1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/page_size_compat.h>
8 #include <linux/smp.h>
9 #include <linux/cpu.h>
10 #include <linux/prctl.h>
11 #include <linux/slab.h>
12 #include <linux/sched.h>
13 #include <linux/sched/idle.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/pm.h>
20 #include <linux/tick.h>
21 #include <linux/random.h>
22 #include <linux/user-return-notifier.h>
23 #include <linux/dmi.h>
24 #include <linux/utsname.h>
25 #include <linux/stackprotector.h>
26 #include <linux/cpuidle.h>
27 #include <linux/acpi.h>
28 #include <linux/elf-randomize.h>
29 #include <linux/static_call.h>
30 #include <trace/events/power.h>
31 #include <linux/hw_breakpoint.h>
32 #include <linux/entry-common.h>
33 #include <asm/cpu.h>
34 #include <asm/apic.h>
35 #include <linux/uaccess.h>
36 #include <asm/mwait.h>
37 #include <asm/fpu/api.h>
38 #include <asm/fpu/sched.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/debugreg.h>
41 #include <asm/nmi.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mce.h>
44 #include <asm/vm86.h>
45 #include <asm/switch_to.h>
46 #include <asm/desc.h>
47 #include <asm/prctl.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/io_bitmap.h>
50 #include <asm/proto.h>
51 #include <asm/frame.h>
52 #include <asm/unwind.h>
53 #include <asm/tdx.h>
54 #include <asm/mmu_context.h>
55 #include <asm/shstk.h>
56
57 #include "process.h"
58
59 /*
60 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
61 * no more per-task TSS's. The TSS size is kept cacheline-aligned
62 * so they are allowed to end up in the .data..cacheline_aligned
63 * section. Since TSS's are completely CPU-local, we want them
64 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
65 */
66 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
67 .x86_tss = {
68 /*
69 * .sp0 is only used when entering ring 0 from a lower
70 * privilege level. Since the init task never runs anything
71 * but ring 0 code, there is no need for a valid value here.
72 * Poison it.
73 */
74 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
75
76 #ifdef CONFIG_X86_32
77 .sp1 = TOP_OF_INIT_STACK,
78
79 .ss0 = __KERNEL_DS,
80 .ss1 = __KERNEL_CS,
81 #endif
82 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
83 },
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89
90 /*
91 * this gets called so that we can store lazy state into memory and copy the
92 * current task into the new thread.
93 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 /* init_task is not dynamically sized (incomplete FPU state) */
97 if (unlikely(src == &init_task))
98 memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(init_task), 0);
99 else
100 memcpy(dst, src, arch_task_struct_size);
101
102 #ifdef CONFIG_VM86
103 dst->thread.vm86 = NULL;
104 #endif
105 /* Drop the copied pointer to current's fpstate */
106 dst->thread.fpu.fpstate = NULL;
107
108 return 0;
109 }
110
111 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)112 void arch_release_task_struct(struct task_struct *tsk)
113 {
114 if (fpu_state_size_dynamic())
115 fpstate_free(&tsk->thread.fpu);
116 }
117 #endif
118
119 /*
120 * Free thread data structures etc..
121 */
exit_thread(struct task_struct * tsk)122 void exit_thread(struct task_struct *tsk)
123 {
124 struct thread_struct *t = &tsk->thread;
125 struct fpu *fpu = &t->fpu;
126
127 if (test_thread_flag(TIF_IO_BITMAP))
128 io_bitmap_exit(tsk);
129
130 free_vm86(t);
131
132 shstk_free(tsk);
133 fpu__drop(fpu);
134 }
135
set_new_tls(struct task_struct * p,unsigned long tls)136 static int set_new_tls(struct task_struct *p, unsigned long tls)
137 {
138 struct user_desc __user *utls = (struct user_desc __user *)tls;
139
140 if (in_ia32_syscall())
141 return do_set_thread_area(p, -1, utls, 0);
142 else
143 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
144 }
145
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)146 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
147 int (*fn)(void *), void *fn_arg)
148 {
149 schedule_tail(prev);
150
151 /* Is this a kernel thread? */
152 if (unlikely(fn)) {
153 fn(fn_arg);
154 /*
155 * A kernel thread is allowed to return here after successfully
156 * calling kernel_execve(). Exit to userspace to complete the
157 * execve() syscall.
158 */
159 regs->ax = 0;
160 }
161
162 syscall_exit_to_user_mode(regs);
163 }
164
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)165 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
166 {
167 unsigned long clone_flags = args->flags;
168 unsigned long sp = args->stack;
169 unsigned long tls = args->tls;
170 struct inactive_task_frame *frame;
171 struct fork_frame *fork_frame;
172 struct pt_regs *childregs;
173 unsigned long new_ssp;
174 int ret = 0;
175
176 childregs = task_pt_regs(p);
177 fork_frame = container_of(childregs, struct fork_frame, regs);
178 frame = &fork_frame->frame;
179
180 frame->bp = encode_frame_pointer(childregs);
181 frame->ret_addr = (unsigned long) ret_from_fork_asm;
182 p->thread.sp = (unsigned long) fork_frame;
183 p->thread.io_bitmap = NULL;
184 clear_tsk_thread_flag(p, TIF_IO_BITMAP);
185 p->thread.iopl_warn = 0;
186 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
187
188 #ifdef CONFIG_X86_64
189 current_save_fsgs();
190 p->thread.fsindex = current->thread.fsindex;
191 p->thread.fsbase = current->thread.fsbase;
192 p->thread.gsindex = current->thread.gsindex;
193 p->thread.gsbase = current->thread.gsbase;
194
195 savesegment(es, p->thread.es);
196 savesegment(ds, p->thread.ds);
197
198 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
199 set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
200 #else
201 p->thread.sp0 = (unsigned long) (childregs + 1);
202 savesegment(gs, p->thread.gs);
203 /*
204 * Clear all status flags including IF and set fixed bit. 64bit
205 * does not have this initialization as the frame does not contain
206 * flags. The flags consistency (especially vs. AC) is there
207 * ensured via objtool, which lacks 32bit support.
208 */
209 frame->flags = X86_EFLAGS_FIXED;
210 #endif
211
212 /*
213 * Allocate a new shadow stack for thread if needed. If shadow stack,
214 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
215 * update it.
216 */
217 new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
218 if (IS_ERR_VALUE(new_ssp))
219 return PTR_ERR((void *)new_ssp);
220
221 fpu_clone(p, clone_flags, args->fn, new_ssp);
222
223 /* Kernel thread ? */
224 if (unlikely(p->flags & PF_KTHREAD)) {
225 p->thread.pkru = pkru_get_init_value();
226 memset(childregs, 0, sizeof(struct pt_regs));
227 kthread_frame_init(frame, args->fn, args->fn_arg);
228 return 0;
229 }
230
231 /*
232 * Clone current's PKRU value from hardware. tsk->thread.pkru
233 * is only valid when scheduled out.
234 */
235 p->thread.pkru = read_pkru();
236
237 frame->bx = 0;
238 *childregs = *current_pt_regs();
239 childregs->ax = 0;
240 if (sp)
241 childregs->sp = sp;
242
243 if (unlikely(args->fn)) {
244 /*
245 * A user space thread, but it doesn't return to
246 * ret_after_fork().
247 *
248 * In order to indicate that to tools like gdb,
249 * we reset the stack and instruction pointers.
250 *
251 * It does the same kernel frame setup to return to a kernel
252 * function that a kernel thread does.
253 */
254 childregs->sp = 0;
255 childregs->ip = 0;
256 kthread_frame_init(frame, args->fn, args->fn_arg);
257 return 0;
258 }
259
260 /* Set a new TLS for the child thread? */
261 if (clone_flags & CLONE_SETTLS)
262 ret = set_new_tls(p, tls);
263
264 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
265 io_bitmap_share(p);
266
267 return ret;
268 }
269
pkru_flush_thread(void)270 static void pkru_flush_thread(void)
271 {
272 /*
273 * If PKRU is enabled the default PKRU value has to be loaded into
274 * the hardware right here (similar to context switch).
275 */
276 pkru_write_default();
277 }
278
flush_thread(void)279 void flush_thread(void)
280 {
281 struct task_struct *tsk = current;
282
283 flush_ptrace_hw_breakpoint(tsk);
284 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
285
286 fpu_flush_thread();
287 pkru_flush_thread();
288 }
289
disable_TSC(void)290 void disable_TSC(void)
291 {
292 preempt_disable();
293 if (!test_and_set_thread_flag(TIF_NOTSC))
294 /*
295 * Must flip the CPU state synchronously with
296 * TIF_NOTSC in the current running context.
297 */
298 cr4_set_bits(X86_CR4_TSD);
299 preempt_enable();
300 }
301
enable_TSC(void)302 static void enable_TSC(void)
303 {
304 preempt_disable();
305 if (test_and_clear_thread_flag(TIF_NOTSC))
306 /*
307 * Must flip the CPU state synchronously with
308 * TIF_NOTSC in the current running context.
309 */
310 cr4_clear_bits(X86_CR4_TSD);
311 preempt_enable();
312 }
313
get_tsc_mode(unsigned long adr)314 int get_tsc_mode(unsigned long adr)
315 {
316 unsigned int val;
317
318 if (test_thread_flag(TIF_NOTSC))
319 val = PR_TSC_SIGSEGV;
320 else
321 val = PR_TSC_ENABLE;
322
323 return put_user(val, (unsigned int __user *)adr);
324 }
325
set_tsc_mode(unsigned int val)326 int set_tsc_mode(unsigned int val)
327 {
328 if (val == PR_TSC_SIGSEGV)
329 disable_TSC();
330 else if (val == PR_TSC_ENABLE)
331 enable_TSC();
332 else
333 return -EINVAL;
334
335 return 0;
336 }
337
338 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
339
set_cpuid_faulting(bool on)340 static void set_cpuid_faulting(bool on)
341 {
342 u64 msrval;
343
344 msrval = this_cpu_read(msr_misc_features_shadow);
345 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
346 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
347 this_cpu_write(msr_misc_features_shadow, msrval);
348 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
349 }
350
disable_cpuid(void)351 static void disable_cpuid(void)
352 {
353 preempt_disable();
354 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
355 /*
356 * Must flip the CPU state synchronously with
357 * TIF_NOCPUID in the current running context.
358 */
359 set_cpuid_faulting(true);
360 }
361 preempt_enable();
362 }
363
enable_cpuid(void)364 static void enable_cpuid(void)
365 {
366 preempt_disable();
367 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
368 /*
369 * Must flip the CPU state synchronously with
370 * TIF_NOCPUID in the current running context.
371 */
372 set_cpuid_faulting(false);
373 }
374 preempt_enable();
375 }
376
get_cpuid_mode(void)377 static int get_cpuid_mode(void)
378 {
379 return !test_thread_flag(TIF_NOCPUID);
380 }
381
set_cpuid_mode(unsigned long cpuid_enabled)382 static int set_cpuid_mode(unsigned long cpuid_enabled)
383 {
384 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
385 return -ENODEV;
386
387 if (cpuid_enabled)
388 enable_cpuid();
389 else
390 disable_cpuid();
391
392 return 0;
393 }
394
395 /*
396 * Called immediately after a successful exec.
397 */
arch_setup_new_exec(void)398 void arch_setup_new_exec(void)
399 {
400 /* If cpuid was previously disabled for this task, re-enable it. */
401 if (test_thread_flag(TIF_NOCPUID))
402 enable_cpuid();
403
404 /*
405 * Don't inherit TIF_SSBD across exec boundary when
406 * PR_SPEC_DISABLE_NOEXEC is used.
407 */
408 if (test_thread_flag(TIF_SSBD) &&
409 task_spec_ssb_noexec(current)) {
410 clear_thread_flag(TIF_SSBD);
411 task_clear_spec_ssb_disable(current);
412 task_clear_spec_ssb_noexec(current);
413 speculation_ctrl_update(read_thread_flags());
414 }
415
416 mm_reset_untag_mask(current->mm);
417 }
418
419 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)420 static inline void switch_to_bitmap(unsigned long tifp)
421 {
422 /*
423 * Invalidate I/O bitmap if the previous task used it. This prevents
424 * any possible leakage of an active I/O bitmap.
425 *
426 * If the next task has an I/O bitmap it will handle it on exit to
427 * user mode.
428 */
429 if (tifp & _TIF_IO_BITMAP)
430 tss_invalidate_io_bitmap();
431 }
432
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)433 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
434 {
435 /*
436 * Copy at least the byte range of the incoming tasks bitmap which
437 * covers the permitted I/O ports.
438 *
439 * If the previous task which used an I/O bitmap had more bits
440 * permitted, then the copy needs to cover those as well so they
441 * get turned off.
442 */
443 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
444 max(tss->io_bitmap.prev_max, iobm->max));
445
446 /*
447 * Store the new max and the sequence number of this bitmap
448 * and a pointer to the bitmap itself.
449 */
450 tss->io_bitmap.prev_max = iobm->max;
451 tss->io_bitmap.prev_sequence = iobm->sequence;
452 }
453
454 /**
455 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
456 */
native_tss_update_io_bitmap(void)457 void native_tss_update_io_bitmap(void)
458 {
459 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
460 struct thread_struct *t = ¤t->thread;
461 u16 *base = &tss->x86_tss.io_bitmap_base;
462
463 if (!test_thread_flag(TIF_IO_BITMAP)) {
464 native_tss_invalidate_io_bitmap();
465 return;
466 }
467
468 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
469 *base = IO_BITMAP_OFFSET_VALID_ALL;
470 } else {
471 struct io_bitmap *iobm = t->io_bitmap;
472
473 if (WARN_ON_ONCE(!iobm)) {
474 clear_thread_flag(TIF_IO_BITMAP);
475 native_tss_invalidate_io_bitmap();
476 }
477
478 /*
479 * Only copy bitmap data when the sequence number differs. The
480 * update time is accounted to the incoming task.
481 */
482 if (tss->io_bitmap.prev_sequence != iobm->sequence)
483 tss_copy_io_bitmap(tss, iobm);
484
485 /* Enable the bitmap */
486 *base = IO_BITMAP_OFFSET_VALID_MAP;
487 }
488
489 /*
490 * Make sure that the TSS limit is covering the IO bitmap. It might have
491 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
492 * access from user space to trigger a #GP because the bitmap is outside
493 * the TSS limit.
494 */
495 refresh_tss_limit();
496 }
497 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)498 static inline void switch_to_bitmap(unsigned long tifp) { }
499 #endif
500
501 #ifdef CONFIG_SMP
502
503 struct ssb_state {
504 struct ssb_state *shared_state;
505 raw_spinlock_t lock;
506 unsigned int disable_state;
507 unsigned long local_state;
508 };
509
510 #define LSTATE_SSB 0
511
512 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
513
speculative_store_bypass_ht_init(void)514 void speculative_store_bypass_ht_init(void)
515 {
516 struct ssb_state *st = this_cpu_ptr(&ssb_state);
517 unsigned int this_cpu = smp_processor_id();
518 unsigned int cpu;
519
520 st->local_state = 0;
521
522 /*
523 * Shared state setup happens once on the first bringup
524 * of the CPU. It's not destroyed on CPU hotunplug.
525 */
526 if (st->shared_state)
527 return;
528
529 raw_spin_lock_init(&st->lock);
530
531 /*
532 * Go over HT siblings and check whether one of them has set up the
533 * shared state pointer already.
534 */
535 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
536 if (cpu == this_cpu)
537 continue;
538
539 if (!per_cpu(ssb_state, cpu).shared_state)
540 continue;
541
542 /* Link it to the state of the sibling: */
543 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
544 return;
545 }
546
547 /*
548 * First HT sibling to come up on the core. Link shared state of
549 * the first HT sibling to itself. The siblings on the same core
550 * which come up later will see the shared state pointer and link
551 * themselves to the state of this CPU.
552 */
553 st->shared_state = st;
554 }
555
556 /*
557 * Logic is: First HT sibling enables SSBD for both siblings in the core
558 * and last sibling to disable it, disables it for the whole core. This how
559 * MSR_SPEC_CTRL works in "hardware":
560 *
561 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
562 */
amd_set_core_ssb_state(unsigned long tifn)563 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
564 {
565 struct ssb_state *st = this_cpu_ptr(&ssb_state);
566 u64 msr = x86_amd_ls_cfg_base;
567
568 if (!static_cpu_has(X86_FEATURE_ZEN)) {
569 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
570 wrmsrl(MSR_AMD64_LS_CFG, msr);
571 return;
572 }
573
574 if (tifn & _TIF_SSBD) {
575 /*
576 * Since this can race with prctl(), block reentry on the
577 * same CPU.
578 */
579 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
580 return;
581
582 msr |= x86_amd_ls_cfg_ssbd_mask;
583
584 raw_spin_lock(&st->shared_state->lock);
585 /* First sibling enables SSBD: */
586 if (!st->shared_state->disable_state)
587 wrmsrl(MSR_AMD64_LS_CFG, msr);
588 st->shared_state->disable_state++;
589 raw_spin_unlock(&st->shared_state->lock);
590 } else {
591 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
592 return;
593
594 raw_spin_lock(&st->shared_state->lock);
595 st->shared_state->disable_state--;
596 if (!st->shared_state->disable_state)
597 wrmsrl(MSR_AMD64_LS_CFG, msr);
598 raw_spin_unlock(&st->shared_state->lock);
599 }
600 }
601 #else
amd_set_core_ssb_state(unsigned long tifn)602 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
603 {
604 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
605
606 wrmsrl(MSR_AMD64_LS_CFG, msr);
607 }
608 #endif
609
amd_set_ssb_virt_state(unsigned long tifn)610 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
611 {
612 /*
613 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
614 * so ssbd_tif_to_spec_ctrl() just works.
615 */
616 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
617 }
618
619 /*
620 * Update the MSRs managing speculation control, during context switch.
621 *
622 * tifp: Previous task's thread flags
623 * tifn: Next task's thread flags
624 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)625 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
626 unsigned long tifn)
627 {
628 unsigned long tif_diff = tifp ^ tifn;
629 u64 msr = x86_spec_ctrl_base;
630 bool updmsr = false;
631
632 lockdep_assert_irqs_disabled();
633
634 /* Handle change of TIF_SSBD depending on the mitigation method. */
635 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
636 if (tif_diff & _TIF_SSBD)
637 amd_set_ssb_virt_state(tifn);
638 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
639 if (tif_diff & _TIF_SSBD)
640 amd_set_core_ssb_state(tifn);
641 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
642 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
643 updmsr |= !!(tif_diff & _TIF_SSBD);
644 msr |= ssbd_tif_to_spec_ctrl(tifn);
645 }
646
647 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
648 if (IS_ENABLED(CONFIG_SMP) &&
649 static_branch_unlikely(&switch_to_cond_stibp)) {
650 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
651 msr |= stibp_tif_to_spec_ctrl(tifn);
652 }
653
654 if (updmsr)
655 update_spec_ctrl_cond(msr);
656 }
657
speculation_ctrl_update_tif(struct task_struct * tsk)658 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
659 {
660 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
661 if (task_spec_ssb_disable(tsk))
662 set_tsk_thread_flag(tsk, TIF_SSBD);
663 else
664 clear_tsk_thread_flag(tsk, TIF_SSBD);
665
666 if (task_spec_ib_disable(tsk))
667 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
668 else
669 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
670 }
671 /* Return the updated threadinfo flags*/
672 return read_task_thread_flags(tsk);
673 }
674
speculation_ctrl_update(unsigned long tif)675 void speculation_ctrl_update(unsigned long tif)
676 {
677 unsigned long flags;
678
679 /* Forced update. Make sure all relevant TIF flags are different */
680 local_irq_save(flags);
681 __speculation_ctrl_update(~tif, tif);
682 local_irq_restore(flags);
683 }
684
685 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)686 void speculation_ctrl_update_current(void)
687 {
688 preempt_disable();
689 speculation_ctrl_update(speculation_ctrl_update_tif(current));
690 preempt_enable();
691 }
692
cr4_toggle_bits_irqsoff(unsigned long mask)693 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
694 {
695 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
696
697 newval = cr4 ^ mask;
698 if (newval != cr4) {
699 this_cpu_write(cpu_tlbstate.cr4, newval);
700 __write_cr4(newval);
701 }
702 }
703
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)704 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
705 {
706 unsigned long tifp, tifn;
707
708 tifn = read_task_thread_flags(next_p);
709 tifp = read_task_thread_flags(prev_p);
710
711 switch_to_bitmap(tifp);
712
713 propagate_user_return_notify(prev_p, next_p);
714
715 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
716 arch_has_block_step()) {
717 unsigned long debugctl, msk;
718
719 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
720 debugctl &= ~DEBUGCTLMSR_BTF;
721 msk = tifn & _TIF_BLOCKSTEP;
722 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
723 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
724 }
725
726 if ((tifp ^ tifn) & _TIF_NOTSC)
727 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
728
729 if ((tifp ^ tifn) & _TIF_NOCPUID)
730 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
731
732 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
733 __speculation_ctrl_update(tifp, tifn);
734 } else {
735 speculation_ctrl_update_tif(prev_p);
736 tifn = speculation_ctrl_update_tif(next_p);
737
738 /* Enforce MSR update to ensure consistent state */
739 __speculation_ctrl_update(~tifn, tifn);
740 }
741 }
742
743 /*
744 * Idle related variables and functions
745 */
746 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
747 EXPORT_SYMBOL(boot_option_idle_override);
748
749 /*
750 * We use this if we don't have any better idle routine..
751 */
default_idle(void)752 void __cpuidle default_idle(void)
753 {
754 raw_safe_halt();
755 raw_local_irq_disable();
756 }
757 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
758 EXPORT_SYMBOL(default_idle);
759 #endif
760
761 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
762
x86_idle_set(void)763 static bool x86_idle_set(void)
764 {
765 return !!static_call_query(x86_idle);
766 }
767
768 #ifndef CONFIG_SMP
play_dead(void)769 static inline void __noreturn play_dead(void)
770 {
771 BUG();
772 }
773 #endif
774
arch_cpu_idle_enter(void)775 void arch_cpu_idle_enter(void)
776 {
777 tsc_verify_tsc_adjust(false);
778 local_touch_nmi();
779 }
780
arch_cpu_idle_dead(void)781 void __noreturn arch_cpu_idle_dead(void)
782 {
783 play_dead();
784 }
785
786 /*
787 * Called from the generic idle code.
788 */
arch_cpu_idle(void)789 void __cpuidle arch_cpu_idle(void)
790 {
791 static_call(x86_idle)();
792 }
793 EXPORT_SYMBOL_GPL(arch_cpu_idle);
794
795 #ifdef CONFIG_XEN
xen_set_default_idle(void)796 bool xen_set_default_idle(void)
797 {
798 bool ret = x86_idle_set();
799
800 static_call_update(x86_idle, default_idle);
801
802 return ret;
803 }
804 #endif
805
806 struct cpumask cpus_stop_mask;
807
stop_this_cpu(void * dummy)808 void __noreturn stop_this_cpu(void *dummy)
809 {
810 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
811 unsigned int cpu = smp_processor_id();
812
813 local_irq_disable();
814
815 /*
816 * Remove this CPU from the online mask and disable it
817 * unconditionally. This might be redundant in case that the reboot
818 * vector was handled late and stop_other_cpus() sent an NMI.
819 *
820 * According to SDM and APM NMIs can be accepted even after soft
821 * disabling the local APIC.
822 */
823 set_cpu_online(cpu, false);
824 disable_local_APIC();
825 mcheck_cpu_clear(c);
826
827 /*
828 * Use wbinvd on processors that support SME. This provides support
829 * for performing a successful kexec when going from SME inactive
830 * to SME active (or vice-versa). The cache must be cleared so that
831 * if there are entries with the same physical address, both with and
832 * without the encryption bit, they don't race each other when flushed
833 * and potentially end up with the wrong entry being committed to
834 * memory.
835 *
836 * Test the CPUID bit directly because the machine might've cleared
837 * X86_FEATURE_SME due to cmdline options.
838 */
839 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
840 native_wbinvd();
841
842 /*
843 * This brings a cache line back and dirties it, but
844 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
845 * observed that all CPUs reported stop. This write will invalidate
846 * the related cache line on this CPU.
847 */
848 cpumask_clear_cpu(cpu, &cpus_stop_mask);
849
850 #ifdef CONFIG_SMP
851 if (smp_ops.stop_this_cpu) {
852 smp_ops.stop_this_cpu();
853 BUG();
854 }
855 #endif
856
857 for (;;) {
858 /*
859 * Use native_halt() so that memory contents don't change
860 * (stack usage and variables) after possibly issuing the
861 * native_wbinvd() above.
862 */
863 native_halt();
864 }
865 }
866
867 /*
868 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
869 * exists and whenever MONITOR/MWAIT extensions are present there is at
870 * least one C1 substate.
871 *
872 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
873 * is passed to kernel commandline parameter.
874 */
prefer_mwait_c1_over_halt(void)875 static __init bool prefer_mwait_c1_over_halt(void)
876 {
877 const struct cpuinfo_x86 *c = &boot_cpu_data;
878 u32 eax, ebx, ecx, edx;
879
880 /* If override is enforced on the command line, fall back to HALT. */
881 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
882 return false;
883
884 /* MWAIT is not supported on this platform. Fallback to HALT */
885 if (!cpu_has(c, X86_FEATURE_MWAIT))
886 return false;
887
888 /* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
889 if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
890 return false;
891
892 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
893
894 /*
895 * If MWAIT extensions are not available, it is safe to use MWAIT
896 * with EAX=0, ECX=0.
897 */
898 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
899 return true;
900
901 /*
902 * If MWAIT extensions are available, there should be at least one
903 * MWAIT C1 substate present.
904 */
905 return !!(edx & MWAIT_C1_SUBSTATE_MASK);
906 }
907
908 /*
909 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
910 * with interrupts enabled and no flags, which is backwards compatible with the
911 * original MWAIT implementation.
912 */
mwait_idle(void)913 static __cpuidle void mwait_idle(void)
914 {
915 if (need_resched())
916 return;
917
918 x86_idle_clear_cpu_buffers();
919
920 if (!current_set_polling_and_test()) {
921 const void *addr = ¤t_thread_info()->flags;
922
923 alternative_input("", "clflush (%[addr])", X86_BUG_CLFLUSH_MONITOR, [addr] "a" (addr));
924 __monitor(addr, 0, 0);
925 if (need_resched())
926 goto out;
927
928 __sti_mwait(0, 0);
929 raw_local_irq_disable();
930 }
931
932 out:
933 __current_clr_polling();
934 }
935
select_idle_routine(void)936 void __init select_idle_routine(void)
937 {
938 if (boot_option_idle_override == IDLE_POLL) {
939 if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
940 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
941 return;
942 }
943
944 /* Required to guard against xen_set_default_idle() */
945 if (x86_idle_set())
946 return;
947
948 if (prefer_mwait_c1_over_halt()) {
949 pr_info("using mwait in idle threads\n");
950 static_call_update(x86_idle, mwait_idle);
951 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
952 pr_info("using TDX aware idle routine\n");
953 static_call_update(x86_idle, tdx_halt);
954 } else {
955 static_call_update(x86_idle, default_idle);
956 }
957 }
958
amd_e400_c1e_apic_setup(void)959 void amd_e400_c1e_apic_setup(void)
960 {
961 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
962 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
963 local_irq_disable();
964 tick_broadcast_force();
965 local_irq_enable();
966 }
967 }
968
arch_post_acpi_subsys_init(void)969 void __init arch_post_acpi_subsys_init(void)
970 {
971 u32 lo, hi;
972
973 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
974 return;
975
976 /*
977 * AMD E400 detection needs to happen after ACPI has been enabled. If
978 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
979 * MSR_K8_INT_PENDING_MSG.
980 */
981 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
982 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
983 return;
984
985 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
986
987 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
988 mark_tsc_unstable("TSC halt in AMD C1E");
989
990 if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
991 static_branch_enable(&arch_needs_tick_broadcast);
992 pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
993 }
994
idle_setup(char * str)995 static int __init idle_setup(char *str)
996 {
997 if (!str)
998 return -EINVAL;
999
1000 if (!strcmp(str, "poll")) {
1001 pr_info("using polling idle threads\n");
1002 boot_option_idle_override = IDLE_POLL;
1003 cpu_idle_poll_ctrl(true);
1004 } else if (!strcmp(str, "halt")) {
1005 /* 'idle=halt' HALT for idle. C-states are disabled. */
1006 boot_option_idle_override = IDLE_HALT;
1007 } else if (!strcmp(str, "nomwait")) {
1008 /* 'idle=nomwait' disables MWAIT for idle */
1009 boot_option_idle_override = IDLE_NOMWAIT;
1010 } else {
1011 return -EINVAL;
1012 }
1013
1014 return 0;
1015 }
1016 early_param("idle", idle_setup);
1017
arch_align_stack(unsigned long sp)1018 unsigned long arch_align_stack(unsigned long sp)
1019 {
1020 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1021 sp -= get_random_u32_below(__PAGE_SIZE << 1);
1022 return sp & ~0xf;
1023 }
1024
arch_randomize_brk(struct mm_struct * mm)1025 unsigned long arch_randomize_brk(struct mm_struct *mm)
1026 {
1027 if (mmap_is_ia32())
1028 return randomize_page(mm->brk, SZ_32M);
1029
1030 return randomize_page(mm->brk, SZ_1G);
1031 }
1032
1033 /*
1034 * Called from fs/proc with a reference on @p to find the function
1035 * which called into schedule(). This needs to be done carefully
1036 * because the task might wake up and we might look at a stack
1037 * changing under us.
1038 */
__get_wchan(struct task_struct * p)1039 unsigned long __get_wchan(struct task_struct *p)
1040 {
1041 struct unwind_state state;
1042 unsigned long addr = 0;
1043
1044 if (!try_get_task_stack(p))
1045 return 0;
1046
1047 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1048 unwind_next_frame(&state)) {
1049 addr = unwind_get_return_address(&state);
1050 if (!addr)
1051 break;
1052 if (in_sched_functions(addr))
1053 continue;
1054 break;
1055 }
1056
1057 put_task_stack(p);
1058
1059 return addr;
1060 }
1061
do_arch_prctl_common(int option,unsigned long arg2)1062 long do_arch_prctl_common(int option, unsigned long arg2)
1063 {
1064 switch (option) {
1065 case ARCH_GET_CPUID:
1066 return get_cpuid_mode();
1067 case ARCH_SET_CPUID:
1068 return set_cpuid_mode(arg2);
1069 case ARCH_GET_XCOMP_SUPP:
1070 case ARCH_GET_XCOMP_PERM:
1071 case ARCH_REQ_XCOMP_PERM:
1072 case ARCH_GET_XCOMP_GUEST_PERM:
1073 case ARCH_REQ_XCOMP_GUEST_PERM:
1074 return fpu_xstate_prctl(option, arg2);
1075 }
1076
1077 return -EINVAL;
1078 }
1079