1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4  */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7 
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12 
13 #define BIO_MAX_VECS		256U
14 #define BIO_MAX_INLINE_VECS	UIO_MAXIOV
15 
16 struct queue_limits;
17 
bio_max_segs(unsigned int nr_segs)18 static inline unsigned int bio_max_segs(unsigned int nr_segs)
19 {
20 	return min(nr_segs, BIO_MAX_VECS);
21 }
22 
23 #define bio_prio(bio)			(bio)->bi_ioprio
24 #define bio_set_prio(bio, prio)		((bio)->bi_ioprio = prio)
25 
26 #define bio_iter_iovec(bio, iter)				\
27 	bvec_iter_bvec((bio)->bi_io_vec, (iter))
28 
29 #define bio_iter_page(bio, iter)				\
30 	bvec_iter_page((bio)->bi_io_vec, (iter))
31 #define bio_iter_len(bio, iter)					\
32 	bvec_iter_len((bio)->bi_io_vec, (iter))
33 #define bio_iter_offset(bio, iter)				\
34 	bvec_iter_offset((bio)->bi_io_vec, (iter))
35 
36 #define bio_page(bio)		bio_iter_page((bio), (bio)->bi_iter)
37 #define bio_offset(bio)		bio_iter_offset((bio), (bio)->bi_iter)
38 #define bio_iovec(bio)		bio_iter_iovec((bio), (bio)->bi_iter)
39 
40 #define bvec_iter_sectors(iter)	((iter).bi_size >> 9)
41 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
42 
43 #define bio_sectors(bio)	bvec_iter_sectors((bio)->bi_iter)
44 #define bio_end_sector(bio)	bvec_iter_end_sector((bio)->bi_iter)
45 
46 /*
47  * Return the data direction, READ or WRITE.
48  */
49 #define bio_data_dir(bio) \
50 	(op_is_write(bio_op(bio)) ? WRITE : READ)
51 
52 /*
53  * Check whether this bio carries any data or not. A NULL bio is allowed.
54  */
bio_has_data(struct bio * bio)55 static inline bool bio_has_data(struct bio *bio)
56 {
57 	if (bio &&
58 	    bio->bi_iter.bi_size &&
59 	    bio_op(bio) != REQ_OP_DISCARD &&
60 	    bio_op(bio) != REQ_OP_SECURE_ERASE &&
61 	    bio_op(bio) != REQ_OP_WRITE_ZEROES)
62 		return true;
63 
64 	return false;
65 }
66 
bio_no_advance_iter(const struct bio * bio)67 static inline bool bio_no_advance_iter(const struct bio *bio)
68 {
69 	return bio_op(bio) == REQ_OP_DISCARD ||
70 	       bio_op(bio) == REQ_OP_SECURE_ERASE ||
71 	       bio_op(bio) == REQ_OP_WRITE_ZEROES;
72 }
73 
bio_data(struct bio * bio)74 static inline void *bio_data(struct bio *bio)
75 {
76 	if (bio_has_data(bio))
77 		return page_address(bio_page(bio)) + bio_offset(bio);
78 
79 	return NULL;
80 }
81 
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)82 static inline bool bio_next_segment(const struct bio *bio,
83 				    struct bvec_iter_all *iter)
84 {
85 	if (iter->idx >= bio->bi_vcnt)
86 		return false;
87 
88 	bvec_advance(&bio->bi_io_vec[iter->idx], iter);
89 	return true;
90 }
91 
92 /*
93  * drivers should _never_ use the all version - the bio may have been split
94  * before it got to the driver and the driver won't own all of it
95  */
96 #define bio_for_each_segment_all(bvl, bio, iter) \
97 	for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
98 
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)99 static inline void bio_advance_iter(const struct bio *bio,
100 				    struct bvec_iter *iter, unsigned int bytes)
101 {
102 	iter->bi_sector += bytes >> 9;
103 
104 	if (bio_no_advance_iter(bio))
105 		iter->bi_size -= bytes;
106 	else
107 		bvec_iter_advance(bio->bi_io_vec, iter, bytes);
108 		/* TODO: It is reasonable to complete bio with error here. */
109 }
110 
111 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)112 static inline void bio_advance_iter_single(const struct bio *bio,
113 					   struct bvec_iter *iter,
114 					   unsigned int bytes)
115 {
116 	iter->bi_sector += bytes >> 9;
117 
118 	if (bio_no_advance_iter(bio))
119 		iter->bi_size -= bytes;
120 	else
121 		bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
122 }
123 
124 void __bio_advance(struct bio *, unsigned bytes);
125 
126 /**
127  * bio_advance - increment/complete a bio by some number of bytes
128  * @bio:	bio to advance
129  * @nbytes:	number of bytes to complete
130  *
131  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
132  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
133  * be updated on the last bvec as well.
134  *
135  * @bio will then represent the remaining, uncompleted portion of the io.
136  */
bio_advance(struct bio * bio,unsigned int nbytes)137 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
138 {
139 	if (nbytes == bio->bi_iter.bi_size) {
140 		bio->bi_iter.bi_size = 0;
141 		return;
142 	}
143 	__bio_advance(bio, nbytes);
144 }
145 
146 #define __bio_for_each_segment(bvl, bio, iter, start)			\
147 	for (iter = (start);						\
148 	     (iter).bi_size &&						\
149 		((bvl = bio_iter_iovec((bio), (iter))), 1);		\
150 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
151 
152 #define bio_for_each_segment(bvl, bio, iter)				\
153 	__bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
154 
155 #define __bio_for_each_bvec(bvl, bio, iter, start)		\
156 	for (iter = (start);						\
157 	     (iter).bi_size &&						\
158 		((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
159 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
160 
161 /* iterate over multi-page bvec */
162 #define bio_for_each_bvec(bvl, bio, iter)			\
163 	__bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
164 
165 /*
166  * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
167  * same reasons as bio_for_each_segment_all().
168  */
169 #define bio_for_each_bvec_all(bvl, bio, i)		\
170 	for (i = 0, bvl = bio_first_bvec_all(bio);	\
171 	     i < (bio)->bi_vcnt; i++, bvl++)
172 
173 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
174 
bio_segments(struct bio * bio)175 static inline unsigned bio_segments(struct bio *bio)
176 {
177 	unsigned segs = 0;
178 	struct bio_vec bv;
179 	struct bvec_iter iter;
180 
181 	/*
182 	 * We special case discard/write same/write zeroes, because they
183 	 * interpret bi_size differently:
184 	 */
185 
186 	switch (bio_op(bio)) {
187 	case REQ_OP_DISCARD:
188 	case REQ_OP_SECURE_ERASE:
189 	case REQ_OP_WRITE_ZEROES:
190 		return 0;
191 	default:
192 		break;
193 	}
194 
195 	bio_for_each_segment(bv, bio, iter)
196 		segs++;
197 
198 	return segs;
199 }
200 
201 /*
202  * get a reference to a bio, so it won't disappear. the intended use is
203  * something like:
204  *
205  * bio_get(bio);
206  * submit_bio(rw, bio);
207  * if (bio->bi_flags ...)
208  *	do_something
209  * bio_put(bio);
210  *
211  * without the bio_get(), it could potentially complete I/O before submit_bio
212  * returns. and then bio would be freed memory when if (bio->bi_flags ...)
213  * runs
214  */
bio_get(struct bio * bio)215 static inline void bio_get(struct bio *bio)
216 {
217 	bio->bi_flags |= (1 << BIO_REFFED);
218 	smp_mb__before_atomic();
219 	atomic_inc(&bio->__bi_cnt);
220 }
221 
bio_cnt_set(struct bio * bio,unsigned int count)222 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
223 {
224 	if (count != 1) {
225 		bio->bi_flags |= (1 << BIO_REFFED);
226 		smp_mb();
227 	}
228 	atomic_set(&bio->__bi_cnt, count);
229 }
230 
bio_flagged(struct bio * bio,unsigned int bit)231 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
232 {
233 	return bio->bi_flags & (1U << bit);
234 }
235 
bio_set_flag(struct bio * bio,unsigned int bit)236 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
237 {
238 	bio->bi_flags |= (1U << bit);
239 }
240 
bio_clear_flag(struct bio * bio,unsigned int bit)241 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
242 {
243 	bio->bi_flags &= ~(1U << bit);
244 }
245 
bio_first_bvec_all(struct bio * bio)246 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
247 {
248 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
249 	return bio->bi_io_vec;
250 }
251 
bio_first_page_all(struct bio * bio)252 static inline struct page *bio_first_page_all(struct bio *bio)
253 {
254 	return bio_first_bvec_all(bio)->bv_page;
255 }
256 
bio_first_folio_all(struct bio * bio)257 static inline struct folio *bio_first_folio_all(struct bio *bio)
258 {
259 	return page_folio(bio_first_page_all(bio));
260 }
261 
bio_last_bvec_all(struct bio * bio)262 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
263 {
264 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
265 	return &bio->bi_io_vec[bio->bi_vcnt - 1];
266 }
267 
268 /**
269  * struct folio_iter - State for iterating all folios in a bio.
270  * @folio: The current folio we're iterating.  NULL after the last folio.
271  * @offset: The byte offset within the current folio.
272  * @length: The number of bytes in this iteration (will not cross folio
273  *	boundary).
274  */
275 struct folio_iter {
276 	struct folio *folio;
277 	size_t offset;
278 	size_t length;
279 	/* private: for use by the iterator */
280 	struct folio *_next;
281 	size_t _seg_count;
282 	int _i;
283 };
284 
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)285 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
286 				   int i)
287 {
288 	struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
289 
290 	if (unlikely(i >= bio->bi_vcnt)) {
291 		fi->folio = NULL;
292 		return;
293 	}
294 
295 	fi->folio = page_folio(bvec->bv_page);
296 	fi->offset = bvec->bv_offset +
297 			PAGE_SIZE * folio_page_idx(fi->folio, bvec->bv_page);
298 	fi->_seg_count = bvec->bv_len;
299 	fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
300 	fi->_next = folio_next(fi->folio);
301 	fi->_i = i;
302 }
303 
bio_next_folio(struct folio_iter * fi,struct bio * bio)304 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
305 {
306 	fi->_seg_count -= fi->length;
307 	if (fi->_seg_count) {
308 		fi->folio = fi->_next;
309 		fi->offset = 0;
310 		fi->length = min(folio_size(fi->folio), fi->_seg_count);
311 		fi->_next = folio_next(fi->folio);
312 	} else {
313 		bio_first_folio(fi, bio, fi->_i + 1);
314 	}
315 }
316 
317 /**
318  * bio_for_each_folio_all - Iterate over each folio in a bio.
319  * @fi: struct folio_iter which is updated for each folio.
320  * @bio: struct bio to iterate over.
321  */
322 #define bio_for_each_folio_all(fi, bio)				\
323 	for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
324 
325 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
326 extern struct bio *bio_split(struct bio *bio, int sectors,
327 			     gfp_t gfp, struct bio_set *bs);
328 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
329 		unsigned *segs, unsigned max_bytes);
330 
331 /**
332  * bio_next_split - get next @sectors from a bio, splitting if necessary
333  * @bio:	bio to split
334  * @sectors:	number of sectors to split from the front of @bio
335  * @gfp:	gfp mask
336  * @bs:		bio set to allocate from
337  *
338  * Return: a bio representing the next @sectors of @bio - if the bio is smaller
339  * than @sectors, returns the original bio unchanged.
340  */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)341 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
342 					 gfp_t gfp, struct bio_set *bs)
343 {
344 	if (sectors >= bio_sectors(bio))
345 		return bio;
346 
347 	return bio_split(bio, sectors, gfp, bs);
348 }
349 
350 enum {
351 	BIOSET_NEED_BVECS = BIT(0),
352 	BIOSET_NEED_RESCUER = BIT(1),
353 	BIOSET_PERCPU_CACHE = BIT(2),
354 };
355 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
356 extern void bioset_exit(struct bio_set *);
357 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
358 
359 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
360 			     blk_opf_t opf, gfp_t gfp_mask,
361 			     struct bio_set *bs);
362 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
363 extern void bio_put(struct bio *);
364 
365 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
366 		gfp_t gfp, struct bio_set *bs);
367 int bio_init_clone(struct block_device *bdev, struct bio *bio,
368 		struct bio *bio_src, gfp_t gfp);
369 
370 extern struct bio_set fs_bio_set;
371 
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)372 static inline struct bio *bio_alloc(struct block_device *bdev,
373 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
374 {
375 	return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
376 }
377 
378 void submit_bio(struct bio *bio);
379 
380 extern void bio_endio(struct bio *);
381 
bio_io_error(struct bio * bio)382 static inline void bio_io_error(struct bio *bio)
383 {
384 	bio->bi_status = BLK_STS_IOERR;
385 	bio_endio(bio);
386 }
387 
bio_wouldblock_error(struct bio * bio)388 static inline void bio_wouldblock_error(struct bio *bio)
389 {
390 	bio_set_flag(bio, BIO_QUIET);
391 	bio->bi_status = BLK_STS_AGAIN;
392 	bio_endio(bio);
393 }
394 
395 /*
396  * Calculate number of bvec segments that should be allocated to fit data
397  * pointed by @iter. If @iter is backed by bvec it's going to be reused
398  * instead of allocating a new one.
399  */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)400 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
401 {
402 	if (iov_iter_is_bvec(iter))
403 		return 0;
404 	return iov_iter_npages(iter, max_segs);
405 }
406 
407 struct request_queue;
408 
409 extern int submit_bio_wait(struct bio *bio);
410 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
411 	      unsigned short max_vecs, blk_opf_t opf);
412 extern void bio_uninit(struct bio *);
413 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
414 void bio_chain(struct bio *, struct bio *);
415 
416 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
417 			      unsigned off);
418 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
419 				size_t len, size_t off);
420 void __bio_add_page(struct bio *bio, struct page *page,
421 		unsigned int len, unsigned int off);
422 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
423 			  size_t off);
424 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
425 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter);
426 void __bio_release_pages(struct bio *bio, bool mark_dirty);
427 extern void bio_set_pages_dirty(struct bio *bio);
428 extern void bio_check_pages_dirty(struct bio *bio);
429 
430 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
431 			       struct bio *src, struct bvec_iter *src_iter);
432 extern void bio_copy_data(struct bio *dst, struct bio *src);
433 extern void bio_free_pages(struct bio *bio);
434 void guard_bio_eod(struct bio *bio);
435 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
436 
zero_fill_bio(struct bio * bio)437 static inline void zero_fill_bio(struct bio *bio)
438 {
439 	zero_fill_bio_iter(bio, bio->bi_iter);
440 }
441 
bio_release_pages(struct bio * bio,bool mark_dirty)442 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
443 {
444 	if (bio_flagged(bio, BIO_PAGE_PINNED))
445 		__bio_release_pages(bio, mark_dirty);
446 }
447 
448 #define bio_dev(bio) \
449 	disk_devt((bio)->bi_bdev->bd_disk)
450 
451 #ifdef CONFIG_BLK_CGROUP
452 void bio_associate_blkg(struct bio *bio);
453 void bio_associate_blkg_from_css(struct bio *bio,
454 				 struct cgroup_subsys_state *css);
455 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
456 void blkcg_punt_bio_submit(struct bio *bio);
457 #else	/* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)458 static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)459 static inline void bio_associate_blkg_from_css(struct bio *bio,
460 					       struct cgroup_subsys_state *css)
461 { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)462 static inline void bio_clone_blkg_association(struct bio *dst,
463 					      struct bio *src) { }
blkcg_punt_bio_submit(struct bio * bio)464 static inline void blkcg_punt_bio_submit(struct bio *bio)
465 {
466 	submit_bio(bio);
467 }
468 #endif	/* CONFIG_BLK_CGROUP */
469 
bio_set_dev(struct bio * bio,struct block_device * bdev)470 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
471 {
472 	bio_clear_flag(bio, BIO_REMAPPED);
473 	if (bio->bi_bdev != bdev)
474 		bio_clear_flag(bio, BIO_BPS_THROTTLED);
475 	bio->bi_bdev = bdev;
476 	bio_associate_blkg(bio);
477 }
478 
479 /*
480  * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
481  *
482  * A bio_list anchors a singly-linked list of bios chained through the bi_next
483  * member of the bio.  The bio_list also caches the last list member to allow
484  * fast access to the tail.
485  */
486 struct bio_list {
487 	struct bio *head;
488 	struct bio *tail;
489 };
490 
bio_list_empty(const struct bio_list * bl)491 static inline int bio_list_empty(const struct bio_list *bl)
492 {
493 	return bl->head == NULL;
494 }
495 
bio_list_init(struct bio_list * bl)496 static inline void bio_list_init(struct bio_list *bl)
497 {
498 	bl->head = bl->tail = NULL;
499 }
500 
501 #define BIO_EMPTY_LIST	{ NULL, NULL }
502 
503 #define bio_list_for_each(bio, bl) \
504 	for (bio = (bl)->head; bio; bio = bio->bi_next)
505 
bio_list_size(const struct bio_list * bl)506 static inline unsigned bio_list_size(const struct bio_list *bl)
507 {
508 	unsigned sz = 0;
509 	struct bio *bio;
510 
511 	bio_list_for_each(bio, bl)
512 		sz++;
513 
514 	return sz;
515 }
516 
bio_list_add(struct bio_list * bl,struct bio * bio)517 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
518 {
519 	bio->bi_next = NULL;
520 
521 	if (bl->tail)
522 		bl->tail->bi_next = bio;
523 	else
524 		bl->head = bio;
525 
526 	bl->tail = bio;
527 }
528 
bio_list_add_head(struct bio_list * bl,struct bio * bio)529 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
530 {
531 	bio->bi_next = bl->head;
532 
533 	bl->head = bio;
534 
535 	if (!bl->tail)
536 		bl->tail = bio;
537 }
538 
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)539 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
540 {
541 	if (!bl2->head)
542 		return;
543 
544 	if (bl->tail)
545 		bl->tail->bi_next = bl2->head;
546 	else
547 		bl->head = bl2->head;
548 
549 	bl->tail = bl2->tail;
550 }
551 
bio_list_merge_init(struct bio_list * bl,struct bio_list * bl2)552 static inline void bio_list_merge_init(struct bio_list *bl,
553 		struct bio_list *bl2)
554 {
555 	bio_list_merge(bl, bl2);
556 	bio_list_init(bl2);
557 }
558 
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)559 static inline void bio_list_merge_head(struct bio_list *bl,
560 				       struct bio_list *bl2)
561 {
562 	if (!bl2->head)
563 		return;
564 
565 	if (bl->head)
566 		bl2->tail->bi_next = bl->head;
567 	else
568 		bl->tail = bl2->tail;
569 
570 	bl->head = bl2->head;
571 }
572 
bio_list_peek(struct bio_list * bl)573 static inline struct bio *bio_list_peek(struct bio_list *bl)
574 {
575 	return bl->head;
576 }
577 
bio_list_pop(struct bio_list * bl)578 static inline struct bio *bio_list_pop(struct bio_list *bl)
579 {
580 	struct bio *bio = bl->head;
581 
582 	if (bio) {
583 		bl->head = bl->head->bi_next;
584 		if (!bl->head)
585 			bl->tail = NULL;
586 
587 		bio->bi_next = NULL;
588 	}
589 
590 	return bio;
591 }
592 
bio_list_get(struct bio_list * bl)593 static inline struct bio *bio_list_get(struct bio_list *bl)
594 {
595 	struct bio *bio = bl->head;
596 
597 	bl->head = bl->tail = NULL;
598 
599 	return bio;
600 }
601 
602 /*
603  * Increment chain count for the bio. Make sure the CHAIN flag update
604  * is visible before the raised count.
605  */
bio_inc_remaining(struct bio * bio)606 static inline void bio_inc_remaining(struct bio *bio)
607 {
608 	bio_set_flag(bio, BIO_CHAIN);
609 	smp_mb__before_atomic();
610 	atomic_inc(&bio->__bi_remaining);
611 }
612 
613 /*
614  * bio_set is used to allow other portions of the IO system to
615  * allocate their own private memory pools for bio and iovec structures.
616  * These memory pools in turn all allocate from the bio_slab
617  * and the bvec_slabs[].
618  */
619 #define BIO_POOL_SIZE 2
620 
621 struct bio_set {
622 	struct kmem_cache *bio_slab;
623 	unsigned int front_pad;
624 
625 	/*
626 	 * per-cpu bio alloc cache
627 	 */
628 	struct bio_alloc_cache __percpu *cache;
629 
630 	mempool_t bio_pool;
631 	mempool_t bvec_pool;
632 #if defined(CONFIG_BLK_DEV_INTEGRITY)
633 	mempool_t bio_integrity_pool;
634 	mempool_t bvec_integrity_pool;
635 #endif
636 
637 	unsigned int back_pad;
638 	/*
639 	 * Deadlock avoidance for stacking block drivers: see comments in
640 	 * bio_alloc_bioset() for details
641 	 */
642 	spinlock_t		rescue_lock;
643 	struct bio_list		rescue_list;
644 	struct work_struct	rescue_work;
645 	struct workqueue_struct	*rescue_workqueue;
646 
647 	/*
648 	 * Hot un-plug notifier for the per-cpu cache, if used
649 	 */
650 	struct hlist_node cpuhp_dead;
651 };
652 
bioset_initialized(struct bio_set * bs)653 static inline bool bioset_initialized(struct bio_set *bs)
654 {
655 	return bs->bio_slab != NULL;
656 }
657 
658 /*
659  * Mark a bio as polled. Note that for async polled IO, the caller must
660  * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
661  * We cannot block waiting for requests on polled IO, as those completions
662  * must be found by the caller. This is different than IRQ driven IO, where
663  * it's safe to wait for IO to complete.
664  */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)665 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
666 {
667 	bio->bi_opf |= REQ_POLLED;
668 	if (kiocb->ki_flags & IOCB_NOWAIT)
669 		bio->bi_opf |= REQ_NOWAIT;
670 }
671 
bio_clear_polled(struct bio * bio)672 static inline void bio_clear_polled(struct bio *bio)
673 {
674 	bio->bi_opf &= ~REQ_POLLED;
675 }
676 
677 /**
678  * bio_is_zone_append - is this a zone append bio?
679  * @bio:	bio to check
680  *
681  * Check if @bio is a zone append operation.  Core block layer code and end_io
682  * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
683  * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
684  * it is not natively supported.
685  */
bio_is_zone_append(struct bio * bio)686 static inline bool bio_is_zone_append(struct bio *bio)
687 {
688 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
689 		return false;
690 	return bio_op(bio) == REQ_OP_ZONE_APPEND ||
691 		bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
692 }
693 
694 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
695 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
696 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
697 
698 struct bio *blk_alloc_discard_bio(struct block_device *bdev,
699 		sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
700 
701 #endif /* __LINUX_BIO_H */
702