1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37 #define pr_fmt(fmt) "Memory failure: " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66
67 static int sysctl_memory_failure_early_kill __read_mostly;
68
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74
75 static bool hw_memory_failure __read_mostly = false;
76
77 static DEFINE_MUTEX(mf_mutex);
78
num_poisoned_pages_inc(unsigned long pfn)79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 atomic_long_inc(&num_poisoned_pages);
82 memblk_nr_poison_inc(pfn);
83 }
84
num_poisoned_pages_sub(unsigned long pfn,long i)85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 atomic_long_sub(i, &num_poisoned_pages);
88 if (pfn != -1UL)
89 memblk_nr_poison_sub(pfn, i);
90 }
91
92 /**
93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94 * @_name: name of the file in the per NUMA sysfs directory.
95 */
96 #define MF_ATTR_RO(_name) \
97 static ssize_t _name##_show(struct device *dev, \
98 struct device_attribute *attr, \
99 char *buf) \
100 { \
101 struct memory_failure_stats *mf_stats = \
102 &NODE_DATA(dev->id)->mf_stats; \
103 return sprintf(buf, "%lu\n", mf_stats->_name); \
104 } \
105 static DEVICE_ATTR_RO(_name)
106
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112
113 static struct attribute *memory_failure_attr[] = {
114 &dev_attr_total.attr,
115 &dev_attr_ignored.attr,
116 &dev_attr_failed.attr,
117 &dev_attr_delayed.attr,
118 &dev_attr_recovered.attr,
119 NULL,
120 };
121
122 const struct attribute_group memory_failure_attr_group = {
123 .name = "memory_failure",
124 .attrs = memory_failure_attr,
125 };
126
127 static struct ctl_table memory_failure_table[] = {
128 {
129 .procname = "memory_failure_early_kill",
130 .data = &sysctl_memory_failure_early_kill,
131 .maxlen = sizeof(sysctl_memory_failure_early_kill),
132 .mode = 0644,
133 .proc_handler = proc_dointvec_minmax,
134 .extra1 = SYSCTL_ZERO,
135 .extra2 = SYSCTL_ONE,
136 },
137 {
138 .procname = "memory_failure_recovery",
139 .data = &sysctl_memory_failure_recovery,
140 .maxlen = sizeof(sysctl_memory_failure_recovery),
141 .mode = 0644,
142 .proc_handler = proc_dointvec_minmax,
143 .extra1 = SYSCTL_ZERO,
144 .extra2 = SYSCTL_ONE,
145 },
146 {
147 .procname = "enable_soft_offline",
148 .data = &sysctl_enable_soft_offline,
149 .maxlen = sizeof(sysctl_enable_soft_offline),
150 .mode = 0644,
151 .proc_handler = proc_dointvec_minmax,
152 .extra1 = SYSCTL_ZERO,
153 .extra2 = SYSCTL_ONE,
154 }
155 };
156
157 /*
158 * Return values:
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
162 */
__page_handle_poison(struct page * page)163 static int __page_handle_poison(struct page *page)
164 {
165 int ret;
166
167 /*
168 * zone_pcp_disable() can't be used here. It will
169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 * optimization is enabled. This will break current lock dependency
172 * chain and leads to deadlock.
173 * Disabling pcp before dissolving the page was a deterministic
174 * approach because we made sure that those pages cannot end up in any
175 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 * but nothing guarantees that those pages do not get back to a PCP
177 * queue if we need to refill those.
178 */
179 ret = dissolve_free_hugetlb_folio(page_folio(page));
180 if (!ret) {
181 drain_all_pages(page_zone(page));
182 ret = take_page_off_buddy(page);
183 }
184
185 return ret;
186 }
187
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 if (hugepage_or_freepage) {
191 /*
192 * Doing this check for free pages is also fine since
193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 */
195 if (__page_handle_poison(page) <= 0)
196 /*
197 * We could fail to take off the target page from buddy
198 * for example due to racy page allocation, but that's
199 * acceptable because soft-offlined page is not broken
200 * and if someone really want to use it, they should
201 * take it.
202 */
203 return false;
204 }
205
206 SetPageHWPoison(page);
207 if (release)
208 put_page(page);
209 page_ref_inc(page);
210 num_poisoned_pages_inc(page_to_pfn(page));
211
212 return true;
213 }
214
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227
hwpoison_filter_dev(struct page * p)228 static int hwpoison_filter_dev(struct page *p)
229 {
230 struct folio *folio = page_folio(p);
231 struct address_space *mapping;
232 dev_t dev;
233
234 if (hwpoison_filter_dev_major == ~0U &&
235 hwpoison_filter_dev_minor == ~0U)
236 return 0;
237
238 mapping = folio_mapping(folio);
239 if (mapping == NULL || mapping->host == NULL)
240 return -EINVAL;
241
242 dev = mapping->host->i_sb->s_dev;
243 if (hwpoison_filter_dev_major != ~0U &&
244 hwpoison_filter_dev_major != MAJOR(dev))
245 return -EINVAL;
246 if (hwpoison_filter_dev_minor != ~0U &&
247 hwpoison_filter_dev_minor != MINOR(dev))
248 return -EINVAL;
249
250 return 0;
251 }
252
hwpoison_filter_flags(struct page * p)253 static int hwpoison_filter_flags(struct page *p)
254 {
255 if (!hwpoison_filter_flags_mask)
256 return 0;
257
258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 hwpoison_filter_flags_value)
260 return 0;
261 else
262 return -EINVAL;
263 }
264
265 /*
266 * This allows stress tests to limit test scope to a collection of tasks
267 * by putting them under some memcg. This prevents killing unrelated/important
268 * processes such as /sbin/init. Note that the target task may share clean
269 * pages with init (eg. libc text), which is harmless. If the target task
270 * share _dirty_ pages with another task B, the test scheme must make sure B
271 * is also included in the memcg. At last, due to race conditions this filter
272 * can only guarantee that the page either belongs to the memcg tasks, or is
273 * a freed page.
274 */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)278 static int hwpoison_filter_task(struct page *p)
279 {
280 if (!hwpoison_filter_memcg)
281 return 0;
282
283 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 return -EINVAL;
285
286 return 0;
287 }
288 #else
hwpoison_filter_task(struct page * p)289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291
hwpoison_filter(struct page * p)292 int hwpoison_filter(struct page *p)
293 {
294 if (!hwpoison_filter_enable)
295 return 0;
296
297 if (hwpoison_filter_dev(p))
298 return -EINVAL;
299
300 if (hwpoison_filter_flags(p))
301 return -EINVAL;
302
303 if (hwpoison_filter_task(p))
304 return -EINVAL;
305
306 return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
hwpoison_filter(struct page * p)310 int hwpoison_filter(struct page *p)
311 {
312 return 0;
313 }
314 #endif
315
316 /*
317 * Kill all processes that have a poisoned page mapped and then isolate
318 * the page.
319 *
320 * General strategy:
321 * Find all processes having the page mapped and kill them.
322 * But we keep a page reference around so that the page is not
323 * actually freed yet.
324 * Then stash the page away
325 *
326 * There's no convenient way to get back to mapped processes
327 * from the VMAs. So do a brute-force search over all
328 * running processes.
329 *
330 * Remember that machine checks are not common (or rather
331 * if they are common you have other problems), so this shouldn't
332 * be a performance issue.
333 *
334 * Also there are some races possible while we get from the
335 * error detection to actually handle it.
336 */
337
338 struct to_kill {
339 struct list_head nd;
340 struct task_struct *tsk;
341 unsigned long addr;
342 short size_shift;
343 };
344
345 /*
346 * Send all the processes who have the page mapped a signal.
347 * ``action optional'' if they are not immediately affected by the error
348 * ``action required'' if error happened in current execution context
349 */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352 struct task_struct *t = tk->tsk;
353 short addr_lsb = tk->size_shift;
354 int ret = 0;
355
356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 pfn, t->comm, task_pid_nr(t));
358
359 if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 ret = force_sig_mceerr(BUS_MCEERR_AR,
361 (void __user *)tk->addr, addr_lsb);
362 else
363 /*
364 * Signal other processes sharing the page if they have
365 * PF_MCE_EARLY set.
366 * Don't use force here, it's convenient if the signal
367 * can be temporarily blocked.
368 */
369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 addr_lsb, t);
371 if (ret < 0)
372 pr_info("Error sending signal to %s:%d: %d\n",
373 t->comm, task_pid_nr(t), ret);
374 return ret;
375 }
376
377 /*
378 * Unknown page type encountered. Try to check whether it can turn PageLRU by
379 * lru_add_drain_all.
380 */
shake_folio(struct folio * folio)381 void shake_folio(struct folio *folio)
382 {
383 if (folio_test_hugetlb(folio))
384 return;
385 /*
386 * TODO: Could shrink slab caches here if a lightweight range-based
387 * shrinker will be available.
388 */
389 if (folio_test_slab(folio))
390 return;
391
392 lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395
shake_page(struct page * page)396 static void shake_page(struct page *page)
397 {
398 shake_folio(page_folio(page));
399 }
400
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 unsigned long address)
403 {
404 unsigned long ret = 0;
405 pgd_t *pgd;
406 p4d_t *p4d;
407 pud_t *pud;
408 pmd_t *pmd;
409 pte_t *pte;
410 pte_t ptent;
411
412 VM_BUG_ON_VMA(address == -EFAULT, vma);
413 pgd = pgd_offset(vma->vm_mm, address);
414 if (!pgd_present(*pgd))
415 return 0;
416 p4d = p4d_offset(pgd, address);
417 if (!p4d_present(*p4d))
418 return 0;
419 pud = pud_offset(p4d, address);
420 if (!pud_present(*pud))
421 return 0;
422 if (pud_devmap(*pud))
423 return PUD_SHIFT;
424 pmd = pmd_offset(pud, address);
425 if (!pmd_present(*pmd))
426 return 0;
427 if (pmd_devmap(*pmd))
428 return PMD_SHIFT;
429 pte = pte_offset_map(pmd, address);
430 if (!pte)
431 return 0;
432 ptent = ptep_get(pte);
433 if (pte_present(ptent) && pte_devmap(ptent))
434 ret = PAGE_SHIFT;
435 pte_unmap(pte);
436 return ret;
437 }
438
439 /*
440 * Failure handling: if we can't find or can't kill a process there's
441 * not much we can do. We just print a message and ignore otherwise.
442 */
443
444 /*
445 * Schedule a process for later kill.
446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447 */
__add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)448 static void __add_to_kill(struct task_struct *tsk, struct page *p,
449 struct vm_area_struct *vma, struct list_head *to_kill,
450 unsigned long addr)
451 {
452 struct to_kill *tk;
453
454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 if (!tk) {
456 pr_err("Out of memory while machine check handling\n");
457 return;
458 }
459
460 tk->addr = addr;
461 if (is_zone_device_page(p))
462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 else
464 tk->size_shift = page_shift(compound_head(p));
465
466 /*
467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 * so "tk->size_shift == 0" effectively checks no mapping on
470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 * to a process' address space, it's possible not all N VMAs
472 * contain mappings for the page, but at least one VMA does.
473 * Only deliver SIGBUS with payload derived from the VMA that
474 * has a mapping for the page.
475 */
476 if (tk->addr == -EFAULT) {
477 pr_info("Unable to find user space address %lx in %s\n",
478 page_to_pfn(p), tsk->comm);
479 } else if (tk->size_shift == 0) {
480 kfree(tk);
481 return;
482 }
483
484 get_task_struct(tsk);
485 tk->tsk = tsk;
486 list_add_tail(&tk->nd, to_kill);
487 }
488
add_to_kill_anon_file(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)489 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
490 struct vm_area_struct *vma, struct list_head *to_kill,
491 unsigned long addr)
492 {
493 if (addr == -EFAULT)
494 return;
495 __add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497
498 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 struct task_struct *tsk)
501 {
502 struct to_kill *tk, *next;
503
504 list_for_each_entry_safe(tk, next, to_kill, nd) {
505 if (tk->tsk == tsk)
506 return true;
507 }
508
509 return false;
510 }
511
add_to_kill_ksm(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)512 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
513 struct vm_area_struct *vma, struct list_head *to_kill,
514 unsigned long addr)
515 {
516 if (!task_in_to_kill_list(to_kill, tsk))
517 __add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521 * Kill the processes that have been collected earlier.
522 *
523 * Only do anything when FORCEKILL is set, otherwise just free the
524 * list (this is used for clean pages which do not need killing)
525 */
kill_procs(struct list_head * to_kill,int forcekill,unsigned long pfn,int flags)526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 unsigned long pfn, int flags)
528 {
529 struct to_kill *tk, *next;
530
531 list_for_each_entry_safe(tk, next, to_kill, nd) {
532 if (forcekill) {
533 if (tk->addr == -EFAULT) {
534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 tk->tsk, PIDTYPE_PID);
538 }
539
540 /*
541 * In theory the process could have mapped
542 * something else on the address in-between. We could
543 * check for that, but we need to tell the
544 * process anyways.
545 */
546 else if (kill_proc(tk, pfn, flags) < 0)
547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 }
550 list_del(&tk->nd);
551 put_task_struct(tk->tsk);
552 kfree(tk);
553 }
554 }
555
556 /*
557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558 * on behalf of the thread group. Return task_struct of the (first found)
559 * dedicated thread if found, and return NULL otherwise.
560 *
561 * We already hold rcu lock in the caller, so we don't have to call
562 * rcu_read_lock/unlock() in this function.
563 */
find_early_kill_thread(struct task_struct * tsk)564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566 struct task_struct *t;
567
568 for_each_thread(tsk, t) {
569 if (t->flags & PF_MCE_PROCESS) {
570 if (t->flags & PF_MCE_EARLY)
571 return t;
572 } else {
573 if (sysctl_memory_failure_early_kill)
574 return t;
575 }
576 }
577 return NULL;
578 }
579
580 /*
581 * Determine whether a given process is "early kill" process which expects
582 * to be signaled when some page under the process is hwpoisoned.
583 * Return task_struct of the dedicated thread (main thread unless explicitly
584 * specified) if the process is "early kill" and otherwise returns NULL.
585 *
586 * Note that the above is true for Action Optional case. For Action Required
587 * case, it's only meaningful to the current thread which need to be signaled
588 * with SIGBUS, this error is Action Optional for other non current
589 * processes sharing the same error page,if the process is "early kill", the
590 * task_struct of the dedicated thread will also be returned.
591 */
task_early_kill(struct task_struct * tsk,int force_early)592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594 if (!tsk->mm)
595 return NULL;
596 /*
597 * Comparing ->mm here because current task might represent
598 * a subthread, while tsk always points to the main thread.
599 */
600 if (force_early && tsk->mm == current->mm)
601 return current;
602
603 return find_early_kill_thread(tsk);
604 }
605
606 /*
607 * Collect processes when the error hit an anonymous page.
608 */
collect_procs_anon(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)609 static void collect_procs_anon(struct folio *folio, struct page *page,
610 struct list_head *to_kill, int force_early)
611 {
612 struct task_struct *tsk;
613 struct anon_vma *av;
614 pgoff_t pgoff;
615
616 av = folio_lock_anon_vma_read(folio, NULL);
617 if (av == NULL) /* Not actually mapped anymore */
618 return;
619
620 pgoff = page_to_pgoff(page);
621 rcu_read_lock();
622 for_each_process(tsk) {
623 struct vm_area_struct *vma;
624 struct anon_vma_chain *vmac;
625 struct task_struct *t = task_early_kill(tsk, force_early);
626 unsigned long addr;
627
628 if (!t)
629 continue;
630 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631 pgoff, pgoff) {
632 vma = vmac->vma;
633 if (vma->vm_mm != t->mm)
634 continue;
635 addr = page_mapped_in_vma(page, vma);
636 add_to_kill_anon_file(t, page, vma, to_kill, addr);
637 }
638 }
639 rcu_read_unlock();
640 anon_vma_unlock_read(av);
641 }
642
643 /*
644 * Collect processes when the error hit a file mapped page.
645 */
collect_procs_file(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)646 static void collect_procs_file(struct folio *folio, struct page *page,
647 struct list_head *to_kill, int force_early)
648 {
649 struct vm_area_struct *vma;
650 struct task_struct *tsk;
651 struct address_space *mapping = folio->mapping;
652 pgoff_t pgoff;
653
654 i_mmap_lock_read(mapping);
655 rcu_read_lock();
656 pgoff = page_to_pgoff(page);
657 for_each_process(tsk) {
658 struct task_struct *t = task_early_kill(tsk, force_early);
659 unsigned long addr;
660
661 if (!t)
662 continue;
663 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664 pgoff) {
665 /*
666 * Send early kill signal to tasks where a vma covers
667 * the page but the corrupted page is not necessarily
668 * mapped in its pte.
669 * Assume applications who requested early kill want
670 * to be informed of all such data corruptions.
671 */
672 if (vma->vm_mm != t->mm)
673 continue;
674 addr = page_address_in_vma(page, vma);
675 add_to_kill_anon_file(t, page, vma, to_kill, addr);
676 }
677 }
678 rcu_read_unlock();
679 i_mmap_unlock_read(mapping);
680 }
681
682 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)683 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
684 struct vm_area_struct *vma,
685 struct list_head *to_kill, pgoff_t pgoff)
686 {
687 unsigned long addr = vma_address(vma, pgoff, 1);
688 __add_to_kill(tsk, p, vma, to_kill, addr);
689 }
690
691 /*
692 * Collect processes when the error hit a fsdax page.
693 */
collect_procs_fsdax(struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill,bool pre_remove)694 static void collect_procs_fsdax(struct page *page,
695 struct address_space *mapping, pgoff_t pgoff,
696 struct list_head *to_kill, bool pre_remove)
697 {
698 struct vm_area_struct *vma;
699 struct task_struct *tsk;
700
701 i_mmap_lock_read(mapping);
702 rcu_read_lock();
703 for_each_process(tsk) {
704 struct task_struct *t = tsk;
705
706 /*
707 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
708 * the current may not be the one accessing the fsdax page.
709 * Otherwise, search for the current task.
710 */
711 if (!pre_remove)
712 t = task_early_kill(tsk, true);
713 if (!t)
714 continue;
715 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
716 if (vma->vm_mm == t->mm)
717 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
718 }
719 }
720 rcu_read_unlock();
721 i_mmap_unlock_read(mapping);
722 }
723 #endif /* CONFIG_FS_DAX */
724
725 /*
726 * Collect the processes who have the corrupted page mapped to kill.
727 */
collect_procs(struct folio * folio,struct page * page,struct list_head * tokill,int force_early)728 static void collect_procs(struct folio *folio, struct page *page,
729 struct list_head *tokill, int force_early)
730 {
731 if (!folio->mapping)
732 return;
733 if (unlikely(folio_test_ksm(folio)))
734 collect_procs_ksm(folio, page, tokill, force_early);
735 else if (folio_test_anon(folio))
736 collect_procs_anon(folio, page, tokill, force_early);
737 else
738 collect_procs_file(folio, page, tokill, force_early);
739 }
740
741 struct hwpoison_walk {
742 struct to_kill tk;
743 unsigned long pfn;
744 int flags;
745 };
746
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)747 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
748 {
749 tk->addr = addr;
750 tk->size_shift = shift;
751 }
752
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)753 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
754 unsigned long poisoned_pfn, struct to_kill *tk)
755 {
756 unsigned long pfn = 0;
757
758 if (pte_present(pte)) {
759 pfn = pte_pfn(pte);
760 } else {
761 swp_entry_t swp = pte_to_swp_entry(pte);
762
763 if (is_hwpoison_entry(swp))
764 pfn = swp_offset_pfn(swp);
765 }
766
767 if (!pfn || pfn != poisoned_pfn)
768 return 0;
769
770 set_to_kill(tk, addr, shift);
771 return 1;
772 }
773
774 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)775 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
776 struct hwpoison_walk *hwp)
777 {
778 pmd_t pmd = *pmdp;
779 unsigned long pfn;
780 unsigned long hwpoison_vaddr;
781
782 if (!pmd_present(pmd))
783 return 0;
784 pfn = pmd_pfn(pmd);
785 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
786 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
787 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
788 return 1;
789 }
790 return 0;
791 }
792 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)793 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
794 struct hwpoison_walk *hwp)
795 {
796 return 0;
797 }
798 #endif
799
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)800 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
801 unsigned long end, struct mm_walk *walk)
802 {
803 struct hwpoison_walk *hwp = walk->private;
804 int ret = 0;
805 pte_t *ptep, *mapped_pte;
806 spinlock_t *ptl;
807
808 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
809 if (ptl) {
810 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
811 spin_unlock(ptl);
812 goto out;
813 }
814
815 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
816 addr, &ptl);
817 if (!ptep)
818 goto out;
819
820 for (; addr != end; ptep++, addr += PAGE_SIZE) {
821 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
822 hwp->pfn, &hwp->tk);
823 if (ret == 1)
824 break;
825 }
826 pte_unmap_unlock(mapped_pte, ptl);
827 out:
828 cond_resched();
829 return ret;
830 }
831
832 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)833 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
834 unsigned long addr, unsigned long end,
835 struct mm_walk *walk)
836 {
837 struct hwpoison_walk *hwp = walk->private;
838 pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
839 struct hstate *h = hstate_vma(walk->vma);
840
841 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
842 hwp->pfn, &hwp->tk);
843 }
844 #else
845 #define hwpoison_hugetlb_range NULL
846 #endif
847
hwpoison_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)848 static int hwpoison_test_walk(unsigned long start, unsigned long end,
849 struct mm_walk *walk)
850 {
851 /* We also want to consider pages mapped into VM_PFNMAP. */
852 return 0;
853 }
854
855 static const struct mm_walk_ops hwpoison_walk_ops = {
856 .pmd_entry = hwpoison_pte_range,
857 .hugetlb_entry = hwpoison_hugetlb_range,
858 .test_walk = hwpoison_test_walk,
859 .walk_lock = PGWALK_RDLOCK,
860 };
861
862 /*
863 * Sends SIGBUS to the current process with error info.
864 *
865 * This function is intended to handle "Action Required" MCEs on already
866 * hardware poisoned pages. They could happen, for example, when
867 * memory_failure() failed to unmap the error page at the first call, or
868 * when multiple local machine checks happened on different CPUs.
869 *
870 * MCE handler currently has no easy access to the error virtual address,
871 * so this function walks page table to find it. The returned virtual address
872 * is proper in most cases, but it could be wrong when the application
873 * process has multiple entries mapping the error page.
874 */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)875 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
876 int flags)
877 {
878 int ret;
879 struct hwpoison_walk priv = {
880 .pfn = pfn,
881 };
882 priv.tk.tsk = p;
883
884 if (!p->mm)
885 return -EFAULT;
886
887 mmap_read_lock(p->mm);
888 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
889 (void *)&priv);
890 /*
891 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
892 * succeeds or fails, then kill the process with SIGBUS.
893 * ret = 0 when poison page is a clean page and it's dropped, no
894 * SIGBUS is needed.
895 */
896 if (ret == 1 && priv.tk.addr)
897 kill_proc(&priv.tk, pfn, flags);
898 mmap_read_unlock(p->mm);
899
900 return ret > 0 ? -EHWPOISON : 0;
901 }
902
903 /*
904 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
905 * But it could not do more to isolate the page from being accessed again,
906 * nor does it kill the process. This is extremely rare and one of the
907 * potential causes is that the page state has been changed due to
908 * underlying race condition. This is the most severe outcomes.
909 *
910 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
911 * It should have killed the process, but it can't isolate the page,
912 * due to conditions such as extra pin, unmap failure, etc. Accessing
913 * the page again may trigger another MCE and the process will be killed
914 * by the m-f() handler immediately.
915 *
916 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
917 * The page is unmapped, and is removed from the LRU or file mapping.
918 * An attempt to access the page again will trigger page fault and the
919 * PF handler will kill the process.
920 *
921 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
922 * The page has been completely isolated, that is, unmapped, taken out of
923 * the buddy system, or hole-punnched out of the file mapping.
924 */
925 static const char *action_name[] = {
926 [MF_IGNORED] = "Ignored",
927 [MF_FAILED] = "Failed",
928 [MF_DELAYED] = "Delayed",
929 [MF_RECOVERED] = "Recovered",
930 };
931
932 static const char * const action_page_types[] = {
933 [MF_MSG_KERNEL] = "reserved kernel page",
934 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
935 [MF_MSG_HUGE] = "huge page",
936 [MF_MSG_FREE_HUGE] = "free huge page",
937 [MF_MSG_GET_HWPOISON] = "get hwpoison page",
938 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
939 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
940 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
941 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
942 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
943 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
944 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
945 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
946 [MF_MSG_CLEAN_LRU] = "clean LRU page",
947 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
948 [MF_MSG_BUDDY] = "free buddy page",
949 [MF_MSG_DAX] = "dax page",
950 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
951 [MF_MSG_ALREADY_POISONED] = "already poisoned page",
952 [MF_MSG_UNKNOWN] = "unknown page",
953 };
954
955 /*
956 * XXX: It is possible that a page is isolated from LRU cache,
957 * and then kept in swap cache or failed to remove from page cache.
958 * The page count will stop it from being freed by unpoison.
959 * Stress tests should be aware of this memory leak problem.
960 */
delete_from_lru_cache(struct folio * folio)961 static int delete_from_lru_cache(struct folio *folio)
962 {
963 if (folio_isolate_lru(folio)) {
964 /*
965 * Clear sensible page flags, so that the buddy system won't
966 * complain when the folio is unpoison-and-freed.
967 */
968 folio_clear_active(folio);
969 folio_clear_unevictable(folio);
970
971 /*
972 * Poisoned page might never drop its ref count to 0 so we have
973 * to uncharge it manually from its memcg.
974 */
975 mem_cgroup_uncharge(folio);
976
977 /*
978 * drop the refcount elevated by folio_isolate_lru()
979 */
980 folio_put(folio);
981 return 0;
982 }
983 return -EIO;
984 }
985
truncate_error_folio(struct folio * folio,unsigned long pfn,struct address_space * mapping)986 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
987 struct address_space *mapping)
988 {
989 int ret = MF_FAILED;
990
991 if (mapping->a_ops->error_remove_folio) {
992 int err = mapping->a_ops->error_remove_folio(mapping, folio);
993
994 if (err != 0)
995 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
996 else if (!filemap_release_folio(folio, GFP_NOIO))
997 pr_info("%#lx: failed to release buffers\n", pfn);
998 else
999 ret = MF_RECOVERED;
1000 } else {
1001 /*
1002 * If the file system doesn't support it just invalidate
1003 * This fails on dirty or anything with private pages
1004 */
1005 if (mapping_evict_folio(mapping, folio))
1006 ret = MF_RECOVERED;
1007 else
1008 pr_info("%#lx: Failed to invalidate\n", pfn);
1009 }
1010
1011 return ret;
1012 }
1013
1014 struct page_state {
1015 unsigned long mask;
1016 unsigned long res;
1017 enum mf_action_page_type type;
1018
1019 /* Callback ->action() has to unlock the relevant page inside it. */
1020 int (*action)(struct page_state *ps, struct page *p);
1021 };
1022
1023 /*
1024 * Return true if page is still referenced by others, otherwise return
1025 * false.
1026 *
1027 * The extra_pins is true when one extra refcount is expected.
1028 */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)1029 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1030 bool extra_pins)
1031 {
1032 int count = page_count(p) - 1;
1033
1034 if (extra_pins)
1035 count -= folio_nr_pages(page_folio(p));
1036
1037 if (count > 0) {
1038 pr_err("%#lx: %s still referenced by %d users\n",
1039 page_to_pfn(p), action_page_types[ps->type], count);
1040 return true;
1041 }
1042
1043 return false;
1044 }
1045
1046 /*
1047 * Error hit kernel page.
1048 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1049 * could be more sophisticated.
1050 */
me_kernel(struct page_state * ps,struct page * p)1051 static int me_kernel(struct page_state *ps, struct page *p)
1052 {
1053 unlock_page(p);
1054 return MF_IGNORED;
1055 }
1056
1057 /*
1058 * Page in unknown state. Do nothing.
1059 * This is a catch-all in case we fail to make sense of the page state.
1060 */
me_unknown(struct page_state * ps,struct page * p)1061 static int me_unknown(struct page_state *ps, struct page *p)
1062 {
1063 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1064 unlock_page(p);
1065 return MF_IGNORED;
1066 }
1067
1068 /*
1069 * Clean (or cleaned) page cache page.
1070 */
me_pagecache_clean(struct page_state * ps,struct page * p)1071 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1072 {
1073 struct folio *folio = page_folio(p);
1074 int ret;
1075 struct address_space *mapping;
1076 bool extra_pins;
1077
1078 delete_from_lru_cache(folio);
1079
1080 /*
1081 * For anonymous folios the only reference left
1082 * should be the one m_f() holds.
1083 */
1084 if (folio_test_anon(folio)) {
1085 ret = MF_RECOVERED;
1086 goto out;
1087 }
1088
1089 /*
1090 * Now truncate the page in the page cache. This is really
1091 * more like a "temporary hole punch"
1092 * Don't do this for block devices when someone else
1093 * has a reference, because it could be file system metadata
1094 * and that's not safe to truncate.
1095 */
1096 mapping = folio_mapping(folio);
1097 if (!mapping) {
1098 /* Folio has been torn down in the meantime */
1099 ret = MF_FAILED;
1100 goto out;
1101 }
1102
1103 /*
1104 * The shmem page is kept in page cache instead of truncating
1105 * so is expected to have an extra refcount after error-handling.
1106 */
1107 extra_pins = shmem_mapping(mapping);
1108
1109 /*
1110 * Truncation is a bit tricky. Enable it per file system for now.
1111 *
1112 * Open: to take i_rwsem or not for this? Right now we don't.
1113 */
1114 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1115 if (has_extra_refcount(ps, p, extra_pins))
1116 ret = MF_FAILED;
1117
1118 out:
1119 folio_unlock(folio);
1120
1121 return ret;
1122 }
1123
1124 /*
1125 * Dirty pagecache page
1126 * Issues: when the error hit a hole page the error is not properly
1127 * propagated.
1128 */
me_pagecache_dirty(struct page_state * ps,struct page * p)1129 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1130 {
1131 struct folio *folio = page_folio(p);
1132 struct address_space *mapping = folio_mapping(folio);
1133
1134 /* TBD: print more information about the file. */
1135 if (mapping) {
1136 /*
1137 * IO error will be reported by write(), fsync(), etc.
1138 * who check the mapping.
1139 * This way the application knows that something went
1140 * wrong with its dirty file data.
1141 */
1142 mapping_set_error(mapping, -EIO);
1143 }
1144
1145 return me_pagecache_clean(ps, p);
1146 }
1147
1148 /*
1149 * Clean and dirty swap cache.
1150 *
1151 * Dirty swap cache page is tricky to handle. The page could live both in page
1152 * table and swap cache(ie. page is freshly swapped in). So it could be
1153 * referenced concurrently by 2 types of PTEs:
1154 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1155 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1156 * and then
1157 * - clear dirty bit to prevent IO
1158 * - remove from LRU
1159 * - but keep in the swap cache, so that when we return to it on
1160 * a later page fault, we know the application is accessing
1161 * corrupted data and shall be killed (we installed simple
1162 * interception code in do_swap_page to catch it).
1163 *
1164 * Clean swap cache pages can be directly isolated. A later page fault will
1165 * bring in the known good data from disk.
1166 */
me_swapcache_dirty(struct page_state * ps,struct page * p)1167 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1168 {
1169 struct folio *folio = page_folio(p);
1170 int ret;
1171 bool extra_pins = false;
1172
1173 folio_clear_dirty(folio);
1174 /* Trigger EIO in shmem: */
1175 folio_clear_uptodate(folio);
1176
1177 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1178 folio_unlock(folio);
1179
1180 if (ret == MF_DELAYED)
1181 extra_pins = true;
1182
1183 if (has_extra_refcount(ps, p, extra_pins))
1184 ret = MF_FAILED;
1185
1186 return ret;
1187 }
1188
me_swapcache_clean(struct page_state * ps,struct page * p)1189 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1190 {
1191 struct folio *folio = page_folio(p);
1192 int ret;
1193
1194 delete_from_swap_cache(folio);
1195
1196 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1197 folio_unlock(folio);
1198
1199 if (has_extra_refcount(ps, p, false))
1200 ret = MF_FAILED;
1201
1202 return ret;
1203 }
1204
1205 /*
1206 * Huge pages. Needs work.
1207 * Issues:
1208 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1209 * To narrow down kill region to one page, we need to break up pmd.
1210 */
me_huge_page(struct page_state * ps,struct page * p)1211 static int me_huge_page(struct page_state *ps, struct page *p)
1212 {
1213 struct folio *folio = page_folio(p);
1214 int res;
1215 struct address_space *mapping;
1216 bool extra_pins = false;
1217
1218 mapping = folio_mapping(folio);
1219 if (mapping) {
1220 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1221 /* The page is kept in page cache. */
1222 extra_pins = true;
1223 folio_unlock(folio);
1224 } else {
1225 folio_unlock(folio);
1226 /*
1227 * migration entry prevents later access on error hugepage,
1228 * so we can free and dissolve it into buddy to save healthy
1229 * subpages.
1230 */
1231 folio_put(folio);
1232 if (__page_handle_poison(p) > 0) {
1233 page_ref_inc(p);
1234 res = MF_RECOVERED;
1235 } else {
1236 res = MF_FAILED;
1237 }
1238 }
1239
1240 if (has_extra_refcount(ps, p, extra_pins))
1241 res = MF_FAILED;
1242
1243 return res;
1244 }
1245
1246 /*
1247 * Various page states we can handle.
1248 *
1249 * A page state is defined by its current page->flags bits.
1250 * The table matches them in order and calls the right handler.
1251 *
1252 * This is quite tricky because we can access page at any time
1253 * in its live cycle, so all accesses have to be extremely careful.
1254 *
1255 * This is not complete. More states could be added.
1256 * For any missing state don't attempt recovery.
1257 */
1258
1259 #define dirty (1UL << PG_dirty)
1260 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1261 #define unevict (1UL << PG_unevictable)
1262 #define mlock (1UL << PG_mlocked)
1263 #define lru (1UL << PG_lru)
1264 #define head (1UL << PG_head)
1265 #define reserved (1UL << PG_reserved)
1266
1267 static struct page_state error_states[] = {
1268 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1269 /*
1270 * free pages are specially detected outside this table:
1271 * PG_buddy pages only make a small fraction of all free pages.
1272 */
1273
1274 { head, head, MF_MSG_HUGE, me_huge_page },
1275
1276 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1277 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1278
1279 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1280 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1281
1282 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1283 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1284
1285 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1286 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1287
1288 /*
1289 * Catchall entry: must be at end.
1290 */
1291 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1292 };
1293
1294 #undef dirty
1295 #undef sc
1296 #undef unevict
1297 #undef mlock
1298 #undef lru
1299 #undef head
1300 #undef reserved
1301
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1302 static void update_per_node_mf_stats(unsigned long pfn,
1303 enum mf_result result)
1304 {
1305 int nid = MAX_NUMNODES;
1306 struct memory_failure_stats *mf_stats = NULL;
1307
1308 nid = pfn_to_nid(pfn);
1309 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1310 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1311 return;
1312 }
1313
1314 mf_stats = &NODE_DATA(nid)->mf_stats;
1315 switch (result) {
1316 case MF_IGNORED:
1317 ++mf_stats->ignored;
1318 break;
1319 case MF_FAILED:
1320 ++mf_stats->failed;
1321 break;
1322 case MF_DELAYED:
1323 ++mf_stats->delayed;
1324 break;
1325 case MF_RECOVERED:
1326 ++mf_stats->recovered;
1327 break;
1328 default:
1329 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1330 break;
1331 }
1332 ++mf_stats->total;
1333 }
1334
1335 /*
1336 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1337 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1338 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1339 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1340 enum mf_result result)
1341 {
1342 trace_memory_failure_event(pfn, type, result);
1343
1344 if (type != MF_MSG_ALREADY_POISONED) {
1345 num_poisoned_pages_inc(pfn);
1346 update_per_node_mf_stats(pfn, result);
1347 }
1348
1349 pr_err("%#lx: recovery action for %s: %s\n",
1350 pfn, action_page_types[type], action_name[result]);
1351
1352 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1353 }
1354
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1355 static int page_action(struct page_state *ps, struct page *p,
1356 unsigned long pfn)
1357 {
1358 int result;
1359
1360 /* page p should be unlocked after returning from ps->action(). */
1361 result = ps->action(ps, p);
1362
1363 /* Could do more checks here if page looks ok */
1364 /*
1365 * Could adjust zone counters here to correct for the missing page.
1366 */
1367
1368 return action_result(pfn, ps->type, result);
1369 }
1370
PageHWPoisonTakenOff(struct page * page)1371 static inline bool PageHWPoisonTakenOff(struct page *page)
1372 {
1373 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1374 }
1375
SetPageHWPoisonTakenOff(struct page * page)1376 void SetPageHWPoisonTakenOff(struct page *page)
1377 {
1378 set_page_private(page, MAGIC_HWPOISON);
1379 }
1380
ClearPageHWPoisonTakenOff(struct page * page)1381 void ClearPageHWPoisonTakenOff(struct page *page)
1382 {
1383 if (PageHWPoison(page))
1384 set_page_private(page, 0);
1385 }
1386
1387 /*
1388 * Return true if a page type of a given page is supported by hwpoison
1389 * mechanism (while handling could fail), otherwise false. This function
1390 * does not return true for hugetlb or device memory pages, so it's assumed
1391 * to be called only in the context where we never have such pages.
1392 */
HWPoisonHandlable(struct page * page,unsigned long flags)1393 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1394 {
1395 if (PageSlab(page))
1396 return false;
1397
1398 /* Soft offline could migrate non-LRU movable pages */
1399 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1400 return true;
1401
1402 return PageLRU(page) || is_free_buddy_page(page);
1403 }
1404
__get_hwpoison_page(struct page * page,unsigned long flags)1405 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1406 {
1407 struct folio *folio = page_folio(page);
1408 int ret = 0;
1409 bool hugetlb = false;
1410
1411 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1412 if (hugetlb) {
1413 /* Make sure hugetlb demotion did not happen from under us. */
1414 if (folio == page_folio(page))
1415 return ret;
1416 if (ret > 0) {
1417 folio_put(folio);
1418 folio = page_folio(page);
1419 }
1420 }
1421
1422 /*
1423 * This check prevents from calling folio_try_get() for any
1424 * unsupported type of folio in order to reduce the risk of unexpected
1425 * races caused by taking a folio refcount.
1426 */
1427 if (!HWPoisonHandlable(&folio->page, flags))
1428 return -EBUSY;
1429
1430 if (folio_try_get(folio)) {
1431 if (folio == page_folio(page))
1432 return 1;
1433
1434 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1435 folio_put(folio);
1436 }
1437
1438 return 0;
1439 }
1440
1441 #define GET_PAGE_MAX_RETRY_NUM 3
1442
get_any_page(struct page * p,unsigned long flags)1443 static int get_any_page(struct page *p, unsigned long flags)
1444 {
1445 int ret = 0, pass = 0;
1446 bool count_increased = false;
1447
1448 if (flags & MF_COUNT_INCREASED)
1449 count_increased = true;
1450
1451 try_again:
1452 if (!count_increased) {
1453 ret = __get_hwpoison_page(p, flags);
1454 if (!ret) {
1455 if (page_count(p)) {
1456 /* We raced with an allocation, retry. */
1457 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1458 goto try_again;
1459 ret = -EBUSY;
1460 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1461 /* We raced with put_page, retry. */
1462 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1463 goto try_again;
1464 ret = -EIO;
1465 }
1466 goto out;
1467 } else if (ret == -EBUSY) {
1468 /*
1469 * We raced with (possibly temporary) unhandlable
1470 * page, retry.
1471 */
1472 if (pass++ < 3) {
1473 shake_page(p);
1474 goto try_again;
1475 }
1476 ret = -EIO;
1477 goto out;
1478 }
1479 }
1480
1481 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1482 ret = 1;
1483 } else {
1484 /*
1485 * A page we cannot handle. Check whether we can turn
1486 * it into something we can handle.
1487 */
1488 if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1489 put_page(p);
1490 shake_page(p);
1491 count_increased = false;
1492 goto try_again;
1493 }
1494 put_page(p);
1495 ret = -EIO;
1496 }
1497 out:
1498 if (ret == -EIO)
1499 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1500
1501 return ret;
1502 }
1503
__get_unpoison_page(struct page * page)1504 static int __get_unpoison_page(struct page *page)
1505 {
1506 struct folio *folio = page_folio(page);
1507 int ret = 0;
1508 bool hugetlb = false;
1509
1510 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1511 if (hugetlb) {
1512 /* Make sure hugetlb demotion did not happen from under us. */
1513 if (folio == page_folio(page))
1514 return ret;
1515 if (ret > 0)
1516 folio_put(folio);
1517 }
1518
1519 /*
1520 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1521 * but also isolated from buddy freelist, so need to identify the
1522 * state and have to cancel both operations to unpoison.
1523 */
1524 if (PageHWPoisonTakenOff(page))
1525 return -EHWPOISON;
1526
1527 return get_page_unless_zero(page) ? 1 : 0;
1528 }
1529
1530 /**
1531 * get_hwpoison_page() - Get refcount for memory error handling
1532 * @p: Raw error page (hit by memory error)
1533 * @flags: Flags controlling behavior of error handling
1534 *
1535 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1536 * error on it, after checking that the error page is in a well-defined state
1537 * (defined as a page-type we can successfully handle the memory error on it,
1538 * such as LRU page and hugetlb page).
1539 *
1540 * Memory error handling could be triggered at any time on any type of page,
1541 * so it's prone to race with typical memory management lifecycle (like
1542 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1543 * extra care for the error page's state (as done in __get_hwpoison_page()),
1544 * and has some retry logic in get_any_page().
1545 *
1546 * When called from unpoison_memory(), the caller should already ensure that
1547 * the given page has PG_hwpoison. So it's never reused for other page
1548 * allocations, and __get_unpoison_page() never races with them.
1549 *
1550 * Return: 0 on failure or free buddy (hugetlb) page,
1551 * 1 on success for in-use pages in a well-defined state,
1552 * -EIO for pages on which we can not handle memory errors,
1553 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1554 * operations like allocation and free,
1555 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1556 */
get_hwpoison_page(struct page * p,unsigned long flags)1557 static int get_hwpoison_page(struct page *p, unsigned long flags)
1558 {
1559 int ret;
1560
1561 zone_pcp_disable(page_zone(p));
1562 if (flags & MF_UNPOISON)
1563 ret = __get_unpoison_page(p);
1564 else
1565 ret = get_any_page(p, flags);
1566 zone_pcp_enable(page_zone(p));
1567
1568 return ret;
1569 }
1570
1571 /*
1572 * The caller must guarantee the folio isn't large folio, except hugetlb.
1573 * try_to_unmap() can't handle it.
1574 */
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1575 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1576 {
1577 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1578 struct address_space *mapping;
1579
1580 if (folio_test_swapcache(folio)) {
1581 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1582 ttu &= ~TTU_HWPOISON;
1583 }
1584
1585 /*
1586 * Propagate the dirty bit from PTEs to struct page first, because we
1587 * need this to decide if we should kill or just drop the page.
1588 * XXX: the dirty test could be racy: set_page_dirty() may not always
1589 * be called inside page lock (it's recommended but not enforced).
1590 */
1591 mapping = folio_mapping(folio);
1592 if (!must_kill && !folio_test_dirty(folio) && mapping &&
1593 mapping_can_writeback(mapping)) {
1594 if (folio_mkclean(folio)) {
1595 folio_set_dirty(folio);
1596 } else {
1597 ttu &= ~TTU_HWPOISON;
1598 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1599 pfn);
1600 }
1601 }
1602
1603 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1604 /*
1605 * For hugetlb folios in shared mappings, try_to_unmap
1606 * could potentially call huge_pmd_unshare. Because of
1607 * this, take semaphore in write mode here and set
1608 * TTU_RMAP_LOCKED to indicate we have taken the lock
1609 * at this higher level.
1610 */
1611 mapping = hugetlb_folio_mapping_lock_write(folio);
1612 if (!mapping) {
1613 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1614 folio_pfn(folio));
1615 return -EBUSY;
1616 }
1617
1618 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1619 i_mmap_unlock_write(mapping);
1620 } else {
1621 try_to_unmap(folio, ttu);
1622 }
1623
1624 return folio_mapped(folio) ? -EBUSY : 0;
1625 }
1626
1627 /*
1628 * Do all that is necessary to remove user space mappings. Unmap
1629 * the pages and send SIGBUS to the processes if the data was dirty.
1630 */
hwpoison_user_mappings(struct folio * folio,struct page * p,unsigned long pfn,int flags)1631 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1632 unsigned long pfn, int flags)
1633 {
1634 LIST_HEAD(tokill);
1635 bool unmap_success;
1636 int forcekill;
1637 bool mlocked = folio_test_mlocked(folio);
1638
1639 /*
1640 * Here we are interested only in user-mapped pages, so skip any
1641 * other types of pages.
1642 */
1643 if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1644 folio_test_pgtable(folio) || folio_test_offline(folio))
1645 return true;
1646 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1647 return true;
1648
1649 /*
1650 * This check implies we don't kill processes if their pages
1651 * are in the swap cache early. Those are always late kills.
1652 */
1653 if (!folio_mapped(folio))
1654 return true;
1655
1656 /*
1657 * First collect all the processes that have the page
1658 * mapped in dirty form. This has to be done before try_to_unmap,
1659 * because ttu takes the rmap data structures down.
1660 */
1661 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1662
1663 unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1664 if (!unmap_success)
1665 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1666 pfn, folio_mapcount(folio));
1667
1668 /*
1669 * try_to_unmap() might put mlocked page in lru cache, so call
1670 * shake_page() again to ensure that it's flushed.
1671 */
1672 if (mlocked)
1673 shake_folio(folio);
1674
1675 /*
1676 * Now that the dirty bit has been propagated to the
1677 * struct page and all unmaps done we can decide if
1678 * killing is needed or not. Only kill when the page
1679 * was dirty or the process is not restartable,
1680 * otherwise the tokill list is merely
1681 * freed. When there was a problem unmapping earlier
1682 * use a more force-full uncatchable kill to prevent
1683 * any accesses to the poisoned memory.
1684 */
1685 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1686 !unmap_success;
1687 kill_procs(&tokill, forcekill, pfn, flags);
1688
1689 return unmap_success;
1690 }
1691
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1692 static int identify_page_state(unsigned long pfn, struct page *p,
1693 unsigned long page_flags)
1694 {
1695 struct page_state *ps;
1696
1697 /*
1698 * The first check uses the current page flags which may not have any
1699 * relevant information. The second check with the saved page flags is
1700 * carried out only if the first check can't determine the page status.
1701 */
1702 for (ps = error_states;; ps++)
1703 if ((p->flags & ps->mask) == ps->res)
1704 break;
1705
1706 page_flags |= (p->flags & (1UL << PG_dirty));
1707
1708 if (!ps->mask)
1709 for (ps = error_states;; ps++)
1710 if ((page_flags & ps->mask) == ps->res)
1711 break;
1712 return page_action(ps, p, pfn);
1713 }
1714
1715 /*
1716 * When 'release' is 'false', it means that if thp split has failed,
1717 * there is still more to do, hence the page refcount we took earlier
1718 * is still needed.
1719 */
try_to_split_thp_page(struct page * page,bool release)1720 static int try_to_split_thp_page(struct page *page, bool release)
1721 {
1722 int ret;
1723
1724 lock_page(page);
1725 ret = split_huge_page(page);
1726 unlock_page(page);
1727
1728 if (ret && release)
1729 put_page(page);
1730
1731 return ret;
1732 }
1733
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1734 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1735 struct address_space *mapping, pgoff_t index, int flags)
1736 {
1737 struct to_kill *tk;
1738 unsigned long size = 0;
1739
1740 list_for_each_entry(tk, to_kill, nd)
1741 if (tk->size_shift)
1742 size = max(size, 1UL << tk->size_shift);
1743
1744 if (size) {
1745 /*
1746 * Unmap the largest mapping to avoid breaking up device-dax
1747 * mappings which are constant size. The actual size of the
1748 * mapping being torn down is communicated in siginfo, see
1749 * kill_proc()
1750 */
1751 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1752
1753 unmap_mapping_range(mapping, start, size, 0);
1754 }
1755
1756 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1757 }
1758
1759 /*
1760 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1761 * either do not claim or fails to claim a hwpoison event, or devdax.
1762 * The fsdax pages are initialized per base page, and the devdax pages
1763 * could be initialized either as base pages, or as compound pages with
1764 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1765 * hwpoison, such that, if a subpage of a compound page is poisoned,
1766 * simply mark the compound head page is by far sufficient.
1767 */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1768 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1769 struct dev_pagemap *pgmap)
1770 {
1771 struct folio *folio = pfn_folio(pfn);
1772 LIST_HEAD(to_kill);
1773 dax_entry_t cookie;
1774 int rc = 0;
1775
1776 /*
1777 * Prevent the inode from being freed while we are interrogating
1778 * the address_space, typically this would be handled by
1779 * lock_page(), but dax pages do not use the page lock. This
1780 * also prevents changes to the mapping of this pfn until
1781 * poison signaling is complete.
1782 */
1783 cookie = dax_lock_folio(folio);
1784 if (!cookie)
1785 return -EBUSY;
1786
1787 if (hwpoison_filter(&folio->page)) {
1788 rc = -EOPNOTSUPP;
1789 goto unlock;
1790 }
1791
1792 switch (pgmap->type) {
1793 case MEMORY_DEVICE_PRIVATE:
1794 case MEMORY_DEVICE_COHERENT:
1795 /*
1796 * TODO: Handle device pages which may need coordination
1797 * with device-side memory.
1798 */
1799 rc = -ENXIO;
1800 goto unlock;
1801 default:
1802 break;
1803 }
1804
1805 /*
1806 * Use this flag as an indication that the dax page has been
1807 * remapped UC to prevent speculative consumption of poison.
1808 */
1809 SetPageHWPoison(&folio->page);
1810
1811 /*
1812 * Unlike System-RAM there is no possibility to swap in a
1813 * different physical page at a given virtual address, so all
1814 * userspace consumption of ZONE_DEVICE memory necessitates
1815 * SIGBUS (i.e. MF_MUST_KILL)
1816 */
1817 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1818 collect_procs(folio, &folio->page, &to_kill, true);
1819
1820 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1821 unlock:
1822 dax_unlock_folio(folio, cookie);
1823 return rc;
1824 }
1825
1826 #ifdef CONFIG_FS_DAX
1827 /**
1828 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1829 * @mapping: address_space of the file in use
1830 * @index: start pgoff of the range within the file
1831 * @count: length of the range, in unit of PAGE_SIZE
1832 * @mf_flags: memory failure flags
1833 */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1834 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1835 unsigned long count, int mf_flags)
1836 {
1837 LIST_HEAD(to_kill);
1838 dax_entry_t cookie;
1839 struct page *page;
1840 size_t end = index + count;
1841 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1842
1843 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1844
1845 for (; index < end; index++) {
1846 page = NULL;
1847 cookie = dax_lock_mapping_entry(mapping, index, &page);
1848 if (!cookie)
1849 return -EBUSY;
1850 if (!page)
1851 goto unlock;
1852
1853 if (!pre_remove)
1854 SetPageHWPoison(page);
1855
1856 /*
1857 * The pre_remove case is revoking access, the memory is still
1858 * good and could theoretically be put back into service.
1859 */
1860 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1861 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1862 index, mf_flags);
1863 unlock:
1864 dax_unlock_mapping_entry(mapping, index, cookie);
1865 }
1866 return 0;
1867 }
1868 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1869 #endif /* CONFIG_FS_DAX */
1870
1871 #ifdef CONFIG_HUGETLB_PAGE
1872
1873 /*
1874 * Struct raw_hwp_page represents information about "raw error page",
1875 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1876 */
1877 struct raw_hwp_page {
1878 struct llist_node node;
1879 struct page *page;
1880 };
1881
raw_hwp_list_head(struct folio * folio)1882 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1883 {
1884 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1885 }
1886
is_raw_hwpoison_page_in_hugepage(struct page * page)1887 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1888 {
1889 struct llist_head *raw_hwp_head;
1890 struct raw_hwp_page *p;
1891 struct folio *folio = page_folio(page);
1892 bool ret = false;
1893
1894 if (!folio_test_hwpoison(folio))
1895 return false;
1896
1897 if (!folio_test_hugetlb(folio))
1898 return PageHWPoison(page);
1899
1900 /*
1901 * When RawHwpUnreliable is set, kernel lost track of which subpages
1902 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1903 */
1904 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1905 return true;
1906
1907 mutex_lock(&mf_mutex);
1908
1909 raw_hwp_head = raw_hwp_list_head(folio);
1910 llist_for_each_entry(p, raw_hwp_head->first, node) {
1911 if (page == p->page) {
1912 ret = true;
1913 break;
1914 }
1915 }
1916
1917 mutex_unlock(&mf_mutex);
1918
1919 return ret;
1920 }
1921
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1922 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1923 {
1924 struct llist_node *head;
1925 struct raw_hwp_page *p, *next;
1926 unsigned long count = 0;
1927
1928 head = llist_del_all(raw_hwp_list_head(folio));
1929 llist_for_each_entry_safe(p, next, head, node) {
1930 if (move_flag)
1931 SetPageHWPoison(p->page);
1932 else
1933 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1934 kfree(p);
1935 count++;
1936 }
1937 return count;
1938 }
1939
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1940 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1941 {
1942 struct llist_head *head;
1943 struct raw_hwp_page *raw_hwp;
1944 struct raw_hwp_page *p;
1945 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1946
1947 /*
1948 * Once the hwpoison hugepage has lost reliable raw error info,
1949 * there is little meaning to keep additional error info precisely,
1950 * so skip to add additional raw error info.
1951 */
1952 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1953 return -EHWPOISON;
1954 head = raw_hwp_list_head(folio);
1955 llist_for_each_entry(p, head->first, node) {
1956 if (p->page == page)
1957 return -EHWPOISON;
1958 }
1959
1960 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1961 if (raw_hwp) {
1962 raw_hwp->page = page;
1963 llist_add(&raw_hwp->node, head);
1964 /* the first error event will be counted in action_result(). */
1965 if (ret)
1966 num_poisoned_pages_inc(page_to_pfn(page));
1967 } else {
1968 /*
1969 * Failed to save raw error info. We no longer trace all
1970 * hwpoisoned subpages, and we need refuse to free/dissolve
1971 * this hwpoisoned hugepage.
1972 */
1973 folio_set_hugetlb_raw_hwp_unreliable(folio);
1974 /*
1975 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1976 * used any more, so free it.
1977 */
1978 __folio_free_raw_hwp(folio, false);
1979 }
1980 return ret;
1981 }
1982
folio_free_raw_hwp(struct folio * folio,bool move_flag)1983 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1984 {
1985 /*
1986 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1987 * pages for tail pages are required but they don't exist.
1988 */
1989 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1990 return 0;
1991
1992 /*
1993 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1994 * definition.
1995 */
1996 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1997 return 0;
1998
1999 return __folio_free_raw_hwp(folio, move_flag);
2000 }
2001
folio_clear_hugetlb_hwpoison(struct folio * folio)2002 void folio_clear_hugetlb_hwpoison(struct folio *folio)
2003 {
2004 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
2005 return;
2006 if (folio_test_hugetlb_vmemmap_optimized(folio))
2007 return;
2008 folio_clear_hwpoison(folio);
2009 folio_free_raw_hwp(folio, true);
2010 }
2011
2012 /*
2013 * Called from hugetlb code with hugetlb_lock held.
2014 *
2015 * Return values:
2016 * 0 - free hugepage
2017 * 1 - in-use hugepage
2018 * 2 - not a hugepage
2019 * -EBUSY - the hugepage is busy (try to retry)
2020 * -EHWPOISON - the hugepage is already hwpoisoned
2021 */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)2022 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2023 bool *migratable_cleared)
2024 {
2025 struct page *page = pfn_to_page(pfn);
2026 struct folio *folio = page_folio(page);
2027 int ret = 2; /* fallback to normal page handling */
2028 bool count_increased = false;
2029
2030 if (!folio_test_hugetlb(folio))
2031 goto out;
2032
2033 if (flags & MF_COUNT_INCREASED) {
2034 ret = 1;
2035 count_increased = true;
2036 } else if (folio_test_hugetlb_freed(folio)) {
2037 ret = 0;
2038 } else if (folio_test_hugetlb_migratable(folio)) {
2039 ret = folio_try_get(folio);
2040 if (ret)
2041 count_increased = true;
2042 } else {
2043 ret = -EBUSY;
2044 if (!(flags & MF_NO_RETRY))
2045 goto out;
2046 }
2047
2048 if (folio_set_hugetlb_hwpoison(folio, page)) {
2049 ret = -EHWPOISON;
2050 goto out;
2051 }
2052
2053 /*
2054 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2055 * from being migrated by memory hotremove.
2056 */
2057 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2058 folio_clear_hugetlb_migratable(folio);
2059 *migratable_cleared = true;
2060 }
2061
2062 return ret;
2063 out:
2064 if (count_increased)
2065 folio_put(folio);
2066 return ret;
2067 }
2068
2069 /*
2070 * Taking refcount of hugetlb pages needs extra care about race conditions
2071 * with basic operations like hugepage allocation/free/demotion.
2072 * So some of prechecks for hwpoison (pinning, and testing/setting
2073 * PageHWPoison) should be done in single hugetlb_lock range.
2074 */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2075 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2076 {
2077 int res;
2078 struct page *p = pfn_to_page(pfn);
2079 struct folio *folio;
2080 unsigned long page_flags;
2081 bool migratable_cleared = false;
2082
2083 *hugetlb = 1;
2084 retry:
2085 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2086 if (res == 2) { /* fallback to normal page handling */
2087 *hugetlb = 0;
2088 return 0;
2089 } else if (res == -EHWPOISON) {
2090 if (flags & MF_ACTION_REQUIRED) {
2091 folio = page_folio(p);
2092 res = kill_accessing_process(current, folio_pfn(folio), flags);
2093 }
2094 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2095 return res;
2096 } else if (res == -EBUSY) {
2097 if (!(flags & MF_NO_RETRY)) {
2098 flags |= MF_NO_RETRY;
2099 goto retry;
2100 }
2101 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2102 }
2103
2104 folio = page_folio(p);
2105 folio_lock(folio);
2106
2107 if (hwpoison_filter(p)) {
2108 folio_clear_hugetlb_hwpoison(folio);
2109 if (migratable_cleared)
2110 folio_set_hugetlb_migratable(folio);
2111 folio_unlock(folio);
2112 if (res == 1)
2113 folio_put(folio);
2114 return -EOPNOTSUPP;
2115 }
2116
2117 /*
2118 * Handling free hugepage. The possible race with hugepage allocation
2119 * or demotion can be prevented by PageHWPoison flag.
2120 */
2121 if (res == 0) {
2122 folio_unlock(folio);
2123 if (__page_handle_poison(p) > 0) {
2124 page_ref_inc(p);
2125 res = MF_RECOVERED;
2126 } else {
2127 res = MF_FAILED;
2128 }
2129 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2130 }
2131
2132 page_flags = folio->flags;
2133
2134 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2135 folio_unlock(folio);
2136 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2137 }
2138
2139 return identify_page_state(pfn, p, page_flags);
2140 }
2141
2142 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2143 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2144 {
2145 return 0;
2146 }
2147
folio_free_raw_hwp(struct folio * folio,bool flag)2148 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2149 {
2150 return 0;
2151 }
2152 #endif /* CONFIG_HUGETLB_PAGE */
2153
2154 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2155 static void put_ref_page(unsigned long pfn, int flags)
2156 {
2157 if (!(flags & MF_COUNT_INCREASED))
2158 return;
2159
2160 put_page(pfn_to_page(pfn));
2161 }
2162
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2163 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2164 struct dev_pagemap *pgmap)
2165 {
2166 int rc = -ENXIO;
2167
2168 /* device metadata space is not recoverable */
2169 if (!pgmap_pfn_valid(pgmap, pfn))
2170 goto out;
2171
2172 /*
2173 * Call driver's implementation to handle the memory failure, otherwise
2174 * fall back to generic handler.
2175 */
2176 if (pgmap_has_memory_failure(pgmap)) {
2177 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2178 /*
2179 * Fall back to generic handler too if operation is not
2180 * supported inside the driver/device/filesystem.
2181 */
2182 if (rc != -EOPNOTSUPP)
2183 goto out;
2184 }
2185
2186 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2187 out:
2188 /* drop pgmap ref acquired in caller */
2189 put_dev_pagemap(pgmap);
2190 if (rc != -EOPNOTSUPP)
2191 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2192 return rc;
2193 }
2194
2195 /*
2196 * The calling condition is as such: thp split failed, page might have
2197 * been RDMA pinned, not much can be done for recovery.
2198 * But a SIGBUS should be delivered with vaddr provided so that the user
2199 * application has a chance to recover. Also, application processes'
2200 * election for MCE early killed will be honored.
2201 */
kill_procs_now(struct page * p,unsigned long pfn,int flags,struct folio * folio)2202 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2203 struct folio *folio)
2204 {
2205 LIST_HEAD(tokill);
2206
2207 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2208 kill_procs(&tokill, true, pfn, flags);
2209 }
2210
2211 /**
2212 * memory_failure - Handle memory failure of a page.
2213 * @pfn: Page Number of the corrupted page
2214 * @flags: fine tune action taken
2215 *
2216 * This function is called by the low level machine check code
2217 * of an architecture when it detects hardware memory corruption
2218 * of a page. It tries its best to recover, which includes
2219 * dropping pages, killing processes etc.
2220 *
2221 * The function is primarily of use for corruptions that
2222 * happen outside the current execution context (e.g. when
2223 * detected by a background scrubber)
2224 *
2225 * Must run in process context (e.g. a work queue) with interrupts
2226 * enabled and no spinlocks held.
2227 *
2228 * Return: 0 for successfully handled the memory error,
2229 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2230 * < 0(except -EOPNOTSUPP) on failure.
2231 */
memory_failure(unsigned long pfn,int flags)2232 int memory_failure(unsigned long pfn, int flags)
2233 {
2234 struct page *p;
2235 struct folio *folio;
2236 struct dev_pagemap *pgmap;
2237 int res = 0;
2238 unsigned long page_flags;
2239 bool retry = true;
2240 int hugetlb = 0;
2241
2242 if (!sysctl_memory_failure_recovery)
2243 panic("Memory failure on page %lx", pfn);
2244
2245 mutex_lock(&mf_mutex);
2246
2247 if (!(flags & MF_SW_SIMULATED))
2248 hw_memory_failure = true;
2249
2250 p = pfn_to_online_page(pfn);
2251 if (!p) {
2252 res = arch_memory_failure(pfn, flags);
2253 if (res == 0)
2254 goto unlock_mutex;
2255
2256 if (pfn_valid(pfn)) {
2257 pgmap = get_dev_pagemap(pfn, NULL);
2258 put_ref_page(pfn, flags);
2259 if (pgmap) {
2260 res = memory_failure_dev_pagemap(pfn, flags,
2261 pgmap);
2262 goto unlock_mutex;
2263 }
2264 }
2265 pr_err("%#lx: memory outside kernel control\n", pfn);
2266 res = -ENXIO;
2267 goto unlock_mutex;
2268 }
2269
2270 try_again:
2271 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2272 if (hugetlb)
2273 goto unlock_mutex;
2274
2275 if (TestSetPageHWPoison(p)) {
2276 res = -EHWPOISON;
2277 if (flags & MF_ACTION_REQUIRED)
2278 res = kill_accessing_process(current, pfn, flags);
2279 if (flags & MF_COUNT_INCREASED)
2280 put_page(p);
2281 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2282 goto unlock_mutex;
2283 }
2284
2285 /*
2286 * We need/can do nothing about count=0 pages.
2287 * 1) it's a free page, and therefore in safe hand:
2288 * check_new_page() will be the gate keeper.
2289 * 2) it's part of a non-compound high order page.
2290 * Implies some kernel user: cannot stop them from
2291 * R/W the page; let's pray that the page has been
2292 * used and will be freed some time later.
2293 * In fact it's dangerous to directly bump up page count from 0,
2294 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2295 */
2296 if (!(flags & MF_COUNT_INCREASED)) {
2297 res = get_hwpoison_page(p, flags);
2298 if (!res) {
2299 if (is_free_buddy_page(p)) {
2300 if (take_page_off_buddy(p)) {
2301 page_ref_inc(p);
2302 res = MF_RECOVERED;
2303 } else {
2304 /* We lost the race, try again */
2305 if (retry) {
2306 ClearPageHWPoison(p);
2307 retry = false;
2308 goto try_again;
2309 }
2310 res = MF_FAILED;
2311 }
2312 res = action_result(pfn, MF_MSG_BUDDY, res);
2313 } else {
2314 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2315 }
2316 goto unlock_mutex;
2317 } else if (res < 0) {
2318 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2319 goto unlock_mutex;
2320 }
2321 }
2322
2323 folio = page_folio(p);
2324
2325 /* filter pages that are protected from hwpoison test by users */
2326 folio_lock(folio);
2327 if (hwpoison_filter(p)) {
2328 ClearPageHWPoison(p);
2329 folio_unlock(folio);
2330 folio_put(folio);
2331 res = -EOPNOTSUPP;
2332 goto unlock_mutex;
2333 }
2334 folio_unlock(folio);
2335
2336 if (folio_test_large(folio)) {
2337 /*
2338 * The flag must be set after the refcount is bumped
2339 * otherwise it may race with THP split.
2340 * And the flag can't be set in get_hwpoison_page() since
2341 * it is called by soft offline too and it is just called
2342 * for !MF_COUNT_INCREASED. So here seems to be the best
2343 * place.
2344 *
2345 * Don't need care about the above error handling paths for
2346 * get_hwpoison_page() since they handle either free page
2347 * or unhandlable page. The refcount is bumped iff the
2348 * page is a valid handlable page.
2349 */
2350 folio_set_has_hwpoisoned(folio);
2351 if (try_to_split_thp_page(p, false) < 0) {
2352 res = -EHWPOISON;
2353 kill_procs_now(p, pfn, flags, folio);
2354 put_page(p);
2355 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2356 goto unlock_mutex;
2357 }
2358 VM_BUG_ON_PAGE(!page_count(p), p);
2359 folio = page_folio(p);
2360 }
2361
2362 /*
2363 * We ignore non-LRU pages for good reasons.
2364 * - PG_locked is only well defined for LRU pages and a few others
2365 * - to avoid races with __SetPageLocked()
2366 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2367 * The check (unnecessarily) ignores LRU pages being isolated and
2368 * walked by the page reclaim code, however that's not a big loss.
2369 */
2370 shake_folio(folio);
2371
2372 folio_lock(folio);
2373
2374 /*
2375 * We're only intended to deal with the non-Compound page here.
2376 * The page cannot become compound pages again as folio has been
2377 * splited and extra refcnt is held.
2378 */
2379 WARN_ON(folio_test_large(folio));
2380
2381 /*
2382 * We use page flags to determine what action should be taken, but
2383 * the flags can be modified by the error containment action. One
2384 * example is an mlocked page, where PG_mlocked is cleared by
2385 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2386 * status correctly, we save a copy of the page flags at this time.
2387 */
2388 page_flags = folio->flags;
2389
2390 /*
2391 * __munlock_folio() may clear a writeback folio's LRU flag without
2392 * the folio lock. We need to wait for writeback completion for this
2393 * folio or it may trigger a vfs BUG while evicting inode.
2394 */
2395 if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2396 goto identify_page_state;
2397
2398 /*
2399 * It's very difficult to mess with pages currently under IO
2400 * and in many cases impossible, so we just avoid it here.
2401 */
2402 folio_wait_writeback(folio);
2403
2404 /*
2405 * Now take care of user space mappings.
2406 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2407 */
2408 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2409 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2410 goto unlock_page;
2411 }
2412
2413 /*
2414 * Torn down by someone else?
2415 */
2416 if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2417 folio->mapping == NULL) {
2418 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2419 goto unlock_page;
2420 }
2421
2422 identify_page_state:
2423 res = identify_page_state(pfn, p, page_flags);
2424 mutex_unlock(&mf_mutex);
2425 return res;
2426 unlock_page:
2427 folio_unlock(folio);
2428 unlock_mutex:
2429 mutex_unlock(&mf_mutex);
2430 return res;
2431 }
2432 EXPORT_SYMBOL_GPL(memory_failure);
2433
2434 #define MEMORY_FAILURE_FIFO_ORDER 4
2435 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2436
2437 struct memory_failure_entry {
2438 unsigned long pfn;
2439 int flags;
2440 };
2441
2442 struct memory_failure_cpu {
2443 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2444 MEMORY_FAILURE_FIFO_SIZE);
2445 raw_spinlock_t lock;
2446 struct work_struct work;
2447 };
2448
2449 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2450
2451 /**
2452 * memory_failure_queue - Schedule handling memory failure of a page.
2453 * @pfn: Page Number of the corrupted page
2454 * @flags: Flags for memory failure handling
2455 *
2456 * This function is called by the low level hardware error handler
2457 * when it detects hardware memory corruption of a page. It schedules
2458 * the recovering of error page, including dropping pages, killing
2459 * processes etc.
2460 *
2461 * The function is primarily of use for corruptions that
2462 * happen outside the current execution context (e.g. when
2463 * detected by a background scrubber)
2464 *
2465 * Can run in IRQ context.
2466 */
memory_failure_queue(unsigned long pfn,int flags)2467 void memory_failure_queue(unsigned long pfn, int flags)
2468 {
2469 struct memory_failure_cpu *mf_cpu;
2470 unsigned long proc_flags;
2471 bool buffer_overflow;
2472 struct memory_failure_entry entry = {
2473 .pfn = pfn,
2474 .flags = flags,
2475 };
2476
2477 mf_cpu = &get_cpu_var(memory_failure_cpu);
2478 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2479 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2480 if (!buffer_overflow)
2481 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2482 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2483 put_cpu_var(memory_failure_cpu);
2484 if (buffer_overflow)
2485 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2486 pfn);
2487 }
2488 EXPORT_SYMBOL_GPL(memory_failure_queue);
2489
memory_failure_work_func(struct work_struct * work)2490 static void memory_failure_work_func(struct work_struct *work)
2491 {
2492 struct memory_failure_cpu *mf_cpu;
2493 struct memory_failure_entry entry = { 0, };
2494 unsigned long proc_flags;
2495 int gotten;
2496
2497 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2498 for (;;) {
2499 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2500 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2501 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2502 if (!gotten)
2503 break;
2504 if (entry.flags & MF_SOFT_OFFLINE)
2505 soft_offline_page(entry.pfn, entry.flags);
2506 else
2507 memory_failure(entry.pfn, entry.flags);
2508 }
2509 }
2510
2511 /*
2512 * Process memory_failure work queued on the specified CPU.
2513 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2514 */
memory_failure_queue_kick(int cpu)2515 void memory_failure_queue_kick(int cpu)
2516 {
2517 struct memory_failure_cpu *mf_cpu;
2518
2519 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2520 cancel_work_sync(&mf_cpu->work);
2521 memory_failure_work_func(&mf_cpu->work);
2522 }
2523
memory_failure_init(void)2524 static int __init memory_failure_init(void)
2525 {
2526 struct memory_failure_cpu *mf_cpu;
2527 int cpu;
2528
2529 for_each_possible_cpu(cpu) {
2530 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2531 raw_spin_lock_init(&mf_cpu->lock);
2532 INIT_KFIFO(mf_cpu->fifo);
2533 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2534 }
2535
2536 register_sysctl_init("vm", memory_failure_table);
2537
2538 return 0;
2539 }
2540 core_initcall(memory_failure_init);
2541
2542 #undef pr_fmt
2543 #define pr_fmt(fmt) "Unpoison: " fmt
2544 #define unpoison_pr_info(fmt, pfn, rs) \
2545 ({ \
2546 if (__ratelimit(rs)) \
2547 pr_info(fmt, pfn); \
2548 })
2549
2550 /**
2551 * unpoison_memory - Unpoison a previously poisoned page
2552 * @pfn: Page number of the to be unpoisoned page
2553 *
2554 * Software-unpoison a page that has been poisoned by
2555 * memory_failure() earlier.
2556 *
2557 * This is only done on the software-level, so it only works
2558 * for linux injected failures, not real hardware failures
2559 *
2560 * Returns 0 for success, otherwise -errno.
2561 */
unpoison_memory(unsigned long pfn)2562 int unpoison_memory(unsigned long pfn)
2563 {
2564 struct folio *folio;
2565 struct page *p;
2566 int ret = -EBUSY, ghp;
2567 unsigned long count;
2568 bool huge = false;
2569 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2570 DEFAULT_RATELIMIT_BURST);
2571
2572 p = pfn_to_online_page(pfn);
2573 if (!p)
2574 return -EIO;
2575 folio = page_folio(p);
2576
2577 mutex_lock(&mf_mutex);
2578
2579 if (hw_memory_failure) {
2580 unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2581 pfn, &unpoison_rs);
2582 ret = -EOPNOTSUPP;
2583 goto unlock_mutex;
2584 }
2585
2586 if (is_huge_zero_folio(folio)) {
2587 unpoison_pr_info("%#lx: huge zero page is not supported\n",
2588 pfn, &unpoison_rs);
2589 ret = -EOPNOTSUPP;
2590 goto unlock_mutex;
2591 }
2592
2593 if (!PageHWPoison(p)) {
2594 unpoison_pr_info("%#lx: page was already unpoisoned\n",
2595 pfn, &unpoison_rs);
2596 goto unlock_mutex;
2597 }
2598
2599 if (folio_ref_count(folio) > 1) {
2600 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2601 pfn, &unpoison_rs);
2602 goto unlock_mutex;
2603 }
2604
2605 if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2606 folio_test_reserved(folio) || folio_test_offline(folio))
2607 goto unlock_mutex;
2608
2609 if (folio_mapped(folio)) {
2610 unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2611 pfn, &unpoison_rs);
2612 goto unlock_mutex;
2613 }
2614
2615 if (folio_mapping(folio)) {
2616 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2617 pfn, &unpoison_rs);
2618 goto unlock_mutex;
2619 }
2620
2621 ghp = get_hwpoison_page(p, MF_UNPOISON);
2622 if (!ghp) {
2623 if (folio_test_hugetlb(folio)) {
2624 huge = true;
2625 count = folio_free_raw_hwp(folio, false);
2626 if (count == 0)
2627 goto unlock_mutex;
2628 }
2629 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2630 } else if (ghp < 0) {
2631 if (ghp == -EHWPOISON) {
2632 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2633 } else {
2634 ret = ghp;
2635 unpoison_pr_info("%#lx: failed to grab page\n",
2636 pfn, &unpoison_rs);
2637 }
2638 } else {
2639 if (folio_test_hugetlb(folio)) {
2640 huge = true;
2641 count = folio_free_raw_hwp(folio, false);
2642 if (count == 0) {
2643 folio_put(folio);
2644 goto unlock_mutex;
2645 }
2646 }
2647
2648 folio_put(folio);
2649 if (TestClearPageHWPoison(p)) {
2650 folio_put(folio);
2651 ret = 0;
2652 }
2653 }
2654
2655 unlock_mutex:
2656 mutex_unlock(&mf_mutex);
2657 if (!ret) {
2658 if (!huge)
2659 num_poisoned_pages_sub(pfn, 1);
2660 unpoison_pr_info("%#lx: software-unpoisoned page\n",
2661 page_to_pfn(p), &unpoison_rs);
2662 }
2663 return ret;
2664 }
2665 EXPORT_SYMBOL(unpoison_memory);
2666
2667 #undef pr_fmt
2668 #define pr_fmt(fmt) "Soft offline: " fmt
2669
2670 /*
2671 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2672 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2673 * If the page is mapped, it migrates the contents over.
2674 */
soft_offline_in_use_page(struct page * page)2675 static int soft_offline_in_use_page(struct page *page)
2676 {
2677 long ret = 0;
2678 unsigned long pfn = page_to_pfn(page);
2679 struct folio *folio = page_folio(page);
2680 char const *msg_page[] = {"page", "hugepage"};
2681 bool huge = folio_test_hugetlb(folio);
2682 bool isolated;
2683 LIST_HEAD(pagelist);
2684 struct migration_target_control mtc = {
2685 .nid = NUMA_NO_NODE,
2686 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2687 .reason = MR_MEMORY_FAILURE,
2688 };
2689
2690 if (!huge && folio_test_large(folio)) {
2691 if (try_to_split_thp_page(page, true)) {
2692 pr_info("%#lx: thp split failed\n", pfn);
2693 return -EBUSY;
2694 }
2695 folio = page_folio(page);
2696 }
2697
2698 folio_lock(folio);
2699 if (!huge)
2700 folio_wait_writeback(folio);
2701 if (PageHWPoison(page)) {
2702 folio_unlock(folio);
2703 folio_put(folio);
2704 pr_info("%#lx: page already poisoned\n", pfn);
2705 return 0;
2706 }
2707
2708 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2709 /*
2710 * Try to invalidate first. This should work for
2711 * non dirty unmapped page cache pages.
2712 */
2713 ret = mapping_evict_folio(folio_mapping(folio), folio);
2714 folio_unlock(folio);
2715
2716 if (ret) {
2717 pr_info("%#lx: invalidated\n", pfn);
2718 page_handle_poison(page, false, true);
2719 return 0;
2720 }
2721
2722 isolated = isolate_folio_to_list(folio, &pagelist);
2723
2724 /*
2725 * If we succeed to isolate the folio, we grabbed another refcount on
2726 * the folio, so we can safely drop the one we got from get_any_page().
2727 * If we failed to isolate the folio, it means that we cannot go further
2728 * and we will return an error, so drop the reference we got from
2729 * get_any_page() as well.
2730 */
2731 folio_put(folio);
2732
2733 if (isolated) {
2734 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2735 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2736 if (!ret) {
2737 bool release = !huge;
2738
2739 if (!page_handle_poison(page, huge, release))
2740 ret = -EBUSY;
2741 } else {
2742 if (!list_empty(&pagelist))
2743 putback_movable_pages(&pagelist);
2744
2745 pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2746 pfn, msg_page[huge], ret, &page->flags);
2747 if (ret > 0)
2748 ret = -EBUSY;
2749 }
2750 } else {
2751 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2752 pfn, msg_page[huge], page_count(page), &page->flags);
2753 ret = -EBUSY;
2754 }
2755 return ret;
2756 }
2757
2758 /**
2759 * soft_offline_page - Soft offline a page.
2760 * @pfn: pfn to soft-offline
2761 * @flags: flags. Same as memory_failure().
2762 *
2763 * Returns 0 on success,
2764 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2765 * disabled by /proc/sys/vm/enable_soft_offline,
2766 * < 0 otherwise negated errno.
2767 *
2768 * Soft offline a page, by migration or invalidation,
2769 * without killing anything. This is for the case when
2770 * a page is not corrupted yet (so it's still valid to access),
2771 * but has had a number of corrected errors and is better taken
2772 * out.
2773 *
2774 * The actual policy on when to do that is maintained by
2775 * user space.
2776 *
2777 * This should never impact any application or cause data loss,
2778 * however it might take some time.
2779 *
2780 * This is not a 100% solution for all memory, but tries to be
2781 * ``good enough'' for the majority of memory.
2782 */
soft_offline_page(unsigned long pfn,int flags)2783 int soft_offline_page(unsigned long pfn, int flags)
2784 {
2785 int ret;
2786 bool try_again = true;
2787 struct page *page;
2788
2789 if (!pfn_valid(pfn)) {
2790 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2791 return -ENXIO;
2792 }
2793
2794 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2795 page = pfn_to_online_page(pfn);
2796 if (!page) {
2797 put_ref_page(pfn, flags);
2798 return -EIO;
2799 }
2800
2801 if (!sysctl_enable_soft_offline) {
2802 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2803 put_ref_page(pfn, flags);
2804 return -EOPNOTSUPP;
2805 }
2806
2807 mutex_lock(&mf_mutex);
2808
2809 if (PageHWPoison(page)) {
2810 pr_info("%#lx: page already poisoned\n", pfn);
2811 put_ref_page(pfn, flags);
2812 mutex_unlock(&mf_mutex);
2813 return 0;
2814 }
2815
2816 retry:
2817 get_online_mems();
2818 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2819 put_online_mems();
2820
2821 if (hwpoison_filter(page)) {
2822 if (ret > 0)
2823 put_page(page);
2824
2825 mutex_unlock(&mf_mutex);
2826 return -EOPNOTSUPP;
2827 }
2828
2829 if (ret > 0) {
2830 ret = soft_offline_in_use_page(page);
2831 } else if (ret == 0) {
2832 if (!page_handle_poison(page, true, false)) {
2833 if (try_again) {
2834 try_again = false;
2835 flags &= ~MF_COUNT_INCREASED;
2836 goto retry;
2837 }
2838 ret = -EBUSY;
2839 }
2840 }
2841
2842 mutex_unlock(&mf_mutex);
2843
2844 return ret;
2845 }
2846