1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * IEEE 802.11 defines
4 *
5 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
6 * <jkmaline@cc.hut.fi>
7 * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
8 * Copyright (c) 2005, Devicescape Software, Inc.
9 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
10 * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
11 * Copyright (c) 2016 - 2017 Intel Deutschland GmbH
12 * Copyright (c) 2018 - 2024 Intel Corporation
13 */
14
15 #ifndef LINUX_IEEE80211_H
16 #define LINUX_IEEE80211_H
17
18 #include <linux/types.h>
19 #include <linux/if_ether.h>
20 #include <linux/etherdevice.h>
21 #include <linux/bitfield.h>
22 #include <asm/byteorder.h>
23 #include <linux/unaligned.h>
24
25 /*
26 * DS bit usage
27 *
28 * TA = transmitter address
29 * RA = receiver address
30 * DA = destination address
31 * SA = source address
32 *
33 * ToDS FromDS A1(RA) A2(TA) A3 A4 Use
34 * -----------------------------------------------------------------
35 * 0 0 DA SA BSSID - IBSS/DLS
36 * 0 1 DA BSSID SA - AP -> STA
37 * 1 0 BSSID SA DA - AP <- STA
38 * 1 1 RA TA DA SA unspecified (WDS)
39 */
40
41 #define FCS_LEN 4
42
43 #define IEEE80211_FCTL_VERS 0x0003
44 #define IEEE80211_FCTL_FTYPE 0x000c
45 #define IEEE80211_FCTL_STYPE 0x00f0
46 #define IEEE80211_FCTL_TODS 0x0100
47 #define IEEE80211_FCTL_FROMDS 0x0200
48 #define IEEE80211_FCTL_MOREFRAGS 0x0400
49 #define IEEE80211_FCTL_RETRY 0x0800
50 #define IEEE80211_FCTL_PM 0x1000
51 #define IEEE80211_FCTL_MOREDATA 0x2000
52 #define IEEE80211_FCTL_PROTECTED 0x4000
53 #define IEEE80211_FCTL_ORDER 0x8000
54 #define IEEE80211_FCTL_CTL_EXT 0x0f00
55
56 #define IEEE80211_SCTL_FRAG 0x000F
57 #define IEEE80211_SCTL_SEQ 0xFFF0
58
59 #define IEEE80211_FTYPE_MGMT 0x0000
60 #define IEEE80211_FTYPE_CTL 0x0004
61 #define IEEE80211_FTYPE_DATA 0x0008
62 #define IEEE80211_FTYPE_EXT 0x000c
63
64 /* management */
65 #define IEEE80211_STYPE_ASSOC_REQ 0x0000
66 #define IEEE80211_STYPE_ASSOC_RESP 0x0010
67 #define IEEE80211_STYPE_REASSOC_REQ 0x0020
68 #define IEEE80211_STYPE_REASSOC_RESP 0x0030
69 #define IEEE80211_STYPE_PROBE_REQ 0x0040
70 #define IEEE80211_STYPE_PROBE_RESP 0x0050
71 #define IEEE80211_STYPE_BEACON 0x0080
72 #define IEEE80211_STYPE_ATIM 0x0090
73 #define IEEE80211_STYPE_DISASSOC 0x00A0
74 #define IEEE80211_STYPE_AUTH 0x00B0
75 #define IEEE80211_STYPE_DEAUTH 0x00C0
76 #define IEEE80211_STYPE_ACTION 0x00D0
77
78 /* control */
79 #define IEEE80211_STYPE_TRIGGER 0x0020
80 #define IEEE80211_STYPE_CTL_EXT 0x0060
81 #define IEEE80211_STYPE_BACK_REQ 0x0080
82 #define IEEE80211_STYPE_BACK 0x0090
83 #define IEEE80211_STYPE_PSPOLL 0x00A0
84 #define IEEE80211_STYPE_RTS 0x00B0
85 #define IEEE80211_STYPE_CTS 0x00C0
86 #define IEEE80211_STYPE_ACK 0x00D0
87 #define IEEE80211_STYPE_CFEND 0x00E0
88 #define IEEE80211_STYPE_CFENDACK 0x00F0
89
90 /* data */
91 #define IEEE80211_STYPE_DATA 0x0000
92 #define IEEE80211_STYPE_DATA_CFACK 0x0010
93 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020
94 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030
95 #define IEEE80211_STYPE_NULLFUNC 0x0040
96 #define IEEE80211_STYPE_CFACK 0x0050
97 #define IEEE80211_STYPE_CFPOLL 0x0060
98 #define IEEE80211_STYPE_CFACKPOLL 0x0070
99 #define IEEE80211_STYPE_QOS_DATA 0x0080
100 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090
101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0
102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0
103 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0
104 #define IEEE80211_STYPE_QOS_CFACK 0x00D0
105 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0
106 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0
107
108 /* extension, added by 802.11ad */
109 #define IEEE80211_STYPE_DMG_BEACON 0x0000
110 #define IEEE80211_STYPE_S1G_BEACON 0x0010
111
112 /* bits unique to S1G beacon */
113 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100
114 #define IEEE80211_S1G_BCN_CSSID 0x200
115 #define IEEE80211_S1G_BCN_ANO 0x400
116
117 /* see 802.11ah-2016 9.9 NDP CMAC frames */
118 #define IEEE80211_S1G_1MHZ_NDP_BITS 25
119 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4
120 #define IEEE80211_S1G_2MHZ_NDP_BITS 37
121 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5
122
123 #define IEEE80211_NDP_FTYPE_CTS 0
124 #define IEEE80211_NDP_FTYPE_CF_END 0
125 #define IEEE80211_NDP_FTYPE_PS_POLL 1
126 #define IEEE80211_NDP_FTYPE_ACK 2
127 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3
128 #define IEEE80211_NDP_FTYPE_BA 4
129 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5
130 #define IEEE80211_NDP_FTYPE_PAGING 6
131 #define IEEE80211_NDP_FTYPE_PREQ 7
132
133 #define SM64(f, v) ((((u64)v) << f##_S) & f)
134
135 /* NDP CMAC frame fields */
136 #define IEEE80211_NDP_FTYPE 0x0000000000000007
137 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000
138
139 /* 1M Probe Request 11ah 9.9.3.1.1 */
140 #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008
141 #define IEEE80211_NDP_1M_PREQ_ANO_S 3
142 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0
143 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4
144 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000
145 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20
146 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
147 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
148 /* 2M Probe Request 11ah 9.9.3.1.2 */
149 #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008
150 #define IEEE80211_NDP_2M_PREQ_ANO_S 3
151 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0
152 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4
153 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000
154 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36
155
156 #define IEEE80211_ANO_NETTYPE_WILD 15
157
158 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
159 #define IEEE80211_CTL_EXT_POLL 0x2000
160 #define IEEE80211_CTL_EXT_SPR 0x3000
161 #define IEEE80211_CTL_EXT_GRANT 0x4000
162 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000
163 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000
164 #define IEEE80211_CTL_EXT_SSW 0x8000
165 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000
166 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000
167
168
169 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4)
170 #define IEEE80211_MAX_SN IEEE80211_SN_MASK
171 #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1)
172
173
174 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */
175 #define IEEE80211_PV1_FCTL_VERS 0x0003
176 #define IEEE80211_PV1_FCTL_FTYPE 0x001c
177 #define IEEE80211_PV1_FCTL_STYPE 0x00e0
178 #define IEEE80211_PV1_FCTL_FROMDS 0x0100
179 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200
180 #define IEEE80211_PV1_FCTL_PM 0x0400
181 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800
182 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000
183 #define IEEE80211_PV1_FCTL_END_SP 0x2000
184 #define IEEE80211_PV1_FCTL_RELAYED 0x4000
185 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000
186 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00
187
ieee80211_sn_less(u16 sn1,u16 sn2)188 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
189 {
190 return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
191 }
192
ieee80211_sn_less_eq(u16 sn1,u16 sn2)193 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2)
194 {
195 return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1);
196 }
197
ieee80211_sn_add(u16 sn1,u16 sn2)198 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
199 {
200 return (sn1 + sn2) & IEEE80211_SN_MASK;
201 }
202
ieee80211_sn_inc(u16 sn)203 static inline u16 ieee80211_sn_inc(u16 sn)
204 {
205 return ieee80211_sn_add(sn, 1);
206 }
207
ieee80211_sn_sub(u16 sn1,u16 sn2)208 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
209 {
210 return (sn1 - sn2) & IEEE80211_SN_MASK;
211 }
212
213 #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
214 #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
215
216 /* miscellaneous IEEE 802.11 constants */
217 #define IEEE80211_MAX_FRAG_THRESHOLD 2352
218 #define IEEE80211_MAX_RTS_THRESHOLD 2353
219 #define IEEE80211_MAX_AID 2007
220 #define IEEE80211_MAX_AID_S1G 8191
221 #define IEEE80211_MAX_TIM_LEN 251
222 #define IEEE80211_MAX_MESH_PEERINGS 63
223 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
224 6.2.1.1.2.
225
226 802.11e clarifies the figure in section 7.1.2. The frame body is
227 up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
228 #define IEEE80211_MAX_DATA_LEN 2304
229 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
230 * to 7920 bytes, see 8.2.3 General frame format
231 */
232 #define IEEE80211_MAX_DATA_LEN_DMG 7920
233 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
234 #define IEEE80211_MAX_FRAME_LEN 2352
235
236 /* Maximal size of an A-MSDU that can be transported in a HT BA session */
237 #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095
238
239 /* Maximal size of an A-MSDU */
240 #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839
241 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935
242
243 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895
244 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991
245 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454
246
247 #define IEEE80211_MAX_SSID_LEN 32
248
249 #define IEEE80211_MAX_MESH_ID_LEN 32
250
251 #define IEEE80211_FIRST_TSPEC_TSID 8
252 #define IEEE80211_NUM_TIDS 16
253
254 /* number of user priorities 802.11 uses */
255 #define IEEE80211_NUM_UPS 8
256 /* number of ACs */
257 #define IEEE80211_NUM_ACS 4
258
259 #define IEEE80211_QOS_CTL_LEN 2
260 /* 1d tag mask */
261 #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007
262 /* TID mask */
263 #define IEEE80211_QOS_CTL_TID_MASK 0x000f
264 /* EOSP */
265 #define IEEE80211_QOS_CTL_EOSP 0x0010
266 /* ACK policy */
267 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000
268 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020
269 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040
270 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060
271 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060
272 /* A-MSDU 802.11n */
273 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080
274 /* Mesh Control 802.11s */
275 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100
276
277 /* Mesh Power Save Level */
278 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200
279 /* Mesh Receiver Service Period Initiated */
280 #define IEEE80211_QOS_CTL_RSPI 0x0400
281
282 /* U-APSD queue for WMM IEs sent by AP */
283 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7)
284 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f
285
286 /* U-APSD queues for WMM IEs sent by STA */
287 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0)
288 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1)
289 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2)
290 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3)
291 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f
292
293 /* U-APSD max SP length for WMM IEs sent by STA */
294 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00
295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01
296 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02
297 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03
298 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03
299 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5
300
301 #define IEEE80211_HT_CTL_LEN 4
302
303 /* trigger type within common_info of trigger frame */
304 #define IEEE80211_TRIGGER_TYPE_MASK 0xf
305 #define IEEE80211_TRIGGER_TYPE_BASIC 0x0
306 #define IEEE80211_TRIGGER_TYPE_BFRP 0x1
307 #define IEEE80211_TRIGGER_TYPE_MU_BAR 0x2
308 #define IEEE80211_TRIGGER_TYPE_MU_RTS 0x3
309 #define IEEE80211_TRIGGER_TYPE_BSRP 0x4
310 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR 0x5
311 #define IEEE80211_TRIGGER_TYPE_BQRP 0x6
312 #define IEEE80211_TRIGGER_TYPE_NFRP 0x7
313
314 /* UL-bandwidth within common_info of trigger frame */
315 #define IEEE80211_TRIGGER_ULBW_MASK 0xc0000
316 #define IEEE80211_TRIGGER_ULBW_20MHZ 0x0
317 #define IEEE80211_TRIGGER_ULBW_40MHZ 0x1
318 #define IEEE80211_TRIGGER_ULBW_80MHZ 0x2
319 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ 0x3
320
321 struct ieee80211_hdr {
322 __le16 frame_control;
323 __le16 duration_id;
324 struct_group(addrs,
325 u8 addr1[ETH_ALEN];
326 u8 addr2[ETH_ALEN];
327 u8 addr3[ETH_ALEN];
328 );
329 __le16 seq_ctrl;
330 u8 addr4[ETH_ALEN];
331 } __packed __aligned(2);
332
333 struct ieee80211_hdr_3addr {
334 __le16 frame_control;
335 __le16 duration_id;
336 u8 addr1[ETH_ALEN];
337 u8 addr2[ETH_ALEN];
338 u8 addr3[ETH_ALEN];
339 __le16 seq_ctrl;
340 } __packed __aligned(2);
341
342 struct ieee80211_qos_hdr {
343 __le16 frame_control;
344 __le16 duration_id;
345 u8 addr1[ETH_ALEN];
346 u8 addr2[ETH_ALEN];
347 u8 addr3[ETH_ALEN];
348 __le16 seq_ctrl;
349 __le16 qos_ctrl;
350 } __packed __aligned(2);
351
352 struct ieee80211_qos_hdr_4addr {
353 __le16 frame_control;
354 __le16 duration_id;
355 u8 addr1[ETH_ALEN];
356 u8 addr2[ETH_ALEN];
357 u8 addr3[ETH_ALEN];
358 __le16 seq_ctrl;
359 u8 addr4[ETH_ALEN];
360 __le16 qos_ctrl;
361 } __packed __aligned(2);
362
363 struct ieee80211_trigger {
364 __le16 frame_control;
365 __le16 duration;
366 u8 ra[ETH_ALEN];
367 u8 ta[ETH_ALEN];
368 __le64 common_info;
369 u8 variable[];
370 } __packed __aligned(2);
371
372 /**
373 * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
374 * @fc: frame control bytes in little-endian byteorder
375 * Return: whether or not the frame has to-DS set
376 */
ieee80211_has_tods(__le16 fc)377 static inline bool ieee80211_has_tods(__le16 fc)
378 {
379 return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
380 }
381
382 /**
383 * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
384 * @fc: frame control bytes in little-endian byteorder
385 * Return: whether or not the frame has from-DS set
386 */
ieee80211_has_fromds(__le16 fc)387 static inline bool ieee80211_has_fromds(__le16 fc)
388 {
389 return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
390 }
391
392 /**
393 * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
394 * @fc: frame control bytes in little-endian byteorder
395 * Return: whether or not it's a 4-address frame (from-DS and to-DS set)
396 */
ieee80211_has_a4(__le16 fc)397 static inline bool ieee80211_has_a4(__le16 fc)
398 {
399 __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
400 return (fc & tmp) == tmp;
401 }
402
403 /**
404 * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
405 * @fc: frame control bytes in little-endian byteorder
406 * Return: whether or not the frame has more fragments (more frags bit set)
407 */
ieee80211_has_morefrags(__le16 fc)408 static inline bool ieee80211_has_morefrags(__le16 fc)
409 {
410 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
411 }
412
413 /**
414 * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
415 * @fc: frame control bytes in little-endian byteorder
416 * Return: whether or not the retry flag is set
417 */
ieee80211_has_retry(__le16 fc)418 static inline bool ieee80211_has_retry(__le16 fc)
419 {
420 return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
421 }
422
423 /**
424 * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
425 * @fc: frame control bytes in little-endian byteorder
426 * Return: whether or not the power management flag is set
427 */
ieee80211_has_pm(__le16 fc)428 static inline bool ieee80211_has_pm(__le16 fc)
429 {
430 return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
431 }
432
433 /**
434 * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
435 * @fc: frame control bytes in little-endian byteorder
436 * Return: whether or not the more data flag is set
437 */
ieee80211_has_moredata(__le16 fc)438 static inline bool ieee80211_has_moredata(__le16 fc)
439 {
440 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
441 }
442
443 /**
444 * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
445 * @fc: frame control bytes in little-endian byteorder
446 * Return: whether or not the protected flag is set
447 */
ieee80211_has_protected(__le16 fc)448 static inline bool ieee80211_has_protected(__le16 fc)
449 {
450 return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
451 }
452
453 /**
454 * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
455 * @fc: frame control bytes in little-endian byteorder
456 * Return: whether or not the order flag is set
457 */
ieee80211_has_order(__le16 fc)458 static inline bool ieee80211_has_order(__le16 fc)
459 {
460 return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
461 }
462
463 /**
464 * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
465 * @fc: frame control bytes in little-endian byteorder
466 * Return: whether or not the frame type is management
467 */
ieee80211_is_mgmt(__le16 fc)468 static inline bool ieee80211_is_mgmt(__le16 fc)
469 {
470 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
471 cpu_to_le16(IEEE80211_FTYPE_MGMT);
472 }
473
474 /**
475 * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
476 * @fc: frame control bytes in little-endian byteorder
477 * Return: whether or not the frame type is control
478 */
ieee80211_is_ctl(__le16 fc)479 static inline bool ieee80211_is_ctl(__le16 fc)
480 {
481 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
482 cpu_to_le16(IEEE80211_FTYPE_CTL);
483 }
484
485 /**
486 * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
487 * @fc: frame control bytes in little-endian byteorder
488 * Return: whether or not the frame is a data frame
489 */
ieee80211_is_data(__le16 fc)490 static inline bool ieee80211_is_data(__le16 fc)
491 {
492 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
493 cpu_to_le16(IEEE80211_FTYPE_DATA);
494 }
495
496 /**
497 * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT
498 * @fc: frame control bytes in little-endian byteorder
499 * Return: whether or not the frame type is extended
500 */
ieee80211_is_ext(__le16 fc)501 static inline bool ieee80211_is_ext(__le16 fc)
502 {
503 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
504 cpu_to_le16(IEEE80211_FTYPE_EXT);
505 }
506
507
508 /**
509 * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
510 * @fc: frame control bytes in little-endian byteorder
511 * Return: whether or not the frame is a QoS data frame
512 */
ieee80211_is_data_qos(__le16 fc)513 static inline bool ieee80211_is_data_qos(__le16 fc)
514 {
515 /*
516 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
517 * to check the one bit
518 */
519 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
520 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
521 }
522
523 /**
524 * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
525 * @fc: frame control bytes in little-endian byteorder
526 * Return: whether or not the frame is a QoS data frame that has data
527 * (i.e. is not null data)
528 */
ieee80211_is_data_present(__le16 fc)529 static inline bool ieee80211_is_data_present(__le16 fc)
530 {
531 /*
532 * mask with 0x40 and test that that bit is clear to only return true
533 * for the data-containing substypes.
534 */
535 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
536 cpu_to_le16(IEEE80211_FTYPE_DATA);
537 }
538
539 /**
540 * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
541 * @fc: frame control bytes in little-endian byteorder
542 * Return: whether or not the frame is an association request
543 */
ieee80211_is_assoc_req(__le16 fc)544 static inline bool ieee80211_is_assoc_req(__le16 fc)
545 {
546 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
547 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
548 }
549
550 /**
551 * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
552 * @fc: frame control bytes in little-endian byteorder
553 * Return: whether or not the frame is an association response
554 */
ieee80211_is_assoc_resp(__le16 fc)555 static inline bool ieee80211_is_assoc_resp(__le16 fc)
556 {
557 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
558 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
559 }
560
561 /**
562 * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
563 * @fc: frame control bytes in little-endian byteorder
564 * Return: whether or not the frame is a reassociation request
565 */
ieee80211_is_reassoc_req(__le16 fc)566 static inline bool ieee80211_is_reassoc_req(__le16 fc)
567 {
568 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
569 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
570 }
571
572 /**
573 * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
574 * @fc: frame control bytes in little-endian byteorder
575 * Return: whether or not the frame is a reassociation response
576 */
ieee80211_is_reassoc_resp(__le16 fc)577 static inline bool ieee80211_is_reassoc_resp(__le16 fc)
578 {
579 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
580 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
581 }
582
583 /**
584 * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
585 * @fc: frame control bytes in little-endian byteorder
586 * Return: whether or not the frame is a probe request
587 */
ieee80211_is_probe_req(__le16 fc)588 static inline bool ieee80211_is_probe_req(__le16 fc)
589 {
590 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
591 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
592 }
593
594 /**
595 * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
596 * @fc: frame control bytes in little-endian byteorder
597 * Return: whether or not the frame is a probe response
598 */
ieee80211_is_probe_resp(__le16 fc)599 static inline bool ieee80211_is_probe_resp(__le16 fc)
600 {
601 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
602 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
603 }
604
605 /**
606 * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
607 * @fc: frame control bytes in little-endian byteorder
608 * Return: whether or not the frame is a (regular, not S1G) beacon
609 */
ieee80211_is_beacon(__le16 fc)610 static inline bool ieee80211_is_beacon(__le16 fc)
611 {
612 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
613 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
614 }
615
616 /**
617 * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT &&
618 * IEEE80211_STYPE_S1G_BEACON
619 * @fc: frame control bytes in little-endian byteorder
620 * Return: whether or not the frame is an S1G beacon
621 */
ieee80211_is_s1g_beacon(__le16 fc)622 static inline bool ieee80211_is_s1g_beacon(__le16 fc)
623 {
624 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE |
625 IEEE80211_FCTL_STYPE)) ==
626 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON);
627 }
628
629 /**
630 * ieee80211_s1g_has_next_tbtt - check if IEEE80211_S1G_BCN_NEXT_TBTT
631 * @fc: frame control bytes in little-endian byteorder
632 * Return: whether or not the frame contains the variable-length
633 * next TBTT field
634 */
ieee80211_s1g_has_next_tbtt(__le16 fc)635 static inline bool ieee80211_s1g_has_next_tbtt(__le16 fc)
636 {
637 return ieee80211_is_s1g_beacon(fc) &&
638 (fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT));
639 }
640
641 /**
642 * ieee80211_s1g_has_ano - check if IEEE80211_S1G_BCN_ANO
643 * @fc: frame control bytes in little-endian byteorder
644 * Return: whether or not the frame contains the variable-length
645 * ANO field
646 */
ieee80211_s1g_has_ano(__le16 fc)647 static inline bool ieee80211_s1g_has_ano(__le16 fc)
648 {
649 return ieee80211_is_s1g_beacon(fc) &&
650 (fc & cpu_to_le16(IEEE80211_S1G_BCN_ANO));
651 }
652
653 /**
654 * ieee80211_s1g_has_cssid - check if IEEE80211_S1G_BCN_CSSID
655 * @fc: frame control bytes in little-endian byteorder
656 * Return: whether or not the frame contains the variable-length
657 * compressed SSID field
658 */
ieee80211_s1g_has_cssid(__le16 fc)659 static inline bool ieee80211_s1g_has_cssid(__le16 fc)
660 {
661 return ieee80211_is_s1g_beacon(fc) &&
662 (fc & cpu_to_le16(IEEE80211_S1G_BCN_CSSID));
663 }
664
665 /**
666 * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
667 * @fc: frame control bytes in little-endian byteorder
668 * Return: whether or not the frame is an ATIM frame
669 */
ieee80211_is_atim(__le16 fc)670 static inline bool ieee80211_is_atim(__le16 fc)
671 {
672 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
673 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
674 }
675
676 /**
677 * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
678 * @fc: frame control bytes in little-endian byteorder
679 * Return: whether or not the frame is a disassociation frame
680 */
ieee80211_is_disassoc(__le16 fc)681 static inline bool ieee80211_is_disassoc(__le16 fc)
682 {
683 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
684 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
685 }
686
687 /**
688 * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
689 * @fc: frame control bytes in little-endian byteorder
690 * Return: whether or not the frame is an authentication frame
691 */
ieee80211_is_auth(__le16 fc)692 static inline bool ieee80211_is_auth(__le16 fc)
693 {
694 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
695 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
696 }
697
698 /**
699 * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
700 * @fc: frame control bytes in little-endian byteorder
701 * Return: whether or not the frame is a deauthentication frame
702 */
ieee80211_is_deauth(__le16 fc)703 static inline bool ieee80211_is_deauth(__le16 fc)
704 {
705 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
706 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
707 }
708
709 /**
710 * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
711 * @fc: frame control bytes in little-endian byteorder
712 * Return: whether or not the frame is an action frame
713 */
ieee80211_is_action(__le16 fc)714 static inline bool ieee80211_is_action(__le16 fc)
715 {
716 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
717 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
718 }
719
720 /**
721 * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
722 * @fc: frame control bytes in little-endian byteorder
723 * Return: whether or not the frame is a block-ACK request frame
724 */
ieee80211_is_back_req(__le16 fc)725 static inline bool ieee80211_is_back_req(__le16 fc)
726 {
727 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
728 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
729 }
730
731 /**
732 * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
733 * @fc: frame control bytes in little-endian byteorder
734 * Return: whether or not the frame is a block-ACK frame
735 */
ieee80211_is_back(__le16 fc)736 static inline bool ieee80211_is_back(__le16 fc)
737 {
738 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
739 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
740 }
741
742 /**
743 * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
744 * @fc: frame control bytes in little-endian byteorder
745 * Return: whether or not the frame is a PS-poll frame
746 */
ieee80211_is_pspoll(__le16 fc)747 static inline bool ieee80211_is_pspoll(__le16 fc)
748 {
749 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
750 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
751 }
752
753 /**
754 * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
755 * @fc: frame control bytes in little-endian byteorder
756 * Return: whether or not the frame is an RTS frame
757 */
ieee80211_is_rts(__le16 fc)758 static inline bool ieee80211_is_rts(__le16 fc)
759 {
760 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
761 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
762 }
763
764 /**
765 * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
766 * @fc: frame control bytes in little-endian byteorder
767 * Return: whether or not the frame is a CTS frame
768 */
ieee80211_is_cts(__le16 fc)769 static inline bool ieee80211_is_cts(__le16 fc)
770 {
771 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
772 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
773 }
774
775 /**
776 * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
777 * @fc: frame control bytes in little-endian byteorder
778 * Return: whether or not the frame is an ACK frame
779 */
ieee80211_is_ack(__le16 fc)780 static inline bool ieee80211_is_ack(__le16 fc)
781 {
782 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
783 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
784 }
785
786 /**
787 * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
788 * @fc: frame control bytes in little-endian byteorder
789 * Return: whether or not the frame is a CF-end frame
790 */
ieee80211_is_cfend(__le16 fc)791 static inline bool ieee80211_is_cfend(__le16 fc)
792 {
793 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
794 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
795 }
796
797 /**
798 * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
799 * @fc: frame control bytes in little-endian byteorder
800 * Return: whether or not the frame is a CF-end-ack frame
801 */
ieee80211_is_cfendack(__le16 fc)802 static inline bool ieee80211_is_cfendack(__le16 fc)
803 {
804 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
805 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
806 }
807
808 /**
809 * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
810 * @fc: frame control bytes in little-endian byteorder
811 * Return: whether or not the frame is a nullfunc frame
812 */
ieee80211_is_nullfunc(__le16 fc)813 static inline bool ieee80211_is_nullfunc(__le16 fc)
814 {
815 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
816 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
817 }
818
819 /**
820 * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
821 * @fc: frame control bytes in little-endian byteorder
822 * Return: whether or not the frame is a QoS nullfunc frame
823 */
ieee80211_is_qos_nullfunc(__le16 fc)824 static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
825 {
826 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
827 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
828 }
829
830 /**
831 * ieee80211_is_trigger - check if frame is trigger frame
832 * @fc: frame control field in little-endian byteorder
833 * Return: whether or not the frame is a trigger frame
834 */
ieee80211_is_trigger(__le16 fc)835 static inline bool ieee80211_is_trigger(__le16 fc)
836 {
837 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
838 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER);
839 }
840
841 /**
842 * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame
843 * @fc: frame control bytes in little-endian byteorder
844 * Return: whether or not the frame is a nullfunc or QoS nullfunc frame
845 */
ieee80211_is_any_nullfunc(__le16 fc)846 static inline bool ieee80211_is_any_nullfunc(__le16 fc)
847 {
848 return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc));
849 }
850
851 /**
852 * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
853 * @seq_ctrl: frame sequence control bytes in little-endian byteorder
854 * Return: whether or not the frame is the first fragment (also true if
855 * it's not fragmented at all)
856 */
ieee80211_is_first_frag(__le16 seq_ctrl)857 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
858 {
859 return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
860 }
861
862 /**
863 * ieee80211_is_frag - check if a frame is a fragment
864 * @hdr: 802.11 header of the frame
865 * Return: whether or not the frame is a fragment
866 */
ieee80211_is_frag(struct ieee80211_hdr * hdr)867 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
868 {
869 return ieee80211_has_morefrags(hdr->frame_control) ||
870 hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
871 }
872
ieee80211_get_sn(struct ieee80211_hdr * hdr)873 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr)
874 {
875 return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ);
876 }
877
878 struct ieee80211s_hdr {
879 u8 flags;
880 u8 ttl;
881 __le32 seqnum;
882 u8 eaddr1[ETH_ALEN];
883 u8 eaddr2[ETH_ALEN];
884 } __packed __aligned(2);
885
886 /* Mesh flags */
887 #define MESH_FLAGS_AE_A4 0x1
888 #define MESH_FLAGS_AE_A5_A6 0x2
889 #define MESH_FLAGS_AE 0x3
890 #define MESH_FLAGS_PS_DEEP 0x4
891
892 /**
893 * enum ieee80211_preq_flags - mesh PREQ element flags
894 *
895 * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
896 */
897 enum ieee80211_preq_flags {
898 IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2,
899 };
900
901 /**
902 * enum ieee80211_preq_target_flags - mesh PREQ element per target flags
903 *
904 * @IEEE80211_PREQ_TO_FLAG: target only subfield
905 * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
906 */
907 enum ieee80211_preq_target_flags {
908 IEEE80211_PREQ_TO_FLAG = 1<<0,
909 IEEE80211_PREQ_USN_FLAG = 1<<2,
910 };
911
912 /**
913 * struct ieee80211_quiet_ie - Quiet element
914 * @count: Quiet Count
915 * @period: Quiet Period
916 * @duration: Quiet Duration
917 * @offset: Quiet Offset
918 *
919 * This structure represents the payload of the "Quiet element" as
920 * described in IEEE Std 802.11-2020 section 9.4.2.22.
921 */
922 struct ieee80211_quiet_ie {
923 u8 count;
924 u8 period;
925 __le16 duration;
926 __le16 offset;
927 } __packed;
928
929 /**
930 * struct ieee80211_msrment_ie - Measurement element
931 * @token: Measurement Token
932 * @mode: Measurement Report Mode
933 * @type: Measurement Type
934 * @request: Measurement Request or Measurement Report
935 *
936 * This structure represents the payload of both the "Measurement
937 * Request element" and the "Measurement Report element" as described
938 * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21.
939 */
940 struct ieee80211_msrment_ie {
941 u8 token;
942 u8 mode;
943 u8 type;
944 u8 request[];
945 } __packed;
946
947 /**
948 * struct ieee80211_channel_sw_ie - Channel Switch Announcement element
949 * @mode: Channel Switch Mode
950 * @new_ch_num: New Channel Number
951 * @count: Channel Switch Count
952 *
953 * This structure represents the payload of the "Channel Switch
954 * Announcement element" as described in IEEE Std 802.11-2020 section
955 * 9.4.2.18.
956 */
957 struct ieee80211_channel_sw_ie {
958 u8 mode;
959 u8 new_ch_num;
960 u8 count;
961 } __packed;
962
963 /**
964 * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element
965 * @mode: Channel Switch Mode
966 * @new_operating_class: New Operating Class
967 * @new_ch_num: New Channel Number
968 * @count: Channel Switch Count
969 *
970 * This structure represents the "Extended Channel Switch Announcement
971 * element" as described in IEEE Std 802.11-2020 section 9.4.2.52.
972 */
973 struct ieee80211_ext_chansw_ie {
974 u8 mode;
975 u8 new_operating_class;
976 u8 new_ch_num;
977 u8 count;
978 } __packed;
979
980 /**
981 * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
982 * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
983 * values here
984 * This structure represents the "Secondary Channel Offset element"
985 */
986 struct ieee80211_sec_chan_offs_ie {
987 u8 sec_chan_offs;
988 } __packed;
989
990 /**
991 * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
992 * @mesh_ttl: Time To Live
993 * @mesh_flags: Flags
994 * @mesh_reason: Reason Code
995 * @mesh_pre_value: Precedence Value
996 *
997 * This structure represents the payload of the "Mesh Channel Switch
998 * Parameters element" as described in IEEE Std 802.11-2020 section
999 * 9.4.2.102.
1000 */
1001 struct ieee80211_mesh_chansw_params_ie {
1002 u8 mesh_ttl;
1003 u8 mesh_flags;
1004 __le16 mesh_reason;
1005 __le16 mesh_pre_value;
1006 } __packed;
1007
1008 /**
1009 * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
1010 * @new_channel_width: New Channel Width
1011 * @new_center_freq_seg0: New Channel Center Frequency Segment 0
1012 * @new_center_freq_seg1: New Channel Center Frequency Segment 1
1013 *
1014 * This structure represents the payload of the "Wide Bandwidth
1015 * Channel Switch element" as described in IEEE Std 802.11-2020
1016 * section 9.4.2.160.
1017 */
1018 struct ieee80211_wide_bw_chansw_ie {
1019 u8 new_channel_width;
1020 u8 new_center_freq_seg0, new_center_freq_seg1;
1021 } __packed;
1022
1023 /**
1024 * struct ieee80211_tim_ie - Traffic Indication Map information element
1025 * @dtim_count: DTIM Count
1026 * @dtim_period: DTIM Period
1027 * @bitmap_ctrl: Bitmap Control
1028 * @required_octet: "Syntatic sugar" to force the struct size to the
1029 * minimum valid size when carried in a non-S1G PPDU
1030 * @virtual_map: Partial Virtual Bitmap
1031 *
1032 * This structure represents the payload of the "TIM element" as
1033 * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this
1034 * definition is only applicable when the element is carried in a
1035 * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap
1036 * Control and Partial Virtual Bitmap may not be present.
1037 */
1038 struct ieee80211_tim_ie {
1039 u8 dtim_count;
1040 u8 dtim_period;
1041 u8 bitmap_ctrl;
1042 union {
1043 u8 required_octet;
1044 DECLARE_FLEX_ARRAY(u8, virtual_map);
1045 };
1046 } __packed;
1047
1048 /**
1049 * struct ieee80211_meshconf_ie - Mesh Configuration element
1050 * @meshconf_psel: Active Path Selection Protocol Identifier
1051 * @meshconf_pmetric: Active Path Selection Metric Identifier
1052 * @meshconf_congest: Congestion Control Mode Identifier
1053 * @meshconf_synch: Synchronization Method Identifier
1054 * @meshconf_auth: Authentication Protocol Identifier
1055 * @meshconf_form: Mesh Formation Info
1056 * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags)
1057 *
1058 * This structure represents the payload of the "Mesh Configuration
1059 * element" as described in IEEE Std 802.11-2020 section 9.4.2.97.
1060 */
1061 struct ieee80211_meshconf_ie {
1062 u8 meshconf_psel;
1063 u8 meshconf_pmetric;
1064 u8 meshconf_congest;
1065 u8 meshconf_synch;
1066 u8 meshconf_auth;
1067 u8 meshconf_form;
1068 u8 meshconf_cap;
1069 } __packed;
1070
1071 /**
1072 * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
1073 *
1074 * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
1075 * additional mesh peerings with other mesh STAs
1076 * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
1077 * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
1078 * is ongoing
1079 * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
1080 * neighbors in deep sleep mode
1081 *
1082 * Enumerates the "Mesh Capability" as described in IEEE Std
1083 * 802.11-2020 section 9.4.2.97.7.
1084 */
1085 enum mesh_config_capab_flags {
1086 IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01,
1087 IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08,
1088 IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20,
1089 IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40,
1090 };
1091
1092 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
1093
1094 /*
1095 * mesh channel switch parameters element's flag indicator
1096 *
1097 */
1098 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
1099 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
1100 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
1101
1102 /**
1103 * struct ieee80211_rann_ie - RANN (root announcement) element
1104 * @rann_flags: Flags
1105 * @rann_hopcount: Hop Count
1106 * @rann_ttl: Element TTL
1107 * @rann_addr: Root Mesh STA Address
1108 * @rann_seq: HWMP Sequence Number
1109 * @rann_interval: Interval
1110 * @rann_metric: Metric
1111 *
1112 * This structure represents the payload of the "RANN element" as
1113 * described in IEEE Std 802.11-2020 section 9.4.2.111.
1114 */
1115 struct ieee80211_rann_ie {
1116 u8 rann_flags;
1117 u8 rann_hopcount;
1118 u8 rann_ttl;
1119 u8 rann_addr[ETH_ALEN];
1120 __le32 rann_seq;
1121 __le32 rann_interval;
1122 __le32 rann_metric;
1123 } __packed;
1124
1125 enum ieee80211_rann_flags {
1126 RANN_FLAG_IS_GATE = 1 << 0,
1127 };
1128
1129 enum ieee80211_ht_chanwidth_values {
1130 IEEE80211_HT_CHANWIDTH_20MHZ = 0,
1131 IEEE80211_HT_CHANWIDTH_ANY = 1,
1132 };
1133
1134 /**
1135 * enum ieee80211_vht_opmode_bits - VHT operating mode field bits
1136 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
1137 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
1138 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
1139 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
1140 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
1141 * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag
1142 * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
1143 * (the NSS value is the value of this field + 1)
1144 * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
1145 * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
1146 * using a beamforming steering matrix
1147 */
1148 enum ieee80211_vht_opmode_bits {
1149 IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03,
1150 IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0,
1151 IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1,
1152 IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2,
1153 IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3,
1154 IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04,
1155 IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70,
1156 IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4,
1157 IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80,
1158 };
1159
1160 /**
1161 * enum ieee80211_s1g_chanwidth - S1G channel widths
1162 * These are defined in IEEE802.11-2016ah Table 10-20
1163 * as BSS Channel Width
1164 *
1165 * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel
1166 * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel
1167 * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel
1168 * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel
1169 * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel
1170 */
1171 enum ieee80211_s1g_chanwidth {
1172 IEEE80211_S1G_CHANWIDTH_1MHZ = 0,
1173 IEEE80211_S1G_CHANWIDTH_2MHZ = 1,
1174 IEEE80211_S1G_CHANWIDTH_4MHZ = 3,
1175 IEEE80211_S1G_CHANWIDTH_8MHZ = 7,
1176 IEEE80211_S1G_CHANWIDTH_16MHZ = 15,
1177 };
1178
1179 #define WLAN_SA_QUERY_TR_ID_LEN 2
1180 #define WLAN_MEMBERSHIP_LEN 8
1181 #define WLAN_USER_POSITION_LEN 16
1182
1183 /**
1184 * struct ieee80211_tpc_report_ie - TPC Report element
1185 * @tx_power: Transmit Power
1186 * @link_margin: Link Margin
1187 *
1188 * This structure represents the payload of the "TPC Report element" as
1189 * described in IEEE Std 802.11-2020 section 9.4.2.16.
1190 */
1191 struct ieee80211_tpc_report_ie {
1192 u8 tx_power;
1193 u8 link_margin;
1194 } __packed;
1195
1196 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1)
1197 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1
1198 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0)
1199 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK GENMASK(7, 5)
1200 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT 10
1201
1202 struct ieee80211_addba_ext_ie {
1203 u8 data;
1204 } __packed;
1205
1206 /**
1207 * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element
1208 * @compat_info: Compatibility Information
1209 * @beacon_int: Beacon Interval
1210 * @tsf_completion: TSF Completion
1211 *
1212 * This structure represents the payload of the "S1G Beacon
1213 * Compatibility element" as described in IEEE Std 802.11-2020 section
1214 * 9.4.2.196.
1215 */
1216 struct ieee80211_s1g_bcn_compat_ie {
1217 __le16 compat_info;
1218 __le16 beacon_int;
1219 __le32 tsf_completion;
1220 } __packed;
1221
1222 /**
1223 * struct ieee80211_s1g_oper_ie - S1G Operation element
1224 * @ch_width: S1G Operation Information Channel Width
1225 * @oper_class: S1G Operation Information Operating Class
1226 * @primary_ch: S1G Operation Information Primary Channel Number
1227 * @oper_ch: S1G Operation Information Channel Center Frequency
1228 * @basic_mcs_nss: Basic S1G-MCS and NSS Set
1229 *
1230 * This structure represents the payload of the "S1G Operation
1231 * element" as described in IEEE Std 802.11-2020 section 9.4.2.212.
1232 */
1233 struct ieee80211_s1g_oper_ie {
1234 u8 ch_width;
1235 u8 oper_class;
1236 u8 primary_ch;
1237 u8 oper_ch;
1238 __le16 basic_mcs_nss;
1239 } __packed;
1240
1241 /**
1242 * struct ieee80211_aid_response_ie - AID Response element
1243 * @aid: AID/Group AID
1244 * @switch_count: AID Switch Count
1245 * @response_int: AID Response Interval
1246 *
1247 * This structure represents the payload of the "AID Response element"
1248 * as described in IEEE Std 802.11-2020 section 9.4.2.194.
1249 */
1250 struct ieee80211_aid_response_ie {
1251 __le16 aid;
1252 u8 switch_count;
1253 __le16 response_int;
1254 } __packed;
1255
1256 struct ieee80211_s1g_cap {
1257 u8 capab_info[10];
1258 u8 supp_mcs_nss[5];
1259 } __packed;
1260
1261 struct ieee80211_ext {
1262 __le16 frame_control;
1263 __le16 duration;
1264 union {
1265 struct {
1266 u8 sa[ETH_ALEN];
1267 __le32 timestamp;
1268 u8 change_seq;
1269 u8 variable[0];
1270 } __packed s1g_beacon;
1271 } u;
1272 } __packed __aligned(2);
1273
1274 /**
1275 * ieee80211_s1g_optional_len - determine length of optional S1G beacon fields
1276 * @fc: frame control bytes in little-endian byteorder
1277 * Return: total length in bytes of the optional fixed-length fields
1278 *
1279 * S1G beacons may contain up to three optional fixed-length fields that
1280 * precede the variable-length elements. Whether these fields are present
1281 * is indicated by flags in the frame control field.
1282 *
1283 * From IEEE 802.11-2024 section 9.3.4.3:
1284 * - Next TBTT field may be 0 or 3 bytes
1285 * - Short SSID field may be 0 or 4 bytes
1286 * - Access Network Options (ANO) field may be 0 or 1 byte
1287 */
1288 static inline size_t
ieee80211_s1g_optional_len(__le16 fc)1289 ieee80211_s1g_optional_len(__le16 fc)
1290 {
1291 size_t len = 0;
1292
1293 if (ieee80211_s1g_has_next_tbtt(fc))
1294 len += 3;
1295
1296 if (ieee80211_s1g_has_cssid(fc))
1297 len += 4;
1298
1299 if (ieee80211_s1g_has_ano(fc))
1300 len += 1;
1301
1302 return len;
1303 }
1304
1305 #define IEEE80211_TWT_CONTROL_NDP BIT(0)
1306 #define IEEE80211_TWT_CONTROL_RESP_MODE BIT(1)
1307 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST BIT(3)
1308 #define IEEE80211_TWT_CONTROL_RX_DISABLED BIT(4)
1309 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT BIT(5)
1310
1311 #define IEEE80211_TWT_REQTYPE_REQUEST BIT(0)
1312 #define IEEE80211_TWT_REQTYPE_SETUP_CMD GENMASK(3, 1)
1313 #define IEEE80211_TWT_REQTYPE_TRIGGER BIT(4)
1314 #define IEEE80211_TWT_REQTYPE_IMPLICIT BIT(5)
1315 #define IEEE80211_TWT_REQTYPE_FLOWTYPE BIT(6)
1316 #define IEEE80211_TWT_REQTYPE_FLOWID GENMASK(9, 7)
1317 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP GENMASK(14, 10)
1318 #define IEEE80211_TWT_REQTYPE_PROTECTION BIT(15)
1319
1320 enum ieee80211_twt_setup_cmd {
1321 TWT_SETUP_CMD_REQUEST,
1322 TWT_SETUP_CMD_SUGGEST,
1323 TWT_SETUP_CMD_DEMAND,
1324 TWT_SETUP_CMD_GROUPING,
1325 TWT_SETUP_CMD_ACCEPT,
1326 TWT_SETUP_CMD_ALTERNATE,
1327 TWT_SETUP_CMD_DICTATE,
1328 TWT_SETUP_CMD_REJECT,
1329 };
1330
1331 struct ieee80211_twt_params {
1332 __le16 req_type;
1333 __le64 twt;
1334 u8 min_twt_dur;
1335 __le16 mantissa;
1336 u8 channel;
1337 } __packed;
1338
1339 struct ieee80211_twt_setup {
1340 u8 dialog_token;
1341 u8 element_id;
1342 u8 length;
1343 u8 control;
1344 u8 params[];
1345 } __packed;
1346
1347 #define IEEE80211_TTLM_MAX_CNT 2
1348 #define IEEE80211_TTLM_CONTROL_DIRECTION 0x03
1349 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP 0x04
1350 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT 0x08
1351 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT 0x10
1352 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE 0x20
1353
1354 #define IEEE80211_TTLM_DIRECTION_DOWN 0
1355 #define IEEE80211_TTLM_DIRECTION_UP 1
1356 #define IEEE80211_TTLM_DIRECTION_BOTH 2
1357
1358 /**
1359 * struct ieee80211_ttlm_elem - TID-To-Link Mapping element
1360 *
1361 * Defined in section 9.4.2.314 in P802.11be_D4
1362 *
1363 * @control: the first part of control field
1364 * @optional: the second part of control field
1365 */
1366 struct ieee80211_ttlm_elem {
1367 u8 control;
1368 u8 optional[];
1369 } __packed;
1370
1371 /**
1372 * struct ieee80211_bss_load_elem - BSS Load elemen
1373 *
1374 * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1
1375 *
1376 * @sta_count: total number of STAs currently associated with the AP.
1377 * @channel_util: Percentage of time that the access point sensed the channel
1378 * was busy. This value is in range [0, 255], the highest value means
1379 * 100% busy.
1380 * @avail_admission_capa: remaining amount of medium time used for admission
1381 * control.
1382 */
1383 struct ieee80211_bss_load_elem {
1384 __le16 sta_count;
1385 u8 channel_util;
1386 __le16 avail_admission_capa;
1387 } __packed;
1388
1389 struct ieee80211_mgmt {
1390 __le16 frame_control;
1391 __le16 duration;
1392 u8 da[ETH_ALEN];
1393 u8 sa[ETH_ALEN];
1394 u8 bssid[ETH_ALEN];
1395 __le16 seq_ctrl;
1396 union {
1397 struct {
1398 __le16 auth_alg;
1399 __le16 auth_transaction;
1400 __le16 status_code;
1401 /* possibly followed by Challenge text */
1402 u8 variable[];
1403 } __packed auth;
1404 struct {
1405 __le16 reason_code;
1406 } __packed deauth;
1407 struct {
1408 __le16 capab_info;
1409 __le16 listen_interval;
1410 /* followed by SSID and Supported rates */
1411 u8 variable[];
1412 } __packed assoc_req;
1413 struct {
1414 __le16 capab_info;
1415 __le16 status_code;
1416 __le16 aid;
1417 /* followed by Supported rates */
1418 u8 variable[];
1419 } __packed assoc_resp, reassoc_resp;
1420 struct {
1421 __le16 capab_info;
1422 __le16 status_code;
1423 u8 variable[];
1424 } __packed s1g_assoc_resp, s1g_reassoc_resp;
1425 struct {
1426 __le16 capab_info;
1427 __le16 listen_interval;
1428 u8 current_ap[ETH_ALEN];
1429 /* followed by SSID and Supported rates */
1430 u8 variable[];
1431 } __packed reassoc_req;
1432 struct {
1433 __le16 reason_code;
1434 } __packed disassoc;
1435 struct {
1436 __le64 timestamp;
1437 __le16 beacon_int;
1438 __le16 capab_info;
1439 /* followed by some of SSID, Supported rates,
1440 * FH Params, DS Params, CF Params, IBSS Params, TIM */
1441 u8 variable[];
1442 } __packed beacon;
1443 struct {
1444 /* only variable items: SSID, Supported rates */
1445 DECLARE_FLEX_ARRAY(u8, variable);
1446 } __packed probe_req;
1447 struct {
1448 __le64 timestamp;
1449 __le16 beacon_int;
1450 __le16 capab_info;
1451 /* followed by some of SSID, Supported rates,
1452 * FH Params, DS Params, CF Params, IBSS Params */
1453 u8 variable[];
1454 } __packed probe_resp;
1455 struct {
1456 u8 category;
1457 union {
1458 struct {
1459 u8 action_code;
1460 u8 dialog_token;
1461 u8 status_code;
1462 u8 variable[];
1463 } __packed wme_action;
1464 struct{
1465 u8 action_code;
1466 u8 variable[];
1467 } __packed chan_switch;
1468 struct{
1469 u8 action_code;
1470 struct ieee80211_ext_chansw_ie data;
1471 u8 variable[];
1472 } __packed ext_chan_switch;
1473 struct{
1474 u8 action_code;
1475 u8 dialog_token;
1476 u8 element_id;
1477 u8 length;
1478 struct ieee80211_msrment_ie msr_elem;
1479 } __packed measurement;
1480 struct{
1481 u8 action_code;
1482 u8 dialog_token;
1483 __le16 capab;
1484 __le16 timeout;
1485 __le16 start_seq_num;
1486 /* followed by BA Extension */
1487 u8 variable[];
1488 } __packed addba_req;
1489 struct{
1490 u8 action_code;
1491 u8 dialog_token;
1492 __le16 status;
1493 __le16 capab;
1494 __le16 timeout;
1495 } __packed addba_resp;
1496 struct{
1497 u8 action_code;
1498 __le16 params;
1499 __le16 reason_code;
1500 } __packed delba;
1501 struct {
1502 u8 action_code;
1503 u8 variable[];
1504 } __packed self_prot;
1505 struct{
1506 u8 action_code;
1507 u8 variable[];
1508 } __packed mesh_action;
1509 struct {
1510 u8 action;
1511 u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
1512 } __packed sa_query;
1513 struct {
1514 u8 action;
1515 u8 smps_control;
1516 } __packed ht_smps;
1517 struct {
1518 u8 action_code;
1519 u8 chanwidth;
1520 } __packed ht_notify_cw;
1521 struct {
1522 u8 action_code;
1523 u8 dialog_token;
1524 __le16 capability;
1525 u8 variable[0];
1526 } __packed tdls_discover_resp;
1527 struct {
1528 u8 action_code;
1529 u8 operating_mode;
1530 } __packed vht_opmode_notif;
1531 struct {
1532 u8 action_code;
1533 u8 membership[WLAN_MEMBERSHIP_LEN];
1534 u8 position[WLAN_USER_POSITION_LEN];
1535 } __packed vht_group_notif;
1536 struct {
1537 u8 action_code;
1538 u8 dialog_token;
1539 u8 tpc_elem_id;
1540 u8 tpc_elem_length;
1541 struct ieee80211_tpc_report_ie tpc;
1542 } __packed tpc_report;
1543 struct {
1544 u8 action_code;
1545 u8 dialog_token;
1546 u8 follow_up;
1547 u8 tod[6];
1548 u8 toa[6];
1549 __le16 tod_error;
1550 __le16 toa_error;
1551 u8 variable[];
1552 } __packed ftm;
1553 struct {
1554 u8 action_code;
1555 u8 variable[];
1556 } __packed s1g;
1557 struct {
1558 u8 action_code;
1559 u8 dialog_token;
1560 u8 follow_up;
1561 u32 tod;
1562 u32 toa;
1563 u8 max_tod_error;
1564 u8 max_toa_error;
1565 } __packed wnm_timing_msr;
1566 struct {
1567 u8 action_code;
1568 u8 dialog_token;
1569 u8 variable[];
1570 } __packed ttlm_req;
1571 struct {
1572 u8 action_code;
1573 u8 dialog_token;
1574 __le16 status_code;
1575 u8 variable[];
1576 } __packed ttlm_res;
1577 struct {
1578 u8 action_code;
1579 } __packed ttlm_tear_down;
1580 } u;
1581 } __packed action;
1582 DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */
1583 } u;
1584 } __packed __aligned(2);
1585
1586 /* Supported rates membership selectors */
1587 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127
1588 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126
1589 #define BSS_MEMBERSHIP_SELECTOR_GLK 125
1590 #define BSS_MEMBERSHIP_SELECTOR_EPS 124
1591 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123
1592 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122
1593 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY 121
1594
1595 /* mgmt header + 1 byte category code */
1596 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
1597
1598
1599 /* Management MIC information element (IEEE 802.11w) */
1600 struct ieee80211_mmie {
1601 u8 element_id;
1602 u8 length;
1603 __le16 key_id;
1604 u8 sequence_number[6];
1605 u8 mic[8];
1606 } __packed;
1607
1608 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
1609 struct ieee80211_mmie_16 {
1610 u8 element_id;
1611 u8 length;
1612 __le16 key_id;
1613 u8 sequence_number[6];
1614 u8 mic[16];
1615 } __packed;
1616
1617 struct ieee80211_vendor_ie {
1618 u8 element_id;
1619 u8 len;
1620 u8 oui[3];
1621 u8 oui_type;
1622 } __packed;
1623
1624 struct ieee80211_wmm_ac_param {
1625 u8 aci_aifsn; /* AIFSN, ACM, ACI */
1626 u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
1627 __le16 txop_limit;
1628 } __packed;
1629
1630 struct ieee80211_wmm_param_ie {
1631 u8 element_id; /* Element ID: 221 (0xdd); */
1632 u8 len; /* Length: 24 */
1633 /* required fields for WMM version 1 */
1634 u8 oui[3]; /* 00:50:f2 */
1635 u8 oui_type; /* 2 */
1636 u8 oui_subtype; /* 1 */
1637 u8 version; /* 1 for WMM version 1.0 */
1638 u8 qos_info; /* AP/STA specific QoS info */
1639 u8 reserved; /* 0 */
1640 /* AC_BE, AC_BK, AC_VI, AC_VO */
1641 struct ieee80211_wmm_ac_param ac[4];
1642 } __packed;
1643
1644 /* Control frames */
1645 struct ieee80211_rts {
1646 __le16 frame_control;
1647 __le16 duration;
1648 u8 ra[ETH_ALEN];
1649 u8 ta[ETH_ALEN];
1650 } __packed __aligned(2);
1651
1652 struct ieee80211_cts {
1653 __le16 frame_control;
1654 __le16 duration;
1655 u8 ra[ETH_ALEN];
1656 } __packed __aligned(2);
1657
1658 struct ieee80211_pspoll {
1659 __le16 frame_control;
1660 __le16 aid;
1661 u8 bssid[ETH_ALEN];
1662 u8 ta[ETH_ALEN];
1663 } __packed __aligned(2);
1664
1665 /* TDLS */
1666
1667 /* Channel switch timing */
1668 struct ieee80211_ch_switch_timing {
1669 __le16 switch_time;
1670 __le16 switch_timeout;
1671 } __packed;
1672
1673 /* Link-id information element */
1674 struct ieee80211_tdls_lnkie {
1675 u8 ie_type; /* Link Identifier IE */
1676 u8 ie_len;
1677 u8 bssid[ETH_ALEN];
1678 u8 init_sta[ETH_ALEN];
1679 u8 resp_sta[ETH_ALEN];
1680 } __packed;
1681
1682 struct ieee80211_tdls_data {
1683 u8 da[ETH_ALEN];
1684 u8 sa[ETH_ALEN];
1685 __be16 ether_type;
1686 u8 payload_type;
1687 u8 category;
1688 u8 action_code;
1689 union {
1690 struct {
1691 u8 dialog_token;
1692 __le16 capability;
1693 u8 variable[0];
1694 } __packed setup_req;
1695 struct {
1696 __le16 status_code;
1697 u8 dialog_token;
1698 __le16 capability;
1699 u8 variable[0];
1700 } __packed setup_resp;
1701 struct {
1702 __le16 status_code;
1703 u8 dialog_token;
1704 u8 variable[0];
1705 } __packed setup_cfm;
1706 struct {
1707 __le16 reason_code;
1708 u8 variable[0];
1709 } __packed teardown;
1710 struct {
1711 u8 dialog_token;
1712 u8 variable[0];
1713 } __packed discover_req;
1714 struct {
1715 u8 target_channel;
1716 u8 oper_class;
1717 u8 variable[0];
1718 } __packed chan_switch_req;
1719 struct {
1720 __le16 status_code;
1721 u8 variable[0];
1722 } __packed chan_switch_resp;
1723 } u;
1724 } __packed;
1725
1726 /*
1727 * Peer-to-Peer IE attribute related definitions.
1728 */
1729 /*
1730 * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
1731 */
1732 enum ieee80211_p2p_attr_id {
1733 IEEE80211_P2P_ATTR_STATUS = 0,
1734 IEEE80211_P2P_ATTR_MINOR_REASON,
1735 IEEE80211_P2P_ATTR_CAPABILITY,
1736 IEEE80211_P2P_ATTR_DEVICE_ID,
1737 IEEE80211_P2P_ATTR_GO_INTENT,
1738 IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
1739 IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
1740 IEEE80211_P2P_ATTR_GROUP_BSSID,
1741 IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
1742 IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
1743 IEEE80211_P2P_ATTR_MANAGABILITY,
1744 IEEE80211_P2P_ATTR_CHANNEL_LIST,
1745 IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
1746 IEEE80211_P2P_ATTR_DEVICE_INFO,
1747 IEEE80211_P2P_ATTR_GROUP_INFO,
1748 IEEE80211_P2P_ATTR_GROUP_ID,
1749 IEEE80211_P2P_ATTR_INTERFACE,
1750 IEEE80211_P2P_ATTR_OPER_CHANNEL,
1751 IEEE80211_P2P_ATTR_INVITE_FLAGS,
1752 /* 19 - 220: Reserved */
1753 IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
1754
1755 IEEE80211_P2P_ATTR_MAX
1756 };
1757
1758 /* Notice of Absence attribute - described in P2P spec 4.1.14 */
1759 /* Typical max value used here */
1760 #define IEEE80211_P2P_NOA_DESC_MAX 4
1761
1762 struct ieee80211_p2p_noa_desc {
1763 u8 count;
1764 __le32 duration;
1765 __le32 interval;
1766 __le32 start_time;
1767 } __packed;
1768
1769 struct ieee80211_p2p_noa_attr {
1770 u8 index;
1771 u8 oppps_ctwindow;
1772 struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
1773 } __packed;
1774
1775 #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7)
1776 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F
1777
1778 /**
1779 * struct ieee80211_bar - Block Ack Request frame format
1780 * @frame_control: Frame Control
1781 * @duration: Duration
1782 * @ra: RA
1783 * @ta: TA
1784 * @control: BAR Control
1785 * @start_seq_num: Starting Sequence Number (see Figure 9-37)
1786 *
1787 * This structure represents the "BlockAckReq frame format"
1788 * as described in IEEE Std 802.11-2020 section 9.3.1.7.
1789 */
1790 struct ieee80211_bar {
1791 __le16 frame_control;
1792 __le16 duration;
1793 __u8 ra[ETH_ALEN];
1794 __u8 ta[ETH_ALEN];
1795 __le16 control;
1796 __le16 start_seq_num;
1797 } __packed;
1798
1799 /* 802.11 BAR control masks */
1800 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000
1801 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002
1802 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004
1803 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000
1804 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12
1805
1806 #define IEEE80211_HT_MCS_MASK_LEN 10
1807
1808 /**
1809 * struct ieee80211_mcs_info - Supported MCS Set field
1810 * @rx_mask: RX mask
1811 * @rx_highest: highest supported RX rate. If set represents
1812 * the highest supported RX data rate in units of 1 Mbps.
1813 * If this field is 0 this value should not be used to
1814 * consider the highest RX data rate supported.
1815 * @tx_params: TX parameters
1816 * @reserved: Reserved bits
1817 *
1818 * This structure represents the "Supported MCS Set field" as
1819 * described in IEEE Std 802.11-2020 section 9.4.2.55.4.
1820 */
1821 struct ieee80211_mcs_info {
1822 u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
1823 __le16 rx_highest;
1824 u8 tx_params;
1825 u8 reserved[3];
1826 } __packed;
1827
1828 /* 802.11n HT capability MSC set */
1829 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff
1830 #define IEEE80211_HT_MCS_TX_DEFINED 0x01
1831 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02
1832 /* value 0 == 1 stream etc */
1833 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C
1834 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2
1835 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4
1836 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10
1837
1838 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3)))
1839
1840 /*
1841 * 802.11n D5.0 20.3.5 / 20.6 says:
1842 * - indices 0 to 7 and 32 are single spatial stream
1843 * - 8 to 31 are multiple spatial streams using equal modulation
1844 * [8..15 for two streams, 16..23 for three and 24..31 for four]
1845 * - remainder are multiple spatial streams using unequal modulation
1846 */
1847 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
1848 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
1849 (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
1850
1851 /**
1852 * struct ieee80211_ht_cap - HT capabilities element
1853 * @cap_info: HT Capability Information
1854 * @ampdu_params_info: A-MPDU Parameters
1855 * @mcs: Supported MCS Set
1856 * @extended_ht_cap_info: HT Extended Capabilities
1857 * @tx_BF_cap_info: Transmit Beamforming Capabilities
1858 * @antenna_selection_info: ASEL Capability
1859 *
1860 * This structure represents the payload of the "HT Capabilities
1861 * element" as described in IEEE Std 802.11-2020 section 9.4.2.55.
1862 */
1863 struct ieee80211_ht_cap {
1864 __le16 cap_info;
1865 u8 ampdu_params_info;
1866
1867 /* 16 bytes MCS information */
1868 struct ieee80211_mcs_info mcs;
1869
1870 __le16 extended_ht_cap_info;
1871 __le32 tx_BF_cap_info;
1872 u8 antenna_selection_info;
1873 } __packed;
1874
1875 /* 802.11n HT capabilities masks (for cap_info) */
1876 #define IEEE80211_HT_CAP_LDPC_CODING 0x0001
1877 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002
1878 #define IEEE80211_HT_CAP_SM_PS 0x000C
1879 #define IEEE80211_HT_CAP_SM_PS_SHIFT 2
1880 #define IEEE80211_HT_CAP_GRN_FLD 0x0010
1881 #define IEEE80211_HT_CAP_SGI_20 0x0020
1882 #define IEEE80211_HT_CAP_SGI_40 0x0040
1883 #define IEEE80211_HT_CAP_TX_STBC 0x0080
1884 #define IEEE80211_HT_CAP_RX_STBC 0x0300
1885 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8
1886 #define IEEE80211_HT_CAP_DELAY_BA 0x0400
1887 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800
1888 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000
1889 #define IEEE80211_HT_CAP_RESERVED 0x2000
1890 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000
1891 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000
1892
1893 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
1894 #define IEEE80211_HT_EXT_CAP_PCO 0x0001
1895 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006
1896 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1
1897 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300
1898 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8
1899 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400
1900 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800
1901
1902 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
1903 #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03
1904 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C
1905 #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2
1906
1907 /*
1908 * Maximum length of AMPDU that the STA can receive in high-throughput (HT).
1909 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1910 */
1911 enum ieee80211_max_ampdu_length_exp {
1912 IEEE80211_HT_MAX_AMPDU_8K = 0,
1913 IEEE80211_HT_MAX_AMPDU_16K = 1,
1914 IEEE80211_HT_MAX_AMPDU_32K = 2,
1915 IEEE80211_HT_MAX_AMPDU_64K = 3
1916 };
1917
1918 /*
1919 * Maximum length of AMPDU that the STA can receive in VHT.
1920 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1921 */
1922 enum ieee80211_vht_max_ampdu_length_exp {
1923 IEEE80211_VHT_MAX_AMPDU_8K = 0,
1924 IEEE80211_VHT_MAX_AMPDU_16K = 1,
1925 IEEE80211_VHT_MAX_AMPDU_32K = 2,
1926 IEEE80211_VHT_MAX_AMPDU_64K = 3,
1927 IEEE80211_VHT_MAX_AMPDU_128K = 4,
1928 IEEE80211_VHT_MAX_AMPDU_256K = 5,
1929 IEEE80211_VHT_MAX_AMPDU_512K = 6,
1930 IEEE80211_VHT_MAX_AMPDU_1024K = 7
1931 };
1932
1933 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13
1934
1935 /* Minimum MPDU start spacing */
1936 enum ieee80211_min_mpdu_spacing {
1937 IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */
1938 IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */
1939 IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */
1940 IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */
1941 IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */
1942 IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */
1943 IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */
1944 IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */
1945 };
1946
1947 /**
1948 * struct ieee80211_ht_operation - HT operation IE
1949 * @primary_chan: Primary Channel
1950 * @ht_param: HT Operation Information parameters
1951 * @operation_mode: HT Operation Information operation mode
1952 * @stbc_param: HT Operation Information STBC params
1953 * @basic_set: Basic HT-MCS Set
1954 *
1955 * This structure represents the payload of the "HT Operation
1956 * element" as described in IEEE Std 802.11-2020 section 9.4.2.56.
1957 */
1958 struct ieee80211_ht_operation {
1959 u8 primary_chan;
1960 u8 ht_param;
1961 __le16 operation_mode;
1962 __le16 stbc_param;
1963 u8 basic_set[16];
1964 } __packed;
1965
1966 /* for ht_param */
1967 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03
1968 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00
1969 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01
1970 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03
1971 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04
1972 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08
1973
1974 /* for operation_mode */
1975 #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003
1976 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0
1977 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1
1978 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2
1979 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3
1980 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004
1981 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010
1982 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5
1983 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0
1984
1985 /* for stbc_param */
1986 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040
1987 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080
1988 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100
1989 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200
1990 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400
1991 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800
1992
1993
1994 /* block-ack parameters */
1995 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
1996 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
1997 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
1998 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
1999 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
2000 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
2001
2002 /*
2003 * A-MPDU buffer sizes
2004 * According to HT size varies from 8 to 64 frames
2005 * HE adds the ability to have up to 256 frames.
2006 * EHT adds the ability to have up to 1K frames.
2007 */
2008 #define IEEE80211_MIN_AMPDU_BUF 0x8
2009 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40
2010 #define IEEE80211_MAX_AMPDU_BUF_HE 0x100
2011 #define IEEE80211_MAX_AMPDU_BUF_EHT 0x400
2012
2013
2014 /* Spatial Multiplexing Power Save Modes (for capability) */
2015 #define WLAN_HT_CAP_SM_PS_STATIC 0
2016 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1
2017 #define WLAN_HT_CAP_SM_PS_INVALID 2
2018 #define WLAN_HT_CAP_SM_PS_DISABLED 3
2019
2020 /* for SM power control field lower two bits */
2021 #define WLAN_HT_SMPS_CONTROL_DISABLED 0
2022 #define WLAN_HT_SMPS_CONTROL_STATIC 1
2023 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3
2024
2025 /**
2026 * struct ieee80211_vht_mcs_info - VHT MCS information
2027 * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
2028 * @rx_highest: Indicates highest long GI VHT PPDU data rate
2029 * STA can receive. Rate expressed in units of 1 Mbps.
2030 * If this field is 0 this value should not be used to
2031 * consider the highest RX data rate supported.
2032 * The top 3 bits of this field indicate the Maximum NSTS,total
2033 * (a beamformee capability.)
2034 * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
2035 * @tx_highest: Indicates highest long GI VHT PPDU data rate
2036 * STA can transmit. Rate expressed in units of 1 Mbps.
2037 * If this field is 0 this value should not be used to
2038 * consider the highest TX data rate supported.
2039 * The top 2 bits of this field are reserved, the
2040 * 3rd bit from the top indiciates VHT Extended NSS BW
2041 * Capability.
2042 */
2043 struct ieee80211_vht_mcs_info {
2044 __le16 rx_mcs_map;
2045 __le16 rx_highest;
2046 __le16 tx_mcs_map;
2047 __le16 tx_highest;
2048 } __packed;
2049
2050 /* for rx_highest */
2051 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13
2052 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
2053
2054 /* for tx_highest */
2055 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13)
2056
2057 /**
2058 * enum ieee80211_vht_mcs_support - VHT MCS support definitions
2059 * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2060 * number of streams
2061 * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
2062 * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2063 * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
2064 *
2065 * These definitions are used in each 2-bit subfield of the @rx_mcs_map
2066 * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
2067 * both split into 8 subfields by number of streams. These values indicate
2068 * which MCSes are supported for the number of streams the value appears
2069 * for.
2070 */
2071 enum ieee80211_vht_mcs_support {
2072 IEEE80211_VHT_MCS_SUPPORT_0_7 = 0,
2073 IEEE80211_VHT_MCS_SUPPORT_0_8 = 1,
2074 IEEE80211_VHT_MCS_SUPPORT_0_9 = 2,
2075 IEEE80211_VHT_MCS_NOT_SUPPORTED = 3,
2076 };
2077
2078 /**
2079 * struct ieee80211_vht_cap - VHT capabilities
2080 *
2081 * This structure is the "VHT capabilities element" as
2082 * described in 802.11ac D3.0 8.4.2.160
2083 * @vht_cap_info: VHT capability info
2084 * @supp_mcs: VHT MCS supported rates
2085 */
2086 struct ieee80211_vht_cap {
2087 __le32 vht_cap_info;
2088 struct ieee80211_vht_mcs_info supp_mcs;
2089 } __packed;
2090
2091 /**
2092 * enum ieee80211_vht_chanwidth - VHT channel width
2093 * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
2094 * determine the channel width (20 or 40 MHz)
2095 * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
2096 * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
2097 * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
2098 */
2099 enum ieee80211_vht_chanwidth {
2100 IEEE80211_VHT_CHANWIDTH_USE_HT = 0,
2101 IEEE80211_VHT_CHANWIDTH_80MHZ = 1,
2102 IEEE80211_VHT_CHANWIDTH_160MHZ = 2,
2103 IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3,
2104 };
2105
2106 /**
2107 * struct ieee80211_vht_operation - VHT operation IE
2108 *
2109 * This structure is the "VHT operation element" as
2110 * described in 802.11ac D3.0 8.4.2.161
2111 * @chan_width: Operating channel width
2112 * @center_freq_seg0_idx: center freq segment 0 index
2113 * @center_freq_seg1_idx: center freq segment 1 index
2114 * @basic_mcs_set: VHT Basic MCS rate set
2115 */
2116 struct ieee80211_vht_operation {
2117 u8 chan_width;
2118 u8 center_freq_seg0_idx;
2119 u8 center_freq_seg1_idx;
2120 __le16 basic_mcs_set;
2121 } __packed;
2122
2123 /**
2124 * struct ieee80211_he_cap_elem - HE capabilities element
2125 * @mac_cap_info: HE MAC Capabilities Information
2126 * @phy_cap_info: HE PHY Capabilities Information
2127 *
2128 * This structure represents the fixed fields of the payload of the
2129 * "HE capabilities element" as described in IEEE Std 802.11ax-2021
2130 * sections 9.4.2.248.2 and 9.4.2.248.3.
2131 */
2132 struct ieee80211_he_cap_elem {
2133 u8 mac_cap_info[6];
2134 u8 phy_cap_info[11];
2135 } __packed;
2136
2137 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5
2138
2139 /**
2140 * enum ieee80211_he_mcs_support - HE MCS support definitions
2141 * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2142 * number of streams
2143 * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2144 * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
2145 * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
2146 *
2147 * These definitions are used in each 2-bit subfield of the rx_mcs_*
2148 * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
2149 * both split into 8 subfields by number of streams. These values indicate
2150 * which MCSes are supported for the number of streams the value appears
2151 * for.
2152 */
2153 enum ieee80211_he_mcs_support {
2154 IEEE80211_HE_MCS_SUPPORT_0_7 = 0,
2155 IEEE80211_HE_MCS_SUPPORT_0_9 = 1,
2156 IEEE80211_HE_MCS_SUPPORT_0_11 = 2,
2157 IEEE80211_HE_MCS_NOT_SUPPORTED = 3,
2158 };
2159
2160 /**
2161 * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
2162 *
2163 * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
2164 * described in P802.11ax_D2.0 section 9.4.2.237.4
2165 *
2166 * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2167 * widths less than 80MHz.
2168 * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2169 * widths less than 80MHz.
2170 * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2171 * width 160MHz.
2172 * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2173 * width 160MHz.
2174 * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
2175 * channel width 80p80MHz.
2176 * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
2177 * channel width 80p80MHz.
2178 */
2179 struct ieee80211_he_mcs_nss_supp {
2180 __le16 rx_mcs_80;
2181 __le16 tx_mcs_80;
2182 __le16 rx_mcs_160;
2183 __le16 tx_mcs_160;
2184 __le16 rx_mcs_80p80;
2185 __le16 tx_mcs_80p80;
2186 } __packed;
2187
2188 /**
2189 * struct ieee80211_he_operation - HE Operation element
2190 * @he_oper_params: HE Operation Parameters + BSS Color Information
2191 * @he_mcs_nss_set: Basic HE-MCS And NSS Set
2192 * @optional: Optional fields VHT Operation Information, Max Co-Hosted
2193 * BSSID Indicator, and 6 GHz Operation Information
2194 *
2195 * This structure represents the payload of the "HE Operation
2196 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249.
2197 */
2198 struct ieee80211_he_operation {
2199 __le32 he_oper_params;
2200 __le16 he_mcs_nss_set;
2201 u8 optional[];
2202 } __packed;
2203
2204 /**
2205 * struct ieee80211_he_spr - Spatial Reuse Parameter Set element
2206 * @he_sr_control: SR Control
2207 * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD
2208 * Min Offset, SRG OBSS PD Max Offset, SRG BSS Color
2209 * Bitmap, and SRG Partial BSSID Bitmap
2210 *
2211 * This structure represents the payload of the "Spatial Reuse
2212 * Parameter Set element" as described in IEEE Std 802.11ax-2021
2213 * section 9.4.2.252.
2214 */
2215 struct ieee80211_he_spr {
2216 u8 he_sr_control;
2217 u8 optional[];
2218 } __packed;
2219
2220 /**
2221 * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
2222 * @aifsn: ACI/AIFSN
2223 * @ecw_min_max: ECWmin/ECWmax
2224 * @mu_edca_timer: MU EDCA Timer
2225 *
2226 * This structure represents the "MU AC Parameter Record" as described
2227 * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p.
2228 */
2229 struct ieee80211_he_mu_edca_param_ac_rec {
2230 u8 aifsn;
2231 u8 ecw_min_max;
2232 u8 mu_edca_timer;
2233 } __packed;
2234
2235 /**
2236 * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
2237 * @mu_qos_info: QoS Info
2238 * @ac_be: MU AC_BE Parameter Record
2239 * @ac_bk: MU AC_BK Parameter Record
2240 * @ac_vi: MU AC_VI Parameter Record
2241 * @ac_vo: MU AC_VO Parameter Record
2242 *
2243 * This structure represents the payload of the "MU EDCA Parameter Set
2244 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251.
2245 */
2246 struct ieee80211_mu_edca_param_set {
2247 u8 mu_qos_info;
2248 struct ieee80211_he_mu_edca_param_ac_rec ac_be;
2249 struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
2250 struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
2251 struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
2252 } __packed;
2253
2254 #define IEEE80211_EHT_MCS_NSS_RX 0x0f
2255 #define IEEE80211_EHT_MCS_NSS_TX 0xf0
2256
2257 /**
2258 * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max
2259 * supported NSS for per MCS.
2260 *
2261 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2262 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2263 * for Tx.
2264 *
2265 * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams
2266 * supported for reception and the maximum number of spatial streams
2267 * supported for transmission for MCS 0 - 7.
2268 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2269 * supported for reception and the maximum number of spatial streams
2270 * supported for transmission for MCS 8 - 9.
2271 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2272 * supported for reception and the maximum number of spatial streams
2273 * supported for transmission for MCS 10 - 11.
2274 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2275 * supported for reception and the maximum number of spatial streams
2276 * supported for transmission for MCS 12 - 13.
2277 * @rx_tx_max_nss: array of the previous fields for easier loop access
2278 */
2279 struct ieee80211_eht_mcs_nss_supp_20mhz_only {
2280 union {
2281 struct {
2282 u8 rx_tx_mcs7_max_nss;
2283 u8 rx_tx_mcs9_max_nss;
2284 u8 rx_tx_mcs11_max_nss;
2285 u8 rx_tx_mcs13_max_nss;
2286 };
2287 u8 rx_tx_max_nss[4];
2288 };
2289 };
2290
2291 /**
2292 * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except
2293 * 20MHz only stations).
2294 *
2295 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2296 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2297 * for Tx.
2298 *
2299 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2300 * supported for reception and the maximum number of spatial streams
2301 * supported for transmission for MCS 0 - 9.
2302 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2303 * supported for reception and the maximum number of spatial streams
2304 * supported for transmission for MCS 10 - 11.
2305 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2306 * supported for reception and the maximum number of spatial streams
2307 * supported for transmission for MCS 12 - 13.
2308 * @rx_tx_max_nss: array of the previous fields for easier loop access
2309 */
2310 struct ieee80211_eht_mcs_nss_supp_bw {
2311 union {
2312 struct {
2313 u8 rx_tx_mcs9_max_nss;
2314 u8 rx_tx_mcs11_max_nss;
2315 u8 rx_tx_mcs13_max_nss;
2316 };
2317 u8 rx_tx_max_nss[3];
2318 };
2319 };
2320
2321 /**
2322 * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data
2323 *
2324 * This structure is the "EHT Capabilities element" fixed fields as
2325 * described in P802.11be_D2.0 section 9.4.2.313.
2326 *
2327 * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP*
2328 * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP*
2329 */
2330 struct ieee80211_eht_cap_elem_fixed {
2331 u8 mac_cap_info[2];
2332 u8 phy_cap_info[9];
2333 } __packed;
2334
2335 /**
2336 * struct ieee80211_eht_cap_elem - EHT capabilities element
2337 * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed
2338 * @optional: optional parts
2339 */
2340 struct ieee80211_eht_cap_elem {
2341 struct ieee80211_eht_cap_elem_fixed fixed;
2342
2343 /*
2344 * Followed by:
2345 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets.
2346 * EHT PPE Thresholds field: variable length.
2347 */
2348 u8 optional[];
2349 } __packed;
2350
2351 #define IEEE80211_EHT_OPER_INFO_PRESENT 0x01
2352 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT 0x02
2353 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION 0x04
2354 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT 0x08
2355 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK 0x30
2356
2357 /**
2358 * struct ieee80211_eht_operation - eht operation element
2359 *
2360 * This structure is the "EHT Operation Element" fields as
2361 * described in P802.11be_D2.0 section 9.4.2.311
2362 *
2363 * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_*
2364 * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in
2365 * EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and
2366 * receive.
2367 * @optional: optional parts
2368 */
2369 struct ieee80211_eht_operation {
2370 u8 params;
2371 struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss;
2372 u8 optional[];
2373 } __packed;
2374
2375 /**
2376 * struct ieee80211_eht_operation_info - eht operation information
2377 *
2378 * @control: EHT operation information control.
2379 * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz
2380 * EHT BSS.
2381 * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS.
2382 * @optional: optional parts
2383 */
2384 struct ieee80211_eht_operation_info {
2385 u8 control;
2386 u8 ccfs0;
2387 u8 ccfs1;
2388 u8 optional[];
2389 } __packed;
2390
2391 /* 802.11ac VHT Capabilities */
2392 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000
2393 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001
2394 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002
2395 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003
2396 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004
2397 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008
2398 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C
2399 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2
2400 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010
2401 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020
2402 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040
2403 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080
2404 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100
2405 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200
2406 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300
2407 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400
2408 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700
2409 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8
2410 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800
2411 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000
2412 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13
2413 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \
2414 (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
2415 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16
2416 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \
2417 (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
2418 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000
2419 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000
2420 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000
2421 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000
2422 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23
2423 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \
2424 (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
2425 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000
2426 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000
2427 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000
2428 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000
2429 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30
2430 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000
2431
2432 /**
2433 * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
2434 * @cap: VHT capabilities of the peer
2435 * @bw: bandwidth to use
2436 * @mcs: MCS index to use
2437 * @ext_nss_bw_capable: indicates whether or not the local transmitter
2438 * (rate scaling algorithm) can deal with the new logic
2439 * (dot11VHTExtendedNSSBWCapable)
2440 * @max_vht_nss: current maximum NSS as advertised by the STA in
2441 * operating mode notification, can be 0 in which case the
2442 * capability data will be used to derive this (from MCS support)
2443 * Return: The maximum NSS that can be used for the given bandwidth/MCS
2444 * combination
2445 *
2446 * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
2447 * vary for a given BW/MCS. This function parses the data.
2448 *
2449 * Note: This function is exported by cfg80211.
2450 */
2451 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2452 enum ieee80211_vht_chanwidth bw,
2453 int mcs, bool ext_nss_bw_capable,
2454 unsigned int max_vht_nss);
2455
2456 /* 802.11ax HE MAC capabilities */
2457 #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01
2458 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02
2459 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04
2460 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00
2461 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08
2462 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10
2463 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18
2464 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18
2465 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00
2466 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20
2467 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40
2468 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60
2469 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80
2470 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0
2471 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0
2472 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0
2473 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0
2474
2475 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00
2476 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01
2477 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02
2478 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03
2479 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03
2480 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00
2481 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04
2482 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08
2483 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c
2484 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00
2485 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10
2486 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20
2487 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30
2488 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40
2489 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50
2490 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60
2491 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70
2492 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70
2493
2494 /* Link adaptation is split between byte HE_MAC_CAP1 and
2495 * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
2496 * in which case the following values apply:
2497 * 0 = No feedback.
2498 * 1 = reserved.
2499 * 2 = Unsolicited feedback.
2500 * 3 = both
2501 */
2502 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80
2503
2504 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01
2505 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02
2506 #define IEEE80211_HE_MAC_CAP2_TRS 0x04
2507 #define IEEE80211_HE_MAC_CAP2_BSR 0x08
2508 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10
2509 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20
2510 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40
2511 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80
2512
2513 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02
2514 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04
2515
2516 /* The maximum length of an A-MDPU is defined by the combination of the Maximum
2517 * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
2518 * same field in the HE capabilities.
2519 */
2520 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 0x00
2521 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 0x08
2522 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 0x10
2523 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 0x18
2524 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18
2525 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20
2526 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40
2527 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80
2528
2529 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01
2530 #define IEEE80211_HE_MAC_CAP4_QTP 0x02
2531 #define IEEE80211_HE_MAC_CAP4_BQR 0x04
2532 #define IEEE80211_HE_MAC_CAP4_PSR_RESP 0x08
2533 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10
2534 #define IEEE80211_HE_MAC_CAP4_OPS 0x20
2535 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU 0x40
2536 /* Multi TID agg TX is split between byte #4 and #5
2537 * The value is a combination of B39,B40,B41
2538 */
2539 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80
2540
2541 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01
2542 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02
2543 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION 0x04
2544 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08
2545 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10
2546 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20
2547 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40
2548 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80
2549
2550 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20
2551 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16
2552 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR 13
2553
2554 /* 802.11ax HE PHY capabilities */
2555 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02
2556 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04
2557 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08
2558 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10
2559 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL 0x1e
2560
2561 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20
2562 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40
2563 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe
2564
2565 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01
2566 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02
2567 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04
2568 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08
2569 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f
2570 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10
2571 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20
2572 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40
2573 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
2574 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80
2575
2576 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01
2577 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02
2578 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04
2579 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08
2580 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10
2581 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20
2582
2583 /* Note that the meaning of UL MU below is different between an AP and a non-AP
2584 * sta, where in the AP case it indicates support for Rx and in the non-AP sta
2585 * case it indicates support for Tx.
2586 */
2587 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40
2588 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80
2589
2590 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00
2591 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01
2592 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02
2593 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03
2594 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03
2595 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00
2596 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04
2597 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00
2598 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08
2599 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10
2600 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18
2601 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18
2602 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00
2603 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20
2604 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU 0x40
2605 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80
2606
2607 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01
2608 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02
2609
2610 /* Minimal allowed value of Max STS under 80MHz is 3 */
2611 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c
2612 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10
2613 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14
2614 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18
2615 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c
2616 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c
2617
2618 /* Minimal allowed value of Max STS above 80MHz is 3 */
2619 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60
2620 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80
2621 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0
2622 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0
2623 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0
2624 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0
2625
2626 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00
2627 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01
2628 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02
2629 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03
2630 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04
2631 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05
2632 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06
2633 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07
2634 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07
2635
2636 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00
2637 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08
2638 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10
2639 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18
2640 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20
2641 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28
2642 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30
2643 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38
2644 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38
2645
2646 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40
2647 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80
2648
2649 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01
2650 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02
2651 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB 0x04
2652 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB 0x08
2653 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10
2654 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20
2655 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40
2656 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80
2657
2658 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR 0x01
2659 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP 0x02
2660 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04
2661 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08
2662 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10
2663 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18
2664 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20
2665 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28
2666 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30
2667 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38
2668 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38
2669 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40
2670 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80
2671
2672 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01
2673 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02
2674 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04
2675 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08
2676 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10
2677 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20
2678 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00
2679 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40
2680 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80
2681 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0
2682 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0
2683
2684 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01
2685 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02
2686 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04
2687 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08
2688 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10
2689 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20
2690 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US 0x0
2691 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US 0x1
2692 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US 0x2
2693 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 0x3
2694 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS 6
2695 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK 0xc0
2696
2697 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF 0x01
2698
2699 /* 802.11ax HE TX/RX MCS NSS Support */
2700 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3)
2701 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6)
2702 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11)
2703 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0
2704 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800
2705
2706 /* TX/RX HE MCS Support field Highest MCS subfield encoding */
2707 enum ieee80211_he_highest_mcs_supported_subfield_enc {
2708 HIGHEST_MCS_SUPPORTED_MCS7 = 0,
2709 HIGHEST_MCS_SUPPORTED_MCS8,
2710 HIGHEST_MCS_SUPPORTED_MCS9,
2711 HIGHEST_MCS_SUPPORTED_MCS10,
2712 HIGHEST_MCS_SUPPORTED_MCS11,
2713 };
2714
2715 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
2716 static inline u8
ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap)2717 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
2718 {
2719 u8 count = 4;
2720
2721 if (he_cap->phy_cap_info[0] &
2722 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2723 count += 4;
2724
2725 if (he_cap->phy_cap_info[0] &
2726 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2727 count += 4;
2728
2729 return count;
2730 }
2731
2732 /* 802.11ax HE PPE Thresholds */
2733 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1)
2734 #define IEEE80211_PPE_THRES_NSS_POS (0)
2735 #define IEEE80211_PPE_THRES_NSS_MASK (7)
2736 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \
2737 (BIT(5) | BIT(6))
2738 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78
2739 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3)
2740 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3)
2741 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE (7)
2742
2743 /*
2744 * Calculate 802.11ax HE capabilities IE PPE field size
2745 * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
2746 */
2747 static inline u8
ieee80211_he_ppe_size(u8 ppe_thres_hdr,const u8 * phy_cap_info)2748 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
2749 {
2750 u8 n;
2751
2752 if ((phy_cap_info[6] &
2753 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2754 return 0;
2755
2756 n = hweight8(ppe_thres_hdr &
2757 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2758 n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
2759 IEEE80211_PPE_THRES_NSS_POS));
2760
2761 /*
2762 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2763 * total size.
2764 */
2765 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2766 n = DIV_ROUND_UP(n, 8);
2767
2768 return n;
2769 }
2770
ieee80211_he_capa_size_ok(const u8 * data,u8 len)2771 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len)
2772 {
2773 const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data;
2774 u8 needed = sizeof(*he_cap_ie_elem);
2775
2776 if (len < needed)
2777 return false;
2778
2779 needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem);
2780 if (len < needed)
2781 return false;
2782
2783 if (he_cap_ie_elem->phy_cap_info[6] &
2784 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2785 if (len < needed + 1)
2786 return false;
2787 needed += ieee80211_he_ppe_size(data[needed],
2788 he_cap_ie_elem->phy_cap_info);
2789 }
2790
2791 return len >= needed;
2792 }
2793
2794 /* HE Operation defines */
2795 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007
2796 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008
2797 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0
2798 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4
2799 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000
2800 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000
2801 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000
2802 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000
2803 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000
2804 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24
2805 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000
2806 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000
2807
2808 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP 0
2809 #define IEEE80211_6GHZ_CTRL_REG_SP_AP 1
2810 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP 2
2811 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP 3
2812 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP 4
2813
2814 /**
2815 * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field
2816 * @primary: primary channel
2817 * @control: control flags
2818 * @ccfs0: channel center frequency segment 0
2819 * @ccfs1: channel center frequency segment 1
2820 * @minrate: minimum rate (in 1 Mbps units)
2821 */
2822 struct ieee80211_he_6ghz_oper {
2823 u8 primary;
2824 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3
2825 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0
2826 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1
2827 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2
2828 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3
2829 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4
2830 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO 0x38
2831 u8 control;
2832 u8 ccfs0;
2833 u8 ccfs1;
2834 u8 minrate;
2835 } __packed;
2836
2837 /* transmit power interpretation type of transmit power envelope element */
2838 enum ieee80211_tx_power_intrpt_type {
2839 IEEE80211_TPE_LOCAL_EIRP,
2840 IEEE80211_TPE_LOCAL_EIRP_PSD,
2841 IEEE80211_TPE_REG_CLIENT_EIRP,
2842 IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2843 };
2844
2845 /* category type of transmit power envelope element */
2846 enum ieee80211_tx_power_category_6ghz {
2847 IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0,
2848 IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1,
2849 };
2850
2851 /*
2852 * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP,
2853 * setting to 63.5 dBm means no constraint.
2854 */
2855 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT 127
2856
2857 /*
2858 * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2859 * setting to 127 indicates no PSD limit for the 20 MHz channel.
2860 */
2861 #define IEEE80211_TPE_PSD_NO_LIMIT 127
2862
2863 /**
2864 * struct ieee80211_tx_pwr_env - Transmit Power Envelope
2865 * @info: Transmit Power Information field
2866 * @variable: Maximum Transmit Power field
2867 *
2868 * This structure represents the payload of the "Transmit Power
2869 * Envelope element" as described in IEEE Std 802.11ax-2021 section
2870 * 9.4.2.161
2871 */
2872 struct ieee80211_tx_pwr_env {
2873 u8 info;
2874 u8 variable[];
2875 } __packed;
2876
2877 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7
2878 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38
2879 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0
2880
2881 #define IEEE80211_TX_PWR_ENV_EXT_COUNT 0xF
2882
ieee80211_valid_tpe_element(const u8 * data,u8 len)2883 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len)
2884 {
2885 const struct ieee80211_tx_pwr_env *env = (const void *)data;
2886 u8 count, interpret, category;
2887 u8 needed = sizeof(*env);
2888 u8 N; /* also called N in the spec */
2889
2890 if (len < needed)
2891 return false;
2892
2893 count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT);
2894 interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET);
2895 category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY);
2896
2897 switch (category) {
2898 case IEEE80211_TPE_CAT_6GHZ_DEFAULT:
2899 case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE:
2900 break;
2901 default:
2902 return false;
2903 }
2904
2905 switch (interpret) {
2906 case IEEE80211_TPE_LOCAL_EIRP:
2907 case IEEE80211_TPE_REG_CLIENT_EIRP:
2908 if (count > 3)
2909 return false;
2910
2911 /* count == 0 encodes 1 value for 20 MHz, etc. */
2912 needed += count + 1;
2913
2914 if (len < needed)
2915 return false;
2916
2917 /* there can be extension fields not accounted for in 'count' */
2918
2919 return true;
2920 case IEEE80211_TPE_LOCAL_EIRP_PSD:
2921 case IEEE80211_TPE_REG_CLIENT_EIRP_PSD:
2922 if (count > 4)
2923 return false;
2924
2925 N = count ? 1 << (count - 1) : 1;
2926 needed += N;
2927
2928 if (len < needed)
2929 return false;
2930
2931 if (len > needed) {
2932 u8 K = u8_get_bits(env->variable[N],
2933 IEEE80211_TX_PWR_ENV_EXT_COUNT);
2934
2935 needed += 1 + K;
2936 if (len < needed)
2937 return false;
2938 }
2939
2940 return true;
2941 }
2942
2943 return false;
2944 }
2945
2946 /*
2947 * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
2948 * @he_oper_ie: byte data of the He Operations IE, stating from the byte
2949 * after the ext ID byte. It is assumed that he_oper_ie has at least
2950 * sizeof(struct ieee80211_he_operation) bytes, the caller must have
2951 * validated this.
2952 * @return the actual size of the IE data (not including header), or 0 on error
2953 */
2954 static inline u8
ieee80211_he_oper_size(const u8 * he_oper_ie)2955 ieee80211_he_oper_size(const u8 *he_oper_ie)
2956 {
2957 const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie;
2958 u8 oper_len = sizeof(struct ieee80211_he_operation);
2959 u32 he_oper_params;
2960
2961 /* Make sure the input is not NULL */
2962 if (!he_oper_ie)
2963 return 0;
2964
2965 /* Calc required length */
2966 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2967 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
2968 oper_len += 3;
2969 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
2970 oper_len++;
2971 if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
2972 oper_len += sizeof(struct ieee80211_he_6ghz_oper);
2973
2974 /* Add the first byte (extension ID) to the total length */
2975 oper_len++;
2976
2977 return oper_len;
2978 }
2979
2980 /**
2981 * ieee80211_he_6ghz_oper - obtain 6 GHz operation field
2982 * @he_oper: HE operation element (must be pre-validated for size)
2983 * but may be %NULL
2984 *
2985 * Return: a pointer to the 6 GHz operation field, or %NULL
2986 */
2987 static inline const struct ieee80211_he_6ghz_oper *
ieee80211_he_6ghz_oper(const struct ieee80211_he_operation * he_oper)2988 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper)
2989 {
2990 const u8 *ret;
2991 u32 he_oper_params;
2992
2993 if (!he_oper)
2994 return NULL;
2995
2996 ret = (const void *)&he_oper->optional;
2997
2998 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2999
3000 if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO))
3001 return NULL;
3002 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
3003 ret += 3;
3004 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
3005 ret++;
3006
3007 return (const void *)ret;
3008 }
3009
3010 /* HE Spatial Reuse defines */
3011 #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0)
3012 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1)
3013 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2)
3014 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3)
3015 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4)
3016
3017 /*
3018 * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size
3019 * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte
3020 * after the ext ID byte. It is assumed that he_spr_ie has at least
3021 * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated
3022 * this
3023 * @return the actual size of the IE data (not including header), or 0 on error
3024 */
3025 static inline u8
ieee80211_he_spr_size(const u8 * he_spr_ie)3026 ieee80211_he_spr_size(const u8 *he_spr_ie)
3027 {
3028 const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie;
3029 u8 spr_len = sizeof(struct ieee80211_he_spr);
3030 u8 he_spr_params;
3031
3032 /* Make sure the input is not NULL */
3033 if (!he_spr_ie)
3034 return 0;
3035
3036 /* Calc required length */
3037 he_spr_params = he_spr->he_sr_control;
3038 if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
3039 spr_len++;
3040 if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT)
3041 spr_len += 18;
3042
3043 /* Add the first byte (extension ID) to the total length */
3044 spr_len++;
3045
3046 return spr_len;
3047 }
3048
3049 /* S1G Capabilities Information field */
3050 #define IEEE80211_S1G_CAPABILITY_LEN 15
3051
3052 #define S1G_CAP0_S1G_LONG BIT(0)
3053 #define S1G_CAP0_SGI_1MHZ BIT(1)
3054 #define S1G_CAP0_SGI_2MHZ BIT(2)
3055 #define S1G_CAP0_SGI_4MHZ BIT(3)
3056 #define S1G_CAP0_SGI_8MHZ BIT(4)
3057 #define S1G_CAP0_SGI_16MHZ BIT(5)
3058 #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6)
3059
3060 #define S1G_SUPP_CH_WIDTH_2 0
3061 #define S1G_SUPP_CH_WIDTH_4 1
3062 #define S1G_SUPP_CH_WIDTH_8 2
3063 #define S1G_SUPP_CH_WIDTH_16 3
3064 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \
3065 cap[0])) << 1)
3066
3067 #define S1G_CAP1_RX_LDPC BIT(0)
3068 #define S1G_CAP1_TX_STBC BIT(1)
3069 #define S1G_CAP1_RX_STBC BIT(2)
3070 #define S1G_CAP1_SU_BFER BIT(3)
3071 #define S1G_CAP1_SU_BFEE BIT(4)
3072 #define S1G_CAP1_BFEE_STS GENMASK(7, 5)
3073
3074 #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0)
3075 #define S1G_CAP2_MU_BFER BIT(3)
3076 #define S1G_CAP2_MU_BFEE BIT(4)
3077 #define S1G_CAP2_PLUS_HTC_VHT BIT(5)
3078 #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6)
3079
3080 #define S1G_CAP3_RD_RESPONDER BIT(0)
3081 #define S1G_CAP3_HT_DELAYED_BA BIT(1)
3082 #define S1G_CAP3_MAX_MPDU_LEN BIT(2)
3083 #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3)
3084 #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5)
3085
3086 #define S1G_CAP4_UPLINK_SYNC BIT(0)
3087 #define S1G_CAP4_DYNAMIC_AID BIT(1)
3088 #define S1G_CAP4_BAT BIT(2)
3089 #define S1G_CAP4_TIME_ADE BIT(3)
3090 #define S1G_CAP4_NON_TIM BIT(4)
3091 #define S1G_CAP4_GROUP_AID BIT(5)
3092 #define S1G_CAP4_STA_TYPE GENMASK(7, 6)
3093
3094 #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0)
3095 #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1)
3096 #define S1G_CAP5_AMSDU BIT(2)
3097 #define S1G_CAP5_AMPDU BIT(3)
3098 #define S1G_CAP5_ASYMMETRIC_BA BIT(4)
3099 #define S1G_CAP5_FLOW_CONTROL BIT(5)
3100 #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6)
3101
3102 #define S1G_CAP6_OBSS_MITIGATION BIT(0)
3103 #define S1G_CAP6_FRAGMENT_BA BIT(1)
3104 #define S1G_CAP6_NDP_PS_POLL BIT(2)
3105 #define S1G_CAP6_RAW_OPERATION BIT(3)
3106 #define S1G_CAP6_PAGE_SLICING BIT(4)
3107 #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5)
3108 #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6)
3109
3110 #define S1G_CAP7_TACK_AS_PS_POLL BIT(0)
3111 #define S1G_CAP7_DUP_1MHZ BIT(1)
3112 #define S1G_CAP7_MCS_NEGOTIATION BIT(2)
3113 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3)
3114 #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4)
3115 #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5)
3116 #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6)
3117 #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7)
3118
3119 #define S1G_CAP8_TWT_GROUPING BIT(0)
3120 #define S1G_CAP8_BDT BIT(1)
3121 #define S1G_CAP8_COLOR GENMASK(4, 2)
3122 #define S1G_CAP8_TWT_REQUEST BIT(5)
3123 #define S1G_CAP8_TWT_RESPOND BIT(6)
3124 #define S1G_CAP8_PV1_FRAME BIT(7)
3125
3126 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0)
3127
3128 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0)
3129 #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1)
3130
3131 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */
3132 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS 0x01
3133 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL 0x02
3134 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 0x04
3135 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 0x08
3136 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT 0x10
3137 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC 0x20
3138 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK 0xc0
3139 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895 0
3140 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991 1
3141 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454 2
3142
3143 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK 0x01
3144
3145 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */
3146 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ 0x02
3147 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ 0x04
3148 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI 0x08
3149 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO 0x10
3150 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER 0x20
3151 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE 0x40
3152
3153 /* EHT beamformee number of spatial streams <= 80MHz is split */
3154 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK 0x80
3155 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK 0x03
3156
3157 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK 0x1c
3158 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK 0xe0
3159
3160 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK 0x07
3161 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK 0x38
3162
3163 /* EHT number of sounding dimensions for 320MHz is split */
3164 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK 0xc0
3165 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK 0x01
3166 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK 0x02
3167 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK 0x04
3168 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK 0x08
3169 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK 0x10
3170 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK 0x20
3171 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK 0x40
3172 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK 0x80
3173
3174 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO 0x01
3175 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP 0x02
3176 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP 0x04
3177 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI 0x08
3178 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK 0xf0
3179
3180 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK 0x01
3181 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP 0x02
3182 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP 0x04
3183 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT 0x08
3184 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK 0x30
3185 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US 0
3186 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US 1
3187 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US 2
3188 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US 3
3189
3190 /* Maximum number of supported EHT LTF is split */
3191 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK 0xc0
3192 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF 0x40
3193 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK 0x07
3194
3195 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ 0x08
3196 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ 0x30
3197 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ 0x40
3198 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK 0x78
3199 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP 0x80
3200
3201 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW 0x01
3202 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ 0x02
3203 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ 0x04
3204 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ 0x08
3205 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ 0x10
3206 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ 0x20
3207 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ 0x40
3208 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT 0x80
3209
3210 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA 0x01
3211 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA 0x02
3212
3213 /*
3214 * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311
3215 */
3216 #define IEEE80211_EHT_OPER_CHAN_WIDTH 0x7
3217 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ 0
3218 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ 1
3219 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ 2
3220 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ 3
3221 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ 4
3222
3223 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */
3224 static inline u8
ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap,const struct ieee80211_eht_cap_elem_fixed * eht_cap,bool from_ap)3225 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap,
3226 const struct ieee80211_eht_cap_elem_fixed *eht_cap,
3227 bool from_ap)
3228 {
3229 u8 count = 0;
3230
3231 /* on 2.4 GHz, if it supports 40 MHz, the result is 3 */
3232 if (he_cap->phy_cap_info[0] &
3233 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
3234 return 3;
3235
3236 /* on 2.4 GHz, these three bits are reserved, so should be 0 */
3237 if (he_cap->phy_cap_info[0] &
3238 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)
3239 count += 3;
3240
3241 if (he_cap->phy_cap_info[0] &
3242 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
3243 count += 3;
3244
3245 if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
3246 count += 3;
3247
3248 if (count)
3249 return count;
3250
3251 return from_ap ? 3 : 4;
3252 }
3253
3254 /* 802.11be EHT PPE Thresholds */
3255 #define IEEE80211_EHT_PPE_THRES_NSS_POS 0
3256 #define IEEE80211_EHT_PPE_THRES_NSS_MASK 0xf
3257 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK 0x1f0
3258 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE 3
3259 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE 9
3260
3261 /*
3262 * Calculate 802.11be EHT capabilities IE EHT field size
3263 */
3264 static inline u8
ieee80211_eht_ppe_size(u16 ppe_thres_hdr,const u8 * phy_cap_info)3265 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info)
3266 {
3267 u32 n;
3268
3269 if (!(phy_cap_info[5] &
3270 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT))
3271 return 0;
3272
3273 n = hweight16(ppe_thres_hdr &
3274 IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
3275 n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK);
3276
3277 /*
3278 * Each pair is 6 bits, and we need to add the 9 "header" bits to the
3279 * total size.
3280 */
3281 n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 +
3282 IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
3283 return DIV_ROUND_UP(n, 8);
3284 }
3285
3286 static inline bool
ieee80211_eht_capa_size_ok(const u8 * he_capa,const u8 * data,u8 len,bool from_ap)3287 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len,
3288 bool from_ap)
3289 {
3290 const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data;
3291 u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed);
3292
3293 if (len < needed || !he_capa)
3294 return false;
3295
3296 needed += ieee80211_eht_mcs_nss_size((const void *)he_capa,
3297 (const void *)data,
3298 from_ap);
3299 if (len < needed)
3300 return false;
3301
3302 if (elem->phy_cap_info[5] &
3303 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
3304 u16 ppe_thres_hdr;
3305
3306 if (len < needed + sizeof(ppe_thres_hdr))
3307 return false;
3308
3309 ppe_thres_hdr = get_unaligned_le16(data + needed);
3310 needed += ieee80211_eht_ppe_size(ppe_thres_hdr,
3311 elem->phy_cap_info);
3312 }
3313
3314 return len >= needed;
3315 }
3316
3317 static inline bool
ieee80211_eht_oper_size_ok(const u8 * data,u8 len)3318 ieee80211_eht_oper_size_ok(const u8 *data, u8 len)
3319 {
3320 const struct ieee80211_eht_operation *elem = (const void *)data;
3321 u8 needed = sizeof(*elem);
3322
3323 if (len < needed)
3324 return false;
3325
3326 if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
3327 needed += 3;
3328
3329 if (elem->params &
3330 IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)
3331 needed += 2;
3332 }
3333
3334 return len >= needed;
3335 }
3336
3337 /* must validate ieee80211_eht_oper_size_ok() first */
3338 static inline u16
ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation * eht_oper)3339 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper)
3340 {
3341 const struct ieee80211_eht_operation_info *info =
3342 (const void *)eht_oper->optional;
3343
3344 if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT))
3345 return 0;
3346
3347 if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT))
3348 return 0;
3349
3350 return get_unaligned_le16(info->optional);
3351 }
3352
3353 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT BIT(1)
3354
3355 struct ieee80211_bandwidth_indication {
3356 u8 params;
3357 struct ieee80211_eht_operation_info info;
3358 } __packed;
3359
3360 static inline bool
ieee80211_bandwidth_indication_size_ok(const u8 * data,u8 len)3361 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len)
3362 {
3363 const struct ieee80211_bandwidth_indication *bwi = (const void *)data;
3364
3365 if (len < sizeof(*bwi))
3366 return false;
3367
3368 if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT &&
3369 len < sizeof(*bwi) + 2)
3370 return false;
3371
3372 return true;
3373 }
3374
3375 #define LISTEN_INT_USF GENMASK(15, 14)
3376 #define LISTEN_INT_UI GENMASK(13, 0)
3377
3378 #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF)
3379 #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI)
3380
3381 /* Authentication algorithms */
3382 #define WLAN_AUTH_OPEN 0
3383 #define WLAN_AUTH_SHARED_KEY 1
3384 #define WLAN_AUTH_FT 2
3385 #define WLAN_AUTH_SAE 3
3386 #define WLAN_AUTH_FILS_SK 4
3387 #define WLAN_AUTH_FILS_SK_PFS 5
3388 #define WLAN_AUTH_FILS_PK 6
3389 #define WLAN_AUTH_LEAP 128
3390
3391 #define WLAN_AUTH_CHALLENGE_LEN 128
3392
3393 #define WLAN_CAPABILITY_ESS (1<<0)
3394 #define WLAN_CAPABILITY_IBSS (1<<1)
3395
3396 /*
3397 * A mesh STA sets the ESS and IBSS capability bits to zero.
3398 * however, this holds true for p2p probe responses (in the p2p_find
3399 * phase) as well.
3400 */
3401 #define WLAN_CAPABILITY_IS_STA_BSS(cap) \
3402 (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
3403
3404 #define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
3405 #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
3406 #define WLAN_CAPABILITY_PRIVACY (1<<4)
3407 #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
3408 #define WLAN_CAPABILITY_PBCC (1<<6)
3409 #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
3410
3411 /* 802.11h */
3412 #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
3413 #define WLAN_CAPABILITY_QOS (1<<9)
3414 #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
3415 #define WLAN_CAPABILITY_APSD (1<<11)
3416 #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12)
3417 #define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
3418 #define WLAN_CAPABILITY_DEL_BACK (1<<14)
3419 #define WLAN_CAPABILITY_IMM_BACK (1<<15)
3420
3421 /* DMG (60gHz) 802.11ad */
3422 /* type - bits 0..1 */
3423 #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0)
3424 #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */
3425 #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */
3426 #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */
3427
3428 #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2)
3429 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3)
3430 #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4)
3431 #define WLAN_CAPABILITY_DMG_ECPAC (1<<5)
3432
3433 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8)
3434 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12)
3435
3436 /* measurement */
3437 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0)
3438 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1)
3439 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2)
3440
3441 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0
3442 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1
3443 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2
3444 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8
3445 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11
3446
3447 /* 802.11g ERP information element */
3448 #define WLAN_ERP_NON_ERP_PRESENT (1<<0)
3449 #define WLAN_ERP_USE_PROTECTION (1<<1)
3450 #define WLAN_ERP_BARKER_PREAMBLE (1<<2)
3451
3452 /* WLAN_ERP_BARKER_PREAMBLE values */
3453 enum {
3454 WLAN_ERP_PREAMBLE_SHORT = 0,
3455 WLAN_ERP_PREAMBLE_LONG = 1,
3456 };
3457
3458 /* Band ID, 802.11ad #8.4.1.45 */
3459 enum {
3460 IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
3461 IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */
3462 IEEE80211_BANDID_2G = 2, /* 2.4 GHz */
3463 IEEE80211_BANDID_3G = 3, /* 3.6 GHz */
3464 IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */
3465 IEEE80211_BANDID_60G = 5, /* 60 GHz */
3466 };
3467
3468 /* Status codes */
3469 enum ieee80211_statuscode {
3470 WLAN_STATUS_SUCCESS = 0,
3471 WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
3472 WLAN_STATUS_CAPS_UNSUPPORTED = 10,
3473 WLAN_STATUS_REASSOC_NO_ASSOC = 11,
3474 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
3475 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
3476 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
3477 WLAN_STATUS_CHALLENGE_FAIL = 15,
3478 WLAN_STATUS_AUTH_TIMEOUT = 16,
3479 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
3480 WLAN_STATUS_ASSOC_DENIED_RATES = 18,
3481 /* 802.11b */
3482 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
3483 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
3484 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
3485 /* 802.11h */
3486 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
3487 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
3488 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
3489 /* 802.11g */
3490 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
3491 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
3492 /* 802.11w */
3493 WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
3494 WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
3495 /* 802.11i */
3496 WLAN_STATUS_INVALID_IE = 40,
3497 WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
3498 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
3499 WLAN_STATUS_INVALID_AKMP = 43,
3500 WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
3501 WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
3502 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
3503 /* 802.11e */
3504 WLAN_STATUS_UNSPECIFIED_QOS = 32,
3505 WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
3506 WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
3507 WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
3508 WLAN_STATUS_REQUEST_DECLINED = 37,
3509 WLAN_STATUS_INVALID_QOS_PARAM = 38,
3510 WLAN_STATUS_CHANGE_TSPEC = 39,
3511 WLAN_STATUS_WAIT_TS_DELAY = 47,
3512 WLAN_STATUS_NO_DIRECT_LINK = 48,
3513 WLAN_STATUS_STA_NOT_PRESENT = 49,
3514 WLAN_STATUS_STA_NOT_QSTA = 50,
3515 /* 802.11s */
3516 WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
3517 WLAN_STATUS_FCG_NOT_SUPP = 78,
3518 WLAN_STATUS_STA_NO_TBTT = 78,
3519 /* 802.11ad */
3520 WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
3521 WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
3522 WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
3523 WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
3524 WLAN_STATUS_PERFORMING_FST_NOW = 87,
3525 WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
3526 WLAN_STATUS_REJECT_U_PID_SETTING = 89,
3527 WLAN_STATUS_REJECT_DSE_BAND = 96,
3528 WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
3529 WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
3530 /* 802.11ai */
3531 WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
3532 WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
3533 WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126,
3534 WLAN_STATUS_SAE_PK = 127,
3535 WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133,
3536 WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134,
3537 };
3538
3539
3540 /* Reason codes */
3541 enum ieee80211_reasoncode {
3542 WLAN_REASON_UNSPECIFIED = 1,
3543 WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
3544 WLAN_REASON_DEAUTH_LEAVING = 3,
3545 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
3546 WLAN_REASON_DISASSOC_AP_BUSY = 5,
3547 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
3548 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
3549 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
3550 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
3551 /* 802.11h */
3552 WLAN_REASON_DISASSOC_BAD_POWER = 10,
3553 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
3554 /* 802.11i */
3555 WLAN_REASON_INVALID_IE = 13,
3556 WLAN_REASON_MIC_FAILURE = 14,
3557 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
3558 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
3559 WLAN_REASON_IE_DIFFERENT = 17,
3560 WLAN_REASON_INVALID_GROUP_CIPHER = 18,
3561 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
3562 WLAN_REASON_INVALID_AKMP = 20,
3563 WLAN_REASON_UNSUPP_RSN_VERSION = 21,
3564 WLAN_REASON_INVALID_RSN_IE_CAP = 22,
3565 WLAN_REASON_IEEE8021X_FAILED = 23,
3566 WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
3567 /* TDLS (802.11z) */
3568 WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
3569 WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
3570 /* 802.11e */
3571 WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
3572 WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
3573 WLAN_REASON_DISASSOC_LOW_ACK = 34,
3574 WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
3575 WLAN_REASON_QSTA_LEAVE_QBSS = 36,
3576 WLAN_REASON_QSTA_NOT_USE = 37,
3577 WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
3578 WLAN_REASON_QSTA_TIMEOUT = 39,
3579 WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
3580 /* 802.11s */
3581 WLAN_REASON_MESH_PEER_CANCELED = 52,
3582 WLAN_REASON_MESH_MAX_PEERS = 53,
3583 WLAN_REASON_MESH_CONFIG = 54,
3584 WLAN_REASON_MESH_CLOSE = 55,
3585 WLAN_REASON_MESH_MAX_RETRIES = 56,
3586 WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
3587 WLAN_REASON_MESH_INVALID_GTK = 58,
3588 WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
3589 WLAN_REASON_MESH_INVALID_SECURITY = 60,
3590 WLAN_REASON_MESH_PATH_ERROR = 61,
3591 WLAN_REASON_MESH_PATH_NOFORWARD = 62,
3592 WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
3593 WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
3594 WLAN_REASON_MESH_CHAN_REGULATORY = 65,
3595 WLAN_REASON_MESH_CHAN = 66,
3596 };
3597
3598
3599 /* Information Element IDs */
3600 enum ieee80211_eid {
3601 WLAN_EID_SSID = 0,
3602 WLAN_EID_SUPP_RATES = 1,
3603 WLAN_EID_FH_PARAMS = 2, /* reserved now */
3604 WLAN_EID_DS_PARAMS = 3,
3605 WLAN_EID_CF_PARAMS = 4,
3606 WLAN_EID_TIM = 5,
3607 WLAN_EID_IBSS_PARAMS = 6,
3608 WLAN_EID_COUNTRY = 7,
3609 /* 8, 9 reserved */
3610 WLAN_EID_REQUEST = 10,
3611 WLAN_EID_QBSS_LOAD = 11,
3612 WLAN_EID_EDCA_PARAM_SET = 12,
3613 WLAN_EID_TSPEC = 13,
3614 WLAN_EID_TCLAS = 14,
3615 WLAN_EID_SCHEDULE = 15,
3616 WLAN_EID_CHALLENGE = 16,
3617 /* 17-31 reserved for challenge text extension */
3618 WLAN_EID_PWR_CONSTRAINT = 32,
3619 WLAN_EID_PWR_CAPABILITY = 33,
3620 WLAN_EID_TPC_REQUEST = 34,
3621 WLAN_EID_TPC_REPORT = 35,
3622 WLAN_EID_SUPPORTED_CHANNELS = 36,
3623 WLAN_EID_CHANNEL_SWITCH = 37,
3624 WLAN_EID_MEASURE_REQUEST = 38,
3625 WLAN_EID_MEASURE_REPORT = 39,
3626 WLAN_EID_QUIET = 40,
3627 WLAN_EID_IBSS_DFS = 41,
3628 WLAN_EID_ERP_INFO = 42,
3629 WLAN_EID_TS_DELAY = 43,
3630 WLAN_EID_TCLAS_PROCESSING = 44,
3631 WLAN_EID_HT_CAPABILITY = 45,
3632 WLAN_EID_QOS_CAPA = 46,
3633 /* 47 reserved for Broadcom */
3634 WLAN_EID_RSN = 48,
3635 WLAN_EID_802_15_COEX = 49,
3636 WLAN_EID_EXT_SUPP_RATES = 50,
3637 WLAN_EID_AP_CHAN_REPORT = 51,
3638 WLAN_EID_NEIGHBOR_REPORT = 52,
3639 WLAN_EID_RCPI = 53,
3640 WLAN_EID_MOBILITY_DOMAIN = 54,
3641 WLAN_EID_FAST_BSS_TRANSITION = 55,
3642 WLAN_EID_TIMEOUT_INTERVAL = 56,
3643 WLAN_EID_RIC_DATA = 57,
3644 WLAN_EID_DSE_REGISTERED_LOCATION = 58,
3645 WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
3646 WLAN_EID_EXT_CHANSWITCH_ANN = 60,
3647 WLAN_EID_HT_OPERATION = 61,
3648 WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
3649 WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
3650 WLAN_EID_ANTENNA_INFO = 64,
3651 WLAN_EID_RSNI = 65,
3652 WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
3653 WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
3654 WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
3655 WLAN_EID_TIME_ADVERTISEMENT = 69,
3656 WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
3657 WLAN_EID_MULTIPLE_BSSID = 71,
3658 WLAN_EID_BSS_COEX_2040 = 72,
3659 WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
3660 WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
3661 WLAN_EID_RIC_DESCRIPTOR = 75,
3662 WLAN_EID_MMIE = 76,
3663 WLAN_EID_ASSOC_COMEBACK_TIME = 77,
3664 WLAN_EID_EVENT_REQUEST = 78,
3665 WLAN_EID_EVENT_REPORT = 79,
3666 WLAN_EID_DIAGNOSTIC_REQUEST = 80,
3667 WLAN_EID_DIAGNOSTIC_REPORT = 81,
3668 WLAN_EID_LOCATION_PARAMS = 82,
3669 WLAN_EID_NON_TX_BSSID_CAP = 83,
3670 WLAN_EID_SSID_LIST = 84,
3671 WLAN_EID_MULTI_BSSID_IDX = 85,
3672 WLAN_EID_FMS_DESCRIPTOR = 86,
3673 WLAN_EID_FMS_REQUEST = 87,
3674 WLAN_EID_FMS_RESPONSE = 88,
3675 WLAN_EID_QOS_TRAFFIC_CAPA = 89,
3676 WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
3677 WLAN_EID_TSF_REQUEST = 91,
3678 WLAN_EID_TSF_RESPOSNE = 92,
3679 WLAN_EID_WNM_SLEEP_MODE = 93,
3680 WLAN_EID_TIM_BCAST_REQ = 94,
3681 WLAN_EID_TIM_BCAST_RESP = 95,
3682 WLAN_EID_COLL_IF_REPORT = 96,
3683 WLAN_EID_CHANNEL_USAGE = 97,
3684 WLAN_EID_TIME_ZONE = 98,
3685 WLAN_EID_DMS_REQUEST = 99,
3686 WLAN_EID_DMS_RESPONSE = 100,
3687 WLAN_EID_LINK_ID = 101,
3688 WLAN_EID_WAKEUP_SCHEDUL = 102,
3689 /* 103 reserved */
3690 WLAN_EID_CHAN_SWITCH_TIMING = 104,
3691 WLAN_EID_PTI_CONTROL = 105,
3692 WLAN_EID_PU_BUFFER_STATUS = 106,
3693 WLAN_EID_INTERWORKING = 107,
3694 WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
3695 WLAN_EID_EXPEDITED_BW_REQ = 109,
3696 WLAN_EID_QOS_MAP_SET = 110,
3697 WLAN_EID_ROAMING_CONSORTIUM = 111,
3698 WLAN_EID_EMERGENCY_ALERT = 112,
3699 WLAN_EID_MESH_CONFIG = 113,
3700 WLAN_EID_MESH_ID = 114,
3701 WLAN_EID_LINK_METRIC_REPORT = 115,
3702 WLAN_EID_CONGESTION_NOTIFICATION = 116,
3703 WLAN_EID_PEER_MGMT = 117,
3704 WLAN_EID_CHAN_SWITCH_PARAM = 118,
3705 WLAN_EID_MESH_AWAKE_WINDOW = 119,
3706 WLAN_EID_BEACON_TIMING = 120,
3707 WLAN_EID_MCCAOP_SETUP_REQ = 121,
3708 WLAN_EID_MCCAOP_SETUP_RESP = 122,
3709 WLAN_EID_MCCAOP_ADVERT = 123,
3710 WLAN_EID_MCCAOP_TEARDOWN = 124,
3711 WLAN_EID_GANN = 125,
3712 WLAN_EID_RANN = 126,
3713 WLAN_EID_EXT_CAPABILITY = 127,
3714 /* 128, 129 reserved for Agere */
3715 WLAN_EID_PREQ = 130,
3716 WLAN_EID_PREP = 131,
3717 WLAN_EID_PERR = 132,
3718 /* 133-136 reserved for Cisco */
3719 WLAN_EID_PXU = 137,
3720 WLAN_EID_PXUC = 138,
3721 WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
3722 WLAN_EID_MIC = 140,
3723 WLAN_EID_DESTINATION_URI = 141,
3724 WLAN_EID_UAPSD_COEX = 142,
3725 WLAN_EID_WAKEUP_SCHEDULE = 143,
3726 WLAN_EID_EXT_SCHEDULE = 144,
3727 WLAN_EID_STA_AVAILABILITY = 145,
3728 WLAN_EID_DMG_TSPEC = 146,
3729 WLAN_EID_DMG_AT = 147,
3730 WLAN_EID_DMG_CAP = 148,
3731 /* 149 reserved for Cisco */
3732 WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
3733 WLAN_EID_DMG_OPERATION = 151,
3734 WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
3735 WLAN_EID_DMG_BEAM_REFINEMENT = 153,
3736 WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
3737 /* 155-156 reserved for Cisco */
3738 WLAN_EID_AWAKE_WINDOW = 157,
3739 WLAN_EID_MULTI_BAND = 158,
3740 WLAN_EID_ADDBA_EXT = 159,
3741 WLAN_EID_NEXT_PCP_LIST = 160,
3742 WLAN_EID_PCP_HANDOVER = 161,
3743 WLAN_EID_DMG_LINK_MARGIN = 162,
3744 WLAN_EID_SWITCHING_STREAM = 163,
3745 WLAN_EID_SESSION_TRANSITION = 164,
3746 WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
3747 WLAN_EID_CLUSTER_REPORT = 166,
3748 WLAN_EID_RELAY_CAP = 167,
3749 WLAN_EID_RELAY_XFER_PARAM_SET = 168,
3750 WLAN_EID_BEAM_LINK_MAINT = 169,
3751 WLAN_EID_MULTIPLE_MAC_ADDR = 170,
3752 WLAN_EID_U_PID = 171,
3753 WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
3754 /* 173 reserved for Symbol */
3755 WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
3756 WLAN_EID_QUIET_PERIOD_REQ = 175,
3757 /* 176 reserved for Symbol */
3758 WLAN_EID_QUIET_PERIOD_RESP = 177,
3759 /* 178-179 reserved for Symbol */
3760 /* 180 reserved for ISO/IEC 20011 */
3761 WLAN_EID_EPAC_POLICY = 182,
3762 WLAN_EID_CLISTER_TIME_OFF = 183,
3763 WLAN_EID_INTER_AC_PRIO = 184,
3764 WLAN_EID_SCS_DESCRIPTOR = 185,
3765 WLAN_EID_QLOAD_REPORT = 186,
3766 WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
3767 WLAN_EID_HL_STREAM_ID = 188,
3768 WLAN_EID_GCR_GROUP_ADDR = 189,
3769 WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
3770 WLAN_EID_VHT_CAPABILITY = 191,
3771 WLAN_EID_VHT_OPERATION = 192,
3772 WLAN_EID_EXTENDED_BSS_LOAD = 193,
3773 WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
3774 WLAN_EID_TX_POWER_ENVELOPE = 195,
3775 WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
3776 WLAN_EID_AID = 197,
3777 WLAN_EID_QUIET_CHANNEL = 198,
3778 WLAN_EID_OPMODE_NOTIF = 199,
3779
3780 WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201,
3781
3782 WLAN_EID_AID_REQUEST = 210,
3783 WLAN_EID_AID_RESPONSE = 211,
3784 WLAN_EID_S1G_BCN_COMPAT = 213,
3785 WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214,
3786 WLAN_EID_S1G_TWT = 216,
3787 WLAN_EID_S1G_CAPABILITIES = 217,
3788 WLAN_EID_VENDOR_SPECIFIC = 221,
3789 WLAN_EID_QOS_PARAMETER = 222,
3790 WLAN_EID_S1G_OPERATION = 232,
3791 WLAN_EID_CAG_NUMBER = 237,
3792 WLAN_EID_AP_CSN = 239,
3793 WLAN_EID_FILS_INDICATION = 240,
3794 WLAN_EID_DILS = 241,
3795 WLAN_EID_FRAGMENT = 242,
3796 WLAN_EID_RSNX = 244,
3797 WLAN_EID_EXTENSION = 255
3798 };
3799
3800 /* Element ID Extensions for Element ID 255 */
3801 enum ieee80211_eid_ext {
3802 WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
3803 WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
3804 WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
3805 WLAN_EID_EXT_FILS_SESSION = 4,
3806 WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
3807 WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
3808 WLAN_EID_EXT_KEY_DELIVERY = 7,
3809 WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
3810 WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
3811 WLAN_EID_EXT_FILS_NONCE = 13,
3812 WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
3813 WLAN_EID_EXT_HE_CAPABILITY = 35,
3814 WLAN_EID_EXT_HE_OPERATION = 36,
3815 WLAN_EID_EXT_UORA = 37,
3816 WLAN_EID_EXT_HE_MU_EDCA = 38,
3817 WLAN_EID_EXT_HE_SPR = 39,
3818 WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41,
3819 WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42,
3820 WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43,
3821 WLAN_EID_EXT_ESS_REPORT = 45,
3822 WLAN_EID_EXT_OPS = 46,
3823 WLAN_EID_EXT_HE_BSS_LOAD = 47,
3824 WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
3825 WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
3826 WLAN_EID_EXT_NON_INHERITANCE = 56,
3827 WLAN_EID_EXT_KNOWN_BSSID = 57,
3828 WLAN_EID_EXT_SHORT_SSID_LIST = 58,
3829 WLAN_EID_EXT_HE_6GHZ_CAPA = 59,
3830 WLAN_EID_EXT_UL_MU_POWER_CAPA = 60,
3831 WLAN_EID_EXT_EHT_OPERATION = 106,
3832 WLAN_EID_EXT_EHT_MULTI_LINK = 107,
3833 WLAN_EID_EXT_EHT_CAPABILITY = 108,
3834 WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109,
3835 WLAN_EID_EXT_BANDWIDTH_INDICATION = 135,
3836 };
3837
3838 /* Action category code */
3839 enum ieee80211_category {
3840 WLAN_CATEGORY_SPECTRUM_MGMT = 0,
3841 WLAN_CATEGORY_QOS = 1,
3842 WLAN_CATEGORY_DLS = 2,
3843 WLAN_CATEGORY_BACK = 3,
3844 WLAN_CATEGORY_PUBLIC = 4,
3845 WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
3846 WLAN_CATEGORY_FAST_BBS_TRANSITION = 6,
3847 WLAN_CATEGORY_HT = 7,
3848 WLAN_CATEGORY_SA_QUERY = 8,
3849 WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
3850 WLAN_CATEGORY_WNM = 10,
3851 WLAN_CATEGORY_WNM_UNPROTECTED = 11,
3852 WLAN_CATEGORY_TDLS = 12,
3853 WLAN_CATEGORY_MESH_ACTION = 13,
3854 WLAN_CATEGORY_MULTIHOP_ACTION = 14,
3855 WLAN_CATEGORY_SELF_PROTECTED = 15,
3856 WLAN_CATEGORY_DMG = 16,
3857 WLAN_CATEGORY_WMM = 17,
3858 WLAN_CATEGORY_FST = 18,
3859 WLAN_CATEGORY_UNPROT_DMG = 20,
3860 WLAN_CATEGORY_VHT = 21,
3861 WLAN_CATEGORY_S1G = 22,
3862 WLAN_CATEGORY_PROTECTED_EHT = 37,
3863 WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
3864 WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
3865 };
3866
3867 /* SPECTRUM_MGMT action code */
3868 enum ieee80211_spectrum_mgmt_actioncode {
3869 WLAN_ACTION_SPCT_MSR_REQ = 0,
3870 WLAN_ACTION_SPCT_MSR_RPRT = 1,
3871 WLAN_ACTION_SPCT_TPC_REQ = 2,
3872 WLAN_ACTION_SPCT_TPC_RPRT = 3,
3873 WLAN_ACTION_SPCT_CHL_SWITCH = 4,
3874 };
3875
3876 /* HT action codes */
3877 enum ieee80211_ht_actioncode {
3878 WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
3879 WLAN_HT_ACTION_SMPS = 1,
3880 WLAN_HT_ACTION_PSMP = 2,
3881 WLAN_HT_ACTION_PCO_PHASE = 3,
3882 WLAN_HT_ACTION_CSI = 4,
3883 WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
3884 WLAN_HT_ACTION_COMPRESSED_BF = 6,
3885 WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
3886 };
3887
3888 /* VHT action codes */
3889 enum ieee80211_vht_actioncode {
3890 WLAN_VHT_ACTION_COMPRESSED_BF = 0,
3891 WLAN_VHT_ACTION_GROUPID_MGMT = 1,
3892 WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
3893 };
3894
3895 /* Self Protected Action codes */
3896 enum ieee80211_self_protected_actioncode {
3897 WLAN_SP_RESERVED = 0,
3898 WLAN_SP_MESH_PEERING_OPEN = 1,
3899 WLAN_SP_MESH_PEERING_CONFIRM = 2,
3900 WLAN_SP_MESH_PEERING_CLOSE = 3,
3901 WLAN_SP_MGK_INFORM = 4,
3902 WLAN_SP_MGK_ACK = 5,
3903 };
3904
3905 /* Mesh action codes */
3906 enum ieee80211_mesh_actioncode {
3907 WLAN_MESH_ACTION_LINK_METRIC_REPORT,
3908 WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
3909 WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
3910 WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
3911 WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
3912 WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
3913 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
3914 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
3915 WLAN_MESH_ACTION_MCCA_TEARDOWN,
3916 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
3917 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
3918 };
3919
3920 /* Unprotected WNM action codes */
3921 enum ieee80211_unprotected_wnm_actioncode {
3922 WLAN_UNPROTECTED_WNM_ACTION_TIM = 0,
3923 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1,
3924 };
3925
3926 /* Protected EHT action codes */
3927 enum ieee80211_protected_eht_actioncode {
3928 WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0,
3929 WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1,
3930 WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2,
3931 };
3932
3933 /* Security key length */
3934 enum ieee80211_key_len {
3935 WLAN_KEY_LEN_WEP40 = 5,
3936 WLAN_KEY_LEN_WEP104 = 13,
3937 WLAN_KEY_LEN_CCMP = 16,
3938 WLAN_KEY_LEN_CCMP_256 = 32,
3939 WLAN_KEY_LEN_TKIP = 32,
3940 WLAN_KEY_LEN_AES_CMAC = 16,
3941 WLAN_KEY_LEN_SMS4 = 32,
3942 WLAN_KEY_LEN_GCMP = 16,
3943 WLAN_KEY_LEN_GCMP_256 = 32,
3944 WLAN_KEY_LEN_BIP_CMAC_256 = 32,
3945 WLAN_KEY_LEN_BIP_GMAC_128 = 16,
3946 WLAN_KEY_LEN_BIP_GMAC_256 = 32,
3947 };
3948
3949 enum ieee80211_s1g_actioncode {
3950 WLAN_S1G_AID_SWITCH_REQUEST,
3951 WLAN_S1G_AID_SWITCH_RESPONSE,
3952 WLAN_S1G_SYNC_CONTROL,
3953 WLAN_S1G_STA_INFO_ANNOUNCE,
3954 WLAN_S1G_EDCA_PARAM_SET,
3955 WLAN_S1G_EL_OPERATION,
3956 WLAN_S1G_TWT_SETUP,
3957 WLAN_S1G_TWT_TEARDOWN,
3958 WLAN_S1G_SECT_GROUP_ID_LIST,
3959 WLAN_S1G_SECT_ID_FEEDBACK,
3960 WLAN_S1G_TWT_INFORMATION = 11,
3961 };
3962
3963 #define IEEE80211_WEP_IV_LEN 4
3964 #define IEEE80211_WEP_ICV_LEN 4
3965 #define IEEE80211_CCMP_HDR_LEN 8
3966 #define IEEE80211_CCMP_MIC_LEN 8
3967 #define IEEE80211_CCMP_PN_LEN 6
3968 #define IEEE80211_CCMP_256_HDR_LEN 8
3969 #define IEEE80211_CCMP_256_MIC_LEN 16
3970 #define IEEE80211_CCMP_256_PN_LEN 6
3971 #define IEEE80211_TKIP_IV_LEN 8
3972 #define IEEE80211_TKIP_ICV_LEN 4
3973 #define IEEE80211_CMAC_PN_LEN 6
3974 #define IEEE80211_GMAC_PN_LEN 6
3975 #define IEEE80211_GCMP_HDR_LEN 8
3976 #define IEEE80211_GCMP_MIC_LEN 16
3977 #define IEEE80211_GCMP_PN_LEN 6
3978
3979 #define FILS_NONCE_LEN 16
3980 #define FILS_MAX_KEK_LEN 64
3981
3982 #define FILS_ERP_MAX_USERNAME_LEN 16
3983 #define FILS_ERP_MAX_REALM_LEN 253
3984 #define FILS_ERP_MAX_RRK_LEN 64
3985
3986 #define PMK_MAX_LEN 64
3987 #define SAE_PASSWORD_MAX_LEN 128
3988
3989 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
3990 enum ieee80211_pub_actioncode {
3991 WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
3992 WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
3993 WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
3994 WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
3995 WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
3996 WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
3997 WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
3998 WLAN_PUB_ACTION_MSMT_PILOT = 7,
3999 WLAN_PUB_ACTION_DSE_PC = 8,
4000 WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
4001 WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
4002 WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
4003 WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
4004 WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
4005 WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
4006 WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
4007 WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
4008 WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
4009 WLAN_PUB_ACTION_QMF_POLICY = 18,
4010 WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
4011 WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
4012 WLAN_PUB_ACTION_QLOAD_REPORT = 21,
4013 WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
4014 WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
4015 WLAN_PUB_ACTION_PUBLIC_KEY = 24,
4016 WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
4017 WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
4018 WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
4019 WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
4020 WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
4021 WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
4022 WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
4023 WLAN_PUB_ACTION_FTM_REQUEST = 32,
4024 WLAN_PUB_ACTION_FTM_RESPONSE = 33,
4025 WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
4026 };
4027
4028 /* TDLS action codes */
4029 enum ieee80211_tdls_actioncode {
4030 WLAN_TDLS_SETUP_REQUEST = 0,
4031 WLAN_TDLS_SETUP_RESPONSE = 1,
4032 WLAN_TDLS_SETUP_CONFIRM = 2,
4033 WLAN_TDLS_TEARDOWN = 3,
4034 WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
4035 WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
4036 WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
4037 WLAN_TDLS_PEER_PSM_REQUEST = 7,
4038 WLAN_TDLS_PEER_PSM_RESPONSE = 8,
4039 WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
4040 WLAN_TDLS_DISCOVERY_REQUEST = 10,
4041 };
4042
4043 /* Extended Channel Switching capability to be set in the 1st byte of
4044 * the @WLAN_EID_EXT_CAPABILITY information element
4045 */
4046 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2)
4047
4048 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
4049 * @WLAN_EID_EXT_CAPABILITY information element
4050 */
4051 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6)
4052
4053 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte
4054 * of the @WLAN_EID_EXT_CAPABILITY information element
4055 */
4056 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT BIT(7)
4057
4058 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */
4059 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4)
4060 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5)
4061 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6)
4062
4063 /* Interworking capabilities are set in 7th bit of 4th byte of the
4064 * @WLAN_EID_EXT_CAPABILITY information element
4065 */
4066 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7)
4067
4068 /*
4069 * TDLS capabililites to be enabled in the 5th byte of the
4070 * @WLAN_EID_EXT_CAPABILITY information element
4071 */
4072 #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5)
4073 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6)
4074 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7)
4075
4076 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5)
4077 #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6)
4078
4079 /* Defines the maximal number of MSDUs in an A-MSDU. */
4080 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7)
4081 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0)
4082
4083 /*
4084 * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
4085 * information element
4086 */
4087 #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7)
4088
4089 /* Defines support for TWT Requester and TWT Responder */
4090 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5)
4091 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6)
4092
4093 /*
4094 * When set, indicates that the AP is able to tolerate 26-tone RU UL
4095 * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
4096 * 26-tone RU UL OFDMA transmissions as radar pulses).
4097 */
4098 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
4099
4100 /* Defines support for enhanced multi-bssid advertisement*/
4101 #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3)
4102
4103 /* TDLS specific payload type in the LLC/SNAP header */
4104 #define WLAN_TDLS_SNAP_RFTYPE 0x2
4105
4106 /* BSS Coex IE information field bits */
4107 #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0)
4108
4109 /**
4110 * enum ieee80211_mesh_sync_method - mesh synchronization method identifier
4111 *
4112 * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
4113 * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
4114 * that will be specified in a vendor specific information element
4115 */
4116 enum ieee80211_mesh_sync_method {
4117 IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
4118 IEEE80211_SYNC_METHOD_VENDOR = 255,
4119 };
4120
4121 /**
4122 * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
4123 *
4124 * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
4125 * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
4126 * be specified in a vendor specific information element
4127 */
4128 enum ieee80211_mesh_path_protocol {
4129 IEEE80211_PATH_PROTOCOL_HWMP = 1,
4130 IEEE80211_PATH_PROTOCOL_VENDOR = 255,
4131 };
4132
4133 /**
4134 * enum ieee80211_mesh_path_metric - mesh path selection metric identifier
4135 *
4136 * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
4137 * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
4138 * specified in a vendor specific information element
4139 */
4140 enum ieee80211_mesh_path_metric {
4141 IEEE80211_PATH_METRIC_AIRTIME = 1,
4142 IEEE80211_PATH_METRIC_VENDOR = 255,
4143 };
4144
4145 /**
4146 * enum ieee80211_root_mode_identifier - root mesh STA mode identifier
4147 *
4148 * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
4149 *
4150 * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
4151 * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
4152 * this value
4153 * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
4154 * the proactive PREQ with proactive PREP subfield set to 0
4155 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
4156 * supports the proactive PREQ with proactive PREP subfield set to 1
4157 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
4158 * the proactive RANN
4159 */
4160 enum ieee80211_root_mode_identifier {
4161 IEEE80211_ROOTMODE_NO_ROOT = 0,
4162 IEEE80211_ROOTMODE_ROOT = 1,
4163 IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
4164 IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
4165 IEEE80211_PROACTIVE_RANN = 4,
4166 };
4167
4168 /*
4169 * IEEE 802.11-2007 7.3.2.9 Country information element
4170 *
4171 * Minimum length is 8 octets, ie len must be evenly
4172 * divisible by 2
4173 */
4174
4175 /* Although the spec says 8 I'm seeing 6 in practice */
4176 #define IEEE80211_COUNTRY_IE_MIN_LEN 6
4177
4178 /* The Country String field of the element shall be 3 octets in length */
4179 #define IEEE80211_COUNTRY_STRING_LEN 3
4180
4181 /*
4182 * For regulatory extension stuff see IEEE 802.11-2007
4183 * Annex I (page 1141) and Annex J (page 1147). Also
4184 * review 7.3.2.9.
4185 *
4186 * When dot11RegulatoryClassesRequired is true and the
4187 * first_channel/reg_extension_id is >= 201 then the IE
4188 * compromises of the 'ext' struct represented below:
4189 *
4190 * - Regulatory extension ID - when generating IE this just needs
4191 * to be monotonically increasing for each triplet passed in
4192 * the IE
4193 * - Regulatory class - index into set of rules
4194 * - Coverage class - index into air propagation time (Table 7-27),
4195 * in microseconds, you can compute the air propagation time from
4196 * the index by multiplying by 3, so index 10 yields a propagation
4197 * of 10 us. Valid values are 0-31, values 32-255 are not defined
4198 * yet. A value of 0 inicates air propagation of <= 1 us.
4199 *
4200 * See also Table I.2 for Emission limit sets and table
4201 * I.3 for Behavior limit sets. Table J.1 indicates how to map
4202 * a reg_class to an emission limit set and behavior limit set.
4203 */
4204 #define IEEE80211_COUNTRY_EXTENSION_ID 201
4205
4206 /*
4207 * Channels numbers in the IE must be monotonically increasing
4208 * if dot11RegulatoryClassesRequired is not true.
4209 *
4210 * If dot11RegulatoryClassesRequired is true consecutive
4211 * subband triplets following a regulatory triplet shall
4212 * have monotonically increasing first_channel number fields.
4213 *
4214 * Channel numbers shall not overlap.
4215 *
4216 * Note that max_power is signed.
4217 */
4218 struct ieee80211_country_ie_triplet {
4219 union {
4220 struct {
4221 u8 first_channel;
4222 u8 num_channels;
4223 s8 max_power;
4224 } __packed chans;
4225 struct {
4226 u8 reg_extension_id;
4227 u8 reg_class;
4228 u8 coverage_class;
4229 } __packed ext;
4230 };
4231 } __packed;
4232
4233 enum ieee80211_timeout_interval_type {
4234 WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
4235 WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
4236 WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
4237 };
4238
4239 /**
4240 * struct ieee80211_timeout_interval_ie - Timeout Interval element
4241 * @type: type, see &enum ieee80211_timeout_interval_type
4242 * @value: timeout interval value
4243 */
4244 struct ieee80211_timeout_interval_ie {
4245 u8 type;
4246 __le32 value;
4247 } __packed;
4248
4249 /**
4250 * enum ieee80211_idle_options - BSS idle options
4251 * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
4252 * protected frame to the AP to reset the idle timer at the AP for
4253 * the station.
4254 */
4255 enum ieee80211_idle_options {
4256 WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
4257 };
4258
4259 /**
4260 * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct
4261 *
4262 * This structure refers to "BSS Max idle period element"
4263 *
4264 * @max_idle_period: indicates the time period during which a station can
4265 * refrain from transmitting frames to its associated AP without being
4266 * disassociated. In units of 1000 TUs.
4267 * @idle_options: indicates the options associated with the BSS idle capability
4268 * as specified in &enum ieee80211_idle_options.
4269 */
4270 struct ieee80211_bss_max_idle_period_ie {
4271 __le16 max_idle_period;
4272 u8 idle_options;
4273 } __packed;
4274
4275 /* BACK action code */
4276 enum ieee80211_back_actioncode {
4277 WLAN_ACTION_ADDBA_REQ = 0,
4278 WLAN_ACTION_ADDBA_RESP = 1,
4279 WLAN_ACTION_DELBA = 2,
4280 };
4281
4282 /* BACK (block-ack) parties */
4283 enum ieee80211_back_parties {
4284 WLAN_BACK_RECIPIENT = 0,
4285 WLAN_BACK_INITIATOR = 1,
4286 };
4287
4288 /* SA Query action */
4289 enum ieee80211_sa_query_action {
4290 WLAN_ACTION_SA_QUERY_REQUEST = 0,
4291 WLAN_ACTION_SA_QUERY_RESPONSE = 1,
4292 };
4293
4294 /**
4295 * struct ieee80211_bssid_index - multiple BSSID index element structure
4296 *
4297 * This structure refers to "Multiple BSSID-index element"
4298 *
4299 * @bssid_index: BSSID index
4300 * @dtim_period: optional, overrides transmitted BSS dtim period
4301 * @dtim_count: optional, overrides transmitted BSS dtim count
4302 */
4303 struct ieee80211_bssid_index {
4304 u8 bssid_index;
4305 u8 dtim_period;
4306 u8 dtim_count;
4307 };
4308
4309 /**
4310 * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration
4311 * element structure
4312 *
4313 * This structure refers to "Multiple BSSID Configuration element"
4314 *
4315 * @bssid_count: total number of active BSSIDs in the set
4316 * @profile_periodicity: the least number of beacon frames need to be received
4317 * in order to discover all the nontransmitted BSSIDs in the set.
4318 */
4319 struct ieee80211_multiple_bssid_configuration {
4320 u8 bssid_count;
4321 u8 profile_periodicity;
4322 };
4323
4324 #define SUITE(oui, id) (((oui) << 8) | (id))
4325
4326 /* cipher suite selectors */
4327 #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0)
4328 #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1)
4329 #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2)
4330 /* reserved: SUITE(0x000FAC, 3) */
4331 #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4)
4332 #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5)
4333 #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6)
4334 #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8)
4335 #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9)
4336 #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10)
4337 #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11)
4338 #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12)
4339 #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13)
4340
4341 #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1)
4342
4343 /* AKM suite selectors */
4344 #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1)
4345 #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2)
4346 #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3)
4347 #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4)
4348 #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5)
4349 #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6)
4350 #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7)
4351 #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8)
4352 #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9)
4353 #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10)
4354 #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11)
4355 #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12)
4356 #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13)
4357 #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14)
4358 #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15)
4359 #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16)
4360 #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17)
4361 #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18)
4362 #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19)
4363 #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20)
4364
4365 #define WLAN_AKM_SUITE_WFA_DPP SUITE(WLAN_OUI_WFA, 2)
4366
4367 #define WLAN_MAX_KEY_LEN 32
4368
4369 #define WLAN_PMK_NAME_LEN 16
4370 #define WLAN_PMKID_LEN 16
4371 #define WLAN_PMK_LEN_EAP_LEAP 16
4372 #define WLAN_PMK_LEN 32
4373 #define WLAN_PMK_LEN_SUITE_B_192 48
4374
4375 #define WLAN_OUI_WFA 0x506f9a
4376 #define WLAN_OUI_TYPE_WFA_P2P 9
4377 #define WLAN_OUI_TYPE_WFA_DPP 0x1A
4378 #define WLAN_OUI_MICROSOFT 0x0050f2
4379 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1
4380 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2
4381 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4
4382 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8
4383
4384 /*
4385 * WMM/802.11e Tspec Element
4386 */
4387 #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F
4388 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1
4389
4390 enum ieee80211_tspec_status_code {
4391 IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
4392 IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
4393 };
4394
4395 struct ieee80211_tspec_ie {
4396 u8 element_id;
4397 u8 len;
4398 u8 oui[3];
4399 u8 oui_type;
4400 u8 oui_subtype;
4401 u8 version;
4402 __le16 tsinfo;
4403 u8 tsinfo_resvd;
4404 __le16 nominal_msdu;
4405 __le16 max_msdu;
4406 __le32 min_service_int;
4407 __le32 max_service_int;
4408 __le32 inactivity_int;
4409 __le32 suspension_int;
4410 __le32 service_start_time;
4411 __le32 min_data_rate;
4412 __le32 mean_data_rate;
4413 __le32 peak_data_rate;
4414 __le32 max_burst_size;
4415 __le32 delay_bound;
4416 __le32 min_phy_rate;
4417 __le16 sba;
4418 __le16 medium_time;
4419 } __packed;
4420
4421 struct ieee80211_he_6ghz_capa {
4422 /* uses IEEE80211_HE_6GHZ_CAP_* below */
4423 __le16 capa;
4424 } __packed;
4425
4426 /* HE 6 GHz band capabilities */
4427 /* uses enum ieee80211_min_mpdu_spacing values */
4428 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007
4429 /* uses enum ieee80211_vht_max_ampdu_length_exp values */
4430 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038
4431 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */
4432 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0
4433 /* WLAN_HT_CAP_SM_PS_* values */
4434 #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600
4435 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800
4436 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000
4437 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000
4438
4439 /**
4440 * ieee80211_get_qos_ctl - get pointer to qos control bytes
4441 * @hdr: the frame
4442 * Return: a pointer to the QoS control field in the frame header
4443 *
4444 * The qos ctrl bytes come after the frame_control, duration, seq_num
4445 * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose
4446 * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr.
4447 */
ieee80211_get_qos_ctl(struct ieee80211_hdr * hdr)4448 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
4449 {
4450 union {
4451 struct ieee80211_qos_hdr addr3;
4452 struct ieee80211_qos_hdr_4addr addr4;
4453 } *qos;
4454
4455 qos = (void *)hdr;
4456 if (ieee80211_has_a4(qos->addr3.frame_control))
4457 return (u8 *)&qos->addr4.qos_ctrl;
4458 else
4459 return (u8 *)&qos->addr3.qos_ctrl;
4460 }
4461
4462 /**
4463 * ieee80211_get_tid - get qos TID
4464 * @hdr: the frame
4465 * Return: the TID from the QoS control field
4466 */
ieee80211_get_tid(struct ieee80211_hdr * hdr)4467 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
4468 {
4469 u8 *qc = ieee80211_get_qos_ctl(hdr);
4470
4471 return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
4472 }
4473
4474 /**
4475 * ieee80211_get_SA - get pointer to SA
4476 * @hdr: the frame
4477 * Return: a pointer to the source address (SA)
4478 *
4479 * Given an 802.11 frame, this function returns the offset
4480 * to the source address (SA). It does not verify that the
4481 * header is long enough to contain the address, and the
4482 * header must be long enough to contain the frame control
4483 * field.
4484 */
ieee80211_get_SA(struct ieee80211_hdr * hdr)4485 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
4486 {
4487 if (ieee80211_has_a4(hdr->frame_control))
4488 return hdr->addr4;
4489 if (ieee80211_has_fromds(hdr->frame_control))
4490 return hdr->addr3;
4491 return hdr->addr2;
4492 }
4493
4494 /**
4495 * ieee80211_get_DA - get pointer to DA
4496 * @hdr: the frame
4497 * Return: a pointer to the destination address (DA)
4498 *
4499 * Given an 802.11 frame, this function returns the offset
4500 * to the destination address (DA). It does not verify that
4501 * the header is long enough to contain the address, and the
4502 * header must be long enough to contain the frame control
4503 * field.
4504 */
ieee80211_get_DA(struct ieee80211_hdr * hdr)4505 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
4506 {
4507 if (ieee80211_has_tods(hdr->frame_control))
4508 return hdr->addr3;
4509 else
4510 return hdr->addr1;
4511 }
4512
4513 /**
4514 * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
4515 * @skb: the skb to check, starting with the 802.11 header
4516 * Return: whether or not the MMPDU is bufferable
4517 */
ieee80211_is_bufferable_mmpdu(struct sk_buff * skb)4518 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb)
4519 {
4520 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4521 __le16 fc = mgmt->frame_control;
4522
4523 /*
4524 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU;
4525 * note that this ignores the IBSS special case.
4526 */
4527 if (!ieee80211_is_mgmt(fc))
4528 return false;
4529
4530 if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc))
4531 return true;
4532
4533 if (!ieee80211_is_action(fc))
4534 return false;
4535
4536 if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code))
4537 return true;
4538
4539 /* action frame - additionally check for non-bufferable FTM */
4540
4541 if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
4542 mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
4543 return true;
4544
4545 if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST ||
4546 mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE)
4547 return false;
4548
4549 return true;
4550 }
4551
4552 /**
4553 * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
4554 * @hdr: the frame (buffer must include at least the first octet of payload)
4555 * Return: whether or not the frame is a robust management frame
4556 */
_ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr * hdr)4557 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
4558 {
4559 if (ieee80211_is_disassoc(hdr->frame_control) ||
4560 ieee80211_is_deauth(hdr->frame_control))
4561 return true;
4562
4563 if (ieee80211_is_action(hdr->frame_control)) {
4564 u8 *category;
4565
4566 /*
4567 * Action frames, excluding Public Action frames, are Robust
4568 * Management Frames. However, if we are looking at a Protected
4569 * frame, skip the check since the data may be encrypted and
4570 * the frame has already been found to be a Robust Management
4571 * Frame (by the other end).
4572 */
4573 if (ieee80211_has_protected(hdr->frame_control))
4574 return true;
4575 category = ((u8 *) hdr) + 24;
4576 return *category != WLAN_CATEGORY_PUBLIC &&
4577 *category != WLAN_CATEGORY_HT &&
4578 *category != WLAN_CATEGORY_WNM_UNPROTECTED &&
4579 *category != WLAN_CATEGORY_SELF_PROTECTED &&
4580 *category != WLAN_CATEGORY_UNPROT_DMG &&
4581 *category != WLAN_CATEGORY_VHT &&
4582 *category != WLAN_CATEGORY_S1G &&
4583 *category != WLAN_CATEGORY_VENDOR_SPECIFIC;
4584 }
4585
4586 return false;
4587 }
4588
4589 /**
4590 * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
4591 * @skb: the skb containing the frame, length will be checked
4592 * Return: whether or not the frame is a robust management frame
4593 */
ieee80211_is_robust_mgmt_frame(struct sk_buff * skb)4594 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
4595 {
4596 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4597 return false;
4598 return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
4599 }
4600
4601 /**
4602 * ieee80211_is_public_action - check if frame is a public action frame
4603 * @hdr: the frame
4604 * @len: length of the frame
4605 * Return: whether or not the frame is a public action frame
4606 */
ieee80211_is_public_action(struct ieee80211_hdr * hdr,size_t len)4607 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
4608 size_t len)
4609 {
4610 struct ieee80211_mgmt *mgmt = (void *)hdr;
4611
4612 if (len < IEEE80211_MIN_ACTION_SIZE)
4613 return false;
4614 if (!ieee80211_is_action(hdr->frame_control))
4615 return false;
4616 return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
4617 }
4618
4619 /**
4620 * ieee80211_is_protected_dual_of_public_action - check if skb contains a
4621 * protected dual of public action management frame
4622 * @skb: the skb containing the frame, length will be checked
4623 *
4624 * Return: true if the skb contains a protected dual of public action
4625 * management frame, false otherwise.
4626 */
4627 static inline bool
ieee80211_is_protected_dual_of_public_action(struct sk_buff * skb)4628 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb)
4629 {
4630 u8 action;
4631
4632 if (!ieee80211_is_public_action((void *)skb->data, skb->len) ||
4633 skb->len < IEEE80211_MIN_ACTION_SIZE + 1)
4634 return false;
4635
4636 action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE);
4637
4638 return action != WLAN_PUB_ACTION_20_40_BSS_COEX &&
4639 action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN &&
4640 action != WLAN_PUB_ACTION_MSMT_PILOT &&
4641 action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES &&
4642 action != WLAN_PUB_ACTION_LOC_TRACK_NOTI &&
4643 action != WLAN_PUB_ACTION_FTM_REQUEST &&
4644 action != WLAN_PUB_ACTION_FTM_RESPONSE &&
4645 action != WLAN_PUB_ACTION_FILS_DISCOVERY &&
4646 action != WLAN_PUB_ACTION_VENDOR_SPECIFIC;
4647 }
4648
4649 /**
4650 * _ieee80211_is_group_privacy_action - check if frame is a group addressed
4651 * privacy action frame
4652 * @hdr: the frame
4653 * Return: whether or not the frame is a group addressed privacy action frame
4654 */
_ieee80211_is_group_privacy_action(struct ieee80211_hdr * hdr)4655 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
4656 {
4657 struct ieee80211_mgmt *mgmt = (void *)hdr;
4658
4659 if (!ieee80211_is_action(hdr->frame_control) ||
4660 !is_multicast_ether_addr(hdr->addr1))
4661 return false;
4662
4663 return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
4664 mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
4665 }
4666
4667 /**
4668 * ieee80211_is_group_privacy_action - check if frame is a group addressed
4669 * privacy action frame
4670 * @skb: the skb containing the frame, length will be checked
4671 * Return: whether or not the frame is a group addressed privacy action frame
4672 */
ieee80211_is_group_privacy_action(struct sk_buff * skb)4673 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
4674 {
4675 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4676 return false;
4677 return _ieee80211_is_group_privacy_action((void *)skb->data);
4678 }
4679
4680 /**
4681 * ieee80211_tu_to_usec - convert time units (TU) to microseconds
4682 * @tu: the TUs
4683 * Return: the time value converted to microseconds
4684 */
ieee80211_tu_to_usec(unsigned long tu)4685 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
4686 {
4687 return 1024 * tu;
4688 }
4689
4690 /**
4691 * ieee80211_check_tim - check if AID bit is set in TIM
4692 * @tim: the TIM IE
4693 * @tim_len: length of the TIM IE
4694 * @aid: the AID to look for
4695 * Return: whether or not traffic is indicated in the TIM for the given AID
4696 */
ieee80211_check_tim(const struct ieee80211_tim_ie * tim,u8 tim_len,u16 aid)4697 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
4698 u8 tim_len, u16 aid)
4699 {
4700 u8 mask;
4701 u8 index, indexn1, indexn2;
4702
4703 if (unlikely(!tim || tim_len < sizeof(*tim)))
4704 return false;
4705
4706 aid &= 0x3fff;
4707 index = aid / 8;
4708 mask = 1 << (aid & 7);
4709
4710 indexn1 = tim->bitmap_ctrl & 0xfe;
4711 indexn2 = tim_len + indexn1 - 4;
4712
4713 if (index < indexn1 || index > indexn2)
4714 return false;
4715
4716 index -= indexn1;
4717
4718 return !!(tim->virtual_map[index] & mask);
4719 }
4720
4721 /**
4722 * ieee80211_get_tdls_action - get TDLS action code
4723 * @skb: the skb containing the frame, length will not be checked
4724 * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action
4725 * frame
4726 *
4727 * This function assumes the frame is a data frame, and that the network header
4728 * is in the correct place.
4729 */
ieee80211_get_tdls_action(struct sk_buff * skb)4730 static inline int ieee80211_get_tdls_action(struct sk_buff *skb)
4731 {
4732 if (!skb_is_nonlinear(skb) &&
4733 skb->len > (skb_network_offset(skb) + 2)) {
4734 /* Point to where the indication of TDLS should start */
4735 const u8 *tdls_data = skb_network_header(skb) - 2;
4736
4737 if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
4738 tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
4739 tdls_data[3] == WLAN_CATEGORY_TDLS)
4740 return tdls_data[4];
4741 }
4742
4743 return -1;
4744 }
4745
4746 /* convert time units */
4747 #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024))
4748 #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x))
4749
4750 /* convert frequencies */
4751 #define MHZ_TO_KHZ(freq) ((freq) * 1000)
4752 #define KHZ_TO_MHZ(freq) ((freq) / 1000)
4753 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000
4754 #define KHZ_F "%d.%03d"
4755
4756 /* convert powers */
4757 #define DBI_TO_MBI(gain) ((gain) * 100)
4758 #define MBI_TO_DBI(gain) ((gain) / 100)
4759 #define DBM_TO_MBM(gain) ((gain) * 100)
4760 #define MBM_TO_DBM(gain) ((gain) / 100)
4761
4762 /**
4763 * ieee80211_action_contains_tpc - checks if the frame contains TPC element
4764 * @skb: the skb containing the frame, length will be checked
4765 * Return: %true if the frame contains a TPC element, %false otherwise
4766 *
4767 * This function checks if it's either TPC report action frame or Link
4768 * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
4769 * and 8.5.7.5 accordingly.
4770 */
ieee80211_action_contains_tpc(struct sk_buff * skb)4771 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
4772 {
4773 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4774
4775 if (!ieee80211_is_action(mgmt->frame_control))
4776 return false;
4777
4778 if (skb->len < IEEE80211_MIN_ACTION_SIZE +
4779 sizeof(mgmt->u.action.u.tpc_report))
4780 return false;
4781
4782 /*
4783 * TPC report - check that:
4784 * category = 0 (Spectrum Management) or 5 (Radio Measurement)
4785 * spectrum management action = 3 (TPC/Link Measurement report)
4786 * TPC report EID = 35
4787 * TPC report element length = 2
4788 *
4789 * The spectrum management's tpc_report struct is used here both for
4790 * parsing tpc_report and radio measurement's link measurement report
4791 * frame, since the relevant part is identical in both frames.
4792 */
4793 if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
4794 mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
4795 return false;
4796
4797 /* both spectrum mgmt and link measurement have same action code */
4798 if (mgmt->u.action.u.tpc_report.action_code !=
4799 WLAN_ACTION_SPCT_TPC_RPRT)
4800 return false;
4801
4802 if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
4803 mgmt->u.action.u.tpc_report.tpc_elem_length !=
4804 sizeof(struct ieee80211_tpc_report_ie))
4805 return false;
4806
4807 return true;
4808 }
4809
4810 /**
4811 * ieee80211_is_timing_measurement - check if frame is timing measurement response
4812 * @skb: the SKB to check
4813 * Return: whether or not the frame is a valid timing measurement response
4814 */
ieee80211_is_timing_measurement(struct sk_buff * skb)4815 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb)
4816 {
4817 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4818
4819 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4820 return false;
4821
4822 if (!ieee80211_is_action(mgmt->frame_control))
4823 return false;
4824
4825 if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED &&
4826 mgmt->u.action.u.wnm_timing_msr.action_code ==
4827 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE &&
4828 skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr))
4829 return true;
4830
4831 return false;
4832 }
4833
4834 /**
4835 * ieee80211_is_ftm - check if frame is FTM response
4836 * @skb: the SKB to check
4837 * Return: whether or not the frame is a valid FTM response action frame
4838 */
ieee80211_is_ftm(struct sk_buff * skb)4839 static inline bool ieee80211_is_ftm(struct sk_buff *skb)
4840 {
4841 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4842
4843 if (!ieee80211_is_public_action((void *)mgmt, skb->len))
4844 return false;
4845
4846 if (mgmt->u.action.u.ftm.action_code ==
4847 WLAN_PUB_ACTION_FTM_RESPONSE &&
4848 skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm))
4849 return true;
4850
4851 return false;
4852 }
4853
4854 /**
4855 * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon
4856 * @fc: frame control bytes in little-endian byteorder
4857 * @variable: pointer to the beacon frame elements
4858 * @variable_len: length of the frame elements
4859 * Return: whether or not the frame is an S1G short beacon. As per
4860 * IEEE80211-2024 11.1.3.10.1, The S1G beacon compatibility element shall
4861 * always be present as the first element in beacon frames generated at a
4862 * TBTT (Target Beacon Transmission Time), so any frame not containing
4863 * this element must have been generated at a TSBTT (Target Short Beacon
4864 * Transmission Time) that is not a TBTT. Additionally, short beacons are
4865 * prohibited from containing the S1G beacon compatibility element as per
4866 * IEEE80211-2024 9.3.4.3 Table 9-76, so if we have an S1G beacon with
4867 * either no elements or the first element is not the beacon compatibility
4868 * element, we have a short beacon.
4869 */
ieee80211_is_s1g_short_beacon(__le16 fc,const u8 * variable,size_t variable_len)4870 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc, const u8 *variable,
4871 size_t variable_len)
4872 {
4873 if (!ieee80211_is_s1g_beacon(fc))
4874 return false;
4875
4876 /*
4877 * If the frame does not contain at least 1 element (this is perfectly
4878 * valid in a short beacon) and is an S1G beacon, we have a short
4879 * beacon.
4880 */
4881 if (variable_len < 2)
4882 return true;
4883
4884 return variable[0] != WLAN_EID_S1G_BCN_COMPAT;
4885 }
4886
4887 struct element {
4888 u8 id;
4889 u8 datalen;
4890 u8 data[];
4891 } __packed;
4892
4893 /* element iteration helpers */
4894 #define for_each_element(_elem, _data, _datalen) \
4895 for (_elem = (const struct element *)(_data); \
4896 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4897 (int)sizeof(*_elem) && \
4898 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4899 (int)sizeof(*_elem) + _elem->datalen; \
4900 _elem = (const struct element *)(_elem->data + _elem->datalen))
4901
4902 #define for_each_element_id(element, _id, data, datalen) \
4903 for_each_element(element, data, datalen) \
4904 if (element->id == (_id))
4905
4906 #define for_each_element_extid(element, extid, _data, _datalen) \
4907 for_each_element(element, _data, _datalen) \
4908 if (element->id == WLAN_EID_EXTENSION && \
4909 element->datalen > 0 && \
4910 element->data[0] == (extid))
4911
4912 #define for_each_subelement(sub, element) \
4913 for_each_element(sub, (element)->data, (element)->datalen)
4914
4915 #define for_each_subelement_id(sub, id, element) \
4916 for_each_element_id(sub, id, (element)->data, (element)->datalen)
4917
4918 #define for_each_subelement_extid(sub, extid, element) \
4919 for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
4920
4921 /**
4922 * for_each_element_completed - determine if element parsing consumed all data
4923 * @element: element pointer after for_each_element() or friends
4924 * @data: same data pointer as passed to for_each_element() or friends
4925 * @datalen: same data length as passed to for_each_element() or friends
4926 * Return: %true if all elements were iterated, %false otherwise; see notes
4927 *
4928 * This function returns %true if all the data was parsed or considered
4929 * while walking the elements. Only use this if your for_each_element()
4930 * loop cannot be broken out of, otherwise it always returns %false.
4931 *
4932 * If some data was malformed, this returns %false since the last parsed
4933 * element will not fill the whole remaining data.
4934 */
for_each_element_completed(const struct element * element,const void * data,size_t datalen)4935 static inline bool for_each_element_completed(const struct element *element,
4936 const void *data, size_t datalen)
4937 {
4938 return (const u8 *)element == (const u8 *)data + datalen;
4939 }
4940
4941 /*
4942 * RSNX Capabilities:
4943 * bits 0-3: Field length (n-1)
4944 */
4945 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4)
4946 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5)
4947
4948 /*
4949 * reduced neighbor report, based on Draft P802.11ax_D6.1,
4950 * section 9.4.2.170 and accepted contributions.
4951 */
4952 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03
4953 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04
4954 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08
4955 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0
4956 #define IEEE80211_TBTT_INFO_TYPE_TBTT 0
4957 #define IEEE80211_TBTT_INFO_TYPE_MLD 1
4958
4959 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01
4960 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02
4961 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04
4962 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08
4963 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10
4964 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20
4965 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40
4966
4967 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT 127
4968 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED -128
4969
4970 struct ieee80211_neighbor_ap_info {
4971 u8 tbtt_info_hdr;
4972 u8 tbtt_info_len;
4973 u8 op_class;
4974 u8 channel;
4975 } __packed;
4976
4977 enum ieee80211_range_params_max_total_ltf {
4978 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0,
4979 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8,
4980 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16,
4981 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED,
4982 };
4983
4984 /*
4985 * reduced neighbor report, based on Draft P802.11be_D3.0,
4986 * section 9.4.2.170.2.
4987 */
4988 struct ieee80211_rnr_mld_params {
4989 u8 mld_id;
4990 __le16 params;
4991 } __packed;
4992
4993 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID 0x000F
4994 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT 0x0FF0
4995 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED 0x1000
4996 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK 0x2000
4997
4998 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */
4999 struct ieee80211_tbtt_info_7_8_9 {
5000 u8 tbtt_offset;
5001 u8 bssid[ETH_ALEN];
5002
5003 /* The following element is optional, structure may not grow */
5004 u8 bss_params;
5005 s8 psd_20;
5006 } __packed;
5007
5008 /* Format of the TBTT information element if it has >= 11 bytes */
5009 struct ieee80211_tbtt_info_ge_11 {
5010 u8 tbtt_offset;
5011 u8 bssid[ETH_ALEN];
5012 __le32 short_ssid;
5013
5014 /* The following elements are optional, structure may grow */
5015 u8 bss_params;
5016 s8 psd_20;
5017 struct ieee80211_rnr_mld_params mld_params;
5018 } __packed;
5019
5020 /* multi-link device */
5021 #define IEEE80211_MLD_MAX_NUM_LINKS 15
5022
5023 #define IEEE80211_ML_CONTROL_TYPE 0x0007
5024 #define IEEE80211_ML_CONTROL_TYPE_BASIC 0
5025 #define IEEE80211_ML_CONTROL_TYPE_PREQ 1
5026 #define IEEE80211_ML_CONTROL_TYPE_RECONF 2
5027 #define IEEE80211_ML_CONTROL_TYPE_TDLS 3
5028 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS 4
5029 #define IEEE80211_ML_CONTROL_PRESENCE_MASK 0xfff0
5030
5031 struct ieee80211_multi_link_elem {
5032 __le16 control;
5033 u8 variable[];
5034 } __packed;
5035
5036 #define IEEE80211_MLC_BASIC_PRES_LINK_ID 0x0010
5037 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT 0x0020
5038 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY 0x0040
5039 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA 0x0080
5040 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP 0x0100
5041 #define IEEE80211_MLC_BASIC_PRES_MLD_ID 0x0200
5042
5043 #define IEEE80211_MED_SYNC_DELAY_DURATION 0x00ff
5044 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH 0x0f00
5045 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS 0xf000
5046
5047 /*
5048 * Described in P802.11be_D3.0
5049 * dot11MSDTimerDuration should default to 5484 (i.e. 171.375)
5050 * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0)
5051 * dot11MSDTXOPMAX defaults to 1
5052 */
5053 #define IEEE80211_MED_SYNC_DELAY_DEFAULT 0x10ac
5054
5055 #define IEEE80211_EML_CAP_EMLSR_SUPP 0x0001
5056 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY 0x000e
5057 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US 0
5058 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US 1
5059 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US 2
5060 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US 3
5061 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US 4
5062 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY 0x0070
5063 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US 0
5064 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US 1
5065 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US 2
5066 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US 3
5067 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US 4
5068 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US 5
5069 #define IEEE80211_EML_CAP_EMLMR_SUPPORT 0x0080
5070 #define IEEE80211_EML_CAP_EMLMR_DELAY 0x0700
5071 #define IEEE80211_EML_CAP_EMLMR_DELAY_0US 0
5072 #define IEEE80211_EML_CAP_EMLMR_DELAY_32US 1
5073 #define IEEE80211_EML_CAP_EMLMR_DELAY_64US 2
5074 #define IEEE80211_EML_CAP_EMLMR_DELAY_128US 3
5075 #define IEEE80211_EML_CAP_EMLMR_DELAY_256US 4
5076 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT 0x7800
5077 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0 0
5078 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US 1
5079 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US 2
5080 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US 3
5081 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU 4
5082 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU 5
5083 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU 6
5084 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU 7
5085 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU 8
5086 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU 9
5087 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU 10
5088 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU 11
5089
5090 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS 0x000f
5091 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT 0x0010
5092 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP 0x0060
5093 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP 0
5094 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME 1
5095 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED 2
5096 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF 3
5097 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND 0x0f80
5098 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT 0x1000
5099
5100 struct ieee80211_mle_basic_common_info {
5101 u8 len;
5102 u8 mld_mac_addr[ETH_ALEN];
5103 u8 variable[];
5104 } __packed;
5105
5106 #define IEEE80211_MLC_PREQ_PRES_MLD_ID 0x0010
5107
5108 struct ieee80211_mle_preq_common_info {
5109 u8 len;
5110 u8 variable[];
5111 } __packed;
5112
5113 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR 0x0010
5114
5115 /* no fixed fields in RECONF */
5116
5117 struct ieee80211_mle_tdls_common_info {
5118 u8 len;
5119 u8 ap_mld_mac_addr[ETH_ALEN];
5120 } __packed;
5121
5122 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR 0x0010
5123
5124 /* no fixed fields in PRIO_ACCESS */
5125
5126 /**
5127 * ieee80211_mle_common_size - check multi-link element common size
5128 * @data: multi-link element, must already be checked for size using
5129 * ieee80211_mle_size_ok()
5130 * Return: the size of the multi-link element's "common" subfield
5131 */
ieee80211_mle_common_size(const u8 * data)5132 static inline u8 ieee80211_mle_common_size(const u8 *data)
5133 {
5134 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5135 u16 control = le16_to_cpu(mle->control);
5136
5137 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5138 case IEEE80211_ML_CONTROL_TYPE_BASIC:
5139 case IEEE80211_ML_CONTROL_TYPE_PREQ:
5140 case IEEE80211_ML_CONTROL_TYPE_TDLS:
5141 case IEEE80211_ML_CONTROL_TYPE_RECONF:
5142 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5143 /*
5144 * The length is the first octet pointed by mle->variable so no
5145 * need to add anything
5146 */
5147 break;
5148 default:
5149 WARN_ON(1);
5150 return 0;
5151 }
5152
5153 return sizeof(*mle) + mle->variable[0];
5154 }
5155
5156 /**
5157 * ieee80211_mle_get_link_id - returns the link ID
5158 * @data: the basic multi link element
5159 * Return: the link ID, or -1 if not present
5160 *
5161 * The element is assumed to be of the correct type (BASIC) and big enough,
5162 * this must be checked using ieee80211_mle_type_ok().
5163 */
ieee80211_mle_get_link_id(const u8 * data)5164 static inline int ieee80211_mle_get_link_id(const u8 *data)
5165 {
5166 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5167 u16 control = le16_to_cpu(mle->control);
5168 const u8 *common = mle->variable;
5169
5170 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5171 common += sizeof(struct ieee80211_mle_basic_common_info);
5172
5173 if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID))
5174 return -1;
5175
5176 return *common;
5177 }
5178
5179 /**
5180 * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count
5181 * @data: pointer to the basic multi link element
5182 * Return: the BSS Parameter Change Count field value, or -1 if not present
5183 *
5184 * The element is assumed to be of the correct type (BASIC) and big enough,
5185 * this must be checked using ieee80211_mle_type_ok().
5186 */
5187 static inline int
ieee80211_mle_get_bss_param_ch_cnt(const u8 * data)5188 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data)
5189 {
5190 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5191 u16 control = le16_to_cpu(mle->control);
5192 const u8 *common = mle->variable;
5193
5194 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5195 common += sizeof(struct ieee80211_mle_basic_common_info);
5196
5197 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))
5198 return -1;
5199
5200 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5201 common += 1;
5202
5203 return *common;
5204 }
5205
5206 /**
5207 * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay
5208 * @data: pointer to the multi-link element
5209 * Return: the medium synchronization delay field value from the multi-link
5210 * element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT)
5211 * if not present
5212 *
5213 * The element is assumed to be of the correct type (BASIC) and big enough,
5214 * this must be checked using ieee80211_mle_type_ok().
5215 */
ieee80211_mle_get_eml_med_sync_delay(const u8 * data)5216 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data)
5217 {
5218 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5219 u16 control = le16_to_cpu(mle->control);
5220 const u8 *common = mle->variable;
5221
5222 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5223 common += sizeof(struct ieee80211_mle_basic_common_info);
5224
5225 if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
5226 return IEEE80211_MED_SYNC_DELAY_DEFAULT;
5227
5228 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5229 common += 1;
5230 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5231 common += 1;
5232
5233 return get_unaligned_le16(common);
5234 }
5235
5236 /**
5237 * ieee80211_mle_get_eml_cap - returns the EML capability
5238 * @data: pointer to the multi-link element
5239 * Return: the EML capability field value from the multi-link element,
5240 * or 0 if not present
5241 *
5242 * The element is assumed to be of the correct type (BASIC) and big enough,
5243 * this must be checked using ieee80211_mle_type_ok().
5244 */
ieee80211_mle_get_eml_cap(const u8 * data)5245 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data)
5246 {
5247 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5248 u16 control = le16_to_cpu(mle->control);
5249 const u8 *common = mle->variable;
5250
5251 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5252 common += sizeof(struct ieee80211_mle_basic_common_info);
5253
5254 if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA))
5255 return 0;
5256
5257 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5258 common += 1;
5259 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5260 common += 1;
5261 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5262 common += 2;
5263
5264 return get_unaligned_le16(common);
5265 }
5266
5267 /**
5268 * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations.
5269 * @data: pointer to the multi-link element
5270 * Return: the MLD capabilities and operations field value from the multi-link
5271 * element, or 0 if not present
5272 *
5273 * The element is assumed to be of the correct type (BASIC) and big enough,
5274 * this must be checked using ieee80211_mle_type_ok().
5275 */
ieee80211_mle_get_mld_capa_op(const u8 * data)5276 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data)
5277 {
5278 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5279 u16 control = le16_to_cpu(mle->control);
5280 const u8 *common = mle->variable;
5281
5282 /*
5283 * common points now at the beginning of
5284 * ieee80211_mle_basic_common_info
5285 */
5286 common += sizeof(struct ieee80211_mle_basic_common_info);
5287
5288 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
5289 return 0;
5290
5291 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5292 common += 1;
5293 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5294 common += 1;
5295 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5296 common += 2;
5297 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5298 common += 2;
5299
5300 return get_unaligned_le16(common);
5301 }
5302
5303 /**
5304 * ieee80211_mle_get_mld_id - returns the MLD ID
5305 * @data: pointer to the multi-link element
5306 * Return: The MLD ID in the given multi-link element, or 0 if not present
5307 *
5308 * The element is assumed to be of the correct type (BASIC) and big enough,
5309 * this must be checked using ieee80211_mle_type_ok().
5310 */
ieee80211_mle_get_mld_id(const u8 * data)5311 static inline u8 ieee80211_mle_get_mld_id(const u8 *data)
5312 {
5313 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5314 u16 control = le16_to_cpu(mle->control);
5315 const u8 *common = mle->variable;
5316
5317 /*
5318 * common points now at the beginning of
5319 * ieee80211_mle_basic_common_info
5320 */
5321 common += sizeof(struct ieee80211_mle_basic_common_info);
5322
5323 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID))
5324 return 0;
5325
5326 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5327 common += 1;
5328 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5329 common += 1;
5330 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5331 common += 2;
5332 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5333 common += 2;
5334 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5335 common += 2;
5336
5337 return *common;
5338 }
5339
5340 /**
5341 * ieee80211_mle_size_ok - validate multi-link element size
5342 * @data: pointer to the element data
5343 * @len: length of the containing element
5344 * Return: whether or not the multi-link element size is OK
5345 */
ieee80211_mle_size_ok(const u8 * data,size_t len)5346 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len)
5347 {
5348 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5349 u8 fixed = sizeof(*mle);
5350 u8 common = 0;
5351 bool check_common_len = false;
5352 u16 control;
5353
5354 if (!data || len < fixed)
5355 return false;
5356
5357 control = le16_to_cpu(mle->control);
5358
5359 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5360 case IEEE80211_ML_CONTROL_TYPE_BASIC:
5361 common += sizeof(struct ieee80211_mle_basic_common_info);
5362 check_common_len = true;
5363 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5364 common += 1;
5365 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5366 common += 1;
5367 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5368 common += 2;
5369 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5370 common += 2;
5371 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5372 common += 2;
5373 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5374 common += 1;
5375 break;
5376 case IEEE80211_ML_CONTROL_TYPE_PREQ:
5377 common += sizeof(struct ieee80211_mle_preq_common_info);
5378 if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID)
5379 common += 1;
5380 check_common_len = true;
5381 break;
5382 case IEEE80211_ML_CONTROL_TYPE_RECONF:
5383 if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR)
5384 common += ETH_ALEN;
5385 break;
5386 case IEEE80211_ML_CONTROL_TYPE_TDLS:
5387 common += sizeof(struct ieee80211_mle_tdls_common_info);
5388 check_common_len = true;
5389 break;
5390 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5391 common = ETH_ALEN + 1;
5392 break;
5393 default:
5394 /* we don't know this type */
5395 return true;
5396 }
5397
5398 if (len < fixed + common)
5399 return false;
5400
5401 if (!check_common_len)
5402 return true;
5403
5404 /* if present, common length is the first octet there */
5405 return mle->variable[0] >= common;
5406 }
5407
5408 /**
5409 * ieee80211_mle_type_ok - validate multi-link element type and size
5410 * @data: pointer to the element data
5411 * @type: expected type of the element
5412 * @len: length of the containing element
5413 * Return: whether or not the multi-link element type matches and size is OK
5414 */
ieee80211_mle_type_ok(const u8 * data,u8 type,size_t len)5415 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len)
5416 {
5417 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5418 u16 control;
5419
5420 if (!ieee80211_mle_size_ok(data, len))
5421 return false;
5422
5423 control = le16_to_cpu(mle->control);
5424
5425 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type)
5426 return true;
5427
5428 return false;
5429 }
5430
5431 enum ieee80211_mle_subelems {
5432 IEEE80211_MLE_SUBELEM_PER_STA_PROFILE = 0,
5433 IEEE80211_MLE_SUBELEM_FRAGMENT = 254,
5434 };
5435
5436 #define IEEE80211_MLE_STA_CONTROL_LINK_ID 0x000f
5437 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE 0x0010
5438 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5439 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT 0x0040
5440 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT 0x0080
5441 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT 0x0100
5442 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT 0x0200
5443 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE 0x0400
5444 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT 0x0800
5445
5446 struct ieee80211_mle_per_sta_profile {
5447 __le16 control;
5448 u8 sta_info_len;
5449 u8 variable[];
5450 } __packed;
5451
5452 /**
5453 * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta
5454 * profile size
5455 * @data: pointer to the sub element data
5456 * @len: length of the containing sub element
5457 * Return: %true if the STA profile is large enough, %false otherwise
5458 */
ieee80211_mle_basic_sta_prof_size_ok(const u8 * data,size_t len)5459 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data,
5460 size_t len)
5461 {
5462 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5463 u16 control;
5464 u8 fixed = sizeof(*prof);
5465 u8 info_len = 1;
5466
5467 if (len < fixed)
5468 return false;
5469
5470 control = le16_to_cpu(prof->control);
5471
5472 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5473 info_len += 6;
5474 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5475 info_len += 2;
5476 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5477 info_len += 8;
5478 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5479 info_len += 2;
5480 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5481 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5482 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5483 info_len += 2;
5484 else
5485 info_len += 1;
5486 }
5487 if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)
5488 info_len += 1;
5489
5490 return prof->sta_info_len >= info_len &&
5491 fixed + prof->sta_info_len - 1 <= len;
5492 }
5493
5494 /**
5495 * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS
5496 * parameter change count
5497 * @prof: the per-STA profile, having been checked with
5498 * ieee80211_mle_basic_sta_prof_size_ok() for the correct length
5499 *
5500 * Return: The BSS parameter change count value if present, 0 otherwise.
5501 */
5502 static inline u8
ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile * prof)5503 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof)
5504 {
5505 u16 control = le16_to_cpu(prof->control);
5506 const u8 *pos = prof->variable;
5507
5508 if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT))
5509 return 0;
5510
5511 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5512 pos += 6;
5513 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5514 pos += 2;
5515 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5516 pos += 8;
5517 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5518 pos += 2;
5519 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5520 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5521 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5522 pos += 2;
5523 else
5524 pos += 1;
5525 }
5526
5527 return *pos;
5528 }
5529
5530 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID 0x000f
5531 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE 0x0010
5532 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5533 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT 0x0040
5534 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_UPDATE_TYPE 0x0780
5535 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT 0x0800
5536
5537 /**
5538 * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link
5539 * element sta profile size.
5540 * @data: pointer to the sub element data
5541 * @len: length of the containing sub element
5542 * Return: %true if the STA profile is large enough, %false otherwise
5543 */
ieee80211_mle_reconf_sta_prof_size_ok(const u8 * data,size_t len)5544 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data,
5545 size_t len)
5546 {
5547 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5548 u16 control;
5549 u8 fixed = sizeof(*prof);
5550 u8 info_len = 1;
5551
5552 if (len < fixed)
5553 return false;
5554
5555 control = le16_to_cpu(prof->control);
5556
5557 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
5558 info_len += ETH_ALEN;
5559 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
5560 info_len += 2;
5561 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT)
5562 info_len += 2;
5563
5564 return prof->sta_info_len >= info_len &&
5565 fixed + prof->sta_info_len - 1 <= len;
5566 }
5567
ieee80211_tid_to_link_map_size_ok(const u8 * data,size_t len)5568 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len)
5569 {
5570 const struct ieee80211_ttlm_elem *t2l = (const void *)data;
5571 u8 control, fixed = sizeof(*t2l), elem_len = 0;
5572
5573 if (len < fixed)
5574 return false;
5575
5576 control = t2l->control;
5577
5578 if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT)
5579 elem_len += 2;
5580 if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)
5581 elem_len += 3;
5582
5583 if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) {
5584 u8 bm_size;
5585
5586 elem_len += 1;
5587 if (len < fixed + elem_len)
5588 return false;
5589
5590 if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE)
5591 bm_size = 1;
5592 else
5593 bm_size = 2;
5594
5595 elem_len += hweight8(t2l->optional[0]) * bm_size;
5596 }
5597
5598 return len >= fixed + elem_len;
5599 }
5600
5601 #define for_each_mle_subelement(_elem, _data, _len) \
5602 if (ieee80211_mle_size_ok(_data, _len)) \
5603 for_each_element(_elem, \
5604 _data + ieee80211_mle_common_size(_data),\
5605 _len - ieee80211_mle_common_size(_data))
5606
5607 #endif /* LINUX_IEEE80211_H */
5608