1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * IEEE 802.11 defines
4  *
5  * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
6  * <jkmaline@cc.hut.fi>
7  * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
8  * Copyright (c) 2005, Devicescape Software, Inc.
9  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
10  * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
11  * Copyright (c) 2016 - 2017 Intel Deutschland GmbH
12  * Copyright (c) 2018 - 2024 Intel Corporation
13  */
14 
15 #ifndef LINUX_IEEE80211_H
16 #define LINUX_IEEE80211_H
17 
18 #include <linux/types.h>
19 #include <linux/if_ether.h>
20 #include <linux/etherdevice.h>
21 #include <linux/bitfield.h>
22 #include <asm/byteorder.h>
23 #include <linux/unaligned.h>
24 
25 /*
26  * DS bit usage
27  *
28  * TA = transmitter address
29  * RA = receiver address
30  * DA = destination address
31  * SA = source address
32  *
33  * ToDS    FromDS  A1(RA)  A2(TA)  A3      A4      Use
34  * -----------------------------------------------------------------
35  *  0       0       DA      SA      BSSID   -       IBSS/DLS
36  *  0       1       DA      BSSID   SA      -       AP -> STA
37  *  1       0       BSSID   SA      DA      -       AP <- STA
38  *  1       1       RA      TA      DA      SA      unspecified (WDS)
39  */
40 
41 #define FCS_LEN 4
42 
43 #define IEEE80211_FCTL_VERS		0x0003
44 #define IEEE80211_FCTL_FTYPE		0x000c
45 #define IEEE80211_FCTL_STYPE		0x00f0
46 #define IEEE80211_FCTL_TODS		0x0100
47 #define IEEE80211_FCTL_FROMDS		0x0200
48 #define IEEE80211_FCTL_MOREFRAGS	0x0400
49 #define IEEE80211_FCTL_RETRY		0x0800
50 #define IEEE80211_FCTL_PM		0x1000
51 #define IEEE80211_FCTL_MOREDATA		0x2000
52 #define IEEE80211_FCTL_PROTECTED	0x4000
53 #define IEEE80211_FCTL_ORDER		0x8000
54 #define IEEE80211_FCTL_CTL_EXT		0x0f00
55 
56 #define IEEE80211_SCTL_FRAG		0x000F
57 #define IEEE80211_SCTL_SEQ		0xFFF0
58 
59 #define IEEE80211_FTYPE_MGMT		0x0000
60 #define IEEE80211_FTYPE_CTL		0x0004
61 #define IEEE80211_FTYPE_DATA		0x0008
62 #define IEEE80211_FTYPE_EXT		0x000c
63 
64 /* management */
65 #define IEEE80211_STYPE_ASSOC_REQ	0x0000
66 #define IEEE80211_STYPE_ASSOC_RESP	0x0010
67 #define IEEE80211_STYPE_REASSOC_REQ	0x0020
68 #define IEEE80211_STYPE_REASSOC_RESP	0x0030
69 #define IEEE80211_STYPE_PROBE_REQ	0x0040
70 #define IEEE80211_STYPE_PROBE_RESP	0x0050
71 #define IEEE80211_STYPE_BEACON		0x0080
72 #define IEEE80211_STYPE_ATIM		0x0090
73 #define IEEE80211_STYPE_DISASSOC	0x00A0
74 #define IEEE80211_STYPE_AUTH		0x00B0
75 #define IEEE80211_STYPE_DEAUTH		0x00C0
76 #define IEEE80211_STYPE_ACTION		0x00D0
77 
78 /* control */
79 #define IEEE80211_STYPE_TRIGGER		0x0020
80 #define IEEE80211_STYPE_CTL_EXT		0x0060
81 #define IEEE80211_STYPE_BACK_REQ	0x0080
82 #define IEEE80211_STYPE_BACK		0x0090
83 #define IEEE80211_STYPE_PSPOLL		0x00A0
84 #define IEEE80211_STYPE_RTS		0x00B0
85 #define IEEE80211_STYPE_CTS		0x00C0
86 #define IEEE80211_STYPE_ACK		0x00D0
87 #define IEEE80211_STYPE_CFEND		0x00E0
88 #define IEEE80211_STYPE_CFENDACK	0x00F0
89 
90 /* data */
91 #define IEEE80211_STYPE_DATA			0x0000
92 #define IEEE80211_STYPE_DATA_CFACK		0x0010
93 #define IEEE80211_STYPE_DATA_CFPOLL		0x0020
94 #define IEEE80211_STYPE_DATA_CFACKPOLL		0x0030
95 #define IEEE80211_STYPE_NULLFUNC		0x0040
96 #define IEEE80211_STYPE_CFACK			0x0050
97 #define IEEE80211_STYPE_CFPOLL			0x0060
98 #define IEEE80211_STYPE_CFACKPOLL		0x0070
99 #define IEEE80211_STYPE_QOS_DATA		0x0080
100 #define IEEE80211_STYPE_QOS_DATA_CFACK		0x0090
101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL		0x00A0
102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL	0x00B0
103 #define IEEE80211_STYPE_QOS_NULLFUNC		0x00C0
104 #define IEEE80211_STYPE_QOS_CFACK		0x00D0
105 #define IEEE80211_STYPE_QOS_CFPOLL		0x00E0
106 #define IEEE80211_STYPE_QOS_CFACKPOLL		0x00F0
107 
108 /* extension, added by 802.11ad */
109 #define IEEE80211_STYPE_DMG_BEACON		0x0000
110 #define IEEE80211_STYPE_S1G_BEACON		0x0010
111 
112 /* bits unique to S1G beacon */
113 #define IEEE80211_S1G_BCN_NEXT_TBTT	0x100
114 #define IEEE80211_S1G_BCN_CSSID		0x200
115 #define IEEE80211_S1G_BCN_ANO		0x400
116 
117 /* see 802.11ah-2016 9.9 NDP CMAC frames */
118 #define IEEE80211_S1G_1MHZ_NDP_BITS	25
119 #define IEEE80211_S1G_1MHZ_NDP_BYTES	4
120 #define IEEE80211_S1G_2MHZ_NDP_BITS	37
121 #define IEEE80211_S1G_2MHZ_NDP_BYTES	5
122 
123 #define IEEE80211_NDP_FTYPE_CTS			0
124 #define IEEE80211_NDP_FTYPE_CF_END		0
125 #define IEEE80211_NDP_FTYPE_PS_POLL		1
126 #define IEEE80211_NDP_FTYPE_ACK			2
127 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK		3
128 #define IEEE80211_NDP_FTYPE_BA			4
129 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL	5
130 #define IEEE80211_NDP_FTYPE_PAGING		6
131 #define IEEE80211_NDP_FTYPE_PREQ		7
132 
133 #define SM64(f, v)	((((u64)v) << f##_S) & f)
134 
135 /* NDP CMAC frame fields */
136 #define IEEE80211_NDP_FTYPE                    0x0000000000000007
137 #define IEEE80211_NDP_FTYPE_S                  0x0000000000000000
138 
139 /* 1M Probe Request 11ah 9.9.3.1.1 */
140 #define IEEE80211_NDP_1M_PREQ_ANO      0x0000000000000008
141 #define IEEE80211_NDP_1M_PREQ_ANO_S                     3
142 #define IEEE80211_NDP_1M_PREQ_CSSID    0x00000000000FFFF0
143 #define IEEE80211_NDP_1M_PREQ_CSSID_S                   4
144 #define IEEE80211_NDP_1M_PREQ_RTYPE    0x0000000000100000
145 #define IEEE80211_NDP_1M_PREQ_RTYPE_S                  20
146 #define IEEE80211_NDP_1M_PREQ_RSV      0x0000000001E00000
147 #define IEEE80211_NDP_1M_PREQ_RSV      0x0000000001E00000
148 /* 2M Probe Request 11ah 9.9.3.1.2 */
149 #define IEEE80211_NDP_2M_PREQ_ANO      0x0000000000000008
150 #define IEEE80211_NDP_2M_PREQ_ANO_S                     3
151 #define IEEE80211_NDP_2M_PREQ_CSSID    0x0000000FFFFFFFF0
152 #define IEEE80211_NDP_2M_PREQ_CSSID_S                   4
153 #define IEEE80211_NDP_2M_PREQ_RTYPE    0x0000001000000000
154 #define IEEE80211_NDP_2M_PREQ_RTYPE_S                  36
155 
156 #define IEEE80211_ANO_NETTYPE_WILD              15
157 
158 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
159 #define IEEE80211_CTL_EXT_POLL		0x2000
160 #define IEEE80211_CTL_EXT_SPR		0x3000
161 #define IEEE80211_CTL_EXT_GRANT	0x4000
162 #define IEEE80211_CTL_EXT_DMG_CTS	0x5000
163 #define IEEE80211_CTL_EXT_DMG_DTS	0x6000
164 #define IEEE80211_CTL_EXT_SSW		0x8000
165 #define IEEE80211_CTL_EXT_SSW_FBACK	0x9000
166 #define IEEE80211_CTL_EXT_SSW_ACK	0xa000
167 
168 
169 #define IEEE80211_SN_MASK		((IEEE80211_SCTL_SEQ) >> 4)
170 #define IEEE80211_MAX_SN		IEEE80211_SN_MASK
171 #define IEEE80211_SN_MODULO		(IEEE80211_MAX_SN + 1)
172 
173 
174 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */
175 #define IEEE80211_PV1_FCTL_VERS		0x0003
176 #define IEEE80211_PV1_FCTL_FTYPE	0x001c
177 #define IEEE80211_PV1_FCTL_STYPE	0x00e0
178 #define IEEE80211_PV1_FCTL_FROMDS		0x0100
179 #define IEEE80211_PV1_FCTL_MOREFRAGS	0x0200
180 #define IEEE80211_PV1_FCTL_PM		0x0400
181 #define IEEE80211_PV1_FCTL_MOREDATA	0x0800
182 #define IEEE80211_PV1_FCTL_PROTECTED	0x1000
183 #define IEEE80211_PV1_FCTL_END_SP       0x2000
184 #define IEEE80211_PV1_FCTL_RELAYED      0x4000
185 #define IEEE80211_PV1_FCTL_ACK_POLICY   0x8000
186 #define IEEE80211_PV1_FCTL_CTL_EXT	0x0f00
187 
ieee80211_sn_less(u16 sn1,u16 sn2)188 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
189 {
190 	return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
191 }
192 
ieee80211_sn_less_eq(u16 sn1,u16 sn2)193 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2)
194 {
195 	return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1);
196 }
197 
ieee80211_sn_add(u16 sn1,u16 sn2)198 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
199 {
200 	return (sn1 + sn2) & IEEE80211_SN_MASK;
201 }
202 
ieee80211_sn_inc(u16 sn)203 static inline u16 ieee80211_sn_inc(u16 sn)
204 {
205 	return ieee80211_sn_add(sn, 1);
206 }
207 
ieee80211_sn_sub(u16 sn1,u16 sn2)208 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
209 {
210 	return (sn1 - sn2) & IEEE80211_SN_MASK;
211 }
212 
213 #define IEEE80211_SEQ_TO_SN(seq)	(((seq) & IEEE80211_SCTL_SEQ) >> 4)
214 #define IEEE80211_SN_TO_SEQ(ssn)	(((ssn) << 4) & IEEE80211_SCTL_SEQ)
215 
216 /* miscellaneous IEEE 802.11 constants */
217 #define IEEE80211_MAX_FRAG_THRESHOLD	2352
218 #define IEEE80211_MAX_RTS_THRESHOLD	2353
219 #define IEEE80211_MAX_AID		2007
220 #define IEEE80211_MAX_AID_S1G		8191
221 #define IEEE80211_MAX_TIM_LEN		251
222 #define IEEE80211_MAX_MESH_PEERINGS	63
223 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
224    6.2.1.1.2.
225 
226    802.11e clarifies the figure in section 7.1.2. The frame body is
227    up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
228 #define IEEE80211_MAX_DATA_LEN		2304
229 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
230  * to 7920 bytes, see 8.2.3 General frame format
231  */
232 #define IEEE80211_MAX_DATA_LEN_DMG	7920
233 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
234 #define IEEE80211_MAX_FRAME_LEN		2352
235 
236 /* Maximal size of an A-MSDU that can be transported in a HT BA session */
237 #define IEEE80211_MAX_MPDU_LEN_HT_BA		4095
238 
239 /* Maximal size of an A-MSDU */
240 #define IEEE80211_MAX_MPDU_LEN_HT_3839		3839
241 #define IEEE80211_MAX_MPDU_LEN_HT_7935		7935
242 
243 #define IEEE80211_MAX_MPDU_LEN_VHT_3895		3895
244 #define IEEE80211_MAX_MPDU_LEN_VHT_7991		7991
245 #define IEEE80211_MAX_MPDU_LEN_VHT_11454	11454
246 
247 #define IEEE80211_MAX_SSID_LEN		32
248 
249 #define IEEE80211_MAX_MESH_ID_LEN	32
250 
251 #define IEEE80211_FIRST_TSPEC_TSID	8
252 #define IEEE80211_NUM_TIDS		16
253 
254 /* number of user priorities 802.11 uses */
255 #define IEEE80211_NUM_UPS		8
256 /* number of ACs */
257 #define IEEE80211_NUM_ACS		4
258 
259 #define IEEE80211_QOS_CTL_LEN		2
260 /* 1d tag mask */
261 #define IEEE80211_QOS_CTL_TAG1D_MASK		0x0007
262 /* TID mask */
263 #define IEEE80211_QOS_CTL_TID_MASK		0x000f
264 /* EOSP */
265 #define IEEE80211_QOS_CTL_EOSP			0x0010
266 /* ACK policy */
267 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL	0x0000
268 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK	0x0020
269 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL	0x0040
270 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK	0x0060
271 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK	0x0060
272 /* A-MSDU 802.11n */
273 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT	0x0080
274 /* Mesh Control 802.11s */
275 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT  0x0100
276 
277 /* Mesh Power Save Level */
278 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL		0x0200
279 /* Mesh Receiver Service Period Initiated */
280 #define IEEE80211_QOS_CTL_RSPI			0x0400
281 
282 /* U-APSD queue for WMM IEs sent by AP */
283 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD	(1<<7)
284 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK	0x0f
285 
286 /* U-APSD queues for WMM IEs sent by STA */
287 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO	(1<<0)
288 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI	(1<<1)
289 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK	(1<<2)
290 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE	(1<<3)
291 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK	0x0f
292 
293 /* U-APSD max SP length for WMM IEs sent by STA */
294 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL	0x00
295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2	0x01
296 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4	0x02
297 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6	0x03
298 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK	0x03
299 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT	5
300 
301 #define IEEE80211_HT_CTL_LEN		4
302 
303 /* trigger type within common_info of trigger frame */
304 #define IEEE80211_TRIGGER_TYPE_MASK		0xf
305 #define IEEE80211_TRIGGER_TYPE_BASIC		0x0
306 #define IEEE80211_TRIGGER_TYPE_BFRP		0x1
307 #define IEEE80211_TRIGGER_TYPE_MU_BAR		0x2
308 #define IEEE80211_TRIGGER_TYPE_MU_RTS		0x3
309 #define IEEE80211_TRIGGER_TYPE_BSRP		0x4
310 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR	0x5
311 #define IEEE80211_TRIGGER_TYPE_BQRP		0x6
312 #define IEEE80211_TRIGGER_TYPE_NFRP		0x7
313 
314 /* UL-bandwidth within common_info of trigger frame */
315 #define IEEE80211_TRIGGER_ULBW_MASK		0xc0000
316 #define IEEE80211_TRIGGER_ULBW_20MHZ		0x0
317 #define IEEE80211_TRIGGER_ULBW_40MHZ		0x1
318 #define IEEE80211_TRIGGER_ULBW_80MHZ		0x2
319 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ	0x3
320 
321 struct ieee80211_hdr {
322 	__le16 frame_control;
323 	__le16 duration_id;
324 	struct_group(addrs,
325 		u8 addr1[ETH_ALEN];
326 		u8 addr2[ETH_ALEN];
327 		u8 addr3[ETH_ALEN];
328 	);
329 	__le16 seq_ctrl;
330 	u8 addr4[ETH_ALEN];
331 } __packed __aligned(2);
332 
333 struct ieee80211_hdr_3addr {
334 	__le16 frame_control;
335 	__le16 duration_id;
336 	u8 addr1[ETH_ALEN];
337 	u8 addr2[ETH_ALEN];
338 	u8 addr3[ETH_ALEN];
339 	__le16 seq_ctrl;
340 } __packed __aligned(2);
341 
342 struct ieee80211_qos_hdr {
343 	__le16 frame_control;
344 	__le16 duration_id;
345 	u8 addr1[ETH_ALEN];
346 	u8 addr2[ETH_ALEN];
347 	u8 addr3[ETH_ALEN];
348 	__le16 seq_ctrl;
349 	__le16 qos_ctrl;
350 } __packed __aligned(2);
351 
352 struct ieee80211_qos_hdr_4addr {
353 	__le16 frame_control;
354 	__le16 duration_id;
355 	u8 addr1[ETH_ALEN];
356 	u8 addr2[ETH_ALEN];
357 	u8 addr3[ETH_ALEN];
358 	__le16 seq_ctrl;
359 	u8 addr4[ETH_ALEN];
360 	__le16 qos_ctrl;
361 } __packed __aligned(2);
362 
363 struct ieee80211_trigger {
364 	__le16 frame_control;
365 	__le16 duration;
366 	u8 ra[ETH_ALEN];
367 	u8 ta[ETH_ALEN];
368 	__le64 common_info;
369 	u8 variable[];
370 } __packed __aligned(2);
371 
372 /**
373  * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
374  * @fc: frame control bytes in little-endian byteorder
375  * Return: whether or not the frame has to-DS set
376  */
ieee80211_has_tods(__le16 fc)377 static inline bool ieee80211_has_tods(__le16 fc)
378 {
379 	return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
380 }
381 
382 /**
383  * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
384  * @fc: frame control bytes in little-endian byteorder
385  * Return: whether or not the frame has from-DS set
386  */
ieee80211_has_fromds(__le16 fc)387 static inline bool ieee80211_has_fromds(__le16 fc)
388 {
389 	return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
390 }
391 
392 /**
393  * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
394  * @fc: frame control bytes in little-endian byteorder
395  * Return: whether or not it's a 4-address frame (from-DS and to-DS set)
396  */
ieee80211_has_a4(__le16 fc)397 static inline bool ieee80211_has_a4(__le16 fc)
398 {
399 	__le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
400 	return (fc & tmp) == tmp;
401 }
402 
403 /**
404  * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
405  * @fc: frame control bytes in little-endian byteorder
406  * Return: whether or not the frame has more fragments (more frags bit set)
407  */
ieee80211_has_morefrags(__le16 fc)408 static inline bool ieee80211_has_morefrags(__le16 fc)
409 {
410 	return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
411 }
412 
413 /**
414  * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
415  * @fc: frame control bytes in little-endian byteorder
416  * Return: whether or not the retry flag is set
417  */
ieee80211_has_retry(__le16 fc)418 static inline bool ieee80211_has_retry(__le16 fc)
419 {
420 	return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
421 }
422 
423 /**
424  * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
425  * @fc: frame control bytes in little-endian byteorder
426  * Return: whether or not the power management flag is set
427  */
ieee80211_has_pm(__le16 fc)428 static inline bool ieee80211_has_pm(__le16 fc)
429 {
430 	return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
431 }
432 
433 /**
434  * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
435  * @fc: frame control bytes in little-endian byteorder
436  * Return: whether or not the more data flag is set
437  */
ieee80211_has_moredata(__le16 fc)438 static inline bool ieee80211_has_moredata(__le16 fc)
439 {
440 	return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
441 }
442 
443 /**
444  * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
445  * @fc: frame control bytes in little-endian byteorder
446  * Return: whether or not the protected flag is set
447  */
ieee80211_has_protected(__le16 fc)448 static inline bool ieee80211_has_protected(__le16 fc)
449 {
450 	return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
451 }
452 
453 /**
454  * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
455  * @fc: frame control bytes in little-endian byteorder
456  * Return: whether or not the order flag is set
457  */
ieee80211_has_order(__le16 fc)458 static inline bool ieee80211_has_order(__le16 fc)
459 {
460 	return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
461 }
462 
463 /**
464  * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
465  * @fc: frame control bytes in little-endian byteorder
466  * Return: whether or not the frame type is management
467  */
ieee80211_is_mgmt(__le16 fc)468 static inline bool ieee80211_is_mgmt(__le16 fc)
469 {
470 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
471 	       cpu_to_le16(IEEE80211_FTYPE_MGMT);
472 }
473 
474 /**
475  * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
476  * @fc: frame control bytes in little-endian byteorder
477  * Return: whether or not the frame type is control
478  */
ieee80211_is_ctl(__le16 fc)479 static inline bool ieee80211_is_ctl(__le16 fc)
480 {
481 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
482 	       cpu_to_le16(IEEE80211_FTYPE_CTL);
483 }
484 
485 /**
486  * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
487  * @fc: frame control bytes in little-endian byteorder
488  * Return: whether or not the frame is a data frame
489  */
ieee80211_is_data(__le16 fc)490 static inline bool ieee80211_is_data(__le16 fc)
491 {
492 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
493 	       cpu_to_le16(IEEE80211_FTYPE_DATA);
494 }
495 
496 /**
497  * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT
498  * @fc: frame control bytes in little-endian byteorder
499  * Return: whether or not the frame type is extended
500  */
ieee80211_is_ext(__le16 fc)501 static inline bool ieee80211_is_ext(__le16 fc)
502 {
503 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
504 	       cpu_to_le16(IEEE80211_FTYPE_EXT);
505 }
506 
507 
508 /**
509  * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
510  * @fc: frame control bytes in little-endian byteorder
511  * Return: whether or not the frame is a QoS data frame
512  */
ieee80211_is_data_qos(__le16 fc)513 static inline bool ieee80211_is_data_qos(__le16 fc)
514 {
515 	/*
516 	 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
517 	 * to check the one bit
518 	 */
519 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
520 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
521 }
522 
523 /**
524  * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
525  * @fc: frame control bytes in little-endian byteorder
526  * Return: whether or not the frame is a QoS data frame that has data
527  *	(i.e. is not null data)
528  */
ieee80211_is_data_present(__le16 fc)529 static inline bool ieee80211_is_data_present(__le16 fc)
530 {
531 	/*
532 	 * mask with 0x40 and test that that bit is clear to only return true
533 	 * for the data-containing substypes.
534 	 */
535 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
536 	       cpu_to_le16(IEEE80211_FTYPE_DATA);
537 }
538 
539 /**
540  * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
541  * @fc: frame control bytes in little-endian byteorder
542  * Return: whether or not the frame is an association request
543  */
ieee80211_is_assoc_req(__le16 fc)544 static inline bool ieee80211_is_assoc_req(__le16 fc)
545 {
546 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
547 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
548 }
549 
550 /**
551  * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
552  * @fc: frame control bytes in little-endian byteorder
553  * Return: whether or not the frame is an association response
554  */
ieee80211_is_assoc_resp(__le16 fc)555 static inline bool ieee80211_is_assoc_resp(__le16 fc)
556 {
557 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
558 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
559 }
560 
561 /**
562  * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
563  * @fc: frame control bytes in little-endian byteorder
564  * Return: whether or not the frame is a reassociation request
565  */
ieee80211_is_reassoc_req(__le16 fc)566 static inline bool ieee80211_is_reassoc_req(__le16 fc)
567 {
568 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
569 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
570 }
571 
572 /**
573  * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
574  * @fc: frame control bytes in little-endian byteorder
575  * Return: whether or not the frame is a reassociation response
576  */
ieee80211_is_reassoc_resp(__le16 fc)577 static inline bool ieee80211_is_reassoc_resp(__le16 fc)
578 {
579 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
580 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
581 }
582 
583 /**
584  * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
585  * @fc: frame control bytes in little-endian byteorder
586  * Return: whether or not the frame is a probe request
587  */
ieee80211_is_probe_req(__le16 fc)588 static inline bool ieee80211_is_probe_req(__le16 fc)
589 {
590 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
591 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
592 }
593 
594 /**
595  * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
596  * @fc: frame control bytes in little-endian byteorder
597  * Return: whether or not the frame is a probe response
598  */
ieee80211_is_probe_resp(__le16 fc)599 static inline bool ieee80211_is_probe_resp(__le16 fc)
600 {
601 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
602 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
603 }
604 
605 /**
606  * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
607  * @fc: frame control bytes in little-endian byteorder
608  * Return: whether or not the frame is a (regular, not S1G) beacon
609  */
ieee80211_is_beacon(__le16 fc)610 static inline bool ieee80211_is_beacon(__le16 fc)
611 {
612 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
613 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
614 }
615 
616 /**
617  * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT &&
618  * IEEE80211_STYPE_S1G_BEACON
619  * @fc: frame control bytes in little-endian byteorder
620  * Return: whether or not the frame is an S1G beacon
621  */
ieee80211_is_s1g_beacon(__le16 fc)622 static inline bool ieee80211_is_s1g_beacon(__le16 fc)
623 {
624 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE |
625 				 IEEE80211_FCTL_STYPE)) ==
626 	       cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON);
627 }
628 
629 /**
630  * ieee80211_s1g_has_next_tbtt - check if IEEE80211_S1G_BCN_NEXT_TBTT
631  * @fc: frame control bytes in little-endian byteorder
632  * Return: whether or not the frame contains the variable-length
633  *	next TBTT field
634  */
ieee80211_s1g_has_next_tbtt(__le16 fc)635 static inline bool ieee80211_s1g_has_next_tbtt(__le16 fc)
636 {
637 	return ieee80211_is_s1g_beacon(fc) &&
638 		(fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT));
639 }
640 
641 /**
642  * ieee80211_s1g_has_ano - check if IEEE80211_S1G_BCN_ANO
643  * @fc: frame control bytes in little-endian byteorder
644  * Return: whether or not the frame contains the variable-length
645  *	ANO field
646  */
ieee80211_s1g_has_ano(__le16 fc)647 static inline bool ieee80211_s1g_has_ano(__le16 fc)
648 {
649 	return ieee80211_is_s1g_beacon(fc) &&
650 		(fc & cpu_to_le16(IEEE80211_S1G_BCN_ANO));
651 }
652 
653 /**
654  * ieee80211_s1g_has_cssid - check if IEEE80211_S1G_BCN_CSSID
655  * @fc: frame control bytes in little-endian byteorder
656  * Return: whether or not the frame contains the variable-length
657  *	compressed SSID field
658  */
ieee80211_s1g_has_cssid(__le16 fc)659 static inline bool ieee80211_s1g_has_cssid(__le16 fc)
660 {
661 	return ieee80211_is_s1g_beacon(fc) &&
662 		(fc & cpu_to_le16(IEEE80211_S1G_BCN_CSSID));
663 }
664 
665 /**
666  * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
667  * @fc: frame control bytes in little-endian byteorder
668  * Return: whether or not the frame is an ATIM frame
669  */
ieee80211_is_atim(__le16 fc)670 static inline bool ieee80211_is_atim(__le16 fc)
671 {
672 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
673 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
674 }
675 
676 /**
677  * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
678  * @fc: frame control bytes in little-endian byteorder
679  * Return: whether or not the frame is a disassociation frame
680  */
ieee80211_is_disassoc(__le16 fc)681 static inline bool ieee80211_is_disassoc(__le16 fc)
682 {
683 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
684 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
685 }
686 
687 /**
688  * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
689  * @fc: frame control bytes in little-endian byteorder
690  * Return: whether or not the frame is an authentication frame
691  */
ieee80211_is_auth(__le16 fc)692 static inline bool ieee80211_is_auth(__le16 fc)
693 {
694 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
695 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
696 }
697 
698 /**
699  * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
700  * @fc: frame control bytes in little-endian byteorder
701  * Return: whether or not the frame is a deauthentication frame
702  */
ieee80211_is_deauth(__le16 fc)703 static inline bool ieee80211_is_deauth(__le16 fc)
704 {
705 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
706 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
707 }
708 
709 /**
710  * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
711  * @fc: frame control bytes in little-endian byteorder
712  * Return: whether or not the frame is an action frame
713  */
ieee80211_is_action(__le16 fc)714 static inline bool ieee80211_is_action(__le16 fc)
715 {
716 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
717 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
718 }
719 
720 /**
721  * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
722  * @fc: frame control bytes in little-endian byteorder
723  * Return: whether or not the frame is a block-ACK request frame
724  */
ieee80211_is_back_req(__le16 fc)725 static inline bool ieee80211_is_back_req(__le16 fc)
726 {
727 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
728 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
729 }
730 
731 /**
732  * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
733  * @fc: frame control bytes in little-endian byteorder
734  * Return: whether or not the frame is a block-ACK frame
735  */
ieee80211_is_back(__le16 fc)736 static inline bool ieee80211_is_back(__le16 fc)
737 {
738 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
739 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
740 }
741 
742 /**
743  * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
744  * @fc: frame control bytes in little-endian byteorder
745  * Return: whether or not the frame is a PS-poll frame
746  */
ieee80211_is_pspoll(__le16 fc)747 static inline bool ieee80211_is_pspoll(__le16 fc)
748 {
749 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
750 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
751 }
752 
753 /**
754  * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
755  * @fc: frame control bytes in little-endian byteorder
756  * Return: whether or not the frame is an RTS frame
757  */
ieee80211_is_rts(__le16 fc)758 static inline bool ieee80211_is_rts(__le16 fc)
759 {
760 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
761 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
762 }
763 
764 /**
765  * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
766  * @fc: frame control bytes in little-endian byteorder
767  * Return: whether or not the frame is a CTS frame
768  */
ieee80211_is_cts(__le16 fc)769 static inline bool ieee80211_is_cts(__le16 fc)
770 {
771 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
772 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
773 }
774 
775 /**
776  * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
777  * @fc: frame control bytes in little-endian byteorder
778  * Return: whether or not the frame is an ACK frame
779  */
ieee80211_is_ack(__le16 fc)780 static inline bool ieee80211_is_ack(__le16 fc)
781 {
782 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
783 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
784 }
785 
786 /**
787  * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
788  * @fc: frame control bytes in little-endian byteorder
789  * Return: whether or not the frame is a CF-end frame
790  */
ieee80211_is_cfend(__le16 fc)791 static inline bool ieee80211_is_cfend(__le16 fc)
792 {
793 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
794 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
795 }
796 
797 /**
798  * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
799  * @fc: frame control bytes in little-endian byteorder
800  * Return: whether or not the frame is a CF-end-ack frame
801  */
ieee80211_is_cfendack(__le16 fc)802 static inline bool ieee80211_is_cfendack(__le16 fc)
803 {
804 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
805 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
806 }
807 
808 /**
809  * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
810  * @fc: frame control bytes in little-endian byteorder
811  * Return: whether or not the frame is a nullfunc frame
812  */
ieee80211_is_nullfunc(__le16 fc)813 static inline bool ieee80211_is_nullfunc(__le16 fc)
814 {
815 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
816 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
817 }
818 
819 /**
820  * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
821  * @fc: frame control bytes in little-endian byteorder
822  * Return: whether or not the frame is a QoS nullfunc frame
823  */
ieee80211_is_qos_nullfunc(__le16 fc)824 static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
825 {
826 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
827 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
828 }
829 
830 /**
831  * ieee80211_is_trigger - check if frame is trigger frame
832  * @fc: frame control field in little-endian byteorder
833  * Return: whether or not the frame is a trigger frame
834  */
ieee80211_is_trigger(__le16 fc)835 static inline bool ieee80211_is_trigger(__le16 fc)
836 {
837 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
838 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER);
839 }
840 
841 /**
842  * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame
843  * @fc: frame control bytes in little-endian byteorder
844  * Return: whether or not the frame is a nullfunc or QoS nullfunc frame
845  */
ieee80211_is_any_nullfunc(__le16 fc)846 static inline bool ieee80211_is_any_nullfunc(__le16 fc)
847 {
848 	return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc));
849 }
850 
851 /**
852  * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
853  * @seq_ctrl: frame sequence control bytes in little-endian byteorder
854  * Return: whether or not the frame is the first fragment (also true if
855  *	it's not fragmented at all)
856  */
ieee80211_is_first_frag(__le16 seq_ctrl)857 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
858 {
859 	return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
860 }
861 
862 /**
863  * ieee80211_is_frag - check if a frame is a fragment
864  * @hdr: 802.11 header of the frame
865  * Return: whether or not the frame is a fragment
866  */
ieee80211_is_frag(struct ieee80211_hdr * hdr)867 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
868 {
869 	return ieee80211_has_morefrags(hdr->frame_control) ||
870 	       hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
871 }
872 
ieee80211_get_sn(struct ieee80211_hdr * hdr)873 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr)
874 {
875 	return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ);
876 }
877 
878 struct ieee80211s_hdr {
879 	u8 flags;
880 	u8 ttl;
881 	__le32 seqnum;
882 	u8 eaddr1[ETH_ALEN];
883 	u8 eaddr2[ETH_ALEN];
884 } __packed __aligned(2);
885 
886 /* Mesh flags */
887 #define MESH_FLAGS_AE_A4 	0x1
888 #define MESH_FLAGS_AE_A5_A6	0x2
889 #define MESH_FLAGS_AE		0x3
890 #define MESH_FLAGS_PS_DEEP	0x4
891 
892 /**
893  * enum ieee80211_preq_flags - mesh PREQ element flags
894  *
895  * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
896  */
897 enum ieee80211_preq_flags {
898 	IEEE80211_PREQ_PROACTIVE_PREP_FLAG	= 1<<2,
899 };
900 
901 /**
902  * enum ieee80211_preq_target_flags - mesh PREQ element per target flags
903  *
904  * @IEEE80211_PREQ_TO_FLAG: target only subfield
905  * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
906  */
907 enum ieee80211_preq_target_flags {
908 	IEEE80211_PREQ_TO_FLAG	= 1<<0,
909 	IEEE80211_PREQ_USN_FLAG	= 1<<2,
910 };
911 
912 /**
913  * struct ieee80211_quiet_ie - Quiet element
914  * @count: Quiet Count
915  * @period: Quiet Period
916  * @duration: Quiet Duration
917  * @offset: Quiet Offset
918  *
919  * This structure represents the payload of the "Quiet element" as
920  * described in IEEE Std 802.11-2020 section 9.4.2.22.
921  */
922 struct ieee80211_quiet_ie {
923 	u8 count;
924 	u8 period;
925 	__le16 duration;
926 	__le16 offset;
927 } __packed;
928 
929 /**
930  * struct ieee80211_msrment_ie - Measurement element
931  * @token: Measurement Token
932  * @mode: Measurement Report Mode
933  * @type: Measurement Type
934  * @request: Measurement Request or Measurement Report
935  *
936  * This structure represents the payload of both the "Measurement
937  * Request element" and the "Measurement Report element" as described
938  * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21.
939  */
940 struct ieee80211_msrment_ie {
941 	u8 token;
942 	u8 mode;
943 	u8 type;
944 	u8 request[];
945 } __packed;
946 
947 /**
948  * struct ieee80211_channel_sw_ie - Channel Switch Announcement element
949  * @mode: Channel Switch Mode
950  * @new_ch_num: New Channel Number
951  * @count: Channel Switch Count
952  *
953  * This structure represents the payload of the "Channel Switch
954  * Announcement element" as described in IEEE Std 802.11-2020 section
955  * 9.4.2.18.
956  */
957 struct ieee80211_channel_sw_ie {
958 	u8 mode;
959 	u8 new_ch_num;
960 	u8 count;
961 } __packed;
962 
963 /**
964  * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element
965  * @mode: Channel Switch Mode
966  * @new_operating_class: New Operating Class
967  * @new_ch_num: New Channel Number
968  * @count: Channel Switch Count
969  *
970  * This structure represents the "Extended Channel Switch Announcement
971  * element" as described in IEEE Std 802.11-2020 section 9.4.2.52.
972  */
973 struct ieee80211_ext_chansw_ie {
974 	u8 mode;
975 	u8 new_operating_class;
976 	u8 new_ch_num;
977 	u8 count;
978 } __packed;
979 
980 /**
981  * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
982  * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
983  *	values here
984  * This structure represents the "Secondary Channel Offset element"
985  */
986 struct ieee80211_sec_chan_offs_ie {
987 	u8 sec_chan_offs;
988 } __packed;
989 
990 /**
991  * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
992  * @mesh_ttl: Time To Live
993  * @mesh_flags: Flags
994  * @mesh_reason: Reason Code
995  * @mesh_pre_value: Precedence Value
996  *
997  * This structure represents the payload of the "Mesh Channel Switch
998  * Parameters element" as described in IEEE Std 802.11-2020 section
999  * 9.4.2.102.
1000  */
1001 struct ieee80211_mesh_chansw_params_ie {
1002 	u8 mesh_ttl;
1003 	u8 mesh_flags;
1004 	__le16 mesh_reason;
1005 	__le16 mesh_pre_value;
1006 } __packed;
1007 
1008 /**
1009  * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
1010  * @new_channel_width: New Channel Width
1011  * @new_center_freq_seg0: New Channel Center Frequency Segment 0
1012  * @new_center_freq_seg1: New Channel Center Frequency Segment 1
1013  *
1014  * This structure represents the payload of the "Wide Bandwidth
1015  * Channel Switch element" as described in IEEE Std 802.11-2020
1016  * section 9.4.2.160.
1017  */
1018 struct ieee80211_wide_bw_chansw_ie {
1019 	u8 new_channel_width;
1020 	u8 new_center_freq_seg0, new_center_freq_seg1;
1021 } __packed;
1022 
1023 /**
1024  * struct ieee80211_tim_ie - Traffic Indication Map information element
1025  * @dtim_count: DTIM Count
1026  * @dtim_period: DTIM Period
1027  * @bitmap_ctrl: Bitmap Control
1028  * @required_octet: "Syntatic sugar" to force the struct size to the
1029  *                  minimum valid size when carried in a non-S1G PPDU
1030  * @virtual_map: Partial Virtual Bitmap
1031  *
1032  * This structure represents the payload of the "TIM element" as
1033  * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this
1034  * definition is only applicable when the element is carried in a
1035  * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap
1036  * Control and Partial Virtual Bitmap may not be present.
1037  */
1038 struct ieee80211_tim_ie {
1039 	u8 dtim_count;
1040 	u8 dtim_period;
1041 	u8 bitmap_ctrl;
1042 	union {
1043 		u8 required_octet;
1044 		DECLARE_FLEX_ARRAY(u8, virtual_map);
1045 	};
1046 } __packed;
1047 
1048 /**
1049  * struct ieee80211_meshconf_ie - Mesh Configuration element
1050  * @meshconf_psel: Active Path Selection Protocol Identifier
1051  * @meshconf_pmetric: Active Path Selection Metric Identifier
1052  * @meshconf_congest: Congestion Control Mode Identifier
1053  * @meshconf_synch: Synchronization Method Identifier
1054  * @meshconf_auth: Authentication Protocol Identifier
1055  * @meshconf_form: Mesh Formation Info
1056  * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags)
1057  *
1058  * This structure represents the payload of the "Mesh Configuration
1059  * element" as described in IEEE Std 802.11-2020 section 9.4.2.97.
1060  */
1061 struct ieee80211_meshconf_ie {
1062 	u8 meshconf_psel;
1063 	u8 meshconf_pmetric;
1064 	u8 meshconf_congest;
1065 	u8 meshconf_synch;
1066 	u8 meshconf_auth;
1067 	u8 meshconf_form;
1068 	u8 meshconf_cap;
1069 } __packed;
1070 
1071 /**
1072  * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
1073  *
1074  * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
1075  *	additional mesh peerings with other mesh STAs
1076  * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
1077  * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
1078  *	is ongoing
1079  * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
1080  *	neighbors in deep sleep mode
1081  *
1082  * Enumerates the "Mesh Capability" as described in IEEE Std
1083  * 802.11-2020 section 9.4.2.97.7.
1084  */
1085 enum mesh_config_capab_flags {
1086 	IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS		= 0x01,
1087 	IEEE80211_MESHCONF_CAPAB_FORWARDING		= 0x08,
1088 	IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING		= 0x20,
1089 	IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL	= 0x40,
1090 };
1091 
1092 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
1093 
1094 /*
1095  * mesh channel switch parameters element's flag indicator
1096  *
1097  */
1098 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
1099 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
1100 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
1101 
1102 /**
1103  * struct ieee80211_rann_ie - RANN (root announcement) element
1104  * @rann_flags: Flags
1105  * @rann_hopcount: Hop Count
1106  * @rann_ttl: Element TTL
1107  * @rann_addr: Root Mesh STA Address
1108  * @rann_seq: HWMP Sequence Number
1109  * @rann_interval: Interval
1110  * @rann_metric: Metric
1111  *
1112  * This structure represents the payload of the "RANN element" as
1113  * described in IEEE Std 802.11-2020 section 9.4.2.111.
1114  */
1115 struct ieee80211_rann_ie {
1116 	u8 rann_flags;
1117 	u8 rann_hopcount;
1118 	u8 rann_ttl;
1119 	u8 rann_addr[ETH_ALEN];
1120 	__le32 rann_seq;
1121 	__le32 rann_interval;
1122 	__le32 rann_metric;
1123 } __packed;
1124 
1125 enum ieee80211_rann_flags {
1126 	RANN_FLAG_IS_GATE = 1 << 0,
1127 };
1128 
1129 enum ieee80211_ht_chanwidth_values {
1130 	IEEE80211_HT_CHANWIDTH_20MHZ = 0,
1131 	IEEE80211_HT_CHANWIDTH_ANY = 1,
1132 };
1133 
1134 /**
1135  * enum ieee80211_vht_opmode_bits - VHT operating mode field bits
1136  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
1137  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
1138  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
1139  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
1140  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
1141  * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag
1142  * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
1143  *	(the NSS value is the value of this field + 1)
1144  * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
1145  * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
1146  *	using a beamforming steering matrix
1147  */
1148 enum ieee80211_vht_opmode_bits {
1149 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK	= 0x03,
1150 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ	= 0,
1151 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ	= 1,
1152 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ	= 2,
1153 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ	= 3,
1154 	IEEE80211_OPMODE_NOTIF_BW_160_80P80	= 0x04,
1155 	IEEE80211_OPMODE_NOTIF_RX_NSS_MASK	= 0x70,
1156 	IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT	= 4,
1157 	IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF	= 0x80,
1158 };
1159 
1160 /**
1161  * enum ieee80211_s1g_chanwidth - S1G channel widths
1162  * These are defined in IEEE802.11-2016ah Table 10-20
1163  * as BSS Channel Width
1164  *
1165  * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel
1166  * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel
1167  * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel
1168  * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel
1169  * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel
1170  */
1171 enum ieee80211_s1g_chanwidth {
1172 	IEEE80211_S1G_CHANWIDTH_1MHZ = 0,
1173 	IEEE80211_S1G_CHANWIDTH_2MHZ = 1,
1174 	IEEE80211_S1G_CHANWIDTH_4MHZ = 3,
1175 	IEEE80211_S1G_CHANWIDTH_8MHZ = 7,
1176 	IEEE80211_S1G_CHANWIDTH_16MHZ = 15,
1177 };
1178 
1179 #define WLAN_SA_QUERY_TR_ID_LEN 2
1180 #define WLAN_MEMBERSHIP_LEN 8
1181 #define WLAN_USER_POSITION_LEN 16
1182 
1183 /**
1184  * struct ieee80211_tpc_report_ie - TPC Report element
1185  * @tx_power: Transmit Power
1186  * @link_margin: Link Margin
1187  *
1188  * This structure represents the payload of the "TPC Report element" as
1189  * described in IEEE Std 802.11-2020 section 9.4.2.16.
1190  */
1191 struct ieee80211_tpc_report_ie {
1192 	u8 tx_power;
1193 	u8 link_margin;
1194 } __packed;
1195 
1196 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK	GENMASK(2, 1)
1197 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT	1
1198 #define IEEE80211_ADDBA_EXT_NO_FRAG		BIT(0)
1199 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK	GENMASK(7, 5)
1200 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT	10
1201 
1202 struct ieee80211_addba_ext_ie {
1203 	u8 data;
1204 } __packed;
1205 
1206 /**
1207  * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element
1208  * @compat_info: Compatibility Information
1209  * @beacon_int: Beacon Interval
1210  * @tsf_completion: TSF Completion
1211  *
1212  * This structure represents the payload of the "S1G Beacon
1213  * Compatibility element" as described in IEEE Std 802.11-2020 section
1214  * 9.4.2.196.
1215  */
1216 struct ieee80211_s1g_bcn_compat_ie {
1217 	__le16 compat_info;
1218 	__le16 beacon_int;
1219 	__le32 tsf_completion;
1220 } __packed;
1221 
1222 /**
1223  * struct ieee80211_s1g_oper_ie - S1G Operation element
1224  * @ch_width: S1G Operation Information Channel Width
1225  * @oper_class: S1G Operation Information Operating Class
1226  * @primary_ch: S1G Operation Information Primary Channel Number
1227  * @oper_ch: S1G Operation Information  Channel Center Frequency
1228  * @basic_mcs_nss: Basic S1G-MCS and NSS Set
1229  *
1230  * This structure represents the payload of the "S1G Operation
1231  * element" as described in IEEE Std 802.11-2020 section 9.4.2.212.
1232  */
1233 struct ieee80211_s1g_oper_ie {
1234 	u8 ch_width;
1235 	u8 oper_class;
1236 	u8 primary_ch;
1237 	u8 oper_ch;
1238 	__le16 basic_mcs_nss;
1239 } __packed;
1240 
1241 /**
1242  * struct ieee80211_aid_response_ie - AID Response element
1243  * @aid: AID/Group AID
1244  * @switch_count: AID Switch Count
1245  * @response_int: AID Response Interval
1246  *
1247  * This structure represents the payload of the "AID Response element"
1248  * as described in IEEE Std 802.11-2020 section 9.4.2.194.
1249  */
1250 struct ieee80211_aid_response_ie {
1251 	__le16 aid;
1252 	u8 switch_count;
1253 	__le16 response_int;
1254 } __packed;
1255 
1256 struct ieee80211_s1g_cap {
1257 	u8 capab_info[10];
1258 	u8 supp_mcs_nss[5];
1259 } __packed;
1260 
1261 struct ieee80211_ext {
1262 	__le16 frame_control;
1263 	__le16 duration;
1264 	union {
1265 		struct {
1266 			u8 sa[ETH_ALEN];
1267 			__le32 timestamp;
1268 			u8 change_seq;
1269 			u8 variable[0];
1270 		} __packed s1g_beacon;
1271 	} u;
1272 } __packed __aligned(2);
1273 
1274 /**
1275  * ieee80211_s1g_optional_len - determine length of optional S1G beacon fields
1276  * @fc: frame control bytes in little-endian byteorder
1277  * Return: total length in bytes of the optional fixed-length fields
1278  *
1279  * S1G beacons may contain up to three optional fixed-length fields that
1280  * precede the variable-length elements. Whether these fields are present
1281  * is indicated by flags in the frame control field.
1282  *
1283  * From IEEE 802.11-2024 section 9.3.4.3:
1284  *  - Next TBTT field may be 0 or 3 bytes
1285  *  - Short SSID field may be 0 or 4 bytes
1286  *  - Access Network Options (ANO) field may be 0 or 1 byte
1287  */
1288 static inline size_t
ieee80211_s1g_optional_len(__le16 fc)1289 ieee80211_s1g_optional_len(__le16 fc)
1290 {
1291 	size_t len = 0;
1292 
1293 	if (ieee80211_s1g_has_next_tbtt(fc))
1294 		len += 3;
1295 
1296 	if (ieee80211_s1g_has_cssid(fc))
1297 		len += 4;
1298 
1299 	if (ieee80211_s1g_has_ano(fc))
1300 		len += 1;
1301 
1302 	return len;
1303 }
1304 
1305 #define IEEE80211_TWT_CONTROL_NDP			BIT(0)
1306 #define IEEE80211_TWT_CONTROL_RESP_MODE			BIT(1)
1307 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST	BIT(3)
1308 #define IEEE80211_TWT_CONTROL_RX_DISABLED		BIT(4)
1309 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT		BIT(5)
1310 
1311 #define IEEE80211_TWT_REQTYPE_REQUEST			BIT(0)
1312 #define IEEE80211_TWT_REQTYPE_SETUP_CMD			GENMASK(3, 1)
1313 #define IEEE80211_TWT_REQTYPE_TRIGGER			BIT(4)
1314 #define IEEE80211_TWT_REQTYPE_IMPLICIT			BIT(5)
1315 #define IEEE80211_TWT_REQTYPE_FLOWTYPE			BIT(6)
1316 #define IEEE80211_TWT_REQTYPE_FLOWID			GENMASK(9, 7)
1317 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP		GENMASK(14, 10)
1318 #define IEEE80211_TWT_REQTYPE_PROTECTION		BIT(15)
1319 
1320 enum ieee80211_twt_setup_cmd {
1321 	TWT_SETUP_CMD_REQUEST,
1322 	TWT_SETUP_CMD_SUGGEST,
1323 	TWT_SETUP_CMD_DEMAND,
1324 	TWT_SETUP_CMD_GROUPING,
1325 	TWT_SETUP_CMD_ACCEPT,
1326 	TWT_SETUP_CMD_ALTERNATE,
1327 	TWT_SETUP_CMD_DICTATE,
1328 	TWT_SETUP_CMD_REJECT,
1329 };
1330 
1331 struct ieee80211_twt_params {
1332 	__le16 req_type;
1333 	__le64 twt;
1334 	u8 min_twt_dur;
1335 	__le16 mantissa;
1336 	u8 channel;
1337 } __packed;
1338 
1339 struct ieee80211_twt_setup {
1340 	u8 dialog_token;
1341 	u8 element_id;
1342 	u8 length;
1343 	u8 control;
1344 	u8 params[];
1345 } __packed;
1346 
1347 #define IEEE80211_TTLM_MAX_CNT				2
1348 #define IEEE80211_TTLM_CONTROL_DIRECTION		0x03
1349 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP		0x04
1350 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT	0x08
1351 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT	0x10
1352 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE		0x20
1353 
1354 #define IEEE80211_TTLM_DIRECTION_DOWN		0
1355 #define IEEE80211_TTLM_DIRECTION_UP		1
1356 #define IEEE80211_TTLM_DIRECTION_BOTH		2
1357 
1358 /**
1359  * struct ieee80211_ttlm_elem - TID-To-Link Mapping element
1360  *
1361  * Defined in section 9.4.2.314 in P802.11be_D4
1362  *
1363  * @control: the first part of control field
1364  * @optional: the second part of control field
1365  */
1366 struct ieee80211_ttlm_elem {
1367 	u8 control;
1368 	u8 optional[];
1369 } __packed;
1370 
1371 /**
1372  * struct ieee80211_bss_load_elem - BSS Load elemen
1373  *
1374  * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1
1375  *
1376  * @sta_count: total number of STAs currently associated with the AP.
1377  * @channel_util: Percentage of time that the access point sensed the channel
1378  *	was busy. This value is in range [0, 255], the highest value means
1379  *	100% busy.
1380  * @avail_admission_capa: remaining amount of medium time used for admission
1381  *	control.
1382  */
1383 struct ieee80211_bss_load_elem {
1384 	__le16 sta_count;
1385 	u8 channel_util;
1386 	__le16 avail_admission_capa;
1387 } __packed;
1388 
1389 struct ieee80211_mgmt {
1390 	__le16 frame_control;
1391 	__le16 duration;
1392 	u8 da[ETH_ALEN];
1393 	u8 sa[ETH_ALEN];
1394 	u8 bssid[ETH_ALEN];
1395 	__le16 seq_ctrl;
1396 	union {
1397 		struct {
1398 			__le16 auth_alg;
1399 			__le16 auth_transaction;
1400 			__le16 status_code;
1401 			/* possibly followed by Challenge text */
1402 			u8 variable[];
1403 		} __packed auth;
1404 		struct {
1405 			__le16 reason_code;
1406 		} __packed deauth;
1407 		struct {
1408 			__le16 capab_info;
1409 			__le16 listen_interval;
1410 			/* followed by SSID and Supported rates */
1411 			u8 variable[];
1412 		} __packed assoc_req;
1413 		struct {
1414 			__le16 capab_info;
1415 			__le16 status_code;
1416 			__le16 aid;
1417 			/* followed by Supported rates */
1418 			u8 variable[];
1419 		} __packed assoc_resp, reassoc_resp;
1420 		struct {
1421 			__le16 capab_info;
1422 			__le16 status_code;
1423 			u8 variable[];
1424 		} __packed s1g_assoc_resp, s1g_reassoc_resp;
1425 		struct {
1426 			__le16 capab_info;
1427 			__le16 listen_interval;
1428 			u8 current_ap[ETH_ALEN];
1429 			/* followed by SSID and Supported rates */
1430 			u8 variable[];
1431 		} __packed reassoc_req;
1432 		struct {
1433 			__le16 reason_code;
1434 		} __packed disassoc;
1435 		struct {
1436 			__le64 timestamp;
1437 			__le16 beacon_int;
1438 			__le16 capab_info;
1439 			/* followed by some of SSID, Supported rates,
1440 			 * FH Params, DS Params, CF Params, IBSS Params, TIM */
1441 			u8 variable[];
1442 		} __packed beacon;
1443 		struct {
1444 			/* only variable items: SSID, Supported rates */
1445 			DECLARE_FLEX_ARRAY(u8, variable);
1446 		} __packed probe_req;
1447 		struct {
1448 			__le64 timestamp;
1449 			__le16 beacon_int;
1450 			__le16 capab_info;
1451 			/* followed by some of SSID, Supported rates,
1452 			 * FH Params, DS Params, CF Params, IBSS Params */
1453 			u8 variable[];
1454 		} __packed probe_resp;
1455 		struct {
1456 			u8 category;
1457 			union {
1458 				struct {
1459 					u8 action_code;
1460 					u8 dialog_token;
1461 					u8 status_code;
1462 					u8 variable[];
1463 				} __packed wme_action;
1464 				struct{
1465 					u8 action_code;
1466 					u8 variable[];
1467 				} __packed chan_switch;
1468 				struct{
1469 					u8 action_code;
1470 					struct ieee80211_ext_chansw_ie data;
1471 					u8 variable[];
1472 				} __packed ext_chan_switch;
1473 				struct{
1474 					u8 action_code;
1475 					u8 dialog_token;
1476 					u8 element_id;
1477 					u8 length;
1478 					struct ieee80211_msrment_ie msr_elem;
1479 				} __packed measurement;
1480 				struct{
1481 					u8 action_code;
1482 					u8 dialog_token;
1483 					__le16 capab;
1484 					__le16 timeout;
1485 					__le16 start_seq_num;
1486 					/* followed by BA Extension */
1487 					u8 variable[];
1488 				} __packed addba_req;
1489 				struct{
1490 					u8 action_code;
1491 					u8 dialog_token;
1492 					__le16 status;
1493 					__le16 capab;
1494 					__le16 timeout;
1495 				} __packed addba_resp;
1496 				struct{
1497 					u8 action_code;
1498 					__le16 params;
1499 					__le16 reason_code;
1500 				} __packed delba;
1501 				struct {
1502 					u8 action_code;
1503 					u8 variable[];
1504 				} __packed self_prot;
1505 				struct{
1506 					u8 action_code;
1507 					u8 variable[];
1508 				} __packed mesh_action;
1509 				struct {
1510 					u8 action;
1511 					u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
1512 				} __packed sa_query;
1513 				struct {
1514 					u8 action;
1515 					u8 smps_control;
1516 				} __packed ht_smps;
1517 				struct {
1518 					u8 action_code;
1519 					u8 chanwidth;
1520 				} __packed ht_notify_cw;
1521 				struct {
1522 					u8 action_code;
1523 					u8 dialog_token;
1524 					__le16 capability;
1525 					u8 variable[0];
1526 				} __packed tdls_discover_resp;
1527 				struct {
1528 					u8 action_code;
1529 					u8 operating_mode;
1530 				} __packed vht_opmode_notif;
1531 				struct {
1532 					u8 action_code;
1533 					u8 membership[WLAN_MEMBERSHIP_LEN];
1534 					u8 position[WLAN_USER_POSITION_LEN];
1535 				} __packed vht_group_notif;
1536 				struct {
1537 					u8 action_code;
1538 					u8 dialog_token;
1539 					u8 tpc_elem_id;
1540 					u8 tpc_elem_length;
1541 					struct ieee80211_tpc_report_ie tpc;
1542 				} __packed tpc_report;
1543 				struct {
1544 					u8 action_code;
1545 					u8 dialog_token;
1546 					u8 follow_up;
1547 					u8 tod[6];
1548 					u8 toa[6];
1549 					__le16 tod_error;
1550 					__le16 toa_error;
1551 					u8 variable[];
1552 				} __packed ftm;
1553 				struct {
1554 					u8 action_code;
1555 					u8 variable[];
1556 				} __packed s1g;
1557 				struct {
1558 					u8 action_code;
1559 					u8 dialog_token;
1560 					u8 follow_up;
1561 					u32 tod;
1562 					u32 toa;
1563 					u8 max_tod_error;
1564 					u8 max_toa_error;
1565 				} __packed wnm_timing_msr;
1566 				struct {
1567 					u8 action_code;
1568 					u8 dialog_token;
1569 					u8 variable[];
1570 				} __packed ttlm_req;
1571 				struct {
1572 					u8 action_code;
1573 					u8 dialog_token;
1574 					__le16 status_code;
1575 					u8 variable[];
1576 				} __packed ttlm_res;
1577 				struct {
1578 					u8 action_code;
1579 				} __packed ttlm_tear_down;
1580 			} u;
1581 		} __packed action;
1582 		DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */
1583 	} u;
1584 } __packed __aligned(2);
1585 
1586 /* Supported rates membership selectors */
1587 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY	127
1588 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY	126
1589 #define BSS_MEMBERSHIP_SELECTOR_GLK	125
1590 #define BSS_MEMBERSHIP_SELECTOR_EPS	124
1591 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123
1592 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY	122
1593 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY	121
1594 
1595 /* mgmt header + 1 byte category code */
1596 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
1597 
1598 
1599 /* Management MIC information element (IEEE 802.11w) */
1600 struct ieee80211_mmie {
1601 	u8 element_id;
1602 	u8 length;
1603 	__le16 key_id;
1604 	u8 sequence_number[6];
1605 	u8 mic[8];
1606 } __packed;
1607 
1608 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
1609 struct ieee80211_mmie_16 {
1610 	u8 element_id;
1611 	u8 length;
1612 	__le16 key_id;
1613 	u8 sequence_number[6];
1614 	u8 mic[16];
1615 } __packed;
1616 
1617 struct ieee80211_vendor_ie {
1618 	u8 element_id;
1619 	u8 len;
1620 	u8 oui[3];
1621 	u8 oui_type;
1622 } __packed;
1623 
1624 struct ieee80211_wmm_ac_param {
1625 	u8 aci_aifsn; /* AIFSN, ACM, ACI */
1626 	u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
1627 	__le16 txop_limit;
1628 } __packed;
1629 
1630 struct ieee80211_wmm_param_ie {
1631 	u8 element_id; /* Element ID: 221 (0xdd); */
1632 	u8 len; /* Length: 24 */
1633 	/* required fields for WMM version 1 */
1634 	u8 oui[3]; /* 00:50:f2 */
1635 	u8 oui_type; /* 2 */
1636 	u8 oui_subtype; /* 1 */
1637 	u8 version; /* 1 for WMM version 1.0 */
1638 	u8 qos_info; /* AP/STA specific QoS info */
1639 	u8 reserved; /* 0 */
1640 	/* AC_BE, AC_BK, AC_VI, AC_VO */
1641 	struct ieee80211_wmm_ac_param ac[4];
1642 } __packed;
1643 
1644 /* Control frames */
1645 struct ieee80211_rts {
1646 	__le16 frame_control;
1647 	__le16 duration;
1648 	u8 ra[ETH_ALEN];
1649 	u8 ta[ETH_ALEN];
1650 } __packed __aligned(2);
1651 
1652 struct ieee80211_cts {
1653 	__le16 frame_control;
1654 	__le16 duration;
1655 	u8 ra[ETH_ALEN];
1656 } __packed __aligned(2);
1657 
1658 struct ieee80211_pspoll {
1659 	__le16 frame_control;
1660 	__le16 aid;
1661 	u8 bssid[ETH_ALEN];
1662 	u8 ta[ETH_ALEN];
1663 } __packed __aligned(2);
1664 
1665 /* TDLS */
1666 
1667 /* Channel switch timing */
1668 struct ieee80211_ch_switch_timing {
1669 	__le16 switch_time;
1670 	__le16 switch_timeout;
1671 } __packed;
1672 
1673 /* Link-id information element */
1674 struct ieee80211_tdls_lnkie {
1675 	u8 ie_type; /* Link Identifier IE */
1676 	u8 ie_len;
1677 	u8 bssid[ETH_ALEN];
1678 	u8 init_sta[ETH_ALEN];
1679 	u8 resp_sta[ETH_ALEN];
1680 } __packed;
1681 
1682 struct ieee80211_tdls_data {
1683 	u8 da[ETH_ALEN];
1684 	u8 sa[ETH_ALEN];
1685 	__be16 ether_type;
1686 	u8 payload_type;
1687 	u8 category;
1688 	u8 action_code;
1689 	union {
1690 		struct {
1691 			u8 dialog_token;
1692 			__le16 capability;
1693 			u8 variable[0];
1694 		} __packed setup_req;
1695 		struct {
1696 			__le16 status_code;
1697 			u8 dialog_token;
1698 			__le16 capability;
1699 			u8 variable[0];
1700 		} __packed setup_resp;
1701 		struct {
1702 			__le16 status_code;
1703 			u8 dialog_token;
1704 			u8 variable[0];
1705 		} __packed setup_cfm;
1706 		struct {
1707 			__le16 reason_code;
1708 			u8 variable[0];
1709 		} __packed teardown;
1710 		struct {
1711 			u8 dialog_token;
1712 			u8 variable[0];
1713 		} __packed discover_req;
1714 		struct {
1715 			u8 target_channel;
1716 			u8 oper_class;
1717 			u8 variable[0];
1718 		} __packed chan_switch_req;
1719 		struct {
1720 			__le16 status_code;
1721 			u8 variable[0];
1722 		} __packed chan_switch_resp;
1723 	} u;
1724 } __packed;
1725 
1726 /*
1727  * Peer-to-Peer IE attribute related definitions.
1728  */
1729 /*
1730  * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
1731  */
1732 enum ieee80211_p2p_attr_id {
1733 	IEEE80211_P2P_ATTR_STATUS = 0,
1734 	IEEE80211_P2P_ATTR_MINOR_REASON,
1735 	IEEE80211_P2P_ATTR_CAPABILITY,
1736 	IEEE80211_P2P_ATTR_DEVICE_ID,
1737 	IEEE80211_P2P_ATTR_GO_INTENT,
1738 	IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
1739 	IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
1740 	IEEE80211_P2P_ATTR_GROUP_BSSID,
1741 	IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
1742 	IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
1743 	IEEE80211_P2P_ATTR_MANAGABILITY,
1744 	IEEE80211_P2P_ATTR_CHANNEL_LIST,
1745 	IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
1746 	IEEE80211_P2P_ATTR_DEVICE_INFO,
1747 	IEEE80211_P2P_ATTR_GROUP_INFO,
1748 	IEEE80211_P2P_ATTR_GROUP_ID,
1749 	IEEE80211_P2P_ATTR_INTERFACE,
1750 	IEEE80211_P2P_ATTR_OPER_CHANNEL,
1751 	IEEE80211_P2P_ATTR_INVITE_FLAGS,
1752 	/* 19 - 220: Reserved */
1753 	IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
1754 
1755 	IEEE80211_P2P_ATTR_MAX
1756 };
1757 
1758 /* Notice of Absence attribute - described in P2P spec 4.1.14 */
1759 /* Typical max value used here */
1760 #define IEEE80211_P2P_NOA_DESC_MAX	4
1761 
1762 struct ieee80211_p2p_noa_desc {
1763 	u8 count;
1764 	__le32 duration;
1765 	__le32 interval;
1766 	__le32 start_time;
1767 } __packed;
1768 
1769 struct ieee80211_p2p_noa_attr {
1770 	u8 index;
1771 	u8 oppps_ctwindow;
1772 	struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
1773 } __packed;
1774 
1775 #define IEEE80211_P2P_OPPPS_ENABLE_BIT		BIT(7)
1776 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK	0x7F
1777 
1778 /**
1779  * struct ieee80211_bar - Block Ack Request frame format
1780  * @frame_control: Frame Control
1781  * @duration: Duration
1782  * @ra: RA
1783  * @ta: TA
1784  * @control: BAR Control
1785  * @start_seq_num: Starting Sequence Number (see Figure 9-37)
1786  *
1787  * This structure represents the "BlockAckReq frame format"
1788  * as described in IEEE Std 802.11-2020 section 9.3.1.7.
1789 */
1790 struct ieee80211_bar {
1791 	__le16 frame_control;
1792 	__le16 duration;
1793 	__u8 ra[ETH_ALEN];
1794 	__u8 ta[ETH_ALEN];
1795 	__le16 control;
1796 	__le16 start_seq_num;
1797 } __packed;
1798 
1799 /* 802.11 BAR control masks */
1800 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL	0x0000
1801 #define IEEE80211_BAR_CTRL_MULTI_TID		0x0002
1802 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA	0x0004
1803 #define IEEE80211_BAR_CTRL_TID_INFO_MASK	0xf000
1804 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT	12
1805 
1806 #define IEEE80211_HT_MCS_MASK_LEN		10
1807 
1808 /**
1809  * struct ieee80211_mcs_info - Supported MCS Set field
1810  * @rx_mask: RX mask
1811  * @rx_highest: highest supported RX rate. If set represents
1812  *	the highest supported RX data rate in units of 1 Mbps.
1813  *	If this field is 0 this value should not be used to
1814  *	consider the highest RX data rate supported.
1815  * @tx_params: TX parameters
1816  * @reserved: Reserved bits
1817  *
1818  * This structure represents the "Supported MCS Set field" as
1819  * described in IEEE Std 802.11-2020 section 9.4.2.55.4.
1820  */
1821 struct ieee80211_mcs_info {
1822 	u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
1823 	__le16 rx_highest;
1824 	u8 tx_params;
1825 	u8 reserved[3];
1826 } __packed;
1827 
1828 /* 802.11n HT capability MSC set */
1829 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK	0x3ff
1830 #define IEEE80211_HT_MCS_TX_DEFINED		0x01
1831 #define IEEE80211_HT_MCS_TX_RX_DIFF		0x02
1832 /* value 0 == 1 stream etc */
1833 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK	0x0C
1834 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT	2
1835 #define		IEEE80211_HT_MCS_TX_MAX_STREAMS	4
1836 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION	0x10
1837 
1838 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3)))
1839 
1840 /*
1841  * 802.11n D5.0 20.3.5 / 20.6 says:
1842  * - indices 0 to 7 and 32 are single spatial stream
1843  * - 8 to 31 are multiple spatial streams using equal modulation
1844  *   [8..15 for two streams, 16..23 for three and 24..31 for four]
1845  * - remainder are multiple spatial streams using unequal modulation
1846  */
1847 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
1848 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
1849 	(IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
1850 
1851 /**
1852  * struct ieee80211_ht_cap - HT capabilities element
1853  * @cap_info: HT Capability Information
1854  * @ampdu_params_info: A-MPDU Parameters
1855  * @mcs: Supported MCS Set
1856  * @extended_ht_cap_info: HT Extended Capabilities
1857  * @tx_BF_cap_info: Transmit Beamforming Capabilities
1858  * @antenna_selection_info: ASEL Capability
1859  *
1860  * This structure represents the payload of the "HT Capabilities
1861  * element" as described in IEEE Std 802.11-2020 section 9.4.2.55.
1862  */
1863 struct ieee80211_ht_cap {
1864 	__le16 cap_info;
1865 	u8 ampdu_params_info;
1866 
1867 	/* 16 bytes MCS information */
1868 	struct ieee80211_mcs_info mcs;
1869 
1870 	__le16 extended_ht_cap_info;
1871 	__le32 tx_BF_cap_info;
1872 	u8 antenna_selection_info;
1873 } __packed;
1874 
1875 /* 802.11n HT capabilities masks (for cap_info) */
1876 #define IEEE80211_HT_CAP_LDPC_CODING		0x0001
1877 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40	0x0002
1878 #define IEEE80211_HT_CAP_SM_PS			0x000C
1879 #define		IEEE80211_HT_CAP_SM_PS_SHIFT	2
1880 #define IEEE80211_HT_CAP_GRN_FLD		0x0010
1881 #define IEEE80211_HT_CAP_SGI_20			0x0020
1882 #define IEEE80211_HT_CAP_SGI_40			0x0040
1883 #define IEEE80211_HT_CAP_TX_STBC		0x0080
1884 #define IEEE80211_HT_CAP_RX_STBC		0x0300
1885 #define		IEEE80211_HT_CAP_RX_STBC_SHIFT	8
1886 #define IEEE80211_HT_CAP_DELAY_BA		0x0400
1887 #define IEEE80211_HT_CAP_MAX_AMSDU		0x0800
1888 #define IEEE80211_HT_CAP_DSSSCCK40		0x1000
1889 #define IEEE80211_HT_CAP_RESERVED		0x2000
1890 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT	0x4000
1891 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT		0x8000
1892 
1893 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
1894 #define IEEE80211_HT_EXT_CAP_PCO		0x0001
1895 #define IEEE80211_HT_EXT_CAP_PCO_TIME		0x0006
1896 #define		IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT	1
1897 #define IEEE80211_HT_EXT_CAP_MCS_FB		0x0300
1898 #define		IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT	8
1899 #define IEEE80211_HT_EXT_CAP_HTC_SUP		0x0400
1900 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER	0x0800
1901 
1902 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
1903 #define IEEE80211_HT_AMPDU_PARM_FACTOR		0x03
1904 #define IEEE80211_HT_AMPDU_PARM_DENSITY		0x1C
1905 #define		IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT	2
1906 
1907 /*
1908  * Maximum length of AMPDU that the STA can receive in high-throughput (HT).
1909  * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1910  */
1911 enum ieee80211_max_ampdu_length_exp {
1912 	IEEE80211_HT_MAX_AMPDU_8K = 0,
1913 	IEEE80211_HT_MAX_AMPDU_16K = 1,
1914 	IEEE80211_HT_MAX_AMPDU_32K = 2,
1915 	IEEE80211_HT_MAX_AMPDU_64K = 3
1916 };
1917 
1918 /*
1919  * Maximum length of AMPDU that the STA can receive in VHT.
1920  * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1921  */
1922 enum ieee80211_vht_max_ampdu_length_exp {
1923 	IEEE80211_VHT_MAX_AMPDU_8K = 0,
1924 	IEEE80211_VHT_MAX_AMPDU_16K = 1,
1925 	IEEE80211_VHT_MAX_AMPDU_32K = 2,
1926 	IEEE80211_VHT_MAX_AMPDU_64K = 3,
1927 	IEEE80211_VHT_MAX_AMPDU_128K = 4,
1928 	IEEE80211_VHT_MAX_AMPDU_256K = 5,
1929 	IEEE80211_VHT_MAX_AMPDU_512K = 6,
1930 	IEEE80211_VHT_MAX_AMPDU_1024K = 7
1931 };
1932 
1933 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13
1934 
1935 /* Minimum MPDU start spacing */
1936 enum ieee80211_min_mpdu_spacing {
1937 	IEEE80211_HT_MPDU_DENSITY_NONE = 0,	/* No restriction */
1938 	IEEE80211_HT_MPDU_DENSITY_0_25 = 1,	/* 1/4 usec */
1939 	IEEE80211_HT_MPDU_DENSITY_0_5 = 2,	/* 1/2 usec */
1940 	IEEE80211_HT_MPDU_DENSITY_1 = 3,	/* 1 usec */
1941 	IEEE80211_HT_MPDU_DENSITY_2 = 4,	/* 2 usec */
1942 	IEEE80211_HT_MPDU_DENSITY_4 = 5,	/* 4 usec */
1943 	IEEE80211_HT_MPDU_DENSITY_8 = 6,	/* 8 usec */
1944 	IEEE80211_HT_MPDU_DENSITY_16 = 7	/* 16 usec */
1945 };
1946 
1947 /**
1948  * struct ieee80211_ht_operation - HT operation IE
1949  * @primary_chan: Primary Channel
1950  * @ht_param: HT Operation Information parameters
1951  * @operation_mode: HT Operation Information operation mode
1952  * @stbc_param: HT Operation Information STBC params
1953  * @basic_set: Basic HT-MCS Set
1954  *
1955  * This structure represents the payload of the "HT Operation
1956  * element" as described in IEEE Std 802.11-2020 section 9.4.2.56.
1957  */
1958 struct ieee80211_ht_operation {
1959 	u8 primary_chan;
1960 	u8 ht_param;
1961 	__le16 operation_mode;
1962 	__le16 stbc_param;
1963 	u8 basic_set[16];
1964 } __packed;
1965 
1966 /* for ht_param */
1967 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET		0x03
1968 #define		IEEE80211_HT_PARAM_CHA_SEC_NONE		0x00
1969 #define		IEEE80211_HT_PARAM_CHA_SEC_ABOVE	0x01
1970 #define		IEEE80211_HT_PARAM_CHA_SEC_BELOW	0x03
1971 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY		0x04
1972 #define IEEE80211_HT_PARAM_RIFS_MODE			0x08
1973 
1974 /* for operation_mode */
1975 #define IEEE80211_HT_OP_MODE_PROTECTION			0x0003
1976 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONE		0
1977 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER	1
1978 #define		IEEE80211_HT_OP_MODE_PROTECTION_20MHZ		2
1979 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED	3
1980 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT		0x0004
1981 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT		0x0010
1982 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT		5
1983 #define IEEE80211_HT_OP_MODE_CCFS2_MASK			0x1fe0
1984 
1985 /* for stbc_param */
1986 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON		0x0040
1987 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT		0x0080
1988 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON		0x0100
1989 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT	0x0200
1990 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE		0x0400
1991 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE		0x0800
1992 
1993 
1994 /* block-ack parameters */
1995 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
1996 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
1997 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
1998 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
1999 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
2000 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
2001 
2002 /*
2003  * A-MPDU buffer sizes
2004  * According to HT size varies from 8 to 64 frames
2005  * HE adds the ability to have up to 256 frames.
2006  * EHT adds the ability to have up to 1K frames.
2007  */
2008 #define IEEE80211_MIN_AMPDU_BUF		0x8
2009 #define IEEE80211_MAX_AMPDU_BUF_HT	0x40
2010 #define IEEE80211_MAX_AMPDU_BUF_HE	0x100
2011 #define IEEE80211_MAX_AMPDU_BUF_EHT	0x400
2012 
2013 
2014 /* Spatial Multiplexing Power Save Modes (for capability) */
2015 #define WLAN_HT_CAP_SM_PS_STATIC	0
2016 #define WLAN_HT_CAP_SM_PS_DYNAMIC	1
2017 #define WLAN_HT_CAP_SM_PS_INVALID	2
2018 #define WLAN_HT_CAP_SM_PS_DISABLED	3
2019 
2020 /* for SM power control field lower two bits */
2021 #define WLAN_HT_SMPS_CONTROL_DISABLED	0
2022 #define WLAN_HT_SMPS_CONTROL_STATIC	1
2023 #define WLAN_HT_SMPS_CONTROL_DYNAMIC	3
2024 
2025 /**
2026  * struct ieee80211_vht_mcs_info - VHT MCS information
2027  * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
2028  * @rx_highest: Indicates highest long GI VHT PPDU data rate
2029  *	STA can receive. Rate expressed in units of 1 Mbps.
2030  *	If this field is 0 this value should not be used to
2031  *	consider the highest RX data rate supported.
2032  *	The top 3 bits of this field indicate the Maximum NSTS,total
2033  *	(a beamformee capability.)
2034  * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
2035  * @tx_highest: Indicates highest long GI VHT PPDU data rate
2036  *	STA can transmit. Rate expressed in units of 1 Mbps.
2037  *	If this field is 0 this value should not be used to
2038  *	consider the highest TX data rate supported.
2039  *	The top 2 bits of this field are reserved, the
2040  *	3rd bit from the top indiciates VHT Extended NSS BW
2041  *	Capability.
2042  */
2043 struct ieee80211_vht_mcs_info {
2044 	__le16 rx_mcs_map;
2045 	__le16 rx_highest;
2046 	__le16 tx_mcs_map;
2047 	__le16 tx_highest;
2048 } __packed;
2049 
2050 /* for rx_highest */
2051 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT	13
2052 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK	(7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
2053 
2054 /* for tx_highest */
2055 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE	(1 << 13)
2056 
2057 /**
2058  * enum ieee80211_vht_mcs_support - VHT MCS support definitions
2059  * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2060  *	number of streams
2061  * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
2062  * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2063  * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
2064  *
2065  * These definitions are used in each 2-bit subfield of the @rx_mcs_map
2066  * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
2067  * both split into 8 subfields by number of streams. These values indicate
2068  * which MCSes are supported for the number of streams the value appears
2069  * for.
2070  */
2071 enum ieee80211_vht_mcs_support {
2072 	IEEE80211_VHT_MCS_SUPPORT_0_7	= 0,
2073 	IEEE80211_VHT_MCS_SUPPORT_0_8	= 1,
2074 	IEEE80211_VHT_MCS_SUPPORT_0_9	= 2,
2075 	IEEE80211_VHT_MCS_NOT_SUPPORTED	= 3,
2076 };
2077 
2078 /**
2079  * struct ieee80211_vht_cap - VHT capabilities
2080  *
2081  * This structure is the "VHT capabilities element" as
2082  * described in 802.11ac D3.0 8.4.2.160
2083  * @vht_cap_info: VHT capability info
2084  * @supp_mcs: VHT MCS supported rates
2085  */
2086 struct ieee80211_vht_cap {
2087 	__le32 vht_cap_info;
2088 	struct ieee80211_vht_mcs_info supp_mcs;
2089 } __packed;
2090 
2091 /**
2092  * enum ieee80211_vht_chanwidth - VHT channel width
2093  * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
2094  *	determine the channel width (20 or 40 MHz)
2095  * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
2096  * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
2097  * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
2098  */
2099 enum ieee80211_vht_chanwidth {
2100 	IEEE80211_VHT_CHANWIDTH_USE_HT		= 0,
2101 	IEEE80211_VHT_CHANWIDTH_80MHZ		= 1,
2102 	IEEE80211_VHT_CHANWIDTH_160MHZ		= 2,
2103 	IEEE80211_VHT_CHANWIDTH_80P80MHZ	= 3,
2104 };
2105 
2106 /**
2107  * struct ieee80211_vht_operation - VHT operation IE
2108  *
2109  * This structure is the "VHT operation element" as
2110  * described in 802.11ac D3.0 8.4.2.161
2111  * @chan_width: Operating channel width
2112  * @center_freq_seg0_idx: center freq segment 0 index
2113  * @center_freq_seg1_idx: center freq segment 1 index
2114  * @basic_mcs_set: VHT Basic MCS rate set
2115  */
2116 struct ieee80211_vht_operation {
2117 	u8 chan_width;
2118 	u8 center_freq_seg0_idx;
2119 	u8 center_freq_seg1_idx;
2120 	__le16 basic_mcs_set;
2121 } __packed;
2122 
2123 /**
2124  * struct ieee80211_he_cap_elem - HE capabilities element
2125  * @mac_cap_info: HE MAC Capabilities Information
2126  * @phy_cap_info: HE PHY Capabilities Information
2127  *
2128  * This structure represents the fixed fields of the payload of the
2129  * "HE capabilities element" as described in IEEE Std 802.11ax-2021
2130  * sections 9.4.2.248.2 and 9.4.2.248.3.
2131  */
2132 struct ieee80211_he_cap_elem {
2133 	u8 mac_cap_info[6];
2134 	u8 phy_cap_info[11];
2135 } __packed;
2136 
2137 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN	5
2138 
2139 /**
2140  * enum ieee80211_he_mcs_support - HE MCS support definitions
2141  * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2142  *	number of streams
2143  * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2144  * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
2145  * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
2146  *
2147  * These definitions are used in each 2-bit subfield of the rx_mcs_*
2148  * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
2149  * both split into 8 subfields by number of streams. These values indicate
2150  * which MCSes are supported for the number of streams the value appears
2151  * for.
2152  */
2153 enum ieee80211_he_mcs_support {
2154 	IEEE80211_HE_MCS_SUPPORT_0_7	= 0,
2155 	IEEE80211_HE_MCS_SUPPORT_0_9	= 1,
2156 	IEEE80211_HE_MCS_SUPPORT_0_11	= 2,
2157 	IEEE80211_HE_MCS_NOT_SUPPORTED	= 3,
2158 };
2159 
2160 /**
2161  * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
2162  *
2163  * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
2164  * described in P802.11ax_D2.0 section 9.4.2.237.4
2165  *
2166  * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2167  *     widths less than 80MHz.
2168  * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2169  *     widths less than 80MHz.
2170  * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2171  *     width 160MHz.
2172  * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2173  *     width 160MHz.
2174  * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
2175  *     channel width 80p80MHz.
2176  * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
2177  *     channel width 80p80MHz.
2178  */
2179 struct ieee80211_he_mcs_nss_supp {
2180 	__le16 rx_mcs_80;
2181 	__le16 tx_mcs_80;
2182 	__le16 rx_mcs_160;
2183 	__le16 tx_mcs_160;
2184 	__le16 rx_mcs_80p80;
2185 	__le16 tx_mcs_80p80;
2186 } __packed;
2187 
2188 /**
2189  * struct ieee80211_he_operation - HE Operation element
2190  * @he_oper_params: HE Operation Parameters + BSS Color Information
2191  * @he_mcs_nss_set: Basic HE-MCS And NSS Set
2192  * @optional: Optional fields VHT Operation Information, Max Co-Hosted
2193  *            BSSID Indicator, and 6 GHz Operation Information
2194  *
2195  * This structure represents the payload of the "HE Operation
2196  * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249.
2197  */
2198 struct ieee80211_he_operation {
2199 	__le32 he_oper_params;
2200 	__le16 he_mcs_nss_set;
2201 	u8 optional[];
2202 } __packed;
2203 
2204 /**
2205  * struct ieee80211_he_spr - Spatial Reuse Parameter Set element
2206  * @he_sr_control: SR Control
2207  * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD
2208  *            Min Offset, SRG OBSS PD Max Offset, SRG BSS Color
2209  *            Bitmap, and SRG Partial BSSID Bitmap
2210  *
2211  * This structure represents the payload of the "Spatial Reuse
2212  * Parameter Set element" as described in IEEE Std 802.11ax-2021
2213  * section 9.4.2.252.
2214  */
2215 struct ieee80211_he_spr {
2216 	u8 he_sr_control;
2217 	u8 optional[];
2218 } __packed;
2219 
2220 /**
2221  * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
2222  * @aifsn: ACI/AIFSN
2223  * @ecw_min_max: ECWmin/ECWmax
2224  * @mu_edca_timer: MU EDCA Timer
2225  *
2226  * This structure represents the "MU AC Parameter Record" as described
2227  * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p.
2228  */
2229 struct ieee80211_he_mu_edca_param_ac_rec {
2230 	u8 aifsn;
2231 	u8 ecw_min_max;
2232 	u8 mu_edca_timer;
2233 } __packed;
2234 
2235 /**
2236  * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
2237  * @mu_qos_info: QoS Info
2238  * @ac_be: MU AC_BE Parameter Record
2239  * @ac_bk: MU AC_BK Parameter Record
2240  * @ac_vi: MU AC_VI Parameter Record
2241  * @ac_vo: MU AC_VO Parameter Record
2242  *
2243  * This structure represents the payload of the "MU EDCA Parameter Set
2244  * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251.
2245  */
2246 struct ieee80211_mu_edca_param_set {
2247 	u8 mu_qos_info;
2248 	struct ieee80211_he_mu_edca_param_ac_rec ac_be;
2249 	struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
2250 	struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
2251 	struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
2252 } __packed;
2253 
2254 #define IEEE80211_EHT_MCS_NSS_RX 0x0f
2255 #define IEEE80211_EHT_MCS_NSS_TX 0xf0
2256 
2257 /**
2258  * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max
2259  * supported NSS for per MCS.
2260  *
2261  * For each field below, bits 0 - 3 indicate the maximal number of spatial
2262  * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2263  * for Tx.
2264  *
2265  * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams
2266  *     supported for reception and the maximum number of spatial streams
2267  *     supported for transmission for MCS 0 - 7.
2268  * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2269  *     supported for reception and the maximum number of spatial streams
2270  *     supported for transmission for MCS 8 - 9.
2271  * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2272  *     supported for reception and the maximum number of spatial streams
2273  *     supported for transmission for MCS 10 - 11.
2274  * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2275  *     supported for reception and the maximum number of spatial streams
2276  *     supported for transmission for MCS 12 - 13.
2277  * @rx_tx_max_nss: array of the previous fields for easier loop access
2278  */
2279 struct ieee80211_eht_mcs_nss_supp_20mhz_only {
2280 	union {
2281 		struct {
2282 			u8 rx_tx_mcs7_max_nss;
2283 			u8 rx_tx_mcs9_max_nss;
2284 			u8 rx_tx_mcs11_max_nss;
2285 			u8 rx_tx_mcs13_max_nss;
2286 		};
2287 		u8 rx_tx_max_nss[4];
2288 	};
2289 };
2290 
2291 /**
2292  * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except
2293  * 20MHz only stations).
2294  *
2295  * For each field below, bits 0 - 3 indicate the maximal number of spatial
2296  * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2297  * for Tx.
2298  *
2299  * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2300  *     supported for reception and the maximum number of spatial streams
2301  *     supported for transmission for MCS 0 - 9.
2302  * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2303  *     supported for reception and the maximum number of spatial streams
2304  *     supported for transmission for MCS 10 - 11.
2305  * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2306  *     supported for reception and the maximum number of spatial streams
2307  *     supported for transmission for MCS 12 - 13.
2308  * @rx_tx_max_nss: array of the previous fields for easier loop access
2309  */
2310 struct ieee80211_eht_mcs_nss_supp_bw {
2311 	union {
2312 		struct {
2313 			u8 rx_tx_mcs9_max_nss;
2314 			u8 rx_tx_mcs11_max_nss;
2315 			u8 rx_tx_mcs13_max_nss;
2316 		};
2317 		u8 rx_tx_max_nss[3];
2318 	};
2319 };
2320 
2321 /**
2322  * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data
2323  *
2324  * This structure is the "EHT Capabilities element" fixed fields as
2325  * described in P802.11be_D2.0 section 9.4.2.313.
2326  *
2327  * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP*
2328  * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP*
2329  */
2330 struct ieee80211_eht_cap_elem_fixed {
2331 	u8 mac_cap_info[2];
2332 	u8 phy_cap_info[9];
2333 } __packed;
2334 
2335 /**
2336  * struct ieee80211_eht_cap_elem - EHT capabilities element
2337  * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed
2338  * @optional: optional parts
2339  */
2340 struct ieee80211_eht_cap_elem {
2341 	struct ieee80211_eht_cap_elem_fixed fixed;
2342 
2343 	/*
2344 	 * Followed by:
2345 	 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets.
2346 	 * EHT PPE Thresholds field: variable length.
2347 	 */
2348 	u8 optional[];
2349 } __packed;
2350 
2351 #define IEEE80211_EHT_OPER_INFO_PRESENT	                        0x01
2352 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT	0x02
2353 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION	                0x04
2354 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT         0x08
2355 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK      0x30
2356 
2357 /**
2358  * struct ieee80211_eht_operation - eht operation element
2359  *
2360  * This structure is the "EHT Operation Element" fields as
2361  * described in P802.11be_D2.0 section 9.4.2.311
2362  *
2363  * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_*
2364  * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in
2365  *     EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and
2366  *     receive.
2367  * @optional: optional parts
2368  */
2369 struct ieee80211_eht_operation {
2370 	u8 params;
2371 	struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss;
2372 	u8 optional[];
2373 } __packed;
2374 
2375 /**
2376  * struct ieee80211_eht_operation_info - eht operation information
2377  *
2378  * @control: EHT operation information control.
2379  * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz
2380  *     EHT BSS.
2381  * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS.
2382  * @optional: optional parts
2383  */
2384 struct ieee80211_eht_operation_info {
2385 	u8 control;
2386 	u8 ccfs0;
2387 	u8 ccfs1;
2388 	u8 optional[];
2389 } __packed;
2390 
2391 /* 802.11ac VHT Capabilities */
2392 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895			0x00000000
2393 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991			0x00000001
2394 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454			0x00000002
2395 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK				0x00000003
2396 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ		0x00000004
2397 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ	0x00000008
2398 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK			0x0000000C
2399 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT			2
2400 #define IEEE80211_VHT_CAP_RXLDPC				0x00000010
2401 #define IEEE80211_VHT_CAP_SHORT_GI_80				0x00000020
2402 #define IEEE80211_VHT_CAP_SHORT_GI_160				0x00000040
2403 #define IEEE80211_VHT_CAP_TXSTBC				0x00000080
2404 #define IEEE80211_VHT_CAP_RXSTBC_1				0x00000100
2405 #define IEEE80211_VHT_CAP_RXSTBC_2				0x00000200
2406 #define IEEE80211_VHT_CAP_RXSTBC_3				0x00000300
2407 #define IEEE80211_VHT_CAP_RXSTBC_4				0x00000400
2408 #define IEEE80211_VHT_CAP_RXSTBC_MASK				0x00000700
2409 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT				8
2410 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE			0x00000800
2411 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE			0x00001000
2412 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT                  13
2413 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK			\
2414 		(7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
2415 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT		16
2416 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK		\
2417 		(7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
2418 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE			0x00080000
2419 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE			0x00100000
2420 #define IEEE80211_VHT_CAP_VHT_TXOP_PS				0x00200000
2421 #define IEEE80211_VHT_CAP_HTC_VHT				0x00400000
2422 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT	23
2423 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK	\
2424 		(7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
2425 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB	0x08000000
2426 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB	0x0c000000
2427 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN			0x10000000
2428 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN			0x20000000
2429 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT			30
2430 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK			0xc0000000
2431 
2432 /**
2433  * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
2434  * @cap: VHT capabilities of the peer
2435  * @bw: bandwidth to use
2436  * @mcs: MCS index to use
2437  * @ext_nss_bw_capable: indicates whether or not the local transmitter
2438  *	(rate scaling algorithm) can deal with the new logic
2439  *	(dot11VHTExtendedNSSBWCapable)
2440  * @max_vht_nss: current maximum NSS as advertised by the STA in
2441  *	operating mode notification, can be 0 in which case the
2442  *	capability data will be used to derive this (from MCS support)
2443  * Return: The maximum NSS that can be used for the given bandwidth/MCS
2444  *	combination
2445  *
2446  * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
2447  * vary for a given BW/MCS. This function parses the data.
2448  *
2449  * Note: This function is exported by cfg80211.
2450  */
2451 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2452 			      enum ieee80211_vht_chanwidth bw,
2453 			      int mcs, bool ext_nss_bw_capable,
2454 			      unsigned int max_vht_nss);
2455 
2456 /* 802.11ax HE MAC capabilities */
2457 #define IEEE80211_HE_MAC_CAP0_HTC_HE				0x01
2458 #define IEEE80211_HE_MAC_CAP0_TWT_REQ				0x02
2459 #define IEEE80211_HE_MAC_CAP0_TWT_RES				0x04
2460 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP		0x00
2461 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1		0x08
2462 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2		0x10
2463 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3		0x18
2464 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK			0x18
2465 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1		0x00
2466 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2		0x20
2467 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4		0x40
2468 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8		0x60
2469 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16		0x80
2470 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32		0xa0
2471 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64		0xc0
2472 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED	0xe0
2473 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK		0xe0
2474 
2475 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED		0x00
2476 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128			0x01
2477 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256			0x02
2478 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512			0x03
2479 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK		0x03
2480 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US		0x00
2481 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US		0x04
2482 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US		0x08
2483 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK		0x0c
2484 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1		0x00
2485 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2		0x10
2486 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3		0x20
2487 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4		0x30
2488 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5		0x40
2489 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6		0x50
2490 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7		0x60
2491 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8		0x70
2492 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK		0x70
2493 
2494 /* Link adaptation is split between byte HE_MAC_CAP1 and
2495  * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
2496  * in which case the following values apply:
2497  * 0 = No feedback.
2498  * 1 = reserved.
2499  * 2 = Unsolicited feedback.
2500  * 3 = both
2501  */
2502 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION			0x80
2503 
2504 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION			0x01
2505 #define IEEE80211_HE_MAC_CAP2_ALL_ACK				0x02
2506 #define IEEE80211_HE_MAC_CAP2_TRS				0x04
2507 #define IEEE80211_HE_MAC_CAP2_BSR				0x08
2508 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT				0x10
2509 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP			0x20
2510 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING			0x40
2511 #define IEEE80211_HE_MAC_CAP2_ACK_EN				0x80
2512 
2513 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL			0x02
2514 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA				0x04
2515 
2516 /* The maximum length of an A-MDPU is defined by the combination of the Maximum
2517  * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
2518  * same field in the HE capabilities.
2519  */
2520 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0		0x00
2521 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1		0x08
2522 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2		0x10
2523 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3		0x18
2524 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK		0x18
2525 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG			0x20
2526 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED			0x40
2527 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS		0x80
2528 
2529 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG		0x01
2530 #define IEEE80211_HE_MAC_CAP4_QTP				0x02
2531 #define IEEE80211_HE_MAC_CAP4_BQR				0x04
2532 #define IEEE80211_HE_MAC_CAP4_PSR_RESP				0x08
2533 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP			0x10
2534 #define IEEE80211_HE_MAC_CAP4_OPS				0x20
2535 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU			0x40
2536 /* Multi TID agg TX is split between byte #4 and #5
2537  * The value is a combination of B39,B40,B41
2538  */
2539 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39		0x80
2540 
2541 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40		0x01
2542 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41		0x02
2543 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION	0x04
2544 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU			0x08
2545 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX		0x10
2546 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS			0x20
2547 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING		0x40
2548 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX		0x80
2549 
2550 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR	20
2551 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR	16
2552 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR	13
2553 
2554 /* 802.11ax HE PHY capabilities */
2555 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G		0x02
2556 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G	0x04
2557 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G		0x08
2558 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G	0x10
2559 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL		0x1e
2560 
2561 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G	0x20
2562 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G	0x40
2563 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK			0xfe
2564 
2565 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ	0x01
2566 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ	0x02
2567 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ	0x04
2568 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ	0x08
2569 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK			0x0f
2570 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A				0x10
2571 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD			0x20
2572 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US		0x40
2573 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
2574 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS			0x80
2575 
2576 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS			0x01
2577 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US			0x02
2578 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ			0x04
2579 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ			0x08
2580 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX				0x10
2581 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX				0x20
2582 
2583 /* Note that the meaning of UL MU below is different between an AP and a non-AP
2584  * sta, where in the AP case it indicates support for Rx and in the non-AP sta
2585  * case it indicates support for Tx.
2586  */
2587 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO			0x40
2588 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO			0x80
2589 
2590 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM			0x00
2591 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK			0x01
2592 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK			0x02
2593 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM			0x03
2594 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK			0x03
2595 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1				0x00
2596 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2				0x04
2597 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM			0x00
2598 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK			0x08
2599 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK			0x10
2600 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM			0x18
2601 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK			0x18
2602 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1				0x00
2603 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2				0x20
2604 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU		0x40
2605 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER				0x80
2606 
2607 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE				0x01
2608 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER				0x02
2609 
2610 /* Minimal allowed value of Max STS under 80MHz is 3 */
2611 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4		0x0c
2612 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5		0x10
2613 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6		0x14
2614 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7		0x18
2615 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8		0x1c
2616 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK	0x1c
2617 
2618 /* Minimal allowed value of Max STS above 80MHz is 3 */
2619 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4		0x60
2620 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5		0x80
2621 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6		0xa0
2622 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7		0xc0
2623 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8		0xe0
2624 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK	0xe0
2625 
2626 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1	0x00
2627 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2	0x01
2628 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3	0x02
2629 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4	0x03
2630 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5	0x04
2631 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6	0x05
2632 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7	0x06
2633 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8	0x07
2634 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK	0x07
2635 
2636 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1	0x00
2637 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2	0x08
2638 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3	0x10
2639 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4	0x18
2640 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5	0x20
2641 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6	0x28
2642 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7	0x30
2643 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8	0x38
2644 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK	0x38
2645 
2646 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK				0x40
2647 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK				0x80
2648 
2649 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU			0x01
2650 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU			0x02
2651 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB			0x04
2652 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB		0x08
2653 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB				0x10
2654 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE			0x20
2655 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO		0x40
2656 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT			0x80
2657 
2658 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR				0x01
2659 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP			0x02
2660 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI		0x04
2661 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1					0x08
2662 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2					0x10
2663 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3					0x18
2664 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4					0x20
2665 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5					0x28
2666 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6					0x30
2667 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7					0x38
2668 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK				0x38
2669 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ			0x40
2670 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ			0x80
2671 
2672 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI		0x01
2673 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G		0x02
2674 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU			0x04
2675 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU			0x08
2676 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI		0x10
2677 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF		0x20
2678 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242				0x00
2679 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484				0x40
2680 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996				0x80
2681 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996				0xc0
2682 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK				0xc0
2683 
2684 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM		0x01
2685 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK		0x02
2686 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU		0x04
2687 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU		0x08
2688 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB	0x10
2689 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB	0x20
2690 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US			0x0
2691 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US			0x1
2692 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US			0x2
2693 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED		0x3
2694 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS			6
2695 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK			0xc0
2696 
2697 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF			0x01
2698 
2699 /* 802.11ax HE TX/RX MCS NSS Support  */
2700 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS			(3)
2701 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS			(6)
2702 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS			(11)
2703 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK			0x07c0
2704 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK			0xf800
2705 
2706 /* TX/RX HE MCS Support field Highest MCS subfield encoding */
2707 enum ieee80211_he_highest_mcs_supported_subfield_enc {
2708 	HIGHEST_MCS_SUPPORTED_MCS7 = 0,
2709 	HIGHEST_MCS_SUPPORTED_MCS8,
2710 	HIGHEST_MCS_SUPPORTED_MCS9,
2711 	HIGHEST_MCS_SUPPORTED_MCS10,
2712 	HIGHEST_MCS_SUPPORTED_MCS11,
2713 };
2714 
2715 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
2716 static inline u8
ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap)2717 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
2718 {
2719 	u8 count = 4;
2720 
2721 	if (he_cap->phy_cap_info[0] &
2722 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2723 		count += 4;
2724 
2725 	if (he_cap->phy_cap_info[0] &
2726 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2727 		count += 4;
2728 
2729 	return count;
2730 }
2731 
2732 /* 802.11ax HE PPE Thresholds */
2733 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS			(1)
2734 #define IEEE80211_PPE_THRES_NSS_POS				(0)
2735 #define IEEE80211_PPE_THRES_NSS_MASK				(7)
2736 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU	\
2737 	(BIT(5) | BIT(6))
2738 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK		0x78
2739 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS		(3)
2740 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE			(3)
2741 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE			(7)
2742 
2743 /*
2744  * Calculate 802.11ax HE capabilities IE PPE field size
2745  * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
2746  */
2747 static inline u8
ieee80211_he_ppe_size(u8 ppe_thres_hdr,const u8 * phy_cap_info)2748 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
2749 {
2750 	u8 n;
2751 
2752 	if ((phy_cap_info[6] &
2753 	     IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2754 		return 0;
2755 
2756 	n = hweight8(ppe_thres_hdr &
2757 		     IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2758 	n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
2759 		   IEEE80211_PPE_THRES_NSS_POS));
2760 
2761 	/*
2762 	 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2763 	 * total size.
2764 	 */
2765 	n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2766 	n = DIV_ROUND_UP(n, 8);
2767 
2768 	return n;
2769 }
2770 
ieee80211_he_capa_size_ok(const u8 * data,u8 len)2771 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len)
2772 {
2773 	const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data;
2774 	u8 needed = sizeof(*he_cap_ie_elem);
2775 
2776 	if (len < needed)
2777 		return false;
2778 
2779 	needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem);
2780 	if (len < needed)
2781 		return false;
2782 
2783 	if (he_cap_ie_elem->phy_cap_info[6] &
2784 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2785 		if (len < needed + 1)
2786 			return false;
2787 		needed += ieee80211_he_ppe_size(data[needed],
2788 						he_cap_ie_elem->phy_cap_info);
2789 	}
2790 
2791 	return len >= needed;
2792 }
2793 
2794 /* HE Operation defines */
2795 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK		0x00000007
2796 #define IEEE80211_HE_OPERATION_TWT_REQUIRED			0x00000008
2797 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK		0x00003ff0
2798 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET		4
2799 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO			0x00004000
2800 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS			0x00008000
2801 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE			0x00010000
2802 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO			0x00020000
2803 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK			0x3f000000
2804 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET			24
2805 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR		0x40000000
2806 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED		0x80000000
2807 
2808 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP		0
2809 #define IEEE80211_6GHZ_CTRL_REG_SP_AP		1
2810 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP		2
2811 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP	3
2812 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP	4
2813 
2814 /**
2815  * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field
2816  * @primary: primary channel
2817  * @control: control flags
2818  * @ccfs0: channel center frequency segment 0
2819  * @ccfs1: channel center frequency segment 1
2820  * @minrate: minimum rate (in 1 Mbps units)
2821  */
2822 struct ieee80211_he_6ghz_oper {
2823 	u8 primary;
2824 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH	0x3
2825 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ	0
2826 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ	1
2827 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ	2
2828 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ	3
2829 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON	0x4
2830 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO	0x38
2831 	u8 control;
2832 	u8 ccfs0;
2833 	u8 ccfs1;
2834 	u8 minrate;
2835 } __packed;
2836 
2837 /* transmit power interpretation type of transmit power envelope element */
2838 enum ieee80211_tx_power_intrpt_type {
2839 	IEEE80211_TPE_LOCAL_EIRP,
2840 	IEEE80211_TPE_LOCAL_EIRP_PSD,
2841 	IEEE80211_TPE_REG_CLIENT_EIRP,
2842 	IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2843 };
2844 
2845 /* category type of transmit power envelope element */
2846 enum ieee80211_tx_power_category_6ghz {
2847 	IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0,
2848 	IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1,
2849 };
2850 
2851 /*
2852  * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP,
2853  * setting to 63.5 dBm means no constraint.
2854  */
2855 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT	127
2856 
2857 /*
2858  * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2859  * setting to 127 indicates no PSD limit for the 20 MHz channel.
2860  */
2861 #define IEEE80211_TPE_PSD_NO_LIMIT		127
2862 
2863 /**
2864  * struct ieee80211_tx_pwr_env - Transmit Power Envelope
2865  * @info: Transmit Power Information field
2866  * @variable: Maximum Transmit Power field
2867  *
2868  * This structure represents the payload of the "Transmit Power
2869  * Envelope element" as described in IEEE Std 802.11ax-2021 section
2870  * 9.4.2.161
2871  */
2872 struct ieee80211_tx_pwr_env {
2873 	u8 info;
2874 	u8 variable[];
2875 } __packed;
2876 
2877 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7
2878 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38
2879 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0
2880 
2881 #define IEEE80211_TX_PWR_ENV_EXT_COUNT	0xF
2882 
ieee80211_valid_tpe_element(const u8 * data,u8 len)2883 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len)
2884 {
2885 	const struct ieee80211_tx_pwr_env *env = (const void *)data;
2886 	u8 count, interpret, category;
2887 	u8 needed = sizeof(*env);
2888 	u8 N; /* also called N in the spec */
2889 
2890 	if (len < needed)
2891 		return false;
2892 
2893 	count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT);
2894 	interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET);
2895 	category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY);
2896 
2897 	switch (category) {
2898 	case IEEE80211_TPE_CAT_6GHZ_DEFAULT:
2899 	case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE:
2900 		break;
2901 	default:
2902 		return false;
2903 	}
2904 
2905 	switch (interpret) {
2906 	case IEEE80211_TPE_LOCAL_EIRP:
2907 	case IEEE80211_TPE_REG_CLIENT_EIRP:
2908 		if (count > 3)
2909 			return false;
2910 
2911 		/* count == 0 encodes 1 value for 20 MHz, etc. */
2912 		needed += count + 1;
2913 
2914 		if (len < needed)
2915 			return false;
2916 
2917 		/* there can be extension fields not accounted for in 'count' */
2918 
2919 		return true;
2920 	case IEEE80211_TPE_LOCAL_EIRP_PSD:
2921 	case IEEE80211_TPE_REG_CLIENT_EIRP_PSD:
2922 		if (count > 4)
2923 			return false;
2924 
2925 		N = count ? 1 << (count - 1) : 1;
2926 		needed += N;
2927 
2928 		if (len < needed)
2929 			return false;
2930 
2931 		if (len > needed) {
2932 			u8 K = u8_get_bits(env->variable[N],
2933 					   IEEE80211_TX_PWR_ENV_EXT_COUNT);
2934 
2935 			needed += 1 + K;
2936 			if (len < needed)
2937 				return false;
2938 		}
2939 
2940 		return true;
2941 	}
2942 
2943 	return false;
2944 }
2945 
2946 /*
2947  * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
2948  * @he_oper_ie: byte data of the He Operations IE, stating from the byte
2949  *	after the ext ID byte. It is assumed that he_oper_ie has at least
2950  *	sizeof(struct ieee80211_he_operation) bytes, the caller must have
2951  *	validated this.
2952  * @return the actual size of the IE data (not including header), or 0 on error
2953  */
2954 static inline u8
ieee80211_he_oper_size(const u8 * he_oper_ie)2955 ieee80211_he_oper_size(const u8 *he_oper_ie)
2956 {
2957 	const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie;
2958 	u8 oper_len = sizeof(struct ieee80211_he_operation);
2959 	u32 he_oper_params;
2960 
2961 	/* Make sure the input is not NULL */
2962 	if (!he_oper_ie)
2963 		return 0;
2964 
2965 	/* Calc required length */
2966 	he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2967 	if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
2968 		oper_len += 3;
2969 	if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
2970 		oper_len++;
2971 	if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
2972 		oper_len += sizeof(struct ieee80211_he_6ghz_oper);
2973 
2974 	/* Add the first byte (extension ID) to the total length */
2975 	oper_len++;
2976 
2977 	return oper_len;
2978 }
2979 
2980 /**
2981  * ieee80211_he_6ghz_oper - obtain 6 GHz operation field
2982  * @he_oper: HE operation element (must be pre-validated for size)
2983  *	but may be %NULL
2984  *
2985  * Return: a pointer to the 6 GHz operation field, or %NULL
2986  */
2987 static inline const struct ieee80211_he_6ghz_oper *
ieee80211_he_6ghz_oper(const struct ieee80211_he_operation * he_oper)2988 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper)
2989 {
2990 	const u8 *ret;
2991 	u32 he_oper_params;
2992 
2993 	if (!he_oper)
2994 		return NULL;
2995 
2996 	ret = (const void *)&he_oper->optional;
2997 
2998 	he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2999 
3000 	if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO))
3001 		return NULL;
3002 	if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
3003 		ret += 3;
3004 	if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
3005 		ret++;
3006 
3007 	return (const void *)ret;
3008 }
3009 
3010 /* HE Spatial Reuse defines */
3011 #define IEEE80211_HE_SPR_PSR_DISALLOWED				BIT(0)
3012 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED		BIT(1)
3013 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT			BIT(2)
3014 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT		BIT(3)
3015 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED		BIT(4)
3016 
3017 /*
3018  * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size
3019  * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte
3020  *	after the ext ID byte. It is assumed that he_spr_ie has at least
3021  *	sizeof(struct ieee80211_he_spr) bytes, the caller must have validated
3022  *	this
3023  * @return the actual size of the IE data (not including header), or 0 on error
3024  */
3025 static inline u8
ieee80211_he_spr_size(const u8 * he_spr_ie)3026 ieee80211_he_spr_size(const u8 *he_spr_ie)
3027 {
3028 	const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie;
3029 	u8 spr_len = sizeof(struct ieee80211_he_spr);
3030 	u8 he_spr_params;
3031 
3032 	/* Make sure the input is not NULL */
3033 	if (!he_spr_ie)
3034 		return 0;
3035 
3036 	/* Calc required length */
3037 	he_spr_params = he_spr->he_sr_control;
3038 	if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
3039 		spr_len++;
3040 	if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT)
3041 		spr_len += 18;
3042 
3043 	/* Add the first byte (extension ID) to the total length */
3044 	spr_len++;
3045 
3046 	return spr_len;
3047 }
3048 
3049 /* S1G Capabilities Information field */
3050 #define IEEE80211_S1G_CAPABILITY_LEN	15
3051 
3052 #define S1G_CAP0_S1G_LONG	BIT(0)
3053 #define S1G_CAP0_SGI_1MHZ	BIT(1)
3054 #define S1G_CAP0_SGI_2MHZ	BIT(2)
3055 #define S1G_CAP0_SGI_4MHZ	BIT(3)
3056 #define S1G_CAP0_SGI_8MHZ	BIT(4)
3057 #define S1G_CAP0_SGI_16MHZ	BIT(5)
3058 #define S1G_CAP0_SUPP_CH_WIDTH	GENMASK(7, 6)
3059 
3060 #define S1G_SUPP_CH_WIDTH_2	0
3061 #define S1G_SUPP_CH_WIDTH_4	1
3062 #define S1G_SUPP_CH_WIDTH_8	2
3063 #define S1G_SUPP_CH_WIDTH_16	3
3064 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \
3065 						    cap[0])) << 1)
3066 
3067 #define S1G_CAP1_RX_LDPC	BIT(0)
3068 #define S1G_CAP1_TX_STBC	BIT(1)
3069 #define S1G_CAP1_RX_STBC	BIT(2)
3070 #define S1G_CAP1_SU_BFER	BIT(3)
3071 #define S1G_CAP1_SU_BFEE	BIT(4)
3072 #define S1G_CAP1_BFEE_STS	GENMASK(7, 5)
3073 
3074 #define S1G_CAP2_SOUNDING_DIMENSIONS	GENMASK(2, 0)
3075 #define S1G_CAP2_MU_BFER		BIT(3)
3076 #define S1G_CAP2_MU_BFEE		BIT(4)
3077 #define S1G_CAP2_PLUS_HTC_VHT		BIT(5)
3078 #define S1G_CAP2_TRAVELING_PILOT	GENMASK(7, 6)
3079 
3080 #define S1G_CAP3_RD_RESPONDER		BIT(0)
3081 #define S1G_CAP3_HT_DELAYED_BA		BIT(1)
3082 #define S1G_CAP3_MAX_MPDU_LEN		BIT(2)
3083 #define S1G_CAP3_MAX_AMPDU_LEN_EXP	GENMASK(4, 3)
3084 #define S1G_CAP3_MIN_MPDU_START		GENMASK(7, 5)
3085 
3086 #define S1G_CAP4_UPLINK_SYNC	BIT(0)
3087 #define S1G_CAP4_DYNAMIC_AID	BIT(1)
3088 #define S1G_CAP4_BAT		BIT(2)
3089 #define S1G_CAP4_TIME_ADE	BIT(3)
3090 #define S1G_CAP4_NON_TIM	BIT(4)
3091 #define S1G_CAP4_GROUP_AID	BIT(5)
3092 #define S1G_CAP4_STA_TYPE	GENMASK(7, 6)
3093 
3094 #define S1G_CAP5_CENT_AUTH_CONTROL	BIT(0)
3095 #define S1G_CAP5_DIST_AUTH_CONTROL	BIT(1)
3096 #define S1G_CAP5_AMSDU			BIT(2)
3097 #define S1G_CAP5_AMPDU			BIT(3)
3098 #define S1G_CAP5_ASYMMETRIC_BA		BIT(4)
3099 #define S1G_CAP5_FLOW_CONTROL		BIT(5)
3100 #define S1G_CAP5_SECTORIZED_BEAM	GENMASK(7, 6)
3101 
3102 #define S1G_CAP6_OBSS_MITIGATION	BIT(0)
3103 #define S1G_CAP6_FRAGMENT_BA		BIT(1)
3104 #define S1G_CAP6_NDP_PS_POLL		BIT(2)
3105 #define S1G_CAP6_RAW_OPERATION		BIT(3)
3106 #define S1G_CAP6_PAGE_SLICING		BIT(4)
3107 #define S1G_CAP6_TXOP_SHARING_IMP_ACK	BIT(5)
3108 #define S1G_CAP6_VHT_LINK_ADAPT		GENMASK(7, 6)
3109 
3110 #define S1G_CAP7_TACK_AS_PS_POLL		BIT(0)
3111 #define S1G_CAP7_DUP_1MHZ			BIT(1)
3112 #define S1G_CAP7_MCS_NEGOTIATION		BIT(2)
3113 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE	BIT(3)
3114 #define S1G_CAP7_NDP_BFING_REPORT_POLL		BIT(4)
3115 #define S1G_CAP7_UNSOLICITED_DYN_AID		BIT(5)
3116 #define S1G_CAP7_SECTOR_TRAINING_OPERATION	BIT(6)
3117 #define S1G_CAP7_TEMP_PS_MODE_SWITCH		BIT(7)
3118 
3119 #define S1G_CAP8_TWT_GROUPING	BIT(0)
3120 #define S1G_CAP8_BDT		BIT(1)
3121 #define S1G_CAP8_COLOR		GENMASK(4, 2)
3122 #define S1G_CAP8_TWT_REQUEST	BIT(5)
3123 #define S1G_CAP8_TWT_RESPOND	BIT(6)
3124 #define S1G_CAP8_PV1_FRAME	BIT(7)
3125 
3126 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0)
3127 
3128 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ	BIT(0)
3129 #define S1G_OPER_CH_WIDTH_OPER		GENMASK(4, 1)
3130 
3131 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */
3132 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS			0x01
3133 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL			0x02
3134 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1		0x04
3135 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2		0x08
3136 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT			0x10
3137 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC			0x20
3138 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK		0xc0
3139 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895	        0
3140 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991	        1
3141 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454	        2
3142 
3143 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK		0x01
3144 
3145 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */
3146 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ			0x02
3147 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ		0x04
3148 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI		0x08
3149 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO		0x10
3150 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER			0x20
3151 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE			0x40
3152 
3153 /* EHT beamformee number of spatial streams <= 80MHz is split */
3154 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK		0x80
3155 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK		0x03
3156 
3157 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK	0x1c
3158 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK	0xe0
3159 
3160 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK		0x07
3161 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK		0x38
3162 
3163 /* EHT number of sounding dimensions for 320MHz is split */
3164 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK		0xc0
3165 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK		0x01
3166 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK		0x02
3167 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK		0x04
3168 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK		0x08
3169 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK		0x10
3170 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK			0x20
3171 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK		0x40
3172 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK			0x80
3173 
3174 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO		0x01
3175 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP			0x02
3176 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP		0x04
3177 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI	0x08
3178 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK			0xf0
3179 
3180 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK		0x01
3181 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP		0x02
3182 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP		0x04
3183 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT		0x08
3184 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK	0x30
3185 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US	0
3186 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US	1
3187 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US	2
3188 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US	3
3189 
3190 /* Maximum number of supported EHT LTF is split */
3191 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK	0xc0
3192 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF		0x40
3193 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK	0x07
3194 
3195 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ			0x08
3196 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ		0x30
3197 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ		0x40
3198 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK			0x78
3199 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP		0x80
3200 
3201 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW	0x01
3202 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ	0x02
3203 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ	0x04
3204 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ	0x08
3205 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ		0x10
3206 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ		0x20
3207 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ		0x40
3208 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT	0x80
3209 
3210 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA	0x01
3211 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA	0x02
3212 
3213 /*
3214  * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311
3215  */
3216 #define IEEE80211_EHT_OPER_CHAN_WIDTH		0x7
3217 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ	0
3218 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ	1
3219 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ	2
3220 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ	3
3221 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ	4
3222 
3223 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */
3224 static inline u8
ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap,const struct ieee80211_eht_cap_elem_fixed * eht_cap,bool from_ap)3225 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap,
3226 			   const struct ieee80211_eht_cap_elem_fixed *eht_cap,
3227 			   bool from_ap)
3228 {
3229 	u8 count = 0;
3230 
3231 	/* on 2.4 GHz, if it supports 40 MHz, the result is 3 */
3232 	if (he_cap->phy_cap_info[0] &
3233 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
3234 		return 3;
3235 
3236 	/* on 2.4 GHz, these three bits are reserved, so should be 0 */
3237 	if (he_cap->phy_cap_info[0] &
3238 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)
3239 		count += 3;
3240 
3241 	if (he_cap->phy_cap_info[0] &
3242 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
3243 		count += 3;
3244 
3245 	if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
3246 		count += 3;
3247 
3248 	if (count)
3249 		return count;
3250 
3251 	return from_ap ? 3 : 4;
3252 }
3253 
3254 /* 802.11be EHT PPE Thresholds */
3255 #define IEEE80211_EHT_PPE_THRES_NSS_POS			0
3256 #define IEEE80211_EHT_PPE_THRES_NSS_MASK		0xf
3257 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK	0x1f0
3258 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE		3
3259 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE	9
3260 
3261 /*
3262  * Calculate 802.11be EHT capabilities IE EHT field size
3263  */
3264 static inline u8
ieee80211_eht_ppe_size(u16 ppe_thres_hdr,const u8 * phy_cap_info)3265 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info)
3266 {
3267 	u32 n;
3268 
3269 	if (!(phy_cap_info[5] &
3270 	      IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT))
3271 		return 0;
3272 
3273 	n = hweight16(ppe_thres_hdr &
3274 		      IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
3275 	n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK);
3276 
3277 	/*
3278 	 * Each pair is 6 bits, and we need to add the 9 "header" bits to the
3279 	 * total size.
3280 	 */
3281 	n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 +
3282 	    IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
3283 	return DIV_ROUND_UP(n, 8);
3284 }
3285 
3286 static inline bool
ieee80211_eht_capa_size_ok(const u8 * he_capa,const u8 * data,u8 len,bool from_ap)3287 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len,
3288 			   bool from_ap)
3289 {
3290 	const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data;
3291 	u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed);
3292 
3293 	if (len < needed || !he_capa)
3294 		return false;
3295 
3296 	needed += ieee80211_eht_mcs_nss_size((const void *)he_capa,
3297 					     (const void *)data,
3298 					     from_ap);
3299 	if (len < needed)
3300 		return false;
3301 
3302 	if (elem->phy_cap_info[5] &
3303 			IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
3304 		u16 ppe_thres_hdr;
3305 
3306 		if (len < needed + sizeof(ppe_thres_hdr))
3307 			return false;
3308 
3309 		ppe_thres_hdr = get_unaligned_le16(data + needed);
3310 		needed += ieee80211_eht_ppe_size(ppe_thres_hdr,
3311 						 elem->phy_cap_info);
3312 	}
3313 
3314 	return len >= needed;
3315 }
3316 
3317 static inline bool
ieee80211_eht_oper_size_ok(const u8 * data,u8 len)3318 ieee80211_eht_oper_size_ok(const u8 *data, u8 len)
3319 {
3320 	const struct ieee80211_eht_operation *elem = (const void *)data;
3321 	u8 needed = sizeof(*elem);
3322 
3323 	if (len < needed)
3324 		return false;
3325 
3326 	if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
3327 		needed += 3;
3328 
3329 		if (elem->params &
3330 		    IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)
3331 			needed += 2;
3332 	}
3333 
3334 	return len >= needed;
3335 }
3336 
3337 /* must validate ieee80211_eht_oper_size_ok() first */
3338 static inline u16
ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation * eht_oper)3339 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper)
3340 {
3341 	const struct ieee80211_eht_operation_info *info =
3342 		(const void *)eht_oper->optional;
3343 
3344 	if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT))
3345 		return 0;
3346 
3347 	if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT))
3348 		return 0;
3349 
3350 	return get_unaligned_le16(info->optional);
3351 }
3352 
3353 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT	BIT(1)
3354 
3355 struct ieee80211_bandwidth_indication {
3356 	u8 params;
3357 	struct ieee80211_eht_operation_info info;
3358 } __packed;
3359 
3360 static inline bool
ieee80211_bandwidth_indication_size_ok(const u8 * data,u8 len)3361 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len)
3362 {
3363 	const struct ieee80211_bandwidth_indication *bwi = (const void *)data;
3364 
3365 	if (len < sizeof(*bwi))
3366 		return false;
3367 
3368 	if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT &&
3369 	    len < sizeof(*bwi) + 2)
3370 		return false;
3371 
3372 	return true;
3373 }
3374 
3375 #define LISTEN_INT_USF	GENMASK(15, 14)
3376 #define LISTEN_INT_UI	GENMASK(13, 0)
3377 
3378 #define IEEE80211_MAX_USF	FIELD_MAX(LISTEN_INT_USF)
3379 #define IEEE80211_MAX_UI	FIELD_MAX(LISTEN_INT_UI)
3380 
3381 /* Authentication algorithms */
3382 #define WLAN_AUTH_OPEN 0
3383 #define WLAN_AUTH_SHARED_KEY 1
3384 #define WLAN_AUTH_FT 2
3385 #define WLAN_AUTH_SAE 3
3386 #define WLAN_AUTH_FILS_SK 4
3387 #define WLAN_AUTH_FILS_SK_PFS 5
3388 #define WLAN_AUTH_FILS_PK 6
3389 #define WLAN_AUTH_LEAP 128
3390 
3391 #define WLAN_AUTH_CHALLENGE_LEN 128
3392 
3393 #define WLAN_CAPABILITY_ESS		(1<<0)
3394 #define WLAN_CAPABILITY_IBSS		(1<<1)
3395 
3396 /*
3397  * A mesh STA sets the ESS and IBSS capability bits to zero.
3398  * however, this holds true for p2p probe responses (in the p2p_find
3399  * phase) as well.
3400  */
3401 #define WLAN_CAPABILITY_IS_STA_BSS(cap)	\
3402 	(!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
3403 
3404 #define WLAN_CAPABILITY_CF_POLLABLE	(1<<2)
3405 #define WLAN_CAPABILITY_CF_POLL_REQUEST	(1<<3)
3406 #define WLAN_CAPABILITY_PRIVACY		(1<<4)
3407 #define WLAN_CAPABILITY_SHORT_PREAMBLE	(1<<5)
3408 #define WLAN_CAPABILITY_PBCC		(1<<6)
3409 #define WLAN_CAPABILITY_CHANNEL_AGILITY	(1<<7)
3410 
3411 /* 802.11h */
3412 #define WLAN_CAPABILITY_SPECTRUM_MGMT	(1<<8)
3413 #define WLAN_CAPABILITY_QOS		(1<<9)
3414 #define WLAN_CAPABILITY_SHORT_SLOT_TIME	(1<<10)
3415 #define WLAN_CAPABILITY_APSD		(1<<11)
3416 #define WLAN_CAPABILITY_RADIO_MEASURE	(1<<12)
3417 #define WLAN_CAPABILITY_DSSS_OFDM	(1<<13)
3418 #define WLAN_CAPABILITY_DEL_BACK	(1<<14)
3419 #define WLAN_CAPABILITY_IMM_BACK	(1<<15)
3420 
3421 /* DMG (60gHz) 802.11ad */
3422 /* type - bits 0..1 */
3423 #define WLAN_CAPABILITY_DMG_TYPE_MASK		(3<<0)
3424 #define WLAN_CAPABILITY_DMG_TYPE_IBSS		(1<<0) /* Tx by: STA */
3425 #define WLAN_CAPABILITY_DMG_TYPE_PBSS		(2<<0) /* Tx by: PCP */
3426 #define WLAN_CAPABILITY_DMG_TYPE_AP		(3<<0) /* Tx by: AP */
3427 
3428 #define WLAN_CAPABILITY_DMG_CBAP_ONLY		(1<<2)
3429 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE		(1<<3)
3430 #define WLAN_CAPABILITY_DMG_PRIVACY		(1<<4)
3431 #define WLAN_CAPABILITY_DMG_ECPAC		(1<<5)
3432 
3433 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT	(1<<8)
3434 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE	(1<<12)
3435 
3436 /* measurement */
3437 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE	(1<<0)
3438 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE	(1<<1)
3439 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED	(1<<2)
3440 
3441 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC	0
3442 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA	1
3443 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI	2
3444 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI	8
3445 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC	11
3446 
3447 /* 802.11g ERP information element */
3448 #define WLAN_ERP_NON_ERP_PRESENT (1<<0)
3449 #define WLAN_ERP_USE_PROTECTION (1<<1)
3450 #define WLAN_ERP_BARKER_PREAMBLE (1<<2)
3451 
3452 /* WLAN_ERP_BARKER_PREAMBLE values */
3453 enum {
3454 	WLAN_ERP_PREAMBLE_SHORT = 0,
3455 	WLAN_ERP_PREAMBLE_LONG = 1,
3456 };
3457 
3458 /* Band ID, 802.11ad #8.4.1.45 */
3459 enum {
3460 	IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
3461 	IEEE80211_BANDID_SUB1  = 1, /* Sub-1 GHz (excluding TV white spaces) */
3462 	IEEE80211_BANDID_2G    = 2, /* 2.4 GHz */
3463 	IEEE80211_BANDID_3G    = 3, /* 3.6 GHz */
3464 	IEEE80211_BANDID_5G    = 4, /* 4.9 and 5 GHz */
3465 	IEEE80211_BANDID_60G   = 5, /* 60 GHz */
3466 };
3467 
3468 /* Status codes */
3469 enum ieee80211_statuscode {
3470 	WLAN_STATUS_SUCCESS = 0,
3471 	WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
3472 	WLAN_STATUS_CAPS_UNSUPPORTED = 10,
3473 	WLAN_STATUS_REASSOC_NO_ASSOC = 11,
3474 	WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
3475 	WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
3476 	WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
3477 	WLAN_STATUS_CHALLENGE_FAIL = 15,
3478 	WLAN_STATUS_AUTH_TIMEOUT = 16,
3479 	WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
3480 	WLAN_STATUS_ASSOC_DENIED_RATES = 18,
3481 	/* 802.11b */
3482 	WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
3483 	WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
3484 	WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
3485 	/* 802.11h */
3486 	WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
3487 	WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
3488 	WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
3489 	/* 802.11g */
3490 	WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
3491 	WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
3492 	/* 802.11w */
3493 	WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
3494 	WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
3495 	/* 802.11i */
3496 	WLAN_STATUS_INVALID_IE = 40,
3497 	WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
3498 	WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
3499 	WLAN_STATUS_INVALID_AKMP = 43,
3500 	WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
3501 	WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
3502 	WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
3503 	/* 802.11e */
3504 	WLAN_STATUS_UNSPECIFIED_QOS = 32,
3505 	WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
3506 	WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
3507 	WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
3508 	WLAN_STATUS_REQUEST_DECLINED = 37,
3509 	WLAN_STATUS_INVALID_QOS_PARAM = 38,
3510 	WLAN_STATUS_CHANGE_TSPEC = 39,
3511 	WLAN_STATUS_WAIT_TS_DELAY = 47,
3512 	WLAN_STATUS_NO_DIRECT_LINK = 48,
3513 	WLAN_STATUS_STA_NOT_PRESENT = 49,
3514 	WLAN_STATUS_STA_NOT_QSTA = 50,
3515 	/* 802.11s */
3516 	WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
3517 	WLAN_STATUS_FCG_NOT_SUPP = 78,
3518 	WLAN_STATUS_STA_NO_TBTT = 78,
3519 	/* 802.11ad */
3520 	WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
3521 	WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
3522 	WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
3523 	WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
3524 	WLAN_STATUS_PERFORMING_FST_NOW = 87,
3525 	WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
3526 	WLAN_STATUS_REJECT_U_PID_SETTING = 89,
3527 	WLAN_STATUS_REJECT_DSE_BAND = 96,
3528 	WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
3529 	WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
3530 	/* 802.11ai */
3531 	WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
3532 	WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
3533 	WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126,
3534 	WLAN_STATUS_SAE_PK = 127,
3535 	WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133,
3536 	WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134,
3537 };
3538 
3539 
3540 /* Reason codes */
3541 enum ieee80211_reasoncode {
3542 	WLAN_REASON_UNSPECIFIED = 1,
3543 	WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
3544 	WLAN_REASON_DEAUTH_LEAVING = 3,
3545 	WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
3546 	WLAN_REASON_DISASSOC_AP_BUSY = 5,
3547 	WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
3548 	WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
3549 	WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
3550 	WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
3551 	/* 802.11h */
3552 	WLAN_REASON_DISASSOC_BAD_POWER = 10,
3553 	WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
3554 	/* 802.11i */
3555 	WLAN_REASON_INVALID_IE = 13,
3556 	WLAN_REASON_MIC_FAILURE = 14,
3557 	WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
3558 	WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
3559 	WLAN_REASON_IE_DIFFERENT = 17,
3560 	WLAN_REASON_INVALID_GROUP_CIPHER = 18,
3561 	WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
3562 	WLAN_REASON_INVALID_AKMP = 20,
3563 	WLAN_REASON_UNSUPP_RSN_VERSION = 21,
3564 	WLAN_REASON_INVALID_RSN_IE_CAP = 22,
3565 	WLAN_REASON_IEEE8021X_FAILED = 23,
3566 	WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
3567 	/* TDLS (802.11z) */
3568 	WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
3569 	WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
3570 	/* 802.11e */
3571 	WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
3572 	WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
3573 	WLAN_REASON_DISASSOC_LOW_ACK = 34,
3574 	WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
3575 	WLAN_REASON_QSTA_LEAVE_QBSS = 36,
3576 	WLAN_REASON_QSTA_NOT_USE = 37,
3577 	WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
3578 	WLAN_REASON_QSTA_TIMEOUT = 39,
3579 	WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
3580 	/* 802.11s */
3581 	WLAN_REASON_MESH_PEER_CANCELED = 52,
3582 	WLAN_REASON_MESH_MAX_PEERS = 53,
3583 	WLAN_REASON_MESH_CONFIG = 54,
3584 	WLAN_REASON_MESH_CLOSE = 55,
3585 	WLAN_REASON_MESH_MAX_RETRIES = 56,
3586 	WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
3587 	WLAN_REASON_MESH_INVALID_GTK = 58,
3588 	WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
3589 	WLAN_REASON_MESH_INVALID_SECURITY = 60,
3590 	WLAN_REASON_MESH_PATH_ERROR = 61,
3591 	WLAN_REASON_MESH_PATH_NOFORWARD = 62,
3592 	WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
3593 	WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
3594 	WLAN_REASON_MESH_CHAN_REGULATORY = 65,
3595 	WLAN_REASON_MESH_CHAN = 66,
3596 };
3597 
3598 
3599 /* Information Element IDs */
3600 enum ieee80211_eid {
3601 	WLAN_EID_SSID = 0,
3602 	WLAN_EID_SUPP_RATES = 1,
3603 	WLAN_EID_FH_PARAMS = 2, /* reserved now */
3604 	WLAN_EID_DS_PARAMS = 3,
3605 	WLAN_EID_CF_PARAMS = 4,
3606 	WLAN_EID_TIM = 5,
3607 	WLAN_EID_IBSS_PARAMS = 6,
3608 	WLAN_EID_COUNTRY = 7,
3609 	/* 8, 9 reserved */
3610 	WLAN_EID_REQUEST = 10,
3611 	WLAN_EID_QBSS_LOAD = 11,
3612 	WLAN_EID_EDCA_PARAM_SET = 12,
3613 	WLAN_EID_TSPEC = 13,
3614 	WLAN_EID_TCLAS = 14,
3615 	WLAN_EID_SCHEDULE = 15,
3616 	WLAN_EID_CHALLENGE = 16,
3617 	/* 17-31 reserved for challenge text extension */
3618 	WLAN_EID_PWR_CONSTRAINT = 32,
3619 	WLAN_EID_PWR_CAPABILITY = 33,
3620 	WLAN_EID_TPC_REQUEST = 34,
3621 	WLAN_EID_TPC_REPORT = 35,
3622 	WLAN_EID_SUPPORTED_CHANNELS = 36,
3623 	WLAN_EID_CHANNEL_SWITCH = 37,
3624 	WLAN_EID_MEASURE_REQUEST = 38,
3625 	WLAN_EID_MEASURE_REPORT = 39,
3626 	WLAN_EID_QUIET = 40,
3627 	WLAN_EID_IBSS_DFS = 41,
3628 	WLAN_EID_ERP_INFO = 42,
3629 	WLAN_EID_TS_DELAY = 43,
3630 	WLAN_EID_TCLAS_PROCESSING = 44,
3631 	WLAN_EID_HT_CAPABILITY = 45,
3632 	WLAN_EID_QOS_CAPA = 46,
3633 	/* 47 reserved for Broadcom */
3634 	WLAN_EID_RSN = 48,
3635 	WLAN_EID_802_15_COEX = 49,
3636 	WLAN_EID_EXT_SUPP_RATES = 50,
3637 	WLAN_EID_AP_CHAN_REPORT = 51,
3638 	WLAN_EID_NEIGHBOR_REPORT = 52,
3639 	WLAN_EID_RCPI = 53,
3640 	WLAN_EID_MOBILITY_DOMAIN = 54,
3641 	WLAN_EID_FAST_BSS_TRANSITION = 55,
3642 	WLAN_EID_TIMEOUT_INTERVAL = 56,
3643 	WLAN_EID_RIC_DATA = 57,
3644 	WLAN_EID_DSE_REGISTERED_LOCATION = 58,
3645 	WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
3646 	WLAN_EID_EXT_CHANSWITCH_ANN = 60,
3647 	WLAN_EID_HT_OPERATION = 61,
3648 	WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
3649 	WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
3650 	WLAN_EID_ANTENNA_INFO = 64,
3651 	WLAN_EID_RSNI = 65,
3652 	WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
3653 	WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
3654 	WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
3655 	WLAN_EID_TIME_ADVERTISEMENT = 69,
3656 	WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
3657 	WLAN_EID_MULTIPLE_BSSID = 71,
3658 	WLAN_EID_BSS_COEX_2040 = 72,
3659 	WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
3660 	WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
3661 	WLAN_EID_RIC_DESCRIPTOR = 75,
3662 	WLAN_EID_MMIE = 76,
3663 	WLAN_EID_ASSOC_COMEBACK_TIME = 77,
3664 	WLAN_EID_EVENT_REQUEST = 78,
3665 	WLAN_EID_EVENT_REPORT = 79,
3666 	WLAN_EID_DIAGNOSTIC_REQUEST = 80,
3667 	WLAN_EID_DIAGNOSTIC_REPORT = 81,
3668 	WLAN_EID_LOCATION_PARAMS = 82,
3669 	WLAN_EID_NON_TX_BSSID_CAP =  83,
3670 	WLAN_EID_SSID_LIST = 84,
3671 	WLAN_EID_MULTI_BSSID_IDX = 85,
3672 	WLAN_EID_FMS_DESCRIPTOR = 86,
3673 	WLAN_EID_FMS_REQUEST = 87,
3674 	WLAN_EID_FMS_RESPONSE = 88,
3675 	WLAN_EID_QOS_TRAFFIC_CAPA = 89,
3676 	WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
3677 	WLAN_EID_TSF_REQUEST = 91,
3678 	WLAN_EID_TSF_RESPOSNE = 92,
3679 	WLAN_EID_WNM_SLEEP_MODE = 93,
3680 	WLAN_EID_TIM_BCAST_REQ = 94,
3681 	WLAN_EID_TIM_BCAST_RESP = 95,
3682 	WLAN_EID_COLL_IF_REPORT = 96,
3683 	WLAN_EID_CHANNEL_USAGE = 97,
3684 	WLAN_EID_TIME_ZONE = 98,
3685 	WLAN_EID_DMS_REQUEST = 99,
3686 	WLAN_EID_DMS_RESPONSE = 100,
3687 	WLAN_EID_LINK_ID = 101,
3688 	WLAN_EID_WAKEUP_SCHEDUL = 102,
3689 	/* 103 reserved */
3690 	WLAN_EID_CHAN_SWITCH_TIMING = 104,
3691 	WLAN_EID_PTI_CONTROL = 105,
3692 	WLAN_EID_PU_BUFFER_STATUS = 106,
3693 	WLAN_EID_INTERWORKING = 107,
3694 	WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
3695 	WLAN_EID_EXPEDITED_BW_REQ = 109,
3696 	WLAN_EID_QOS_MAP_SET = 110,
3697 	WLAN_EID_ROAMING_CONSORTIUM = 111,
3698 	WLAN_EID_EMERGENCY_ALERT = 112,
3699 	WLAN_EID_MESH_CONFIG = 113,
3700 	WLAN_EID_MESH_ID = 114,
3701 	WLAN_EID_LINK_METRIC_REPORT = 115,
3702 	WLAN_EID_CONGESTION_NOTIFICATION = 116,
3703 	WLAN_EID_PEER_MGMT = 117,
3704 	WLAN_EID_CHAN_SWITCH_PARAM = 118,
3705 	WLAN_EID_MESH_AWAKE_WINDOW = 119,
3706 	WLAN_EID_BEACON_TIMING = 120,
3707 	WLAN_EID_MCCAOP_SETUP_REQ = 121,
3708 	WLAN_EID_MCCAOP_SETUP_RESP = 122,
3709 	WLAN_EID_MCCAOP_ADVERT = 123,
3710 	WLAN_EID_MCCAOP_TEARDOWN = 124,
3711 	WLAN_EID_GANN = 125,
3712 	WLAN_EID_RANN = 126,
3713 	WLAN_EID_EXT_CAPABILITY = 127,
3714 	/* 128, 129 reserved for Agere */
3715 	WLAN_EID_PREQ = 130,
3716 	WLAN_EID_PREP = 131,
3717 	WLAN_EID_PERR = 132,
3718 	/* 133-136 reserved for Cisco */
3719 	WLAN_EID_PXU = 137,
3720 	WLAN_EID_PXUC = 138,
3721 	WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
3722 	WLAN_EID_MIC = 140,
3723 	WLAN_EID_DESTINATION_URI = 141,
3724 	WLAN_EID_UAPSD_COEX = 142,
3725 	WLAN_EID_WAKEUP_SCHEDULE = 143,
3726 	WLAN_EID_EXT_SCHEDULE = 144,
3727 	WLAN_EID_STA_AVAILABILITY = 145,
3728 	WLAN_EID_DMG_TSPEC = 146,
3729 	WLAN_EID_DMG_AT = 147,
3730 	WLAN_EID_DMG_CAP = 148,
3731 	/* 149 reserved for Cisco */
3732 	WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
3733 	WLAN_EID_DMG_OPERATION = 151,
3734 	WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
3735 	WLAN_EID_DMG_BEAM_REFINEMENT = 153,
3736 	WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
3737 	/* 155-156 reserved for Cisco */
3738 	WLAN_EID_AWAKE_WINDOW = 157,
3739 	WLAN_EID_MULTI_BAND = 158,
3740 	WLAN_EID_ADDBA_EXT = 159,
3741 	WLAN_EID_NEXT_PCP_LIST = 160,
3742 	WLAN_EID_PCP_HANDOVER = 161,
3743 	WLAN_EID_DMG_LINK_MARGIN = 162,
3744 	WLAN_EID_SWITCHING_STREAM = 163,
3745 	WLAN_EID_SESSION_TRANSITION = 164,
3746 	WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
3747 	WLAN_EID_CLUSTER_REPORT = 166,
3748 	WLAN_EID_RELAY_CAP = 167,
3749 	WLAN_EID_RELAY_XFER_PARAM_SET = 168,
3750 	WLAN_EID_BEAM_LINK_MAINT = 169,
3751 	WLAN_EID_MULTIPLE_MAC_ADDR = 170,
3752 	WLAN_EID_U_PID = 171,
3753 	WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
3754 	/* 173 reserved for Symbol */
3755 	WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
3756 	WLAN_EID_QUIET_PERIOD_REQ = 175,
3757 	/* 176 reserved for Symbol */
3758 	WLAN_EID_QUIET_PERIOD_RESP = 177,
3759 	/* 178-179 reserved for Symbol */
3760 	/* 180 reserved for ISO/IEC 20011 */
3761 	WLAN_EID_EPAC_POLICY = 182,
3762 	WLAN_EID_CLISTER_TIME_OFF = 183,
3763 	WLAN_EID_INTER_AC_PRIO = 184,
3764 	WLAN_EID_SCS_DESCRIPTOR = 185,
3765 	WLAN_EID_QLOAD_REPORT = 186,
3766 	WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
3767 	WLAN_EID_HL_STREAM_ID = 188,
3768 	WLAN_EID_GCR_GROUP_ADDR = 189,
3769 	WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
3770 	WLAN_EID_VHT_CAPABILITY = 191,
3771 	WLAN_EID_VHT_OPERATION = 192,
3772 	WLAN_EID_EXTENDED_BSS_LOAD = 193,
3773 	WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
3774 	WLAN_EID_TX_POWER_ENVELOPE = 195,
3775 	WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
3776 	WLAN_EID_AID = 197,
3777 	WLAN_EID_QUIET_CHANNEL = 198,
3778 	WLAN_EID_OPMODE_NOTIF = 199,
3779 
3780 	WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201,
3781 
3782 	WLAN_EID_AID_REQUEST = 210,
3783 	WLAN_EID_AID_RESPONSE = 211,
3784 	WLAN_EID_S1G_BCN_COMPAT = 213,
3785 	WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214,
3786 	WLAN_EID_S1G_TWT = 216,
3787 	WLAN_EID_S1G_CAPABILITIES = 217,
3788 	WLAN_EID_VENDOR_SPECIFIC = 221,
3789 	WLAN_EID_QOS_PARAMETER = 222,
3790 	WLAN_EID_S1G_OPERATION = 232,
3791 	WLAN_EID_CAG_NUMBER = 237,
3792 	WLAN_EID_AP_CSN = 239,
3793 	WLAN_EID_FILS_INDICATION = 240,
3794 	WLAN_EID_DILS = 241,
3795 	WLAN_EID_FRAGMENT = 242,
3796 	WLAN_EID_RSNX = 244,
3797 	WLAN_EID_EXTENSION = 255
3798 };
3799 
3800 /* Element ID Extensions for Element ID 255 */
3801 enum ieee80211_eid_ext {
3802 	WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
3803 	WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
3804 	WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
3805 	WLAN_EID_EXT_FILS_SESSION = 4,
3806 	WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
3807 	WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
3808 	WLAN_EID_EXT_KEY_DELIVERY = 7,
3809 	WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
3810 	WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
3811 	WLAN_EID_EXT_FILS_NONCE = 13,
3812 	WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
3813 	WLAN_EID_EXT_HE_CAPABILITY = 35,
3814 	WLAN_EID_EXT_HE_OPERATION = 36,
3815 	WLAN_EID_EXT_UORA = 37,
3816 	WLAN_EID_EXT_HE_MU_EDCA = 38,
3817 	WLAN_EID_EXT_HE_SPR = 39,
3818 	WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41,
3819 	WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42,
3820 	WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43,
3821 	WLAN_EID_EXT_ESS_REPORT = 45,
3822 	WLAN_EID_EXT_OPS = 46,
3823 	WLAN_EID_EXT_HE_BSS_LOAD = 47,
3824 	WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
3825 	WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
3826 	WLAN_EID_EXT_NON_INHERITANCE = 56,
3827 	WLAN_EID_EXT_KNOWN_BSSID = 57,
3828 	WLAN_EID_EXT_SHORT_SSID_LIST = 58,
3829 	WLAN_EID_EXT_HE_6GHZ_CAPA = 59,
3830 	WLAN_EID_EXT_UL_MU_POWER_CAPA = 60,
3831 	WLAN_EID_EXT_EHT_OPERATION = 106,
3832 	WLAN_EID_EXT_EHT_MULTI_LINK = 107,
3833 	WLAN_EID_EXT_EHT_CAPABILITY = 108,
3834 	WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109,
3835 	WLAN_EID_EXT_BANDWIDTH_INDICATION = 135,
3836 };
3837 
3838 /* Action category code */
3839 enum ieee80211_category {
3840 	WLAN_CATEGORY_SPECTRUM_MGMT = 0,
3841 	WLAN_CATEGORY_QOS = 1,
3842 	WLAN_CATEGORY_DLS = 2,
3843 	WLAN_CATEGORY_BACK = 3,
3844 	WLAN_CATEGORY_PUBLIC = 4,
3845 	WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
3846 	WLAN_CATEGORY_FAST_BBS_TRANSITION = 6,
3847 	WLAN_CATEGORY_HT = 7,
3848 	WLAN_CATEGORY_SA_QUERY = 8,
3849 	WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
3850 	WLAN_CATEGORY_WNM = 10,
3851 	WLAN_CATEGORY_WNM_UNPROTECTED = 11,
3852 	WLAN_CATEGORY_TDLS = 12,
3853 	WLAN_CATEGORY_MESH_ACTION = 13,
3854 	WLAN_CATEGORY_MULTIHOP_ACTION = 14,
3855 	WLAN_CATEGORY_SELF_PROTECTED = 15,
3856 	WLAN_CATEGORY_DMG = 16,
3857 	WLAN_CATEGORY_WMM = 17,
3858 	WLAN_CATEGORY_FST = 18,
3859 	WLAN_CATEGORY_UNPROT_DMG = 20,
3860 	WLAN_CATEGORY_VHT = 21,
3861 	WLAN_CATEGORY_S1G = 22,
3862 	WLAN_CATEGORY_PROTECTED_EHT = 37,
3863 	WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
3864 	WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
3865 };
3866 
3867 /* SPECTRUM_MGMT action code */
3868 enum ieee80211_spectrum_mgmt_actioncode {
3869 	WLAN_ACTION_SPCT_MSR_REQ = 0,
3870 	WLAN_ACTION_SPCT_MSR_RPRT = 1,
3871 	WLAN_ACTION_SPCT_TPC_REQ = 2,
3872 	WLAN_ACTION_SPCT_TPC_RPRT = 3,
3873 	WLAN_ACTION_SPCT_CHL_SWITCH = 4,
3874 };
3875 
3876 /* HT action codes */
3877 enum ieee80211_ht_actioncode {
3878 	WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
3879 	WLAN_HT_ACTION_SMPS = 1,
3880 	WLAN_HT_ACTION_PSMP = 2,
3881 	WLAN_HT_ACTION_PCO_PHASE = 3,
3882 	WLAN_HT_ACTION_CSI = 4,
3883 	WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
3884 	WLAN_HT_ACTION_COMPRESSED_BF = 6,
3885 	WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
3886 };
3887 
3888 /* VHT action codes */
3889 enum ieee80211_vht_actioncode {
3890 	WLAN_VHT_ACTION_COMPRESSED_BF = 0,
3891 	WLAN_VHT_ACTION_GROUPID_MGMT = 1,
3892 	WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
3893 };
3894 
3895 /* Self Protected Action codes */
3896 enum ieee80211_self_protected_actioncode {
3897 	WLAN_SP_RESERVED = 0,
3898 	WLAN_SP_MESH_PEERING_OPEN = 1,
3899 	WLAN_SP_MESH_PEERING_CONFIRM = 2,
3900 	WLAN_SP_MESH_PEERING_CLOSE = 3,
3901 	WLAN_SP_MGK_INFORM = 4,
3902 	WLAN_SP_MGK_ACK = 5,
3903 };
3904 
3905 /* Mesh action codes */
3906 enum ieee80211_mesh_actioncode {
3907 	WLAN_MESH_ACTION_LINK_METRIC_REPORT,
3908 	WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
3909 	WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
3910 	WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
3911 	WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
3912 	WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
3913 	WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
3914 	WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
3915 	WLAN_MESH_ACTION_MCCA_TEARDOWN,
3916 	WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
3917 	WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
3918 };
3919 
3920 /* Unprotected WNM action codes */
3921 enum ieee80211_unprotected_wnm_actioncode {
3922 	WLAN_UNPROTECTED_WNM_ACTION_TIM = 0,
3923 	WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1,
3924 };
3925 
3926 /* Protected EHT action codes */
3927 enum ieee80211_protected_eht_actioncode {
3928 	WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0,
3929 	WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1,
3930 	WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2,
3931 };
3932 
3933 /* Security key length */
3934 enum ieee80211_key_len {
3935 	WLAN_KEY_LEN_WEP40 = 5,
3936 	WLAN_KEY_LEN_WEP104 = 13,
3937 	WLAN_KEY_LEN_CCMP = 16,
3938 	WLAN_KEY_LEN_CCMP_256 = 32,
3939 	WLAN_KEY_LEN_TKIP = 32,
3940 	WLAN_KEY_LEN_AES_CMAC = 16,
3941 	WLAN_KEY_LEN_SMS4 = 32,
3942 	WLAN_KEY_LEN_GCMP = 16,
3943 	WLAN_KEY_LEN_GCMP_256 = 32,
3944 	WLAN_KEY_LEN_BIP_CMAC_256 = 32,
3945 	WLAN_KEY_LEN_BIP_GMAC_128 = 16,
3946 	WLAN_KEY_LEN_BIP_GMAC_256 = 32,
3947 };
3948 
3949 enum ieee80211_s1g_actioncode {
3950 	WLAN_S1G_AID_SWITCH_REQUEST,
3951 	WLAN_S1G_AID_SWITCH_RESPONSE,
3952 	WLAN_S1G_SYNC_CONTROL,
3953 	WLAN_S1G_STA_INFO_ANNOUNCE,
3954 	WLAN_S1G_EDCA_PARAM_SET,
3955 	WLAN_S1G_EL_OPERATION,
3956 	WLAN_S1G_TWT_SETUP,
3957 	WLAN_S1G_TWT_TEARDOWN,
3958 	WLAN_S1G_SECT_GROUP_ID_LIST,
3959 	WLAN_S1G_SECT_ID_FEEDBACK,
3960 	WLAN_S1G_TWT_INFORMATION = 11,
3961 };
3962 
3963 #define IEEE80211_WEP_IV_LEN		4
3964 #define IEEE80211_WEP_ICV_LEN		4
3965 #define IEEE80211_CCMP_HDR_LEN		8
3966 #define IEEE80211_CCMP_MIC_LEN		8
3967 #define IEEE80211_CCMP_PN_LEN		6
3968 #define IEEE80211_CCMP_256_HDR_LEN	8
3969 #define IEEE80211_CCMP_256_MIC_LEN	16
3970 #define IEEE80211_CCMP_256_PN_LEN	6
3971 #define IEEE80211_TKIP_IV_LEN		8
3972 #define IEEE80211_TKIP_ICV_LEN		4
3973 #define IEEE80211_CMAC_PN_LEN		6
3974 #define IEEE80211_GMAC_PN_LEN		6
3975 #define IEEE80211_GCMP_HDR_LEN		8
3976 #define IEEE80211_GCMP_MIC_LEN		16
3977 #define IEEE80211_GCMP_PN_LEN		6
3978 
3979 #define FILS_NONCE_LEN			16
3980 #define FILS_MAX_KEK_LEN		64
3981 
3982 #define FILS_ERP_MAX_USERNAME_LEN	16
3983 #define FILS_ERP_MAX_REALM_LEN		253
3984 #define FILS_ERP_MAX_RRK_LEN		64
3985 
3986 #define PMK_MAX_LEN			64
3987 #define SAE_PASSWORD_MAX_LEN		128
3988 
3989 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
3990 enum ieee80211_pub_actioncode {
3991 	WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
3992 	WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
3993 	WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
3994 	WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
3995 	WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
3996 	WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
3997 	WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
3998 	WLAN_PUB_ACTION_MSMT_PILOT = 7,
3999 	WLAN_PUB_ACTION_DSE_PC = 8,
4000 	WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
4001 	WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
4002 	WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
4003 	WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
4004 	WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
4005 	WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
4006 	WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
4007 	WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
4008 	WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
4009 	WLAN_PUB_ACTION_QMF_POLICY = 18,
4010 	WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
4011 	WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
4012 	WLAN_PUB_ACTION_QLOAD_REPORT = 21,
4013 	WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
4014 	WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
4015 	WLAN_PUB_ACTION_PUBLIC_KEY = 24,
4016 	WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
4017 	WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
4018 	WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
4019 	WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
4020 	WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
4021 	WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
4022 	WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
4023 	WLAN_PUB_ACTION_FTM_REQUEST = 32,
4024 	WLAN_PUB_ACTION_FTM_RESPONSE = 33,
4025 	WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
4026 };
4027 
4028 /* TDLS action codes */
4029 enum ieee80211_tdls_actioncode {
4030 	WLAN_TDLS_SETUP_REQUEST = 0,
4031 	WLAN_TDLS_SETUP_RESPONSE = 1,
4032 	WLAN_TDLS_SETUP_CONFIRM = 2,
4033 	WLAN_TDLS_TEARDOWN = 3,
4034 	WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
4035 	WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
4036 	WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
4037 	WLAN_TDLS_PEER_PSM_REQUEST = 7,
4038 	WLAN_TDLS_PEER_PSM_RESPONSE = 8,
4039 	WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
4040 	WLAN_TDLS_DISCOVERY_REQUEST = 10,
4041 };
4042 
4043 /* Extended Channel Switching capability to be set in the 1st byte of
4044  * the @WLAN_EID_EXT_CAPABILITY information element
4045  */
4046 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING	BIT(2)
4047 
4048 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
4049  * @WLAN_EID_EXT_CAPABILITY information element
4050  */
4051 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT	BIT(6)
4052 
4053 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte
4054  * of the @WLAN_EID_EXT_CAPABILITY information element
4055  */
4056 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT	BIT(7)
4057 
4058 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */
4059 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA		BIT(4)
4060 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM		BIT(5)
4061 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH		BIT(6)
4062 
4063 /* Interworking capabilities are set in 7th bit of 4th byte of the
4064  * @WLAN_EID_EXT_CAPABILITY information element
4065  */
4066 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED	BIT(7)
4067 
4068 /*
4069  * TDLS capabililites to be enabled in the 5th byte of the
4070  * @WLAN_EID_EXT_CAPABILITY information element
4071  */
4072 #define WLAN_EXT_CAPA5_TDLS_ENABLED	BIT(5)
4073 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED	BIT(6)
4074 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED	BIT(7)
4075 
4076 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED	BIT(5)
4077 #define WLAN_EXT_CAPA8_OPMODE_NOTIF	BIT(6)
4078 
4079 /* Defines the maximal number of MSDUs in an A-MSDU. */
4080 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB	BIT(7)
4081 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB	BIT(0)
4082 
4083 /*
4084  * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
4085  * information element
4086  */
4087 #define WLAN_EXT_CAPA9_FTM_INITIATOR	BIT(7)
4088 
4089 /* Defines support for TWT Requester and TWT Responder */
4090 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT	BIT(5)
4091 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT	BIT(6)
4092 
4093 /*
4094  * When set, indicates that the AP is able to tolerate 26-tone RU UL
4095  * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
4096  * 26-tone RU UL OFDMA transmissions as radar pulses).
4097  */
4098 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
4099 
4100 /* Defines support for enhanced multi-bssid advertisement*/
4101 #define WLAN_EXT_CAPA11_EMA_SUPPORT	BIT(3)
4102 
4103 /* TDLS specific payload type in the LLC/SNAP header */
4104 #define WLAN_TDLS_SNAP_RFTYPE	0x2
4105 
4106 /* BSS Coex IE information field bits */
4107 #define WLAN_BSS_COEX_INFORMATION_REQUEST	BIT(0)
4108 
4109 /**
4110  * enum ieee80211_mesh_sync_method - mesh synchronization method identifier
4111  *
4112  * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
4113  * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
4114  *	that will be specified in a vendor specific information element
4115  */
4116 enum ieee80211_mesh_sync_method {
4117 	IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
4118 	IEEE80211_SYNC_METHOD_VENDOR = 255,
4119 };
4120 
4121 /**
4122  * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
4123  *
4124  * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
4125  * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
4126  *	be specified in a vendor specific information element
4127  */
4128 enum ieee80211_mesh_path_protocol {
4129 	IEEE80211_PATH_PROTOCOL_HWMP = 1,
4130 	IEEE80211_PATH_PROTOCOL_VENDOR = 255,
4131 };
4132 
4133 /**
4134  * enum ieee80211_mesh_path_metric - mesh path selection metric identifier
4135  *
4136  * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
4137  * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
4138  *	specified in a vendor specific information element
4139  */
4140 enum ieee80211_mesh_path_metric {
4141 	IEEE80211_PATH_METRIC_AIRTIME = 1,
4142 	IEEE80211_PATH_METRIC_VENDOR = 255,
4143 };
4144 
4145 /**
4146  * enum ieee80211_root_mode_identifier - root mesh STA mode identifier
4147  *
4148  * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
4149  *
4150  * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
4151  * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
4152  *	this value
4153  * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
4154  *	the proactive PREQ with proactive PREP subfield set to 0
4155  * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
4156  *	supports the proactive PREQ with proactive PREP subfield set to 1
4157  * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
4158  *	the proactive RANN
4159  */
4160 enum ieee80211_root_mode_identifier {
4161 	IEEE80211_ROOTMODE_NO_ROOT = 0,
4162 	IEEE80211_ROOTMODE_ROOT = 1,
4163 	IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
4164 	IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
4165 	IEEE80211_PROACTIVE_RANN = 4,
4166 };
4167 
4168 /*
4169  * IEEE 802.11-2007 7.3.2.9 Country information element
4170  *
4171  * Minimum length is 8 octets, ie len must be evenly
4172  * divisible by 2
4173  */
4174 
4175 /* Although the spec says 8 I'm seeing 6 in practice */
4176 #define IEEE80211_COUNTRY_IE_MIN_LEN	6
4177 
4178 /* The Country String field of the element shall be 3 octets in length */
4179 #define IEEE80211_COUNTRY_STRING_LEN	3
4180 
4181 /*
4182  * For regulatory extension stuff see IEEE 802.11-2007
4183  * Annex I (page 1141) and Annex J (page 1147). Also
4184  * review 7.3.2.9.
4185  *
4186  * When dot11RegulatoryClassesRequired is true and the
4187  * first_channel/reg_extension_id is >= 201 then the IE
4188  * compromises of the 'ext' struct represented below:
4189  *
4190  *  - Regulatory extension ID - when generating IE this just needs
4191  *    to be monotonically increasing for each triplet passed in
4192  *    the IE
4193  *  - Regulatory class - index into set of rules
4194  *  - Coverage class - index into air propagation time (Table 7-27),
4195  *    in microseconds, you can compute the air propagation time from
4196  *    the index by multiplying by 3, so index 10 yields a propagation
4197  *    of 10 us. Valid values are 0-31, values 32-255 are not defined
4198  *    yet. A value of 0 inicates air propagation of <= 1 us.
4199  *
4200  *  See also Table I.2 for Emission limit sets and table
4201  *  I.3 for Behavior limit sets. Table J.1 indicates how to map
4202  *  a reg_class to an emission limit set and behavior limit set.
4203  */
4204 #define IEEE80211_COUNTRY_EXTENSION_ID 201
4205 
4206 /*
4207  *  Channels numbers in the IE must be monotonically increasing
4208  *  if dot11RegulatoryClassesRequired is not true.
4209  *
4210  *  If dot11RegulatoryClassesRequired is true consecutive
4211  *  subband triplets following a regulatory triplet shall
4212  *  have monotonically increasing first_channel number fields.
4213  *
4214  *  Channel numbers shall not overlap.
4215  *
4216  *  Note that max_power is signed.
4217  */
4218 struct ieee80211_country_ie_triplet {
4219 	union {
4220 		struct {
4221 			u8 first_channel;
4222 			u8 num_channels;
4223 			s8 max_power;
4224 		} __packed chans;
4225 		struct {
4226 			u8 reg_extension_id;
4227 			u8 reg_class;
4228 			u8 coverage_class;
4229 		} __packed ext;
4230 	};
4231 } __packed;
4232 
4233 enum ieee80211_timeout_interval_type {
4234 	WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
4235 	WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
4236 	WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
4237 };
4238 
4239 /**
4240  * struct ieee80211_timeout_interval_ie - Timeout Interval element
4241  * @type: type, see &enum ieee80211_timeout_interval_type
4242  * @value: timeout interval value
4243  */
4244 struct ieee80211_timeout_interval_ie {
4245 	u8 type;
4246 	__le32 value;
4247 } __packed;
4248 
4249 /**
4250  * enum ieee80211_idle_options - BSS idle options
4251  * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
4252  *	protected frame to the AP to reset the idle timer at the AP for
4253  *	the station.
4254  */
4255 enum ieee80211_idle_options {
4256 	WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
4257 };
4258 
4259 /**
4260  * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct
4261  *
4262  * This structure refers to "BSS Max idle period element"
4263  *
4264  * @max_idle_period: indicates the time period during which a station can
4265  *	refrain from transmitting frames to its associated AP without being
4266  *	disassociated. In units of 1000 TUs.
4267  * @idle_options: indicates the options associated with the BSS idle capability
4268  *	as specified in &enum ieee80211_idle_options.
4269  */
4270 struct ieee80211_bss_max_idle_period_ie {
4271 	__le16 max_idle_period;
4272 	u8 idle_options;
4273 } __packed;
4274 
4275 /* BACK action code */
4276 enum ieee80211_back_actioncode {
4277 	WLAN_ACTION_ADDBA_REQ = 0,
4278 	WLAN_ACTION_ADDBA_RESP = 1,
4279 	WLAN_ACTION_DELBA = 2,
4280 };
4281 
4282 /* BACK (block-ack) parties */
4283 enum ieee80211_back_parties {
4284 	WLAN_BACK_RECIPIENT = 0,
4285 	WLAN_BACK_INITIATOR = 1,
4286 };
4287 
4288 /* SA Query action */
4289 enum ieee80211_sa_query_action {
4290 	WLAN_ACTION_SA_QUERY_REQUEST = 0,
4291 	WLAN_ACTION_SA_QUERY_RESPONSE = 1,
4292 };
4293 
4294 /**
4295  * struct ieee80211_bssid_index - multiple BSSID index element structure
4296  *
4297  * This structure refers to "Multiple BSSID-index element"
4298  *
4299  * @bssid_index: BSSID index
4300  * @dtim_period: optional, overrides transmitted BSS dtim period
4301  * @dtim_count: optional, overrides transmitted BSS dtim count
4302  */
4303 struct ieee80211_bssid_index {
4304 	u8 bssid_index;
4305 	u8 dtim_period;
4306 	u8 dtim_count;
4307 };
4308 
4309 /**
4310  * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration
4311  *	element structure
4312  *
4313  * This structure refers to "Multiple BSSID Configuration element"
4314  *
4315  * @bssid_count: total number of active BSSIDs in the set
4316  * @profile_periodicity: the least number of beacon frames need to be received
4317  *	in order to discover all the nontransmitted BSSIDs in the set.
4318  */
4319 struct ieee80211_multiple_bssid_configuration {
4320 	u8 bssid_count;
4321 	u8 profile_periodicity;
4322 };
4323 
4324 #define SUITE(oui, id)	(((oui) << 8) | (id))
4325 
4326 /* cipher suite selectors */
4327 #define WLAN_CIPHER_SUITE_USE_GROUP	SUITE(0x000FAC, 0)
4328 #define WLAN_CIPHER_SUITE_WEP40		SUITE(0x000FAC, 1)
4329 #define WLAN_CIPHER_SUITE_TKIP		SUITE(0x000FAC, 2)
4330 /* reserved: 				SUITE(0x000FAC, 3) */
4331 #define WLAN_CIPHER_SUITE_CCMP		SUITE(0x000FAC, 4)
4332 #define WLAN_CIPHER_SUITE_WEP104	SUITE(0x000FAC, 5)
4333 #define WLAN_CIPHER_SUITE_AES_CMAC	SUITE(0x000FAC, 6)
4334 #define WLAN_CIPHER_SUITE_GCMP		SUITE(0x000FAC, 8)
4335 #define WLAN_CIPHER_SUITE_GCMP_256	SUITE(0x000FAC, 9)
4336 #define WLAN_CIPHER_SUITE_CCMP_256	SUITE(0x000FAC, 10)
4337 #define WLAN_CIPHER_SUITE_BIP_GMAC_128	SUITE(0x000FAC, 11)
4338 #define WLAN_CIPHER_SUITE_BIP_GMAC_256	SUITE(0x000FAC, 12)
4339 #define WLAN_CIPHER_SUITE_BIP_CMAC_256	SUITE(0x000FAC, 13)
4340 
4341 #define WLAN_CIPHER_SUITE_SMS4		SUITE(0x001472, 1)
4342 
4343 /* AKM suite selectors */
4344 #define WLAN_AKM_SUITE_8021X			SUITE(0x000FAC, 1)
4345 #define WLAN_AKM_SUITE_PSK			SUITE(0x000FAC, 2)
4346 #define WLAN_AKM_SUITE_FT_8021X			SUITE(0x000FAC, 3)
4347 #define WLAN_AKM_SUITE_FT_PSK			SUITE(0x000FAC, 4)
4348 #define WLAN_AKM_SUITE_8021X_SHA256		SUITE(0x000FAC, 5)
4349 #define WLAN_AKM_SUITE_PSK_SHA256		SUITE(0x000FAC, 6)
4350 #define WLAN_AKM_SUITE_TDLS			SUITE(0x000FAC, 7)
4351 #define WLAN_AKM_SUITE_SAE			SUITE(0x000FAC, 8)
4352 #define WLAN_AKM_SUITE_FT_OVER_SAE		SUITE(0x000FAC, 9)
4353 #define WLAN_AKM_SUITE_AP_PEER_KEY		SUITE(0x000FAC, 10)
4354 #define WLAN_AKM_SUITE_8021X_SUITE_B		SUITE(0x000FAC, 11)
4355 #define WLAN_AKM_SUITE_8021X_SUITE_B_192	SUITE(0x000FAC, 12)
4356 #define WLAN_AKM_SUITE_FT_8021X_SHA384		SUITE(0x000FAC, 13)
4357 #define WLAN_AKM_SUITE_FILS_SHA256		SUITE(0x000FAC, 14)
4358 #define WLAN_AKM_SUITE_FILS_SHA384		SUITE(0x000FAC, 15)
4359 #define WLAN_AKM_SUITE_FT_FILS_SHA256		SUITE(0x000FAC, 16)
4360 #define WLAN_AKM_SUITE_FT_FILS_SHA384		SUITE(0x000FAC, 17)
4361 #define WLAN_AKM_SUITE_OWE			SUITE(0x000FAC, 18)
4362 #define WLAN_AKM_SUITE_FT_PSK_SHA384		SUITE(0x000FAC, 19)
4363 #define WLAN_AKM_SUITE_PSK_SHA384		SUITE(0x000FAC, 20)
4364 
4365 #define WLAN_AKM_SUITE_WFA_DPP			SUITE(WLAN_OUI_WFA, 2)
4366 
4367 #define WLAN_MAX_KEY_LEN		32
4368 
4369 #define WLAN_PMK_NAME_LEN		16
4370 #define WLAN_PMKID_LEN			16
4371 #define WLAN_PMK_LEN_EAP_LEAP		16
4372 #define WLAN_PMK_LEN			32
4373 #define WLAN_PMK_LEN_SUITE_B_192	48
4374 
4375 #define WLAN_OUI_WFA			0x506f9a
4376 #define WLAN_OUI_TYPE_WFA_P2P		9
4377 #define WLAN_OUI_TYPE_WFA_DPP		0x1A
4378 #define WLAN_OUI_MICROSOFT		0x0050f2
4379 #define WLAN_OUI_TYPE_MICROSOFT_WPA	1
4380 #define WLAN_OUI_TYPE_MICROSOFT_WMM	2
4381 #define WLAN_OUI_TYPE_MICROSOFT_WPS	4
4382 #define WLAN_OUI_TYPE_MICROSOFT_TPC	8
4383 
4384 /*
4385  * WMM/802.11e Tspec Element
4386  */
4387 #define IEEE80211_WMM_IE_TSPEC_TID_MASK		0x0F
4388 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT	1
4389 
4390 enum ieee80211_tspec_status_code {
4391 	IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
4392 	IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
4393 };
4394 
4395 struct ieee80211_tspec_ie {
4396 	u8 element_id;
4397 	u8 len;
4398 	u8 oui[3];
4399 	u8 oui_type;
4400 	u8 oui_subtype;
4401 	u8 version;
4402 	__le16 tsinfo;
4403 	u8 tsinfo_resvd;
4404 	__le16 nominal_msdu;
4405 	__le16 max_msdu;
4406 	__le32 min_service_int;
4407 	__le32 max_service_int;
4408 	__le32 inactivity_int;
4409 	__le32 suspension_int;
4410 	__le32 service_start_time;
4411 	__le32 min_data_rate;
4412 	__le32 mean_data_rate;
4413 	__le32 peak_data_rate;
4414 	__le32 max_burst_size;
4415 	__le32 delay_bound;
4416 	__le32 min_phy_rate;
4417 	__le16 sba;
4418 	__le16 medium_time;
4419 } __packed;
4420 
4421 struct ieee80211_he_6ghz_capa {
4422 	/* uses IEEE80211_HE_6GHZ_CAP_* below */
4423 	__le16 capa;
4424 } __packed;
4425 
4426 /* HE 6 GHz band capabilities */
4427 /* uses enum ieee80211_min_mpdu_spacing values */
4428 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START	0x0007
4429 /* uses enum ieee80211_vht_max_ampdu_length_exp values */
4430 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP	0x0038
4431 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */
4432 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN	0x00c0
4433 /* WLAN_HT_CAP_SM_PS_* values */
4434 #define IEEE80211_HE_6GHZ_CAP_SM_PS		0x0600
4435 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER	0x0800
4436 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS	0x1000
4437 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS	0x2000
4438 
4439 /**
4440  * ieee80211_get_qos_ctl - get pointer to qos control bytes
4441  * @hdr: the frame
4442  * Return: a pointer to the QoS control field in the frame header
4443  *
4444  * The qos ctrl bytes come after the frame_control, duration, seq_num
4445  * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose
4446  * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr.
4447  */
ieee80211_get_qos_ctl(struct ieee80211_hdr * hdr)4448 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
4449 {
4450 	union {
4451 		struct ieee80211_qos_hdr	addr3;
4452 		struct ieee80211_qos_hdr_4addr	addr4;
4453 	} *qos;
4454 
4455 	qos = (void *)hdr;
4456 	if (ieee80211_has_a4(qos->addr3.frame_control))
4457 		return (u8 *)&qos->addr4.qos_ctrl;
4458 	else
4459 		return (u8 *)&qos->addr3.qos_ctrl;
4460 }
4461 
4462 /**
4463  * ieee80211_get_tid - get qos TID
4464  * @hdr: the frame
4465  * Return: the TID from the QoS control field
4466  */
ieee80211_get_tid(struct ieee80211_hdr * hdr)4467 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
4468 {
4469 	u8 *qc = ieee80211_get_qos_ctl(hdr);
4470 
4471 	return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
4472 }
4473 
4474 /**
4475  * ieee80211_get_SA - get pointer to SA
4476  * @hdr: the frame
4477  * Return: a pointer to the source address (SA)
4478  *
4479  * Given an 802.11 frame, this function returns the offset
4480  * to the source address (SA). It does not verify that the
4481  * header is long enough to contain the address, and the
4482  * header must be long enough to contain the frame control
4483  * field.
4484  */
ieee80211_get_SA(struct ieee80211_hdr * hdr)4485 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
4486 {
4487 	if (ieee80211_has_a4(hdr->frame_control))
4488 		return hdr->addr4;
4489 	if (ieee80211_has_fromds(hdr->frame_control))
4490 		return hdr->addr3;
4491 	return hdr->addr2;
4492 }
4493 
4494 /**
4495  * ieee80211_get_DA - get pointer to DA
4496  * @hdr: the frame
4497  * Return: a pointer to the destination address (DA)
4498  *
4499  * Given an 802.11 frame, this function returns the offset
4500  * to the destination address (DA). It does not verify that
4501  * the header is long enough to contain the address, and the
4502  * header must be long enough to contain the frame control
4503  * field.
4504  */
ieee80211_get_DA(struct ieee80211_hdr * hdr)4505 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
4506 {
4507 	if (ieee80211_has_tods(hdr->frame_control))
4508 		return hdr->addr3;
4509 	else
4510 		return hdr->addr1;
4511 }
4512 
4513 /**
4514  * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
4515  * @skb: the skb to check, starting with the 802.11 header
4516  * Return: whether or not the MMPDU is bufferable
4517  */
ieee80211_is_bufferable_mmpdu(struct sk_buff * skb)4518 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb)
4519 {
4520 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4521 	__le16 fc = mgmt->frame_control;
4522 
4523 	/*
4524 	 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU;
4525 	 * note that this ignores the IBSS special case.
4526 	 */
4527 	if (!ieee80211_is_mgmt(fc))
4528 		return false;
4529 
4530 	if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc))
4531 		return true;
4532 
4533 	if (!ieee80211_is_action(fc))
4534 		return false;
4535 
4536 	if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code))
4537 		return true;
4538 
4539 	/* action frame - additionally check for non-bufferable FTM */
4540 
4541 	if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
4542 	    mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
4543 		return true;
4544 
4545 	if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST ||
4546 	    mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE)
4547 		return false;
4548 
4549 	return true;
4550 }
4551 
4552 /**
4553  * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
4554  * @hdr: the frame (buffer must include at least the first octet of payload)
4555  * Return: whether or not the frame is a robust management frame
4556  */
_ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr * hdr)4557 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
4558 {
4559 	if (ieee80211_is_disassoc(hdr->frame_control) ||
4560 	    ieee80211_is_deauth(hdr->frame_control))
4561 		return true;
4562 
4563 	if (ieee80211_is_action(hdr->frame_control)) {
4564 		u8 *category;
4565 
4566 		/*
4567 		 * Action frames, excluding Public Action frames, are Robust
4568 		 * Management Frames. However, if we are looking at a Protected
4569 		 * frame, skip the check since the data may be encrypted and
4570 		 * the frame has already been found to be a Robust Management
4571 		 * Frame (by the other end).
4572 		 */
4573 		if (ieee80211_has_protected(hdr->frame_control))
4574 			return true;
4575 		category = ((u8 *) hdr) + 24;
4576 		return *category != WLAN_CATEGORY_PUBLIC &&
4577 			*category != WLAN_CATEGORY_HT &&
4578 			*category != WLAN_CATEGORY_WNM_UNPROTECTED &&
4579 			*category != WLAN_CATEGORY_SELF_PROTECTED &&
4580 			*category != WLAN_CATEGORY_UNPROT_DMG &&
4581 			*category != WLAN_CATEGORY_VHT &&
4582 			*category != WLAN_CATEGORY_S1G &&
4583 			*category != WLAN_CATEGORY_VENDOR_SPECIFIC;
4584 	}
4585 
4586 	return false;
4587 }
4588 
4589 /**
4590  * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
4591  * @skb: the skb containing the frame, length will be checked
4592  * Return: whether or not the frame is a robust management frame
4593  */
ieee80211_is_robust_mgmt_frame(struct sk_buff * skb)4594 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
4595 {
4596 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4597 		return false;
4598 	return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
4599 }
4600 
4601 /**
4602  * ieee80211_is_public_action - check if frame is a public action frame
4603  * @hdr: the frame
4604  * @len: length of the frame
4605  * Return: whether or not the frame is a public action frame
4606  */
ieee80211_is_public_action(struct ieee80211_hdr * hdr,size_t len)4607 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
4608 					      size_t len)
4609 {
4610 	struct ieee80211_mgmt *mgmt = (void *)hdr;
4611 
4612 	if (len < IEEE80211_MIN_ACTION_SIZE)
4613 		return false;
4614 	if (!ieee80211_is_action(hdr->frame_control))
4615 		return false;
4616 	return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
4617 }
4618 
4619 /**
4620  * ieee80211_is_protected_dual_of_public_action - check if skb contains a
4621  * protected dual of public action management frame
4622  * @skb: the skb containing the frame, length will be checked
4623  *
4624  * Return: true if the skb contains a protected dual of public action
4625  * management frame, false otherwise.
4626  */
4627 static inline bool
ieee80211_is_protected_dual_of_public_action(struct sk_buff * skb)4628 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb)
4629 {
4630 	u8 action;
4631 
4632 	if (!ieee80211_is_public_action((void *)skb->data, skb->len) ||
4633 	    skb->len < IEEE80211_MIN_ACTION_SIZE + 1)
4634 		return false;
4635 
4636 	action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE);
4637 
4638 	return action != WLAN_PUB_ACTION_20_40_BSS_COEX &&
4639 		action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN &&
4640 		action != WLAN_PUB_ACTION_MSMT_PILOT &&
4641 		action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES &&
4642 		action != WLAN_PUB_ACTION_LOC_TRACK_NOTI &&
4643 		action != WLAN_PUB_ACTION_FTM_REQUEST &&
4644 		action != WLAN_PUB_ACTION_FTM_RESPONSE &&
4645 		action != WLAN_PUB_ACTION_FILS_DISCOVERY &&
4646 		action != WLAN_PUB_ACTION_VENDOR_SPECIFIC;
4647 }
4648 
4649 /**
4650  * _ieee80211_is_group_privacy_action - check if frame is a group addressed
4651  *	privacy action frame
4652  * @hdr: the frame
4653  * Return: whether or not the frame is a group addressed privacy action frame
4654  */
_ieee80211_is_group_privacy_action(struct ieee80211_hdr * hdr)4655 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
4656 {
4657 	struct ieee80211_mgmt *mgmt = (void *)hdr;
4658 
4659 	if (!ieee80211_is_action(hdr->frame_control) ||
4660 	    !is_multicast_ether_addr(hdr->addr1))
4661 		return false;
4662 
4663 	return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
4664 	       mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
4665 }
4666 
4667 /**
4668  * ieee80211_is_group_privacy_action - check if frame is a group addressed
4669  *	privacy action frame
4670  * @skb: the skb containing the frame, length will be checked
4671  * Return: whether or not the frame is a group addressed privacy action frame
4672  */
ieee80211_is_group_privacy_action(struct sk_buff * skb)4673 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
4674 {
4675 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4676 		return false;
4677 	return _ieee80211_is_group_privacy_action((void *)skb->data);
4678 }
4679 
4680 /**
4681  * ieee80211_tu_to_usec - convert time units (TU) to microseconds
4682  * @tu: the TUs
4683  * Return: the time value converted to microseconds
4684  */
ieee80211_tu_to_usec(unsigned long tu)4685 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
4686 {
4687 	return 1024 * tu;
4688 }
4689 
4690 /**
4691  * ieee80211_check_tim - check if AID bit is set in TIM
4692  * @tim: the TIM IE
4693  * @tim_len: length of the TIM IE
4694  * @aid: the AID to look for
4695  * Return: whether or not traffic is indicated in the TIM for the given AID
4696  */
ieee80211_check_tim(const struct ieee80211_tim_ie * tim,u8 tim_len,u16 aid)4697 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
4698 				       u8 tim_len, u16 aid)
4699 {
4700 	u8 mask;
4701 	u8 index, indexn1, indexn2;
4702 
4703 	if (unlikely(!tim || tim_len < sizeof(*tim)))
4704 		return false;
4705 
4706 	aid &= 0x3fff;
4707 	index = aid / 8;
4708 	mask  = 1 << (aid & 7);
4709 
4710 	indexn1 = tim->bitmap_ctrl & 0xfe;
4711 	indexn2 = tim_len + indexn1 - 4;
4712 
4713 	if (index < indexn1 || index > indexn2)
4714 		return false;
4715 
4716 	index -= indexn1;
4717 
4718 	return !!(tim->virtual_map[index] & mask);
4719 }
4720 
4721 /**
4722  * ieee80211_get_tdls_action - get TDLS action code
4723  * @skb: the skb containing the frame, length will not be checked
4724  * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action
4725  *	frame
4726  *
4727  * This function assumes the frame is a data frame, and that the network header
4728  * is in the correct place.
4729  */
ieee80211_get_tdls_action(struct sk_buff * skb)4730 static inline int ieee80211_get_tdls_action(struct sk_buff *skb)
4731 {
4732 	if (!skb_is_nonlinear(skb) &&
4733 	    skb->len > (skb_network_offset(skb) + 2)) {
4734 		/* Point to where the indication of TDLS should start */
4735 		const u8 *tdls_data = skb_network_header(skb) - 2;
4736 
4737 		if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
4738 		    tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
4739 		    tdls_data[3] == WLAN_CATEGORY_TDLS)
4740 			return tdls_data[4];
4741 	}
4742 
4743 	return -1;
4744 }
4745 
4746 /* convert time units */
4747 #define TU_TO_JIFFIES(x)	(usecs_to_jiffies((x) * 1024))
4748 #define TU_TO_EXP_TIME(x)	(jiffies + TU_TO_JIFFIES(x))
4749 
4750 /* convert frequencies */
4751 #define MHZ_TO_KHZ(freq) ((freq) * 1000)
4752 #define KHZ_TO_MHZ(freq) ((freq) / 1000)
4753 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000
4754 #define KHZ_F "%d.%03d"
4755 
4756 /* convert powers */
4757 #define DBI_TO_MBI(gain) ((gain) * 100)
4758 #define MBI_TO_DBI(gain) ((gain) / 100)
4759 #define DBM_TO_MBM(gain) ((gain) * 100)
4760 #define MBM_TO_DBM(gain) ((gain) / 100)
4761 
4762 /**
4763  * ieee80211_action_contains_tpc - checks if the frame contains TPC element
4764  * @skb: the skb containing the frame, length will be checked
4765  * Return: %true if the frame contains a TPC element, %false otherwise
4766  *
4767  * This function checks if it's either TPC report action frame or Link
4768  * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
4769  * and 8.5.7.5 accordingly.
4770  */
ieee80211_action_contains_tpc(struct sk_buff * skb)4771 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
4772 {
4773 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4774 
4775 	if (!ieee80211_is_action(mgmt->frame_control))
4776 		return false;
4777 
4778 	if (skb->len < IEEE80211_MIN_ACTION_SIZE +
4779 		       sizeof(mgmt->u.action.u.tpc_report))
4780 		return false;
4781 
4782 	/*
4783 	 * TPC report - check that:
4784 	 * category = 0 (Spectrum Management) or 5 (Radio Measurement)
4785 	 * spectrum management action = 3 (TPC/Link Measurement report)
4786 	 * TPC report EID = 35
4787 	 * TPC report element length = 2
4788 	 *
4789 	 * The spectrum management's tpc_report struct is used here both for
4790 	 * parsing tpc_report and radio measurement's link measurement report
4791 	 * frame, since the relevant part is identical in both frames.
4792 	 */
4793 	if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
4794 	    mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
4795 		return false;
4796 
4797 	/* both spectrum mgmt and link measurement have same action code */
4798 	if (mgmt->u.action.u.tpc_report.action_code !=
4799 	    WLAN_ACTION_SPCT_TPC_RPRT)
4800 		return false;
4801 
4802 	if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
4803 	    mgmt->u.action.u.tpc_report.tpc_elem_length !=
4804 	    sizeof(struct ieee80211_tpc_report_ie))
4805 		return false;
4806 
4807 	return true;
4808 }
4809 
4810 /**
4811  * ieee80211_is_timing_measurement - check if frame is timing measurement response
4812  * @skb: the SKB to check
4813  * Return: whether or not the frame is a valid timing measurement response
4814  */
ieee80211_is_timing_measurement(struct sk_buff * skb)4815 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb)
4816 {
4817 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4818 
4819 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4820 		return false;
4821 
4822 	if (!ieee80211_is_action(mgmt->frame_control))
4823 		return false;
4824 
4825 	if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED &&
4826 	    mgmt->u.action.u.wnm_timing_msr.action_code ==
4827 		WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE &&
4828 	    skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr))
4829 		return true;
4830 
4831 	return false;
4832 }
4833 
4834 /**
4835  * ieee80211_is_ftm - check if frame is FTM response
4836  * @skb: the SKB to check
4837  * Return: whether or not the frame is a valid FTM response action frame
4838  */
ieee80211_is_ftm(struct sk_buff * skb)4839 static inline bool ieee80211_is_ftm(struct sk_buff *skb)
4840 {
4841 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4842 
4843 	if (!ieee80211_is_public_action((void *)mgmt, skb->len))
4844 		return false;
4845 
4846 	if (mgmt->u.action.u.ftm.action_code ==
4847 		WLAN_PUB_ACTION_FTM_RESPONSE &&
4848 	    skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm))
4849 		return true;
4850 
4851 	return false;
4852 }
4853 
4854 /**
4855  * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon
4856  * @fc: frame control bytes in little-endian byteorder
4857  * @variable: pointer to the beacon frame elements
4858  * @variable_len: length of the frame elements
4859  * Return: whether or not the frame is an S1G short beacon. As per
4860  *	IEEE80211-2024 11.1.3.10.1, The S1G beacon compatibility element shall
4861  *	always be present as the first element in beacon frames generated at a
4862  *	TBTT (Target Beacon Transmission Time), so any frame not containing
4863  *	this element must have been generated at a TSBTT (Target Short Beacon
4864  *	Transmission Time) that is not a TBTT. Additionally, short beacons are
4865  *	prohibited from containing the S1G beacon compatibility element as per
4866  *	IEEE80211-2024 9.3.4.3 Table 9-76, so if we have an S1G beacon with
4867  *	either no elements or the first element is not the beacon compatibility
4868  *	element, we have a short beacon.
4869  */
ieee80211_is_s1g_short_beacon(__le16 fc,const u8 * variable,size_t variable_len)4870 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc, const u8 *variable,
4871 						 size_t variable_len)
4872 {
4873 	if (!ieee80211_is_s1g_beacon(fc))
4874 		return false;
4875 
4876 	/*
4877 	 * If the frame does not contain at least 1 element (this is perfectly
4878 	 * valid in a short beacon) and is an S1G beacon, we have a short
4879 	 * beacon.
4880 	 */
4881 	if (variable_len < 2)
4882 		return true;
4883 
4884 	return variable[0] != WLAN_EID_S1G_BCN_COMPAT;
4885 }
4886 
4887 struct element {
4888 	u8 id;
4889 	u8 datalen;
4890 	u8 data[];
4891 } __packed;
4892 
4893 /* element iteration helpers */
4894 #define for_each_element(_elem, _data, _datalen)			\
4895 	for (_elem = (const struct element *)(_data);			\
4896 	     (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >=	\
4897 		(int)sizeof(*_elem) &&					\
4898 	     (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >=	\
4899 		(int)sizeof(*_elem) + _elem->datalen;			\
4900 	     _elem = (const struct element *)(_elem->data + _elem->datalen))
4901 
4902 #define for_each_element_id(element, _id, data, datalen)		\
4903 	for_each_element(element, data, datalen)			\
4904 		if (element->id == (_id))
4905 
4906 #define for_each_element_extid(element, extid, _data, _datalen)		\
4907 	for_each_element(element, _data, _datalen)			\
4908 		if (element->id == WLAN_EID_EXTENSION &&		\
4909 		    element->datalen > 0 &&				\
4910 		    element->data[0] == (extid))
4911 
4912 #define for_each_subelement(sub, element)				\
4913 	for_each_element(sub, (element)->data, (element)->datalen)
4914 
4915 #define for_each_subelement_id(sub, id, element)			\
4916 	for_each_element_id(sub, id, (element)->data, (element)->datalen)
4917 
4918 #define for_each_subelement_extid(sub, extid, element)			\
4919 	for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
4920 
4921 /**
4922  * for_each_element_completed - determine if element parsing consumed all data
4923  * @element: element pointer after for_each_element() or friends
4924  * @data: same data pointer as passed to for_each_element() or friends
4925  * @datalen: same data length as passed to for_each_element() or friends
4926  * Return: %true if all elements were iterated, %false otherwise; see notes
4927  *
4928  * This function returns %true if all the data was parsed or considered
4929  * while walking the elements. Only use this if your for_each_element()
4930  * loop cannot be broken out of, otherwise it always returns %false.
4931  *
4932  * If some data was malformed, this returns %false since the last parsed
4933  * element will not fill the whole remaining data.
4934  */
for_each_element_completed(const struct element * element,const void * data,size_t datalen)4935 static inline bool for_each_element_completed(const struct element *element,
4936 					      const void *data, size_t datalen)
4937 {
4938 	return (const u8 *)element == (const u8 *)data + datalen;
4939 }
4940 
4941 /*
4942  * RSNX Capabilities:
4943  * bits 0-3: Field length (n-1)
4944  */
4945 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4)
4946 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5)
4947 
4948 /*
4949  * reduced neighbor report, based on Draft P802.11ax_D6.1,
4950  * section 9.4.2.170 and accepted contributions.
4951  */
4952 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE				0x03
4953 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED			0x04
4954 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC			0x08
4955 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT			0xF0
4956 #define IEEE80211_TBTT_INFO_TYPE_TBTT				0
4957 #define IEEE80211_TBTT_INFO_TYPE_MLD				1
4958 
4959 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED		0x01
4960 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID			0x02
4961 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID			0x04
4962 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID		0x08
4963 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS			0x10
4964 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE			0x20
4965 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP			0x40
4966 
4967 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT			127
4968 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED			-128
4969 
4970 struct ieee80211_neighbor_ap_info {
4971 	u8 tbtt_info_hdr;
4972 	u8 tbtt_info_len;
4973 	u8 op_class;
4974 	u8 channel;
4975 } __packed;
4976 
4977 enum ieee80211_range_params_max_total_ltf {
4978 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0,
4979 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8,
4980 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16,
4981 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED,
4982 };
4983 
4984 /*
4985  * reduced neighbor report, based on Draft P802.11be_D3.0,
4986  * section 9.4.2.170.2.
4987  */
4988 struct ieee80211_rnr_mld_params {
4989 	u8 mld_id;
4990 	__le16 params;
4991 } __packed;
4992 
4993 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID			0x000F
4994 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT		0x0FF0
4995 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED		0x1000
4996 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK			0x2000
4997 
4998 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */
4999 struct ieee80211_tbtt_info_7_8_9 {
5000 	u8 tbtt_offset;
5001 	u8 bssid[ETH_ALEN];
5002 
5003 	/* The following element is optional, structure may not grow */
5004 	u8 bss_params;
5005 	s8 psd_20;
5006 } __packed;
5007 
5008 /* Format of the TBTT information element if it has >= 11 bytes */
5009 struct ieee80211_tbtt_info_ge_11 {
5010 	u8 tbtt_offset;
5011 	u8 bssid[ETH_ALEN];
5012 	__le32 short_ssid;
5013 
5014 	/* The following elements are optional, structure may grow */
5015 	u8 bss_params;
5016 	s8 psd_20;
5017 	struct ieee80211_rnr_mld_params mld_params;
5018 } __packed;
5019 
5020 /* multi-link device */
5021 #define IEEE80211_MLD_MAX_NUM_LINKS	15
5022 
5023 #define IEEE80211_ML_CONTROL_TYPE			0x0007
5024 #define IEEE80211_ML_CONTROL_TYPE_BASIC			0
5025 #define IEEE80211_ML_CONTROL_TYPE_PREQ			1
5026 #define IEEE80211_ML_CONTROL_TYPE_RECONF		2
5027 #define IEEE80211_ML_CONTROL_TYPE_TDLS			3
5028 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS		4
5029 #define IEEE80211_ML_CONTROL_PRESENCE_MASK		0xfff0
5030 
5031 struct ieee80211_multi_link_elem {
5032 	__le16 control;
5033 	u8 variable[];
5034 } __packed;
5035 
5036 #define IEEE80211_MLC_BASIC_PRES_LINK_ID		0x0010
5037 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT	0x0020
5038 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY		0x0040
5039 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA		0x0080
5040 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP		0x0100
5041 #define IEEE80211_MLC_BASIC_PRES_MLD_ID			0x0200
5042 
5043 #define IEEE80211_MED_SYNC_DELAY_DURATION		0x00ff
5044 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH	0x0f00
5045 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS	0xf000
5046 
5047 /*
5048  * Described in P802.11be_D3.0
5049  * dot11MSDTimerDuration should default to 5484 (i.e. 171.375)
5050  * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0)
5051  * dot11MSDTXOPMAX defaults to 1
5052  */
5053 #define IEEE80211_MED_SYNC_DELAY_DEFAULT		0x10ac
5054 
5055 #define IEEE80211_EML_CAP_EMLSR_SUPP			0x0001
5056 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY		0x000e
5057 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US		0
5058 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US		1
5059 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US		2
5060 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US		3
5061 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US		4
5062 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY	0x0070
5063 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US		0
5064 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US		1
5065 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US		2
5066 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US		3
5067 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US		4
5068 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US		5
5069 #define IEEE80211_EML_CAP_EMLMR_SUPPORT			0x0080
5070 #define IEEE80211_EML_CAP_EMLMR_DELAY			0x0700
5071 #define  IEEE80211_EML_CAP_EMLMR_DELAY_0US			0
5072 #define  IEEE80211_EML_CAP_EMLMR_DELAY_32US			1
5073 #define  IEEE80211_EML_CAP_EMLMR_DELAY_64US			2
5074 #define  IEEE80211_EML_CAP_EMLMR_DELAY_128US			3
5075 #define  IEEE80211_EML_CAP_EMLMR_DELAY_256US			4
5076 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT		0x7800
5077 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0			0
5078 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US		1
5079 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US		2
5080 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US		3
5081 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU		4
5082 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU		5
5083 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU		6
5084 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU		7
5085 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU		8
5086 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU		9
5087 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU		10
5088 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU		11
5089 
5090 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS		0x000f
5091 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT		0x0010
5092 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP	0x0060
5093 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP	0
5094 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME	1
5095 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED	2
5096 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF	3
5097 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND		0x0f80
5098 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT		0x1000
5099 
5100 struct ieee80211_mle_basic_common_info {
5101 	u8 len;
5102 	u8 mld_mac_addr[ETH_ALEN];
5103 	u8 variable[];
5104 } __packed;
5105 
5106 #define IEEE80211_MLC_PREQ_PRES_MLD_ID			0x0010
5107 
5108 struct ieee80211_mle_preq_common_info {
5109 	u8 len;
5110 	u8 variable[];
5111 } __packed;
5112 
5113 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR		0x0010
5114 
5115 /* no fixed fields in RECONF */
5116 
5117 struct ieee80211_mle_tdls_common_info {
5118 	u8 len;
5119 	u8 ap_mld_mac_addr[ETH_ALEN];
5120 } __packed;
5121 
5122 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR	0x0010
5123 
5124 /* no fixed fields in PRIO_ACCESS */
5125 
5126 /**
5127  * ieee80211_mle_common_size - check multi-link element common size
5128  * @data: multi-link element, must already be checked for size using
5129  *	ieee80211_mle_size_ok()
5130  * Return: the size of the multi-link element's "common" subfield
5131  */
ieee80211_mle_common_size(const u8 * data)5132 static inline u8 ieee80211_mle_common_size(const u8 *data)
5133 {
5134 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5135 	u16 control = le16_to_cpu(mle->control);
5136 
5137 	switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5138 	case IEEE80211_ML_CONTROL_TYPE_BASIC:
5139 	case IEEE80211_ML_CONTROL_TYPE_PREQ:
5140 	case IEEE80211_ML_CONTROL_TYPE_TDLS:
5141 	case IEEE80211_ML_CONTROL_TYPE_RECONF:
5142 	case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5143 		/*
5144 		 * The length is the first octet pointed by mle->variable so no
5145 		 * need to add anything
5146 		 */
5147 		break;
5148 	default:
5149 		WARN_ON(1);
5150 		return 0;
5151 	}
5152 
5153 	return sizeof(*mle) + mle->variable[0];
5154 }
5155 
5156 /**
5157  * ieee80211_mle_get_link_id - returns the link ID
5158  * @data: the basic multi link element
5159  * Return: the link ID, or -1 if not present
5160  *
5161  * The element is assumed to be of the correct type (BASIC) and big enough,
5162  * this must be checked using ieee80211_mle_type_ok().
5163  */
ieee80211_mle_get_link_id(const u8 * data)5164 static inline int ieee80211_mle_get_link_id(const u8 *data)
5165 {
5166 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5167 	u16 control = le16_to_cpu(mle->control);
5168 	const u8 *common = mle->variable;
5169 
5170 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5171 	common += sizeof(struct ieee80211_mle_basic_common_info);
5172 
5173 	if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID))
5174 		return -1;
5175 
5176 	return *common;
5177 }
5178 
5179 /**
5180  * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count
5181  * @data: pointer to the basic multi link element
5182  * Return: the BSS Parameter Change Count field value, or -1 if not present
5183  *
5184  * The element is assumed to be of the correct type (BASIC) and big enough,
5185  * this must be checked using ieee80211_mle_type_ok().
5186  */
5187 static inline int
ieee80211_mle_get_bss_param_ch_cnt(const u8 * data)5188 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data)
5189 {
5190 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5191 	u16 control = le16_to_cpu(mle->control);
5192 	const u8 *common = mle->variable;
5193 
5194 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5195 	common += sizeof(struct ieee80211_mle_basic_common_info);
5196 
5197 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))
5198 		return -1;
5199 
5200 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5201 		common += 1;
5202 
5203 	return *common;
5204 }
5205 
5206 /**
5207  * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay
5208  * @data: pointer to the multi-link element
5209  * Return: the medium synchronization delay field value from the multi-link
5210  *	element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT)
5211  *	if not present
5212  *
5213  * The element is assumed to be of the correct type (BASIC) and big enough,
5214  * this must be checked using ieee80211_mle_type_ok().
5215  */
ieee80211_mle_get_eml_med_sync_delay(const u8 * data)5216 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data)
5217 {
5218 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5219 	u16 control = le16_to_cpu(mle->control);
5220 	const u8 *common = mle->variable;
5221 
5222 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5223 	common += sizeof(struct ieee80211_mle_basic_common_info);
5224 
5225 	if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
5226 		return IEEE80211_MED_SYNC_DELAY_DEFAULT;
5227 
5228 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5229 		common += 1;
5230 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5231 		common += 1;
5232 
5233 	return get_unaligned_le16(common);
5234 }
5235 
5236 /**
5237  * ieee80211_mle_get_eml_cap - returns the EML capability
5238  * @data: pointer to the multi-link element
5239  * Return: the EML capability field value from the multi-link element,
5240  *	or 0 if not present
5241  *
5242  * The element is assumed to be of the correct type (BASIC) and big enough,
5243  * this must be checked using ieee80211_mle_type_ok().
5244  */
ieee80211_mle_get_eml_cap(const u8 * data)5245 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data)
5246 {
5247 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5248 	u16 control = le16_to_cpu(mle->control);
5249 	const u8 *common = mle->variable;
5250 
5251 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
5252 	common += sizeof(struct ieee80211_mle_basic_common_info);
5253 
5254 	if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA))
5255 		return 0;
5256 
5257 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5258 		common += 1;
5259 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5260 		common += 1;
5261 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5262 		common += 2;
5263 
5264 	return get_unaligned_le16(common);
5265 }
5266 
5267 /**
5268  * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations.
5269  * @data: pointer to the multi-link element
5270  * Return: the MLD capabilities and operations field value from the multi-link
5271  *	element, or 0 if not present
5272  *
5273  * The element is assumed to be of the correct type (BASIC) and big enough,
5274  * this must be checked using ieee80211_mle_type_ok().
5275  */
ieee80211_mle_get_mld_capa_op(const u8 * data)5276 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data)
5277 {
5278 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5279 	u16 control = le16_to_cpu(mle->control);
5280 	const u8 *common = mle->variable;
5281 
5282 	/*
5283 	 * common points now at the beginning of
5284 	 * ieee80211_mle_basic_common_info
5285 	 */
5286 	common += sizeof(struct ieee80211_mle_basic_common_info);
5287 
5288 	if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
5289 		return 0;
5290 
5291 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5292 		common += 1;
5293 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5294 		common += 1;
5295 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5296 		common += 2;
5297 	if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5298 		common += 2;
5299 
5300 	return get_unaligned_le16(common);
5301 }
5302 
5303 /**
5304  * ieee80211_mle_get_mld_id - returns the MLD ID
5305  * @data: pointer to the multi-link element
5306  * Return: The MLD ID in the given multi-link element, or 0 if not present
5307  *
5308  * The element is assumed to be of the correct type (BASIC) and big enough,
5309  * this must be checked using ieee80211_mle_type_ok().
5310  */
ieee80211_mle_get_mld_id(const u8 * data)5311 static inline u8 ieee80211_mle_get_mld_id(const u8 *data)
5312 {
5313 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5314 	u16 control = le16_to_cpu(mle->control);
5315 	const u8 *common = mle->variable;
5316 
5317 	/*
5318 	 * common points now at the beginning of
5319 	 * ieee80211_mle_basic_common_info
5320 	 */
5321 	common += sizeof(struct ieee80211_mle_basic_common_info);
5322 
5323 	if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID))
5324 		return 0;
5325 
5326 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5327 		common += 1;
5328 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5329 		common += 1;
5330 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5331 		common += 2;
5332 	if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5333 		common += 2;
5334 	if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5335 		common += 2;
5336 
5337 	return *common;
5338 }
5339 
5340 /**
5341  * ieee80211_mle_size_ok - validate multi-link element size
5342  * @data: pointer to the element data
5343  * @len: length of the containing element
5344  * Return: whether or not the multi-link element size is OK
5345  */
ieee80211_mle_size_ok(const u8 * data,size_t len)5346 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len)
5347 {
5348 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5349 	u8 fixed = sizeof(*mle);
5350 	u8 common = 0;
5351 	bool check_common_len = false;
5352 	u16 control;
5353 
5354 	if (!data || len < fixed)
5355 		return false;
5356 
5357 	control = le16_to_cpu(mle->control);
5358 
5359 	switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5360 	case IEEE80211_ML_CONTROL_TYPE_BASIC:
5361 		common += sizeof(struct ieee80211_mle_basic_common_info);
5362 		check_common_len = true;
5363 		if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5364 			common += 1;
5365 		if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5366 			common += 1;
5367 		if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5368 			common += 2;
5369 		if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5370 			common += 2;
5371 		if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5372 			common += 2;
5373 		if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5374 			common += 1;
5375 		break;
5376 	case IEEE80211_ML_CONTROL_TYPE_PREQ:
5377 		common += sizeof(struct ieee80211_mle_preq_common_info);
5378 		if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID)
5379 			common += 1;
5380 		check_common_len = true;
5381 		break;
5382 	case IEEE80211_ML_CONTROL_TYPE_RECONF:
5383 		if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR)
5384 			common += ETH_ALEN;
5385 		break;
5386 	case IEEE80211_ML_CONTROL_TYPE_TDLS:
5387 		common += sizeof(struct ieee80211_mle_tdls_common_info);
5388 		check_common_len = true;
5389 		break;
5390 	case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5391 		common = ETH_ALEN + 1;
5392 		break;
5393 	default:
5394 		/* we don't know this type */
5395 		return true;
5396 	}
5397 
5398 	if (len < fixed + common)
5399 		return false;
5400 
5401 	if (!check_common_len)
5402 		return true;
5403 
5404 	/* if present, common length is the first octet there */
5405 	return mle->variable[0] >= common;
5406 }
5407 
5408 /**
5409  * ieee80211_mle_type_ok - validate multi-link element type and size
5410  * @data: pointer to the element data
5411  * @type: expected type of the element
5412  * @len: length of the containing element
5413  * Return: whether or not the multi-link element type matches and size is OK
5414  */
ieee80211_mle_type_ok(const u8 * data,u8 type,size_t len)5415 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len)
5416 {
5417 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5418 	u16 control;
5419 
5420 	if (!ieee80211_mle_size_ok(data, len))
5421 		return false;
5422 
5423 	control = le16_to_cpu(mle->control);
5424 
5425 	if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type)
5426 		return true;
5427 
5428 	return false;
5429 }
5430 
5431 enum ieee80211_mle_subelems {
5432 	IEEE80211_MLE_SUBELEM_PER_STA_PROFILE		= 0,
5433 	IEEE80211_MLE_SUBELEM_FRAGMENT		        = 254,
5434 };
5435 
5436 #define IEEE80211_MLE_STA_CONTROL_LINK_ID			0x000f
5437 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE		0x0010
5438 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT		0x0020
5439 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT		0x0040
5440 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT		0x0080
5441 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT		0x0100
5442 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT	0x0200
5443 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE		0x0400
5444 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT	0x0800
5445 
5446 struct ieee80211_mle_per_sta_profile {
5447 	__le16 control;
5448 	u8 sta_info_len;
5449 	u8 variable[];
5450 } __packed;
5451 
5452 /**
5453  * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta
5454  *	profile size
5455  * @data: pointer to the sub element data
5456  * @len: length of the containing sub element
5457  * Return: %true if the STA profile is large enough, %false otherwise
5458  */
ieee80211_mle_basic_sta_prof_size_ok(const u8 * data,size_t len)5459 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data,
5460 							size_t len)
5461 {
5462 	const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5463 	u16 control;
5464 	u8 fixed = sizeof(*prof);
5465 	u8 info_len = 1;
5466 
5467 	if (len < fixed)
5468 		return false;
5469 
5470 	control = le16_to_cpu(prof->control);
5471 
5472 	if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5473 		info_len += 6;
5474 	if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5475 		info_len += 2;
5476 	if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5477 		info_len += 8;
5478 	if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5479 		info_len += 2;
5480 	if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5481 	    control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5482 		if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5483 			info_len += 2;
5484 		else
5485 			info_len += 1;
5486 	}
5487 	if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)
5488 		info_len += 1;
5489 
5490 	return prof->sta_info_len >= info_len &&
5491 	       fixed + prof->sta_info_len - 1 <= len;
5492 }
5493 
5494 /**
5495  * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS
5496  *	parameter change count
5497  * @prof: the per-STA profile, having been checked with
5498  *	ieee80211_mle_basic_sta_prof_size_ok() for the correct length
5499  *
5500  * Return: The BSS parameter change count value if present, 0 otherwise.
5501  */
5502 static inline u8
ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile * prof)5503 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof)
5504 {
5505 	u16 control = le16_to_cpu(prof->control);
5506 	const u8 *pos = prof->variable;
5507 
5508 	if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT))
5509 		return 0;
5510 
5511 	if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5512 		pos += 6;
5513 	if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5514 		pos += 2;
5515 	if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5516 		pos += 8;
5517 	if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5518 		pos += 2;
5519 	if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5520 	    control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5521 		if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5522 			pos += 2;
5523 		else
5524 			pos += 1;
5525 	}
5526 
5527 	return *pos;
5528 }
5529 
5530 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID			0x000f
5531 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE		0x0010
5532 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT		0x0020
5533 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT		0x0040
5534 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_UPDATE_TYPE		0x0780
5535 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT	0x0800
5536 
5537 /**
5538  * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link
5539  *	element sta profile size.
5540  * @data: pointer to the sub element data
5541  * @len: length of the containing sub element
5542  * Return: %true if the STA profile is large enough, %false otherwise
5543  */
ieee80211_mle_reconf_sta_prof_size_ok(const u8 * data,size_t len)5544 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data,
5545 							 size_t len)
5546 {
5547 	const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5548 	u16 control;
5549 	u8 fixed = sizeof(*prof);
5550 	u8 info_len = 1;
5551 
5552 	if (len < fixed)
5553 		return false;
5554 
5555 	control = le16_to_cpu(prof->control);
5556 
5557 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
5558 		info_len += ETH_ALEN;
5559 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
5560 		info_len += 2;
5561 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT)
5562 		info_len += 2;
5563 
5564 	return prof->sta_info_len >= info_len &&
5565 	       fixed + prof->sta_info_len - 1 <= len;
5566 }
5567 
ieee80211_tid_to_link_map_size_ok(const u8 * data,size_t len)5568 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len)
5569 {
5570 	const struct ieee80211_ttlm_elem *t2l = (const void *)data;
5571 	u8 control, fixed = sizeof(*t2l), elem_len = 0;
5572 
5573 	if (len < fixed)
5574 		return false;
5575 
5576 	control = t2l->control;
5577 
5578 	if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT)
5579 		elem_len += 2;
5580 	if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)
5581 		elem_len += 3;
5582 
5583 	if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) {
5584 		u8 bm_size;
5585 
5586 		elem_len += 1;
5587 		if (len < fixed + elem_len)
5588 			return false;
5589 
5590 		if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE)
5591 			bm_size = 1;
5592 		else
5593 			bm_size = 2;
5594 
5595 		elem_len += hweight8(t2l->optional[0]) * bm_size;
5596 	}
5597 
5598 	return len >= fixed + elem_len;
5599 }
5600 
5601 #define for_each_mle_subelement(_elem, _data, _len)			\
5602 	if (ieee80211_mle_size_ok(_data, _len))				\
5603 		for_each_element(_elem,					\
5604 				 _data + ieee80211_mle_common_size(_data),\
5605 				 _len - ieee80211_mle_common_size(_data))
5606 
5607 #endif /* LINUX_IEEE80211_H */
5608