect.bottom() - threeSigma};
984
985 // In our fast variant we find the nearest horizontal and vertical edges and for each do a
986 // lookup in the integral texture for each and multiply them. When the rect is less than 6 sigma
987 // wide then things aren't so simple and we have to consider both the left and right edge of the
988 // rectangle (and similar in y).
989 bool isFast = insetRect.isSorted();
990
991 static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
992 // Effect that is a LUT for integral of normal distribution. The value at x:[0,6*sigma] is
993 // the integral from -inf to (3*sigma - x). I.e. x is mapped from [0, 6*sigma] to
994 // [3*sigma to -3*sigma]. The flip saves a reversal in the shader.
995 uniform shader integral;
996
997 uniform float4 rect;
998 uniform int isFast; // specialized
999
1000 half4 main(float2 pos, half4 inColor) {
1001 half xCoverage, yCoverage;
1002 if (bool(isFast)) {
1003 // Get the smaller of the signed distance from the frag coord to the left and right
1004 // edges and similar for y.
1005 // The integral texture goes "backwards" (from 3*sigma to -3*sigma), So, the below
1006 // computations align the left edge of the integral texture with the inset rect's
1007 // edge extending outward 6 * sigma from the inset rect.
1008 half2 xy = max(half2(rect.LT - pos), half2(pos - rect.RB));
1009 xCoverage = integral.eval(half2(xy.x, 0.5)).a;
1010 yCoverage = integral.eval(half2(xy.y, 0.5)).a;
1011 } else {
1012 // We just consider just the x direction here. In practice we compute x and y
1013 // separately and multiply them together.
1014 // We define our coord system so that the point at which we're evaluating a kernel
1015 // defined by the normal distribution (K) at 0. In this coord system let L be left
1016 // edge and R be the right edge of the rectangle.
1017 // We can calculate C by integrating K with the half infinite ranges outside the
1018 // L to R range and subtracting from 1:
1019 // C = 1 - <integral of K from from -inf to L> - <integral of K from R to inf>
1020 // K is symmetric about x=0 so:
1021 // C = 1 - <integral of K from from -inf to L> - <integral of K from -inf to -R>
1022
1023 // The integral texture goes "backwards" (from 3*sigma to -3*sigma) which is
1024 // factored in to the below calculations.
1025 // Also, our rect uniform was pre-inset by 3 sigma from the actual rect being
1026 // blurred, also factored in.
1027 half4 rect = half4(half2(rect.LT - pos), half2(pos - rect.RB));
1028 xCoverage = 1 - integral.eval(half2(rect.L, 0.5)).a
1029 - integral.eval(half2(rect.R, 0.5)).a;
1030 yCoverage = 1 - integral.eval(half2(rect.T, 0.5)).a
1031 - integral.eval(half2(rect.B, 0.5)).a;
1032 }
1033 return inColor * xCoverage * yCoverage;
1034 }
1035 )");
1036
1037 std::unique_ptr<GrFragmentProcessor> fp =
1038 GrSkSLFP::Make(effect, "RectBlur", /*inputFP=*/nullptr,
1039 GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
1040 "integral", GrSkSLFP::IgnoreOptFlags(std::move(integral)),
1041 "rect", insetRect,
1042 "isFast", GrSkSLFP::Specialize<int>(isFast));
1043 if (!invM.isIdentity()) {
1044 fp = GrMatrixEffect::Make(invM, std::move(fp));
1045 }
1046 return GrFragmentProcessor::DeviceSpace(std::move(fp));
1047 }
1048
1049 ///////////////////////////////////////////////////////////////////////////////
1050 // RRect Blur
1051 ///////////////////////////////////////////////////////////////////////////////
1052
1053 static constexpr auto kBlurredRRectMaskOrigin = kTopLeft_GrSurfaceOrigin;
1054
make_blurred_rrect_key(GrUniqueKey * key,const SkRRect & rrectToDraw,float xformedSigma)1055 static void make_blurred_rrect_key(GrUniqueKey* key,
1056 const SkRRect& rrectToDraw,
1057 float xformedSigma) {
1058 SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1059 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
1060
1061 GrUniqueKey::Builder builder(key, kDomain, 9, "RoundRect Blur Mask");
1062 builder[0] = SkScalarCeilToInt(xformedSigma - 1 / 6.0f);
1063
1064 int index = 1;
1065 // TODO: this is overkill for _simple_ circular rrects
1066 for (auto c : {SkRRect::kUpperLeft_Corner,
1067 SkRRect::kUpperRight_Corner,
1068 SkRRect::kLowerRight_Corner,
1069 SkRRect::kLowerLeft_Corner}) {
1070 SkASSERT(SkScalarIsInt(rrectToDraw.radii(c).fX) && SkScalarIsInt(rrectToDraw.radii(c).fY));
1071 builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fX);
1072 builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fY);
1073 }
1074 builder.finish();
1075 }
1076
fillin_view_on_gpu(GrDirectContext * dContext,const GrSurfaceProxyView & lazyView,sk_sp<GrThreadSafeCache::Trampoline> trampoline,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1077 static bool fillin_view_on_gpu(GrDirectContext* dContext,
1078 const GrSurfaceProxyView& lazyView,
1079 sk_sp<GrThreadSafeCache::Trampoline> trampoline,
1080 const SkRRect& rrectToDraw,
1081 const SkISize& dimensions,
1082 float xformedSigma) {
1083 #if SK_GPU_V1
1084 SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1085
1086 // We cache blur masks. Use default surface props here so we can use the same cached mask
1087 // regardless of the final dst surface.
1088 SkSurfaceProps defaultSurfaceProps;
1089
1090 std::unique_ptr<skgpu::v1::SurfaceDrawContext> sdc =
1091 skgpu::v1::SurfaceDrawContext::MakeWithFallback(dContext,
1092 GrColorType::kAlpha_8,
1093 nullptr,
1094 SkBackingFit::kExact,
1095 dimensions,
1096 defaultSurfaceProps,
1097 1,
1098 GrMipmapped::kNo,
1099 GrProtected::kNo,
1100 kBlurredRRectMaskOrigin);
1101 if (!sdc) {
1102 return false;
1103 }
1104
1105 GrPaint paint;
1106
1107 sdc->clear(SK_PMColor4fTRANSPARENT);
1108 sdc->drawRRect(nullptr,
1109 std::move(paint),
1110 GrAA::kYes,
1111 SkMatrix::I(),
1112 rrectToDraw,
1113 GrStyle::SimpleFill());
1114
1115 GrSurfaceProxyView srcView = sdc->readSurfaceView();
1116 SkASSERT(srcView.asTextureProxy());
1117 auto rtc2 = SkGpuBlurUtils::GaussianBlur(dContext,
1118 std::move(srcView),
1119 sdc->colorInfo().colorType(),
1120 sdc->colorInfo().alphaType(),
1121 nullptr,
1122 SkIRect::MakeSize(dimensions),
1123 SkIRect::MakeSize(dimensions),
1124 xformedSigma,
1125 xformedSigma,
1126 SkTileMode::kClamp,
1127 SkBackingFit::kExact);
1128 if (!rtc2 || !rtc2->readSurfaceView()) {
1129 return false;
1130 }
1131
1132 auto view = rtc2->readSurfaceView();
1133 SkASSERT(view.swizzle() == lazyView.swizzle());
1134 SkASSERT(view.origin() == lazyView.origin());
1135 trampoline->fProxy = view.asTextureProxyRef();
1136
1137 return true;
1138 #else
1139 return false;
1140 #endif
1141 }
1142
1143 // Evaluate the vertical blur at the specified 'y' value given the location of the top of the
1144 // rrect.
eval_V(float top,int y,const uint8_t * integral,int integralSize,float sixSigma)1145 static uint8_t eval_V(float top, int y, const uint8_t* integral, int integralSize, float sixSigma) {
1146 if (top < 0) {
1147 return 0; // an empty column
1148 }
1149
1150 float fT = (top - y - 0.5f) * (integralSize / sixSigma);
1151 if (fT < 0) {
1152 return 255;
1153 } else if (fT >= integralSize - 1) {
1154 return 0;
1155 }
1156
1157 int lower = (int)fT;
1158 float frac = fT - lower;
1159
1160 SkASSERT(lower + 1 < integralSize);
1161
1162 return integral[lower] * (1.0f - frac) + integral[lower + 1] * frac;
1163 }
1164
1165 // Apply a gaussian 'kernel' horizontally at the specified 'x', 'y' location.
eval_H(int x,int y,const std::vector<float> & topVec,const float * kernel,int kernelSize,const uint8_t * integral,int integralSize,float sixSigma)1166 static uint8_t eval_H(int x,
1167 int y,
1168 const std::vector<float>& topVec,
1169 const float* kernel,
1170 int kernelSize,
1171 const uint8_t* integral,
1172 int integralSize,
1173 float sixSigma) {
1174 SkASSERT(0 <= x && x < (int)topVec.size());
1175 SkASSERT(kernelSize % 2);
1176
1177 float accum = 0.0f;
1178
1179 int xSampleLoc = x - (kernelSize / 2);
1180 for (int i = 0; i < kernelSize; ++i, ++xSampleLoc) {
1181 if (xSampleLoc < 0 || xSampleLoc >= (int)topVec.size()) {
1182 continue;
1183 }
1184
1185 accum += kernel[i] * eval_V(topVec[xSampleLoc], y, integral, integralSize, sixSigma);
1186 }
1187
1188 return accum + 0.5f;
1189 }
1190
1191 // Create a cpu-side blurred-rrect mask that is close to the version the gpu would've produced.
1192 // The match needs to be close bc the cpu- and gpu-generated version must be interchangeable.
create_mask_on_cpu(GrRecordingContext * rContext,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1193 static GrSurfaceProxyView create_mask_on_cpu(GrRecordingContext* rContext,
1194 const SkRRect& rrectToDraw,
1195 const SkISize& dimensions,
1196 float xformedSigma) {
1197 SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1198 int radius = SkGpuBlurUtils::SigmaRadius(xformedSigma);
1199 int kernelSize = 2 * radius + 1;
1200
1201 SkASSERT(kernelSize % 2);
1202 SkASSERT(dimensions.width() % 2);
1203 SkASSERT(dimensions.height() % 2);
1204
1205 SkVector radii = rrectToDraw.getSimpleRadii();
1206 SkASSERT(SkScalarNearlyEqual(radii.fX, radii.fY));
1207
1208 const int halfWidthPlus1 = (dimensions.width() / 2) + 1;
1209 const int halfHeightPlus1 = (dimensions.height() / 2) + 1;
1210
1211 std::unique_ptr<float[]> kernel(new float[kernelSize]);
1212
1213 SkGpuBlurUtils::Compute1DGaussianKernel(kernel.get(), xformedSigma, radius);
1214
1215 SkBitmap integral;
1216 if (!SkGpuBlurUtils::CreateIntegralTable(6 * xformedSigma, &integral)) {
1217 return {};
1218 }
1219
1220 SkBitmap result;
1221 if (!result.tryAllocPixels(SkImageInfo::MakeA8(dimensions.width(), dimensions.height()))) {
1222 return {};
1223 }
1224
1225 std::vector<float> topVec;
1226 topVec.reserve(dimensions.width());
1227 for (int x = 0; x < dimensions.width(); ++x) {
1228 if (x < rrectToDraw.rect().fLeft || x > rrectToDraw.rect().fRight) {
1229 topVec.push_back(-1);
1230 } else {
1231 if (x + 0.5f < rrectToDraw.rect().fLeft + radii.fX) { // in the circular section
1232 float xDist = rrectToDraw.rect().fLeft + radii.fX - x - 0.5f;
1233 float h = sqrtf(radii.fX * radii.fX - xDist * xDist);
1234 SkASSERT(0 <= h && h < radii.fY);
1235 topVec.push_back(rrectToDraw.rect().fTop + radii.fX - h + 3 * xformedSigma);
1236 } else {
1237 topVec.push_back(rrectToDraw.rect().fTop + 3 * xformedSigma);
1238 }
1239 }
1240 }
1241
1242 for (int y = 0; y < halfHeightPlus1; ++y) {
1243 uint8_t* scanline = result.getAddr8(0, y);
1244
1245 for (int x = 0; x < halfWidthPlus1; ++x) {
1246 scanline[x] = eval_H(x,
1247 y,
1248 topVec,
1249 kernel.get(),
1250 kernelSize,
1251 integral.getAddr8(0, 0),
1252 integral.width(),
1253 6 * xformedSigma);
1254 scanline[dimensions.width() - x - 1] = scanline[x];
1255 }
1256
1257 memcpy(result.getAddr8(0, dimensions.height() - y - 1), scanline, result.rowBytes());
1258 }
1259
1260 result.setImmutable();
1261
1262 auto view = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, result));
1263 if (!view) {
1264 return {};
1265 }
1266
1267 SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1268 return view;
1269 }
1270
find_or_create_rrect_blur_mask_fp(GrRecordingContext * rContext,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1271 static std::unique_ptr<GrFragmentProcessor> find_or_create_rrect_blur_mask_fp(
1272 GrRecordingContext* rContext,
1273 const SkRRect& rrectToDraw,
1274 const SkISize& dimensions,
1275 float xformedSigma) {
1276 SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1277 GrUniqueKey key;
1278 make_blurred_rrect_key(&key, rrectToDraw, xformedSigma);
1279
1280 auto threadSafeCache = rContext->priv().threadSafeCache();
1281
1282 // It seems like we could omit this matrix and modify the shader code to not normalize
1283 // the coords used to sample the texture effect. However, the "proxyDims" value in the
1284 // shader is not always the actual the proxy dimensions. This is because 'dimensions' here
1285 // was computed using integer corner radii as determined in
1286 // SkComputeBlurredRRectParams whereas the shader code uses the float radius to compute
1287 // 'proxyDims'. Why it draws correctly with these unequal values is a mystery for the ages.
1288 auto m = SkMatrix::Scale(dimensions.width(), dimensions.height());
1289
1290 GrSurfaceProxyView view;
1291
1292 if (GrDirectContext* dContext = rContext->asDirectContext()) {
1293 // The gpu thread gets priority over the recording threads. If the gpu thread is first,
1294 // it crams a lazy proxy into the cache and then fills it in later.
1295 auto [lazyView, trampoline] = GrThreadSafeCache::CreateLazyView(dContext,
1296 GrColorType::kAlpha_8,
1297 dimensions,
1298 kBlurredRRectMaskOrigin,
1299 SkBackingFit::kExact);
1300 if (!lazyView) {
1301 return nullptr;
1302 }
1303
1304 view = threadSafeCache->findOrAdd(key, lazyView);
1305 if (view != lazyView) {
1306 SkASSERT(view.asTextureProxy());
1307 SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1308 return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1309 }
1310
1311 if (!fillin_view_on_gpu(dContext,
1312 lazyView,
1313 std::move(trampoline),
1314 rrectToDraw,
1315 dimensions,
1316 xformedSigma)) {
1317 // In this case something has gone disastrously wrong so set up to drop the draw
1318 // that needed this resource and reduce future pollution of the cache.
1319 threadSafeCache->remove(key);
1320 return nullptr;
1321 }
1322 } else {
1323 view = threadSafeCache->find(key);
1324 if (view) {
1325 SkASSERT(view.asTextureProxy());
1326 SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1327 return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1328 }
1329
1330 view = create_mask_on_cpu(rContext, rrectToDraw, dimensions, xformedSigma);
1331 if (!view) {
1332 return nullptr;
1333 }
1334
1335 view = threadSafeCache->add(key, view);
1336 }
1337
1338 SkASSERT(view.asTextureProxy());
1339 SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1340 return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1341 }
1342
make_rrect_blur(GrRecordingContext * context,float sigma,float xformedSigma,const SkRRect & srcRRect,const SkRRect & devRRect)1343 static std::unique_ptr<GrFragmentProcessor> make_rrect_blur(GrRecordingContext* context,
1344 float sigma,
1345 float xformedSigma,
1346 const SkRRect& srcRRect,
1347 const SkRRect& devRRect) {
1348 // Should've been caught up-stream
1349 #ifdef SK_DEBUG
1350 SkASSERTF(!SkRRectPriv::IsCircle(devRRect),
1351 "Unexpected circle. %d\n\t%s\n\t%s",
1352 SkRRectPriv::IsCircle(srcRRect),
1353 srcRRect.dumpToString(true).c_str(),
1354 devRRect.dumpToString(true).c_str());
1355 SkASSERTF(!devRRect.isRect(),
1356 "Unexpected rect. %d\n\t%s\n\t%s",
1357 srcRRect.isRect(),
1358 srcRRect.dumpToString(true).c_str(),
1359 devRRect.dumpToString(true).c_str());
1360 #endif
1361
1362 // TODO: loosen this up
1363 if (!SkRRectPriv::IsSimpleCircular(devRRect)) {
1364 return nullptr;
1365 }
1366
1367 if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1368 return nullptr;
1369 }
1370
1371 // Make sure we can successfully ninepatch this rrect -- the blur sigma has to be sufficiently
1372 // small relative to both the size of the corner radius and the width (and height) of the rrect.
1373 SkRRect rrectToDraw;
1374 SkISize dimensions;
1375 SkScalar ignored[SkGpuBlurUtils::kBlurRRectMaxDivisions];
1376
1377 bool ninePatchable = SkGpuBlurUtils::ComputeBlurredRRectParams(srcRRect,
1378 devRRect,
1379 sigma,
1380 xformedSigma,
1381 &rrectToDraw,
1382 &dimensions,
1383 ignored,
1384 ignored,
1385 ignored,
1386 ignored);
1387 if (!ninePatchable) {
1388 return nullptr;
1389 }
1390
1391 std::unique_ptr<GrFragmentProcessor> maskFP =
1392 find_or_create_rrect_blur_mask_fp(context, rrectToDraw, dimensions, xformedSigma);
1393 if (!maskFP) {
1394 return nullptr;
1395 }
1396
1397 static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
1398 uniform shader ninePatchFP;
1399
1400 uniform half cornerRadius;
1401 uniform float4 proxyRect;
1402 uniform half blurRadius;
1403
1404 half4 main(float2 xy, half4 inColor) {
1405 // Warp the fragment position to the appropriate part of the 9-patch blur texture by
1406 // snipping out the middle section of the proxy rect.
1407 float2 translatedFragPosFloat = sk_FragCoord.xy - proxyRect.LT;
1408 float2 proxyCenter = (proxyRect.RB - proxyRect.LT) * 0.5;
1409 half edgeSize = 2.0 * blurRadius + cornerRadius + 0.5;
1410
1411 // Position the fragment so that (0, 0) marks the center of the proxy rectangle.
1412 // Negative coordinates are on the left/top side and positive numbers are on the
1413 // right/bottom.
1414 translatedFragPosFloat -= proxyCenter;
1415
1416 // Temporarily strip off the fragment's sign. x/y are now strictly increasing as we
1417 // move away from the center.
1418 half2 fragDirection = half2(sign(translatedFragPosFloat));
1419 translatedFragPosFloat = abs(translatedFragPosFloat);
1420
1421 // Our goal is to snip out the "middle section" of the proxy rect (everything but the
1422 // edge). We've repositioned our fragment position so that (0, 0) is the centerpoint
1423 // and x/y are always positive, so we can subtract here and interpret negative results
1424 // as being within the middle section.
1425 half2 translatedFragPosHalf = half2(translatedFragPosFloat - (proxyCenter - edgeSize));
1426
1427 // Remove the middle section by clamping to zero.
1428 translatedFragPosHalf = max(translatedFragPosHalf, 0);
1429
1430 // Reapply the fragment's sign, so that negative coordinates once again mean left/top
1431 // side and positive means bottom/right side.
1432 translatedFragPosHalf *= fragDirection;
1433
1434 // Offset the fragment so that (0, 0) marks the upper-left again, instead of the center
1435 // point.
1436 translatedFragPosHalf += half2(edgeSize);
1437
1438 half2 proxyDims = half2(2.0 * edgeSize);
1439 half2 texCoord = translatedFragPosHalf / proxyDims;
1440
1441 return inColor * ninePatchFP.eval(texCoord).a;
1442 }
1443 )");
1444
1445 float cornerRadius = SkRRectPriv::GetSimpleRadii(devRRect).fX;
1446 float blurRadius = 3.f * SkScalarCeilToScalar(xformedSigma - 1 / 6.0f);
1447 SkRect proxyRect = devRRect.getBounds().makeOutset(blurRadius, blurRadius);
1448
1449 return GrSkSLFP::Make(effect, "RRectBlur", /*inputFP=*/nullptr,
1450 GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
1451 "ninePatchFP", GrSkSLFP::IgnoreOptFlags(std::move(maskFP)),
1452 "cornerRadius", cornerRadius,
1453 "proxyRect", proxyRect,
1454 "blurRadius", blurRadius);
1455 }
1456
1457 ///////////////////////////////////////////////////////////////////////////////
1458
directFilterMaskGPU(GrRecordingContext * context,skgpu::v1::SurfaceDrawContext * sdc,GrPaint && paint,const GrClip * clip,const SkMatrix & viewMatrix,const GrStyledShape & shape) const1459 bool SkBlurMaskFilterImpl::directFilterMaskGPU(GrRecordingContext* context,
1460 skgpu::v1::SurfaceDrawContext* sdc,
1461 GrPaint&& paint,
1462 const GrClip* clip,
1463 const SkMatrix& viewMatrix,
1464 const GrStyledShape& shape) const {
1465 SkASSERT(sdc);
1466
1467 if (fBlurStyle != kNormal_SkBlurStyle) {
1468 return false;
1469 }
1470
1471 // TODO: we could handle blurred stroked circles
1472 if (!shape.style().isSimpleFill()) {
1473 return false;
1474 }
1475
1476 SkScalar xformedSigma = this->computeXformedSigma(viewMatrix);
1477 if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1478 sdc->drawShape(clip, std::move(paint), GrAA::kYes, viewMatrix, GrStyledShape(shape));
1479 return true;
1480 }
1481
1482 SkRRect srcRRect;
1483 bool inverted;
1484 if (!shape.asRRect(&srcRRect, nullptr, nullptr, &inverted) || inverted) {
1485 return false;
1486 }
1487
1488 std::unique_ptr<GrFragmentProcessor> fp;
1489
1490 SkRRect devRRect;
1491 bool devRRectIsValid = srcRRect.transform(viewMatrix, &devRRect);
1492
1493 bool devRRectIsCircle = devRRectIsValid && SkRRectPriv::IsCircle(devRRect);
1494
1495 bool canBeRect = srcRRect.isRect() && viewMatrix.preservesRightAngles();
1496 bool canBeCircle = (SkRRectPriv::IsCircle(srcRRect) && viewMatrix.isSimilarity()) ||
1497 devRRectIsCircle;
1498
1499 if (canBeRect || canBeCircle) {
1500 if (canBeRect) {
1501 fp = make_rect_blur(context, *context->priv().caps()->shaderCaps(),
1502 srcRRect.rect(), viewMatrix, xformedSigma);
1503 } else {
1504 SkRect devBounds;
1505 if (devRRectIsCircle) {
1506 devBounds = devRRect.getBounds();
1507 } else {
1508 SkPoint center = {srcRRect.getBounds().centerX(), srcRRect.getBounds().centerY()};
1509 viewMatrix.mapPoints(¢er, 1);
1510 SkScalar radius = viewMatrix.mapVector(0, srcRRect.width()/2.f).length();
1511 devBounds = {center.x() - radius,
1512 center.y() - radius,
1513 center.x() + radius,
1514 center.y() + radius};
1515 }
1516 fp = make_circle_blur(context, devBounds, xformedSigma);
1517 }
1518
1519 if (!fp) {
1520 return false;
1521 }
1522
1523 SkRect srcProxyRect = srcRRect.rect();
1524 // Determine how much to outset the src rect to ensure we hit pixels within three sigma.
1525 SkScalar outsetX = 3.0f*xformedSigma;
1526 SkScalar outsetY = 3.0f*xformedSigma;
1527 if (viewMatrix.isScaleTranslate()) {
1528 outsetX /= SkScalarAbs(viewMatrix.getScaleX());
1529 outsetY /= SkScalarAbs(viewMatrix.getScaleY());
1530 } else {
1531 SkSize scale;
1532 if (!viewMatrix.decomposeScale(&scale, nullptr)) {
1533 return false;
1534 }
1535 outsetX /= scale.width();
1536 outsetY /= scale.height();
1537 }
1538 srcProxyRect.outset(outsetX, outsetY);
1539
1540 paint.setCoverageFragmentProcessor(std::move(fp));
1541 sdc->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
1542 return true;
1543 }
1544 if (!viewMatrix.isScaleTranslate()) {
1545 return false;
1546 }
1547 if (!devRRectIsValid || !SkRRectPriv::AllCornersCircular(devRRect)) {
1548 return false;
1549 }
1550
1551 fp = make_rrect_blur(context, fSigma, xformedSigma, srcRRect, devRRect);
1552 if (!fp) {
1553 return false;
1554 }
1555
1556 if (!this->ignoreXform()) {
1557 SkRect srcProxyRect = srcRRect.rect();
1558 srcProxyRect.outset(3.0f*fSigma, 3.0f*fSigma);
1559 paint.setCoverageFragmentProcessor(std::move(fp));
1560 sdc->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
1561 } else {
1562 SkMatrix inverse;
1563 if (!viewMatrix.invert(&inverse)) {
1564 return false;
1565 }
1566
1567 SkIRect proxyBounds;
1568 float extra=3.f*SkScalarCeilToScalar(xformedSigma-1/6.0f);
1569 devRRect.rect().makeOutset(extra, extra).roundOut(&proxyBounds);
1570
1571 paint.setCoverageFragmentProcessor(std::move(fp));
1572 sdc->fillPixelsWithLocalMatrix(clip, std::move(paint), proxyBounds, inverse);
1573 }
1574
1575 return true;
1576 }
1577
canFilterMaskGPU(const GrStyledShape & shape,const SkIRect & devSpaceShapeBounds,const SkIRect & clipBounds,const SkMatrix & ctm,SkIRect * maskRect,const bool canUseSDFBlur) const1578 bool SkBlurMaskFilterImpl::canFilterMaskGPU(const GrStyledShape& shape,
1579 const SkIRect& devSpaceShapeBounds,
1580 const SkIRect& clipBounds,
1581 const SkMatrix& ctm,
1582 SkIRect* maskRect,
1583 const bool canUseSDFBlur) const {
1584 SkScalar xformedSigma = this->computeXformedSigma(ctm);
1585 if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1586 *maskRect = devSpaceShapeBounds;
1587 return maskRect->intersect(clipBounds);
1588 }
1589
1590 if (maskRect) {
1591 float sigma3 = 3 * SkScalarToFloat(xformedSigma);
1592
1593 // Outset srcRect and clipRect by 3 * sigma, to compute affected blur area.
1594 SkIRect clipRect = clipBounds.makeOutset(sigma3, sigma3);
1595 SkIRect srcRect = devSpaceShapeBounds.makeOutset(sigma3, sigma3);
1596
1597 if (!canUseSDFBlur && !srcRect.intersect(clipRect)) {
1598 srcRect.setEmpty();
1599 }
1600 SkRRect srcRRect;
1601 bool inverted;
1602 if (canUseSDFBlur && shape.asRRect(&srcRRect, nullptr, nullptr, &inverted)) {
1603 SkScalar sx = ctm.getScaleX();
1604 SkScalar sy = ctm.getScaleY();
1605 float noxFormedSigma3 = this->getNoxFormedSigma3();
1606 int sigmaX = noxFormedSigma3 * sx;
1607 int sigmaY = noxFormedSigma3 * sy;
1608 srcRect = devSpaceShapeBounds.makeOutset(sigmaX, sigmaY);
1609 srcRect = SkIRect::MakeXYWH(srcRect.fLeft, srcRect.fTop,
1610 srcRect.width() + srcRRect.rect().fLeft * sx,
1611 srcRect.height() + srcRRect.rect().fTop * sy);
1612 }
1613 *maskRect = srcRect;
1614 }
1615
1616 // We prefer to blur paths with small blur radii on the CPU.
1617 static const SkScalar kMIN_GPU_BLUR_SIZE = SkIntToScalar(64);
1618 static const SkScalar kMIN_GPU_BLUR_SIGMA = SkIntToScalar(32);
1619
1620 if (devSpaceShapeBounds.width() <= kMIN_GPU_BLUR_SIZE &&
1621 devSpaceShapeBounds.height() <= kMIN_GPU_BLUR_SIZE &&
1622 xformedSigma <= kMIN_GPU_BLUR_SIGMA) {
1623 return false;
1624 }
1625
1626 return true;
1627 }
1628
filterMaskGPU(GrRecordingContext * context,GrSurfaceProxyView srcView,GrColorType srcColorType,SkAlphaType srcAlphaType,const SkMatrix & ctm,const SkIRect & maskRect) const1629 GrSurfaceProxyView SkBlurMaskFilterImpl::filterMaskGPU(GrRecordingContext* context,
1630 GrSurfaceProxyView srcView,
1631 GrColorType srcColorType,
1632 SkAlphaType srcAlphaType,
1633 const SkMatrix& ctm,
1634 const SkIRect& maskRect) const {
1635 // 'maskRect' isn't snapped to the UL corner but the mask in 'src' is.
1636 const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height());
1637
1638 SkScalar xformedSigma = this->computeXformedSigma(ctm);
1639
1640 // If we're doing a normal blur, we can clobber the pathTexture in the
1641 // gaussianBlur. Otherwise, we need to save it for later compositing.
1642 bool isNormalBlur = (kNormal_SkBlurStyle == fBlurStyle);
1643 auto srcBounds = SkIRect::MakeSize(srcView.proxy()->dimensions());
1644 auto surfaceDrawContext = SkGpuBlurUtils::GaussianBlur(context,
1645 srcView,
1646 srcColorType,
1647 srcAlphaType,
1648 nullptr,
1649 clipRect,
1650 srcBounds,
1651 xformedSigma,
1652 xformedSigma,
1653 SkTileMode::kClamp);
1654 if (!surfaceDrawContext || !surfaceDrawContext->asTextureProxy()) {
1655 return {};
1656 }
1657
1658 if (!isNormalBlur) {
1659 GrPaint paint;
1660 // Blend pathTexture over blurTexture.
1661 paint.setCoverageFragmentProcessor(GrTextureEffect::Make(std::move(srcView), srcAlphaType));
1662 if (kInner_SkBlurStyle == fBlurStyle) {
1663 // inner: dst = dst * src
1664 paint.setCoverageSetOpXPFactory(SkRegion::kIntersect_Op);
1665 } else if (kSolid_SkBlurStyle == fBlurStyle) {
1666 // solid: dst = src + dst - src * dst
1667 // = src + (1 - src) * dst
1668 paint.setCoverageSetOpXPFactory(SkRegion::kUnion_Op);
1669 } else if (kOuter_SkBlurStyle == fBlurStyle) {
1670 // outer: dst = dst * (1 - src)
1671 // = 0 * src + (1 - src) * dst
1672 paint.setCoverageSetOpXPFactory(SkRegion::kDifference_Op);
1673 } else {
1674 paint.setCoverageSetOpXPFactory(SkRegion::kReplace_Op);
1675 }
1676
1677 surfaceDrawContext->fillPixelsWithLocalMatrix(nullptr, std::move(paint), clipRect,
1678 SkMatrix::I());
1679 }
1680
1681 return surfaceDrawContext->readSurfaceView();
1682 }
1683
getNoxFormedSigma3() const1684 float SkBlurMaskFilterImpl::getNoxFormedSigma3() const
1685 {
1686 constexpr float kSigma_Factor = 3.f;
1687 return kSigma_Factor * fSigma;
1688 }
1689
filterMaskGPUNoxFormed(GrRecordingContext * context,GrSurfaceProxyView srcView,GrColorType srcColorType,SkAlphaType srcAlphaType,const SkMatrix & viewMatrix,const SkIRect & maskRect,const SkRRect & srcRRect) const1690 GrSurfaceProxyView SkBlurMaskFilterImpl::filterMaskGPUNoxFormed(GrRecordingContext* context,
1691 GrSurfaceProxyView srcView, GrColorType srcColorType, SkAlphaType srcAlphaType, const SkMatrix& viewMatrix,
1692 const SkIRect& maskRect, const SkRRect& srcRRect) const
1693 {
1694 const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height());
1695
1696 float noxFormedSigma = this->getNoxFormedSigma3();
1697
1698 bool isNormalBlur = (kNormal_SkBlurStyle == fBlurStyle);
1699 if (!isNormalBlur) {
1700 return {};
1701 }
1702 auto srcBounds = SkIRect::MakeSize(srcView.proxy()->dimensions());
1703 auto surfaceDrawContext = SDFBlur::SDFBlur(context, srcView, srcColorType, srcAlphaType, nullptr,
1704 clipRect, srcBounds, noxFormedSigma, SkTileMode::kClamp, viewMatrix, srcRRect);
1705 if (!surfaceDrawContext || !surfaceDrawContext->asTextureProxy()) {
1706 return {};
1707 }
1708
1709 return surfaceDrawContext->readSurfaceView();
1710 }
1711
1712 #endif // SK_SUPPORT_GPU && SK_GPU_V1
1713
sk_register_blur_maskfilter_createproc()1714 void sk_register_blur_maskfilter_createproc() { SK_REGISTER_FLATTENABLE(SkBlurMaskFilterImpl); }
1715
MakeBlur(SkBlurStyle style,SkScalar sigma,bool respectCTM)1716 sk_sp<SkMaskFilter> SkMaskFilter::MakeBlur(SkBlurStyle style, SkScalar sigma, bool respectCTM) {
1717 if (SkScalarIsFinite(sigma) && sigma > 0) {
1718 return sk_sp<SkMaskFilter>(new SkBlurMaskFilterImpl(sigma, style, respectCTM));
1719 }
1720 return nullptr;
1721 }
1722