1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp_states.h>
19 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
20 #include <net/transp_v6.h>
21 #endif
22 #include <net/mptcp.h>
23 #include <net/hotdata.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 struct mptcp_sock msk;
35 struct ipv6_pinfo np;
36 };
37 #endif
38
39 enum {
40 MPTCP_CMSG_TS = BIT(0),
41 MPTCP_CMSG_INQ = BIT(1),
42 };
43
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 return READ_ONCE(msk->wnd_end);
56 }
57
mptcp_fallback_tcp_ops(const struct sock * sk)58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 if (sk->sk_prot == &tcpv6_prot)
62 return &inet6_stream_ops;
63 #endif
64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 return &inet_stream_ops;
66 }
67
__mptcp_socket_create(struct mptcp_sock * msk)68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 struct mptcp_subflow_context *subflow;
71 struct sock *sk = (struct sock *)msk;
72 struct socket *ssock;
73 int err;
74
75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 if (err)
77 return err;
78
79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 WRITE_ONCE(msk->first, ssock->sk);
81 subflow = mptcp_subflow_ctx(ssock->sk);
82 list_add(&subflow->node, &msk->conn_list);
83 sock_hold(ssock->sk);
84 subflow->request_mptcp = 1;
85 subflow->subflow_id = msk->subflow_id++;
86
87 /* This is the first subflow, always with id 0 */
88 WRITE_ONCE(subflow->local_id, 0);
89 mptcp_sock_graft(msk->first, sk->sk_socket);
90 iput(SOCK_INODE(ssock));
91
92 return 0;
93 }
94
95 /* If the MPC handshake is not started, returns the first subflow,
96 * eventually allocating it.
97 */
__mptcp_nmpc_sk(struct mptcp_sock * msk)98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 struct sock *sk = (struct sock *)msk;
101 int ret;
102
103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 return ERR_PTR(-EINVAL);
105
106 if (!msk->first) {
107 ret = __mptcp_socket_create(msk);
108 if (ret)
109 return ERR_PTR(ret);
110 }
111
112 return msk->first;
113 }
114
mptcp_drop(struct sock * sk,struct sk_buff * skb)115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
116 {
117 sk_drops_add(sk, skb);
118 __kfree_skb(skb);
119 }
120
mptcp_rmem_fwd_alloc_add(struct sock * sk,int size)121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
122 {
123 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
124 mptcp_sk(sk)->rmem_fwd_alloc + size);
125 }
126
mptcp_rmem_charge(struct sock * sk,int size)127 static void mptcp_rmem_charge(struct sock *sk, int size)
128 {
129 mptcp_rmem_fwd_alloc_add(sk, -size);
130 }
131
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
133 struct sk_buff *from)
134 {
135 bool fragstolen;
136 int delta;
137
138 if (MPTCP_SKB_CB(from)->offset ||
139 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
140 !skb_try_coalesce(to, from, &fragstolen, &delta))
141 return false;
142
143 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
144 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
145 to->len, MPTCP_SKB_CB(from)->end_seq);
146 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
147
148 /* note the fwd memory can reach a negative value after accounting
149 * for the delta, but the later skb free will restore a non
150 * negative one
151 */
152 atomic_add(delta, &sk->sk_rmem_alloc);
153 mptcp_rmem_charge(sk, delta);
154 kfree_skb_partial(from, fragstolen);
155
156 return true;
157 }
158
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)159 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
160 struct sk_buff *from)
161 {
162 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
163 return false;
164
165 return mptcp_try_coalesce((struct sock *)msk, to, from);
166 }
167
__mptcp_rmem_reclaim(struct sock * sk,int amount)168 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
169 {
170 amount >>= PAGE_SHIFT;
171 mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
172 __sk_mem_reduce_allocated(sk, amount);
173 }
174
mptcp_rmem_uncharge(struct sock * sk,int size)175 static void mptcp_rmem_uncharge(struct sock *sk, int size)
176 {
177 struct mptcp_sock *msk = mptcp_sk(sk);
178 int reclaimable;
179
180 mptcp_rmem_fwd_alloc_add(sk, size);
181 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
182
183 /* see sk_mem_uncharge() for the rationale behind the following schema */
184 if (unlikely(reclaimable >= PAGE_SIZE))
185 __mptcp_rmem_reclaim(sk, reclaimable);
186 }
187
mptcp_rfree(struct sk_buff * skb)188 static void mptcp_rfree(struct sk_buff *skb)
189 {
190 unsigned int len = skb->truesize;
191 struct sock *sk = skb->sk;
192
193 atomic_sub(len, &sk->sk_rmem_alloc);
194 mptcp_rmem_uncharge(sk, len);
195 }
196
mptcp_set_owner_r(struct sk_buff * skb,struct sock * sk)197 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
198 {
199 skb_orphan(skb);
200 skb->sk = sk;
201 skb->destructor = mptcp_rfree;
202 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
203 mptcp_rmem_charge(sk, skb->truesize);
204 }
205
206 /* "inspired" by tcp_data_queue_ofo(), main differences:
207 * - use mptcp seqs
208 * - don't cope with sacks
209 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)210 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
211 {
212 struct sock *sk = (struct sock *)msk;
213 struct rb_node **p, *parent;
214 u64 seq, end_seq, max_seq;
215 struct sk_buff *skb1;
216
217 seq = MPTCP_SKB_CB(skb)->map_seq;
218 end_seq = MPTCP_SKB_CB(skb)->end_seq;
219 max_seq = atomic64_read(&msk->rcv_wnd_sent);
220
221 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
222 RB_EMPTY_ROOT(&msk->out_of_order_queue));
223 if (after64(end_seq, max_seq)) {
224 /* out of window */
225 mptcp_drop(sk, skb);
226 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
227 (unsigned long long)end_seq - (unsigned long)max_seq,
228 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
229 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
230 return;
231 }
232
233 p = &msk->out_of_order_queue.rb_node;
234 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
235 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
236 rb_link_node(&skb->rbnode, NULL, p);
237 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
238 msk->ooo_last_skb = skb;
239 goto end;
240 }
241
242 /* with 2 subflows, adding at end of ooo queue is quite likely
243 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
244 */
245 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
248 return;
249 }
250
251 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
252 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
254 parent = &msk->ooo_last_skb->rbnode;
255 p = &parent->rb_right;
256 goto insert;
257 }
258
259 /* Find place to insert this segment. Handle overlaps on the way. */
260 parent = NULL;
261 while (*p) {
262 parent = *p;
263 skb1 = rb_to_skb(parent);
264 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
265 p = &parent->rb_left;
266 continue;
267 }
268 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
269 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
270 /* All the bits are present. Drop. */
271 mptcp_drop(sk, skb);
272 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
273 return;
274 }
275 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
276 /* partial overlap:
277 * | skb |
278 * | skb1 |
279 * continue traversing
280 */
281 } else {
282 /* skb's seq == skb1's seq and skb covers skb1.
283 * Replace skb1 with skb.
284 */
285 rb_replace_node(&skb1->rbnode, &skb->rbnode,
286 &msk->out_of_order_queue);
287 mptcp_drop(sk, skb1);
288 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
289 goto merge_right;
290 }
291 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
292 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
293 return;
294 }
295 p = &parent->rb_right;
296 }
297
298 insert:
299 /* Insert segment into RB tree. */
300 rb_link_node(&skb->rbnode, parent, p);
301 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
302
303 merge_right:
304 /* Remove other segments covered by skb. */
305 while ((skb1 = skb_rb_next(skb)) != NULL) {
306 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
307 break;
308 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
309 mptcp_drop(sk, skb1);
310 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
311 }
312 /* If there is no skb after us, we are the last_skb ! */
313 if (!skb1)
314 msk->ooo_last_skb = skb;
315
316 end:
317 skb_condense(skb);
318 mptcp_set_owner_r(skb, sk);
319 }
320
mptcp_rmem_schedule(struct sock * sk,struct sock * ssk,int size)321 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
322 {
323 struct mptcp_sock *msk = mptcp_sk(sk);
324 int amt, amount;
325
326 if (size <= msk->rmem_fwd_alloc)
327 return true;
328
329 size -= msk->rmem_fwd_alloc;
330 amt = sk_mem_pages(size);
331 amount = amt << PAGE_SHIFT;
332 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
333 return false;
334
335 mptcp_rmem_fwd_alloc_add(sk, amount);
336 return true;
337 }
338
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)339 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
340 struct sk_buff *skb, unsigned int offset,
341 size_t copy_len)
342 {
343 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
344 struct sock *sk = (struct sock *)msk;
345 struct sk_buff *tail;
346 bool has_rxtstamp;
347
348 __skb_unlink(skb, &ssk->sk_receive_queue);
349
350 skb_ext_reset(skb);
351 skb_orphan(skb);
352
353 /* try to fetch required memory from subflow */
354 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) {
355 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
356 goto drop;
357 }
358
359 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
360
361 /* the skb map_seq accounts for the skb offset:
362 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
363 * value
364 */
365 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
366 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
367 MPTCP_SKB_CB(skb)->offset = offset;
368 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
369
370 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
371 /* in sequence */
372 msk->bytes_received += copy_len;
373 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
374 tail = skb_peek_tail(&sk->sk_receive_queue);
375 if (tail && mptcp_try_coalesce(sk, tail, skb))
376 return true;
377
378 mptcp_set_owner_r(skb, sk);
379 __skb_queue_tail(&sk->sk_receive_queue, skb);
380 return true;
381 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
382 mptcp_data_queue_ofo(msk, skb);
383 return false;
384 }
385
386 /* old data, keep it simple and drop the whole pkt, sender
387 * will retransmit as needed, if needed.
388 */
389 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
390 drop:
391 mptcp_drop(sk, skb);
392 return false;
393 }
394
mptcp_stop_rtx_timer(struct sock * sk)395 static void mptcp_stop_rtx_timer(struct sock *sk)
396 {
397 struct inet_connection_sock *icsk = inet_csk(sk);
398
399 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
400 mptcp_sk(sk)->timer_ival = 0;
401 }
402
mptcp_close_wake_up(struct sock * sk)403 static void mptcp_close_wake_up(struct sock *sk)
404 {
405 if (sock_flag(sk, SOCK_DEAD))
406 return;
407
408 sk->sk_state_change(sk);
409 if (sk->sk_shutdown == SHUTDOWN_MASK ||
410 sk->sk_state == TCP_CLOSE)
411 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
412 else
413 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
414 }
415
mptcp_shutdown_subflows(struct mptcp_sock * msk)416 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
417 {
418 struct mptcp_subflow_context *subflow;
419
420 mptcp_for_each_subflow(msk, subflow) {
421 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
422 bool slow;
423
424 slow = lock_sock_fast(ssk);
425 tcp_shutdown(ssk, SEND_SHUTDOWN);
426 unlock_sock_fast(ssk, slow);
427 }
428 }
429
430 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)431 static bool mptcp_pending_data_fin_ack(struct sock *sk)
432 {
433 struct mptcp_sock *msk = mptcp_sk(sk);
434
435 return ((1 << sk->sk_state) &
436 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
437 msk->write_seq == READ_ONCE(msk->snd_una);
438 }
439
mptcp_check_data_fin_ack(struct sock * sk)440 static void mptcp_check_data_fin_ack(struct sock *sk)
441 {
442 struct mptcp_sock *msk = mptcp_sk(sk);
443
444 /* Look for an acknowledged DATA_FIN */
445 if (mptcp_pending_data_fin_ack(sk)) {
446 WRITE_ONCE(msk->snd_data_fin_enable, 0);
447
448 switch (sk->sk_state) {
449 case TCP_FIN_WAIT1:
450 mptcp_set_state(sk, TCP_FIN_WAIT2);
451 break;
452 case TCP_CLOSING:
453 case TCP_LAST_ACK:
454 mptcp_shutdown_subflows(msk);
455 mptcp_set_state(sk, TCP_CLOSE);
456 break;
457 }
458
459 mptcp_close_wake_up(sk);
460 }
461 }
462
463 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)464 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
465 {
466 struct mptcp_sock *msk = mptcp_sk(sk);
467
468 if (READ_ONCE(msk->rcv_data_fin) &&
469 ((1 << inet_sk_state_load(sk)) &
470 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
471 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
472
473 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
474 if (seq)
475 *seq = rcv_data_fin_seq;
476
477 return true;
478 }
479 }
480
481 return false;
482 }
483
mptcp_set_datafin_timeout(struct sock * sk)484 static void mptcp_set_datafin_timeout(struct sock *sk)
485 {
486 struct inet_connection_sock *icsk = inet_csk(sk);
487 u32 retransmits;
488
489 retransmits = min_t(u32, icsk->icsk_retransmits,
490 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
491
492 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
493 }
494
__mptcp_set_timeout(struct sock * sk,long tout)495 static void __mptcp_set_timeout(struct sock *sk, long tout)
496 {
497 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
498 }
499
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)500 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
501 {
502 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
503
504 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
505 inet_csk(ssk)->icsk_timeout - jiffies : 0;
506 }
507
mptcp_set_timeout(struct sock * sk)508 static void mptcp_set_timeout(struct sock *sk)
509 {
510 struct mptcp_subflow_context *subflow;
511 long tout = 0;
512
513 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
514 tout = max(tout, mptcp_timeout_from_subflow(subflow));
515 __mptcp_set_timeout(sk, tout);
516 }
517
tcp_can_send_ack(const struct sock * ssk)518 static inline bool tcp_can_send_ack(const struct sock *ssk)
519 {
520 return !((1 << inet_sk_state_load(ssk)) &
521 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
522 }
523
__mptcp_subflow_send_ack(struct sock * ssk)524 void __mptcp_subflow_send_ack(struct sock *ssk)
525 {
526 if (tcp_can_send_ack(ssk))
527 tcp_send_ack(ssk);
528 }
529
mptcp_subflow_send_ack(struct sock * ssk)530 static void mptcp_subflow_send_ack(struct sock *ssk)
531 {
532 bool slow;
533
534 slow = lock_sock_fast(ssk);
535 __mptcp_subflow_send_ack(ssk);
536 unlock_sock_fast(ssk, slow);
537 }
538
mptcp_send_ack(struct mptcp_sock * msk)539 static void mptcp_send_ack(struct mptcp_sock *msk)
540 {
541 struct mptcp_subflow_context *subflow;
542
543 mptcp_for_each_subflow(msk, subflow)
544 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
545 }
546
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)547 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
548 {
549 bool slow;
550
551 slow = lock_sock_fast(ssk);
552 if (tcp_can_send_ack(ssk))
553 tcp_cleanup_rbuf(ssk, copied);
554 unlock_sock_fast(ssk, slow);
555 }
556
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)557 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
558 {
559 const struct inet_connection_sock *icsk = inet_csk(ssk);
560 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
561 const struct tcp_sock *tp = tcp_sk(ssk);
562
563 return (ack_pending & ICSK_ACK_SCHED) &&
564 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
565 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
566 (rx_empty && ack_pending &
567 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
568 }
569
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)570 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
571 {
572 int old_space = READ_ONCE(msk->old_wspace);
573 struct mptcp_subflow_context *subflow;
574 struct sock *sk = (struct sock *)msk;
575 int space = __mptcp_space(sk);
576 bool cleanup, rx_empty;
577
578 cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
579 rx_empty = !__mptcp_rmem(sk) && copied;
580
581 mptcp_for_each_subflow(msk, subflow) {
582 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
583
584 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
585 mptcp_subflow_cleanup_rbuf(ssk, copied);
586 }
587 }
588
mptcp_check_data_fin(struct sock * sk)589 static bool mptcp_check_data_fin(struct sock *sk)
590 {
591 struct mptcp_sock *msk = mptcp_sk(sk);
592 u64 rcv_data_fin_seq;
593 bool ret = false;
594
595 /* Need to ack a DATA_FIN received from a peer while this side
596 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
597 * msk->rcv_data_fin was set when parsing the incoming options
598 * at the subflow level and the msk lock was not held, so this
599 * is the first opportunity to act on the DATA_FIN and change
600 * the msk state.
601 *
602 * If we are caught up to the sequence number of the incoming
603 * DATA_FIN, send the DATA_ACK now and do state transition. If
604 * not caught up, do nothing and let the recv code send DATA_ACK
605 * when catching up.
606 */
607
608 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
609 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
610 WRITE_ONCE(msk->rcv_data_fin, 0);
611
612 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
613 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
614
615 switch (sk->sk_state) {
616 case TCP_ESTABLISHED:
617 mptcp_set_state(sk, TCP_CLOSE_WAIT);
618 break;
619 case TCP_FIN_WAIT1:
620 mptcp_set_state(sk, TCP_CLOSING);
621 break;
622 case TCP_FIN_WAIT2:
623 mptcp_shutdown_subflows(msk);
624 mptcp_set_state(sk, TCP_CLOSE);
625 break;
626 default:
627 /* Other states not expected */
628 WARN_ON_ONCE(1);
629 break;
630 }
631
632 ret = true;
633 if (!__mptcp_check_fallback(msk))
634 mptcp_send_ack(msk);
635 mptcp_close_wake_up(sk);
636 }
637 return ret;
638 }
639
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)640 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
641 {
642 if (mptcp_try_fallback(ssk)) {
643 MPTCP_INC_STATS(sock_net(ssk),
644 MPTCP_MIB_DSSCORRUPTIONFALLBACK);
645 } else {
646 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
647 mptcp_subflow_reset(ssk);
648 }
649 }
650
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)651 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
652 struct sock *ssk,
653 unsigned int *bytes)
654 {
655 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
656 struct sock *sk = (struct sock *)msk;
657 unsigned int moved = 0;
658 bool more_data_avail;
659 struct tcp_sock *tp;
660 bool done = false;
661 int sk_rbuf;
662
663 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
664
665 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
666 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
667
668 if (unlikely(ssk_rbuf > sk_rbuf)) {
669 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
670 sk_rbuf = ssk_rbuf;
671 }
672 }
673
674 pr_debug("msk=%p ssk=%p\n", msk, ssk);
675 tp = tcp_sk(ssk);
676 do {
677 u32 map_remaining, offset;
678 u32 seq = tp->copied_seq;
679 struct sk_buff *skb;
680 bool fin;
681
682 /* try to move as much data as available */
683 map_remaining = subflow->map_data_len -
684 mptcp_subflow_get_map_offset(subflow);
685
686 skb = skb_peek(&ssk->sk_receive_queue);
687 if (!skb) {
688 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
689 * a different CPU can have already processed the pending
690 * data, stop here or we can enter an infinite loop
691 */
692 if (!moved)
693 done = true;
694 break;
695 }
696
697 if (__mptcp_check_fallback(msk)) {
698 /* Under fallback skbs have no MPTCP extension and TCP could
699 * collapse them between the dummy map creation and the
700 * current dequeue. Be sure to adjust the map size.
701 */
702 map_remaining = skb->len;
703 subflow->map_data_len = skb->len;
704 }
705
706 offset = seq - TCP_SKB_CB(skb)->seq;
707 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
708 if (fin) {
709 done = true;
710 seq++;
711 }
712
713 if (offset < skb->len) {
714 size_t len = skb->len - offset;
715
716 if (tp->urg_data)
717 done = true;
718
719 if (__mptcp_move_skb(msk, ssk, skb, offset, len))
720 moved += len;
721 seq += len;
722
723 if (unlikely(map_remaining < len)) {
724 DEBUG_NET_WARN_ON_ONCE(1);
725 mptcp_dss_corruption(msk, ssk);
726 }
727 } else {
728 if (unlikely(!fin)) {
729 DEBUG_NET_WARN_ON_ONCE(1);
730 mptcp_dss_corruption(msk, ssk);
731 }
732
733 sk_eat_skb(ssk, skb);
734 done = true;
735 }
736
737 WRITE_ONCE(tp->copied_seq, seq);
738 more_data_avail = mptcp_subflow_data_available(ssk);
739
740 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
741 done = true;
742 break;
743 }
744 } while (more_data_avail);
745
746 if (moved > 0)
747 msk->last_data_recv = tcp_jiffies32;
748 *bytes += moved;
749 return done;
750 }
751
__mptcp_ofo_queue(struct mptcp_sock * msk)752 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
753 {
754 struct sock *sk = (struct sock *)msk;
755 struct sk_buff *skb, *tail;
756 bool moved = false;
757 struct rb_node *p;
758 u64 end_seq;
759
760 p = rb_first(&msk->out_of_order_queue);
761 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
762 while (p) {
763 skb = rb_to_skb(p);
764 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
765 break;
766
767 p = rb_next(p);
768 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
769
770 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
771 msk->ack_seq))) {
772 mptcp_drop(sk, skb);
773 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
774 continue;
775 }
776
777 end_seq = MPTCP_SKB_CB(skb)->end_seq;
778 tail = skb_peek_tail(&sk->sk_receive_queue);
779 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
780 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
781
782 /* skip overlapping data, if any */
783 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
784 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
785 delta);
786 MPTCP_SKB_CB(skb)->offset += delta;
787 MPTCP_SKB_CB(skb)->map_seq += delta;
788 __skb_queue_tail(&sk->sk_receive_queue, skb);
789 }
790 msk->bytes_received += end_seq - msk->ack_seq;
791 WRITE_ONCE(msk->ack_seq, end_seq);
792 moved = true;
793 }
794 return moved;
795 }
796
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)797 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
798 {
799 int err = sock_error(ssk);
800 int ssk_state;
801
802 if (!err)
803 return false;
804
805 /* only propagate errors on fallen-back sockets or
806 * on MPC connect
807 */
808 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
809 return false;
810
811 /* We need to propagate only transition to CLOSE state.
812 * Orphaned socket will see such state change via
813 * subflow_sched_work_if_closed() and that path will properly
814 * destroy the msk as needed.
815 */
816 ssk_state = inet_sk_state_load(ssk);
817 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
818 mptcp_set_state(sk, ssk_state);
819 WRITE_ONCE(sk->sk_err, -err);
820
821 /* This barrier is coupled with smp_rmb() in mptcp_poll() */
822 smp_wmb();
823 sk_error_report(sk);
824 return true;
825 }
826
__mptcp_error_report(struct sock * sk)827 void __mptcp_error_report(struct sock *sk)
828 {
829 struct mptcp_subflow_context *subflow;
830 struct mptcp_sock *msk = mptcp_sk(sk);
831
832 mptcp_for_each_subflow(msk, subflow)
833 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
834 break;
835 }
836
837 /* In most cases we will be able to lock the mptcp socket. If its already
838 * owned, we need to defer to the work queue to avoid ABBA deadlock.
839 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)840 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
841 {
842 struct sock *sk = (struct sock *)msk;
843 unsigned int moved = 0;
844
845 __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
846 __mptcp_ofo_queue(msk);
847 if (unlikely(ssk->sk_err)) {
848 if (!sock_owned_by_user(sk))
849 __mptcp_error_report(sk);
850 else
851 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
852 }
853
854 /* If the moves have caught up with the DATA_FIN sequence number
855 * it's time to ack the DATA_FIN and change socket state, but
856 * this is not a good place to change state. Let the workqueue
857 * do it.
858 */
859 if (mptcp_pending_data_fin(sk, NULL))
860 mptcp_schedule_work(sk);
861 return moved > 0;
862 }
863
mptcp_data_ready(struct sock * sk,struct sock * ssk)864 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
865 {
866 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
867 struct mptcp_sock *msk = mptcp_sk(sk);
868 int sk_rbuf, ssk_rbuf;
869
870 /* The peer can send data while we are shutting down this
871 * subflow at msk destruction time, but we must avoid enqueuing
872 * more data to the msk receive queue
873 */
874 if (unlikely(subflow->disposable))
875 return;
876
877 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
878 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
879 if (unlikely(ssk_rbuf > sk_rbuf))
880 sk_rbuf = ssk_rbuf;
881
882 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/
883 if (__mptcp_rmem(sk) > sk_rbuf)
884 return;
885
886 /* Wake-up the reader only for in-sequence data */
887 mptcp_data_lock(sk);
888 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
889 sk->sk_data_ready(sk);
890 mptcp_data_unlock(sk);
891 }
892
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)893 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
894 {
895 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
896 msk->allow_infinite_fallback = false;
897 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
898 }
899
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)900 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
901 {
902 struct sock *sk = (struct sock *)msk;
903
904 if (sk->sk_state != TCP_ESTABLISHED)
905 return false;
906
907 spin_lock_bh(&msk->fallback_lock);
908 if (!msk->allow_subflows) {
909 spin_unlock_bh(&msk->fallback_lock);
910 return false;
911 }
912 mptcp_subflow_joined(msk, ssk);
913 spin_unlock_bh(&msk->fallback_lock);
914
915 /* attach to msk socket only after we are sure we will deal with it
916 * at close time
917 */
918 if (sk->sk_socket && !ssk->sk_socket)
919 mptcp_sock_graft(ssk, sk->sk_socket);
920
921 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
922 mptcp_sockopt_sync_locked(msk, ssk);
923 mptcp_stop_tout_timer(sk);
924 __mptcp_propagate_sndbuf(sk, ssk);
925 return true;
926 }
927
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)928 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
929 {
930 struct mptcp_subflow_context *tmp, *subflow;
931 struct mptcp_sock *msk = mptcp_sk(sk);
932
933 list_for_each_entry_safe(subflow, tmp, join_list, node) {
934 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
935 bool slow = lock_sock_fast(ssk);
936
937 list_move_tail(&subflow->node, &msk->conn_list);
938 if (!__mptcp_finish_join(msk, ssk))
939 mptcp_subflow_reset(ssk);
940 unlock_sock_fast(ssk, slow);
941 }
942 }
943
mptcp_rtx_timer_pending(struct sock * sk)944 static bool mptcp_rtx_timer_pending(struct sock *sk)
945 {
946 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
947 }
948
mptcp_reset_rtx_timer(struct sock * sk)949 static void mptcp_reset_rtx_timer(struct sock *sk)
950 {
951 struct inet_connection_sock *icsk = inet_csk(sk);
952 unsigned long tout;
953
954 /* prevent rescheduling on close */
955 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
956 return;
957
958 tout = mptcp_sk(sk)->timer_ival;
959 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
960 }
961
mptcp_schedule_work(struct sock * sk)962 bool mptcp_schedule_work(struct sock *sk)
963 {
964 if (inet_sk_state_load(sk) != TCP_CLOSE &&
965 schedule_work(&mptcp_sk(sk)->work)) {
966 /* each subflow already holds a reference to the sk, and the
967 * workqueue is invoked by a subflow, so sk can't go away here.
968 */
969 sock_hold(sk);
970 return true;
971 }
972 return false;
973 }
974
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)975 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
976 {
977 struct mptcp_subflow_context *subflow;
978
979 msk_owned_by_me(msk);
980
981 mptcp_for_each_subflow(msk, subflow) {
982 if (READ_ONCE(subflow->data_avail))
983 return mptcp_subflow_tcp_sock(subflow);
984 }
985
986 return NULL;
987 }
988
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)989 static bool mptcp_skb_can_collapse_to(u64 write_seq,
990 const struct sk_buff *skb,
991 const struct mptcp_ext *mpext)
992 {
993 if (!tcp_skb_can_collapse_to(skb))
994 return false;
995
996 /* can collapse only if MPTCP level sequence is in order and this
997 * mapping has not been xmitted yet
998 */
999 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
1000 !mpext->frozen;
1001 }
1002
1003 /* we can append data to the given data frag if:
1004 * - there is space available in the backing page_frag
1005 * - the data frag tail matches the current page_frag free offset
1006 * - the data frag end sequence number matches the current write seq
1007 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)1008 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
1009 const struct page_frag *pfrag,
1010 const struct mptcp_data_frag *df)
1011 {
1012 return df && pfrag->page == df->page &&
1013 pfrag->size - pfrag->offset > 0 &&
1014 pfrag->offset == (df->offset + df->data_len) &&
1015 df->data_seq + df->data_len == msk->write_seq;
1016 }
1017
dfrag_uncharge(struct sock * sk,int len)1018 static void dfrag_uncharge(struct sock *sk, int len)
1019 {
1020 sk_mem_uncharge(sk, len);
1021 sk_wmem_queued_add(sk, -len);
1022 }
1023
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1024 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1025 {
1026 int len = dfrag->data_len + dfrag->overhead;
1027
1028 list_del(&dfrag->list);
1029 dfrag_uncharge(sk, len);
1030 put_page(dfrag->page);
1031 }
1032
1033 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)1034 static void __mptcp_clean_una(struct sock *sk)
1035 {
1036 struct mptcp_sock *msk = mptcp_sk(sk);
1037 struct mptcp_data_frag *dtmp, *dfrag;
1038 u64 snd_una;
1039
1040 snd_una = msk->snd_una;
1041 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1042 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1043 break;
1044
1045 if (unlikely(dfrag == msk->first_pending)) {
1046 /* in recovery mode can see ack after the current snd head */
1047 if (WARN_ON_ONCE(!msk->recovery))
1048 break;
1049
1050 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1051 }
1052
1053 dfrag_clear(sk, dfrag);
1054 }
1055
1056 dfrag = mptcp_rtx_head(sk);
1057 if (dfrag && after64(snd_una, dfrag->data_seq)) {
1058 u64 delta = snd_una - dfrag->data_seq;
1059
1060 /* prevent wrap around in recovery mode */
1061 if (unlikely(delta > dfrag->already_sent)) {
1062 if (WARN_ON_ONCE(!msk->recovery))
1063 goto out;
1064 if (WARN_ON_ONCE(delta > dfrag->data_len))
1065 goto out;
1066 dfrag->already_sent += delta - dfrag->already_sent;
1067 }
1068
1069 dfrag->data_seq += delta;
1070 dfrag->offset += delta;
1071 dfrag->data_len -= delta;
1072 dfrag->already_sent -= delta;
1073
1074 dfrag_uncharge(sk, delta);
1075 }
1076
1077 /* all retransmitted data acked, recovery completed */
1078 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1079 msk->recovery = false;
1080
1081 out:
1082 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1083 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1084 mptcp_stop_rtx_timer(sk);
1085 } else {
1086 mptcp_reset_rtx_timer(sk);
1087 }
1088
1089 if (mptcp_pending_data_fin_ack(sk))
1090 mptcp_schedule_work(sk);
1091 }
1092
__mptcp_clean_una_wakeup(struct sock * sk)1093 static void __mptcp_clean_una_wakeup(struct sock *sk)
1094 {
1095 lockdep_assert_held_once(&sk->sk_lock.slock);
1096
1097 __mptcp_clean_una(sk);
1098 mptcp_write_space(sk);
1099 }
1100
mptcp_clean_una_wakeup(struct sock * sk)1101 static void mptcp_clean_una_wakeup(struct sock *sk)
1102 {
1103 mptcp_data_lock(sk);
1104 __mptcp_clean_una_wakeup(sk);
1105 mptcp_data_unlock(sk);
1106 }
1107
mptcp_enter_memory_pressure(struct sock * sk)1108 static void mptcp_enter_memory_pressure(struct sock *sk)
1109 {
1110 struct mptcp_subflow_context *subflow;
1111 struct mptcp_sock *msk = mptcp_sk(sk);
1112 bool first = true;
1113
1114 mptcp_for_each_subflow(msk, subflow) {
1115 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1116
1117 if (first)
1118 tcp_enter_memory_pressure(ssk);
1119 sk_stream_moderate_sndbuf(ssk);
1120
1121 first = false;
1122 }
1123 __mptcp_sync_sndbuf(sk);
1124 }
1125
1126 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1127 * data
1128 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1129 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1130 {
1131 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1132 pfrag, sk->sk_allocation)))
1133 return true;
1134
1135 mptcp_enter_memory_pressure(sk);
1136 return false;
1137 }
1138
1139 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1140 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1141 int orig_offset)
1142 {
1143 int offset = ALIGN(orig_offset, sizeof(long));
1144 struct mptcp_data_frag *dfrag;
1145
1146 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1147 dfrag->data_len = 0;
1148 dfrag->data_seq = msk->write_seq;
1149 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1150 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1151 dfrag->already_sent = 0;
1152 dfrag->page = pfrag->page;
1153
1154 return dfrag;
1155 }
1156
1157 struct mptcp_sendmsg_info {
1158 int mss_now;
1159 int size_goal;
1160 u16 limit;
1161 u16 sent;
1162 unsigned int flags;
1163 bool data_lock_held;
1164 };
1165
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1166 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1167 u64 data_seq, int avail_size)
1168 {
1169 u64 window_end = mptcp_wnd_end(msk);
1170 u64 mptcp_snd_wnd;
1171
1172 if (__mptcp_check_fallback(msk))
1173 return avail_size;
1174
1175 mptcp_snd_wnd = window_end - data_seq;
1176 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1177
1178 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1179 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1180 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1181 }
1182
1183 return avail_size;
1184 }
1185
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1186 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1187 {
1188 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1189
1190 if (!mpext)
1191 return false;
1192 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1193 return true;
1194 }
1195
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1196 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1197 {
1198 struct sk_buff *skb;
1199
1200 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1201 if (likely(skb)) {
1202 if (likely(__mptcp_add_ext(skb, gfp))) {
1203 skb_reserve(skb, MAX_TCP_HEADER);
1204 skb->ip_summed = CHECKSUM_PARTIAL;
1205 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1206 return skb;
1207 }
1208 __kfree_skb(skb);
1209 } else {
1210 mptcp_enter_memory_pressure(sk);
1211 }
1212 return NULL;
1213 }
1214
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1215 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1216 {
1217 struct sk_buff *skb;
1218
1219 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1220 if (!skb)
1221 return NULL;
1222
1223 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1224 tcp_skb_entail(ssk, skb);
1225 return skb;
1226 }
1227 tcp_skb_tsorted_anchor_cleanup(skb);
1228 kfree_skb(skb);
1229 return NULL;
1230 }
1231
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1232 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1233 {
1234 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1235
1236 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1237 }
1238
1239 /* note: this always recompute the csum on the whole skb, even
1240 * if we just appended a single frag. More status info needed
1241 */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1242 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1243 {
1244 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1245 __wsum csum = ~csum_unfold(mpext->csum);
1246 int offset = skb->len - added;
1247
1248 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1249 }
1250
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1251 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1252 struct sock *ssk,
1253 struct mptcp_ext *mpext)
1254 {
1255 if (!mpext)
1256 return;
1257
1258 mpext->infinite_map = 1;
1259 mpext->data_len = 0;
1260
1261 if (!mptcp_try_fallback(ssk)) {
1262 mptcp_subflow_reset(ssk);
1263 return;
1264 }
1265
1266 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1267 mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1268 pr_fallback(msk);
1269 }
1270
1271 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1272
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1273 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1274 struct mptcp_data_frag *dfrag,
1275 struct mptcp_sendmsg_info *info)
1276 {
1277 u64 data_seq = dfrag->data_seq + info->sent;
1278 int offset = dfrag->offset + info->sent;
1279 struct mptcp_sock *msk = mptcp_sk(sk);
1280 bool zero_window_probe = false;
1281 struct mptcp_ext *mpext = NULL;
1282 bool can_coalesce = false;
1283 bool reuse_skb = true;
1284 struct sk_buff *skb;
1285 size_t copy;
1286 int i;
1287
1288 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1289 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1290
1291 if (WARN_ON_ONCE(info->sent > info->limit ||
1292 info->limit > dfrag->data_len))
1293 return 0;
1294
1295 if (unlikely(!__tcp_can_send(ssk)))
1296 return -EAGAIN;
1297
1298 /* compute send limit */
1299 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1300 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1301 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1302 copy = info->size_goal;
1303
1304 skb = tcp_write_queue_tail(ssk);
1305 if (skb && copy > skb->len) {
1306 /* Limit the write to the size available in the
1307 * current skb, if any, so that we create at most a new skb.
1308 * Explicitly tells TCP internals to avoid collapsing on later
1309 * queue management operation, to avoid breaking the ext <->
1310 * SSN association set here
1311 */
1312 mpext = mptcp_get_ext(skb);
1313 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1314 TCP_SKB_CB(skb)->eor = 1;
1315 tcp_mark_push(tcp_sk(ssk), skb);
1316 goto alloc_skb;
1317 }
1318
1319 i = skb_shinfo(skb)->nr_frags;
1320 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1321 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1322 tcp_mark_push(tcp_sk(ssk), skb);
1323 goto alloc_skb;
1324 }
1325
1326 copy -= skb->len;
1327 } else {
1328 alloc_skb:
1329 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1330 if (!skb)
1331 return -ENOMEM;
1332
1333 i = skb_shinfo(skb)->nr_frags;
1334 reuse_skb = false;
1335 mpext = mptcp_get_ext(skb);
1336 }
1337
1338 /* Zero window and all data acked? Probe. */
1339 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1340 if (copy == 0) {
1341 u64 snd_una = READ_ONCE(msk->snd_una);
1342
1343 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1344 tcp_remove_empty_skb(ssk);
1345 return 0;
1346 }
1347
1348 zero_window_probe = true;
1349 data_seq = snd_una - 1;
1350 copy = 1;
1351 }
1352
1353 copy = min_t(size_t, copy, info->limit - info->sent);
1354 if (!sk_wmem_schedule(ssk, copy)) {
1355 tcp_remove_empty_skb(ssk);
1356 return -ENOMEM;
1357 }
1358
1359 if (can_coalesce) {
1360 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1361 } else {
1362 get_page(dfrag->page);
1363 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1364 }
1365
1366 skb->len += copy;
1367 skb->data_len += copy;
1368 skb->truesize += copy;
1369 sk_wmem_queued_add(ssk, copy);
1370 sk_mem_charge(ssk, copy);
1371 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1372 TCP_SKB_CB(skb)->end_seq += copy;
1373 tcp_skb_pcount_set(skb, 0);
1374
1375 /* on skb reuse we just need to update the DSS len */
1376 if (reuse_skb) {
1377 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1378 mpext->data_len += copy;
1379 goto out;
1380 }
1381
1382 memset(mpext, 0, sizeof(*mpext));
1383 mpext->data_seq = data_seq;
1384 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1385 mpext->data_len = copy;
1386 mpext->use_map = 1;
1387 mpext->dsn64 = 1;
1388
1389 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1390 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1391 mpext->dsn64);
1392
1393 if (zero_window_probe) {
1394 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1395 mpext->frozen = 1;
1396 if (READ_ONCE(msk->csum_enabled))
1397 mptcp_update_data_checksum(skb, copy);
1398 tcp_push_pending_frames(ssk);
1399 return 0;
1400 }
1401 out:
1402 if (READ_ONCE(msk->csum_enabled))
1403 mptcp_update_data_checksum(skb, copy);
1404 if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1405 mptcp_update_infinite_map(msk, ssk, mpext);
1406 trace_mptcp_sendmsg_frag(mpext);
1407 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1408 return copy;
1409 }
1410
1411 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1412 sizeof(struct tcphdr) - \
1413 MAX_TCP_OPTION_SPACE - \
1414 sizeof(struct ipv6hdr) - \
1415 sizeof(struct frag_hdr))
1416
1417 struct subflow_send_info {
1418 struct sock *ssk;
1419 u64 linger_time;
1420 };
1421
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1422 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1423 {
1424 if (!subflow->stale)
1425 return;
1426
1427 subflow->stale = 0;
1428 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1429 }
1430
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1431 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1432 {
1433 if (unlikely(subflow->stale)) {
1434 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1435
1436 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1437 return false;
1438
1439 mptcp_subflow_set_active(subflow);
1440 }
1441 return __mptcp_subflow_active(subflow);
1442 }
1443
1444 #define SSK_MODE_ACTIVE 0
1445 #define SSK_MODE_BACKUP 1
1446 #define SSK_MODE_MAX 2
1447
1448 /* implement the mptcp packet scheduler;
1449 * returns the subflow that will transmit the next DSS
1450 * additionally updates the rtx timeout
1451 */
mptcp_subflow_get_send(struct mptcp_sock * msk)1452 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1453 {
1454 struct subflow_send_info send_info[SSK_MODE_MAX];
1455 struct mptcp_subflow_context *subflow;
1456 struct sock *sk = (struct sock *)msk;
1457 u32 pace, burst, wmem;
1458 int i, nr_active = 0;
1459 struct sock *ssk;
1460 u64 linger_time;
1461 long tout = 0;
1462
1463 /* pick the subflow with the lower wmem/wspace ratio */
1464 for (i = 0; i < SSK_MODE_MAX; ++i) {
1465 send_info[i].ssk = NULL;
1466 send_info[i].linger_time = -1;
1467 }
1468
1469 mptcp_for_each_subflow(msk, subflow) {
1470 bool backup = subflow->backup || subflow->request_bkup;
1471
1472 trace_mptcp_subflow_get_send(subflow);
1473 ssk = mptcp_subflow_tcp_sock(subflow);
1474 if (!mptcp_subflow_active(subflow))
1475 continue;
1476
1477 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1478 nr_active += !backup;
1479 pace = subflow->avg_pacing_rate;
1480 if (unlikely(!pace)) {
1481 /* init pacing rate from socket */
1482 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1483 pace = subflow->avg_pacing_rate;
1484 if (!pace)
1485 continue;
1486 }
1487
1488 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1489 if (linger_time < send_info[backup].linger_time) {
1490 send_info[backup].ssk = ssk;
1491 send_info[backup].linger_time = linger_time;
1492 }
1493 }
1494 __mptcp_set_timeout(sk, tout);
1495
1496 /* pick the best backup if no other subflow is active */
1497 if (!nr_active)
1498 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1499
1500 /* According to the blest algorithm, to avoid HoL blocking for the
1501 * faster flow, we need to:
1502 * - estimate the faster flow linger time
1503 * - use the above to estimate the amount of byte transferred
1504 * by the faster flow
1505 * - check that the amount of queued data is greter than the above,
1506 * otherwise do not use the picked, slower, subflow
1507 * We select the subflow with the shorter estimated time to flush
1508 * the queued mem, which basically ensure the above. We just need
1509 * to check that subflow has a non empty cwin.
1510 */
1511 ssk = send_info[SSK_MODE_ACTIVE].ssk;
1512 if (!ssk || !sk_stream_memory_free(ssk))
1513 return NULL;
1514
1515 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1516 wmem = READ_ONCE(ssk->sk_wmem_queued);
1517 if (!burst)
1518 return ssk;
1519
1520 subflow = mptcp_subflow_ctx(ssk);
1521 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1522 READ_ONCE(ssk->sk_pacing_rate) * burst,
1523 burst + wmem);
1524 msk->snd_burst = burst;
1525 return ssk;
1526 }
1527
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1528 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1529 {
1530 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1531 release_sock(ssk);
1532 }
1533
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1534 static void mptcp_update_post_push(struct mptcp_sock *msk,
1535 struct mptcp_data_frag *dfrag,
1536 u32 sent)
1537 {
1538 u64 snd_nxt_new = dfrag->data_seq;
1539
1540 dfrag->already_sent += sent;
1541
1542 msk->snd_burst -= sent;
1543
1544 snd_nxt_new += dfrag->already_sent;
1545
1546 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1547 * is recovering after a failover. In that event, this re-sends
1548 * old segments.
1549 *
1550 * Thus compute snd_nxt_new candidate based on
1551 * the dfrag->data_seq that was sent and the data
1552 * that has been handed to the subflow for transmission
1553 * and skip update in case it was old dfrag.
1554 */
1555 if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1556 msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1557 WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1558 }
1559 }
1560
mptcp_check_and_set_pending(struct sock * sk)1561 void mptcp_check_and_set_pending(struct sock *sk)
1562 {
1563 if (mptcp_send_head(sk)) {
1564 mptcp_data_lock(sk);
1565 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1566 mptcp_data_unlock(sk);
1567 }
1568 }
1569
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1570 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1571 struct mptcp_sendmsg_info *info)
1572 {
1573 struct mptcp_sock *msk = mptcp_sk(sk);
1574 struct mptcp_data_frag *dfrag;
1575 int len, copied = 0, err = 0;
1576
1577 while ((dfrag = mptcp_send_head(sk))) {
1578 info->sent = dfrag->already_sent;
1579 info->limit = dfrag->data_len;
1580 len = dfrag->data_len - dfrag->already_sent;
1581 while (len > 0) {
1582 int ret = 0;
1583
1584 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1585 if (ret <= 0) {
1586 err = copied ? : ret;
1587 goto out;
1588 }
1589
1590 info->sent += ret;
1591 copied += ret;
1592 len -= ret;
1593
1594 mptcp_update_post_push(msk, dfrag, ret);
1595 }
1596 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1597
1598 if (msk->snd_burst <= 0 ||
1599 !sk_stream_memory_free(ssk) ||
1600 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1601 err = copied;
1602 goto out;
1603 }
1604 mptcp_set_timeout(sk);
1605 }
1606 err = copied;
1607
1608 out:
1609 if (err > 0)
1610 msk->last_data_sent = tcp_jiffies32;
1611 return err;
1612 }
1613
__mptcp_push_pending(struct sock * sk,unsigned int flags)1614 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1615 {
1616 struct sock *prev_ssk = NULL, *ssk = NULL;
1617 struct mptcp_sock *msk = mptcp_sk(sk);
1618 struct mptcp_sendmsg_info info = {
1619 .flags = flags,
1620 };
1621 bool do_check_data_fin = false;
1622 int push_count = 1;
1623
1624 while (mptcp_send_head(sk) && (push_count > 0)) {
1625 struct mptcp_subflow_context *subflow;
1626 int ret = 0;
1627
1628 if (mptcp_sched_get_send(msk))
1629 break;
1630
1631 push_count = 0;
1632
1633 mptcp_for_each_subflow(msk, subflow) {
1634 if (READ_ONCE(subflow->scheduled)) {
1635 mptcp_subflow_set_scheduled(subflow, false);
1636
1637 prev_ssk = ssk;
1638 ssk = mptcp_subflow_tcp_sock(subflow);
1639 if (ssk != prev_ssk) {
1640 /* First check. If the ssk has changed since
1641 * the last round, release prev_ssk
1642 */
1643 if (prev_ssk)
1644 mptcp_push_release(prev_ssk, &info);
1645
1646 /* Need to lock the new subflow only if different
1647 * from the previous one, otherwise we are still
1648 * helding the relevant lock
1649 */
1650 lock_sock(ssk);
1651 }
1652
1653 push_count++;
1654
1655 ret = __subflow_push_pending(sk, ssk, &info);
1656 if (ret <= 0) {
1657 if (ret != -EAGAIN ||
1658 (1 << ssk->sk_state) &
1659 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1660 push_count--;
1661 continue;
1662 }
1663 do_check_data_fin = true;
1664 }
1665 }
1666 }
1667
1668 /* at this point we held the socket lock for the last subflow we used */
1669 if (ssk)
1670 mptcp_push_release(ssk, &info);
1671
1672 /* ensure the rtx timer is running */
1673 if (!mptcp_rtx_timer_pending(sk))
1674 mptcp_reset_rtx_timer(sk);
1675 if (do_check_data_fin)
1676 mptcp_check_send_data_fin(sk);
1677 }
1678
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1679 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1680 {
1681 struct mptcp_sock *msk = mptcp_sk(sk);
1682 struct mptcp_sendmsg_info info = {
1683 .data_lock_held = true,
1684 };
1685 bool keep_pushing = true;
1686 struct sock *xmit_ssk;
1687 int copied = 0;
1688
1689 info.flags = 0;
1690 while (mptcp_send_head(sk) && keep_pushing) {
1691 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1692 int ret = 0;
1693
1694 /* check for a different subflow usage only after
1695 * spooling the first chunk of data
1696 */
1697 if (first) {
1698 mptcp_subflow_set_scheduled(subflow, false);
1699 ret = __subflow_push_pending(sk, ssk, &info);
1700 first = false;
1701 if (ret <= 0)
1702 break;
1703 copied += ret;
1704 continue;
1705 }
1706
1707 if (mptcp_sched_get_send(msk))
1708 goto out;
1709
1710 if (READ_ONCE(subflow->scheduled)) {
1711 mptcp_subflow_set_scheduled(subflow, false);
1712 ret = __subflow_push_pending(sk, ssk, &info);
1713 if (ret <= 0)
1714 keep_pushing = false;
1715 copied += ret;
1716 }
1717
1718 mptcp_for_each_subflow(msk, subflow) {
1719 if (READ_ONCE(subflow->scheduled)) {
1720 xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1721 if (xmit_ssk != ssk) {
1722 mptcp_subflow_delegate(subflow,
1723 MPTCP_DELEGATE_SEND);
1724 keep_pushing = false;
1725 }
1726 }
1727 }
1728 }
1729
1730 out:
1731 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1732 * not going to flush it via release_sock()
1733 */
1734 if (copied) {
1735 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1736 info.size_goal);
1737 if (!mptcp_rtx_timer_pending(sk))
1738 mptcp_reset_rtx_timer(sk);
1739
1740 if (msk->snd_data_fin_enable &&
1741 msk->snd_nxt + 1 == msk->write_seq)
1742 mptcp_schedule_work(sk);
1743 }
1744 }
1745
1746 static int mptcp_disconnect(struct sock *sk, int flags);
1747
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1748 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1749 size_t len, int *copied_syn)
1750 {
1751 unsigned int saved_flags = msg->msg_flags;
1752 struct mptcp_sock *msk = mptcp_sk(sk);
1753 struct sock *ssk;
1754 int ret;
1755
1756 /* on flags based fastopen the mptcp is supposed to create the
1757 * first subflow right now. Otherwise we are in the defer_connect
1758 * path, and the first subflow must be already present.
1759 * Since the defer_connect flag is cleared after the first succsful
1760 * fastopen attempt, no need to check for additional subflow status.
1761 */
1762 if (msg->msg_flags & MSG_FASTOPEN) {
1763 ssk = __mptcp_nmpc_sk(msk);
1764 if (IS_ERR(ssk))
1765 return PTR_ERR(ssk);
1766 }
1767 if (!msk->first)
1768 return -EINVAL;
1769
1770 ssk = msk->first;
1771
1772 lock_sock(ssk);
1773 msg->msg_flags |= MSG_DONTWAIT;
1774 msk->fastopening = 1;
1775 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1776 msk->fastopening = 0;
1777 msg->msg_flags = saved_flags;
1778 release_sock(ssk);
1779
1780 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1781 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1782 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1783 msg->msg_namelen, msg->msg_flags, 1);
1784
1785 /* Keep the same behaviour of plain TCP: zero the copied bytes in
1786 * case of any error, except timeout or signal
1787 */
1788 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1789 *copied_syn = 0;
1790 } else if (ret && ret != -EINPROGRESS) {
1791 /* The disconnect() op called by tcp_sendmsg_fastopen()/
1792 * __inet_stream_connect() can fail, due to looking check,
1793 * see mptcp_disconnect().
1794 * Attempt it again outside the problematic scope.
1795 */
1796 if (!mptcp_disconnect(sk, 0)) {
1797 sk->sk_disconnects++;
1798 sk->sk_socket->state = SS_UNCONNECTED;
1799 }
1800 }
1801 inet_clear_bit(DEFER_CONNECT, sk);
1802
1803 return ret;
1804 }
1805
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1806 static int do_copy_data_nocache(struct sock *sk, int copy,
1807 struct iov_iter *from, char *to)
1808 {
1809 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1810 if (!copy_from_iter_full_nocache(to, copy, from))
1811 return -EFAULT;
1812 } else if (!copy_from_iter_full(to, copy, from)) {
1813 return -EFAULT;
1814 }
1815 return 0;
1816 }
1817
1818 /* open-code sk_stream_memory_free() plus sent limit computation to
1819 * avoid indirect calls in fast-path.
1820 * Called under the msk socket lock, so we can avoid a bunch of ONCE
1821 * annotations.
1822 */
mptcp_send_limit(const struct sock * sk)1823 static u32 mptcp_send_limit(const struct sock *sk)
1824 {
1825 const struct mptcp_sock *msk = mptcp_sk(sk);
1826 u32 limit, not_sent;
1827
1828 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1829 return 0;
1830
1831 limit = mptcp_notsent_lowat(sk);
1832 if (limit == UINT_MAX)
1833 return UINT_MAX;
1834
1835 not_sent = msk->write_seq - msk->snd_nxt;
1836 if (not_sent >= limit)
1837 return 0;
1838
1839 return limit - not_sent;
1840 }
1841
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1842 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1843 {
1844 struct mptcp_sock *msk = mptcp_sk(sk);
1845 struct page_frag *pfrag;
1846 size_t copied = 0;
1847 int ret = 0;
1848 long timeo;
1849
1850 /* silently ignore everything else */
1851 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1852
1853 lock_sock(sk);
1854
1855 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1856 msg->msg_flags & MSG_FASTOPEN)) {
1857 int copied_syn = 0;
1858
1859 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1860 copied += copied_syn;
1861 if (ret == -EINPROGRESS && copied_syn > 0)
1862 goto out;
1863 else if (ret)
1864 goto do_error;
1865 }
1866
1867 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1868
1869 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1870 ret = sk_stream_wait_connect(sk, &timeo);
1871 if (ret)
1872 goto do_error;
1873 }
1874
1875 ret = -EPIPE;
1876 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1877 goto do_error;
1878
1879 pfrag = sk_page_frag(sk);
1880
1881 while (msg_data_left(msg)) {
1882 int total_ts, frag_truesize = 0;
1883 struct mptcp_data_frag *dfrag;
1884 bool dfrag_collapsed;
1885 size_t psize, offset;
1886 u32 copy_limit;
1887
1888 /* ensure fitting the notsent_lowat() constraint */
1889 copy_limit = mptcp_send_limit(sk);
1890 if (!copy_limit)
1891 goto wait_for_memory;
1892
1893 /* reuse tail pfrag, if possible, or carve a new one from the
1894 * page allocator
1895 */
1896 dfrag = mptcp_pending_tail(sk);
1897 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1898 if (!dfrag_collapsed) {
1899 if (!mptcp_page_frag_refill(sk, pfrag))
1900 goto wait_for_memory;
1901
1902 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1903 frag_truesize = dfrag->overhead;
1904 }
1905
1906 /* we do not bound vs wspace, to allow a single packet.
1907 * memory accounting will prevent execessive memory usage
1908 * anyway
1909 */
1910 offset = dfrag->offset + dfrag->data_len;
1911 psize = pfrag->size - offset;
1912 psize = min_t(size_t, psize, msg_data_left(msg));
1913 psize = min_t(size_t, psize, copy_limit);
1914 total_ts = psize + frag_truesize;
1915
1916 if (!sk_wmem_schedule(sk, total_ts))
1917 goto wait_for_memory;
1918
1919 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1920 page_address(dfrag->page) + offset);
1921 if (ret)
1922 goto do_error;
1923
1924 /* data successfully copied into the write queue */
1925 sk_forward_alloc_add(sk, -total_ts);
1926 copied += psize;
1927 dfrag->data_len += psize;
1928 frag_truesize += psize;
1929 pfrag->offset += frag_truesize;
1930 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1931
1932 /* charge data on mptcp pending queue to the msk socket
1933 * Note: we charge such data both to sk and ssk
1934 */
1935 sk_wmem_queued_add(sk, frag_truesize);
1936 if (!dfrag_collapsed) {
1937 get_page(dfrag->page);
1938 list_add_tail(&dfrag->list, &msk->rtx_queue);
1939 if (!msk->first_pending)
1940 WRITE_ONCE(msk->first_pending, dfrag);
1941 }
1942 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1943 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1944 !dfrag_collapsed);
1945
1946 continue;
1947
1948 wait_for_memory:
1949 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1950 __mptcp_push_pending(sk, msg->msg_flags);
1951 ret = sk_stream_wait_memory(sk, &timeo);
1952 if (ret)
1953 goto do_error;
1954 }
1955
1956 if (copied)
1957 __mptcp_push_pending(sk, msg->msg_flags);
1958
1959 out:
1960 release_sock(sk);
1961 return copied;
1962
1963 do_error:
1964 if (copied)
1965 goto out;
1966
1967 copied = sk_stream_error(sk, msg->msg_flags, ret);
1968 goto out;
1969 }
1970
1971 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1972
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1973 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1974 struct msghdr *msg,
1975 size_t len, int flags,
1976 struct scm_timestamping_internal *tss,
1977 int *cmsg_flags)
1978 {
1979 struct sk_buff *skb, *tmp;
1980 int copied = 0;
1981
1982 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1983 u32 offset = MPTCP_SKB_CB(skb)->offset;
1984 u32 data_len = skb->len - offset;
1985 u32 count = min_t(size_t, len - copied, data_len);
1986 int err;
1987
1988 if (!(flags & MSG_TRUNC)) {
1989 err = skb_copy_datagram_msg(skb, offset, msg, count);
1990 if (unlikely(err < 0)) {
1991 if (!copied)
1992 return err;
1993 break;
1994 }
1995 }
1996
1997 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1998 tcp_update_recv_tstamps(skb, tss);
1999 *cmsg_flags |= MPTCP_CMSG_TS;
2000 }
2001
2002 copied += count;
2003
2004 if (count < data_len) {
2005 if (!(flags & MSG_PEEK)) {
2006 MPTCP_SKB_CB(skb)->offset += count;
2007 MPTCP_SKB_CB(skb)->map_seq += count;
2008 msk->bytes_consumed += count;
2009 }
2010 break;
2011 }
2012
2013 if (!(flags & MSG_PEEK)) {
2014 /* we will bulk release the skb memory later */
2015 skb->destructor = NULL;
2016 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
2017 __skb_unlink(skb, &msk->receive_queue);
2018 __kfree_skb(skb);
2019 msk->bytes_consumed += count;
2020 }
2021
2022 if (copied >= len)
2023 break;
2024 }
2025
2026 mptcp_rcv_space_adjust(msk, copied);
2027 return copied;
2028 }
2029
2030 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
2031 *
2032 * Only difference: Use highest rtt estimate of the subflows in use.
2033 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)2034 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2035 {
2036 struct mptcp_subflow_context *subflow;
2037 struct sock *sk = (struct sock *)msk;
2038 u8 scaling_ratio = U8_MAX;
2039 u32 time, advmss = 1;
2040 u64 rtt_us, mstamp;
2041
2042 msk_owned_by_me(msk);
2043
2044 if (copied <= 0)
2045 return;
2046
2047 if (!msk->rcvspace_init)
2048 mptcp_rcv_space_init(msk, msk->first);
2049
2050 msk->rcvq_space.copied += copied;
2051
2052 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2053 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2054
2055 rtt_us = msk->rcvq_space.rtt_us;
2056 if (rtt_us && time < (rtt_us >> 3))
2057 return;
2058
2059 rtt_us = 0;
2060 mptcp_for_each_subflow(msk, subflow) {
2061 const struct tcp_sock *tp;
2062 u64 sf_rtt_us;
2063 u32 sf_advmss;
2064
2065 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2066
2067 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2068 sf_advmss = READ_ONCE(tp->advmss);
2069
2070 rtt_us = max(sf_rtt_us, rtt_us);
2071 advmss = max(sf_advmss, advmss);
2072 scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2073 }
2074
2075 msk->rcvq_space.rtt_us = rtt_us;
2076 msk->scaling_ratio = scaling_ratio;
2077 if (time < (rtt_us >> 3) || rtt_us == 0)
2078 return;
2079
2080 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2081 goto new_measure;
2082
2083 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2084 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2085 u64 rcvwin, grow;
2086 int rcvbuf;
2087
2088 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2089
2090 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2091
2092 do_div(grow, msk->rcvq_space.space);
2093 rcvwin += (grow << 1);
2094
2095 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
2096 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2097
2098 if (rcvbuf > sk->sk_rcvbuf) {
2099 u32 window_clamp;
2100
2101 window_clamp = mptcp_win_from_space(sk, rcvbuf);
2102 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2103
2104 /* Make subflows follow along. If we do not do this, we
2105 * get drops at subflow level if skbs can't be moved to
2106 * the mptcp rx queue fast enough (announced rcv_win can
2107 * exceed ssk->sk_rcvbuf).
2108 */
2109 mptcp_for_each_subflow(msk, subflow) {
2110 struct sock *ssk;
2111 bool slow;
2112
2113 ssk = mptcp_subflow_tcp_sock(subflow);
2114 slow = lock_sock_fast(ssk);
2115 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2116 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2117 if (tcp_can_send_ack(ssk))
2118 tcp_cleanup_rbuf(ssk, 1);
2119 unlock_sock_fast(ssk, slow);
2120 }
2121 }
2122 }
2123
2124 msk->rcvq_space.space = msk->rcvq_space.copied;
2125 new_measure:
2126 msk->rcvq_space.copied = 0;
2127 msk->rcvq_space.time = mstamp;
2128 }
2129
__mptcp_update_rmem(struct sock * sk)2130 static void __mptcp_update_rmem(struct sock *sk)
2131 {
2132 struct mptcp_sock *msk = mptcp_sk(sk);
2133
2134 if (!msk->rmem_released)
2135 return;
2136
2137 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2138 mptcp_rmem_uncharge(sk, msk->rmem_released);
2139 WRITE_ONCE(msk->rmem_released, 0);
2140 }
2141
__mptcp_splice_receive_queue(struct sock * sk)2142 static void __mptcp_splice_receive_queue(struct sock *sk)
2143 {
2144 struct mptcp_sock *msk = mptcp_sk(sk);
2145
2146 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2147 }
2148
__mptcp_move_skbs(struct mptcp_sock * msk)2149 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2150 {
2151 struct sock *sk = (struct sock *)msk;
2152 unsigned int moved = 0;
2153 bool ret, done;
2154
2155 do {
2156 struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2157 bool slowpath;
2158
2159 /* we can have data pending in the subflows only if the msk
2160 * receive buffer was full at subflow_data_ready() time,
2161 * that is an unlikely slow path.
2162 */
2163 if (likely(!ssk))
2164 break;
2165
2166 slowpath = lock_sock_fast(ssk);
2167 mptcp_data_lock(sk);
2168 __mptcp_update_rmem(sk);
2169 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2170 mptcp_data_unlock(sk);
2171
2172 if (unlikely(ssk->sk_err))
2173 __mptcp_error_report(sk);
2174 unlock_sock_fast(ssk, slowpath);
2175 } while (!done);
2176
2177 /* acquire the data lock only if some input data is pending */
2178 ret = moved > 0;
2179 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2180 !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2181 mptcp_data_lock(sk);
2182 __mptcp_update_rmem(sk);
2183 ret |= __mptcp_ofo_queue(msk);
2184 __mptcp_splice_receive_queue(sk);
2185 mptcp_data_unlock(sk);
2186 }
2187 if (ret)
2188 mptcp_check_data_fin((struct sock *)msk);
2189 return !skb_queue_empty(&msk->receive_queue);
2190 }
2191
mptcp_inq_hint(const struct sock * sk)2192 static unsigned int mptcp_inq_hint(const struct sock *sk)
2193 {
2194 const struct mptcp_sock *msk = mptcp_sk(sk);
2195 const struct sk_buff *skb;
2196
2197 skb = skb_peek(&msk->receive_queue);
2198 if (skb) {
2199 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2200
2201 if (hint_val >= INT_MAX)
2202 return INT_MAX;
2203
2204 return (unsigned int)hint_val;
2205 }
2206
2207 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2208 return 1;
2209
2210 return 0;
2211 }
2212
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2213 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2214 int flags, int *addr_len)
2215 {
2216 struct mptcp_sock *msk = mptcp_sk(sk);
2217 struct scm_timestamping_internal tss;
2218 int copied = 0, cmsg_flags = 0;
2219 int target;
2220 long timeo;
2221
2222 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2223 if (unlikely(flags & MSG_ERRQUEUE))
2224 return inet_recv_error(sk, msg, len, addr_len);
2225
2226 lock_sock(sk);
2227 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2228 copied = -ENOTCONN;
2229 goto out_err;
2230 }
2231
2232 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2233
2234 len = min_t(size_t, len, INT_MAX);
2235 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2236
2237 if (unlikely(msk->recvmsg_inq))
2238 cmsg_flags = MPTCP_CMSG_INQ;
2239
2240 while (copied < len) {
2241 int err, bytes_read;
2242
2243 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2244 if (unlikely(bytes_read < 0)) {
2245 if (!copied)
2246 copied = bytes_read;
2247 goto out_err;
2248 }
2249
2250 copied += bytes_read;
2251
2252 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2253 continue;
2254
2255 /* only the MPTCP socket status is relevant here. The exit
2256 * conditions mirror closely tcp_recvmsg()
2257 */
2258 if (copied >= target)
2259 break;
2260
2261 if (copied) {
2262 if (sk->sk_err ||
2263 sk->sk_state == TCP_CLOSE ||
2264 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2265 !timeo ||
2266 signal_pending(current))
2267 break;
2268 } else {
2269 if (sk->sk_err) {
2270 copied = sock_error(sk);
2271 break;
2272 }
2273
2274 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2275 /* race breaker: the shutdown could be after the
2276 * previous receive queue check
2277 */
2278 if (__mptcp_move_skbs(msk))
2279 continue;
2280 break;
2281 }
2282
2283 if (sk->sk_state == TCP_CLOSE) {
2284 copied = -ENOTCONN;
2285 break;
2286 }
2287
2288 if (!timeo) {
2289 copied = -EAGAIN;
2290 break;
2291 }
2292
2293 if (signal_pending(current)) {
2294 copied = sock_intr_errno(timeo);
2295 break;
2296 }
2297 }
2298
2299 pr_debug("block timeout %ld\n", timeo);
2300 mptcp_cleanup_rbuf(msk, copied);
2301 err = sk_wait_data(sk, &timeo, NULL);
2302 if (err < 0) {
2303 err = copied ? : err;
2304 goto out_err;
2305 }
2306 }
2307
2308 mptcp_cleanup_rbuf(msk, copied);
2309
2310 out_err:
2311 if (cmsg_flags && copied >= 0) {
2312 if (cmsg_flags & MPTCP_CMSG_TS)
2313 tcp_recv_timestamp(msg, sk, &tss);
2314
2315 if (cmsg_flags & MPTCP_CMSG_INQ) {
2316 unsigned int inq = mptcp_inq_hint(sk);
2317
2318 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2319 }
2320 }
2321
2322 pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n",
2323 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2324 skb_queue_empty(&msk->receive_queue), copied);
2325
2326 release_sock(sk);
2327 return copied;
2328 }
2329
mptcp_retransmit_timer(struct timer_list * t)2330 static void mptcp_retransmit_timer(struct timer_list *t)
2331 {
2332 struct inet_connection_sock *icsk = from_timer(icsk, t,
2333 icsk_retransmit_timer);
2334 struct sock *sk = &icsk->icsk_inet.sk;
2335 struct mptcp_sock *msk = mptcp_sk(sk);
2336
2337 bh_lock_sock(sk);
2338 if (!sock_owned_by_user(sk)) {
2339 /* we need a process context to retransmit */
2340 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2341 mptcp_schedule_work(sk);
2342 } else {
2343 /* delegate our work to tcp_release_cb() */
2344 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2345 }
2346 bh_unlock_sock(sk);
2347 sock_put(sk);
2348 }
2349
mptcp_tout_timer(struct timer_list * t)2350 static void mptcp_tout_timer(struct timer_list *t)
2351 {
2352 struct sock *sk = from_timer(sk, t, sk_timer);
2353
2354 mptcp_schedule_work(sk);
2355 sock_put(sk);
2356 }
2357
2358 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2359 * level.
2360 *
2361 * A backup subflow is returned only if that is the only kind available.
2362 */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2363 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2364 {
2365 struct sock *backup = NULL, *pick = NULL;
2366 struct mptcp_subflow_context *subflow;
2367 int min_stale_count = INT_MAX;
2368
2369 mptcp_for_each_subflow(msk, subflow) {
2370 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2371
2372 if (!__mptcp_subflow_active(subflow))
2373 continue;
2374
2375 /* still data outstanding at TCP level? skip this */
2376 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2377 mptcp_pm_subflow_chk_stale(msk, ssk);
2378 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2379 continue;
2380 }
2381
2382 if (subflow->backup || subflow->request_bkup) {
2383 if (!backup)
2384 backup = ssk;
2385 continue;
2386 }
2387
2388 if (!pick)
2389 pick = ssk;
2390 }
2391
2392 if (pick)
2393 return pick;
2394
2395 /* use backup only if there are no progresses anywhere */
2396 return min_stale_count > 1 ? backup : NULL;
2397 }
2398
__mptcp_retransmit_pending_data(struct sock * sk)2399 bool __mptcp_retransmit_pending_data(struct sock *sk)
2400 {
2401 struct mptcp_data_frag *cur, *rtx_head;
2402 struct mptcp_sock *msk = mptcp_sk(sk);
2403
2404 if (__mptcp_check_fallback(msk))
2405 return false;
2406
2407 /* the closing socket has some data untransmitted and/or unacked:
2408 * some data in the mptcp rtx queue has not really xmitted yet.
2409 * keep it simple and re-inject the whole mptcp level rtx queue
2410 */
2411 mptcp_data_lock(sk);
2412 __mptcp_clean_una_wakeup(sk);
2413 rtx_head = mptcp_rtx_head(sk);
2414 if (!rtx_head) {
2415 mptcp_data_unlock(sk);
2416 return false;
2417 }
2418
2419 msk->recovery_snd_nxt = msk->snd_nxt;
2420 msk->recovery = true;
2421 mptcp_data_unlock(sk);
2422
2423 msk->first_pending = rtx_head;
2424 msk->snd_burst = 0;
2425
2426 /* be sure to clear the "sent status" on all re-injected fragments */
2427 list_for_each_entry(cur, &msk->rtx_queue, list) {
2428 if (!cur->already_sent)
2429 break;
2430 cur->already_sent = 0;
2431 }
2432
2433 return true;
2434 }
2435
2436 /* flags for __mptcp_close_ssk() */
2437 #define MPTCP_CF_PUSH BIT(1)
2438 #define MPTCP_CF_FASTCLOSE BIT(2)
2439
2440 /* be sure to send a reset only if the caller asked for it, also
2441 * clean completely the subflow status when the subflow reaches
2442 * TCP_CLOSE state
2443 */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2444 static void __mptcp_subflow_disconnect(struct sock *ssk,
2445 struct mptcp_subflow_context *subflow,
2446 unsigned int flags)
2447 {
2448 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2449 (flags & MPTCP_CF_FASTCLOSE)) {
2450 /* The MPTCP code never wait on the subflow sockets, TCP-level
2451 * disconnect should never fail
2452 */
2453 WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2454 mptcp_subflow_ctx_reset(subflow);
2455 } else {
2456 tcp_shutdown(ssk, SEND_SHUTDOWN);
2457 }
2458 }
2459
2460 /* subflow sockets can be either outgoing (connect) or incoming
2461 * (accept).
2462 *
2463 * Outgoing subflows use in-kernel sockets.
2464 * Incoming subflows do not have their own 'struct socket' allocated,
2465 * so we need to use tcp_close() after detaching them from the mptcp
2466 * parent socket.
2467 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2468 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2469 struct mptcp_subflow_context *subflow,
2470 unsigned int flags)
2471 {
2472 struct mptcp_sock *msk = mptcp_sk(sk);
2473 bool dispose_it, need_push = false;
2474
2475 /* If the first subflow moved to a close state before accept, e.g. due
2476 * to an incoming reset or listener shutdown, the subflow socket is
2477 * already deleted by inet_child_forget() and the mptcp socket can't
2478 * survive too.
2479 */
2480 if (msk->in_accept_queue && msk->first == ssk &&
2481 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2482 /* ensure later check in mptcp_worker() will dispose the msk */
2483 sock_set_flag(sk, SOCK_DEAD);
2484 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2485 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2486 mptcp_subflow_drop_ctx(ssk);
2487 goto out_release;
2488 }
2489
2490 dispose_it = msk->free_first || ssk != msk->first;
2491 if (dispose_it)
2492 list_del(&subflow->node);
2493
2494 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2495
2496 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2497 /* be sure to force the tcp_close path
2498 * to generate the egress reset
2499 */
2500 ssk->sk_lingertime = 0;
2501 sock_set_flag(ssk, SOCK_LINGER);
2502 subflow->send_fastclose = 1;
2503 }
2504
2505 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2506 if (!dispose_it) {
2507 __mptcp_subflow_disconnect(ssk, subflow, flags);
2508 release_sock(ssk);
2509
2510 goto out;
2511 }
2512
2513 subflow->disposable = 1;
2514
2515 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2516 * the ssk has been already destroyed, we just need to release the
2517 * reference owned by msk;
2518 */
2519 if (!inet_csk(ssk)->icsk_ulp_ops) {
2520 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2521 kfree_rcu(subflow, rcu);
2522 } else {
2523 /* otherwise tcp will dispose of the ssk and subflow ctx */
2524 __tcp_close(ssk, 0);
2525
2526 /* close acquired an extra ref */
2527 __sock_put(ssk);
2528 }
2529
2530 out_release:
2531 __mptcp_subflow_error_report(sk, ssk);
2532 release_sock(ssk);
2533
2534 sock_put(ssk);
2535
2536 if (ssk == msk->first)
2537 WRITE_ONCE(msk->first, NULL);
2538
2539 out:
2540 __mptcp_sync_sndbuf(sk);
2541 if (need_push)
2542 __mptcp_push_pending(sk, 0);
2543
2544 /* Catch every 'all subflows closed' scenario, including peers silently
2545 * closing them, e.g. due to timeout.
2546 * For established sockets, allow an additional timeout before closing,
2547 * as the protocol can still create more subflows.
2548 */
2549 if (list_is_singular(&msk->conn_list) && msk->first &&
2550 inet_sk_state_load(msk->first) == TCP_CLOSE) {
2551 if (sk->sk_state != TCP_ESTABLISHED ||
2552 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2553 mptcp_set_state(sk, TCP_CLOSE);
2554 mptcp_close_wake_up(sk);
2555 } else {
2556 mptcp_start_tout_timer(sk);
2557 }
2558 }
2559 }
2560
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2561 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2562 struct mptcp_subflow_context *subflow)
2563 {
2564 /* The first subflow can already be closed and still in the list */
2565 if (subflow->close_event_done)
2566 return;
2567
2568 subflow->close_event_done = true;
2569
2570 if (sk->sk_state == TCP_ESTABLISHED)
2571 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2572
2573 /* subflow aborted before reaching the fully_established status
2574 * attempt the creation of the next subflow
2575 */
2576 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2577
2578 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2579 }
2580
mptcp_sync_mss(struct sock * sk,u32 pmtu)2581 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2582 {
2583 return 0;
2584 }
2585
__mptcp_close_subflow(struct sock * sk)2586 static void __mptcp_close_subflow(struct sock *sk)
2587 {
2588 struct mptcp_subflow_context *subflow, *tmp;
2589 struct mptcp_sock *msk = mptcp_sk(sk);
2590
2591 might_sleep();
2592
2593 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2594 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2595 int ssk_state = inet_sk_state_load(ssk);
2596
2597 if (ssk_state != TCP_CLOSE &&
2598 (ssk_state != TCP_CLOSE_WAIT ||
2599 inet_sk_state_load(sk) != TCP_ESTABLISHED))
2600 continue;
2601
2602 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2603 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2604 continue;
2605
2606 mptcp_close_ssk(sk, ssk, subflow);
2607 }
2608
2609 }
2610
mptcp_close_tout_expired(const struct sock * sk)2611 static bool mptcp_close_tout_expired(const struct sock *sk)
2612 {
2613 if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2614 sk->sk_state == TCP_CLOSE)
2615 return false;
2616
2617 return time_after32(tcp_jiffies32,
2618 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2619 }
2620
mptcp_check_fastclose(struct mptcp_sock * msk)2621 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2622 {
2623 struct mptcp_subflow_context *subflow, *tmp;
2624 struct sock *sk = (struct sock *)msk;
2625
2626 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2627 return;
2628
2629 mptcp_token_destroy(msk);
2630
2631 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2632 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2633 bool slow;
2634
2635 slow = lock_sock_fast(tcp_sk);
2636 if (tcp_sk->sk_state != TCP_CLOSE) {
2637 mptcp_send_active_reset_reason(tcp_sk);
2638 tcp_set_state(tcp_sk, TCP_CLOSE);
2639 }
2640 unlock_sock_fast(tcp_sk, slow);
2641 }
2642
2643 /* Mirror the tcp_reset() error propagation */
2644 switch (sk->sk_state) {
2645 case TCP_SYN_SENT:
2646 WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2647 break;
2648 case TCP_CLOSE_WAIT:
2649 WRITE_ONCE(sk->sk_err, EPIPE);
2650 break;
2651 case TCP_CLOSE:
2652 return;
2653 default:
2654 WRITE_ONCE(sk->sk_err, ECONNRESET);
2655 }
2656
2657 mptcp_set_state(sk, TCP_CLOSE);
2658 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2659 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2660 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2661
2662 /* the calling mptcp_worker will properly destroy the socket */
2663 if (sock_flag(sk, SOCK_DEAD))
2664 return;
2665
2666 sk->sk_state_change(sk);
2667 sk_error_report(sk);
2668 }
2669
__mptcp_retrans(struct sock * sk)2670 static void __mptcp_retrans(struct sock *sk)
2671 {
2672 struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2673 struct mptcp_sock *msk = mptcp_sk(sk);
2674 struct mptcp_subflow_context *subflow;
2675 struct mptcp_data_frag *dfrag;
2676 struct sock *ssk;
2677 int ret, err;
2678 u16 len = 0;
2679
2680 mptcp_clean_una_wakeup(sk);
2681
2682 /* first check ssk: need to kick "stale" logic */
2683 err = mptcp_sched_get_retrans(msk);
2684 dfrag = mptcp_rtx_head(sk);
2685 if (!dfrag) {
2686 if (mptcp_data_fin_enabled(msk)) {
2687 struct inet_connection_sock *icsk = inet_csk(sk);
2688
2689 icsk->icsk_retransmits++;
2690 mptcp_set_datafin_timeout(sk);
2691 mptcp_send_ack(msk);
2692
2693 goto reset_timer;
2694 }
2695
2696 if (!mptcp_send_head(sk))
2697 return;
2698
2699 goto reset_timer;
2700 }
2701
2702 if (err)
2703 goto reset_timer;
2704
2705 mptcp_for_each_subflow(msk, subflow) {
2706 if (READ_ONCE(subflow->scheduled)) {
2707 u16 copied = 0;
2708
2709 mptcp_subflow_set_scheduled(subflow, false);
2710
2711 ssk = mptcp_subflow_tcp_sock(subflow);
2712
2713 lock_sock(ssk);
2714
2715 /* limit retransmission to the bytes already sent on some subflows */
2716 info.sent = 0;
2717 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2718 dfrag->already_sent;
2719
2720 /*
2721 * make the whole retrans decision, xmit, disallow
2722 * fallback atomic
2723 */
2724 spin_lock_bh(&msk->fallback_lock);
2725 if (__mptcp_check_fallback(msk)) {
2726 spin_unlock_bh(&msk->fallback_lock);
2727 release_sock(ssk);
2728 return;
2729 }
2730
2731 while (info.sent < info.limit) {
2732 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2733 if (ret <= 0)
2734 break;
2735
2736 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2737 copied += ret;
2738 info.sent += ret;
2739 }
2740 if (copied) {
2741 len = max(copied, len);
2742 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2743 info.size_goal);
2744 msk->allow_infinite_fallback = false;
2745 }
2746 spin_unlock_bh(&msk->fallback_lock);
2747
2748 release_sock(ssk);
2749 }
2750 }
2751
2752 msk->bytes_retrans += len;
2753 dfrag->already_sent = max(dfrag->already_sent, len);
2754
2755 reset_timer:
2756 mptcp_check_and_set_pending(sk);
2757
2758 if (!mptcp_rtx_timer_pending(sk))
2759 mptcp_reset_rtx_timer(sk);
2760 }
2761
2762 /* schedule the timeout timer for the relevant event: either close timeout
2763 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2764 */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2765 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2766 {
2767 struct sock *sk = (struct sock *)msk;
2768 unsigned long timeout, close_timeout;
2769
2770 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2771 return;
2772
2773 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2774 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2775
2776 /* the close timeout takes precedence on the fail one, and here at least one of
2777 * them is active
2778 */
2779 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2780
2781 sk_reset_timer(sk, &sk->sk_timer, timeout);
2782 }
2783
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2784 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2785 {
2786 struct sock *ssk = msk->first;
2787 bool slow;
2788
2789 if (!ssk)
2790 return;
2791
2792 pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2793
2794 slow = lock_sock_fast(ssk);
2795 mptcp_subflow_reset(ssk);
2796 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2797 unlock_sock_fast(ssk, slow);
2798 }
2799
mptcp_do_fastclose(struct sock * sk)2800 static void mptcp_do_fastclose(struct sock *sk)
2801 {
2802 struct mptcp_subflow_context *subflow, *tmp;
2803 struct mptcp_sock *msk = mptcp_sk(sk);
2804
2805 mptcp_set_state(sk, TCP_CLOSE);
2806 mptcp_for_each_subflow_safe(msk, subflow, tmp)
2807 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2808 subflow, MPTCP_CF_FASTCLOSE);
2809 }
2810
mptcp_worker(struct work_struct * work)2811 static void mptcp_worker(struct work_struct *work)
2812 {
2813 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2814 struct sock *sk = (struct sock *)msk;
2815 unsigned long fail_tout;
2816 int state;
2817
2818 lock_sock(sk);
2819 state = sk->sk_state;
2820 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2821 goto unlock;
2822
2823 mptcp_check_fastclose(msk);
2824
2825 mptcp_pm_nl_work(msk);
2826
2827 mptcp_check_send_data_fin(sk);
2828 mptcp_check_data_fin_ack(sk);
2829 mptcp_check_data_fin(sk);
2830
2831 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2832 __mptcp_close_subflow(sk);
2833
2834 if (mptcp_close_tout_expired(sk)) {
2835 mptcp_do_fastclose(sk);
2836 mptcp_close_wake_up(sk);
2837 }
2838
2839 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2840 __mptcp_destroy_sock(sk);
2841 goto unlock;
2842 }
2843
2844 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2845 __mptcp_retrans(sk);
2846
2847 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2848 if (fail_tout && time_after(jiffies, fail_tout))
2849 mptcp_mp_fail_no_response(msk);
2850
2851 unlock:
2852 release_sock(sk);
2853 sock_put(sk);
2854 }
2855
__mptcp_init_sock(struct sock * sk)2856 static void __mptcp_init_sock(struct sock *sk)
2857 {
2858 struct mptcp_sock *msk = mptcp_sk(sk);
2859
2860 INIT_LIST_HEAD(&msk->conn_list);
2861 INIT_LIST_HEAD(&msk->join_list);
2862 INIT_LIST_HEAD(&msk->rtx_queue);
2863 INIT_WORK(&msk->work, mptcp_worker);
2864 __skb_queue_head_init(&msk->receive_queue);
2865 msk->out_of_order_queue = RB_ROOT;
2866 msk->first_pending = NULL;
2867 WRITE_ONCE(msk->rmem_fwd_alloc, 0);
2868 WRITE_ONCE(msk->rmem_released, 0);
2869 msk->timer_ival = TCP_RTO_MIN;
2870 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2871
2872 WRITE_ONCE(msk->first, NULL);
2873 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2874 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2875 msk->allow_infinite_fallback = true;
2876 msk->allow_subflows = true;
2877 msk->recovery = false;
2878 msk->subflow_id = 1;
2879 msk->last_data_sent = tcp_jiffies32;
2880 msk->last_data_recv = tcp_jiffies32;
2881 msk->last_ack_recv = tcp_jiffies32;
2882
2883 mptcp_pm_data_init(msk);
2884 spin_lock_init(&msk->fallback_lock);
2885
2886 /* re-use the csk retrans timer for MPTCP-level retrans */
2887 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2888 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2889 }
2890
mptcp_ca_reset(struct sock * sk)2891 static void mptcp_ca_reset(struct sock *sk)
2892 {
2893 struct inet_connection_sock *icsk = inet_csk(sk);
2894
2895 tcp_assign_congestion_control(sk);
2896 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2897 sizeof(mptcp_sk(sk)->ca_name));
2898
2899 /* no need to keep a reference to the ops, the name will suffice */
2900 tcp_cleanup_congestion_control(sk);
2901 icsk->icsk_ca_ops = NULL;
2902 }
2903
mptcp_init_sock(struct sock * sk)2904 static int mptcp_init_sock(struct sock *sk)
2905 {
2906 struct net *net = sock_net(sk);
2907 int ret;
2908
2909 __mptcp_init_sock(sk);
2910
2911 if (!mptcp_is_enabled(net))
2912 return -ENOPROTOOPT;
2913
2914 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2915 return -ENOMEM;
2916
2917 rcu_read_lock();
2918 ret = mptcp_init_sched(mptcp_sk(sk),
2919 mptcp_sched_find(mptcp_get_scheduler(net)));
2920 rcu_read_unlock();
2921 if (ret)
2922 return ret;
2923
2924 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2925
2926 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2927 * propagate the correct value
2928 */
2929 mptcp_ca_reset(sk);
2930
2931 sk_sockets_allocated_inc(sk);
2932 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2933 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2934
2935 return 0;
2936 }
2937
__mptcp_clear_xmit(struct sock * sk)2938 static void __mptcp_clear_xmit(struct sock *sk)
2939 {
2940 struct mptcp_sock *msk = mptcp_sk(sk);
2941 struct mptcp_data_frag *dtmp, *dfrag;
2942
2943 WRITE_ONCE(msk->first_pending, NULL);
2944 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2945 dfrag_clear(sk, dfrag);
2946 }
2947
mptcp_cancel_work(struct sock * sk)2948 void mptcp_cancel_work(struct sock *sk)
2949 {
2950 struct mptcp_sock *msk = mptcp_sk(sk);
2951
2952 if (cancel_work_sync(&msk->work))
2953 __sock_put(sk);
2954 }
2955
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2956 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2957 {
2958 lock_sock(ssk);
2959
2960 switch (ssk->sk_state) {
2961 case TCP_LISTEN:
2962 if (!(how & RCV_SHUTDOWN))
2963 break;
2964 fallthrough;
2965 case TCP_SYN_SENT:
2966 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2967 break;
2968 default:
2969 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2970 pr_debug("Fallback\n");
2971 ssk->sk_shutdown |= how;
2972 tcp_shutdown(ssk, how);
2973
2974 /* simulate the data_fin ack reception to let the state
2975 * machine move forward
2976 */
2977 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2978 mptcp_schedule_work(sk);
2979 } else {
2980 pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2981 tcp_send_ack(ssk);
2982 if (!mptcp_rtx_timer_pending(sk))
2983 mptcp_reset_rtx_timer(sk);
2984 }
2985 break;
2986 }
2987
2988 release_sock(ssk);
2989 }
2990
mptcp_set_state(struct sock * sk,int state)2991 void mptcp_set_state(struct sock *sk, int state)
2992 {
2993 int oldstate = sk->sk_state;
2994
2995 switch (state) {
2996 case TCP_ESTABLISHED:
2997 if (oldstate != TCP_ESTABLISHED)
2998 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2999 break;
3000 case TCP_CLOSE_WAIT:
3001 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
3002 * MPTCP "accepted" sockets will be created later on. So no
3003 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
3004 */
3005 break;
3006 default:
3007 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
3008 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
3009 }
3010
3011 inet_sk_state_store(sk, state);
3012 }
3013
3014 static const unsigned char new_state[16] = {
3015 /* current state: new state: action: */
3016 [0 /* (Invalid) */] = TCP_CLOSE,
3017 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3018 [TCP_SYN_SENT] = TCP_CLOSE,
3019 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3020 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
3021 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
3022 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
3023 [TCP_CLOSE] = TCP_CLOSE,
3024 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
3025 [TCP_LAST_ACK] = TCP_LAST_ACK,
3026 [TCP_LISTEN] = TCP_CLOSE,
3027 [TCP_CLOSING] = TCP_CLOSING,
3028 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
3029 };
3030
mptcp_close_state(struct sock * sk)3031 static int mptcp_close_state(struct sock *sk)
3032 {
3033 int next = (int)new_state[sk->sk_state];
3034 int ns = next & TCP_STATE_MASK;
3035
3036 mptcp_set_state(sk, ns);
3037
3038 return next & TCP_ACTION_FIN;
3039 }
3040
mptcp_check_send_data_fin(struct sock * sk)3041 static void mptcp_check_send_data_fin(struct sock *sk)
3042 {
3043 struct mptcp_subflow_context *subflow;
3044 struct mptcp_sock *msk = mptcp_sk(sk);
3045
3046 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3047 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3048 msk->snd_nxt, msk->write_seq);
3049
3050 /* we still need to enqueue subflows or not really shutting down,
3051 * skip this
3052 */
3053 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3054 mptcp_send_head(sk))
3055 return;
3056
3057 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3058
3059 mptcp_for_each_subflow(msk, subflow) {
3060 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3061
3062 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3063 }
3064 }
3065
__mptcp_wr_shutdown(struct sock * sk)3066 static void __mptcp_wr_shutdown(struct sock *sk)
3067 {
3068 struct mptcp_sock *msk = mptcp_sk(sk);
3069
3070 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3071 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3072 !!mptcp_send_head(sk));
3073
3074 /* will be ignored by fallback sockets */
3075 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3076 WRITE_ONCE(msk->snd_data_fin_enable, 1);
3077
3078 mptcp_check_send_data_fin(sk);
3079 }
3080
__mptcp_destroy_sock(struct sock * sk)3081 static void __mptcp_destroy_sock(struct sock *sk)
3082 {
3083 struct mptcp_sock *msk = mptcp_sk(sk);
3084
3085 pr_debug("msk=%p\n", msk);
3086
3087 might_sleep();
3088
3089 mptcp_stop_rtx_timer(sk);
3090 sk_stop_timer(sk, &sk->sk_timer);
3091 msk->pm.status = 0;
3092 mptcp_release_sched(msk);
3093
3094 sk->sk_prot->destroy(sk);
3095
3096 WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc));
3097 WARN_ON_ONCE(msk->rmem_released);
3098 sk_stream_kill_queues(sk);
3099 xfrm_sk_free_policy(sk);
3100
3101 sock_put(sk);
3102 }
3103
__mptcp_unaccepted_force_close(struct sock * sk)3104 void __mptcp_unaccepted_force_close(struct sock *sk)
3105 {
3106 sock_set_flag(sk, SOCK_DEAD);
3107 mptcp_do_fastclose(sk);
3108 __mptcp_destroy_sock(sk);
3109 }
3110
mptcp_check_readable(struct sock * sk)3111 static __poll_t mptcp_check_readable(struct sock *sk)
3112 {
3113 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3114 }
3115
mptcp_check_listen_stop(struct sock * sk)3116 static void mptcp_check_listen_stop(struct sock *sk)
3117 {
3118 struct sock *ssk;
3119
3120 if (inet_sk_state_load(sk) != TCP_LISTEN)
3121 return;
3122
3123 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3124 ssk = mptcp_sk(sk)->first;
3125 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3126 return;
3127
3128 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3129 tcp_set_state(ssk, TCP_CLOSE);
3130 mptcp_subflow_queue_clean(sk, ssk);
3131 inet_csk_listen_stop(ssk);
3132 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3133 release_sock(ssk);
3134 }
3135
__mptcp_close(struct sock * sk,long timeout)3136 bool __mptcp_close(struct sock *sk, long timeout)
3137 {
3138 struct mptcp_subflow_context *subflow;
3139 struct mptcp_sock *msk = mptcp_sk(sk);
3140 bool do_cancel_work = false;
3141 int subflows_alive = 0;
3142
3143 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3144
3145 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3146 mptcp_check_listen_stop(sk);
3147 mptcp_set_state(sk, TCP_CLOSE);
3148 goto cleanup;
3149 }
3150
3151 if (mptcp_data_avail(msk) || timeout < 0) {
3152 /* If the msk has read data, or the caller explicitly ask it,
3153 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3154 */
3155 mptcp_do_fastclose(sk);
3156 timeout = 0;
3157 } else if (mptcp_close_state(sk)) {
3158 __mptcp_wr_shutdown(sk);
3159 }
3160
3161 sk_stream_wait_close(sk, timeout);
3162
3163 cleanup:
3164 /* orphan all the subflows */
3165 mptcp_for_each_subflow(msk, subflow) {
3166 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3167 bool slow = lock_sock_fast_nested(ssk);
3168
3169 subflows_alive += ssk->sk_state != TCP_CLOSE;
3170
3171 /* since the close timeout takes precedence on the fail one,
3172 * cancel the latter
3173 */
3174 if (ssk == msk->first)
3175 subflow->fail_tout = 0;
3176
3177 /* detach from the parent socket, but allow data_ready to
3178 * push incoming data into the mptcp stack, to properly ack it
3179 */
3180 ssk->sk_socket = NULL;
3181 ssk->sk_wq = NULL;
3182 unlock_sock_fast(ssk, slow);
3183 }
3184 sock_orphan(sk);
3185
3186 /* all the subflows are closed, only timeout can change the msk
3187 * state, let's not keep resources busy for no reasons
3188 */
3189 if (subflows_alive == 0)
3190 mptcp_set_state(sk, TCP_CLOSE);
3191
3192 sock_hold(sk);
3193 pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3194 if (msk->token)
3195 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3196
3197 if (sk->sk_state == TCP_CLOSE) {
3198 __mptcp_destroy_sock(sk);
3199 do_cancel_work = true;
3200 } else {
3201 mptcp_start_tout_timer(sk);
3202 }
3203
3204 return do_cancel_work;
3205 }
3206
mptcp_close(struct sock * sk,long timeout)3207 static void mptcp_close(struct sock *sk, long timeout)
3208 {
3209 bool do_cancel_work;
3210
3211 lock_sock(sk);
3212
3213 do_cancel_work = __mptcp_close(sk, timeout);
3214 release_sock(sk);
3215 if (do_cancel_work)
3216 mptcp_cancel_work(sk);
3217
3218 sock_put(sk);
3219 }
3220
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3221 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3222 {
3223 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3224 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3225 struct ipv6_pinfo *msk6 = inet6_sk(msk);
3226
3227 msk->sk_v6_daddr = ssk->sk_v6_daddr;
3228 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3229
3230 if (msk6 && ssk6) {
3231 msk6->saddr = ssk6->saddr;
3232 msk6->flow_label = ssk6->flow_label;
3233 }
3234 #endif
3235
3236 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3237 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3238 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3239 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3240 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3241 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3242 }
3243
mptcp_disconnect(struct sock * sk,int flags)3244 static int mptcp_disconnect(struct sock *sk, int flags)
3245 {
3246 struct mptcp_sock *msk = mptcp_sk(sk);
3247
3248 /* We are on the fastopen error path. We can't call straight into the
3249 * subflows cleanup code due to lock nesting (we are already under
3250 * msk->firstsocket lock).
3251 */
3252 if (msk->fastopening)
3253 return -EBUSY;
3254
3255 mptcp_check_listen_stop(sk);
3256 mptcp_set_state(sk, TCP_CLOSE);
3257
3258 mptcp_stop_rtx_timer(sk);
3259 mptcp_stop_tout_timer(sk);
3260
3261 if (msk->token)
3262 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3263
3264 /* msk->subflow is still intact, the following will not free the first
3265 * subflow
3266 */
3267 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3268
3269 /* The first subflow is already in TCP_CLOSE status, the following
3270 * can't overlap with a fallback anymore
3271 */
3272 spin_lock_bh(&msk->fallback_lock);
3273 msk->allow_subflows = true;
3274 msk->allow_infinite_fallback = true;
3275 WRITE_ONCE(msk->flags, 0);
3276 spin_unlock_bh(&msk->fallback_lock);
3277
3278 msk->cb_flags = 0;
3279 msk->recovery = false;
3280 WRITE_ONCE(msk->can_ack, false);
3281 WRITE_ONCE(msk->fully_established, false);
3282 WRITE_ONCE(msk->rcv_data_fin, false);
3283 WRITE_ONCE(msk->snd_data_fin_enable, false);
3284 WRITE_ONCE(msk->rcv_fastclose, false);
3285 WRITE_ONCE(msk->use_64bit_ack, false);
3286 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3287 mptcp_pm_data_reset(msk);
3288 mptcp_ca_reset(sk);
3289 msk->bytes_consumed = 0;
3290 msk->bytes_acked = 0;
3291 msk->bytes_received = 0;
3292 msk->bytes_sent = 0;
3293 msk->bytes_retrans = 0;
3294 msk->rcvspace_init = 0;
3295
3296 WRITE_ONCE(sk->sk_shutdown, 0);
3297 sk_error_report(sk);
3298 return 0;
3299 }
3300
3301 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3302 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3303 {
3304 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3305
3306 return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3307 }
3308
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3309 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3310 {
3311 const struct ipv6_pinfo *np = inet6_sk(sk);
3312 struct ipv6_txoptions *opt;
3313 struct ipv6_pinfo *newnp;
3314
3315 newnp = inet6_sk(newsk);
3316
3317 rcu_read_lock();
3318 opt = rcu_dereference(np->opt);
3319 if (opt) {
3320 opt = ipv6_dup_options(newsk, opt);
3321 if (!opt)
3322 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3323 }
3324 RCU_INIT_POINTER(newnp->opt, opt);
3325 rcu_read_unlock();
3326 }
3327 #endif
3328
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3329 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3330 {
3331 struct ip_options_rcu *inet_opt, *newopt = NULL;
3332 const struct inet_sock *inet = inet_sk(sk);
3333 struct inet_sock *newinet;
3334
3335 newinet = inet_sk(newsk);
3336
3337 rcu_read_lock();
3338 inet_opt = rcu_dereference(inet->inet_opt);
3339 if (inet_opt) {
3340 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3341 inet_opt->opt.optlen, GFP_ATOMIC);
3342 if (newopt)
3343 memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3344 inet_opt->opt.optlen);
3345 else
3346 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3347 }
3348 RCU_INIT_POINTER(newinet->inet_opt, newopt);
3349 rcu_read_unlock();
3350 }
3351
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3352 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3353 const struct mptcp_options_received *mp_opt,
3354 struct sock *ssk,
3355 struct request_sock *req)
3356 {
3357 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3358 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3359 struct mptcp_subflow_context *subflow;
3360 struct mptcp_sock *msk;
3361
3362 if (!nsk)
3363 return NULL;
3364
3365 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3366 if (nsk->sk_family == AF_INET6)
3367 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3368 #endif
3369
3370 __mptcp_init_sock(nsk);
3371
3372 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3373 if (nsk->sk_family == AF_INET6)
3374 mptcp_copy_ip6_options(nsk, sk);
3375 else
3376 #endif
3377 mptcp_copy_ip_options(nsk, sk);
3378
3379 msk = mptcp_sk(nsk);
3380 WRITE_ONCE(msk->local_key, subflow_req->local_key);
3381 WRITE_ONCE(msk->token, subflow_req->token);
3382 msk->in_accept_queue = 1;
3383 WRITE_ONCE(msk->fully_established, false);
3384 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3385 WRITE_ONCE(msk->csum_enabled, true);
3386
3387 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3388 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3389 WRITE_ONCE(msk->snd_una, msk->write_seq);
3390 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3391 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3392 mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3393
3394 /* passive msk is created after the first/MPC subflow */
3395 msk->subflow_id = 2;
3396
3397 sock_reset_flag(nsk, SOCK_RCU_FREE);
3398 security_inet_csk_clone(nsk, req);
3399
3400 /* this can't race with mptcp_close(), as the msk is
3401 * not yet exposted to user-space
3402 */
3403 mptcp_set_state(nsk, TCP_ESTABLISHED);
3404
3405 /* The msk maintain a ref to each subflow in the connections list */
3406 WRITE_ONCE(msk->first, ssk);
3407 subflow = mptcp_subflow_ctx(ssk);
3408 list_add(&subflow->node, &msk->conn_list);
3409 sock_hold(ssk);
3410
3411 /* new mpc subflow takes ownership of the newly
3412 * created mptcp socket
3413 */
3414 mptcp_token_accept(subflow_req, msk);
3415
3416 /* set msk addresses early to ensure mptcp_pm_get_local_id()
3417 * uses the correct data
3418 */
3419 mptcp_copy_inaddrs(nsk, ssk);
3420 __mptcp_propagate_sndbuf(nsk, ssk);
3421
3422 mptcp_rcv_space_init(msk, ssk);
3423
3424 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3425 __mptcp_subflow_fully_established(msk, subflow, mp_opt);
3426 bh_unlock_sock(nsk);
3427
3428 /* note: the newly allocated socket refcount is 2 now */
3429 return nsk;
3430 }
3431
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3432 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3433 {
3434 const struct tcp_sock *tp = tcp_sk(ssk);
3435
3436 msk->rcvspace_init = 1;
3437 msk->rcvq_space.copied = 0;
3438 msk->rcvq_space.rtt_us = 0;
3439
3440 msk->rcvq_space.time = tp->tcp_mstamp;
3441
3442 /* initial rcv_space offering made to peer */
3443 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3444 TCP_INIT_CWND * tp->advmss);
3445 if (msk->rcvq_space.space == 0)
3446 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3447 }
3448
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3449 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3450 {
3451 struct mptcp_subflow_context *subflow, *tmp;
3452 struct sock *sk = (struct sock *)msk;
3453
3454 __mptcp_clear_xmit(sk);
3455
3456 /* join list will be eventually flushed (with rst) at sock lock release time */
3457 mptcp_for_each_subflow_safe(msk, subflow, tmp)
3458 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3459
3460 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3461 mptcp_data_lock(sk);
3462 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3463 __skb_queue_purge(&sk->sk_receive_queue);
3464 skb_rbtree_purge(&msk->out_of_order_queue);
3465 mptcp_data_unlock(sk);
3466
3467 /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3468 * inet_sock_destruct() will dispose it
3469 */
3470 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3471 WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3472 mptcp_token_destroy(msk);
3473 mptcp_pm_free_anno_list(msk);
3474 mptcp_free_local_addr_list(msk);
3475 }
3476
mptcp_destroy(struct sock * sk)3477 static void mptcp_destroy(struct sock *sk)
3478 {
3479 struct mptcp_sock *msk = mptcp_sk(sk);
3480
3481 /* allow the following to close even the initial subflow */
3482 msk->free_first = 1;
3483 mptcp_destroy_common(msk, 0);
3484 sk_sockets_allocated_dec(sk);
3485 }
3486
__mptcp_data_acked(struct sock * sk)3487 void __mptcp_data_acked(struct sock *sk)
3488 {
3489 if (!sock_owned_by_user(sk))
3490 __mptcp_clean_una(sk);
3491 else
3492 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3493 }
3494
__mptcp_check_push(struct sock * sk,struct sock * ssk)3495 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3496 {
3497 if (!mptcp_send_head(sk))
3498 return;
3499
3500 if (!sock_owned_by_user(sk))
3501 __mptcp_subflow_push_pending(sk, ssk, false);
3502 else
3503 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3504 }
3505
3506 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3507 BIT(MPTCP_RETRANSMIT) | \
3508 BIT(MPTCP_FLUSH_JOIN_LIST))
3509
3510 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3511 static void mptcp_release_cb(struct sock *sk)
3512 __must_hold(&sk->sk_lock.slock)
3513 {
3514 struct mptcp_sock *msk = mptcp_sk(sk);
3515
3516 for (;;) {
3517 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3518 struct list_head join_list;
3519
3520 if (!flags)
3521 break;
3522
3523 INIT_LIST_HEAD(&join_list);
3524 list_splice_init(&msk->join_list, &join_list);
3525
3526 /* the following actions acquire the subflow socket lock
3527 *
3528 * 1) can't be invoked in atomic scope
3529 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3530 * datapath acquires the msk socket spinlock while helding
3531 * the subflow socket lock
3532 */
3533 msk->cb_flags &= ~flags;
3534 spin_unlock_bh(&sk->sk_lock.slock);
3535
3536 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3537 __mptcp_flush_join_list(sk, &join_list);
3538 if (flags & BIT(MPTCP_PUSH_PENDING))
3539 __mptcp_push_pending(sk, 0);
3540 if (flags & BIT(MPTCP_RETRANSMIT))
3541 __mptcp_retrans(sk);
3542
3543 cond_resched();
3544 spin_lock_bh(&sk->sk_lock.slock);
3545 }
3546
3547 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3548 __mptcp_clean_una_wakeup(sk);
3549 if (unlikely(msk->cb_flags)) {
3550 /* be sure to sync the msk state before taking actions
3551 * depending on sk_state (MPTCP_ERROR_REPORT)
3552 * On sk release avoid actions depending on the first subflow
3553 */
3554 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3555 __mptcp_sync_state(sk, msk->pending_state);
3556 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3557 __mptcp_error_report(sk);
3558 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3559 __mptcp_sync_sndbuf(sk);
3560 }
3561
3562 __mptcp_update_rmem(sk);
3563 }
3564
3565 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3566 * TCP can't schedule delack timer before the subflow is fully established.
3567 * MPTCP uses the delack timer to do 3rd ack retransmissions
3568 */
schedule_3rdack_retransmission(struct sock * ssk)3569 static void schedule_3rdack_retransmission(struct sock *ssk)
3570 {
3571 struct inet_connection_sock *icsk = inet_csk(ssk);
3572 struct tcp_sock *tp = tcp_sk(ssk);
3573 unsigned long timeout;
3574
3575 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3576 return;
3577
3578 /* reschedule with a timeout above RTT, as we must look only for drop */
3579 if (tp->srtt_us)
3580 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3581 else
3582 timeout = TCP_TIMEOUT_INIT;
3583 timeout += jiffies;
3584
3585 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3586 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3587 icsk->icsk_ack.timeout = timeout;
3588 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3589 }
3590
mptcp_subflow_process_delegated(struct sock * ssk,long status)3591 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3592 {
3593 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3594 struct sock *sk = subflow->conn;
3595
3596 if (status & BIT(MPTCP_DELEGATE_SEND)) {
3597 mptcp_data_lock(sk);
3598 if (!sock_owned_by_user(sk))
3599 __mptcp_subflow_push_pending(sk, ssk, true);
3600 else
3601 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3602 mptcp_data_unlock(sk);
3603 }
3604 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3605 mptcp_data_lock(sk);
3606 if (!sock_owned_by_user(sk))
3607 __mptcp_sync_sndbuf(sk);
3608 else
3609 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3610 mptcp_data_unlock(sk);
3611 }
3612 if (status & BIT(MPTCP_DELEGATE_ACK))
3613 schedule_3rdack_retransmission(ssk);
3614 }
3615
mptcp_hash(struct sock * sk)3616 static int mptcp_hash(struct sock *sk)
3617 {
3618 /* should never be called,
3619 * we hash the TCP subflows not the MPTCP socket
3620 */
3621 WARN_ON_ONCE(1);
3622 return 0;
3623 }
3624
mptcp_unhash(struct sock * sk)3625 static void mptcp_unhash(struct sock *sk)
3626 {
3627 /* called from sk_common_release(), but nothing to do here */
3628 }
3629
mptcp_get_port(struct sock * sk,unsigned short snum)3630 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3631 {
3632 struct mptcp_sock *msk = mptcp_sk(sk);
3633
3634 pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3635 if (WARN_ON_ONCE(!msk->first))
3636 return -EINVAL;
3637
3638 return inet_csk_get_port(msk->first, snum);
3639 }
3640
mptcp_finish_connect(struct sock * ssk)3641 void mptcp_finish_connect(struct sock *ssk)
3642 {
3643 struct mptcp_subflow_context *subflow;
3644 struct mptcp_sock *msk;
3645 struct sock *sk;
3646
3647 subflow = mptcp_subflow_ctx(ssk);
3648 sk = subflow->conn;
3649 msk = mptcp_sk(sk);
3650
3651 pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3652
3653 subflow->map_seq = subflow->iasn;
3654 subflow->map_subflow_seq = 1;
3655
3656 /* the socket is not connected yet, no msk/subflow ops can access/race
3657 * accessing the field below
3658 */
3659 WRITE_ONCE(msk->local_key, subflow->local_key);
3660
3661 mptcp_pm_new_connection(msk, ssk, 0);
3662 }
3663
mptcp_sock_graft(struct sock * sk,struct socket * parent)3664 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3665 {
3666 write_lock_bh(&sk->sk_callback_lock);
3667 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3668 sk_set_socket(sk, parent);
3669 sk->sk_uid = SOCK_INODE(parent)->i_uid;
3670 write_unlock_bh(&sk->sk_callback_lock);
3671 }
3672
mptcp_finish_join(struct sock * ssk)3673 bool mptcp_finish_join(struct sock *ssk)
3674 {
3675 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3676 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3677 struct sock *parent = (void *)msk;
3678 bool ret = true;
3679
3680 pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3681
3682 /* mptcp socket already closing? */
3683 if (!mptcp_is_fully_established(parent)) {
3684 subflow->reset_reason = MPTCP_RST_EMPTCP;
3685 return false;
3686 }
3687
3688 /* active subflow, already present inside the conn_list */
3689 if (!list_empty(&subflow->node)) {
3690 spin_lock_bh(&msk->fallback_lock);
3691 if (!msk->allow_subflows) {
3692 spin_unlock_bh(&msk->fallback_lock);
3693 return false;
3694 }
3695 mptcp_subflow_joined(msk, ssk);
3696 spin_unlock_bh(&msk->fallback_lock);
3697 mptcp_propagate_sndbuf(parent, ssk);
3698 return true;
3699 }
3700
3701 if (!mptcp_pm_allow_new_subflow(msk))
3702 goto err_prohibited;
3703
3704 /* If we can't acquire msk socket lock here, let the release callback
3705 * handle it
3706 */
3707 mptcp_data_lock(parent);
3708 if (!sock_owned_by_user(parent)) {
3709 ret = __mptcp_finish_join(msk, ssk);
3710 if (ret) {
3711 sock_hold(ssk);
3712 list_add_tail(&subflow->node, &msk->conn_list);
3713 }
3714 } else {
3715 sock_hold(ssk);
3716 list_add_tail(&subflow->node, &msk->join_list);
3717 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3718 }
3719 mptcp_data_unlock(parent);
3720
3721 if (!ret) {
3722 err_prohibited:
3723 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3724 return false;
3725 }
3726
3727 return true;
3728 }
3729
mptcp_shutdown(struct sock * sk,int how)3730 static void mptcp_shutdown(struct sock *sk, int how)
3731 {
3732 pr_debug("sk=%p, how=%d\n", sk, how);
3733
3734 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3735 __mptcp_wr_shutdown(sk);
3736 }
3737
mptcp_forward_alloc_get(const struct sock * sk)3738 static int mptcp_forward_alloc_get(const struct sock *sk)
3739 {
3740 return READ_ONCE(sk->sk_forward_alloc) +
3741 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3742 }
3743
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3744 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3745 {
3746 const struct sock *sk = (void *)msk;
3747 u64 delta;
3748
3749 if (sk->sk_state == TCP_LISTEN)
3750 return -EINVAL;
3751
3752 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3753 return 0;
3754
3755 delta = msk->write_seq - v;
3756 if (__mptcp_check_fallback(msk) && msk->first) {
3757 struct tcp_sock *tp = tcp_sk(msk->first);
3758
3759 /* the first subflow is disconnected after close - see
3760 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3761 * so ignore that status, too.
3762 */
3763 if (!((1 << msk->first->sk_state) &
3764 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3765 delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3766 }
3767 if (delta > INT_MAX)
3768 delta = INT_MAX;
3769
3770 return (int)delta;
3771 }
3772
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3773 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3774 {
3775 struct mptcp_sock *msk = mptcp_sk(sk);
3776 bool slow;
3777
3778 switch (cmd) {
3779 case SIOCINQ:
3780 if (sk->sk_state == TCP_LISTEN)
3781 return -EINVAL;
3782
3783 lock_sock(sk);
3784 __mptcp_move_skbs(msk);
3785 *karg = mptcp_inq_hint(sk);
3786 release_sock(sk);
3787 break;
3788 case SIOCOUTQ:
3789 slow = lock_sock_fast(sk);
3790 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3791 unlock_sock_fast(sk, slow);
3792 break;
3793 case SIOCOUTQNSD:
3794 slow = lock_sock_fast(sk);
3795 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3796 unlock_sock_fast(sk, slow);
3797 break;
3798 default:
3799 return -ENOIOCTLCMD;
3800 }
3801
3802 return 0;
3803 }
3804
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3805 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3806 {
3807 struct mptcp_subflow_context *subflow;
3808 struct mptcp_sock *msk = mptcp_sk(sk);
3809 int err = -EINVAL;
3810 struct sock *ssk;
3811
3812 ssk = __mptcp_nmpc_sk(msk);
3813 if (IS_ERR(ssk))
3814 return PTR_ERR(ssk);
3815
3816 mptcp_set_state(sk, TCP_SYN_SENT);
3817 subflow = mptcp_subflow_ctx(ssk);
3818 #ifdef CONFIG_TCP_MD5SIG
3819 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3820 * TCP option space.
3821 */
3822 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3823 mptcp_subflow_early_fallback(msk, subflow);
3824 #endif
3825 if (subflow->request_mptcp) {
3826 if (mptcp_active_should_disable(sk)) {
3827 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3828 mptcp_subflow_early_fallback(msk, subflow);
3829 } else if (mptcp_token_new_connect(ssk) < 0) {
3830 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3831 mptcp_subflow_early_fallback(msk, subflow);
3832 }
3833 }
3834
3835 WRITE_ONCE(msk->write_seq, subflow->idsn);
3836 WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3837 WRITE_ONCE(msk->snd_una, subflow->idsn);
3838 if (likely(!__mptcp_check_fallback(msk)))
3839 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3840
3841 /* if reaching here via the fastopen/sendmsg path, the caller already
3842 * acquired the subflow socket lock, too.
3843 */
3844 if (!msk->fastopening)
3845 lock_sock(ssk);
3846
3847 /* the following mirrors closely a very small chunk of code from
3848 * __inet_stream_connect()
3849 */
3850 if (ssk->sk_state != TCP_CLOSE)
3851 goto out;
3852
3853 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3854 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3855 if (err)
3856 goto out;
3857 }
3858
3859 err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3860 if (err < 0)
3861 goto out;
3862
3863 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3864
3865 out:
3866 if (!msk->fastopening)
3867 release_sock(ssk);
3868
3869 /* on successful connect, the msk state will be moved to established by
3870 * subflow_finish_connect()
3871 */
3872 if (unlikely(err)) {
3873 /* avoid leaving a dangling token in an unconnected socket */
3874 mptcp_token_destroy(msk);
3875 mptcp_set_state(sk, TCP_CLOSE);
3876 return err;
3877 }
3878
3879 mptcp_copy_inaddrs(sk, ssk);
3880 return 0;
3881 }
3882
3883 static struct proto mptcp_prot = {
3884 .name = "MPTCP",
3885 .owner = THIS_MODULE,
3886 .init = mptcp_init_sock,
3887 .connect = mptcp_connect,
3888 .disconnect = mptcp_disconnect,
3889 .close = mptcp_close,
3890 .setsockopt = mptcp_setsockopt,
3891 .getsockopt = mptcp_getsockopt,
3892 .shutdown = mptcp_shutdown,
3893 .destroy = mptcp_destroy,
3894 .sendmsg = mptcp_sendmsg,
3895 .ioctl = mptcp_ioctl,
3896 .recvmsg = mptcp_recvmsg,
3897 .release_cb = mptcp_release_cb,
3898 .hash = mptcp_hash,
3899 .unhash = mptcp_unhash,
3900 .get_port = mptcp_get_port,
3901 .forward_alloc_get = mptcp_forward_alloc_get,
3902 .stream_memory_free = mptcp_stream_memory_free,
3903 .sockets_allocated = &mptcp_sockets_allocated,
3904
3905 .memory_allocated = &tcp_memory_allocated,
3906 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3907
3908 .memory_pressure = &tcp_memory_pressure,
3909 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3910 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3911 .sysctl_mem = sysctl_tcp_mem,
3912 .obj_size = sizeof(struct mptcp_sock),
3913 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3914 .no_autobind = true,
3915 };
3916
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3917 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3918 {
3919 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3920 struct sock *ssk, *sk = sock->sk;
3921 int err = -EINVAL;
3922
3923 lock_sock(sk);
3924 ssk = __mptcp_nmpc_sk(msk);
3925 if (IS_ERR(ssk)) {
3926 err = PTR_ERR(ssk);
3927 goto unlock;
3928 }
3929
3930 if (sk->sk_family == AF_INET)
3931 err = inet_bind_sk(ssk, uaddr, addr_len);
3932 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3933 else if (sk->sk_family == AF_INET6)
3934 err = inet6_bind_sk(ssk, uaddr, addr_len);
3935 #endif
3936 if (!err)
3937 mptcp_copy_inaddrs(sk, ssk);
3938
3939 unlock:
3940 release_sock(sk);
3941 return err;
3942 }
3943
mptcp_listen(struct socket * sock,int backlog)3944 static int mptcp_listen(struct socket *sock, int backlog)
3945 {
3946 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3947 struct sock *sk = sock->sk;
3948 struct sock *ssk;
3949 int err;
3950
3951 pr_debug("msk=%p\n", msk);
3952
3953 lock_sock(sk);
3954
3955 err = -EINVAL;
3956 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3957 goto unlock;
3958
3959 ssk = __mptcp_nmpc_sk(msk);
3960 if (IS_ERR(ssk)) {
3961 err = PTR_ERR(ssk);
3962 goto unlock;
3963 }
3964
3965 mptcp_set_state(sk, TCP_LISTEN);
3966 sock_set_flag(sk, SOCK_RCU_FREE);
3967
3968 lock_sock(ssk);
3969 err = __inet_listen_sk(ssk, backlog);
3970 release_sock(ssk);
3971 mptcp_set_state(sk, inet_sk_state_load(ssk));
3972
3973 if (!err) {
3974 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3975 mptcp_copy_inaddrs(sk, ssk);
3976 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3977 }
3978
3979 unlock:
3980 release_sock(sk);
3981 return err;
3982 }
3983
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3984 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3985 struct proto_accept_arg *arg)
3986 {
3987 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3988 struct sock *ssk, *newsk;
3989
3990 pr_debug("msk=%p\n", msk);
3991
3992 /* Buggy applications can call accept on socket states other then LISTEN
3993 * but no need to allocate the first subflow just to error out.
3994 */
3995 ssk = READ_ONCE(msk->first);
3996 if (!ssk)
3997 return -EINVAL;
3998
3999 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
4000 newsk = inet_csk_accept(ssk, arg);
4001 if (!newsk)
4002 return arg->err;
4003
4004 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
4005 if (sk_is_mptcp(newsk)) {
4006 struct mptcp_subflow_context *subflow;
4007 struct sock *new_mptcp_sock;
4008
4009 subflow = mptcp_subflow_ctx(newsk);
4010 new_mptcp_sock = subflow->conn;
4011
4012 /* is_mptcp should be false if subflow->conn is missing, see
4013 * subflow_syn_recv_sock()
4014 */
4015 if (WARN_ON_ONCE(!new_mptcp_sock)) {
4016 tcp_sk(newsk)->is_mptcp = 0;
4017 goto tcpfallback;
4018 }
4019
4020 newsk = new_mptcp_sock;
4021 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
4022
4023 newsk->sk_kern_sock = arg->kern;
4024 lock_sock(newsk);
4025 __inet_accept(sock, newsock, newsk);
4026
4027 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
4028 msk = mptcp_sk(newsk);
4029 msk->in_accept_queue = 0;
4030
4031 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
4032 * This is needed so NOSPACE flag can be set from tcp stack.
4033 */
4034 mptcp_for_each_subflow(msk, subflow) {
4035 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4036
4037 if (!ssk->sk_socket)
4038 mptcp_sock_graft(ssk, newsock);
4039 }
4040
4041 /* Do late cleanup for the first subflow as necessary. Also
4042 * deal with bad peers not doing a complete shutdown.
4043 */
4044 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
4045 __mptcp_close_ssk(newsk, msk->first,
4046 mptcp_subflow_ctx(msk->first), 0);
4047 if (unlikely(list_is_singular(&msk->conn_list)))
4048 mptcp_set_state(newsk, TCP_CLOSE);
4049 }
4050 } else {
4051 tcpfallback:
4052 newsk->sk_kern_sock = arg->kern;
4053 lock_sock(newsk);
4054 __inet_accept(sock, newsock, newsk);
4055 /* we are being invoked after accepting a non-mp-capable
4056 * flow: sk is a tcp_sk, not an mptcp one.
4057 *
4058 * Hand the socket over to tcp so all further socket ops
4059 * bypass mptcp.
4060 */
4061 WRITE_ONCE(newsock->sk->sk_socket->ops,
4062 mptcp_fallback_tcp_ops(newsock->sk));
4063 }
4064 release_sock(newsk);
4065
4066 return 0;
4067 }
4068
mptcp_check_writeable(struct mptcp_sock * msk)4069 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4070 {
4071 struct sock *sk = (struct sock *)msk;
4072
4073 if (__mptcp_stream_is_writeable(sk, 1))
4074 return EPOLLOUT | EPOLLWRNORM;
4075
4076 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4077 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4078 if (__mptcp_stream_is_writeable(sk, 1))
4079 return EPOLLOUT | EPOLLWRNORM;
4080
4081 return 0;
4082 }
4083
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)4084 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4085 struct poll_table_struct *wait)
4086 {
4087 struct sock *sk = sock->sk;
4088 struct mptcp_sock *msk;
4089 __poll_t mask = 0;
4090 u8 shutdown;
4091 int state;
4092
4093 msk = mptcp_sk(sk);
4094 sock_poll_wait(file, sock, wait);
4095
4096 state = inet_sk_state_load(sk);
4097 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4098 if (state == TCP_LISTEN) {
4099 struct sock *ssk = READ_ONCE(msk->first);
4100
4101 if (WARN_ON_ONCE(!ssk))
4102 return 0;
4103
4104 return inet_csk_listen_poll(ssk);
4105 }
4106
4107 shutdown = READ_ONCE(sk->sk_shutdown);
4108 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4109 mask |= EPOLLHUP;
4110 if (shutdown & RCV_SHUTDOWN)
4111 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4112
4113 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4114 mask |= mptcp_check_readable(sk);
4115 if (shutdown & SEND_SHUTDOWN)
4116 mask |= EPOLLOUT | EPOLLWRNORM;
4117 else
4118 mask |= mptcp_check_writeable(msk);
4119 } else if (state == TCP_SYN_SENT &&
4120 inet_test_bit(DEFER_CONNECT, sk)) {
4121 /* cf tcp_poll() note about TFO */
4122 mask |= EPOLLOUT | EPOLLWRNORM;
4123 }
4124
4125 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4126 smp_rmb();
4127 if (READ_ONCE(sk->sk_err))
4128 mask |= EPOLLERR;
4129
4130 return mask;
4131 }
4132
4133 static const struct proto_ops mptcp_stream_ops = {
4134 .family = PF_INET,
4135 .owner = THIS_MODULE,
4136 .release = inet_release,
4137 .bind = mptcp_bind,
4138 .connect = inet_stream_connect,
4139 .socketpair = sock_no_socketpair,
4140 .accept = mptcp_stream_accept,
4141 .getname = inet_getname,
4142 .poll = mptcp_poll,
4143 .ioctl = inet_ioctl,
4144 .gettstamp = sock_gettstamp,
4145 .listen = mptcp_listen,
4146 .shutdown = inet_shutdown,
4147 .setsockopt = sock_common_setsockopt,
4148 .getsockopt = sock_common_getsockopt,
4149 .sendmsg = inet_sendmsg,
4150 .recvmsg = inet_recvmsg,
4151 .mmap = sock_no_mmap,
4152 .set_rcvlowat = mptcp_set_rcvlowat,
4153 };
4154
4155 static struct inet_protosw mptcp_protosw = {
4156 .type = SOCK_STREAM,
4157 .protocol = IPPROTO_MPTCP,
4158 .prot = &mptcp_prot,
4159 .ops = &mptcp_stream_ops,
4160 .flags = INET_PROTOSW_ICSK,
4161 };
4162
mptcp_napi_poll(struct napi_struct * napi,int budget)4163 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4164 {
4165 struct mptcp_delegated_action *delegated;
4166 struct mptcp_subflow_context *subflow;
4167 int work_done = 0;
4168
4169 delegated = container_of(napi, struct mptcp_delegated_action, napi);
4170 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4171 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4172
4173 bh_lock_sock_nested(ssk);
4174 if (!sock_owned_by_user(ssk)) {
4175 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4176 } else {
4177 /* tcp_release_cb_override already processed
4178 * the action or will do at next release_sock().
4179 * In both case must dequeue the subflow here - on the same
4180 * CPU that scheduled it.
4181 */
4182 smp_wmb();
4183 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4184 }
4185 bh_unlock_sock(ssk);
4186 sock_put(ssk);
4187
4188 if (++work_done == budget)
4189 return budget;
4190 }
4191
4192 /* always provide a 0 'work_done' argument, so that napi_complete_done
4193 * will not try accessing the NULL napi->dev ptr
4194 */
4195 napi_complete_done(napi, 0);
4196 return work_done;
4197 }
4198
mptcp_proto_init(void)4199 void __init mptcp_proto_init(void)
4200 {
4201 struct mptcp_delegated_action *delegated;
4202 int cpu;
4203
4204 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4205
4206 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4207 panic("Failed to allocate MPTCP pcpu counter\n");
4208
4209 init_dummy_netdev(&mptcp_napi_dev);
4210 for_each_possible_cpu(cpu) {
4211 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4212 INIT_LIST_HEAD(&delegated->head);
4213 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4214 mptcp_napi_poll);
4215 napi_enable(&delegated->napi);
4216 }
4217
4218 mptcp_subflow_init();
4219 mptcp_pm_init();
4220 mptcp_sched_init();
4221 mptcp_token_init();
4222
4223 if (proto_register(&mptcp_prot, 1) != 0)
4224 panic("Failed to register MPTCP proto.\n");
4225
4226 inet_register_protosw(&mptcp_protosw);
4227
4228 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4229 }
4230
4231 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4232 static const struct proto_ops mptcp_v6_stream_ops = {
4233 .family = PF_INET6,
4234 .owner = THIS_MODULE,
4235 .release = inet6_release,
4236 .bind = mptcp_bind,
4237 .connect = inet_stream_connect,
4238 .socketpair = sock_no_socketpair,
4239 .accept = mptcp_stream_accept,
4240 .getname = inet6_getname,
4241 .poll = mptcp_poll,
4242 .ioctl = inet6_ioctl,
4243 .gettstamp = sock_gettstamp,
4244 .listen = mptcp_listen,
4245 .shutdown = inet_shutdown,
4246 .setsockopt = sock_common_setsockopt,
4247 .getsockopt = sock_common_getsockopt,
4248 .sendmsg = inet6_sendmsg,
4249 .recvmsg = inet6_recvmsg,
4250 .mmap = sock_no_mmap,
4251 #ifdef CONFIG_COMPAT
4252 .compat_ioctl = inet6_compat_ioctl,
4253 #endif
4254 .set_rcvlowat = mptcp_set_rcvlowat,
4255 };
4256
4257 static struct proto mptcp_v6_prot;
4258
4259 static struct inet_protosw mptcp_v6_protosw = {
4260 .type = SOCK_STREAM,
4261 .protocol = IPPROTO_MPTCP,
4262 .prot = &mptcp_v6_prot,
4263 .ops = &mptcp_v6_stream_ops,
4264 .flags = INET_PROTOSW_ICSK,
4265 };
4266
mptcp_proto_v6_init(void)4267 int __init mptcp_proto_v6_init(void)
4268 {
4269 int err;
4270
4271 mptcp_v6_prot = mptcp_prot;
4272 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4273 mptcp_v6_prot.slab = NULL;
4274 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4275 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4276
4277 err = proto_register(&mptcp_v6_prot, 1);
4278 if (err)
4279 return err;
4280
4281 err = inet6_register_protosw(&mptcp_v6_protosw);
4282 if (err)
4283 proto_unregister(&mptcp_v6_prot);
4284
4285 return err;
4286 }
4287 #endif
4288