• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 static DEFINE_MUTEX(mf_mutex);
78 
num_poisoned_pages_inc(unsigned long pfn)79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 	atomic_long_inc(&num_poisoned_pages);
82 	memblk_nr_poison_inc(pfn);
83 }
84 
num_poisoned_pages_sub(unsigned long pfn,long i)85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 	atomic_long_sub(i, &num_poisoned_pages);
88 	if (pfn != -1UL)
89 		memblk_nr_poison_sub(pfn, i);
90 }
91 
92 /**
93  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94  * @_name: name of the file in the per NUMA sysfs directory.
95  */
96 #define MF_ATTR_RO(_name)					\
97 static ssize_t _name##_show(struct device *dev,			\
98 			    struct device_attribute *attr,	\
99 			    char *buf)				\
100 {								\
101 	struct memory_failure_stats *mf_stats =			\
102 		&NODE_DATA(dev->id)->mf_stats;			\
103 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
104 }								\
105 static DEVICE_ATTR_RO(_name)
106 
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112 
113 static struct attribute *memory_failure_attr[] = {
114 	&dev_attr_total.attr,
115 	&dev_attr_ignored.attr,
116 	&dev_attr_failed.attr,
117 	&dev_attr_delayed.attr,
118 	&dev_attr_recovered.attr,
119 	NULL,
120 };
121 
122 const struct attribute_group memory_failure_attr_group = {
123 	.name = "memory_failure",
124 	.attrs = memory_failure_attr,
125 };
126 
127 static struct ctl_table memory_failure_table[] = {
128 	{
129 		.procname	= "memory_failure_early_kill",
130 		.data		= &sysctl_memory_failure_early_kill,
131 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
132 		.mode		= 0644,
133 		.proc_handler	= proc_dointvec_minmax,
134 		.extra1		= SYSCTL_ZERO,
135 		.extra2		= SYSCTL_ONE,
136 	},
137 	{
138 		.procname	= "memory_failure_recovery",
139 		.data		= &sysctl_memory_failure_recovery,
140 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
141 		.mode		= 0644,
142 		.proc_handler	= proc_dointvec_minmax,
143 		.extra1		= SYSCTL_ZERO,
144 		.extra2		= SYSCTL_ONE,
145 	},
146 	{
147 		.procname	= "enable_soft_offline",
148 		.data		= &sysctl_enable_soft_offline,
149 		.maxlen		= sizeof(sysctl_enable_soft_offline),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 		.extra2		= SYSCTL_ONE,
154 	}
155 };
156 
157 /*
158  * Return values:
159  *   1:   the page is dissolved (if needed) and taken off from buddy,
160  *   0:   the page is dissolved (if needed) and not taken off from buddy,
161  *   < 0: failed to dissolve.
162  */
__page_handle_poison(struct page * page)163 static int __page_handle_poison(struct page *page)
164 {
165 	int ret;
166 
167 	/*
168 	 * zone_pcp_disable() can't be used here. It will
169 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 	 * optimization is enabled. This will break current lock dependency
172 	 * chain and leads to deadlock.
173 	 * Disabling pcp before dissolving the page was a deterministic
174 	 * approach because we made sure that those pages cannot end up in any
175 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 	 * but nothing guarantees that those pages do not get back to a PCP
177 	 * queue if we need to refill those.
178 	 */
179 	ret = dissolve_free_hugetlb_folio(page_folio(page));
180 	if (!ret) {
181 		drain_all_pages(page_zone(page));
182 		ret = take_page_off_buddy(page);
183 	}
184 
185 	return ret;
186 }
187 
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 	if (hugepage_or_freepage) {
191 		/*
192 		 * Doing this check for free pages is also fine since
193 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 		 */
195 		if (__page_handle_poison(page) <= 0)
196 			/*
197 			 * We could fail to take off the target page from buddy
198 			 * for example due to racy page allocation, but that's
199 			 * acceptable because soft-offlined page is not broken
200 			 * and if someone really want to use it, they should
201 			 * take it.
202 			 */
203 			return false;
204 	}
205 
206 	SetPageHWPoison(page);
207 	if (release)
208 		put_page(page);
209 	page_ref_inc(page);
210 	num_poisoned_pages_inc(page_to_pfn(page));
211 
212 	return true;
213 }
214 
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216 
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227 
hwpoison_filter_dev(struct page * p)228 static int hwpoison_filter_dev(struct page *p)
229 {
230 	struct folio *folio = page_folio(p);
231 	struct address_space *mapping;
232 	dev_t dev;
233 
234 	if (hwpoison_filter_dev_major == ~0U &&
235 	    hwpoison_filter_dev_minor == ~0U)
236 		return 0;
237 
238 	mapping = folio_mapping(folio);
239 	if (mapping == NULL || mapping->host == NULL)
240 		return -EINVAL;
241 
242 	dev = mapping->host->i_sb->s_dev;
243 	if (hwpoison_filter_dev_major != ~0U &&
244 	    hwpoison_filter_dev_major != MAJOR(dev))
245 		return -EINVAL;
246 	if (hwpoison_filter_dev_minor != ~0U &&
247 	    hwpoison_filter_dev_minor != MINOR(dev))
248 		return -EINVAL;
249 
250 	return 0;
251 }
252 
hwpoison_filter_flags(struct page * p)253 static int hwpoison_filter_flags(struct page *p)
254 {
255 	if (!hwpoison_filter_flags_mask)
256 		return 0;
257 
258 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 				    hwpoison_filter_flags_value)
260 		return 0;
261 	else
262 		return -EINVAL;
263 }
264 
265 /*
266  * This allows stress tests to limit test scope to a collection of tasks
267  * by putting them under some memcg. This prevents killing unrelated/important
268  * processes such as /sbin/init. Note that the target task may share clean
269  * pages with init (eg. libc text), which is harmless. If the target task
270  * share _dirty_ pages with another task B, the test scheme must make sure B
271  * is also included in the memcg. At last, due to race conditions this filter
272  * can only guarantee that the page either belongs to the memcg tasks, or is
273  * a freed page.
274  */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)278 static int hwpoison_filter_task(struct page *p)
279 {
280 	if (!hwpoison_filter_memcg)
281 		return 0;
282 
283 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 		return -EINVAL;
285 
286 	return 0;
287 }
288 #else
hwpoison_filter_task(struct page * p)289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291 
hwpoison_filter(struct page * p)292 int hwpoison_filter(struct page *p)
293 {
294 	if (!hwpoison_filter_enable)
295 		return 0;
296 
297 	if (hwpoison_filter_dev(p))
298 		return -EINVAL;
299 
300 	if (hwpoison_filter_flags(p))
301 		return -EINVAL;
302 
303 	if (hwpoison_filter_task(p))
304 		return -EINVAL;
305 
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
hwpoison_filter(struct page * p)310 int hwpoison_filter(struct page *p)
311 {
312 	return 0;
313 }
314 #endif
315 
316 /*
317  * Kill all processes that have a poisoned page mapped and then isolate
318  * the page.
319  *
320  * General strategy:
321  * Find all processes having the page mapped and kill them.
322  * But we keep a page reference around so that the page is not
323  * actually freed yet.
324  * Then stash the page away
325  *
326  * There's no convenient way to get back to mapped processes
327  * from the VMAs. So do a brute-force search over all
328  * running processes.
329  *
330  * Remember that machine checks are not common (or rather
331  * if they are common you have other problems), so this shouldn't
332  * be a performance issue.
333  *
334  * Also there are some races possible while we get from the
335  * error detection to actually handle it.
336  */
337 
338 struct to_kill {
339 	struct list_head nd;
340 	struct task_struct *tsk;
341 	unsigned long addr;
342 	short size_shift;
343 };
344 
345 /*
346  * Send all the processes who have the page mapped a signal.
347  * ``action optional'' if they are not immediately affected by the error
348  * ``action required'' if error happened in current execution context
349  */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352 	struct task_struct *t = tk->tsk;
353 	short addr_lsb = tk->size_shift;
354 	int ret = 0;
355 
356 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 			pfn, t->comm, task_pid_nr(t));
358 
359 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 		ret = force_sig_mceerr(BUS_MCEERR_AR,
361 				 (void __user *)tk->addr, addr_lsb);
362 	else
363 		/*
364 		 * Signal other processes sharing the page if they have
365 		 * PF_MCE_EARLY set.
366 		 * Don't use force here, it's convenient if the signal
367 		 * can be temporarily blocked.
368 		 */
369 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 				      addr_lsb, t);
371 	if (ret < 0)
372 		pr_info("Error sending signal to %s:%d: %d\n",
373 			t->comm, task_pid_nr(t), ret);
374 	return ret;
375 }
376 
377 /*
378  * Unknown page type encountered. Try to check whether it can turn PageLRU by
379  * lru_add_drain_all.
380  */
shake_folio(struct folio * folio)381 void shake_folio(struct folio *folio)
382 {
383 	if (folio_test_hugetlb(folio))
384 		return;
385 	/*
386 	 * TODO: Could shrink slab caches here if a lightweight range-based
387 	 * shrinker will be available.
388 	 */
389 	if (folio_test_slab(folio))
390 		return;
391 
392 	lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395 
shake_page(struct page * page)396 static void shake_page(struct page *page)
397 {
398 	shake_folio(page_folio(page));
399 }
400 
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 		unsigned long address)
403 {
404 	unsigned long ret = 0;
405 	pgd_t *pgd;
406 	p4d_t *p4d;
407 	pud_t *pud;
408 	pmd_t *pmd;
409 	pte_t *pte;
410 	pte_t ptent;
411 
412 	VM_BUG_ON_VMA(address == -EFAULT, vma);
413 	pgd = pgd_offset(vma->vm_mm, address);
414 	if (!pgd_present(*pgd))
415 		return 0;
416 	p4d = p4d_offset(pgd, address);
417 	if (!p4d_present(*p4d))
418 		return 0;
419 	pud = pud_offset(p4d, address);
420 	if (!pud_present(*pud))
421 		return 0;
422 	if (pud_devmap(*pud))
423 		return PUD_SHIFT;
424 	pmd = pmd_offset(pud, address);
425 	if (!pmd_present(*pmd))
426 		return 0;
427 	if (pmd_devmap(*pmd))
428 		return PMD_SHIFT;
429 	pte = pte_offset_map(pmd, address);
430 	if (!pte)
431 		return 0;
432 	ptent = ptep_get(pte);
433 	if (pte_present(ptent) && pte_devmap(ptent))
434 		ret = PAGE_SHIFT;
435 	pte_unmap(pte);
436 	return ret;
437 }
438 
439 /*
440  * Failure handling: if we can't find or can't kill a process there's
441  * not much we can do.	We just print a message and ignore otherwise.
442  */
443 
444 /*
445  * Schedule a process for later kill.
446  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447  */
__add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)448 static void __add_to_kill(struct task_struct *tsk, struct page *p,
449 			  struct vm_area_struct *vma, struct list_head *to_kill,
450 			  unsigned long addr)
451 {
452 	struct to_kill *tk;
453 
454 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 	if (!tk) {
456 		pr_err("Out of memory while machine check handling\n");
457 		return;
458 	}
459 
460 	tk->addr = addr;
461 	if (is_zone_device_page(p))
462 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 	else
464 		tk->size_shift = page_shift(compound_head(p));
465 
466 	/*
467 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 	 * so "tk->size_shift == 0" effectively checks no mapping on
470 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 	 * to a process' address space, it's possible not all N VMAs
472 	 * contain mappings for the page, but at least one VMA does.
473 	 * Only deliver SIGBUS with payload derived from the VMA that
474 	 * has a mapping for the page.
475 	 */
476 	if (tk->addr == -EFAULT) {
477 		pr_info("Unable to find user space address %lx in %s\n",
478 			page_to_pfn(p), tsk->comm);
479 	} else if (tk->size_shift == 0) {
480 		kfree(tk);
481 		return;
482 	}
483 
484 	get_task_struct(tsk);
485 	tk->tsk = tsk;
486 	list_add_tail(&tk->nd, to_kill);
487 }
488 
add_to_kill_anon_file(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)489 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
490 		struct vm_area_struct *vma, struct list_head *to_kill,
491 		unsigned long addr)
492 {
493 	if (addr == -EFAULT)
494 		return;
495 	__add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497 
498 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 				 struct task_struct *tsk)
501 {
502 	struct to_kill *tk, *next;
503 
504 	list_for_each_entry_safe(tk, next, to_kill, nd) {
505 		if (tk->tsk == tsk)
506 			return true;
507 	}
508 
509 	return false;
510 }
511 
add_to_kill_ksm(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)512 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
513 		     struct vm_area_struct *vma, struct list_head *to_kill,
514 		     unsigned long addr)
515 {
516 	if (!task_in_to_kill_list(to_kill, tsk))
517 		__add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521  * Kill the processes that have been collected earlier.
522  *
523  * Only do anything when FORCEKILL is set, otherwise just free the
524  * list (this is used for clean pages which do not need killing)
525  */
kill_procs(struct list_head * to_kill,int forcekill,unsigned long pfn,int flags)526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 		unsigned long pfn, int flags)
528 {
529 	struct to_kill *tk, *next;
530 
531 	list_for_each_entry_safe(tk, next, to_kill, nd) {
532 		if (forcekill) {
533 			if (tk->addr == -EFAULT) {
534 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 						 tk->tsk, PIDTYPE_PID);
538 			}
539 
540 			/*
541 			 * In theory the process could have mapped
542 			 * something else on the address in-between. We could
543 			 * check for that, but we need to tell the
544 			 * process anyways.
545 			 */
546 			else if (kill_proc(tk, pfn, flags) < 0)
547 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 		}
550 		list_del(&tk->nd);
551 		put_task_struct(tk->tsk);
552 		kfree(tk);
553 	}
554 }
555 
556 /*
557  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558  * on behalf of the thread group. Return task_struct of the (first found)
559  * dedicated thread if found, and return NULL otherwise.
560  *
561  * We already hold rcu lock in the caller, so we don't have to call
562  * rcu_read_lock/unlock() in this function.
563  */
find_early_kill_thread(struct task_struct * tsk)564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566 	struct task_struct *t;
567 
568 	for_each_thread(tsk, t) {
569 		if (t->flags & PF_MCE_PROCESS) {
570 			if (t->flags & PF_MCE_EARLY)
571 				return t;
572 		} else {
573 			if (sysctl_memory_failure_early_kill)
574 				return t;
575 		}
576 	}
577 	return NULL;
578 }
579 
580 /*
581  * Determine whether a given process is "early kill" process which expects
582  * to be signaled when some page under the process is hwpoisoned.
583  * Return task_struct of the dedicated thread (main thread unless explicitly
584  * specified) if the process is "early kill" and otherwise returns NULL.
585  *
586  * Note that the above is true for Action Optional case. For Action Required
587  * case, it's only meaningful to the current thread which need to be signaled
588  * with SIGBUS, this error is Action Optional for other non current
589  * processes sharing the same error page,if the process is "early kill", the
590  * task_struct of the dedicated thread will also be returned.
591  */
task_early_kill(struct task_struct * tsk,int force_early)592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594 	if (!tsk->mm)
595 		return NULL;
596 	/*
597 	 * Comparing ->mm here because current task might represent
598 	 * a subthread, while tsk always points to the main thread.
599 	 */
600 	if (force_early && tsk->mm == current->mm)
601 		return current;
602 
603 	return find_early_kill_thread(tsk);
604 }
605 
606 /*
607  * Collect processes when the error hit an anonymous page.
608  */
collect_procs_anon(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)609 static void collect_procs_anon(struct folio *folio, struct page *page,
610 		struct list_head *to_kill, int force_early)
611 {
612 	struct task_struct *tsk;
613 	struct anon_vma *av;
614 	pgoff_t pgoff;
615 
616 	av = folio_lock_anon_vma_read(folio, NULL);
617 	if (av == NULL)	/* Not actually mapped anymore */
618 		return;
619 
620 	pgoff = page_to_pgoff(page);
621 	rcu_read_lock();
622 	for_each_process(tsk) {
623 		struct vm_area_struct *vma;
624 		struct anon_vma_chain *vmac;
625 		struct task_struct *t = task_early_kill(tsk, force_early);
626 		unsigned long addr;
627 
628 		if (!t)
629 			continue;
630 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631 					       pgoff, pgoff) {
632 			vma = vmac->vma;
633 			if (vma->vm_mm != t->mm)
634 				continue;
635 			addr = page_mapped_in_vma(page, vma);
636 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
637 		}
638 	}
639 	rcu_read_unlock();
640 	anon_vma_unlock_read(av);
641 }
642 
643 /*
644  * Collect processes when the error hit a file mapped page.
645  */
collect_procs_file(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)646 static void collect_procs_file(struct folio *folio, struct page *page,
647 		struct list_head *to_kill, int force_early)
648 {
649 	struct vm_area_struct *vma;
650 	struct task_struct *tsk;
651 	struct address_space *mapping = folio->mapping;
652 	pgoff_t pgoff;
653 
654 	i_mmap_lock_read(mapping);
655 	rcu_read_lock();
656 	pgoff = page_to_pgoff(page);
657 	for_each_process(tsk) {
658 		struct task_struct *t = task_early_kill(tsk, force_early);
659 		unsigned long addr;
660 
661 		if (!t)
662 			continue;
663 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664 				      pgoff) {
665 			/*
666 			 * Send early kill signal to tasks where a vma covers
667 			 * the page but the corrupted page is not necessarily
668 			 * mapped in its pte.
669 			 * Assume applications who requested early kill want
670 			 * to be informed of all such data corruptions.
671 			 */
672 			if (vma->vm_mm != t->mm)
673 				continue;
674 			addr = page_address_in_vma(page, vma);
675 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
676 		}
677 	}
678 	rcu_read_unlock();
679 	i_mmap_unlock_read(mapping);
680 }
681 
682 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)683 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
684 			      struct vm_area_struct *vma,
685 			      struct list_head *to_kill, pgoff_t pgoff)
686 {
687 	unsigned long addr = vma_address(vma, pgoff, 1);
688 	__add_to_kill(tsk, p, vma, to_kill, addr);
689 }
690 
691 /*
692  * Collect processes when the error hit a fsdax page.
693  */
collect_procs_fsdax(struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill,bool pre_remove)694 static void collect_procs_fsdax(struct page *page,
695 		struct address_space *mapping, pgoff_t pgoff,
696 		struct list_head *to_kill, bool pre_remove)
697 {
698 	struct vm_area_struct *vma;
699 	struct task_struct *tsk;
700 
701 	i_mmap_lock_read(mapping);
702 	rcu_read_lock();
703 	for_each_process(tsk) {
704 		struct task_struct *t = tsk;
705 
706 		/*
707 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
708 		 * the current may not be the one accessing the fsdax page.
709 		 * Otherwise, search for the current task.
710 		 */
711 		if (!pre_remove)
712 			t = task_early_kill(tsk, true);
713 		if (!t)
714 			continue;
715 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
716 			if (vma->vm_mm == t->mm)
717 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
718 		}
719 	}
720 	rcu_read_unlock();
721 	i_mmap_unlock_read(mapping);
722 }
723 #endif /* CONFIG_FS_DAX */
724 
725 /*
726  * Collect the processes who have the corrupted page mapped to kill.
727  */
collect_procs(struct folio * folio,struct page * page,struct list_head * tokill,int force_early)728 static void collect_procs(struct folio *folio, struct page *page,
729 		struct list_head *tokill, int force_early)
730 {
731 	if (!folio->mapping)
732 		return;
733 	if (unlikely(folio_test_ksm(folio)))
734 		collect_procs_ksm(folio, page, tokill, force_early);
735 	else if (folio_test_anon(folio))
736 		collect_procs_anon(folio, page, tokill, force_early);
737 	else
738 		collect_procs_file(folio, page, tokill, force_early);
739 }
740 
741 struct hwpoison_walk {
742 	struct to_kill tk;
743 	unsigned long pfn;
744 	int flags;
745 };
746 
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)747 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
748 {
749 	tk->addr = addr;
750 	tk->size_shift = shift;
751 }
752 
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)753 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
754 				unsigned long poisoned_pfn, struct to_kill *tk)
755 {
756 	unsigned long pfn = 0;
757 
758 	if (pte_present(pte)) {
759 		pfn = pte_pfn(pte);
760 	} else {
761 		swp_entry_t swp = pte_to_swp_entry(pte);
762 
763 		if (is_hwpoison_entry(swp))
764 			pfn = swp_offset_pfn(swp);
765 	}
766 
767 	if (!pfn || pfn != poisoned_pfn)
768 		return 0;
769 
770 	set_to_kill(tk, addr, shift);
771 	return 1;
772 }
773 
774 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)775 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
776 				      struct hwpoison_walk *hwp)
777 {
778 	pmd_t pmd = *pmdp;
779 	unsigned long pfn;
780 	unsigned long hwpoison_vaddr;
781 
782 	if (!pmd_present(pmd))
783 		return 0;
784 	pfn = pmd_pfn(pmd);
785 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
786 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
787 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
788 		return 1;
789 	}
790 	return 0;
791 }
792 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)793 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
794 				      struct hwpoison_walk *hwp)
795 {
796 	return 0;
797 }
798 #endif
799 
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)800 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
801 			      unsigned long end, struct mm_walk *walk)
802 {
803 	struct hwpoison_walk *hwp = walk->private;
804 	int ret = 0;
805 	pte_t *ptep, *mapped_pte;
806 	spinlock_t *ptl;
807 
808 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
809 	if (ptl) {
810 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
811 		spin_unlock(ptl);
812 		goto out;
813 	}
814 
815 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
816 						addr, &ptl);
817 	if (!ptep)
818 		goto out;
819 
820 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
821 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
822 					     hwp->pfn, &hwp->tk);
823 		if (ret == 1)
824 			break;
825 	}
826 	pte_unmap_unlock(mapped_pte, ptl);
827 out:
828 	cond_resched();
829 	return ret;
830 }
831 
832 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)833 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
834 			    unsigned long addr, unsigned long end,
835 			    struct mm_walk *walk)
836 {
837 	struct hwpoison_walk *hwp = walk->private;
838 	pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
839 	struct hstate *h = hstate_vma(walk->vma);
840 
841 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
842 				      hwp->pfn, &hwp->tk);
843 }
844 #else
845 #define hwpoison_hugetlb_range	NULL
846 #endif
847 
hwpoison_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)848 static int hwpoison_test_walk(unsigned long start, unsigned long end,
849 			     struct mm_walk *walk)
850 {
851 	/* We also want to consider pages mapped into VM_PFNMAP. */
852 	return 0;
853 }
854 
855 static const struct mm_walk_ops hwpoison_walk_ops = {
856 	.pmd_entry = hwpoison_pte_range,
857 	.hugetlb_entry = hwpoison_hugetlb_range,
858 	.test_walk = hwpoison_test_walk,
859 	.walk_lock = PGWALK_RDLOCK,
860 };
861 
862 /*
863  * Sends SIGBUS to the current process with error info.
864  *
865  * This function is intended to handle "Action Required" MCEs on already
866  * hardware poisoned pages. They could happen, for example, when
867  * memory_failure() failed to unmap the error page at the first call, or
868  * when multiple local machine checks happened on different CPUs.
869  *
870  * MCE handler currently has no easy access to the error virtual address,
871  * so this function walks page table to find it. The returned virtual address
872  * is proper in most cases, but it could be wrong when the application
873  * process has multiple entries mapping the error page.
874  */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)875 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
876 				  int flags)
877 {
878 	int ret;
879 	struct hwpoison_walk priv = {
880 		.pfn = pfn,
881 	};
882 	priv.tk.tsk = p;
883 
884 	if (!p->mm)
885 		return -EFAULT;
886 
887 	mmap_read_lock(p->mm);
888 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
889 			      (void *)&priv);
890 	/*
891 	 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
892 	 * succeeds or fails, then kill the process with SIGBUS.
893 	 * ret = 0 when poison page is a clean page and it's dropped, no
894 	 * SIGBUS is needed.
895 	 */
896 	if (ret == 1 && priv.tk.addr)
897 		kill_proc(&priv.tk, pfn, flags);
898 	mmap_read_unlock(p->mm);
899 
900 	return ret > 0 ? -EHWPOISON : 0;
901 }
902 
903 /*
904  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
905  * But it could not do more to isolate the page from being accessed again,
906  * nor does it kill the process. This is extremely rare and one of the
907  * potential causes is that the page state has been changed due to
908  * underlying race condition. This is the most severe outcomes.
909  *
910  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
911  * It should have killed the process, but it can't isolate the page,
912  * due to conditions such as extra pin, unmap failure, etc. Accessing
913  * the page again may trigger another MCE and the process will be killed
914  * by the m-f() handler immediately.
915  *
916  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
917  * The page is unmapped, and is removed from the LRU or file mapping.
918  * An attempt to access the page again will trigger page fault and the
919  * PF handler will kill the process.
920  *
921  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
922  * The page has been completely isolated, that is, unmapped, taken out of
923  * the buddy system, or hole-punnched out of the file mapping.
924  */
925 static const char *action_name[] = {
926 	[MF_IGNORED] = "Ignored",
927 	[MF_FAILED] = "Failed",
928 	[MF_DELAYED] = "Delayed",
929 	[MF_RECOVERED] = "Recovered",
930 };
931 
932 static const char * const action_page_types[] = {
933 	[MF_MSG_KERNEL]			= "reserved kernel page",
934 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
935 	[MF_MSG_HUGE]			= "huge page",
936 	[MF_MSG_FREE_HUGE]		= "free huge page",
937 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
938 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
939 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
940 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
941 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
942 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
943 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
944 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
945 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
946 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
947 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
948 	[MF_MSG_BUDDY]			= "free buddy page",
949 	[MF_MSG_DAX]			= "dax page",
950 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
951 	[MF_MSG_ALREADY_POISONED]	= "already poisoned page",
952 	[MF_MSG_UNKNOWN]		= "unknown page",
953 };
954 
955 /*
956  * XXX: It is possible that a page is isolated from LRU cache,
957  * and then kept in swap cache or failed to remove from page cache.
958  * The page count will stop it from being freed by unpoison.
959  * Stress tests should be aware of this memory leak problem.
960  */
delete_from_lru_cache(struct folio * folio)961 static int delete_from_lru_cache(struct folio *folio)
962 {
963 	if (folio_isolate_lru(folio)) {
964 		/*
965 		 * Clear sensible page flags, so that the buddy system won't
966 		 * complain when the folio is unpoison-and-freed.
967 		 */
968 		folio_clear_active(folio);
969 		folio_clear_unevictable(folio);
970 
971 		/*
972 		 * Poisoned page might never drop its ref count to 0 so we have
973 		 * to uncharge it manually from its memcg.
974 		 */
975 		mem_cgroup_uncharge(folio);
976 
977 		/*
978 		 * drop the refcount elevated by folio_isolate_lru()
979 		 */
980 		folio_put(folio);
981 		return 0;
982 	}
983 	return -EIO;
984 }
985 
truncate_error_folio(struct folio * folio,unsigned long pfn,struct address_space * mapping)986 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
987 				struct address_space *mapping)
988 {
989 	int ret = MF_FAILED;
990 
991 	if (mapping->a_ops->error_remove_folio) {
992 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
993 
994 		if (err != 0)
995 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
996 		else if (!filemap_release_folio(folio, GFP_NOIO))
997 			pr_info("%#lx: failed to release buffers\n", pfn);
998 		else
999 			ret = MF_RECOVERED;
1000 	} else {
1001 		/*
1002 		 * If the file system doesn't support it just invalidate
1003 		 * This fails on dirty or anything with private pages
1004 		 */
1005 		if (mapping_evict_folio(mapping, folio))
1006 			ret = MF_RECOVERED;
1007 		else
1008 			pr_info("%#lx: Failed to invalidate\n",	pfn);
1009 	}
1010 
1011 	return ret;
1012 }
1013 
1014 struct page_state {
1015 	unsigned long mask;
1016 	unsigned long res;
1017 	enum mf_action_page_type type;
1018 
1019 	/* Callback ->action() has to unlock the relevant page inside it. */
1020 	int (*action)(struct page_state *ps, struct page *p);
1021 };
1022 
1023 /*
1024  * Return true if page is still referenced by others, otherwise return
1025  * false.
1026  *
1027  * The extra_pins is true when one extra refcount is expected.
1028  */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)1029 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1030 			       bool extra_pins)
1031 {
1032 	int count = page_count(p) - 1;
1033 
1034 	if (extra_pins)
1035 		count -= folio_nr_pages(page_folio(p));
1036 
1037 	if (count > 0) {
1038 		pr_err("%#lx: %s still referenced by %d users\n",
1039 		       page_to_pfn(p), action_page_types[ps->type], count);
1040 		return true;
1041 	}
1042 
1043 	return false;
1044 }
1045 
1046 /*
1047  * Error hit kernel page.
1048  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1049  * could be more sophisticated.
1050  */
me_kernel(struct page_state * ps,struct page * p)1051 static int me_kernel(struct page_state *ps, struct page *p)
1052 {
1053 	unlock_page(p);
1054 	return MF_IGNORED;
1055 }
1056 
1057 /*
1058  * Page in unknown state. Do nothing.
1059  * This is a catch-all in case we fail to make sense of the page state.
1060  */
me_unknown(struct page_state * ps,struct page * p)1061 static int me_unknown(struct page_state *ps, struct page *p)
1062 {
1063 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1064 	unlock_page(p);
1065 	return MF_IGNORED;
1066 }
1067 
1068 /*
1069  * Clean (or cleaned) page cache page.
1070  */
me_pagecache_clean(struct page_state * ps,struct page * p)1071 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1072 {
1073 	struct folio *folio = page_folio(p);
1074 	int ret;
1075 	struct address_space *mapping;
1076 	bool extra_pins;
1077 
1078 	delete_from_lru_cache(folio);
1079 
1080 	/*
1081 	 * For anonymous folios the only reference left
1082 	 * should be the one m_f() holds.
1083 	 */
1084 	if (folio_test_anon(folio)) {
1085 		ret = MF_RECOVERED;
1086 		goto out;
1087 	}
1088 
1089 	/*
1090 	 * Now truncate the page in the page cache. This is really
1091 	 * more like a "temporary hole punch"
1092 	 * Don't do this for block devices when someone else
1093 	 * has a reference, because it could be file system metadata
1094 	 * and that's not safe to truncate.
1095 	 */
1096 	mapping = folio_mapping(folio);
1097 	if (!mapping) {
1098 		/* Folio has been torn down in the meantime */
1099 		ret = MF_FAILED;
1100 		goto out;
1101 	}
1102 
1103 	/*
1104 	 * The shmem page is kept in page cache instead of truncating
1105 	 * so is expected to have an extra refcount after error-handling.
1106 	 */
1107 	extra_pins = shmem_mapping(mapping);
1108 
1109 	/*
1110 	 * Truncation is a bit tricky. Enable it per file system for now.
1111 	 *
1112 	 * Open: to take i_rwsem or not for this? Right now we don't.
1113 	 */
1114 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1115 	if (has_extra_refcount(ps, p, extra_pins))
1116 		ret = MF_FAILED;
1117 
1118 out:
1119 	folio_unlock(folio);
1120 
1121 	return ret;
1122 }
1123 
1124 /*
1125  * Dirty pagecache page
1126  * Issues: when the error hit a hole page the error is not properly
1127  * propagated.
1128  */
me_pagecache_dirty(struct page_state * ps,struct page * p)1129 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1130 {
1131 	struct folio *folio = page_folio(p);
1132 	struct address_space *mapping = folio_mapping(folio);
1133 
1134 	/* TBD: print more information about the file. */
1135 	if (mapping) {
1136 		/*
1137 		 * IO error will be reported by write(), fsync(), etc.
1138 		 * who check the mapping.
1139 		 * This way the application knows that something went
1140 		 * wrong with its dirty file data.
1141 		 */
1142 		mapping_set_error(mapping, -EIO);
1143 	}
1144 
1145 	return me_pagecache_clean(ps, p);
1146 }
1147 
1148 /*
1149  * Clean and dirty swap cache.
1150  *
1151  * Dirty swap cache page is tricky to handle. The page could live both in page
1152  * table and swap cache(ie. page is freshly swapped in). So it could be
1153  * referenced concurrently by 2 types of PTEs:
1154  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1155  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1156  * and then
1157  *      - clear dirty bit to prevent IO
1158  *      - remove from LRU
1159  *      - but keep in the swap cache, so that when we return to it on
1160  *        a later page fault, we know the application is accessing
1161  *        corrupted data and shall be killed (we installed simple
1162  *        interception code in do_swap_page to catch it).
1163  *
1164  * Clean swap cache pages can be directly isolated. A later page fault will
1165  * bring in the known good data from disk.
1166  */
me_swapcache_dirty(struct page_state * ps,struct page * p)1167 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1168 {
1169 	struct folio *folio = page_folio(p);
1170 	int ret;
1171 	bool extra_pins = false;
1172 
1173 	folio_clear_dirty(folio);
1174 	/* Trigger EIO in shmem: */
1175 	folio_clear_uptodate(folio);
1176 
1177 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1178 	folio_unlock(folio);
1179 
1180 	if (ret == MF_DELAYED)
1181 		extra_pins = true;
1182 
1183 	if (has_extra_refcount(ps, p, extra_pins))
1184 		ret = MF_FAILED;
1185 
1186 	return ret;
1187 }
1188 
me_swapcache_clean(struct page_state * ps,struct page * p)1189 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1190 {
1191 	struct folio *folio = page_folio(p);
1192 	int ret;
1193 
1194 	delete_from_swap_cache(folio);
1195 
1196 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1197 	folio_unlock(folio);
1198 
1199 	if (has_extra_refcount(ps, p, false))
1200 		ret = MF_FAILED;
1201 
1202 	return ret;
1203 }
1204 
1205 /*
1206  * Huge pages. Needs work.
1207  * Issues:
1208  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1209  *   To narrow down kill region to one page, we need to break up pmd.
1210  */
me_huge_page(struct page_state * ps,struct page * p)1211 static int me_huge_page(struct page_state *ps, struct page *p)
1212 {
1213 	struct folio *folio = page_folio(p);
1214 	int res;
1215 	struct address_space *mapping;
1216 	bool extra_pins = false;
1217 
1218 	mapping = folio_mapping(folio);
1219 	if (mapping) {
1220 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1221 		/* The page is kept in page cache. */
1222 		extra_pins = true;
1223 		folio_unlock(folio);
1224 	} else {
1225 		folio_unlock(folio);
1226 		/*
1227 		 * migration entry prevents later access on error hugepage,
1228 		 * so we can free and dissolve it into buddy to save healthy
1229 		 * subpages.
1230 		 */
1231 		folio_put(folio);
1232 		if (__page_handle_poison(p) > 0) {
1233 			page_ref_inc(p);
1234 			res = MF_RECOVERED;
1235 		} else {
1236 			res = MF_FAILED;
1237 		}
1238 	}
1239 
1240 	if (has_extra_refcount(ps, p, extra_pins))
1241 		res = MF_FAILED;
1242 
1243 	return res;
1244 }
1245 
1246 /*
1247  * Various page states we can handle.
1248  *
1249  * A page state is defined by its current page->flags bits.
1250  * The table matches them in order and calls the right handler.
1251  *
1252  * This is quite tricky because we can access page at any time
1253  * in its live cycle, so all accesses have to be extremely careful.
1254  *
1255  * This is not complete. More states could be added.
1256  * For any missing state don't attempt recovery.
1257  */
1258 
1259 #define dirty		(1UL << PG_dirty)
1260 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1261 #define unevict		(1UL << PG_unevictable)
1262 #define mlock		(1UL << PG_mlocked)
1263 #define lru		(1UL << PG_lru)
1264 #define head		(1UL << PG_head)
1265 #define reserved	(1UL << PG_reserved)
1266 
1267 static struct page_state error_states[] = {
1268 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1269 	/*
1270 	 * free pages are specially detected outside this table:
1271 	 * PG_buddy pages only make a small fraction of all free pages.
1272 	 */
1273 
1274 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1275 
1276 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1277 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1278 
1279 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1280 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1281 
1282 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1283 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1284 
1285 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1286 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1287 
1288 	/*
1289 	 * Catchall entry: must be at end.
1290 	 */
1291 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1292 };
1293 
1294 #undef dirty
1295 #undef sc
1296 #undef unevict
1297 #undef mlock
1298 #undef lru
1299 #undef head
1300 #undef reserved
1301 
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1302 static void update_per_node_mf_stats(unsigned long pfn,
1303 				     enum mf_result result)
1304 {
1305 	int nid = MAX_NUMNODES;
1306 	struct memory_failure_stats *mf_stats = NULL;
1307 
1308 	nid = pfn_to_nid(pfn);
1309 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1310 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1311 		return;
1312 	}
1313 
1314 	mf_stats = &NODE_DATA(nid)->mf_stats;
1315 	switch (result) {
1316 	case MF_IGNORED:
1317 		++mf_stats->ignored;
1318 		break;
1319 	case MF_FAILED:
1320 		++mf_stats->failed;
1321 		break;
1322 	case MF_DELAYED:
1323 		++mf_stats->delayed;
1324 		break;
1325 	case MF_RECOVERED:
1326 		++mf_stats->recovered;
1327 		break;
1328 	default:
1329 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1330 		break;
1331 	}
1332 	++mf_stats->total;
1333 }
1334 
1335 /*
1336  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1337  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1338  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1339 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1340 			 enum mf_result result)
1341 {
1342 	trace_memory_failure_event(pfn, type, result);
1343 
1344 	if (type != MF_MSG_ALREADY_POISONED) {
1345 		num_poisoned_pages_inc(pfn);
1346 		update_per_node_mf_stats(pfn, result);
1347 	}
1348 
1349 	pr_err("%#lx: recovery action for %s: %s\n",
1350 		pfn, action_page_types[type], action_name[result]);
1351 
1352 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1353 }
1354 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1355 static int page_action(struct page_state *ps, struct page *p,
1356 			unsigned long pfn)
1357 {
1358 	int result;
1359 
1360 	/* page p should be unlocked after returning from ps->action().  */
1361 	result = ps->action(ps, p);
1362 
1363 	/* Could do more checks here if page looks ok */
1364 	/*
1365 	 * Could adjust zone counters here to correct for the missing page.
1366 	 */
1367 
1368 	return action_result(pfn, ps->type, result);
1369 }
1370 
PageHWPoisonTakenOff(struct page * page)1371 static inline bool PageHWPoisonTakenOff(struct page *page)
1372 {
1373 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1374 }
1375 
SetPageHWPoisonTakenOff(struct page * page)1376 void SetPageHWPoisonTakenOff(struct page *page)
1377 {
1378 	set_page_private(page, MAGIC_HWPOISON);
1379 }
1380 
ClearPageHWPoisonTakenOff(struct page * page)1381 void ClearPageHWPoisonTakenOff(struct page *page)
1382 {
1383 	if (PageHWPoison(page))
1384 		set_page_private(page, 0);
1385 }
1386 
1387 /*
1388  * Return true if a page type of a given page is supported by hwpoison
1389  * mechanism (while handling could fail), otherwise false.  This function
1390  * does not return true for hugetlb or device memory pages, so it's assumed
1391  * to be called only in the context where we never have such pages.
1392  */
HWPoisonHandlable(struct page * page,unsigned long flags)1393 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1394 {
1395 	if (PageSlab(page))
1396 		return false;
1397 
1398 	/* Soft offline could migrate non-LRU movable pages */
1399 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1400 		return true;
1401 
1402 	return PageLRU(page) || is_free_buddy_page(page);
1403 }
1404 
__get_hwpoison_page(struct page * page,unsigned long flags)1405 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1406 {
1407 	struct folio *folio = page_folio(page);
1408 	int ret = 0;
1409 	bool hugetlb = false;
1410 
1411 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1412 	if (hugetlb) {
1413 		/* Make sure hugetlb demotion did not happen from under us. */
1414 		if (folio == page_folio(page))
1415 			return ret;
1416 		if (ret > 0) {
1417 			folio_put(folio);
1418 			folio = page_folio(page);
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * This check prevents from calling folio_try_get() for any
1424 	 * unsupported type of folio in order to reduce the risk of unexpected
1425 	 * races caused by taking a folio refcount.
1426 	 */
1427 	if (!HWPoisonHandlable(&folio->page, flags))
1428 		return -EBUSY;
1429 
1430 	if (folio_try_get(folio)) {
1431 		if (folio == page_folio(page))
1432 			return 1;
1433 
1434 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1435 		folio_put(folio);
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 #define GET_PAGE_MAX_RETRY_NUM 3
1442 
get_any_page(struct page * p,unsigned long flags)1443 static int get_any_page(struct page *p, unsigned long flags)
1444 {
1445 	int ret = 0, pass = 0;
1446 	bool count_increased = false;
1447 
1448 	if (flags & MF_COUNT_INCREASED)
1449 		count_increased = true;
1450 
1451 try_again:
1452 	if (!count_increased) {
1453 		ret = __get_hwpoison_page(p, flags);
1454 		if (!ret) {
1455 			if (page_count(p)) {
1456 				/* We raced with an allocation, retry. */
1457 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1458 					goto try_again;
1459 				ret = -EBUSY;
1460 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1461 				/* We raced with put_page, retry. */
1462 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1463 					goto try_again;
1464 				ret = -EIO;
1465 			}
1466 			goto out;
1467 		} else if (ret == -EBUSY) {
1468 			/*
1469 			 * We raced with (possibly temporary) unhandlable
1470 			 * page, retry.
1471 			 */
1472 			if (pass++ < 3) {
1473 				shake_page(p);
1474 				goto try_again;
1475 			}
1476 			ret = -EIO;
1477 			goto out;
1478 		}
1479 	}
1480 
1481 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1482 		ret = 1;
1483 	} else {
1484 		/*
1485 		 * A page we cannot handle. Check whether we can turn
1486 		 * it into something we can handle.
1487 		 */
1488 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1489 			put_page(p);
1490 			shake_page(p);
1491 			count_increased = false;
1492 			goto try_again;
1493 		}
1494 		put_page(p);
1495 		ret = -EIO;
1496 	}
1497 out:
1498 	if (ret == -EIO)
1499 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1500 
1501 	return ret;
1502 }
1503 
__get_unpoison_page(struct page * page)1504 static int __get_unpoison_page(struct page *page)
1505 {
1506 	struct folio *folio = page_folio(page);
1507 	int ret = 0;
1508 	bool hugetlb = false;
1509 
1510 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1511 	if (hugetlb) {
1512 		/* Make sure hugetlb demotion did not happen from under us. */
1513 		if (folio == page_folio(page))
1514 			return ret;
1515 		if (ret > 0)
1516 			folio_put(folio);
1517 	}
1518 
1519 	/*
1520 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1521 	 * but also isolated from buddy freelist, so need to identify the
1522 	 * state and have to cancel both operations to unpoison.
1523 	 */
1524 	if (PageHWPoisonTakenOff(page))
1525 		return -EHWPOISON;
1526 
1527 	return get_page_unless_zero(page) ? 1 : 0;
1528 }
1529 
1530 /**
1531  * get_hwpoison_page() - Get refcount for memory error handling
1532  * @p:		Raw error page (hit by memory error)
1533  * @flags:	Flags controlling behavior of error handling
1534  *
1535  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1536  * error on it, after checking that the error page is in a well-defined state
1537  * (defined as a page-type we can successfully handle the memory error on it,
1538  * such as LRU page and hugetlb page).
1539  *
1540  * Memory error handling could be triggered at any time on any type of page,
1541  * so it's prone to race with typical memory management lifecycle (like
1542  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1543  * extra care for the error page's state (as done in __get_hwpoison_page()),
1544  * and has some retry logic in get_any_page().
1545  *
1546  * When called from unpoison_memory(), the caller should already ensure that
1547  * the given page has PG_hwpoison. So it's never reused for other page
1548  * allocations, and __get_unpoison_page() never races with them.
1549  *
1550  * Return: 0 on failure or free buddy (hugetlb) page,
1551  *         1 on success for in-use pages in a well-defined state,
1552  *         -EIO for pages on which we can not handle memory errors,
1553  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1554  *         operations like allocation and free,
1555  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1556  */
get_hwpoison_page(struct page * p,unsigned long flags)1557 static int get_hwpoison_page(struct page *p, unsigned long flags)
1558 {
1559 	int ret;
1560 
1561 	zone_pcp_disable(page_zone(p));
1562 	if (flags & MF_UNPOISON)
1563 		ret = __get_unpoison_page(p);
1564 	else
1565 		ret = get_any_page(p, flags);
1566 	zone_pcp_enable(page_zone(p));
1567 
1568 	return ret;
1569 }
1570 
1571 /*
1572  * The caller must guarantee the folio isn't large folio, except hugetlb.
1573  * try_to_unmap() can't handle it.
1574  */
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1575 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1576 {
1577 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1578 	struct address_space *mapping;
1579 
1580 	if (folio_test_swapcache(folio)) {
1581 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1582 		ttu &= ~TTU_HWPOISON;
1583 	}
1584 
1585 	/*
1586 	 * Propagate the dirty bit from PTEs to struct page first, because we
1587 	 * need this to decide if we should kill or just drop the page.
1588 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1589 	 * be called inside page lock (it's recommended but not enforced).
1590 	 */
1591 	mapping = folio_mapping(folio);
1592 	if (!must_kill && !folio_test_dirty(folio) && mapping &&
1593 	    mapping_can_writeback(mapping)) {
1594 		if (folio_mkclean(folio)) {
1595 			folio_set_dirty(folio);
1596 		} else {
1597 			ttu &= ~TTU_HWPOISON;
1598 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1599 				pfn);
1600 		}
1601 	}
1602 
1603 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1604 		/*
1605 		 * For hugetlb folios in shared mappings, try_to_unmap
1606 		 * could potentially call huge_pmd_unshare.  Because of
1607 		 * this, take semaphore in write mode here and set
1608 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1609 		 * at this higher level.
1610 		 */
1611 		mapping = hugetlb_folio_mapping_lock_write(folio);
1612 		if (!mapping) {
1613 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1614 				folio_pfn(folio));
1615 			return -EBUSY;
1616 		}
1617 
1618 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1619 		i_mmap_unlock_write(mapping);
1620 	} else {
1621 		try_to_unmap(folio, ttu);
1622 	}
1623 
1624 	return folio_mapped(folio) ? -EBUSY : 0;
1625 }
1626 
1627 /*
1628  * Do all that is necessary to remove user space mappings. Unmap
1629  * the pages and send SIGBUS to the processes if the data was dirty.
1630  */
hwpoison_user_mappings(struct folio * folio,struct page * p,unsigned long pfn,int flags)1631 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1632 		unsigned long pfn, int flags)
1633 {
1634 	LIST_HEAD(tokill);
1635 	bool unmap_success;
1636 	int forcekill;
1637 	bool mlocked = folio_test_mlocked(folio);
1638 
1639 	/*
1640 	 * Here we are interested only in user-mapped pages, so skip any
1641 	 * other types of pages.
1642 	 */
1643 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1644 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1645 		return true;
1646 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1647 		return true;
1648 
1649 	/*
1650 	 * This check implies we don't kill processes if their pages
1651 	 * are in the swap cache early. Those are always late kills.
1652 	 */
1653 	if (!folio_mapped(folio))
1654 		return true;
1655 
1656 	/*
1657 	 * First collect all the processes that have the page
1658 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1659 	 * because ttu takes the rmap data structures down.
1660 	 */
1661 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1662 
1663 	unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1664 	if (!unmap_success)
1665 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1666 		       pfn, folio_mapcount(folio));
1667 
1668 	/*
1669 	 * try_to_unmap() might put mlocked page in lru cache, so call
1670 	 * shake_page() again to ensure that it's flushed.
1671 	 */
1672 	if (mlocked)
1673 		shake_folio(folio);
1674 
1675 	/*
1676 	 * Now that the dirty bit has been propagated to the
1677 	 * struct page and all unmaps done we can decide if
1678 	 * killing is needed or not.  Only kill when the page
1679 	 * was dirty or the process is not restartable,
1680 	 * otherwise the tokill list is merely
1681 	 * freed.  When there was a problem unmapping earlier
1682 	 * use a more force-full uncatchable kill to prevent
1683 	 * any accesses to the poisoned memory.
1684 	 */
1685 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1686 		    !unmap_success;
1687 	kill_procs(&tokill, forcekill, pfn, flags);
1688 
1689 	return unmap_success;
1690 }
1691 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1692 static int identify_page_state(unsigned long pfn, struct page *p,
1693 				unsigned long page_flags)
1694 {
1695 	struct page_state *ps;
1696 
1697 	/*
1698 	 * The first check uses the current page flags which may not have any
1699 	 * relevant information. The second check with the saved page flags is
1700 	 * carried out only if the first check can't determine the page status.
1701 	 */
1702 	for (ps = error_states;; ps++)
1703 		if ((p->flags & ps->mask) == ps->res)
1704 			break;
1705 
1706 	page_flags |= (p->flags & (1UL << PG_dirty));
1707 
1708 	if (!ps->mask)
1709 		for (ps = error_states;; ps++)
1710 			if ((page_flags & ps->mask) == ps->res)
1711 				break;
1712 	return page_action(ps, p, pfn);
1713 }
1714 
1715 /*
1716  * When 'release' is 'false', it means that if thp split has failed,
1717  * there is still more to do, hence the page refcount we took earlier
1718  * is still needed.
1719  */
try_to_split_thp_page(struct page * page,bool release)1720 static int try_to_split_thp_page(struct page *page, bool release)
1721 {
1722 	int ret;
1723 
1724 	lock_page(page);
1725 	ret = split_huge_page(page);
1726 	unlock_page(page);
1727 
1728 	if (ret && release)
1729 		put_page(page);
1730 
1731 	return ret;
1732 }
1733 
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1734 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1735 		struct address_space *mapping, pgoff_t index, int flags)
1736 {
1737 	struct to_kill *tk;
1738 	unsigned long size = 0;
1739 
1740 	list_for_each_entry(tk, to_kill, nd)
1741 		if (tk->size_shift)
1742 			size = max(size, 1UL << tk->size_shift);
1743 
1744 	if (size) {
1745 		/*
1746 		 * Unmap the largest mapping to avoid breaking up device-dax
1747 		 * mappings which are constant size. The actual size of the
1748 		 * mapping being torn down is communicated in siginfo, see
1749 		 * kill_proc()
1750 		 */
1751 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1752 
1753 		unmap_mapping_range(mapping, start, size, 0);
1754 	}
1755 
1756 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1757 }
1758 
1759 /*
1760  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1761  * either do not claim or fails to claim a hwpoison event, or devdax.
1762  * The fsdax pages are initialized per base page, and the devdax pages
1763  * could be initialized either as base pages, or as compound pages with
1764  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1765  * hwpoison, such that, if a subpage of a compound page is poisoned,
1766  * simply mark the compound head page is by far sufficient.
1767  */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1768 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1769 		struct dev_pagemap *pgmap)
1770 {
1771 	struct folio *folio = pfn_folio(pfn);
1772 	LIST_HEAD(to_kill);
1773 	dax_entry_t cookie;
1774 	int rc = 0;
1775 
1776 	/*
1777 	 * Prevent the inode from being freed while we are interrogating
1778 	 * the address_space, typically this would be handled by
1779 	 * lock_page(), but dax pages do not use the page lock. This
1780 	 * also prevents changes to the mapping of this pfn until
1781 	 * poison signaling is complete.
1782 	 */
1783 	cookie = dax_lock_folio(folio);
1784 	if (!cookie)
1785 		return -EBUSY;
1786 
1787 	if (hwpoison_filter(&folio->page)) {
1788 		rc = -EOPNOTSUPP;
1789 		goto unlock;
1790 	}
1791 
1792 	switch (pgmap->type) {
1793 	case MEMORY_DEVICE_PRIVATE:
1794 	case MEMORY_DEVICE_COHERENT:
1795 		/*
1796 		 * TODO: Handle device pages which may need coordination
1797 		 * with device-side memory.
1798 		 */
1799 		rc = -ENXIO;
1800 		goto unlock;
1801 	default:
1802 		break;
1803 	}
1804 
1805 	/*
1806 	 * Use this flag as an indication that the dax page has been
1807 	 * remapped UC to prevent speculative consumption of poison.
1808 	 */
1809 	SetPageHWPoison(&folio->page);
1810 
1811 	/*
1812 	 * Unlike System-RAM there is no possibility to swap in a
1813 	 * different physical page at a given virtual address, so all
1814 	 * userspace consumption of ZONE_DEVICE memory necessitates
1815 	 * SIGBUS (i.e. MF_MUST_KILL)
1816 	 */
1817 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1818 	collect_procs(folio, &folio->page, &to_kill, true);
1819 
1820 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1821 unlock:
1822 	dax_unlock_folio(folio, cookie);
1823 	return rc;
1824 }
1825 
1826 #ifdef CONFIG_FS_DAX
1827 /**
1828  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1829  * @mapping:	address_space of the file in use
1830  * @index:	start pgoff of the range within the file
1831  * @count:	length of the range, in unit of PAGE_SIZE
1832  * @mf_flags:	memory failure flags
1833  */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1834 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1835 		unsigned long count, int mf_flags)
1836 {
1837 	LIST_HEAD(to_kill);
1838 	dax_entry_t cookie;
1839 	struct page *page;
1840 	size_t end = index + count;
1841 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1842 
1843 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1844 
1845 	for (; index < end; index++) {
1846 		page = NULL;
1847 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1848 		if (!cookie)
1849 			return -EBUSY;
1850 		if (!page)
1851 			goto unlock;
1852 
1853 		if (!pre_remove)
1854 			SetPageHWPoison(page);
1855 
1856 		/*
1857 		 * The pre_remove case is revoking access, the memory is still
1858 		 * good and could theoretically be put back into service.
1859 		 */
1860 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1861 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1862 				index, mf_flags);
1863 unlock:
1864 		dax_unlock_mapping_entry(mapping, index, cookie);
1865 	}
1866 	return 0;
1867 }
1868 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1869 #endif /* CONFIG_FS_DAX */
1870 
1871 #ifdef CONFIG_HUGETLB_PAGE
1872 
1873 /*
1874  * Struct raw_hwp_page represents information about "raw error page",
1875  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1876  */
1877 struct raw_hwp_page {
1878 	struct llist_node node;
1879 	struct page *page;
1880 };
1881 
raw_hwp_list_head(struct folio * folio)1882 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1883 {
1884 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1885 }
1886 
is_raw_hwpoison_page_in_hugepage(struct page * page)1887 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1888 {
1889 	struct llist_head *raw_hwp_head;
1890 	struct raw_hwp_page *p;
1891 	struct folio *folio = page_folio(page);
1892 	bool ret = false;
1893 
1894 	if (!folio_test_hwpoison(folio))
1895 		return false;
1896 
1897 	if (!folio_test_hugetlb(folio))
1898 		return PageHWPoison(page);
1899 
1900 	/*
1901 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1902 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1903 	 */
1904 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1905 		return true;
1906 
1907 	mutex_lock(&mf_mutex);
1908 
1909 	raw_hwp_head = raw_hwp_list_head(folio);
1910 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1911 		if (page == p->page) {
1912 			ret = true;
1913 			break;
1914 		}
1915 	}
1916 
1917 	mutex_unlock(&mf_mutex);
1918 
1919 	return ret;
1920 }
1921 
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1922 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1923 {
1924 	struct llist_node *head;
1925 	struct raw_hwp_page *p, *next;
1926 	unsigned long count = 0;
1927 
1928 	head = llist_del_all(raw_hwp_list_head(folio));
1929 	llist_for_each_entry_safe(p, next, head, node) {
1930 		if (move_flag)
1931 			SetPageHWPoison(p->page);
1932 		else
1933 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1934 		kfree(p);
1935 		count++;
1936 	}
1937 	return count;
1938 }
1939 
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1940 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1941 {
1942 	struct llist_head *head;
1943 	struct raw_hwp_page *raw_hwp;
1944 	struct raw_hwp_page *p;
1945 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1946 
1947 	/*
1948 	 * Once the hwpoison hugepage has lost reliable raw error info,
1949 	 * there is little meaning to keep additional error info precisely,
1950 	 * so skip to add additional raw error info.
1951 	 */
1952 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1953 		return -EHWPOISON;
1954 	head = raw_hwp_list_head(folio);
1955 	llist_for_each_entry(p, head->first, node) {
1956 		if (p->page == page)
1957 			return -EHWPOISON;
1958 	}
1959 
1960 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1961 	if (raw_hwp) {
1962 		raw_hwp->page = page;
1963 		llist_add(&raw_hwp->node, head);
1964 		/* the first error event will be counted in action_result(). */
1965 		if (ret)
1966 			num_poisoned_pages_inc(page_to_pfn(page));
1967 	} else {
1968 		/*
1969 		 * Failed to save raw error info.  We no longer trace all
1970 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1971 		 * this hwpoisoned hugepage.
1972 		 */
1973 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1974 		/*
1975 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1976 		 * used any more, so free it.
1977 		 */
1978 		__folio_free_raw_hwp(folio, false);
1979 	}
1980 	return ret;
1981 }
1982 
folio_free_raw_hwp(struct folio * folio,bool move_flag)1983 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1984 {
1985 	/*
1986 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1987 	 * pages for tail pages are required but they don't exist.
1988 	 */
1989 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1990 		return 0;
1991 
1992 	/*
1993 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1994 	 * definition.
1995 	 */
1996 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1997 		return 0;
1998 
1999 	return __folio_free_raw_hwp(folio, move_flag);
2000 }
2001 
folio_clear_hugetlb_hwpoison(struct folio * folio)2002 void folio_clear_hugetlb_hwpoison(struct folio *folio)
2003 {
2004 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
2005 		return;
2006 	if (folio_test_hugetlb_vmemmap_optimized(folio))
2007 		return;
2008 	folio_clear_hwpoison(folio);
2009 	folio_free_raw_hwp(folio, true);
2010 }
2011 
2012 /*
2013  * Called from hugetlb code with hugetlb_lock held.
2014  *
2015  * Return values:
2016  *   0             - free hugepage
2017  *   1             - in-use hugepage
2018  *   2             - not a hugepage
2019  *   -EBUSY        - the hugepage is busy (try to retry)
2020  *   -EHWPOISON    - the hugepage is already hwpoisoned
2021  */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)2022 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2023 				 bool *migratable_cleared)
2024 {
2025 	struct page *page = pfn_to_page(pfn);
2026 	struct folio *folio = page_folio(page);
2027 	int ret = 2;	/* fallback to normal page handling */
2028 	bool count_increased = false;
2029 
2030 	if (!folio_test_hugetlb(folio))
2031 		goto out;
2032 
2033 	if (flags & MF_COUNT_INCREASED) {
2034 		ret = 1;
2035 		count_increased = true;
2036 	} else if (folio_test_hugetlb_freed(folio)) {
2037 		ret = 0;
2038 	} else if (folio_test_hugetlb_migratable(folio)) {
2039 		ret = folio_try_get(folio);
2040 		if (ret)
2041 			count_increased = true;
2042 	} else {
2043 		ret = -EBUSY;
2044 		if (!(flags & MF_NO_RETRY))
2045 			goto out;
2046 	}
2047 
2048 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2049 		ret = -EHWPOISON;
2050 		goto out;
2051 	}
2052 
2053 	/*
2054 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2055 	 * from being migrated by memory hotremove.
2056 	 */
2057 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2058 		folio_clear_hugetlb_migratable(folio);
2059 		*migratable_cleared = true;
2060 	}
2061 
2062 	return ret;
2063 out:
2064 	if (count_increased)
2065 		folio_put(folio);
2066 	return ret;
2067 }
2068 
2069 /*
2070  * Taking refcount of hugetlb pages needs extra care about race conditions
2071  * with basic operations like hugepage allocation/free/demotion.
2072  * So some of prechecks for hwpoison (pinning, and testing/setting
2073  * PageHWPoison) should be done in single hugetlb_lock range.
2074  */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2075 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2076 {
2077 	int res;
2078 	struct page *p = pfn_to_page(pfn);
2079 	struct folio *folio;
2080 	unsigned long page_flags;
2081 	bool migratable_cleared = false;
2082 
2083 	*hugetlb = 1;
2084 retry:
2085 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2086 	if (res == 2) { /* fallback to normal page handling */
2087 		*hugetlb = 0;
2088 		return 0;
2089 	} else if (res == -EHWPOISON) {
2090 		if (flags & MF_ACTION_REQUIRED) {
2091 			folio = page_folio(p);
2092 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2093 		}
2094 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2095 		return res;
2096 	} else if (res == -EBUSY) {
2097 		if (!(flags & MF_NO_RETRY)) {
2098 			flags |= MF_NO_RETRY;
2099 			goto retry;
2100 		}
2101 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2102 	}
2103 
2104 	folio = page_folio(p);
2105 	folio_lock(folio);
2106 
2107 	if (hwpoison_filter(p)) {
2108 		folio_clear_hugetlb_hwpoison(folio);
2109 		if (migratable_cleared)
2110 			folio_set_hugetlb_migratable(folio);
2111 		folio_unlock(folio);
2112 		if (res == 1)
2113 			folio_put(folio);
2114 		return -EOPNOTSUPP;
2115 	}
2116 
2117 	/*
2118 	 * Handling free hugepage.  The possible race with hugepage allocation
2119 	 * or demotion can be prevented by PageHWPoison flag.
2120 	 */
2121 	if (res == 0) {
2122 		folio_unlock(folio);
2123 		if (__page_handle_poison(p) > 0) {
2124 			page_ref_inc(p);
2125 			res = MF_RECOVERED;
2126 		} else {
2127 			res = MF_FAILED;
2128 		}
2129 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2130 	}
2131 
2132 	page_flags = folio->flags;
2133 
2134 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2135 		folio_unlock(folio);
2136 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2137 	}
2138 
2139 	return identify_page_state(pfn, p, page_flags);
2140 }
2141 
2142 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2143 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2144 {
2145 	return 0;
2146 }
2147 
folio_free_raw_hwp(struct folio * folio,bool flag)2148 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2149 {
2150 	return 0;
2151 }
2152 #endif	/* CONFIG_HUGETLB_PAGE */
2153 
2154 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2155 static void put_ref_page(unsigned long pfn, int flags)
2156 {
2157 	if (!(flags & MF_COUNT_INCREASED))
2158 		return;
2159 
2160 	put_page(pfn_to_page(pfn));
2161 }
2162 
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2163 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2164 		struct dev_pagemap *pgmap)
2165 {
2166 	int rc = -ENXIO;
2167 
2168 	/* device metadata space is not recoverable */
2169 	if (!pgmap_pfn_valid(pgmap, pfn))
2170 		goto out;
2171 
2172 	/*
2173 	 * Call driver's implementation to handle the memory failure, otherwise
2174 	 * fall back to generic handler.
2175 	 */
2176 	if (pgmap_has_memory_failure(pgmap)) {
2177 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2178 		/*
2179 		 * Fall back to generic handler too if operation is not
2180 		 * supported inside the driver/device/filesystem.
2181 		 */
2182 		if (rc != -EOPNOTSUPP)
2183 			goto out;
2184 	}
2185 
2186 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2187 out:
2188 	/* drop pgmap ref acquired in caller */
2189 	put_dev_pagemap(pgmap);
2190 	if (rc != -EOPNOTSUPP)
2191 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2192 	return rc;
2193 }
2194 
2195 /*
2196  * The calling condition is as such: thp split failed, page might have
2197  * been RDMA pinned, not much can be done for recovery.
2198  * But a SIGBUS should be delivered with vaddr provided so that the user
2199  * application has a chance to recover. Also, application processes'
2200  * election for MCE early killed will be honored.
2201  */
kill_procs_now(struct page * p,unsigned long pfn,int flags,struct folio * folio)2202 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2203 				struct folio *folio)
2204 {
2205 	LIST_HEAD(tokill);
2206 
2207 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2208 	kill_procs(&tokill, true, pfn, flags);
2209 }
2210 
2211 /**
2212  * memory_failure - Handle memory failure of a page.
2213  * @pfn: Page Number of the corrupted page
2214  * @flags: fine tune action taken
2215  *
2216  * This function is called by the low level machine check code
2217  * of an architecture when it detects hardware memory corruption
2218  * of a page. It tries its best to recover, which includes
2219  * dropping pages, killing processes etc.
2220  *
2221  * The function is primarily of use for corruptions that
2222  * happen outside the current execution context (e.g. when
2223  * detected by a background scrubber)
2224  *
2225  * Must run in process context (e.g. a work queue) with interrupts
2226  * enabled and no spinlocks held.
2227  *
2228  * Return: 0 for successfully handled the memory error,
2229  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2230  *         < 0(except -EOPNOTSUPP) on failure.
2231  */
memory_failure(unsigned long pfn,int flags)2232 int memory_failure(unsigned long pfn, int flags)
2233 {
2234 	struct page *p;
2235 	struct folio *folio;
2236 	struct dev_pagemap *pgmap;
2237 	int res = 0;
2238 	unsigned long page_flags;
2239 	bool retry = true;
2240 	int hugetlb = 0;
2241 
2242 	if (!sysctl_memory_failure_recovery)
2243 		panic("Memory failure on page %lx", pfn);
2244 
2245 	mutex_lock(&mf_mutex);
2246 
2247 	if (!(flags & MF_SW_SIMULATED))
2248 		hw_memory_failure = true;
2249 
2250 	p = pfn_to_online_page(pfn);
2251 	if (!p) {
2252 		res = arch_memory_failure(pfn, flags);
2253 		if (res == 0)
2254 			goto unlock_mutex;
2255 
2256 		if (pfn_valid(pfn)) {
2257 			pgmap = get_dev_pagemap(pfn, NULL);
2258 			put_ref_page(pfn, flags);
2259 			if (pgmap) {
2260 				res = memory_failure_dev_pagemap(pfn, flags,
2261 								 pgmap);
2262 				goto unlock_mutex;
2263 			}
2264 		}
2265 		pr_err("%#lx: memory outside kernel control\n", pfn);
2266 		res = -ENXIO;
2267 		goto unlock_mutex;
2268 	}
2269 
2270 try_again:
2271 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2272 	if (hugetlb)
2273 		goto unlock_mutex;
2274 
2275 	if (TestSetPageHWPoison(p)) {
2276 		res = -EHWPOISON;
2277 		if (flags & MF_ACTION_REQUIRED)
2278 			res = kill_accessing_process(current, pfn, flags);
2279 		if (flags & MF_COUNT_INCREASED)
2280 			put_page(p);
2281 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2282 		goto unlock_mutex;
2283 	}
2284 
2285 	/*
2286 	 * We need/can do nothing about count=0 pages.
2287 	 * 1) it's a free page, and therefore in safe hand:
2288 	 *    check_new_page() will be the gate keeper.
2289 	 * 2) it's part of a non-compound high order page.
2290 	 *    Implies some kernel user: cannot stop them from
2291 	 *    R/W the page; let's pray that the page has been
2292 	 *    used and will be freed some time later.
2293 	 * In fact it's dangerous to directly bump up page count from 0,
2294 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2295 	 */
2296 	if (!(flags & MF_COUNT_INCREASED)) {
2297 		res = get_hwpoison_page(p, flags);
2298 		if (!res) {
2299 			if (is_free_buddy_page(p)) {
2300 				if (take_page_off_buddy(p)) {
2301 					page_ref_inc(p);
2302 					res = MF_RECOVERED;
2303 				} else {
2304 					/* We lost the race, try again */
2305 					if (retry) {
2306 						ClearPageHWPoison(p);
2307 						retry = false;
2308 						goto try_again;
2309 					}
2310 					res = MF_FAILED;
2311 				}
2312 				res = action_result(pfn, MF_MSG_BUDDY, res);
2313 			} else {
2314 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2315 			}
2316 			goto unlock_mutex;
2317 		} else if (res < 0) {
2318 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2319 			goto unlock_mutex;
2320 		}
2321 	}
2322 
2323 	folio = page_folio(p);
2324 
2325 	/* filter pages that are protected from hwpoison test by users */
2326 	folio_lock(folio);
2327 	if (hwpoison_filter(p)) {
2328 		ClearPageHWPoison(p);
2329 		folio_unlock(folio);
2330 		folio_put(folio);
2331 		res = -EOPNOTSUPP;
2332 		goto unlock_mutex;
2333 	}
2334 	folio_unlock(folio);
2335 
2336 	if (folio_test_large(folio)) {
2337 		/*
2338 		 * The flag must be set after the refcount is bumped
2339 		 * otherwise it may race with THP split.
2340 		 * And the flag can't be set in get_hwpoison_page() since
2341 		 * it is called by soft offline too and it is just called
2342 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2343 		 * place.
2344 		 *
2345 		 * Don't need care about the above error handling paths for
2346 		 * get_hwpoison_page() since they handle either free page
2347 		 * or unhandlable page.  The refcount is bumped iff the
2348 		 * page is a valid handlable page.
2349 		 */
2350 		folio_set_has_hwpoisoned(folio);
2351 		if (try_to_split_thp_page(p, false) < 0) {
2352 			res = -EHWPOISON;
2353 			kill_procs_now(p, pfn, flags, folio);
2354 			put_page(p);
2355 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2356 			goto unlock_mutex;
2357 		}
2358 		VM_BUG_ON_PAGE(!page_count(p), p);
2359 		folio = page_folio(p);
2360 	}
2361 
2362 	/*
2363 	 * We ignore non-LRU pages for good reasons.
2364 	 * - PG_locked is only well defined for LRU pages and a few others
2365 	 * - to avoid races with __SetPageLocked()
2366 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2367 	 * The check (unnecessarily) ignores LRU pages being isolated and
2368 	 * walked by the page reclaim code, however that's not a big loss.
2369 	 */
2370 	shake_folio(folio);
2371 
2372 	folio_lock(folio);
2373 
2374 	/*
2375 	 * We're only intended to deal with the non-Compound page here.
2376 	 * The page cannot become compound pages again as folio has been
2377 	 * splited and extra refcnt is held.
2378 	 */
2379 	WARN_ON(folio_test_large(folio));
2380 
2381 	/*
2382 	 * We use page flags to determine what action should be taken, but
2383 	 * the flags can be modified by the error containment action.  One
2384 	 * example is an mlocked page, where PG_mlocked is cleared by
2385 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2386 	 * status correctly, we save a copy of the page flags at this time.
2387 	 */
2388 	page_flags = folio->flags;
2389 
2390 	/*
2391 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2392 	 * the folio lock. We need to wait for writeback completion for this
2393 	 * folio or it may trigger a vfs BUG while evicting inode.
2394 	 */
2395 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2396 		goto identify_page_state;
2397 
2398 	/*
2399 	 * It's very difficult to mess with pages currently under IO
2400 	 * and in many cases impossible, so we just avoid it here.
2401 	 */
2402 	folio_wait_writeback(folio);
2403 
2404 	/*
2405 	 * Now take care of user space mappings.
2406 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2407 	 */
2408 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2409 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2410 		goto unlock_page;
2411 	}
2412 
2413 	/*
2414 	 * Torn down by someone else?
2415 	 */
2416 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2417 	    folio->mapping == NULL) {
2418 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2419 		goto unlock_page;
2420 	}
2421 
2422 identify_page_state:
2423 	res = identify_page_state(pfn, p, page_flags);
2424 	mutex_unlock(&mf_mutex);
2425 	return res;
2426 unlock_page:
2427 	folio_unlock(folio);
2428 unlock_mutex:
2429 	mutex_unlock(&mf_mutex);
2430 	return res;
2431 }
2432 EXPORT_SYMBOL_GPL(memory_failure);
2433 
2434 #define MEMORY_FAILURE_FIFO_ORDER	4
2435 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2436 
2437 struct memory_failure_entry {
2438 	unsigned long pfn;
2439 	int flags;
2440 };
2441 
2442 struct memory_failure_cpu {
2443 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2444 		      MEMORY_FAILURE_FIFO_SIZE);
2445 	raw_spinlock_t lock;
2446 	struct work_struct work;
2447 };
2448 
2449 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2450 
2451 /**
2452  * memory_failure_queue - Schedule handling memory failure of a page.
2453  * @pfn: Page Number of the corrupted page
2454  * @flags: Flags for memory failure handling
2455  *
2456  * This function is called by the low level hardware error handler
2457  * when it detects hardware memory corruption of a page. It schedules
2458  * the recovering of error page, including dropping pages, killing
2459  * processes etc.
2460  *
2461  * The function is primarily of use for corruptions that
2462  * happen outside the current execution context (e.g. when
2463  * detected by a background scrubber)
2464  *
2465  * Can run in IRQ context.
2466  */
memory_failure_queue(unsigned long pfn,int flags)2467 void memory_failure_queue(unsigned long pfn, int flags)
2468 {
2469 	struct memory_failure_cpu *mf_cpu;
2470 	unsigned long proc_flags;
2471 	bool buffer_overflow;
2472 	struct memory_failure_entry entry = {
2473 		.pfn =		pfn,
2474 		.flags =	flags,
2475 	};
2476 
2477 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2478 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2479 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2480 	if (!buffer_overflow)
2481 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2482 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2483 	put_cpu_var(memory_failure_cpu);
2484 	if (buffer_overflow)
2485 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2486 		       pfn);
2487 }
2488 EXPORT_SYMBOL_GPL(memory_failure_queue);
2489 
memory_failure_work_func(struct work_struct * work)2490 static void memory_failure_work_func(struct work_struct *work)
2491 {
2492 	struct memory_failure_cpu *mf_cpu;
2493 	struct memory_failure_entry entry = { 0, };
2494 	unsigned long proc_flags;
2495 	int gotten;
2496 
2497 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2498 	for (;;) {
2499 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2500 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2501 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2502 		if (!gotten)
2503 			break;
2504 		if (entry.flags & MF_SOFT_OFFLINE)
2505 			soft_offline_page(entry.pfn, entry.flags);
2506 		else
2507 			memory_failure(entry.pfn, entry.flags);
2508 	}
2509 }
2510 
2511 /*
2512  * Process memory_failure work queued on the specified CPU.
2513  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2514  */
memory_failure_queue_kick(int cpu)2515 void memory_failure_queue_kick(int cpu)
2516 {
2517 	struct memory_failure_cpu *mf_cpu;
2518 
2519 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2520 	cancel_work_sync(&mf_cpu->work);
2521 	memory_failure_work_func(&mf_cpu->work);
2522 }
2523 
memory_failure_init(void)2524 static int __init memory_failure_init(void)
2525 {
2526 	struct memory_failure_cpu *mf_cpu;
2527 	int cpu;
2528 
2529 	for_each_possible_cpu(cpu) {
2530 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2531 		raw_spin_lock_init(&mf_cpu->lock);
2532 		INIT_KFIFO(mf_cpu->fifo);
2533 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2534 	}
2535 
2536 	register_sysctl_init("vm", memory_failure_table);
2537 
2538 	return 0;
2539 }
2540 core_initcall(memory_failure_init);
2541 
2542 #undef pr_fmt
2543 #define pr_fmt(fmt)	"Unpoison: " fmt
2544 #define unpoison_pr_info(fmt, pfn, rs)			\
2545 ({							\
2546 	if (__ratelimit(rs))				\
2547 		pr_info(fmt, pfn);			\
2548 })
2549 
2550 /**
2551  * unpoison_memory - Unpoison a previously poisoned page
2552  * @pfn: Page number of the to be unpoisoned page
2553  *
2554  * Software-unpoison a page that has been poisoned by
2555  * memory_failure() earlier.
2556  *
2557  * This is only done on the software-level, so it only works
2558  * for linux injected failures, not real hardware failures
2559  *
2560  * Returns 0 for success, otherwise -errno.
2561  */
unpoison_memory(unsigned long pfn)2562 int unpoison_memory(unsigned long pfn)
2563 {
2564 	struct folio *folio;
2565 	struct page *p;
2566 	int ret = -EBUSY, ghp;
2567 	unsigned long count;
2568 	bool huge = false;
2569 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2570 					DEFAULT_RATELIMIT_BURST);
2571 
2572 	p = pfn_to_online_page(pfn);
2573 	if (!p)
2574 		return -EIO;
2575 	folio = page_folio(p);
2576 
2577 	mutex_lock(&mf_mutex);
2578 
2579 	if (hw_memory_failure) {
2580 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2581 				 pfn, &unpoison_rs);
2582 		ret = -EOPNOTSUPP;
2583 		goto unlock_mutex;
2584 	}
2585 
2586 	if (is_huge_zero_folio(folio)) {
2587 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2588 				 pfn, &unpoison_rs);
2589 		ret = -EOPNOTSUPP;
2590 		goto unlock_mutex;
2591 	}
2592 
2593 	if (!PageHWPoison(p)) {
2594 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2595 				 pfn, &unpoison_rs);
2596 		goto unlock_mutex;
2597 	}
2598 
2599 	if (folio_ref_count(folio) > 1) {
2600 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2601 				 pfn, &unpoison_rs);
2602 		goto unlock_mutex;
2603 	}
2604 
2605 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2606 	    folio_test_reserved(folio) || folio_test_offline(folio))
2607 		goto unlock_mutex;
2608 
2609 	if (folio_mapped(folio)) {
2610 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2611 				 pfn, &unpoison_rs);
2612 		goto unlock_mutex;
2613 	}
2614 
2615 	if (folio_mapping(folio)) {
2616 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2617 				 pfn, &unpoison_rs);
2618 		goto unlock_mutex;
2619 	}
2620 
2621 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2622 	if (!ghp) {
2623 		if (folio_test_hugetlb(folio)) {
2624 			huge = true;
2625 			count = folio_free_raw_hwp(folio, false);
2626 			if (count == 0)
2627 				goto unlock_mutex;
2628 		}
2629 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2630 	} else if (ghp < 0) {
2631 		if (ghp == -EHWPOISON) {
2632 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2633 		} else {
2634 			ret = ghp;
2635 			unpoison_pr_info("%#lx: failed to grab page\n",
2636 					 pfn, &unpoison_rs);
2637 		}
2638 	} else {
2639 		if (folio_test_hugetlb(folio)) {
2640 			huge = true;
2641 			count = folio_free_raw_hwp(folio, false);
2642 			if (count == 0) {
2643 				folio_put(folio);
2644 				goto unlock_mutex;
2645 			}
2646 		}
2647 
2648 		folio_put(folio);
2649 		if (TestClearPageHWPoison(p)) {
2650 			folio_put(folio);
2651 			ret = 0;
2652 		}
2653 	}
2654 
2655 unlock_mutex:
2656 	mutex_unlock(&mf_mutex);
2657 	if (!ret) {
2658 		if (!huge)
2659 			num_poisoned_pages_sub(pfn, 1);
2660 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2661 				 page_to_pfn(p), &unpoison_rs);
2662 	}
2663 	return ret;
2664 }
2665 EXPORT_SYMBOL(unpoison_memory);
2666 
2667 #undef pr_fmt
2668 #define pr_fmt(fmt) "Soft offline: " fmt
2669 
2670 /*
2671  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2672  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2673  * If the page is mapped, it migrates the contents over.
2674  */
soft_offline_in_use_page(struct page * page)2675 static int soft_offline_in_use_page(struct page *page)
2676 {
2677 	long ret = 0;
2678 	unsigned long pfn = page_to_pfn(page);
2679 	struct folio *folio = page_folio(page);
2680 	char const *msg_page[] = {"page", "hugepage"};
2681 	bool huge = folio_test_hugetlb(folio);
2682 	bool isolated;
2683 	LIST_HEAD(pagelist);
2684 	struct migration_target_control mtc = {
2685 		.nid = NUMA_NO_NODE,
2686 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2687 		.reason = MR_MEMORY_FAILURE,
2688 	};
2689 
2690 	if (!huge && folio_test_large(folio)) {
2691 		if (try_to_split_thp_page(page, true)) {
2692 			pr_info("%#lx: thp split failed\n", pfn);
2693 			return -EBUSY;
2694 		}
2695 		folio = page_folio(page);
2696 	}
2697 
2698 	folio_lock(folio);
2699 	if (!huge)
2700 		folio_wait_writeback(folio);
2701 	if (PageHWPoison(page)) {
2702 		folio_unlock(folio);
2703 		folio_put(folio);
2704 		pr_info("%#lx: page already poisoned\n", pfn);
2705 		return 0;
2706 	}
2707 
2708 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2709 		/*
2710 		 * Try to invalidate first. This should work for
2711 		 * non dirty unmapped page cache pages.
2712 		 */
2713 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2714 	folio_unlock(folio);
2715 
2716 	if (ret) {
2717 		pr_info("%#lx: invalidated\n", pfn);
2718 		page_handle_poison(page, false, true);
2719 		return 0;
2720 	}
2721 
2722 	isolated = isolate_folio_to_list(folio, &pagelist);
2723 
2724 	/*
2725 	 * If we succeed to isolate the folio, we grabbed another refcount on
2726 	 * the folio, so we can safely drop the one we got from get_any_page().
2727 	 * If we failed to isolate the folio, it means that we cannot go further
2728 	 * and we will return an error, so drop the reference we got from
2729 	 * get_any_page() as well.
2730 	 */
2731 	folio_put(folio);
2732 
2733 	if (isolated) {
2734 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2735 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2736 		if (!ret) {
2737 			bool release = !huge;
2738 
2739 			if (!page_handle_poison(page, huge, release))
2740 				ret = -EBUSY;
2741 		} else {
2742 			if (!list_empty(&pagelist))
2743 				putback_movable_pages(&pagelist);
2744 
2745 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2746 				pfn, msg_page[huge], ret, &page->flags);
2747 			if (ret > 0)
2748 				ret = -EBUSY;
2749 		}
2750 	} else {
2751 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2752 			pfn, msg_page[huge], page_count(page), &page->flags);
2753 		ret = -EBUSY;
2754 	}
2755 	return ret;
2756 }
2757 
2758 /**
2759  * soft_offline_page - Soft offline a page.
2760  * @pfn: pfn to soft-offline
2761  * @flags: flags. Same as memory_failure().
2762  *
2763  * Returns 0 on success,
2764  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2765  *         disabled by /proc/sys/vm/enable_soft_offline,
2766  *         < 0 otherwise negated errno.
2767  *
2768  * Soft offline a page, by migration or invalidation,
2769  * without killing anything. This is for the case when
2770  * a page is not corrupted yet (so it's still valid to access),
2771  * but has had a number of corrected errors and is better taken
2772  * out.
2773  *
2774  * The actual policy on when to do that is maintained by
2775  * user space.
2776  *
2777  * This should never impact any application or cause data loss,
2778  * however it might take some time.
2779  *
2780  * This is not a 100% solution for all memory, but tries to be
2781  * ``good enough'' for the majority of memory.
2782  */
soft_offline_page(unsigned long pfn,int flags)2783 int soft_offline_page(unsigned long pfn, int flags)
2784 {
2785 	int ret;
2786 	bool try_again = true;
2787 	struct page *page;
2788 
2789 	if (!pfn_valid(pfn)) {
2790 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2791 		return -ENXIO;
2792 	}
2793 
2794 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2795 	page = pfn_to_online_page(pfn);
2796 	if (!page) {
2797 		put_ref_page(pfn, flags);
2798 		return -EIO;
2799 	}
2800 
2801 	if (!sysctl_enable_soft_offline) {
2802 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2803 		put_ref_page(pfn, flags);
2804 		return -EOPNOTSUPP;
2805 	}
2806 
2807 	mutex_lock(&mf_mutex);
2808 
2809 	if (PageHWPoison(page)) {
2810 		pr_info("%#lx: page already poisoned\n", pfn);
2811 		put_ref_page(pfn, flags);
2812 		mutex_unlock(&mf_mutex);
2813 		return 0;
2814 	}
2815 
2816 retry:
2817 	get_online_mems();
2818 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2819 	put_online_mems();
2820 
2821 	if (hwpoison_filter(page)) {
2822 		if (ret > 0)
2823 			put_page(page);
2824 
2825 		mutex_unlock(&mf_mutex);
2826 		return -EOPNOTSUPP;
2827 	}
2828 
2829 	if (ret > 0) {
2830 		ret = soft_offline_in_use_page(page);
2831 	} else if (ret == 0) {
2832 		if (!page_handle_poison(page, true, false)) {
2833 			if (try_again) {
2834 				try_again = false;
2835 				flags &= ~MF_COUNT_INCREASED;
2836 				goto retry;
2837 			}
2838 			ret = -EBUSY;
2839 		}
2840 	}
2841 
2842 	mutex_unlock(&mf_mutex);
2843 
2844 	return ret;
2845 }
2846