1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12
13 #define BIO_MAX_VECS 256U
14 #define BIO_MAX_INLINE_VECS UIO_MAXIOV
15
16 struct queue_limits;
17
bio_max_segs(unsigned int nr_segs)18 static inline unsigned int bio_max_segs(unsigned int nr_segs)
19 {
20 return min(nr_segs, BIO_MAX_VECS);
21 }
22
23 #define bio_prio(bio) (bio)->bi_ioprio
24 #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio)
25
26 #define bio_iter_iovec(bio, iter) \
27 bvec_iter_bvec((bio)->bi_io_vec, (iter))
28
29 #define bio_iter_page(bio, iter) \
30 bvec_iter_page((bio)->bi_io_vec, (iter))
31 #define bio_iter_len(bio, iter) \
32 bvec_iter_len((bio)->bi_io_vec, (iter))
33 #define bio_iter_offset(bio, iter) \
34 bvec_iter_offset((bio)->bi_io_vec, (iter))
35
36 #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter)
37 #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter)
38 #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter)
39
40 #define bvec_iter_sectors(iter) ((iter).bi_size >> 9)
41 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
42
43 #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter)
44 #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter)
45
46 /*
47 * Return the data direction, READ or WRITE.
48 */
49 #define bio_data_dir(bio) \
50 (op_is_write(bio_op(bio)) ? WRITE : READ)
51
52 /*
53 * Check whether this bio carries any data or not. A NULL bio is allowed.
54 */
bio_has_data(struct bio * bio)55 static inline bool bio_has_data(struct bio *bio)
56 {
57 if (bio &&
58 bio->bi_iter.bi_size &&
59 bio_op(bio) != REQ_OP_DISCARD &&
60 bio_op(bio) != REQ_OP_SECURE_ERASE &&
61 bio_op(bio) != REQ_OP_WRITE_ZEROES)
62 return true;
63
64 return false;
65 }
66
bio_no_advance_iter(const struct bio * bio)67 static inline bool bio_no_advance_iter(const struct bio *bio)
68 {
69 return bio_op(bio) == REQ_OP_DISCARD ||
70 bio_op(bio) == REQ_OP_SECURE_ERASE ||
71 bio_op(bio) == REQ_OP_WRITE_ZEROES;
72 }
73
bio_data(struct bio * bio)74 static inline void *bio_data(struct bio *bio)
75 {
76 if (bio_has_data(bio))
77 return page_address(bio_page(bio)) + bio_offset(bio);
78
79 return NULL;
80 }
81
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)82 static inline bool bio_next_segment(const struct bio *bio,
83 struct bvec_iter_all *iter)
84 {
85 if (iter->idx >= bio->bi_vcnt)
86 return false;
87
88 bvec_advance(&bio->bi_io_vec[iter->idx], iter);
89 return true;
90 }
91
92 /*
93 * drivers should _never_ use the all version - the bio may have been split
94 * before it got to the driver and the driver won't own all of it
95 */
96 #define bio_for_each_segment_all(bvl, bio, iter) \
97 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
98
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)99 static inline void bio_advance_iter(const struct bio *bio,
100 struct bvec_iter *iter, unsigned int bytes)
101 {
102 iter->bi_sector += bytes >> 9;
103
104 if (bio_no_advance_iter(bio))
105 iter->bi_size -= bytes;
106 else
107 bvec_iter_advance(bio->bi_io_vec, iter, bytes);
108 /* TODO: It is reasonable to complete bio with error here. */
109 }
110
111 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)112 static inline void bio_advance_iter_single(const struct bio *bio,
113 struct bvec_iter *iter,
114 unsigned int bytes)
115 {
116 iter->bi_sector += bytes >> 9;
117
118 if (bio_no_advance_iter(bio))
119 iter->bi_size -= bytes;
120 else
121 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
122 }
123
124 void __bio_advance(struct bio *, unsigned bytes);
125
126 /**
127 * bio_advance - increment/complete a bio by some number of bytes
128 * @bio: bio to advance
129 * @nbytes: number of bytes to complete
130 *
131 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
132 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
133 * be updated on the last bvec as well.
134 *
135 * @bio will then represent the remaining, uncompleted portion of the io.
136 */
bio_advance(struct bio * bio,unsigned int nbytes)137 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
138 {
139 if (nbytes == bio->bi_iter.bi_size) {
140 bio->bi_iter.bi_size = 0;
141 return;
142 }
143 __bio_advance(bio, nbytes);
144 }
145
146 #define __bio_for_each_segment(bvl, bio, iter, start) \
147 for (iter = (start); \
148 (iter).bi_size && \
149 ((bvl = bio_iter_iovec((bio), (iter))), 1); \
150 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
151
152 #define bio_for_each_segment(bvl, bio, iter) \
153 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
154
155 #define __bio_for_each_bvec(bvl, bio, iter, start) \
156 for (iter = (start); \
157 (iter).bi_size && \
158 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
159 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
160
161 /* iterate over multi-page bvec */
162 #define bio_for_each_bvec(bvl, bio, iter) \
163 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
164
165 /*
166 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
167 * same reasons as bio_for_each_segment_all().
168 */
169 #define bio_for_each_bvec_all(bvl, bio, i) \
170 for (i = 0, bvl = bio_first_bvec_all(bio); \
171 i < (bio)->bi_vcnt; i++, bvl++)
172
173 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
174
bio_segments(struct bio * bio)175 static inline unsigned bio_segments(struct bio *bio)
176 {
177 unsigned segs = 0;
178 struct bio_vec bv;
179 struct bvec_iter iter;
180
181 /*
182 * We special case discard/write same/write zeroes, because they
183 * interpret bi_size differently:
184 */
185
186 switch (bio_op(bio)) {
187 case REQ_OP_DISCARD:
188 case REQ_OP_SECURE_ERASE:
189 case REQ_OP_WRITE_ZEROES:
190 return 0;
191 default:
192 break;
193 }
194
195 bio_for_each_segment(bv, bio, iter)
196 segs++;
197
198 return segs;
199 }
200
201 /*
202 * get a reference to a bio, so it won't disappear. the intended use is
203 * something like:
204 *
205 * bio_get(bio);
206 * submit_bio(rw, bio);
207 * if (bio->bi_flags ...)
208 * do_something
209 * bio_put(bio);
210 *
211 * without the bio_get(), it could potentially complete I/O before submit_bio
212 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
213 * runs
214 */
bio_get(struct bio * bio)215 static inline void bio_get(struct bio *bio)
216 {
217 bio->bi_flags |= (1 << BIO_REFFED);
218 smp_mb__before_atomic();
219 atomic_inc(&bio->__bi_cnt);
220 }
221
bio_cnt_set(struct bio * bio,unsigned int count)222 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
223 {
224 if (count != 1) {
225 bio->bi_flags |= (1 << BIO_REFFED);
226 smp_mb();
227 }
228 atomic_set(&bio->__bi_cnt, count);
229 }
230
bio_flagged(struct bio * bio,unsigned int bit)231 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
232 {
233 return bio->bi_flags & (1U << bit);
234 }
235
bio_set_flag(struct bio * bio,unsigned int bit)236 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
237 {
238 bio->bi_flags |= (1U << bit);
239 }
240
bio_clear_flag(struct bio * bio,unsigned int bit)241 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
242 {
243 bio->bi_flags &= ~(1U << bit);
244 }
245
bio_first_bvec_all(struct bio * bio)246 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
247 {
248 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
249 return bio->bi_io_vec;
250 }
251
bio_first_page_all(struct bio * bio)252 static inline struct page *bio_first_page_all(struct bio *bio)
253 {
254 return bio_first_bvec_all(bio)->bv_page;
255 }
256
bio_first_folio_all(struct bio * bio)257 static inline struct folio *bio_first_folio_all(struct bio *bio)
258 {
259 return page_folio(bio_first_page_all(bio));
260 }
261
bio_last_bvec_all(struct bio * bio)262 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
263 {
264 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
265 return &bio->bi_io_vec[bio->bi_vcnt - 1];
266 }
267
268 /**
269 * struct folio_iter - State for iterating all folios in a bio.
270 * @folio: The current folio we're iterating. NULL after the last folio.
271 * @offset: The byte offset within the current folio.
272 * @length: The number of bytes in this iteration (will not cross folio
273 * boundary).
274 */
275 struct folio_iter {
276 struct folio *folio;
277 size_t offset;
278 size_t length;
279 /* private: for use by the iterator */
280 struct folio *_next;
281 size_t _seg_count;
282 int _i;
283 };
284
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)285 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
286 int i)
287 {
288 struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
289
290 if (unlikely(i >= bio->bi_vcnt)) {
291 fi->folio = NULL;
292 return;
293 }
294
295 fi->folio = page_folio(bvec->bv_page);
296 fi->offset = bvec->bv_offset +
297 PAGE_SIZE * folio_page_idx(fi->folio, bvec->bv_page);
298 fi->_seg_count = bvec->bv_len;
299 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
300 fi->_next = folio_next(fi->folio);
301 fi->_i = i;
302 }
303
bio_next_folio(struct folio_iter * fi,struct bio * bio)304 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
305 {
306 fi->_seg_count -= fi->length;
307 if (fi->_seg_count) {
308 fi->folio = fi->_next;
309 fi->offset = 0;
310 fi->length = min(folio_size(fi->folio), fi->_seg_count);
311 fi->_next = folio_next(fi->folio);
312 } else {
313 bio_first_folio(fi, bio, fi->_i + 1);
314 }
315 }
316
317 /**
318 * bio_for_each_folio_all - Iterate over each folio in a bio.
319 * @fi: struct folio_iter which is updated for each folio.
320 * @bio: struct bio to iterate over.
321 */
322 #define bio_for_each_folio_all(fi, bio) \
323 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
324
325 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
326 extern struct bio *bio_split(struct bio *bio, int sectors,
327 gfp_t gfp, struct bio_set *bs);
328 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
329 unsigned *segs, unsigned max_bytes);
330
331 /**
332 * bio_next_split - get next @sectors from a bio, splitting if necessary
333 * @bio: bio to split
334 * @sectors: number of sectors to split from the front of @bio
335 * @gfp: gfp mask
336 * @bs: bio set to allocate from
337 *
338 * Return: a bio representing the next @sectors of @bio - if the bio is smaller
339 * than @sectors, returns the original bio unchanged.
340 */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)341 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
342 gfp_t gfp, struct bio_set *bs)
343 {
344 if (sectors >= bio_sectors(bio))
345 return bio;
346
347 return bio_split(bio, sectors, gfp, bs);
348 }
349
350 enum {
351 BIOSET_NEED_BVECS = BIT(0),
352 BIOSET_NEED_RESCUER = BIT(1),
353 BIOSET_PERCPU_CACHE = BIT(2),
354 };
355 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
356 extern void bioset_exit(struct bio_set *);
357 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
358
359 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
360 blk_opf_t opf, gfp_t gfp_mask,
361 struct bio_set *bs);
362 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
363 extern void bio_put(struct bio *);
364
365 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
366 gfp_t gfp, struct bio_set *bs);
367 int bio_init_clone(struct block_device *bdev, struct bio *bio,
368 struct bio *bio_src, gfp_t gfp);
369
370 extern struct bio_set fs_bio_set;
371
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)372 static inline struct bio *bio_alloc(struct block_device *bdev,
373 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
374 {
375 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
376 }
377
378 void submit_bio(struct bio *bio);
379
380 extern void bio_endio(struct bio *);
381
bio_io_error(struct bio * bio)382 static inline void bio_io_error(struct bio *bio)
383 {
384 bio->bi_status = BLK_STS_IOERR;
385 bio_endio(bio);
386 }
387
bio_wouldblock_error(struct bio * bio)388 static inline void bio_wouldblock_error(struct bio *bio)
389 {
390 bio_set_flag(bio, BIO_QUIET);
391 bio->bi_status = BLK_STS_AGAIN;
392 bio_endio(bio);
393 }
394
395 /*
396 * Calculate number of bvec segments that should be allocated to fit data
397 * pointed by @iter. If @iter is backed by bvec it's going to be reused
398 * instead of allocating a new one.
399 */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)400 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
401 {
402 if (iov_iter_is_bvec(iter))
403 return 0;
404 return iov_iter_npages(iter, max_segs);
405 }
406
407 struct request_queue;
408
409 extern int submit_bio_wait(struct bio *bio);
410 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
411 unsigned short max_vecs, blk_opf_t opf);
412 extern void bio_uninit(struct bio *);
413 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
414 void bio_chain(struct bio *, struct bio *);
415
416 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
417 unsigned off);
418 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
419 size_t len, size_t off);
420 void __bio_add_page(struct bio *bio, struct page *page,
421 unsigned int len, unsigned int off);
422 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
423 size_t off);
424 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
425 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter);
426 void __bio_release_pages(struct bio *bio, bool mark_dirty);
427 extern void bio_set_pages_dirty(struct bio *bio);
428 extern void bio_check_pages_dirty(struct bio *bio);
429
430 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
431 struct bio *src, struct bvec_iter *src_iter);
432 extern void bio_copy_data(struct bio *dst, struct bio *src);
433 extern void bio_free_pages(struct bio *bio);
434 void guard_bio_eod(struct bio *bio);
435 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
436
zero_fill_bio(struct bio * bio)437 static inline void zero_fill_bio(struct bio *bio)
438 {
439 zero_fill_bio_iter(bio, bio->bi_iter);
440 }
441
bio_release_pages(struct bio * bio,bool mark_dirty)442 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
443 {
444 if (bio_flagged(bio, BIO_PAGE_PINNED))
445 __bio_release_pages(bio, mark_dirty);
446 }
447
448 #define bio_dev(bio) \
449 disk_devt((bio)->bi_bdev->bd_disk)
450
451 #ifdef CONFIG_BLK_CGROUP
452 void bio_associate_blkg(struct bio *bio);
453 void bio_associate_blkg_from_css(struct bio *bio,
454 struct cgroup_subsys_state *css);
455 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
456 void blkcg_punt_bio_submit(struct bio *bio);
457 #else /* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)458 static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)459 static inline void bio_associate_blkg_from_css(struct bio *bio,
460 struct cgroup_subsys_state *css)
461 { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)462 static inline void bio_clone_blkg_association(struct bio *dst,
463 struct bio *src) { }
blkcg_punt_bio_submit(struct bio * bio)464 static inline void blkcg_punt_bio_submit(struct bio *bio)
465 {
466 submit_bio(bio);
467 }
468 #endif /* CONFIG_BLK_CGROUP */
469
bio_set_dev(struct bio * bio,struct block_device * bdev)470 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
471 {
472 bio_clear_flag(bio, BIO_REMAPPED);
473 if (bio->bi_bdev != bdev)
474 bio_clear_flag(bio, BIO_BPS_THROTTLED);
475 bio->bi_bdev = bdev;
476 bio_associate_blkg(bio);
477 }
478
479 /*
480 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
481 *
482 * A bio_list anchors a singly-linked list of bios chained through the bi_next
483 * member of the bio. The bio_list also caches the last list member to allow
484 * fast access to the tail.
485 */
486 struct bio_list {
487 struct bio *head;
488 struct bio *tail;
489 };
490
bio_list_empty(const struct bio_list * bl)491 static inline int bio_list_empty(const struct bio_list *bl)
492 {
493 return bl->head == NULL;
494 }
495
bio_list_init(struct bio_list * bl)496 static inline void bio_list_init(struct bio_list *bl)
497 {
498 bl->head = bl->tail = NULL;
499 }
500
501 #define BIO_EMPTY_LIST { NULL, NULL }
502
503 #define bio_list_for_each(bio, bl) \
504 for (bio = (bl)->head; bio; bio = bio->bi_next)
505
bio_list_size(const struct bio_list * bl)506 static inline unsigned bio_list_size(const struct bio_list *bl)
507 {
508 unsigned sz = 0;
509 struct bio *bio;
510
511 bio_list_for_each(bio, bl)
512 sz++;
513
514 return sz;
515 }
516
bio_list_add(struct bio_list * bl,struct bio * bio)517 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
518 {
519 bio->bi_next = NULL;
520
521 if (bl->tail)
522 bl->tail->bi_next = bio;
523 else
524 bl->head = bio;
525
526 bl->tail = bio;
527 }
528
bio_list_add_head(struct bio_list * bl,struct bio * bio)529 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
530 {
531 bio->bi_next = bl->head;
532
533 bl->head = bio;
534
535 if (!bl->tail)
536 bl->tail = bio;
537 }
538
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)539 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
540 {
541 if (!bl2->head)
542 return;
543
544 if (bl->tail)
545 bl->tail->bi_next = bl2->head;
546 else
547 bl->head = bl2->head;
548
549 bl->tail = bl2->tail;
550 }
551
bio_list_merge_init(struct bio_list * bl,struct bio_list * bl2)552 static inline void bio_list_merge_init(struct bio_list *bl,
553 struct bio_list *bl2)
554 {
555 bio_list_merge(bl, bl2);
556 bio_list_init(bl2);
557 }
558
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)559 static inline void bio_list_merge_head(struct bio_list *bl,
560 struct bio_list *bl2)
561 {
562 if (!bl2->head)
563 return;
564
565 if (bl->head)
566 bl2->tail->bi_next = bl->head;
567 else
568 bl->tail = bl2->tail;
569
570 bl->head = bl2->head;
571 }
572
bio_list_peek(struct bio_list * bl)573 static inline struct bio *bio_list_peek(struct bio_list *bl)
574 {
575 return bl->head;
576 }
577
bio_list_pop(struct bio_list * bl)578 static inline struct bio *bio_list_pop(struct bio_list *bl)
579 {
580 struct bio *bio = bl->head;
581
582 if (bio) {
583 bl->head = bl->head->bi_next;
584 if (!bl->head)
585 bl->tail = NULL;
586
587 bio->bi_next = NULL;
588 }
589
590 return bio;
591 }
592
bio_list_get(struct bio_list * bl)593 static inline struct bio *bio_list_get(struct bio_list *bl)
594 {
595 struct bio *bio = bl->head;
596
597 bl->head = bl->tail = NULL;
598
599 return bio;
600 }
601
602 /*
603 * Increment chain count for the bio. Make sure the CHAIN flag update
604 * is visible before the raised count.
605 */
bio_inc_remaining(struct bio * bio)606 static inline void bio_inc_remaining(struct bio *bio)
607 {
608 bio_set_flag(bio, BIO_CHAIN);
609 smp_mb__before_atomic();
610 atomic_inc(&bio->__bi_remaining);
611 }
612
613 /*
614 * bio_set is used to allow other portions of the IO system to
615 * allocate their own private memory pools for bio and iovec structures.
616 * These memory pools in turn all allocate from the bio_slab
617 * and the bvec_slabs[].
618 */
619 #define BIO_POOL_SIZE 2
620
621 struct bio_set {
622 struct kmem_cache *bio_slab;
623 unsigned int front_pad;
624
625 /*
626 * per-cpu bio alloc cache
627 */
628 struct bio_alloc_cache __percpu *cache;
629
630 mempool_t bio_pool;
631 mempool_t bvec_pool;
632 #if defined(CONFIG_BLK_DEV_INTEGRITY)
633 mempool_t bio_integrity_pool;
634 mempool_t bvec_integrity_pool;
635 #endif
636
637 unsigned int back_pad;
638 /*
639 * Deadlock avoidance for stacking block drivers: see comments in
640 * bio_alloc_bioset() for details
641 */
642 spinlock_t rescue_lock;
643 struct bio_list rescue_list;
644 struct work_struct rescue_work;
645 struct workqueue_struct *rescue_workqueue;
646
647 /*
648 * Hot un-plug notifier for the per-cpu cache, if used
649 */
650 struct hlist_node cpuhp_dead;
651 };
652
bioset_initialized(struct bio_set * bs)653 static inline bool bioset_initialized(struct bio_set *bs)
654 {
655 return bs->bio_slab != NULL;
656 }
657
658 /*
659 * Mark a bio as polled. Note that for async polled IO, the caller must
660 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
661 * We cannot block waiting for requests on polled IO, as those completions
662 * must be found by the caller. This is different than IRQ driven IO, where
663 * it's safe to wait for IO to complete.
664 */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)665 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
666 {
667 bio->bi_opf |= REQ_POLLED;
668 if (kiocb->ki_flags & IOCB_NOWAIT)
669 bio->bi_opf |= REQ_NOWAIT;
670 }
671
bio_clear_polled(struct bio * bio)672 static inline void bio_clear_polled(struct bio *bio)
673 {
674 bio->bi_opf &= ~REQ_POLLED;
675 }
676
677 /**
678 * bio_is_zone_append - is this a zone append bio?
679 * @bio: bio to check
680 *
681 * Check if @bio is a zone append operation. Core block layer code and end_io
682 * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
683 * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
684 * it is not natively supported.
685 */
bio_is_zone_append(struct bio * bio)686 static inline bool bio_is_zone_append(struct bio *bio)
687 {
688 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
689 return false;
690 return bio_op(bio) == REQ_OP_ZONE_APPEND ||
691 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
692 }
693
694 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
695 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
696 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
697
698 struct bio *blk_alloc_discard_bio(struct block_device *bdev,
699 sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
700
701 #endif /* __LINUX_BIO_H */
702