1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp_states.h>
19 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
20 #include <net/transp_v6.h>
21 #endif
22 #include <net/mptcp.h>
23 #include <net/hotdata.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
mptcp_fallback_tcp_ops(const struct sock * sk)58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 	if (sk->sk_prot == &tcpv6_prot)
62 		return &inet6_stream_ops;
63 #endif
64 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 	return &inet_stream_ops;
66 }
67 
__mptcp_socket_create(struct mptcp_sock * msk)68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 	struct mptcp_subflow_context *subflow;
71 	struct sock *sk = (struct sock *)msk;
72 	struct socket *ssock;
73 	int err;
74 
75 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 	if (err)
77 		return err;
78 
79 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 	WRITE_ONCE(msk->first, ssock->sk);
81 	subflow = mptcp_subflow_ctx(ssock->sk);
82 	list_add(&subflow->node, &msk->conn_list);
83 	sock_hold(ssock->sk);
84 	subflow->request_mptcp = 1;
85 	subflow->subflow_id = msk->subflow_id++;
86 
87 	/* This is the first subflow, always with id 0 */
88 	WRITE_ONCE(subflow->local_id, 0);
89 	mptcp_sock_graft(msk->first, sk->sk_socket);
90 	iput(SOCK_INODE(ssock));
91 
92 	return 0;
93 }
94 
95 /* If the MPC handshake is not started, returns the first subflow,
96  * eventually allocating it.
97  */
__mptcp_nmpc_sk(struct mptcp_sock * msk)98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 	struct sock *sk = (struct sock *)msk;
101 	int ret;
102 
103 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 		return ERR_PTR(-EINVAL);
105 
106 	if (!msk->first) {
107 		ret = __mptcp_socket_create(msk);
108 		if (ret)
109 			return ERR_PTR(ret);
110 	}
111 
112 	return msk->first;
113 }
114 
mptcp_drop(struct sock * sk,struct sk_buff * skb)115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
116 {
117 	sk_drops_add(sk, skb);
118 	__kfree_skb(skb);
119 }
120 
mptcp_rmem_fwd_alloc_add(struct sock * sk,int size)121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
122 {
123 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
124 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
125 }
126 
mptcp_rmem_charge(struct sock * sk,int size)127 static void mptcp_rmem_charge(struct sock *sk, int size)
128 {
129 	mptcp_rmem_fwd_alloc_add(sk, -size);
130 }
131 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
133 			       struct sk_buff *from)
134 {
135 	bool fragstolen;
136 	int delta;
137 
138 	if (MPTCP_SKB_CB(from)->offset ||
139 	    ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
140 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
141 		return false;
142 
143 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
144 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
145 		 to->len, MPTCP_SKB_CB(from)->end_seq);
146 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
147 
148 	/* note the fwd memory can reach a negative value after accounting
149 	 * for the delta, but the later skb free will restore a non
150 	 * negative one
151 	 */
152 	atomic_add(delta, &sk->sk_rmem_alloc);
153 	mptcp_rmem_charge(sk, delta);
154 	kfree_skb_partial(from, fragstolen);
155 
156 	return true;
157 }
158 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)159 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
160 				   struct sk_buff *from)
161 {
162 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
163 		return false;
164 
165 	return mptcp_try_coalesce((struct sock *)msk, to, from);
166 }
167 
__mptcp_rmem_reclaim(struct sock * sk,int amount)168 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
169 {
170 	amount >>= PAGE_SHIFT;
171 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
172 	__sk_mem_reduce_allocated(sk, amount);
173 }
174 
mptcp_rmem_uncharge(struct sock * sk,int size)175 static void mptcp_rmem_uncharge(struct sock *sk, int size)
176 {
177 	struct mptcp_sock *msk = mptcp_sk(sk);
178 	int reclaimable;
179 
180 	mptcp_rmem_fwd_alloc_add(sk, size);
181 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
182 
183 	/* see sk_mem_uncharge() for the rationale behind the following schema */
184 	if (unlikely(reclaimable >= PAGE_SIZE))
185 		__mptcp_rmem_reclaim(sk, reclaimable);
186 }
187 
mptcp_rfree(struct sk_buff * skb)188 static void mptcp_rfree(struct sk_buff *skb)
189 {
190 	unsigned int len = skb->truesize;
191 	struct sock *sk = skb->sk;
192 
193 	atomic_sub(len, &sk->sk_rmem_alloc);
194 	mptcp_rmem_uncharge(sk, len);
195 }
196 
mptcp_set_owner_r(struct sk_buff * skb,struct sock * sk)197 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
198 {
199 	skb_orphan(skb);
200 	skb->sk = sk;
201 	skb->destructor = mptcp_rfree;
202 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
203 	mptcp_rmem_charge(sk, skb->truesize);
204 }
205 
206 /* "inspired" by tcp_data_queue_ofo(), main differences:
207  * - use mptcp seqs
208  * - don't cope with sacks
209  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)210 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
211 {
212 	struct sock *sk = (struct sock *)msk;
213 	struct rb_node **p, *parent;
214 	u64 seq, end_seq, max_seq;
215 	struct sk_buff *skb1;
216 
217 	seq = MPTCP_SKB_CB(skb)->map_seq;
218 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
219 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
220 
221 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
222 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
223 	if (after64(end_seq, max_seq)) {
224 		/* out of window */
225 		mptcp_drop(sk, skb);
226 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
227 			 (unsigned long long)end_seq - (unsigned long)max_seq,
228 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
229 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
230 		return;
231 	}
232 
233 	p = &msk->out_of_order_queue.rb_node;
234 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
235 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
236 		rb_link_node(&skb->rbnode, NULL, p);
237 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
238 		msk->ooo_last_skb = skb;
239 		goto end;
240 	}
241 
242 	/* with 2 subflows, adding at end of ooo queue is quite likely
243 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
244 	 */
245 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
246 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
247 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
248 		return;
249 	}
250 
251 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
252 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
253 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
254 		parent = &msk->ooo_last_skb->rbnode;
255 		p = &parent->rb_right;
256 		goto insert;
257 	}
258 
259 	/* Find place to insert this segment. Handle overlaps on the way. */
260 	parent = NULL;
261 	while (*p) {
262 		parent = *p;
263 		skb1 = rb_to_skb(parent);
264 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
265 			p = &parent->rb_left;
266 			continue;
267 		}
268 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
269 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
270 				/* All the bits are present. Drop. */
271 				mptcp_drop(sk, skb);
272 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
273 				return;
274 			}
275 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
276 				/* partial overlap:
277 				 *     |     skb      |
278 				 *  |     skb1    |
279 				 * continue traversing
280 				 */
281 			} else {
282 				/* skb's seq == skb1's seq and skb covers skb1.
283 				 * Replace skb1 with skb.
284 				 */
285 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
286 						&msk->out_of_order_queue);
287 				mptcp_drop(sk, skb1);
288 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
289 				goto merge_right;
290 			}
291 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
292 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
293 			return;
294 		}
295 		p = &parent->rb_right;
296 	}
297 
298 insert:
299 	/* Insert segment into RB tree. */
300 	rb_link_node(&skb->rbnode, parent, p);
301 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
302 
303 merge_right:
304 	/* Remove other segments covered by skb. */
305 	while ((skb1 = skb_rb_next(skb)) != NULL) {
306 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
307 			break;
308 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
309 		mptcp_drop(sk, skb1);
310 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
311 	}
312 	/* If there is no skb after us, we are the last_skb ! */
313 	if (!skb1)
314 		msk->ooo_last_skb = skb;
315 
316 end:
317 	skb_condense(skb);
318 	mptcp_set_owner_r(skb, sk);
319 }
320 
mptcp_rmem_schedule(struct sock * sk,struct sock * ssk,int size)321 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
322 {
323 	struct mptcp_sock *msk = mptcp_sk(sk);
324 	int amt, amount;
325 
326 	if (size <= msk->rmem_fwd_alloc)
327 		return true;
328 
329 	size -= msk->rmem_fwd_alloc;
330 	amt = sk_mem_pages(size);
331 	amount = amt << PAGE_SHIFT;
332 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
333 		return false;
334 
335 	mptcp_rmem_fwd_alloc_add(sk, amount);
336 	return true;
337 }
338 
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)339 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
340 			     struct sk_buff *skb, unsigned int offset,
341 			     size_t copy_len)
342 {
343 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
344 	struct sock *sk = (struct sock *)msk;
345 	struct sk_buff *tail;
346 	bool has_rxtstamp;
347 
348 	__skb_unlink(skb, &ssk->sk_receive_queue);
349 
350 	skb_ext_reset(skb);
351 	skb_orphan(skb);
352 
353 	/* try to fetch required memory from subflow */
354 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) {
355 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
356 		goto drop;
357 	}
358 
359 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
360 
361 	/* the skb map_seq accounts for the skb offset:
362 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
363 	 * value
364 	 */
365 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
366 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
367 	MPTCP_SKB_CB(skb)->offset = offset;
368 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
369 
370 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
371 		/* in sequence */
372 		msk->bytes_received += copy_len;
373 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
374 		tail = skb_peek_tail(&sk->sk_receive_queue);
375 		if (tail && mptcp_try_coalesce(sk, tail, skb))
376 			return true;
377 
378 		mptcp_set_owner_r(skb, sk);
379 		__skb_queue_tail(&sk->sk_receive_queue, skb);
380 		return true;
381 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
382 		mptcp_data_queue_ofo(msk, skb);
383 		return false;
384 	}
385 
386 	/* old data, keep it simple and drop the whole pkt, sender
387 	 * will retransmit as needed, if needed.
388 	 */
389 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
390 drop:
391 	mptcp_drop(sk, skb);
392 	return false;
393 }
394 
mptcp_stop_rtx_timer(struct sock * sk)395 static void mptcp_stop_rtx_timer(struct sock *sk)
396 {
397 	struct inet_connection_sock *icsk = inet_csk(sk);
398 
399 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
400 	mptcp_sk(sk)->timer_ival = 0;
401 }
402 
mptcp_close_wake_up(struct sock * sk)403 static void mptcp_close_wake_up(struct sock *sk)
404 {
405 	if (sock_flag(sk, SOCK_DEAD))
406 		return;
407 
408 	sk->sk_state_change(sk);
409 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
410 	    sk->sk_state == TCP_CLOSE)
411 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
412 	else
413 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
414 }
415 
mptcp_shutdown_subflows(struct mptcp_sock * msk)416 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
417 {
418 	struct mptcp_subflow_context *subflow;
419 
420 	mptcp_for_each_subflow(msk, subflow) {
421 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
422 		bool slow;
423 
424 		slow = lock_sock_fast(ssk);
425 		tcp_shutdown(ssk, SEND_SHUTDOWN);
426 		unlock_sock_fast(ssk, slow);
427 	}
428 }
429 
430 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)431 static bool mptcp_pending_data_fin_ack(struct sock *sk)
432 {
433 	struct mptcp_sock *msk = mptcp_sk(sk);
434 
435 	return ((1 << sk->sk_state) &
436 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
437 	       msk->write_seq == READ_ONCE(msk->snd_una);
438 }
439 
mptcp_check_data_fin_ack(struct sock * sk)440 static void mptcp_check_data_fin_ack(struct sock *sk)
441 {
442 	struct mptcp_sock *msk = mptcp_sk(sk);
443 
444 	/* Look for an acknowledged DATA_FIN */
445 	if (mptcp_pending_data_fin_ack(sk)) {
446 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
447 
448 		switch (sk->sk_state) {
449 		case TCP_FIN_WAIT1:
450 			mptcp_set_state(sk, TCP_FIN_WAIT2);
451 			break;
452 		case TCP_CLOSING:
453 		case TCP_LAST_ACK:
454 			mptcp_shutdown_subflows(msk);
455 			mptcp_set_state(sk, TCP_CLOSE);
456 			break;
457 		}
458 
459 		mptcp_close_wake_up(sk);
460 	}
461 }
462 
463 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)464 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
465 {
466 	struct mptcp_sock *msk = mptcp_sk(sk);
467 
468 	if (READ_ONCE(msk->rcv_data_fin) &&
469 	    ((1 << inet_sk_state_load(sk)) &
470 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
471 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
472 
473 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
474 			if (seq)
475 				*seq = rcv_data_fin_seq;
476 
477 			return true;
478 		}
479 	}
480 
481 	return false;
482 }
483 
mptcp_set_datafin_timeout(struct sock * sk)484 static void mptcp_set_datafin_timeout(struct sock *sk)
485 {
486 	struct inet_connection_sock *icsk = inet_csk(sk);
487 	u32 retransmits;
488 
489 	retransmits = min_t(u32, icsk->icsk_retransmits,
490 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
491 
492 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
493 }
494 
__mptcp_set_timeout(struct sock * sk,long tout)495 static void __mptcp_set_timeout(struct sock *sk, long tout)
496 {
497 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
498 }
499 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)500 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
501 {
502 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
503 
504 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
505 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
506 }
507 
mptcp_set_timeout(struct sock * sk)508 static void mptcp_set_timeout(struct sock *sk)
509 {
510 	struct mptcp_subflow_context *subflow;
511 	long tout = 0;
512 
513 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
514 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
515 	__mptcp_set_timeout(sk, tout);
516 }
517 
tcp_can_send_ack(const struct sock * ssk)518 static inline bool tcp_can_send_ack(const struct sock *ssk)
519 {
520 	return !((1 << inet_sk_state_load(ssk)) &
521 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
522 }
523 
__mptcp_subflow_send_ack(struct sock * ssk)524 void __mptcp_subflow_send_ack(struct sock *ssk)
525 {
526 	if (tcp_can_send_ack(ssk))
527 		tcp_send_ack(ssk);
528 }
529 
mptcp_subflow_send_ack(struct sock * ssk)530 static void mptcp_subflow_send_ack(struct sock *ssk)
531 {
532 	bool slow;
533 
534 	slow = lock_sock_fast(ssk);
535 	__mptcp_subflow_send_ack(ssk);
536 	unlock_sock_fast(ssk, slow);
537 }
538 
mptcp_send_ack(struct mptcp_sock * msk)539 static void mptcp_send_ack(struct mptcp_sock *msk)
540 {
541 	struct mptcp_subflow_context *subflow;
542 
543 	mptcp_for_each_subflow(msk, subflow)
544 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
545 }
546 
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)547 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
548 {
549 	bool slow;
550 
551 	slow = lock_sock_fast(ssk);
552 	if (tcp_can_send_ack(ssk))
553 		tcp_cleanup_rbuf(ssk, copied);
554 	unlock_sock_fast(ssk, slow);
555 }
556 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)557 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
558 {
559 	const struct inet_connection_sock *icsk = inet_csk(ssk);
560 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
561 	const struct tcp_sock *tp = tcp_sk(ssk);
562 
563 	return (ack_pending & ICSK_ACK_SCHED) &&
564 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
565 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
566 		 (rx_empty && ack_pending &
567 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
568 }
569 
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)570 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
571 {
572 	int old_space = READ_ONCE(msk->old_wspace);
573 	struct mptcp_subflow_context *subflow;
574 	struct sock *sk = (struct sock *)msk;
575 	int space =  __mptcp_space(sk);
576 	bool cleanup, rx_empty;
577 
578 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
579 	rx_empty = !__mptcp_rmem(sk) && copied;
580 
581 	mptcp_for_each_subflow(msk, subflow) {
582 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
583 
584 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
585 			mptcp_subflow_cleanup_rbuf(ssk, copied);
586 	}
587 }
588 
mptcp_check_data_fin(struct sock * sk)589 static bool mptcp_check_data_fin(struct sock *sk)
590 {
591 	struct mptcp_sock *msk = mptcp_sk(sk);
592 	u64 rcv_data_fin_seq;
593 	bool ret = false;
594 
595 	/* Need to ack a DATA_FIN received from a peer while this side
596 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
597 	 * msk->rcv_data_fin was set when parsing the incoming options
598 	 * at the subflow level and the msk lock was not held, so this
599 	 * is the first opportunity to act on the DATA_FIN and change
600 	 * the msk state.
601 	 *
602 	 * If we are caught up to the sequence number of the incoming
603 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
604 	 * not caught up, do nothing and let the recv code send DATA_ACK
605 	 * when catching up.
606 	 */
607 
608 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
609 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
610 		WRITE_ONCE(msk->rcv_data_fin, 0);
611 
612 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
613 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
614 
615 		switch (sk->sk_state) {
616 		case TCP_ESTABLISHED:
617 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
618 			break;
619 		case TCP_FIN_WAIT1:
620 			mptcp_set_state(sk, TCP_CLOSING);
621 			break;
622 		case TCP_FIN_WAIT2:
623 			mptcp_shutdown_subflows(msk);
624 			mptcp_set_state(sk, TCP_CLOSE);
625 			break;
626 		default:
627 			/* Other states not expected */
628 			WARN_ON_ONCE(1);
629 			break;
630 		}
631 
632 		ret = true;
633 		if (!__mptcp_check_fallback(msk))
634 			mptcp_send_ack(msk);
635 		mptcp_close_wake_up(sk);
636 	}
637 	return ret;
638 }
639 
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)640 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
641 {
642 	if (mptcp_try_fallback(ssk)) {
643 		MPTCP_INC_STATS(sock_net(ssk),
644 				MPTCP_MIB_DSSCORRUPTIONFALLBACK);
645 	} else {
646 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
647 		mptcp_subflow_reset(ssk);
648 	}
649 }
650 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)651 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
652 					   struct sock *ssk,
653 					   unsigned int *bytes)
654 {
655 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
656 	struct sock *sk = (struct sock *)msk;
657 	unsigned int moved = 0;
658 	bool more_data_avail;
659 	struct tcp_sock *tp;
660 	bool done = false;
661 	int sk_rbuf;
662 
663 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
664 
665 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
666 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
667 
668 		if (unlikely(ssk_rbuf > sk_rbuf)) {
669 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
670 			sk_rbuf = ssk_rbuf;
671 		}
672 	}
673 
674 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
675 	tp = tcp_sk(ssk);
676 	do {
677 		u32 map_remaining, offset;
678 		u32 seq = tp->copied_seq;
679 		struct sk_buff *skb;
680 		bool fin;
681 
682 		/* try to move as much data as available */
683 		map_remaining = subflow->map_data_len -
684 				mptcp_subflow_get_map_offset(subflow);
685 
686 		skb = skb_peek(&ssk->sk_receive_queue);
687 		if (!skb) {
688 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
689 			 * a different CPU can have already processed the pending
690 			 * data, stop here or we can enter an infinite loop
691 			 */
692 			if (!moved)
693 				done = true;
694 			break;
695 		}
696 
697 		if (__mptcp_check_fallback(msk)) {
698 			/* Under fallback skbs have no MPTCP extension and TCP could
699 			 * collapse them between the dummy map creation and the
700 			 * current dequeue. Be sure to adjust the map size.
701 			 */
702 			map_remaining = skb->len;
703 			subflow->map_data_len = skb->len;
704 		}
705 
706 		offset = seq - TCP_SKB_CB(skb)->seq;
707 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
708 		if (fin) {
709 			done = true;
710 			seq++;
711 		}
712 
713 		if (offset < skb->len) {
714 			size_t len = skb->len - offset;
715 
716 			if (tp->urg_data)
717 				done = true;
718 
719 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
720 				moved += len;
721 			seq += len;
722 
723 			if (unlikely(map_remaining < len)) {
724 				DEBUG_NET_WARN_ON_ONCE(1);
725 				mptcp_dss_corruption(msk, ssk);
726 			}
727 		} else {
728 			if (unlikely(!fin)) {
729 				DEBUG_NET_WARN_ON_ONCE(1);
730 				mptcp_dss_corruption(msk, ssk);
731 			}
732 
733 			sk_eat_skb(ssk, skb);
734 			done = true;
735 		}
736 
737 		WRITE_ONCE(tp->copied_seq, seq);
738 		more_data_avail = mptcp_subflow_data_available(ssk);
739 
740 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
741 			done = true;
742 			break;
743 		}
744 	} while (more_data_avail);
745 
746 	if (moved > 0)
747 		msk->last_data_recv = tcp_jiffies32;
748 	*bytes += moved;
749 	return done;
750 }
751 
__mptcp_ofo_queue(struct mptcp_sock * msk)752 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
753 {
754 	struct sock *sk = (struct sock *)msk;
755 	struct sk_buff *skb, *tail;
756 	bool moved = false;
757 	struct rb_node *p;
758 	u64 end_seq;
759 
760 	p = rb_first(&msk->out_of_order_queue);
761 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
762 	while (p) {
763 		skb = rb_to_skb(p);
764 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
765 			break;
766 
767 		p = rb_next(p);
768 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
769 
770 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
771 				      msk->ack_seq))) {
772 			mptcp_drop(sk, skb);
773 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
774 			continue;
775 		}
776 
777 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
778 		tail = skb_peek_tail(&sk->sk_receive_queue);
779 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
780 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
781 
782 			/* skip overlapping data, if any */
783 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
784 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
785 				 delta);
786 			MPTCP_SKB_CB(skb)->offset += delta;
787 			MPTCP_SKB_CB(skb)->map_seq += delta;
788 			__skb_queue_tail(&sk->sk_receive_queue, skb);
789 		}
790 		msk->bytes_received += end_seq - msk->ack_seq;
791 		WRITE_ONCE(msk->ack_seq, end_seq);
792 		moved = true;
793 	}
794 	return moved;
795 }
796 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)797 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
798 {
799 	int err = sock_error(ssk);
800 	int ssk_state;
801 
802 	if (!err)
803 		return false;
804 
805 	/* only propagate errors on fallen-back sockets or
806 	 * on MPC connect
807 	 */
808 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
809 		return false;
810 
811 	/* We need to propagate only transition to CLOSE state.
812 	 * Orphaned socket will see such state change via
813 	 * subflow_sched_work_if_closed() and that path will properly
814 	 * destroy the msk as needed.
815 	 */
816 	ssk_state = inet_sk_state_load(ssk);
817 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
818 		mptcp_set_state(sk, ssk_state);
819 	WRITE_ONCE(sk->sk_err, -err);
820 
821 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
822 	smp_wmb();
823 	sk_error_report(sk);
824 	return true;
825 }
826 
__mptcp_error_report(struct sock * sk)827 void __mptcp_error_report(struct sock *sk)
828 {
829 	struct mptcp_subflow_context *subflow;
830 	struct mptcp_sock *msk = mptcp_sk(sk);
831 
832 	mptcp_for_each_subflow(msk, subflow)
833 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
834 			break;
835 }
836 
837 /* In most cases we will be able to lock the mptcp socket.  If its already
838  * owned, we need to defer to the work queue to avoid ABBA deadlock.
839  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)840 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
841 {
842 	struct sock *sk = (struct sock *)msk;
843 	unsigned int moved = 0;
844 
845 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
846 	__mptcp_ofo_queue(msk);
847 	if (unlikely(ssk->sk_err)) {
848 		if (!sock_owned_by_user(sk))
849 			__mptcp_error_report(sk);
850 		else
851 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
852 	}
853 
854 	/* If the moves have caught up with the DATA_FIN sequence number
855 	 * it's time to ack the DATA_FIN and change socket state, but
856 	 * this is not a good place to change state. Let the workqueue
857 	 * do it.
858 	 */
859 	if (mptcp_pending_data_fin(sk, NULL))
860 		mptcp_schedule_work(sk);
861 	return moved > 0;
862 }
863 
mptcp_data_ready(struct sock * sk,struct sock * ssk)864 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
865 {
866 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
867 	struct mptcp_sock *msk = mptcp_sk(sk);
868 	int sk_rbuf, ssk_rbuf;
869 
870 	/* The peer can send data while we are shutting down this
871 	 * subflow at msk destruction time, but we must avoid enqueuing
872 	 * more data to the msk receive queue
873 	 */
874 	if (unlikely(subflow->disposable))
875 		return;
876 
877 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
878 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
879 	if (unlikely(ssk_rbuf > sk_rbuf))
880 		sk_rbuf = ssk_rbuf;
881 
882 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
883 	if (__mptcp_rmem(sk) > sk_rbuf)
884 		return;
885 
886 	/* Wake-up the reader only for in-sequence data */
887 	mptcp_data_lock(sk);
888 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
889 		sk->sk_data_ready(sk);
890 	mptcp_data_unlock(sk);
891 }
892 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)893 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
894 {
895 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
896 	msk->allow_infinite_fallback = false;
897 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
898 }
899 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)900 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
901 {
902 	struct sock *sk = (struct sock *)msk;
903 
904 	if (sk->sk_state != TCP_ESTABLISHED)
905 		return false;
906 
907 	spin_lock_bh(&msk->fallback_lock);
908 	if (!msk->allow_subflows) {
909 		spin_unlock_bh(&msk->fallback_lock);
910 		return false;
911 	}
912 	mptcp_subflow_joined(msk, ssk);
913 	spin_unlock_bh(&msk->fallback_lock);
914 
915 	/* attach to msk socket only after we are sure we will deal with it
916 	 * at close time
917 	 */
918 	if (sk->sk_socket && !ssk->sk_socket)
919 		mptcp_sock_graft(ssk, sk->sk_socket);
920 
921 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
922 	mptcp_sockopt_sync_locked(msk, ssk);
923 	mptcp_stop_tout_timer(sk);
924 	__mptcp_propagate_sndbuf(sk, ssk);
925 	return true;
926 }
927 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)928 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
929 {
930 	struct mptcp_subflow_context *tmp, *subflow;
931 	struct mptcp_sock *msk = mptcp_sk(sk);
932 
933 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
934 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
935 		bool slow = lock_sock_fast(ssk);
936 
937 		list_move_tail(&subflow->node, &msk->conn_list);
938 		if (!__mptcp_finish_join(msk, ssk))
939 			mptcp_subflow_reset(ssk);
940 		unlock_sock_fast(ssk, slow);
941 	}
942 }
943 
mptcp_rtx_timer_pending(struct sock * sk)944 static bool mptcp_rtx_timer_pending(struct sock *sk)
945 {
946 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
947 }
948 
mptcp_reset_rtx_timer(struct sock * sk)949 static void mptcp_reset_rtx_timer(struct sock *sk)
950 {
951 	struct inet_connection_sock *icsk = inet_csk(sk);
952 	unsigned long tout;
953 
954 	/* prevent rescheduling on close */
955 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
956 		return;
957 
958 	tout = mptcp_sk(sk)->timer_ival;
959 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
960 }
961 
mptcp_schedule_work(struct sock * sk)962 bool mptcp_schedule_work(struct sock *sk)
963 {
964 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
965 	    schedule_work(&mptcp_sk(sk)->work)) {
966 		/* each subflow already holds a reference to the sk, and the
967 		 * workqueue is invoked by a subflow, so sk can't go away here.
968 		 */
969 		sock_hold(sk);
970 		return true;
971 	}
972 	return false;
973 }
974 
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)975 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
976 {
977 	struct mptcp_subflow_context *subflow;
978 
979 	msk_owned_by_me(msk);
980 
981 	mptcp_for_each_subflow(msk, subflow) {
982 		if (READ_ONCE(subflow->data_avail))
983 			return mptcp_subflow_tcp_sock(subflow);
984 	}
985 
986 	return NULL;
987 }
988 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)989 static bool mptcp_skb_can_collapse_to(u64 write_seq,
990 				      const struct sk_buff *skb,
991 				      const struct mptcp_ext *mpext)
992 {
993 	if (!tcp_skb_can_collapse_to(skb))
994 		return false;
995 
996 	/* can collapse only if MPTCP level sequence is in order and this
997 	 * mapping has not been xmitted yet
998 	 */
999 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
1000 	       !mpext->frozen;
1001 }
1002 
1003 /* we can append data to the given data frag if:
1004  * - there is space available in the backing page_frag
1005  * - the data frag tail matches the current page_frag free offset
1006  * - the data frag end sequence number matches the current write seq
1007  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)1008 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
1009 				       const struct page_frag *pfrag,
1010 				       const struct mptcp_data_frag *df)
1011 {
1012 	return df && pfrag->page == df->page &&
1013 		pfrag->size - pfrag->offset > 0 &&
1014 		pfrag->offset == (df->offset + df->data_len) &&
1015 		df->data_seq + df->data_len == msk->write_seq;
1016 }
1017 
dfrag_uncharge(struct sock * sk,int len)1018 static void dfrag_uncharge(struct sock *sk, int len)
1019 {
1020 	sk_mem_uncharge(sk, len);
1021 	sk_wmem_queued_add(sk, -len);
1022 }
1023 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1024 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1025 {
1026 	int len = dfrag->data_len + dfrag->overhead;
1027 
1028 	list_del(&dfrag->list);
1029 	dfrag_uncharge(sk, len);
1030 	put_page(dfrag->page);
1031 }
1032 
1033 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)1034 static void __mptcp_clean_una(struct sock *sk)
1035 {
1036 	struct mptcp_sock *msk = mptcp_sk(sk);
1037 	struct mptcp_data_frag *dtmp, *dfrag;
1038 	u64 snd_una;
1039 
1040 	snd_una = msk->snd_una;
1041 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1042 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1043 			break;
1044 
1045 		if (unlikely(dfrag == msk->first_pending)) {
1046 			/* in recovery mode can see ack after the current snd head */
1047 			if (WARN_ON_ONCE(!msk->recovery))
1048 				break;
1049 
1050 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1051 		}
1052 
1053 		dfrag_clear(sk, dfrag);
1054 	}
1055 
1056 	dfrag = mptcp_rtx_head(sk);
1057 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1058 		u64 delta = snd_una - dfrag->data_seq;
1059 
1060 		/* prevent wrap around in recovery mode */
1061 		if (unlikely(delta > dfrag->already_sent)) {
1062 			if (WARN_ON_ONCE(!msk->recovery))
1063 				goto out;
1064 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1065 				goto out;
1066 			dfrag->already_sent += delta - dfrag->already_sent;
1067 		}
1068 
1069 		dfrag->data_seq += delta;
1070 		dfrag->offset += delta;
1071 		dfrag->data_len -= delta;
1072 		dfrag->already_sent -= delta;
1073 
1074 		dfrag_uncharge(sk, delta);
1075 	}
1076 
1077 	/* all retransmitted data acked, recovery completed */
1078 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1079 		msk->recovery = false;
1080 
1081 out:
1082 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1083 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1084 			mptcp_stop_rtx_timer(sk);
1085 	} else {
1086 		mptcp_reset_rtx_timer(sk);
1087 	}
1088 
1089 	if (mptcp_pending_data_fin_ack(sk))
1090 		mptcp_schedule_work(sk);
1091 }
1092 
__mptcp_clean_una_wakeup(struct sock * sk)1093 static void __mptcp_clean_una_wakeup(struct sock *sk)
1094 {
1095 	lockdep_assert_held_once(&sk->sk_lock.slock);
1096 
1097 	__mptcp_clean_una(sk);
1098 	mptcp_write_space(sk);
1099 }
1100 
mptcp_clean_una_wakeup(struct sock * sk)1101 static void mptcp_clean_una_wakeup(struct sock *sk)
1102 {
1103 	mptcp_data_lock(sk);
1104 	__mptcp_clean_una_wakeup(sk);
1105 	mptcp_data_unlock(sk);
1106 }
1107 
mptcp_enter_memory_pressure(struct sock * sk)1108 static void mptcp_enter_memory_pressure(struct sock *sk)
1109 {
1110 	struct mptcp_subflow_context *subflow;
1111 	struct mptcp_sock *msk = mptcp_sk(sk);
1112 	bool first = true;
1113 
1114 	mptcp_for_each_subflow(msk, subflow) {
1115 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1116 
1117 		if (first)
1118 			tcp_enter_memory_pressure(ssk);
1119 		sk_stream_moderate_sndbuf(ssk);
1120 
1121 		first = false;
1122 	}
1123 	__mptcp_sync_sndbuf(sk);
1124 }
1125 
1126 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1127  * data
1128  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1129 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1130 {
1131 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1132 					pfrag, sk->sk_allocation)))
1133 		return true;
1134 
1135 	mptcp_enter_memory_pressure(sk);
1136 	return false;
1137 }
1138 
1139 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1140 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1141 		      int orig_offset)
1142 {
1143 	int offset = ALIGN(orig_offset, sizeof(long));
1144 	struct mptcp_data_frag *dfrag;
1145 
1146 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1147 	dfrag->data_len = 0;
1148 	dfrag->data_seq = msk->write_seq;
1149 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1150 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1151 	dfrag->already_sent = 0;
1152 	dfrag->page = pfrag->page;
1153 
1154 	return dfrag;
1155 }
1156 
1157 struct mptcp_sendmsg_info {
1158 	int mss_now;
1159 	int size_goal;
1160 	u16 limit;
1161 	u16 sent;
1162 	unsigned int flags;
1163 	bool data_lock_held;
1164 };
1165 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1166 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1167 				    u64 data_seq, int avail_size)
1168 {
1169 	u64 window_end = mptcp_wnd_end(msk);
1170 	u64 mptcp_snd_wnd;
1171 
1172 	if (__mptcp_check_fallback(msk))
1173 		return avail_size;
1174 
1175 	mptcp_snd_wnd = window_end - data_seq;
1176 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1177 
1178 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1179 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1180 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1181 	}
1182 
1183 	return avail_size;
1184 }
1185 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1186 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1187 {
1188 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1189 
1190 	if (!mpext)
1191 		return false;
1192 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1193 	return true;
1194 }
1195 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1196 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1197 {
1198 	struct sk_buff *skb;
1199 
1200 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1201 	if (likely(skb)) {
1202 		if (likely(__mptcp_add_ext(skb, gfp))) {
1203 			skb_reserve(skb, MAX_TCP_HEADER);
1204 			skb->ip_summed = CHECKSUM_PARTIAL;
1205 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1206 			return skb;
1207 		}
1208 		__kfree_skb(skb);
1209 	} else {
1210 		mptcp_enter_memory_pressure(sk);
1211 	}
1212 	return NULL;
1213 }
1214 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1215 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1216 {
1217 	struct sk_buff *skb;
1218 
1219 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1220 	if (!skb)
1221 		return NULL;
1222 
1223 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1224 		tcp_skb_entail(ssk, skb);
1225 		return skb;
1226 	}
1227 	tcp_skb_tsorted_anchor_cleanup(skb);
1228 	kfree_skb(skb);
1229 	return NULL;
1230 }
1231 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1232 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1233 {
1234 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1235 
1236 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1237 }
1238 
1239 /* note: this always recompute the csum on the whole skb, even
1240  * if we just appended a single frag. More status info needed
1241  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1242 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1243 {
1244 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1245 	__wsum csum = ~csum_unfold(mpext->csum);
1246 	int offset = skb->len - added;
1247 
1248 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1249 }
1250 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1251 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1252 				      struct sock *ssk,
1253 				      struct mptcp_ext *mpext)
1254 {
1255 	if (!mpext)
1256 		return;
1257 
1258 	mpext->infinite_map = 1;
1259 	mpext->data_len = 0;
1260 
1261 	if (!mptcp_try_fallback(ssk)) {
1262 		mptcp_subflow_reset(ssk);
1263 		return;
1264 	}
1265 
1266 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1267 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1268 	pr_fallback(msk);
1269 }
1270 
1271 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1272 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1273 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1274 			      struct mptcp_data_frag *dfrag,
1275 			      struct mptcp_sendmsg_info *info)
1276 {
1277 	u64 data_seq = dfrag->data_seq + info->sent;
1278 	int offset = dfrag->offset + info->sent;
1279 	struct mptcp_sock *msk = mptcp_sk(sk);
1280 	bool zero_window_probe = false;
1281 	struct mptcp_ext *mpext = NULL;
1282 	bool can_coalesce = false;
1283 	bool reuse_skb = true;
1284 	struct sk_buff *skb;
1285 	size_t copy;
1286 	int i;
1287 
1288 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1289 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1290 
1291 	if (WARN_ON_ONCE(info->sent > info->limit ||
1292 			 info->limit > dfrag->data_len))
1293 		return 0;
1294 
1295 	if (unlikely(!__tcp_can_send(ssk)))
1296 		return -EAGAIN;
1297 
1298 	/* compute send limit */
1299 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1300 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1301 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1302 	copy = info->size_goal;
1303 
1304 	skb = tcp_write_queue_tail(ssk);
1305 	if (skb && copy > skb->len) {
1306 		/* Limit the write to the size available in the
1307 		 * current skb, if any, so that we create at most a new skb.
1308 		 * Explicitly tells TCP internals to avoid collapsing on later
1309 		 * queue management operation, to avoid breaking the ext <->
1310 		 * SSN association set here
1311 		 */
1312 		mpext = mptcp_get_ext(skb);
1313 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1314 			TCP_SKB_CB(skb)->eor = 1;
1315 			tcp_mark_push(tcp_sk(ssk), skb);
1316 			goto alloc_skb;
1317 		}
1318 
1319 		i = skb_shinfo(skb)->nr_frags;
1320 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1321 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1322 			tcp_mark_push(tcp_sk(ssk), skb);
1323 			goto alloc_skb;
1324 		}
1325 
1326 		copy -= skb->len;
1327 	} else {
1328 alloc_skb:
1329 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1330 		if (!skb)
1331 			return -ENOMEM;
1332 
1333 		i = skb_shinfo(skb)->nr_frags;
1334 		reuse_skb = false;
1335 		mpext = mptcp_get_ext(skb);
1336 	}
1337 
1338 	/* Zero window and all data acked? Probe. */
1339 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1340 	if (copy == 0) {
1341 		u64 snd_una = READ_ONCE(msk->snd_una);
1342 
1343 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1344 			tcp_remove_empty_skb(ssk);
1345 			return 0;
1346 		}
1347 
1348 		zero_window_probe = true;
1349 		data_seq = snd_una - 1;
1350 		copy = 1;
1351 	}
1352 
1353 	copy = min_t(size_t, copy, info->limit - info->sent);
1354 	if (!sk_wmem_schedule(ssk, copy)) {
1355 		tcp_remove_empty_skb(ssk);
1356 		return -ENOMEM;
1357 	}
1358 
1359 	if (can_coalesce) {
1360 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1361 	} else {
1362 		get_page(dfrag->page);
1363 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1364 	}
1365 
1366 	skb->len += copy;
1367 	skb->data_len += copy;
1368 	skb->truesize += copy;
1369 	sk_wmem_queued_add(ssk, copy);
1370 	sk_mem_charge(ssk, copy);
1371 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1372 	TCP_SKB_CB(skb)->end_seq += copy;
1373 	tcp_skb_pcount_set(skb, 0);
1374 
1375 	/* on skb reuse we just need to update the DSS len */
1376 	if (reuse_skb) {
1377 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1378 		mpext->data_len += copy;
1379 		goto out;
1380 	}
1381 
1382 	memset(mpext, 0, sizeof(*mpext));
1383 	mpext->data_seq = data_seq;
1384 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1385 	mpext->data_len = copy;
1386 	mpext->use_map = 1;
1387 	mpext->dsn64 = 1;
1388 
1389 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1390 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1391 		 mpext->dsn64);
1392 
1393 	if (zero_window_probe) {
1394 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1395 		mpext->frozen = 1;
1396 		if (READ_ONCE(msk->csum_enabled))
1397 			mptcp_update_data_checksum(skb, copy);
1398 		tcp_push_pending_frames(ssk);
1399 		return 0;
1400 	}
1401 out:
1402 	if (READ_ONCE(msk->csum_enabled))
1403 		mptcp_update_data_checksum(skb, copy);
1404 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1405 		mptcp_update_infinite_map(msk, ssk, mpext);
1406 	trace_mptcp_sendmsg_frag(mpext);
1407 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1408 	return copy;
1409 }
1410 
1411 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1412 					 sizeof(struct tcphdr) - \
1413 					 MAX_TCP_OPTION_SPACE - \
1414 					 sizeof(struct ipv6hdr) - \
1415 					 sizeof(struct frag_hdr))
1416 
1417 struct subflow_send_info {
1418 	struct sock *ssk;
1419 	u64 linger_time;
1420 };
1421 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1422 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1423 {
1424 	if (!subflow->stale)
1425 		return;
1426 
1427 	subflow->stale = 0;
1428 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1429 }
1430 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1431 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1432 {
1433 	if (unlikely(subflow->stale)) {
1434 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1435 
1436 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1437 			return false;
1438 
1439 		mptcp_subflow_set_active(subflow);
1440 	}
1441 	return __mptcp_subflow_active(subflow);
1442 }
1443 
1444 #define SSK_MODE_ACTIVE	0
1445 #define SSK_MODE_BACKUP	1
1446 #define SSK_MODE_MAX	2
1447 
1448 /* implement the mptcp packet scheduler;
1449  * returns the subflow that will transmit the next DSS
1450  * additionally updates the rtx timeout
1451  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1452 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1453 {
1454 	struct subflow_send_info send_info[SSK_MODE_MAX];
1455 	struct mptcp_subflow_context *subflow;
1456 	struct sock *sk = (struct sock *)msk;
1457 	u32 pace, burst, wmem;
1458 	int i, nr_active = 0;
1459 	struct sock *ssk;
1460 	u64 linger_time;
1461 	long tout = 0;
1462 
1463 	/* pick the subflow with the lower wmem/wspace ratio */
1464 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1465 		send_info[i].ssk = NULL;
1466 		send_info[i].linger_time = -1;
1467 	}
1468 
1469 	mptcp_for_each_subflow(msk, subflow) {
1470 		bool backup = subflow->backup || subflow->request_bkup;
1471 
1472 		trace_mptcp_subflow_get_send(subflow);
1473 		ssk =  mptcp_subflow_tcp_sock(subflow);
1474 		if (!mptcp_subflow_active(subflow))
1475 			continue;
1476 
1477 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1478 		nr_active += !backup;
1479 		pace = subflow->avg_pacing_rate;
1480 		if (unlikely(!pace)) {
1481 			/* init pacing rate from socket */
1482 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1483 			pace = subflow->avg_pacing_rate;
1484 			if (!pace)
1485 				continue;
1486 		}
1487 
1488 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1489 		if (linger_time < send_info[backup].linger_time) {
1490 			send_info[backup].ssk = ssk;
1491 			send_info[backup].linger_time = linger_time;
1492 		}
1493 	}
1494 	__mptcp_set_timeout(sk, tout);
1495 
1496 	/* pick the best backup if no other subflow is active */
1497 	if (!nr_active)
1498 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1499 
1500 	/* According to the blest algorithm, to avoid HoL blocking for the
1501 	 * faster flow, we need to:
1502 	 * - estimate the faster flow linger time
1503 	 * - use the above to estimate the amount of byte transferred
1504 	 *   by the faster flow
1505 	 * - check that the amount of queued data is greter than the above,
1506 	 *   otherwise do not use the picked, slower, subflow
1507 	 * We select the subflow with the shorter estimated time to flush
1508 	 * the queued mem, which basically ensure the above. We just need
1509 	 * to check that subflow has a non empty cwin.
1510 	 */
1511 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1512 	if (!ssk || !sk_stream_memory_free(ssk))
1513 		return NULL;
1514 
1515 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1516 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1517 	if (!burst)
1518 		return ssk;
1519 
1520 	subflow = mptcp_subflow_ctx(ssk);
1521 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1522 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1523 					   burst + wmem);
1524 	msk->snd_burst = burst;
1525 	return ssk;
1526 }
1527 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1528 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1529 {
1530 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1531 	release_sock(ssk);
1532 }
1533 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1534 static void mptcp_update_post_push(struct mptcp_sock *msk,
1535 				   struct mptcp_data_frag *dfrag,
1536 				   u32 sent)
1537 {
1538 	u64 snd_nxt_new = dfrag->data_seq;
1539 
1540 	dfrag->already_sent += sent;
1541 
1542 	msk->snd_burst -= sent;
1543 
1544 	snd_nxt_new += dfrag->already_sent;
1545 
1546 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1547 	 * is recovering after a failover. In that event, this re-sends
1548 	 * old segments.
1549 	 *
1550 	 * Thus compute snd_nxt_new candidate based on
1551 	 * the dfrag->data_seq that was sent and the data
1552 	 * that has been handed to the subflow for transmission
1553 	 * and skip update in case it was old dfrag.
1554 	 */
1555 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1556 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1557 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1558 	}
1559 }
1560 
mptcp_check_and_set_pending(struct sock * sk)1561 void mptcp_check_and_set_pending(struct sock *sk)
1562 {
1563 	if (mptcp_send_head(sk)) {
1564 		mptcp_data_lock(sk);
1565 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1566 		mptcp_data_unlock(sk);
1567 	}
1568 }
1569 
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1570 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1571 				  struct mptcp_sendmsg_info *info)
1572 {
1573 	struct mptcp_sock *msk = mptcp_sk(sk);
1574 	struct mptcp_data_frag *dfrag;
1575 	int len, copied = 0, err = 0;
1576 
1577 	while ((dfrag = mptcp_send_head(sk))) {
1578 		info->sent = dfrag->already_sent;
1579 		info->limit = dfrag->data_len;
1580 		len = dfrag->data_len - dfrag->already_sent;
1581 		while (len > 0) {
1582 			int ret = 0;
1583 
1584 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1585 			if (ret <= 0) {
1586 				err = copied ? : ret;
1587 				goto out;
1588 			}
1589 
1590 			info->sent += ret;
1591 			copied += ret;
1592 			len -= ret;
1593 
1594 			mptcp_update_post_push(msk, dfrag, ret);
1595 		}
1596 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1597 
1598 		if (msk->snd_burst <= 0 ||
1599 		    !sk_stream_memory_free(ssk) ||
1600 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1601 			err = copied;
1602 			goto out;
1603 		}
1604 		mptcp_set_timeout(sk);
1605 	}
1606 	err = copied;
1607 
1608 out:
1609 	if (err > 0)
1610 		msk->last_data_sent = tcp_jiffies32;
1611 	return err;
1612 }
1613 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1614 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1615 {
1616 	struct sock *prev_ssk = NULL, *ssk = NULL;
1617 	struct mptcp_sock *msk = mptcp_sk(sk);
1618 	struct mptcp_sendmsg_info info = {
1619 				.flags = flags,
1620 	};
1621 	bool do_check_data_fin = false;
1622 	int push_count = 1;
1623 
1624 	while (mptcp_send_head(sk) && (push_count > 0)) {
1625 		struct mptcp_subflow_context *subflow;
1626 		int ret = 0;
1627 
1628 		if (mptcp_sched_get_send(msk))
1629 			break;
1630 
1631 		push_count = 0;
1632 
1633 		mptcp_for_each_subflow(msk, subflow) {
1634 			if (READ_ONCE(subflow->scheduled)) {
1635 				mptcp_subflow_set_scheduled(subflow, false);
1636 
1637 				prev_ssk = ssk;
1638 				ssk = mptcp_subflow_tcp_sock(subflow);
1639 				if (ssk != prev_ssk) {
1640 					/* First check. If the ssk has changed since
1641 					 * the last round, release prev_ssk
1642 					 */
1643 					if (prev_ssk)
1644 						mptcp_push_release(prev_ssk, &info);
1645 
1646 					/* Need to lock the new subflow only if different
1647 					 * from the previous one, otherwise we are still
1648 					 * helding the relevant lock
1649 					 */
1650 					lock_sock(ssk);
1651 				}
1652 
1653 				push_count++;
1654 
1655 				ret = __subflow_push_pending(sk, ssk, &info);
1656 				if (ret <= 0) {
1657 					if (ret != -EAGAIN ||
1658 					    (1 << ssk->sk_state) &
1659 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1660 						push_count--;
1661 					continue;
1662 				}
1663 				do_check_data_fin = true;
1664 			}
1665 		}
1666 	}
1667 
1668 	/* at this point we held the socket lock for the last subflow we used */
1669 	if (ssk)
1670 		mptcp_push_release(ssk, &info);
1671 
1672 	/* ensure the rtx timer is running */
1673 	if (!mptcp_rtx_timer_pending(sk))
1674 		mptcp_reset_rtx_timer(sk);
1675 	if (do_check_data_fin)
1676 		mptcp_check_send_data_fin(sk);
1677 }
1678 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1679 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1680 {
1681 	struct mptcp_sock *msk = mptcp_sk(sk);
1682 	struct mptcp_sendmsg_info info = {
1683 		.data_lock_held = true,
1684 	};
1685 	bool keep_pushing = true;
1686 	struct sock *xmit_ssk;
1687 	int copied = 0;
1688 
1689 	info.flags = 0;
1690 	while (mptcp_send_head(sk) && keep_pushing) {
1691 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1692 		int ret = 0;
1693 
1694 		/* check for a different subflow usage only after
1695 		 * spooling the first chunk of data
1696 		 */
1697 		if (first) {
1698 			mptcp_subflow_set_scheduled(subflow, false);
1699 			ret = __subflow_push_pending(sk, ssk, &info);
1700 			first = false;
1701 			if (ret <= 0)
1702 				break;
1703 			copied += ret;
1704 			continue;
1705 		}
1706 
1707 		if (mptcp_sched_get_send(msk))
1708 			goto out;
1709 
1710 		if (READ_ONCE(subflow->scheduled)) {
1711 			mptcp_subflow_set_scheduled(subflow, false);
1712 			ret = __subflow_push_pending(sk, ssk, &info);
1713 			if (ret <= 0)
1714 				keep_pushing = false;
1715 			copied += ret;
1716 		}
1717 
1718 		mptcp_for_each_subflow(msk, subflow) {
1719 			if (READ_ONCE(subflow->scheduled)) {
1720 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1721 				if (xmit_ssk != ssk) {
1722 					mptcp_subflow_delegate(subflow,
1723 							       MPTCP_DELEGATE_SEND);
1724 					keep_pushing = false;
1725 				}
1726 			}
1727 		}
1728 	}
1729 
1730 out:
1731 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1732 	 * not going to flush it via release_sock()
1733 	 */
1734 	if (copied) {
1735 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1736 			 info.size_goal);
1737 		if (!mptcp_rtx_timer_pending(sk))
1738 			mptcp_reset_rtx_timer(sk);
1739 
1740 		if (msk->snd_data_fin_enable &&
1741 		    msk->snd_nxt + 1 == msk->write_seq)
1742 			mptcp_schedule_work(sk);
1743 	}
1744 }
1745 
1746 static int mptcp_disconnect(struct sock *sk, int flags);
1747 
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1748 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1749 				  size_t len, int *copied_syn)
1750 {
1751 	unsigned int saved_flags = msg->msg_flags;
1752 	struct mptcp_sock *msk = mptcp_sk(sk);
1753 	struct sock *ssk;
1754 	int ret;
1755 
1756 	/* on flags based fastopen the mptcp is supposed to create the
1757 	 * first subflow right now. Otherwise we are in the defer_connect
1758 	 * path, and the first subflow must be already present.
1759 	 * Since the defer_connect flag is cleared after the first succsful
1760 	 * fastopen attempt, no need to check for additional subflow status.
1761 	 */
1762 	if (msg->msg_flags & MSG_FASTOPEN) {
1763 		ssk = __mptcp_nmpc_sk(msk);
1764 		if (IS_ERR(ssk))
1765 			return PTR_ERR(ssk);
1766 	}
1767 	if (!msk->first)
1768 		return -EINVAL;
1769 
1770 	ssk = msk->first;
1771 
1772 	lock_sock(ssk);
1773 	msg->msg_flags |= MSG_DONTWAIT;
1774 	msk->fastopening = 1;
1775 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1776 	msk->fastopening = 0;
1777 	msg->msg_flags = saved_flags;
1778 	release_sock(ssk);
1779 
1780 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1781 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1782 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1783 					    msg->msg_namelen, msg->msg_flags, 1);
1784 
1785 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1786 		 * case of any error, except timeout or signal
1787 		 */
1788 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1789 			*copied_syn = 0;
1790 	} else if (ret && ret != -EINPROGRESS) {
1791 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1792 		 * __inet_stream_connect() can fail, due to looking check,
1793 		 * see mptcp_disconnect().
1794 		 * Attempt it again outside the problematic scope.
1795 		 */
1796 		if (!mptcp_disconnect(sk, 0)) {
1797 			sk->sk_disconnects++;
1798 			sk->sk_socket->state = SS_UNCONNECTED;
1799 		}
1800 	}
1801 	inet_clear_bit(DEFER_CONNECT, sk);
1802 
1803 	return ret;
1804 }
1805 
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1806 static int do_copy_data_nocache(struct sock *sk, int copy,
1807 				struct iov_iter *from, char *to)
1808 {
1809 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1810 		if (!copy_from_iter_full_nocache(to, copy, from))
1811 			return -EFAULT;
1812 	} else if (!copy_from_iter_full(to, copy, from)) {
1813 		return -EFAULT;
1814 	}
1815 	return 0;
1816 }
1817 
1818 /* open-code sk_stream_memory_free() plus sent limit computation to
1819  * avoid indirect calls in fast-path.
1820  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1821  * annotations.
1822  */
mptcp_send_limit(const struct sock * sk)1823 static u32 mptcp_send_limit(const struct sock *sk)
1824 {
1825 	const struct mptcp_sock *msk = mptcp_sk(sk);
1826 	u32 limit, not_sent;
1827 
1828 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1829 		return 0;
1830 
1831 	limit = mptcp_notsent_lowat(sk);
1832 	if (limit == UINT_MAX)
1833 		return UINT_MAX;
1834 
1835 	not_sent = msk->write_seq - msk->snd_nxt;
1836 	if (not_sent >= limit)
1837 		return 0;
1838 
1839 	return limit - not_sent;
1840 }
1841 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1842 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1843 {
1844 	struct mptcp_sock *msk = mptcp_sk(sk);
1845 	struct page_frag *pfrag;
1846 	size_t copied = 0;
1847 	int ret = 0;
1848 	long timeo;
1849 
1850 	/* silently ignore everything else */
1851 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1852 
1853 	lock_sock(sk);
1854 
1855 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1856 		     msg->msg_flags & MSG_FASTOPEN)) {
1857 		int copied_syn = 0;
1858 
1859 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1860 		copied += copied_syn;
1861 		if (ret == -EINPROGRESS && copied_syn > 0)
1862 			goto out;
1863 		else if (ret)
1864 			goto do_error;
1865 	}
1866 
1867 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1868 
1869 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1870 		ret = sk_stream_wait_connect(sk, &timeo);
1871 		if (ret)
1872 			goto do_error;
1873 	}
1874 
1875 	ret = -EPIPE;
1876 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1877 		goto do_error;
1878 
1879 	pfrag = sk_page_frag(sk);
1880 
1881 	while (msg_data_left(msg)) {
1882 		int total_ts, frag_truesize = 0;
1883 		struct mptcp_data_frag *dfrag;
1884 		bool dfrag_collapsed;
1885 		size_t psize, offset;
1886 		u32 copy_limit;
1887 
1888 		/* ensure fitting the notsent_lowat() constraint */
1889 		copy_limit = mptcp_send_limit(sk);
1890 		if (!copy_limit)
1891 			goto wait_for_memory;
1892 
1893 		/* reuse tail pfrag, if possible, or carve a new one from the
1894 		 * page allocator
1895 		 */
1896 		dfrag = mptcp_pending_tail(sk);
1897 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1898 		if (!dfrag_collapsed) {
1899 			if (!mptcp_page_frag_refill(sk, pfrag))
1900 				goto wait_for_memory;
1901 
1902 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1903 			frag_truesize = dfrag->overhead;
1904 		}
1905 
1906 		/* we do not bound vs wspace, to allow a single packet.
1907 		 * memory accounting will prevent execessive memory usage
1908 		 * anyway
1909 		 */
1910 		offset = dfrag->offset + dfrag->data_len;
1911 		psize = pfrag->size - offset;
1912 		psize = min_t(size_t, psize, msg_data_left(msg));
1913 		psize = min_t(size_t, psize, copy_limit);
1914 		total_ts = psize + frag_truesize;
1915 
1916 		if (!sk_wmem_schedule(sk, total_ts))
1917 			goto wait_for_memory;
1918 
1919 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1920 					   page_address(dfrag->page) + offset);
1921 		if (ret)
1922 			goto do_error;
1923 
1924 		/* data successfully copied into the write queue */
1925 		sk_forward_alloc_add(sk, -total_ts);
1926 		copied += psize;
1927 		dfrag->data_len += psize;
1928 		frag_truesize += psize;
1929 		pfrag->offset += frag_truesize;
1930 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1931 
1932 		/* charge data on mptcp pending queue to the msk socket
1933 		 * Note: we charge such data both to sk and ssk
1934 		 */
1935 		sk_wmem_queued_add(sk, frag_truesize);
1936 		if (!dfrag_collapsed) {
1937 			get_page(dfrag->page);
1938 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1939 			if (!msk->first_pending)
1940 				WRITE_ONCE(msk->first_pending, dfrag);
1941 		}
1942 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1943 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1944 			 !dfrag_collapsed);
1945 
1946 		continue;
1947 
1948 wait_for_memory:
1949 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1950 		__mptcp_push_pending(sk, msg->msg_flags);
1951 		ret = sk_stream_wait_memory(sk, &timeo);
1952 		if (ret)
1953 			goto do_error;
1954 	}
1955 
1956 	if (copied)
1957 		__mptcp_push_pending(sk, msg->msg_flags);
1958 
1959 out:
1960 	release_sock(sk);
1961 	return copied;
1962 
1963 do_error:
1964 	if (copied)
1965 		goto out;
1966 
1967 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1968 	goto out;
1969 }
1970 
1971 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1972 
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1973 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1974 				struct msghdr *msg,
1975 				size_t len, int flags,
1976 				struct scm_timestamping_internal *tss,
1977 				int *cmsg_flags)
1978 {
1979 	struct sk_buff *skb, *tmp;
1980 	int copied = 0;
1981 
1982 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1983 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1984 		u32 data_len = skb->len - offset;
1985 		u32 count = min_t(size_t, len - copied, data_len);
1986 		int err;
1987 
1988 		if (!(flags & MSG_TRUNC)) {
1989 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1990 			if (unlikely(err < 0)) {
1991 				if (!copied)
1992 					return err;
1993 				break;
1994 			}
1995 		}
1996 
1997 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1998 			tcp_update_recv_tstamps(skb, tss);
1999 			*cmsg_flags |= MPTCP_CMSG_TS;
2000 		}
2001 
2002 		copied += count;
2003 
2004 		if (count < data_len) {
2005 			if (!(flags & MSG_PEEK)) {
2006 				MPTCP_SKB_CB(skb)->offset += count;
2007 				MPTCP_SKB_CB(skb)->map_seq += count;
2008 				msk->bytes_consumed += count;
2009 			}
2010 			break;
2011 		}
2012 
2013 		if (!(flags & MSG_PEEK)) {
2014 			/* we will bulk release the skb memory later */
2015 			skb->destructor = NULL;
2016 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
2017 			__skb_unlink(skb, &msk->receive_queue);
2018 			__kfree_skb(skb);
2019 			msk->bytes_consumed += count;
2020 		}
2021 
2022 		if (copied >= len)
2023 			break;
2024 	}
2025 
2026 	mptcp_rcv_space_adjust(msk, copied);
2027 	return copied;
2028 }
2029 
2030 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
2031  *
2032  * Only difference: Use highest rtt estimate of the subflows in use.
2033  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)2034 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2035 {
2036 	struct mptcp_subflow_context *subflow;
2037 	struct sock *sk = (struct sock *)msk;
2038 	u8 scaling_ratio = U8_MAX;
2039 	u32 time, advmss = 1;
2040 	u64 rtt_us, mstamp;
2041 
2042 	msk_owned_by_me(msk);
2043 
2044 	if (copied <= 0)
2045 		return;
2046 
2047 	if (!msk->rcvspace_init)
2048 		mptcp_rcv_space_init(msk, msk->first);
2049 
2050 	msk->rcvq_space.copied += copied;
2051 
2052 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2053 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2054 
2055 	rtt_us = msk->rcvq_space.rtt_us;
2056 	if (rtt_us && time < (rtt_us >> 3))
2057 		return;
2058 
2059 	rtt_us = 0;
2060 	mptcp_for_each_subflow(msk, subflow) {
2061 		const struct tcp_sock *tp;
2062 		u64 sf_rtt_us;
2063 		u32 sf_advmss;
2064 
2065 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2066 
2067 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2068 		sf_advmss = READ_ONCE(tp->advmss);
2069 
2070 		rtt_us = max(sf_rtt_us, rtt_us);
2071 		advmss = max(sf_advmss, advmss);
2072 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2073 	}
2074 
2075 	msk->rcvq_space.rtt_us = rtt_us;
2076 	msk->scaling_ratio = scaling_ratio;
2077 	if (time < (rtt_us >> 3) || rtt_us == 0)
2078 		return;
2079 
2080 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2081 		goto new_measure;
2082 
2083 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2084 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2085 		u64 rcvwin, grow;
2086 		int rcvbuf;
2087 
2088 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2089 
2090 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2091 
2092 		do_div(grow, msk->rcvq_space.space);
2093 		rcvwin += (grow << 1);
2094 
2095 		rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
2096 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2097 
2098 		if (rcvbuf > sk->sk_rcvbuf) {
2099 			u32 window_clamp;
2100 
2101 			window_clamp = mptcp_win_from_space(sk, rcvbuf);
2102 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2103 
2104 			/* Make subflows follow along.  If we do not do this, we
2105 			 * get drops at subflow level if skbs can't be moved to
2106 			 * the mptcp rx queue fast enough (announced rcv_win can
2107 			 * exceed ssk->sk_rcvbuf).
2108 			 */
2109 			mptcp_for_each_subflow(msk, subflow) {
2110 				struct sock *ssk;
2111 				bool slow;
2112 
2113 				ssk = mptcp_subflow_tcp_sock(subflow);
2114 				slow = lock_sock_fast(ssk);
2115 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2116 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2117 				if (tcp_can_send_ack(ssk))
2118 					tcp_cleanup_rbuf(ssk, 1);
2119 				unlock_sock_fast(ssk, slow);
2120 			}
2121 		}
2122 	}
2123 
2124 	msk->rcvq_space.space = msk->rcvq_space.copied;
2125 new_measure:
2126 	msk->rcvq_space.copied = 0;
2127 	msk->rcvq_space.time = mstamp;
2128 }
2129 
__mptcp_update_rmem(struct sock * sk)2130 static void __mptcp_update_rmem(struct sock *sk)
2131 {
2132 	struct mptcp_sock *msk = mptcp_sk(sk);
2133 
2134 	if (!msk->rmem_released)
2135 		return;
2136 
2137 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2138 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2139 	WRITE_ONCE(msk->rmem_released, 0);
2140 }
2141 
__mptcp_splice_receive_queue(struct sock * sk)2142 static void __mptcp_splice_receive_queue(struct sock *sk)
2143 {
2144 	struct mptcp_sock *msk = mptcp_sk(sk);
2145 
2146 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2147 }
2148 
__mptcp_move_skbs(struct mptcp_sock * msk)2149 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2150 {
2151 	struct sock *sk = (struct sock *)msk;
2152 	unsigned int moved = 0;
2153 	bool ret, done;
2154 
2155 	do {
2156 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2157 		bool slowpath;
2158 
2159 		/* we can have data pending in the subflows only if the msk
2160 		 * receive buffer was full at subflow_data_ready() time,
2161 		 * that is an unlikely slow path.
2162 		 */
2163 		if (likely(!ssk))
2164 			break;
2165 
2166 		slowpath = lock_sock_fast(ssk);
2167 		mptcp_data_lock(sk);
2168 		__mptcp_update_rmem(sk);
2169 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2170 		mptcp_data_unlock(sk);
2171 
2172 		if (unlikely(ssk->sk_err))
2173 			__mptcp_error_report(sk);
2174 		unlock_sock_fast(ssk, slowpath);
2175 	} while (!done);
2176 
2177 	/* acquire the data lock only if some input data is pending */
2178 	ret = moved > 0;
2179 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2180 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2181 		mptcp_data_lock(sk);
2182 		__mptcp_update_rmem(sk);
2183 		ret |= __mptcp_ofo_queue(msk);
2184 		__mptcp_splice_receive_queue(sk);
2185 		mptcp_data_unlock(sk);
2186 	}
2187 	if (ret)
2188 		mptcp_check_data_fin((struct sock *)msk);
2189 	return !skb_queue_empty(&msk->receive_queue);
2190 }
2191 
mptcp_inq_hint(const struct sock * sk)2192 static unsigned int mptcp_inq_hint(const struct sock *sk)
2193 {
2194 	const struct mptcp_sock *msk = mptcp_sk(sk);
2195 	const struct sk_buff *skb;
2196 
2197 	skb = skb_peek(&msk->receive_queue);
2198 	if (skb) {
2199 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2200 
2201 		if (hint_val >= INT_MAX)
2202 			return INT_MAX;
2203 
2204 		return (unsigned int)hint_val;
2205 	}
2206 
2207 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2208 		return 1;
2209 
2210 	return 0;
2211 }
2212 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2213 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2214 			 int flags, int *addr_len)
2215 {
2216 	struct mptcp_sock *msk = mptcp_sk(sk);
2217 	struct scm_timestamping_internal tss;
2218 	int copied = 0, cmsg_flags = 0;
2219 	int target;
2220 	long timeo;
2221 
2222 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2223 	if (unlikely(flags & MSG_ERRQUEUE))
2224 		return inet_recv_error(sk, msg, len, addr_len);
2225 
2226 	lock_sock(sk);
2227 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2228 		copied = -ENOTCONN;
2229 		goto out_err;
2230 	}
2231 
2232 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2233 
2234 	len = min_t(size_t, len, INT_MAX);
2235 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2236 
2237 	if (unlikely(msk->recvmsg_inq))
2238 		cmsg_flags = MPTCP_CMSG_INQ;
2239 
2240 	while (copied < len) {
2241 		int err, bytes_read;
2242 
2243 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2244 		if (unlikely(bytes_read < 0)) {
2245 			if (!copied)
2246 				copied = bytes_read;
2247 			goto out_err;
2248 		}
2249 
2250 		copied += bytes_read;
2251 
2252 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2253 			continue;
2254 
2255 		/* only the MPTCP socket status is relevant here. The exit
2256 		 * conditions mirror closely tcp_recvmsg()
2257 		 */
2258 		if (copied >= target)
2259 			break;
2260 
2261 		if (copied) {
2262 			if (sk->sk_err ||
2263 			    sk->sk_state == TCP_CLOSE ||
2264 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2265 			    !timeo ||
2266 			    signal_pending(current))
2267 				break;
2268 		} else {
2269 			if (sk->sk_err) {
2270 				copied = sock_error(sk);
2271 				break;
2272 			}
2273 
2274 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2275 				/* race breaker: the shutdown could be after the
2276 				 * previous receive queue check
2277 				 */
2278 				if (__mptcp_move_skbs(msk))
2279 					continue;
2280 				break;
2281 			}
2282 
2283 			if (sk->sk_state == TCP_CLOSE) {
2284 				copied = -ENOTCONN;
2285 				break;
2286 			}
2287 
2288 			if (!timeo) {
2289 				copied = -EAGAIN;
2290 				break;
2291 			}
2292 
2293 			if (signal_pending(current)) {
2294 				copied = sock_intr_errno(timeo);
2295 				break;
2296 			}
2297 		}
2298 
2299 		pr_debug("block timeout %ld\n", timeo);
2300 		mptcp_cleanup_rbuf(msk, copied);
2301 		err = sk_wait_data(sk, &timeo, NULL);
2302 		if (err < 0) {
2303 			err = copied ? : err;
2304 			goto out_err;
2305 		}
2306 	}
2307 
2308 	mptcp_cleanup_rbuf(msk, copied);
2309 
2310 out_err:
2311 	if (cmsg_flags && copied >= 0) {
2312 		if (cmsg_flags & MPTCP_CMSG_TS)
2313 			tcp_recv_timestamp(msg, sk, &tss);
2314 
2315 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2316 			unsigned int inq = mptcp_inq_hint(sk);
2317 
2318 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2319 		}
2320 	}
2321 
2322 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n",
2323 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2324 		 skb_queue_empty(&msk->receive_queue), copied);
2325 
2326 	release_sock(sk);
2327 	return copied;
2328 }
2329 
mptcp_retransmit_timer(struct timer_list * t)2330 static void mptcp_retransmit_timer(struct timer_list *t)
2331 {
2332 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2333 						       icsk_retransmit_timer);
2334 	struct sock *sk = &icsk->icsk_inet.sk;
2335 	struct mptcp_sock *msk = mptcp_sk(sk);
2336 
2337 	bh_lock_sock(sk);
2338 	if (!sock_owned_by_user(sk)) {
2339 		/* we need a process context to retransmit */
2340 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2341 			mptcp_schedule_work(sk);
2342 	} else {
2343 		/* delegate our work to tcp_release_cb() */
2344 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2345 	}
2346 	bh_unlock_sock(sk);
2347 	sock_put(sk);
2348 }
2349 
mptcp_tout_timer(struct timer_list * t)2350 static void mptcp_tout_timer(struct timer_list *t)
2351 {
2352 	struct sock *sk = from_timer(sk, t, sk_timer);
2353 
2354 	mptcp_schedule_work(sk);
2355 	sock_put(sk);
2356 }
2357 
2358 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2359  * level.
2360  *
2361  * A backup subflow is returned only if that is the only kind available.
2362  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2363 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2364 {
2365 	struct sock *backup = NULL, *pick = NULL;
2366 	struct mptcp_subflow_context *subflow;
2367 	int min_stale_count = INT_MAX;
2368 
2369 	mptcp_for_each_subflow(msk, subflow) {
2370 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2371 
2372 		if (!__mptcp_subflow_active(subflow))
2373 			continue;
2374 
2375 		/* still data outstanding at TCP level? skip this */
2376 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2377 			mptcp_pm_subflow_chk_stale(msk, ssk);
2378 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2379 			continue;
2380 		}
2381 
2382 		if (subflow->backup || subflow->request_bkup) {
2383 			if (!backup)
2384 				backup = ssk;
2385 			continue;
2386 		}
2387 
2388 		if (!pick)
2389 			pick = ssk;
2390 	}
2391 
2392 	if (pick)
2393 		return pick;
2394 
2395 	/* use backup only if there are no progresses anywhere */
2396 	return min_stale_count > 1 ? backup : NULL;
2397 }
2398 
__mptcp_retransmit_pending_data(struct sock * sk)2399 bool __mptcp_retransmit_pending_data(struct sock *sk)
2400 {
2401 	struct mptcp_data_frag *cur, *rtx_head;
2402 	struct mptcp_sock *msk = mptcp_sk(sk);
2403 
2404 	if (__mptcp_check_fallback(msk))
2405 		return false;
2406 
2407 	/* the closing socket has some data untransmitted and/or unacked:
2408 	 * some data in the mptcp rtx queue has not really xmitted yet.
2409 	 * keep it simple and re-inject the whole mptcp level rtx queue
2410 	 */
2411 	mptcp_data_lock(sk);
2412 	__mptcp_clean_una_wakeup(sk);
2413 	rtx_head = mptcp_rtx_head(sk);
2414 	if (!rtx_head) {
2415 		mptcp_data_unlock(sk);
2416 		return false;
2417 	}
2418 
2419 	msk->recovery_snd_nxt = msk->snd_nxt;
2420 	msk->recovery = true;
2421 	mptcp_data_unlock(sk);
2422 
2423 	msk->first_pending = rtx_head;
2424 	msk->snd_burst = 0;
2425 
2426 	/* be sure to clear the "sent status" on all re-injected fragments */
2427 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2428 		if (!cur->already_sent)
2429 			break;
2430 		cur->already_sent = 0;
2431 	}
2432 
2433 	return true;
2434 }
2435 
2436 /* flags for __mptcp_close_ssk() */
2437 #define MPTCP_CF_PUSH		BIT(1)
2438 #define MPTCP_CF_FASTCLOSE	BIT(2)
2439 
2440 /* be sure to send a reset only if the caller asked for it, also
2441  * clean completely the subflow status when the subflow reaches
2442  * TCP_CLOSE state
2443  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2444 static void __mptcp_subflow_disconnect(struct sock *ssk,
2445 				       struct mptcp_subflow_context *subflow,
2446 				       unsigned int flags)
2447 {
2448 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2449 	    (flags & MPTCP_CF_FASTCLOSE)) {
2450 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2451 		 * disconnect should never fail
2452 		 */
2453 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2454 		mptcp_subflow_ctx_reset(subflow);
2455 	} else {
2456 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2457 	}
2458 }
2459 
2460 /* subflow sockets can be either outgoing (connect) or incoming
2461  * (accept).
2462  *
2463  * Outgoing subflows use in-kernel sockets.
2464  * Incoming subflows do not have their own 'struct socket' allocated,
2465  * so we need to use tcp_close() after detaching them from the mptcp
2466  * parent socket.
2467  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2468 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2469 			      struct mptcp_subflow_context *subflow,
2470 			      unsigned int flags)
2471 {
2472 	struct mptcp_sock *msk = mptcp_sk(sk);
2473 	bool dispose_it, need_push = false;
2474 
2475 	/* If the first subflow moved to a close state before accept, e.g. due
2476 	 * to an incoming reset or listener shutdown, the subflow socket is
2477 	 * already deleted by inet_child_forget() and the mptcp socket can't
2478 	 * survive too.
2479 	 */
2480 	if (msk->in_accept_queue && msk->first == ssk &&
2481 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2482 		/* ensure later check in mptcp_worker() will dispose the msk */
2483 		sock_set_flag(sk, SOCK_DEAD);
2484 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2485 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2486 		mptcp_subflow_drop_ctx(ssk);
2487 		goto out_release;
2488 	}
2489 
2490 	dispose_it = msk->free_first || ssk != msk->first;
2491 	if (dispose_it)
2492 		list_del(&subflow->node);
2493 
2494 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2495 
2496 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2497 		/* be sure to force the tcp_close path
2498 		 * to generate the egress reset
2499 		 */
2500 		ssk->sk_lingertime = 0;
2501 		sock_set_flag(ssk, SOCK_LINGER);
2502 		subflow->send_fastclose = 1;
2503 	}
2504 
2505 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2506 	if (!dispose_it) {
2507 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2508 		release_sock(ssk);
2509 
2510 		goto out;
2511 	}
2512 
2513 	subflow->disposable = 1;
2514 
2515 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2516 	 * the ssk has been already destroyed, we just need to release the
2517 	 * reference owned by msk;
2518 	 */
2519 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2520 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2521 		kfree_rcu(subflow, rcu);
2522 	} else {
2523 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2524 		__tcp_close(ssk, 0);
2525 
2526 		/* close acquired an extra ref */
2527 		__sock_put(ssk);
2528 	}
2529 
2530 out_release:
2531 	__mptcp_subflow_error_report(sk, ssk);
2532 	release_sock(ssk);
2533 
2534 	sock_put(ssk);
2535 
2536 	if (ssk == msk->first)
2537 		WRITE_ONCE(msk->first, NULL);
2538 
2539 out:
2540 	__mptcp_sync_sndbuf(sk);
2541 	if (need_push)
2542 		__mptcp_push_pending(sk, 0);
2543 
2544 	/* Catch every 'all subflows closed' scenario, including peers silently
2545 	 * closing them, e.g. due to timeout.
2546 	 * For established sockets, allow an additional timeout before closing,
2547 	 * as the protocol can still create more subflows.
2548 	 */
2549 	if (list_is_singular(&msk->conn_list) && msk->first &&
2550 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2551 		if (sk->sk_state != TCP_ESTABLISHED ||
2552 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2553 			mptcp_set_state(sk, TCP_CLOSE);
2554 			mptcp_close_wake_up(sk);
2555 		} else {
2556 			mptcp_start_tout_timer(sk);
2557 		}
2558 	}
2559 }
2560 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2561 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2562 		     struct mptcp_subflow_context *subflow)
2563 {
2564 	/* The first subflow can already be closed and still in the list */
2565 	if (subflow->close_event_done)
2566 		return;
2567 
2568 	subflow->close_event_done = true;
2569 
2570 	if (sk->sk_state == TCP_ESTABLISHED)
2571 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2572 
2573 	/* subflow aborted before reaching the fully_established status
2574 	 * attempt the creation of the next subflow
2575 	 */
2576 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2577 
2578 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2579 }
2580 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2581 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2582 {
2583 	return 0;
2584 }
2585 
__mptcp_close_subflow(struct sock * sk)2586 static void __mptcp_close_subflow(struct sock *sk)
2587 {
2588 	struct mptcp_subflow_context *subflow, *tmp;
2589 	struct mptcp_sock *msk = mptcp_sk(sk);
2590 
2591 	might_sleep();
2592 
2593 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2594 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2595 		int ssk_state = inet_sk_state_load(ssk);
2596 
2597 		if (ssk_state != TCP_CLOSE &&
2598 		    (ssk_state != TCP_CLOSE_WAIT ||
2599 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2600 			continue;
2601 
2602 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2603 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2604 			continue;
2605 
2606 		mptcp_close_ssk(sk, ssk, subflow);
2607 	}
2608 
2609 }
2610 
mptcp_close_tout_expired(const struct sock * sk)2611 static bool mptcp_close_tout_expired(const struct sock *sk)
2612 {
2613 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2614 	    sk->sk_state == TCP_CLOSE)
2615 		return false;
2616 
2617 	return time_after32(tcp_jiffies32,
2618 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2619 }
2620 
mptcp_check_fastclose(struct mptcp_sock * msk)2621 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2622 {
2623 	struct mptcp_subflow_context *subflow, *tmp;
2624 	struct sock *sk = (struct sock *)msk;
2625 
2626 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2627 		return;
2628 
2629 	mptcp_token_destroy(msk);
2630 
2631 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2632 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2633 		bool slow;
2634 
2635 		slow = lock_sock_fast(tcp_sk);
2636 		if (tcp_sk->sk_state != TCP_CLOSE) {
2637 			mptcp_send_active_reset_reason(tcp_sk);
2638 			tcp_set_state(tcp_sk, TCP_CLOSE);
2639 		}
2640 		unlock_sock_fast(tcp_sk, slow);
2641 	}
2642 
2643 	/* Mirror the tcp_reset() error propagation */
2644 	switch (sk->sk_state) {
2645 	case TCP_SYN_SENT:
2646 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2647 		break;
2648 	case TCP_CLOSE_WAIT:
2649 		WRITE_ONCE(sk->sk_err, EPIPE);
2650 		break;
2651 	case TCP_CLOSE:
2652 		return;
2653 	default:
2654 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2655 	}
2656 
2657 	mptcp_set_state(sk, TCP_CLOSE);
2658 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2659 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2660 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2661 
2662 	/* the calling mptcp_worker will properly destroy the socket */
2663 	if (sock_flag(sk, SOCK_DEAD))
2664 		return;
2665 
2666 	sk->sk_state_change(sk);
2667 	sk_error_report(sk);
2668 }
2669 
__mptcp_retrans(struct sock * sk)2670 static void __mptcp_retrans(struct sock *sk)
2671 {
2672 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2673 	struct mptcp_sock *msk = mptcp_sk(sk);
2674 	struct mptcp_subflow_context *subflow;
2675 	struct mptcp_data_frag *dfrag;
2676 	struct sock *ssk;
2677 	int ret, err;
2678 	u16 len = 0;
2679 
2680 	mptcp_clean_una_wakeup(sk);
2681 
2682 	/* first check ssk: need to kick "stale" logic */
2683 	err = mptcp_sched_get_retrans(msk);
2684 	dfrag = mptcp_rtx_head(sk);
2685 	if (!dfrag) {
2686 		if (mptcp_data_fin_enabled(msk)) {
2687 			struct inet_connection_sock *icsk = inet_csk(sk);
2688 
2689 			icsk->icsk_retransmits++;
2690 			mptcp_set_datafin_timeout(sk);
2691 			mptcp_send_ack(msk);
2692 
2693 			goto reset_timer;
2694 		}
2695 
2696 		if (!mptcp_send_head(sk))
2697 			return;
2698 
2699 		goto reset_timer;
2700 	}
2701 
2702 	if (err)
2703 		goto reset_timer;
2704 
2705 	mptcp_for_each_subflow(msk, subflow) {
2706 		if (READ_ONCE(subflow->scheduled)) {
2707 			u16 copied = 0;
2708 
2709 			mptcp_subflow_set_scheduled(subflow, false);
2710 
2711 			ssk = mptcp_subflow_tcp_sock(subflow);
2712 
2713 			lock_sock(ssk);
2714 
2715 			/* limit retransmission to the bytes already sent on some subflows */
2716 			info.sent = 0;
2717 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2718 								    dfrag->already_sent;
2719 
2720 			/*
2721 			 * make the whole retrans decision, xmit, disallow
2722 			 * fallback atomic
2723 			 */
2724 			spin_lock_bh(&msk->fallback_lock);
2725 			if (__mptcp_check_fallback(msk)) {
2726 				spin_unlock_bh(&msk->fallback_lock);
2727 				release_sock(ssk);
2728 				return;
2729 			}
2730 
2731 			while (info.sent < info.limit) {
2732 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2733 				if (ret <= 0)
2734 					break;
2735 
2736 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2737 				copied += ret;
2738 				info.sent += ret;
2739 			}
2740 			if (copied) {
2741 				len = max(copied, len);
2742 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2743 					 info.size_goal);
2744 				msk->allow_infinite_fallback = false;
2745 			}
2746 			spin_unlock_bh(&msk->fallback_lock);
2747 
2748 			release_sock(ssk);
2749 		}
2750 	}
2751 
2752 	msk->bytes_retrans += len;
2753 	dfrag->already_sent = max(dfrag->already_sent, len);
2754 
2755 reset_timer:
2756 	mptcp_check_and_set_pending(sk);
2757 
2758 	if (!mptcp_rtx_timer_pending(sk))
2759 		mptcp_reset_rtx_timer(sk);
2760 }
2761 
2762 /* schedule the timeout timer for the relevant event: either close timeout
2763  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2764  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2765 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2766 {
2767 	struct sock *sk = (struct sock *)msk;
2768 	unsigned long timeout, close_timeout;
2769 
2770 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2771 		return;
2772 
2773 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2774 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2775 
2776 	/* the close timeout takes precedence on the fail one, and here at least one of
2777 	 * them is active
2778 	 */
2779 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2780 
2781 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2782 }
2783 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2784 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2785 {
2786 	struct sock *ssk = msk->first;
2787 	bool slow;
2788 
2789 	if (!ssk)
2790 		return;
2791 
2792 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2793 
2794 	slow = lock_sock_fast(ssk);
2795 	mptcp_subflow_reset(ssk);
2796 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2797 	unlock_sock_fast(ssk, slow);
2798 }
2799 
mptcp_do_fastclose(struct sock * sk)2800 static void mptcp_do_fastclose(struct sock *sk)
2801 {
2802 	struct mptcp_subflow_context *subflow, *tmp;
2803 	struct mptcp_sock *msk = mptcp_sk(sk);
2804 
2805 	mptcp_set_state(sk, TCP_CLOSE);
2806 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2807 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2808 				  subflow, MPTCP_CF_FASTCLOSE);
2809 }
2810 
mptcp_worker(struct work_struct * work)2811 static void mptcp_worker(struct work_struct *work)
2812 {
2813 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2814 	struct sock *sk = (struct sock *)msk;
2815 	unsigned long fail_tout;
2816 	int state;
2817 
2818 	lock_sock(sk);
2819 	state = sk->sk_state;
2820 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2821 		goto unlock;
2822 
2823 	mptcp_check_fastclose(msk);
2824 
2825 	mptcp_pm_nl_work(msk);
2826 
2827 	mptcp_check_send_data_fin(sk);
2828 	mptcp_check_data_fin_ack(sk);
2829 	mptcp_check_data_fin(sk);
2830 
2831 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2832 		__mptcp_close_subflow(sk);
2833 
2834 	if (mptcp_close_tout_expired(sk)) {
2835 		mptcp_do_fastclose(sk);
2836 		mptcp_close_wake_up(sk);
2837 	}
2838 
2839 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2840 		__mptcp_destroy_sock(sk);
2841 		goto unlock;
2842 	}
2843 
2844 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2845 		__mptcp_retrans(sk);
2846 
2847 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2848 	if (fail_tout && time_after(jiffies, fail_tout))
2849 		mptcp_mp_fail_no_response(msk);
2850 
2851 unlock:
2852 	release_sock(sk);
2853 	sock_put(sk);
2854 }
2855 
__mptcp_init_sock(struct sock * sk)2856 static void __mptcp_init_sock(struct sock *sk)
2857 {
2858 	struct mptcp_sock *msk = mptcp_sk(sk);
2859 
2860 	INIT_LIST_HEAD(&msk->conn_list);
2861 	INIT_LIST_HEAD(&msk->join_list);
2862 	INIT_LIST_HEAD(&msk->rtx_queue);
2863 	INIT_WORK(&msk->work, mptcp_worker);
2864 	__skb_queue_head_init(&msk->receive_queue);
2865 	msk->out_of_order_queue = RB_ROOT;
2866 	msk->first_pending = NULL;
2867 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
2868 	WRITE_ONCE(msk->rmem_released, 0);
2869 	msk->timer_ival = TCP_RTO_MIN;
2870 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2871 
2872 	WRITE_ONCE(msk->first, NULL);
2873 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2874 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2875 	msk->allow_infinite_fallback = true;
2876 	msk->allow_subflows = true;
2877 	msk->recovery = false;
2878 	msk->subflow_id = 1;
2879 	msk->last_data_sent = tcp_jiffies32;
2880 	msk->last_data_recv = tcp_jiffies32;
2881 	msk->last_ack_recv = tcp_jiffies32;
2882 
2883 	mptcp_pm_data_init(msk);
2884 	spin_lock_init(&msk->fallback_lock);
2885 
2886 	/* re-use the csk retrans timer for MPTCP-level retrans */
2887 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2888 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2889 }
2890 
mptcp_ca_reset(struct sock * sk)2891 static void mptcp_ca_reset(struct sock *sk)
2892 {
2893 	struct inet_connection_sock *icsk = inet_csk(sk);
2894 
2895 	tcp_assign_congestion_control(sk);
2896 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2897 		sizeof(mptcp_sk(sk)->ca_name));
2898 
2899 	/* no need to keep a reference to the ops, the name will suffice */
2900 	tcp_cleanup_congestion_control(sk);
2901 	icsk->icsk_ca_ops = NULL;
2902 }
2903 
mptcp_init_sock(struct sock * sk)2904 static int mptcp_init_sock(struct sock *sk)
2905 {
2906 	struct net *net = sock_net(sk);
2907 	int ret;
2908 
2909 	__mptcp_init_sock(sk);
2910 
2911 	if (!mptcp_is_enabled(net))
2912 		return -ENOPROTOOPT;
2913 
2914 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2915 		return -ENOMEM;
2916 
2917 	rcu_read_lock();
2918 	ret = mptcp_init_sched(mptcp_sk(sk),
2919 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2920 	rcu_read_unlock();
2921 	if (ret)
2922 		return ret;
2923 
2924 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2925 
2926 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2927 	 * propagate the correct value
2928 	 */
2929 	mptcp_ca_reset(sk);
2930 
2931 	sk_sockets_allocated_inc(sk);
2932 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2933 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2934 
2935 	return 0;
2936 }
2937 
__mptcp_clear_xmit(struct sock * sk)2938 static void __mptcp_clear_xmit(struct sock *sk)
2939 {
2940 	struct mptcp_sock *msk = mptcp_sk(sk);
2941 	struct mptcp_data_frag *dtmp, *dfrag;
2942 
2943 	WRITE_ONCE(msk->first_pending, NULL);
2944 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2945 		dfrag_clear(sk, dfrag);
2946 }
2947 
mptcp_cancel_work(struct sock * sk)2948 void mptcp_cancel_work(struct sock *sk)
2949 {
2950 	struct mptcp_sock *msk = mptcp_sk(sk);
2951 
2952 	if (cancel_work_sync(&msk->work))
2953 		__sock_put(sk);
2954 }
2955 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2956 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2957 {
2958 	lock_sock(ssk);
2959 
2960 	switch (ssk->sk_state) {
2961 	case TCP_LISTEN:
2962 		if (!(how & RCV_SHUTDOWN))
2963 			break;
2964 		fallthrough;
2965 	case TCP_SYN_SENT:
2966 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2967 		break;
2968 	default:
2969 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2970 			pr_debug("Fallback\n");
2971 			ssk->sk_shutdown |= how;
2972 			tcp_shutdown(ssk, how);
2973 
2974 			/* simulate the data_fin ack reception to let the state
2975 			 * machine move forward
2976 			 */
2977 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2978 			mptcp_schedule_work(sk);
2979 		} else {
2980 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2981 			tcp_send_ack(ssk);
2982 			if (!mptcp_rtx_timer_pending(sk))
2983 				mptcp_reset_rtx_timer(sk);
2984 		}
2985 		break;
2986 	}
2987 
2988 	release_sock(ssk);
2989 }
2990 
mptcp_set_state(struct sock * sk,int state)2991 void mptcp_set_state(struct sock *sk, int state)
2992 {
2993 	int oldstate = sk->sk_state;
2994 
2995 	switch (state) {
2996 	case TCP_ESTABLISHED:
2997 		if (oldstate != TCP_ESTABLISHED)
2998 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2999 		break;
3000 	case TCP_CLOSE_WAIT:
3001 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
3002 		 * MPTCP "accepted" sockets will be created later on. So no
3003 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
3004 		 */
3005 		break;
3006 	default:
3007 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
3008 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
3009 	}
3010 
3011 	inet_sk_state_store(sk, state);
3012 }
3013 
3014 static const unsigned char new_state[16] = {
3015 	/* current state:     new state:      action:	*/
3016 	[0 /* (Invalid) */] = TCP_CLOSE,
3017 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3018 	[TCP_SYN_SENT]      = TCP_CLOSE,
3019 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3020 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
3021 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
3022 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
3023 	[TCP_CLOSE]         = TCP_CLOSE,
3024 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
3025 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
3026 	[TCP_LISTEN]        = TCP_CLOSE,
3027 	[TCP_CLOSING]       = TCP_CLOSING,
3028 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
3029 };
3030 
mptcp_close_state(struct sock * sk)3031 static int mptcp_close_state(struct sock *sk)
3032 {
3033 	int next = (int)new_state[sk->sk_state];
3034 	int ns = next & TCP_STATE_MASK;
3035 
3036 	mptcp_set_state(sk, ns);
3037 
3038 	return next & TCP_ACTION_FIN;
3039 }
3040 
mptcp_check_send_data_fin(struct sock * sk)3041 static void mptcp_check_send_data_fin(struct sock *sk)
3042 {
3043 	struct mptcp_subflow_context *subflow;
3044 	struct mptcp_sock *msk = mptcp_sk(sk);
3045 
3046 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3047 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3048 		 msk->snd_nxt, msk->write_seq);
3049 
3050 	/* we still need to enqueue subflows or not really shutting down,
3051 	 * skip this
3052 	 */
3053 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3054 	    mptcp_send_head(sk))
3055 		return;
3056 
3057 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3058 
3059 	mptcp_for_each_subflow(msk, subflow) {
3060 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3061 
3062 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3063 	}
3064 }
3065 
__mptcp_wr_shutdown(struct sock * sk)3066 static void __mptcp_wr_shutdown(struct sock *sk)
3067 {
3068 	struct mptcp_sock *msk = mptcp_sk(sk);
3069 
3070 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3071 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3072 		 !!mptcp_send_head(sk));
3073 
3074 	/* will be ignored by fallback sockets */
3075 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3076 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3077 
3078 	mptcp_check_send_data_fin(sk);
3079 }
3080 
__mptcp_destroy_sock(struct sock * sk)3081 static void __mptcp_destroy_sock(struct sock *sk)
3082 {
3083 	struct mptcp_sock *msk = mptcp_sk(sk);
3084 
3085 	pr_debug("msk=%p\n", msk);
3086 
3087 	might_sleep();
3088 
3089 	mptcp_stop_rtx_timer(sk);
3090 	sk_stop_timer(sk, &sk->sk_timer);
3091 	msk->pm.status = 0;
3092 	mptcp_release_sched(msk);
3093 
3094 	sk->sk_prot->destroy(sk);
3095 
3096 	WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc));
3097 	WARN_ON_ONCE(msk->rmem_released);
3098 	sk_stream_kill_queues(sk);
3099 	xfrm_sk_free_policy(sk);
3100 
3101 	sock_put(sk);
3102 }
3103 
__mptcp_unaccepted_force_close(struct sock * sk)3104 void __mptcp_unaccepted_force_close(struct sock *sk)
3105 {
3106 	sock_set_flag(sk, SOCK_DEAD);
3107 	mptcp_do_fastclose(sk);
3108 	__mptcp_destroy_sock(sk);
3109 }
3110 
mptcp_check_readable(struct sock * sk)3111 static __poll_t mptcp_check_readable(struct sock *sk)
3112 {
3113 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3114 }
3115 
mptcp_check_listen_stop(struct sock * sk)3116 static void mptcp_check_listen_stop(struct sock *sk)
3117 {
3118 	struct sock *ssk;
3119 
3120 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3121 		return;
3122 
3123 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3124 	ssk = mptcp_sk(sk)->first;
3125 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3126 		return;
3127 
3128 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3129 	tcp_set_state(ssk, TCP_CLOSE);
3130 	mptcp_subflow_queue_clean(sk, ssk);
3131 	inet_csk_listen_stop(ssk);
3132 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3133 	release_sock(ssk);
3134 }
3135 
__mptcp_close(struct sock * sk,long timeout)3136 bool __mptcp_close(struct sock *sk, long timeout)
3137 {
3138 	struct mptcp_subflow_context *subflow;
3139 	struct mptcp_sock *msk = mptcp_sk(sk);
3140 	bool do_cancel_work = false;
3141 	int subflows_alive = 0;
3142 
3143 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3144 
3145 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3146 		mptcp_check_listen_stop(sk);
3147 		mptcp_set_state(sk, TCP_CLOSE);
3148 		goto cleanup;
3149 	}
3150 
3151 	if (mptcp_data_avail(msk) || timeout < 0) {
3152 		/* If the msk has read data, or the caller explicitly ask it,
3153 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3154 		 */
3155 		mptcp_do_fastclose(sk);
3156 		timeout = 0;
3157 	} else if (mptcp_close_state(sk)) {
3158 		__mptcp_wr_shutdown(sk);
3159 	}
3160 
3161 	sk_stream_wait_close(sk, timeout);
3162 
3163 cleanup:
3164 	/* orphan all the subflows */
3165 	mptcp_for_each_subflow(msk, subflow) {
3166 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3167 		bool slow = lock_sock_fast_nested(ssk);
3168 
3169 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3170 
3171 		/* since the close timeout takes precedence on the fail one,
3172 		 * cancel the latter
3173 		 */
3174 		if (ssk == msk->first)
3175 			subflow->fail_tout = 0;
3176 
3177 		/* detach from the parent socket, but allow data_ready to
3178 		 * push incoming data into the mptcp stack, to properly ack it
3179 		 */
3180 		ssk->sk_socket = NULL;
3181 		ssk->sk_wq = NULL;
3182 		unlock_sock_fast(ssk, slow);
3183 	}
3184 	sock_orphan(sk);
3185 
3186 	/* all the subflows are closed, only timeout can change the msk
3187 	 * state, let's not keep resources busy for no reasons
3188 	 */
3189 	if (subflows_alive == 0)
3190 		mptcp_set_state(sk, TCP_CLOSE);
3191 
3192 	sock_hold(sk);
3193 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3194 	if (msk->token)
3195 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3196 
3197 	if (sk->sk_state == TCP_CLOSE) {
3198 		__mptcp_destroy_sock(sk);
3199 		do_cancel_work = true;
3200 	} else {
3201 		mptcp_start_tout_timer(sk);
3202 	}
3203 
3204 	return do_cancel_work;
3205 }
3206 
mptcp_close(struct sock * sk,long timeout)3207 static void mptcp_close(struct sock *sk, long timeout)
3208 {
3209 	bool do_cancel_work;
3210 
3211 	lock_sock(sk);
3212 
3213 	do_cancel_work = __mptcp_close(sk, timeout);
3214 	release_sock(sk);
3215 	if (do_cancel_work)
3216 		mptcp_cancel_work(sk);
3217 
3218 	sock_put(sk);
3219 }
3220 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3221 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3222 {
3223 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3224 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3225 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3226 
3227 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3228 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3229 
3230 	if (msk6 && ssk6) {
3231 		msk6->saddr = ssk6->saddr;
3232 		msk6->flow_label = ssk6->flow_label;
3233 	}
3234 #endif
3235 
3236 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3237 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3238 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3239 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3240 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3241 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3242 }
3243 
mptcp_disconnect(struct sock * sk,int flags)3244 static int mptcp_disconnect(struct sock *sk, int flags)
3245 {
3246 	struct mptcp_sock *msk = mptcp_sk(sk);
3247 
3248 	/* We are on the fastopen error path. We can't call straight into the
3249 	 * subflows cleanup code due to lock nesting (we are already under
3250 	 * msk->firstsocket lock).
3251 	 */
3252 	if (msk->fastopening)
3253 		return -EBUSY;
3254 
3255 	mptcp_check_listen_stop(sk);
3256 	mptcp_set_state(sk, TCP_CLOSE);
3257 
3258 	mptcp_stop_rtx_timer(sk);
3259 	mptcp_stop_tout_timer(sk);
3260 
3261 	if (msk->token)
3262 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3263 
3264 	/* msk->subflow is still intact, the following will not free the first
3265 	 * subflow
3266 	 */
3267 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3268 
3269 	/* The first subflow is already in TCP_CLOSE status, the following
3270 	 * can't overlap with a fallback anymore
3271 	 */
3272 	spin_lock_bh(&msk->fallback_lock);
3273 	msk->allow_subflows = true;
3274 	msk->allow_infinite_fallback = true;
3275 	WRITE_ONCE(msk->flags, 0);
3276 	spin_unlock_bh(&msk->fallback_lock);
3277 
3278 	msk->cb_flags = 0;
3279 	msk->recovery = false;
3280 	WRITE_ONCE(msk->can_ack, false);
3281 	WRITE_ONCE(msk->fully_established, false);
3282 	WRITE_ONCE(msk->rcv_data_fin, false);
3283 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3284 	WRITE_ONCE(msk->rcv_fastclose, false);
3285 	WRITE_ONCE(msk->use_64bit_ack, false);
3286 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3287 	mptcp_pm_data_reset(msk);
3288 	mptcp_ca_reset(sk);
3289 	msk->bytes_consumed = 0;
3290 	msk->bytes_acked = 0;
3291 	msk->bytes_received = 0;
3292 	msk->bytes_sent = 0;
3293 	msk->bytes_retrans = 0;
3294 	msk->rcvspace_init = 0;
3295 
3296 	WRITE_ONCE(sk->sk_shutdown, 0);
3297 	sk_error_report(sk);
3298 	return 0;
3299 }
3300 
3301 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3302 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3303 {
3304 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3305 
3306 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3307 }
3308 
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3309 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3310 {
3311 	const struct ipv6_pinfo *np = inet6_sk(sk);
3312 	struct ipv6_txoptions *opt;
3313 	struct ipv6_pinfo *newnp;
3314 
3315 	newnp = inet6_sk(newsk);
3316 
3317 	rcu_read_lock();
3318 	opt = rcu_dereference(np->opt);
3319 	if (opt) {
3320 		opt = ipv6_dup_options(newsk, opt);
3321 		if (!opt)
3322 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3323 	}
3324 	RCU_INIT_POINTER(newnp->opt, opt);
3325 	rcu_read_unlock();
3326 }
3327 #endif
3328 
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3329 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3330 {
3331 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3332 	const struct inet_sock *inet = inet_sk(sk);
3333 	struct inet_sock *newinet;
3334 
3335 	newinet = inet_sk(newsk);
3336 
3337 	rcu_read_lock();
3338 	inet_opt = rcu_dereference(inet->inet_opt);
3339 	if (inet_opt) {
3340 		newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3341 				      inet_opt->opt.optlen, GFP_ATOMIC);
3342 		if (newopt)
3343 			memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3344 			       inet_opt->opt.optlen);
3345 		else
3346 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3347 	}
3348 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3349 	rcu_read_unlock();
3350 }
3351 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3352 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3353 				 const struct mptcp_options_received *mp_opt,
3354 				 struct sock *ssk,
3355 				 struct request_sock *req)
3356 {
3357 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3358 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3359 	struct mptcp_subflow_context *subflow;
3360 	struct mptcp_sock *msk;
3361 
3362 	if (!nsk)
3363 		return NULL;
3364 
3365 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3366 	if (nsk->sk_family == AF_INET6)
3367 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3368 #endif
3369 
3370 	__mptcp_init_sock(nsk);
3371 
3372 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3373 	if (nsk->sk_family == AF_INET6)
3374 		mptcp_copy_ip6_options(nsk, sk);
3375 	else
3376 #endif
3377 		mptcp_copy_ip_options(nsk, sk);
3378 
3379 	msk = mptcp_sk(nsk);
3380 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3381 	WRITE_ONCE(msk->token, subflow_req->token);
3382 	msk->in_accept_queue = 1;
3383 	WRITE_ONCE(msk->fully_established, false);
3384 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3385 		WRITE_ONCE(msk->csum_enabled, true);
3386 
3387 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3388 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3389 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3390 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3391 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3392 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3393 
3394 	/* passive msk is created after the first/MPC subflow */
3395 	msk->subflow_id = 2;
3396 
3397 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3398 	security_inet_csk_clone(nsk, req);
3399 
3400 	/* this can't race with mptcp_close(), as the msk is
3401 	 * not yet exposted to user-space
3402 	 */
3403 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3404 
3405 	/* The msk maintain a ref to each subflow in the connections list */
3406 	WRITE_ONCE(msk->first, ssk);
3407 	subflow = mptcp_subflow_ctx(ssk);
3408 	list_add(&subflow->node, &msk->conn_list);
3409 	sock_hold(ssk);
3410 
3411 	/* new mpc subflow takes ownership of the newly
3412 	 * created mptcp socket
3413 	 */
3414 	mptcp_token_accept(subflow_req, msk);
3415 
3416 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3417 	 * uses the correct data
3418 	 */
3419 	mptcp_copy_inaddrs(nsk, ssk);
3420 	__mptcp_propagate_sndbuf(nsk, ssk);
3421 
3422 	mptcp_rcv_space_init(msk, ssk);
3423 
3424 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3425 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3426 	bh_unlock_sock(nsk);
3427 
3428 	/* note: the newly allocated socket refcount is 2 now */
3429 	return nsk;
3430 }
3431 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3432 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3433 {
3434 	const struct tcp_sock *tp = tcp_sk(ssk);
3435 
3436 	msk->rcvspace_init = 1;
3437 	msk->rcvq_space.copied = 0;
3438 	msk->rcvq_space.rtt_us = 0;
3439 
3440 	msk->rcvq_space.time = tp->tcp_mstamp;
3441 
3442 	/* initial rcv_space offering made to peer */
3443 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3444 				      TCP_INIT_CWND * tp->advmss);
3445 	if (msk->rcvq_space.space == 0)
3446 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3447 }
3448 
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3449 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3450 {
3451 	struct mptcp_subflow_context *subflow, *tmp;
3452 	struct sock *sk = (struct sock *)msk;
3453 
3454 	__mptcp_clear_xmit(sk);
3455 
3456 	/* join list will be eventually flushed (with rst) at sock lock release time */
3457 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3458 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3459 
3460 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3461 	mptcp_data_lock(sk);
3462 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3463 	__skb_queue_purge(&sk->sk_receive_queue);
3464 	skb_rbtree_purge(&msk->out_of_order_queue);
3465 	mptcp_data_unlock(sk);
3466 
3467 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3468 	 * inet_sock_destruct() will dispose it
3469 	 */
3470 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3471 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3472 	mptcp_token_destroy(msk);
3473 	mptcp_pm_free_anno_list(msk);
3474 	mptcp_free_local_addr_list(msk);
3475 }
3476 
mptcp_destroy(struct sock * sk)3477 static void mptcp_destroy(struct sock *sk)
3478 {
3479 	struct mptcp_sock *msk = mptcp_sk(sk);
3480 
3481 	/* allow the following to close even the initial subflow */
3482 	msk->free_first = 1;
3483 	mptcp_destroy_common(msk, 0);
3484 	sk_sockets_allocated_dec(sk);
3485 }
3486 
__mptcp_data_acked(struct sock * sk)3487 void __mptcp_data_acked(struct sock *sk)
3488 {
3489 	if (!sock_owned_by_user(sk))
3490 		__mptcp_clean_una(sk);
3491 	else
3492 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3493 }
3494 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3495 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3496 {
3497 	if (!mptcp_send_head(sk))
3498 		return;
3499 
3500 	if (!sock_owned_by_user(sk))
3501 		__mptcp_subflow_push_pending(sk, ssk, false);
3502 	else
3503 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3504 }
3505 
3506 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3507 				      BIT(MPTCP_RETRANSMIT) | \
3508 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3509 
3510 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3511 static void mptcp_release_cb(struct sock *sk)
3512 	__must_hold(&sk->sk_lock.slock)
3513 {
3514 	struct mptcp_sock *msk = mptcp_sk(sk);
3515 
3516 	for (;;) {
3517 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3518 		struct list_head join_list;
3519 
3520 		if (!flags)
3521 			break;
3522 
3523 		INIT_LIST_HEAD(&join_list);
3524 		list_splice_init(&msk->join_list, &join_list);
3525 
3526 		/* the following actions acquire the subflow socket lock
3527 		 *
3528 		 * 1) can't be invoked in atomic scope
3529 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3530 		 *    datapath acquires the msk socket spinlock while helding
3531 		 *    the subflow socket lock
3532 		 */
3533 		msk->cb_flags &= ~flags;
3534 		spin_unlock_bh(&sk->sk_lock.slock);
3535 
3536 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3537 			__mptcp_flush_join_list(sk, &join_list);
3538 		if (flags & BIT(MPTCP_PUSH_PENDING))
3539 			__mptcp_push_pending(sk, 0);
3540 		if (flags & BIT(MPTCP_RETRANSMIT))
3541 			__mptcp_retrans(sk);
3542 
3543 		cond_resched();
3544 		spin_lock_bh(&sk->sk_lock.slock);
3545 	}
3546 
3547 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3548 		__mptcp_clean_una_wakeup(sk);
3549 	if (unlikely(msk->cb_flags)) {
3550 		/* be sure to sync the msk state before taking actions
3551 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3552 		 * On sk release avoid actions depending on the first subflow
3553 		 */
3554 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3555 			__mptcp_sync_state(sk, msk->pending_state);
3556 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3557 			__mptcp_error_report(sk);
3558 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3559 			__mptcp_sync_sndbuf(sk);
3560 	}
3561 
3562 	__mptcp_update_rmem(sk);
3563 }
3564 
3565 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3566  * TCP can't schedule delack timer before the subflow is fully established.
3567  * MPTCP uses the delack timer to do 3rd ack retransmissions
3568  */
schedule_3rdack_retransmission(struct sock * ssk)3569 static void schedule_3rdack_retransmission(struct sock *ssk)
3570 {
3571 	struct inet_connection_sock *icsk = inet_csk(ssk);
3572 	struct tcp_sock *tp = tcp_sk(ssk);
3573 	unsigned long timeout;
3574 
3575 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3576 		return;
3577 
3578 	/* reschedule with a timeout above RTT, as we must look only for drop */
3579 	if (tp->srtt_us)
3580 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3581 	else
3582 		timeout = TCP_TIMEOUT_INIT;
3583 	timeout += jiffies;
3584 
3585 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3586 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3587 	icsk->icsk_ack.timeout = timeout;
3588 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3589 }
3590 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3591 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3592 {
3593 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3594 	struct sock *sk = subflow->conn;
3595 
3596 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3597 		mptcp_data_lock(sk);
3598 		if (!sock_owned_by_user(sk))
3599 			__mptcp_subflow_push_pending(sk, ssk, true);
3600 		else
3601 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3602 		mptcp_data_unlock(sk);
3603 	}
3604 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3605 		mptcp_data_lock(sk);
3606 		if (!sock_owned_by_user(sk))
3607 			__mptcp_sync_sndbuf(sk);
3608 		else
3609 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3610 		mptcp_data_unlock(sk);
3611 	}
3612 	if (status & BIT(MPTCP_DELEGATE_ACK))
3613 		schedule_3rdack_retransmission(ssk);
3614 }
3615 
mptcp_hash(struct sock * sk)3616 static int mptcp_hash(struct sock *sk)
3617 {
3618 	/* should never be called,
3619 	 * we hash the TCP subflows not the MPTCP socket
3620 	 */
3621 	WARN_ON_ONCE(1);
3622 	return 0;
3623 }
3624 
mptcp_unhash(struct sock * sk)3625 static void mptcp_unhash(struct sock *sk)
3626 {
3627 	/* called from sk_common_release(), but nothing to do here */
3628 }
3629 
mptcp_get_port(struct sock * sk,unsigned short snum)3630 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3631 {
3632 	struct mptcp_sock *msk = mptcp_sk(sk);
3633 
3634 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3635 	if (WARN_ON_ONCE(!msk->first))
3636 		return -EINVAL;
3637 
3638 	return inet_csk_get_port(msk->first, snum);
3639 }
3640 
mptcp_finish_connect(struct sock * ssk)3641 void mptcp_finish_connect(struct sock *ssk)
3642 {
3643 	struct mptcp_subflow_context *subflow;
3644 	struct mptcp_sock *msk;
3645 	struct sock *sk;
3646 
3647 	subflow = mptcp_subflow_ctx(ssk);
3648 	sk = subflow->conn;
3649 	msk = mptcp_sk(sk);
3650 
3651 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3652 
3653 	subflow->map_seq = subflow->iasn;
3654 	subflow->map_subflow_seq = 1;
3655 
3656 	/* the socket is not connected yet, no msk/subflow ops can access/race
3657 	 * accessing the field below
3658 	 */
3659 	WRITE_ONCE(msk->local_key, subflow->local_key);
3660 
3661 	mptcp_pm_new_connection(msk, ssk, 0);
3662 }
3663 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3664 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3665 {
3666 	write_lock_bh(&sk->sk_callback_lock);
3667 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3668 	sk_set_socket(sk, parent);
3669 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3670 	write_unlock_bh(&sk->sk_callback_lock);
3671 }
3672 
mptcp_finish_join(struct sock * ssk)3673 bool mptcp_finish_join(struct sock *ssk)
3674 {
3675 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3676 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3677 	struct sock *parent = (void *)msk;
3678 	bool ret = true;
3679 
3680 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3681 
3682 	/* mptcp socket already closing? */
3683 	if (!mptcp_is_fully_established(parent)) {
3684 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3685 		return false;
3686 	}
3687 
3688 	/* active subflow, already present inside the conn_list */
3689 	if (!list_empty(&subflow->node)) {
3690 		spin_lock_bh(&msk->fallback_lock);
3691 		if (!msk->allow_subflows) {
3692 			spin_unlock_bh(&msk->fallback_lock);
3693 			return false;
3694 		}
3695 		mptcp_subflow_joined(msk, ssk);
3696 		spin_unlock_bh(&msk->fallback_lock);
3697 		mptcp_propagate_sndbuf(parent, ssk);
3698 		return true;
3699 	}
3700 
3701 	if (!mptcp_pm_allow_new_subflow(msk))
3702 		goto err_prohibited;
3703 
3704 	/* If we can't acquire msk socket lock here, let the release callback
3705 	 * handle it
3706 	 */
3707 	mptcp_data_lock(parent);
3708 	if (!sock_owned_by_user(parent)) {
3709 		ret = __mptcp_finish_join(msk, ssk);
3710 		if (ret) {
3711 			sock_hold(ssk);
3712 			list_add_tail(&subflow->node, &msk->conn_list);
3713 		}
3714 	} else {
3715 		sock_hold(ssk);
3716 		list_add_tail(&subflow->node, &msk->join_list);
3717 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3718 	}
3719 	mptcp_data_unlock(parent);
3720 
3721 	if (!ret) {
3722 err_prohibited:
3723 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3724 		return false;
3725 	}
3726 
3727 	return true;
3728 }
3729 
mptcp_shutdown(struct sock * sk,int how)3730 static void mptcp_shutdown(struct sock *sk, int how)
3731 {
3732 	pr_debug("sk=%p, how=%d\n", sk, how);
3733 
3734 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3735 		__mptcp_wr_shutdown(sk);
3736 }
3737 
mptcp_forward_alloc_get(const struct sock * sk)3738 static int mptcp_forward_alloc_get(const struct sock *sk)
3739 {
3740 	return READ_ONCE(sk->sk_forward_alloc) +
3741 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3742 }
3743 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3744 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3745 {
3746 	const struct sock *sk = (void *)msk;
3747 	u64 delta;
3748 
3749 	if (sk->sk_state == TCP_LISTEN)
3750 		return -EINVAL;
3751 
3752 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3753 		return 0;
3754 
3755 	delta = msk->write_seq - v;
3756 	if (__mptcp_check_fallback(msk) && msk->first) {
3757 		struct tcp_sock *tp = tcp_sk(msk->first);
3758 
3759 		/* the first subflow is disconnected after close - see
3760 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3761 		 * so ignore that status, too.
3762 		 */
3763 		if (!((1 << msk->first->sk_state) &
3764 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3765 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3766 	}
3767 	if (delta > INT_MAX)
3768 		delta = INT_MAX;
3769 
3770 	return (int)delta;
3771 }
3772 
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3773 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3774 {
3775 	struct mptcp_sock *msk = mptcp_sk(sk);
3776 	bool slow;
3777 
3778 	switch (cmd) {
3779 	case SIOCINQ:
3780 		if (sk->sk_state == TCP_LISTEN)
3781 			return -EINVAL;
3782 
3783 		lock_sock(sk);
3784 		__mptcp_move_skbs(msk);
3785 		*karg = mptcp_inq_hint(sk);
3786 		release_sock(sk);
3787 		break;
3788 	case SIOCOUTQ:
3789 		slow = lock_sock_fast(sk);
3790 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3791 		unlock_sock_fast(sk, slow);
3792 		break;
3793 	case SIOCOUTQNSD:
3794 		slow = lock_sock_fast(sk);
3795 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3796 		unlock_sock_fast(sk, slow);
3797 		break;
3798 	default:
3799 		return -ENOIOCTLCMD;
3800 	}
3801 
3802 	return 0;
3803 }
3804 
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3805 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3806 {
3807 	struct mptcp_subflow_context *subflow;
3808 	struct mptcp_sock *msk = mptcp_sk(sk);
3809 	int err = -EINVAL;
3810 	struct sock *ssk;
3811 
3812 	ssk = __mptcp_nmpc_sk(msk);
3813 	if (IS_ERR(ssk))
3814 		return PTR_ERR(ssk);
3815 
3816 	mptcp_set_state(sk, TCP_SYN_SENT);
3817 	subflow = mptcp_subflow_ctx(ssk);
3818 #ifdef CONFIG_TCP_MD5SIG
3819 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3820 	 * TCP option space.
3821 	 */
3822 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3823 		mptcp_subflow_early_fallback(msk, subflow);
3824 #endif
3825 	if (subflow->request_mptcp) {
3826 		if (mptcp_active_should_disable(sk)) {
3827 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3828 			mptcp_subflow_early_fallback(msk, subflow);
3829 		} else if (mptcp_token_new_connect(ssk) < 0) {
3830 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3831 			mptcp_subflow_early_fallback(msk, subflow);
3832 		}
3833 	}
3834 
3835 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3836 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3837 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3838 	if (likely(!__mptcp_check_fallback(msk)))
3839 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3840 
3841 	/* if reaching here via the fastopen/sendmsg path, the caller already
3842 	 * acquired the subflow socket lock, too.
3843 	 */
3844 	if (!msk->fastopening)
3845 		lock_sock(ssk);
3846 
3847 	/* the following mirrors closely a very small chunk of code from
3848 	 * __inet_stream_connect()
3849 	 */
3850 	if (ssk->sk_state != TCP_CLOSE)
3851 		goto out;
3852 
3853 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3854 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3855 		if (err)
3856 			goto out;
3857 	}
3858 
3859 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3860 	if (err < 0)
3861 		goto out;
3862 
3863 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3864 
3865 out:
3866 	if (!msk->fastopening)
3867 		release_sock(ssk);
3868 
3869 	/* on successful connect, the msk state will be moved to established by
3870 	 * subflow_finish_connect()
3871 	 */
3872 	if (unlikely(err)) {
3873 		/* avoid leaving a dangling token in an unconnected socket */
3874 		mptcp_token_destroy(msk);
3875 		mptcp_set_state(sk, TCP_CLOSE);
3876 		return err;
3877 	}
3878 
3879 	mptcp_copy_inaddrs(sk, ssk);
3880 	return 0;
3881 }
3882 
3883 static struct proto mptcp_prot = {
3884 	.name		= "MPTCP",
3885 	.owner		= THIS_MODULE,
3886 	.init		= mptcp_init_sock,
3887 	.connect	= mptcp_connect,
3888 	.disconnect	= mptcp_disconnect,
3889 	.close		= mptcp_close,
3890 	.setsockopt	= mptcp_setsockopt,
3891 	.getsockopt	= mptcp_getsockopt,
3892 	.shutdown	= mptcp_shutdown,
3893 	.destroy	= mptcp_destroy,
3894 	.sendmsg	= mptcp_sendmsg,
3895 	.ioctl		= mptcp_ioctl,
3896 	.recvmsg	= mptcp_recvmsg,
3897 	.release_cb	= mptcp_release_cb,
3898 	.hash		= mptcp_hash,
3899 	.unhash		= mptcp_unhash,
3900 	.get_port	= mptcp_get_port,
3901 	.forward_alloc_get	= mptcp_forward_alloc_get,
3902 	.stream_memory_free	= mptcp_stream_memory_free,
3903 	.sockets_allocated	= &mptcp_sockets_allocated,
3904 
3905 	.memory_allocated	= &tcp_memory_allocated,
3906 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3907 
3908 	.memory_pressure	= &tcp_memory_pressure,
3909 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3910 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3911 	.sysctl_mem	= sysctl_tcp_mem,
3912 	.obj_size	= sizeof(struct mptcp_sock),
3913 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3914 	.no_autobind	= true,
3915 };
3916 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3917 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3918 {
3919 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3920 	struct sock *ssk, *sk = sock->sk;
3921 	int err = -EINVAL;
3922 
3923 	lock_sock(sk);
3924 	ssk = __mptcp_nmpc_sk(msk);
3925 	if (IS_ERR(ssk)) {
3926 		err = PTR_ERR(ssk);
3927 		goto unlock;
3928 	}
3929 
3930 	if (sk->sk_family == AF_INET)
3931 		err = inet_bind_sk(ssk, uaddr, addr_len);
3932 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3933 	else if (sk->sk_family == AF_INET6)
3934 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3935 #endif
3936 	if (!err)
3937 		mptcp_copy_inaddrs(sk, ssk);
3938 
3939 unlock:
3940 	release_sock(sk);
3941 	return err;
3942 }
3943 
mptcp_listen(struct socket * sock,int backlog)3944 static int mptcp_listen(struct socket *sock, int backlog)
3945 {
3946 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3947 	struct sock *sk = sock->sk;
3948 	struct sock *ssk;
3949 	int err;
3950 
3951 	pr_debug("msk=%p\n", msk);
3952 
3953 	lock_sock(sk);
3954 
3955 	err = -EINVAL;
3956 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3957 		goto unlock;
3958 
3959 	ssk = __mptcp_nmpc_sk(msk);
3960 	if (IS_ERR(ssk)) {
3961 		err = PTR_ERR(ssk);
3962 		goto unlock;
3963 	}
3964 
3965 	mptcp_set_state(sk, TCP_LISTEN);
3966 	sock_set_flag(sk, SOCK_RCU_FREE);
3967 
3968 	lock_sock(ssk);
3969 	err = __inet_listen_sk(ssk, backlog);
3970 	release_sock(ssk);
3971 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3972 
3973 	if (!err) {
3974 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3975 		mptcp_copy_inaddrs(sk, ssk);
3976 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3977 	}
3978 
3979 unlock:
3980 	release_sock(sk);
3981 	return err;
3982 }
3983 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3984 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3985 			       struct proto_accept_arg *arg)
3986 {
3987 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3988 	struct sock *ssk, *newsk;
3989 
3990 	pr_debug("msk=%p\n", msk);
3991 
3992 	/* Buggy applications can call accept on socket states other then LISTEN
3993 	 * but no need to allocate the first subflow just to error out.
3994 	 */
3995 	ssk = READ_ONCE(msk->first);
3996 	if (!ssk)
3997 		return -EINVAL;
3998 
3999 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
4000 	newsk = inet_csk_accept(ssk, arg);
4001 	if (!newsk)
4002 		return arg->err;
4003 
4004 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
4005 	if (sk_is_mptcp(newsk)) {
4006 		struct mptcp_subflow_context *subflow;
4007 		struct sock *new_mptcp_sock;
4008 
4009 		subflow = mptcp_subflow_ctx(newsk);
4010 		new_mptcp_sock = subflow->conn;
4011 
4012 		/* is_mptcp should be false if subflow->conn is missing, see
4013 		 * subflow_syn_recv_sock()
4014 		 */
4015 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
4016 			tcp_sk(newsk)->is_mptcp = 0;
4017 			goto tcpfallback;
4018 		}
4019 
4020 		newsk = new_mptcp_sock;
4021 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
4022 
4023 		newsk->sk_kern_sock = arg->kern;
4024 		lock_sock(newsk);
4025 		__inet_accept(sock, newsock, newsk);
4026 
4027 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
4028 		msk = mptcp_sk(newsk);
4029 		msk->in_accept_queue = 0;
4030 
4031 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
4032 		 * This is needed so NOSPACE flag can be set from tcp stack.
4033 		 */
4034 		mptcp_for_each_subflow(msk, subflow) {
4035 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4036 
4037 			if (!ssk->sk_socket)
4038 				mptcp_sock_graft(ssk, newsock);
4039 		}
4040 
4041 		/* Do late cleanup for the first subflow as necessary. Also
4042 		 * deal with bad peers not doing a complete shutdown.
4043 		 */
4044 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
4045 			__mptcp_close_ssk(newsk, msk->first,
4046 					  mptcp_subflow_ctx(msk->first), 0);
4047 			if (unlikely(list_is_singular(&msk->conn_list)))
4048 				mptcp_set_state(newsk, TCP_CLOSE);
4049 		}
4050 	} else {
4051 tcpfallback:
4052 		newsk->sk_kern_sock = arg->kern;
4053 		lock_sock(newsk);
4054 		__inet_accept(sock, newsock, newsk);
4055 		/* we are being invoked after accepting a non-mp-capable
4056 		 * flow: sk is a tcp_sk, not an mptcp one.
4057 		 *
4058 		 * Hand the socket over to tcp so all further socket ops
4059 		 * bypass mptcp.
4060 		 */
4061 		WRITE_ONCE(newsock->sk->sk_socket->ops,
4062 			   mptcp_fallback_tcp_ops(newsock->sk));
4063 	}
4064 	release_sock(newsk);
4065 
4066 	return 0;
4067 }
4068 
mptcp_check_writeable(struct mptcp_sock * msk)4069 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4070 {
4071 	struct sock *sk = (struct sock *)msk;
4072 
4073 	if (__mptcp_stream_is_writeable(sk, 1))
4074 		return EPOLLOUT | EPOLLWRNORM;
4075 
4076 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4077 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4078 	if (__mptcp_stream_is_writeable(sk, 1))
4079 		return EPOLLOUT | EPOLLWRNORM;
4080 
4081 	return 0;
4082 }
4083 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)4084 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4085 			   struct poll_table_struct *wait)
4086 {
4087 	struct sock *sk = sock->sk;
4088 	struct mptcp_sock *msk;
4089 	__poll_t mask = 0;
4090 	u8 shutdown;
4091 	int state;
4092 
4093 	msk = mptcp_sk(sk);
4094 	sock_poll_wait(file, sock, wait);
4095 
4096 	state = inet_sk_state_load(sk);
4097 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4098 	if (state == TCP_LISTEN) {
4099 		struct sock *ssk = READ_ONCE(msk->first);
4100 
4101 		if (WARN_ON_ONCE(!ssk))
4102 			return 0;
4103 
4104 		return inet_csk_listen_poll(ssk);
4105 	}
4106 
4107 	shutdown = READ_ONCE(sk->sk_shutdown);
4108 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4109 		mask |= EPOLLHUP;
4110 	if (shutdown & RCV_SHUTDOWN)
4111 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4112 
4113 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4114 		mask |= mptcp_check_readable(sk);
4115 		if (shutdown & SEND_SHUTDOWN)
4116 			mask |= EPOLLOUT | EPOLLWRNORM;
4117 		else
4118 			mask |= mptcp_check_writeable(msk);
4119 	} else if (state == TCP_SYN_SENT &&
4120 		   inet_test_bit(DEFER_CONNECT, sk)) {
4121 		/* cf tcp_poll() note about TFO */
4122 		mask |= EPOLLOUT | EPOLLWRNORM;
4123 	}
4124 
4125 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4126 	smp_rmb();
4127 	if (READ_ONCE(sk->sk_err))
4128 		mask |= EPOLLERR;
4129 
4130 	return mask;
4131 }
4132 
4133 static const struct proto_ops mptcp_stream_ops = {
4134 	.family		   = PF_INET,
4135 	.owner		   = THIS_MODULE,
4136 	.release	   = inet_release,
4137 	.bind		   = mptcp_bind,
4138 	.connect	   = inet_stream_connect,
4139 	.socketpair	   = sock_no_socketpair,
4140 	.accept		   = mptcp_stream_accept,
4141 	.getname	   = inet_getname,
4142 	.poll		   = mptcp_poll,
4143 	.ioctl		   = inet_ioctl,
4144 	.gettstamp	   = sock_gettstamp,
4145 	.listen		   = mptcp_listen,
4146 	.shutdown	   = inet_shutdown,
4147 	.setsockopt	   = sock_common_setsockopt,
4148 	.getsockopt	   = sock_common_getsockopt,
4149 	.sendmsg	   = inet_sendmsg,
4150 	.recvmsg	   = inet_recvmsg,
4151 	.mmap		   = sock_no_mmap,
4152 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4153 };
4154 
4155 static struct inet_protosw mptcp_protosw = {
4156 	.type		= SOCK_STREAM,
4157 	.protocol	= IPPROTO_MPTCP,
4158 	.prot		= &mptcp_prot,
4159 	.ops		= &mptcp_stream_ops,
4160 	.flags		= INET_PROTOSW_ICSK,
4161 };
4162 
mptcp_napi_poll(struct napi_struct * napi,int budget)4163 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4164 {
4165 	struct mptcp_delegated_action *delegated;
4166 	struct mptcp_subflow_context *subflow;
4167 	int work_done = 0;
4168 
4169 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4170 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4171 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4172 
4173 		bh_lock_sock_nested(ssk);
4174 		if (!sock_owned_by_user(ssk)) {
4175 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4176 		} else {
4177 			/* tcp_release_cb_override already processed
4178 			 * the action or will do at next release_sock().
4179 			 * In both case must dequeue the subflow here - on the same
4180 			 * CPU that scheduled it.
4181 			 */
4182 			smp_wmb();
4183 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4184 		}
4185 		bh_unlock_sock(ssk);
4186 		sock_put(ssk);
4187 
4188 		if (++work_done == budget)
4189 			return budget;
4190 	}
4191 
4192 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4193 	 * will not try accessing the NULL napi->dev ptr
4194 	 */
4195 	napi_complete_done(napi, 0);
4196 	return work_done;
4197 }
4198 
mptcp_proto_init(void)4199 void __init mptcp_proto_init(void)
4200 {
4201 	struct mptcp_delegated_action *delegated;
4202 	int cpu;
4203 
4204 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4205 
4206 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4207 		panic("Failed to allocate MPTCP pcpu counter\n");
4208 
4209 	init_dummy_netdev(&mptcp_napi_dev);
4210 	for_each_possible_cpu(cpu) {
4211 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4212 		INIT_LIST_HEAD(&delegated->head);
4213 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4214 				  mptcp_napi_poll);
4215 		napi_enable(&delegated->napi);
4216 	}
4217 
4218 	mptcp_subflow_init();
4219 	mptcp_pm_init();
4220 	mptcp_sched_init();
4221 	mptcp_token_init();
4222 
4223 	if (proto_register(&mptcp_prot, 1) != 0)
4224 		panic("Failed to register MPTCP proto.\n");
4225 
4226 	inet_register_protosw(&mptcp_protosw);
4227 
4228 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4229 }
4230 
4231 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4232 static const struct proto_ops mptcp_v6_stream_ops = {
4233 	.family		   = PF_INET6,
4234 	.owner		   = THIS_MODULE,
4235 	.release	   = inet6_release,
4236 	.bind		   = mptcp_bind,
4237 	.connect	   = inet_stream_connect,
4238 	.socketpair	   = sock_no_socketpair,
4239 	.accept		   = mptcp_stream_accept,
4240 	.getname	   = inet6_getname,
4241 	.poll		   = mptcp_poll,
4242 	.ioctl		   = inet6_ioctl,
4243 	.gettstamp	   = sock_gettstamp,
4244 	.listen		   = mptcp_listen,
4245 	.shutdown	   = inet_shutdown,
4246 	.setsockopt	   = sock_common_setsockopt,
4247 	.getsockopt	   = sock_common_getsockopt,
4248 	.sendmsg	   = inet6_sendmsg,
4249 	.recvmsg	   = inet6_recvmsg,
4250 	.mmap		   = sock_no_mmap,
4251 #ifdef CONFIG_COMPAT
4252 	.compat_ioctl	   = inet6_compat_ioctl,
4253 #endif
4254 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4255 };
4256 
4257 static struct proto mptcp_v6_prot;
4258 
4259 static struct inet_protosw mptcp_v6_protosw = {
4260 	.type		= SOCK_STREAM,
4261 	.protocol	= IPPROTO_MPTCP,
4262 	.prot		= &mptcp_v6_prot,
4263 	.ops		= &mptcp_v6_stream_ops,
4264 	.flags		= INET_PROTOSW_ICSK,
4265 };
4266 
mptcp_proto_v6_init(void)4267 int __init mptcp_proto_v6_init(void)
4268 {
4269 	int err;
4270 
4271 	mptcp_v6_prot = mptcp_prot;
4272 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4273 	mptcp_v6_prot.slab = NULL;
4274 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4275 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4276 
4277 	err = proto_register(&mptcp_v6_prot, 1);
4278 	if (err)
4279 		return err;
4280 
4281 	err = inet6_register_protosw(&mptcp_v6_protosw);
4282 	if (err)
4283 		proto_unregister(&mptcp_v6_prot);
4284 
4285 	return err;
4286 }
4287 #endif
4288