• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/page_size_compat.h>
8 #include <linux/smp.h>
9 #include <linux/cpu.h>
10 #include <linux/prctl.h>
11 #include <linux/slab.h>
12 #include <linux/sched.h>
13 #include <linux/sched/idle.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/pm.h>
20 #include <linux/tick.h>
21 #include <linux/random.h>
22 #include <linux/user-return-notifier.h>
23 #include <linux/dmi.h>
24 #include <linux/utsname.h>
25 #include <linux/stackprotector.h>
26 #include <linux/cpuidle.h>
27 #include <linux/acpi.h>
28 #include <linux/elf-randomize.h>
29 #include <linux/static_call.h>
30 #include <trace/events/power.h>
31 #include <linux/hw_breakpoint.h>
32 #include <linux/entry-common.h>
33 #include <asm/cpu.h>
34 #include <asm/apic.h>
35 #include <linux/uaccess.h>
36 #include <asm/mwait.h>
37 #include <asm/fpu/api.h>
38 #include <asm/fpu/sched.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/debugreg.h>
41 #include <asm/nmi.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mce.h>
44 #include <asm/vm86.h>
45 #include <asm/switch_to.h>
46 #include <asm/desc.h>
47 #include <asm/prctl.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/io_bitmap.h>
50 #include <asm/proto.h>
51 #include <asm/frame.h>
52 #include <asm/unwind.h>
53 #include <asm/tdx.h>
54 #include <asm/mmu_context.h>
55 #include <asm/shstk.h>
56 
57 #include "process.h"
58 
59 /*
60  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
61  * no more per-task TSS's. The TSS size is kept cacheline-aligned
62  * so they are allowed to end up in the .data..cacheline_aligned
63  * section. Since TSS's are completely CPU-local, we want them
64  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
65  */
66 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
67 	.x86_tss = {
68 		/*
69 		 * .sp0 is only used when entering ring 0 from a lower
70 		 * privilege level.  Since the init task never runs anything
71 		 * but ring 0 code, there is no need for a valid value here.
72 		 * Poison it.
73 		 */
74 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
75 
76 #ifdef CONFIG_X86_32
77 		.sp1 = TOP_OF_INIT_STACK,
78 
79 		.ss0 = __KERNEL_DS,
80 		.ss1 = __KERNEL_CS,
81 #endif
82 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
83 	 },
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86 
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89 
90 /*
91  * this gets called so that we can store lazy state into memory and copy the
92  * current task into the new thread.
93  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 	/* init_task is not dynamically sized (incomplete FPU state) */
97 	if (unlikely(src == &init_task))
98 		memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(init_task), 0);
99 	else
100 		memcpy(dst, src, arch_task_struct_size);
101 
102 #ifdef CONFIG_VM86
103 	dst->thread.vm86 = NULL;
104 #endif
105 	/* Drop the copied pointer to current's fpstate */
106 	dst->thread.fpu.fpstate = NULL;
107 
108 	return 0;
109 }
110 
111 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)112 void arch_release_task_struct(struct task_struct *tsk)
113 {
114 	if (fpu_state_size_dynamic())
115 		fpstate_free(&tsk->thread.fpu);
116 }
117 #endif
118 
119 /*
120  * Free thread data structures etc..
121  */
exit_thread(struct task_struct * tsk)122 void exit_thread(struct task_struct *tsk)
123 {
124 	struct thread_struct *t = &tsk->thread;
125 	struct fpu *fpu = &t->fpu;
126 
127 	if (test_thread_flag(TIF_IO_BITMAP))
128 		io_bitmap_exit(tsk);
129 
130 	free_vm86(t);
131 
132 	shstk_free(tsk);
133 	fpu__drop(fpu);
134 }
135 
set_new_tls(struct task_struct * p,unsigned long tls)136 static int set_new_tls(struct task_struct *p, unsigned long tls)
137 {
138 	struct user_desc __user *utls = (struct user_desc __user *)tls;
139 
140 	if (in_ia32_syscall())
141 		return do_set_thread_area(p, -1, utls, 0);
142 	else
143 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
144 }
145 
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)146 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
147 				     int (*fn)(void *), void *fn_arg)
148 {
149 	schedule_tail(prev);
150 
151 	/* Is this a kernel thread? */
152 	if (unlikely(fn)) {
153 		fn(fn_arg);
154 		/*
155 		 * A kernel thread is allowed to return here after successfully
156 		 * calling kernel_execve().  Exit to userspace to complete the
157 		 * execve() syscall.
158 		 */
159 		regs->ax = 0;
160 	}
161 
162 	syscall_exit_to_user_mode(regs);
163 }
164 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)165 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
166 {
167 	unsigned long clone_flags = args->flags;
168 	unsigned long sp = args->stack;
169 	unsigned long tls = args->tls;
170 	struct inactive_task_frame *frame;
171 	struct fork_frame *fork_frame;
172 	struct pt_regs *childregs;
173 	unsigned long new_ssp;
174 	int ret = 0;
175 
176 	childregs = task_pt_regs(p);
177 	fork_frame = container_of(childregs, struct fork_frame, regs);
178 	frame = &fork_frame->frame;
179 
180 	frame->bp = encode_frame_pointer(childregs);
181 	frame->ret_addr = (unsigned long) ret_from_fork_asm;
182 	p->thread.sp = (unsigned long) fork_frame;
183 	p->thread.io_bitmap = NULL;
184 	clear_tsk_thread_flag(p, TIF_IO_BITMAP);
185 	p->thread.iopl_warn = 0;
186 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
187 
188 #ifdef CONFIG_X86_64
189 	current_save_fsgs();
190 	p->thread.fsindex = current->thread.fsindex;
191 	p->thread.fsbase = current->thread.fsbase;
192 	p->thread.gsindex = current->thread.gsindex;
193 	p->thread.gsbase = current->thread.gsbase;
194 
195 	savesegment(es, p->thread.es);
196 	savesegment(ds, p->thread.ds);
197 
198 	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
199 		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
200 #else
201 	p->thread.sp0 = (unsigned long) (childregs + 1);
202 	savesegment(gs, p->thread.gs);
203 	/*
204 	 * Clear all status flags including IF and set fixed bit. 64bit
205 	 * does not have this initialization as the frame does not contain
206 	 * flags. The flags consistency (especially vs. AC) is there
207 	 * ensured via objtool, which lacks 32bit support.
208 	 */
209 	frame->flags = X86_EFLAGS_FIXED;
210 #endif
211 
212 	/*
213 	 * Allocate a new shadow stack for thread if needed. If shadow stack,
214 	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
215 	 * update it.
216 	 */
217 	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
218 	if (IS_ERR_VALUE(new_ssp))
219 		return PTR_ERR((void *)new_ssp);
220 
221 	fpu_clone(p, clone_flags, args->fn, new_ssp);
222 
223 	/* Kernel thread ? */
224 	if (unlikely(p->flags & PF_KTHREAD)) {
225 		p->thread.pkru = pkru_get_init_value();
226 		memset(childregs, 0, sizeof(struct pt_regs));
227 		kthread_frame_init(frame, args->fn, args->fn_arg);
228 		return 0;
229 	}
230 
231 	/*
232 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
233 	 * is only valid when scheduled out.
234 	 */
235 	p->thread.pkru = read_pkru();
236 
237 	frame->bx = 0;
238 	*childregs = *current_pt_regs();
239 	childregs->ax = 0;
240 	if (sp)
241 		childregs->sp = sp;
242 
243 	if (unlikely(args->fn)) {
244 		/*
245 		 * A user space thread, but it doesn't return to
246 		 * ret_after_fork().
247 		 *
248 		 * In order to indicate that to tools like gdb,
249 		 * we reset the stack and instruction pointers.
250 		 *
251 		 * It does the same kernel frame setup to return to a kernel
252 		 * function that a kernel thread does.
253 		 */
254 		childregs->sp = 0;
255 		childregs->ip = 0;
256 		kthread_frame_init(frame, args->fn, args->fn_arg);
257 		return 0;
258 	}
259 
260 	/* Set a new TLS for the child thread? */
261 	if (clone_flags & CLONE_SETTLS)
262 		ret = set_new_tls(p, tls);
263 
264 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
265 		io_bitmap_share(p);
266 
267 	return ret;
268 }
269 
pkru_flush_thread(void)270 static void pkru_flush_thread(void)
271 {
272 	/*
273 	 * If PKRU is enabled the default PKRU value has to be loaded into
274 	 * the hardware right here (similar to context switch).
275 	 */
276 	pkru_write_default();
277 }
278 
flush_thread(void)279 void flush_thread(void)
280 {
281 	struct task_struct *tsk = current;
282 
283 	flush_ptrace_hw_breakpoint(tsk);
284 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
285 
286 	fpu_flush_thread();
287 	pkru_flush_thread();
288 }
289 
disable_TSC(void)290 void disable_TSC(void)
291 {
292 	preempt_disable();
293 	if (!test_and_set_thread_flag(TIF_NOTSC))
294 		/*
295 		 * Must flip the CPU state synchronously with
296 		 * TIF_NOTSC in the current running context.
297 		 */
298 		cr4_set_bits(X86_CR4_TSD);
299 	preempt_enable();
300 }
301 
enable_TSC(void)302 static void enable_TSC(void)
303 {
304 	preempt_disable();
305 	if (test_and_clear_thread_flag(TIF_NOTSC))
306 		/*
307 		 * Must flip the CPU state synchronously with
308 		 * TIF_NOTSC in the current running context.
309 		 */
310 		cr4_clear_bits(X86_CR4_TSD);
311 	preempt_enable();
312 }
313 
get_tsc_mode(unsigned long adr)314 int get_tsc_mode(unsigned long adr)
315 {
316 	unsigned int val;
317 
318 	if (test_thread_flag(TIF_NOTSC))
319 		val = PR_TSC_SIGSEGV;
320 	else
321 		val = PR_TSC_ENABLE;
322 
323 	return put_user(val, (unsigned int __user *)adr);
324 }
325 
set_tsc_mode(unsigned int val)326 int set_tsc_mode(unsigned int val)
327 {
328 	if (val == PR_TSC_SIGSEGV)
329 		disable_TSC();
330 	else if (val == PR_TSC_ENABLE)
331 		enable_TSC();
332 	else
333 		return -EINVAL;
334 
335 	return 0;
336 }
337 
338 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
339 
set_cpuid_faulting(bool on)340 static void set_cpuid_faulting(bool on)
341 {
342 	u64 msrval;
343 
344 	msrval = this_cpu_read(msr_misc_features_shadow);
345 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
346 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
347 	this_cpu_write(msr_misc_features_shadow, msrval);
348 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
349 }
350 
disable_cpuid(void)351 static void disable_cpuid(void)
352 {
353 	preempt_disable();
354 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
355 		/*
356 		 * Must flip the CPU state synchronously with
357 		 * TIF_NOCPUID in the current running context.
358 		 */
359 		set_cpuid_faulting(true);
360 	}
361 	preempt_enable();
362 }
363 
enable_cpuid(void)364 static void enable_cpuid(void)
365 {
366 	preempt_disable();
367 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
368 		/*
369 		 * Must flip the CPU state synchronously with
370 		 * TIF_NOCPUID in the current running context.
371 		 */
372 		set_cpuid_faulting(false);
373 	}
374 	preempt_enable();
375 }
376 
get_cpuid_mode(void)377 static int get_cpuid_mode(void)
378 {
379 	return !test_thread_flag(TIF_NOCPUID);
380 }
381 
set_cpuid_mode(unsigned long cpuid_enabled)382 static int set_cpuid_mode(unsigned long cpuid_enabled)
383 {
384 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
385 		return -ENODEV;
386 
387 	if (cpuid_enabled)
388 		enable_cpuid();
389 	else
390 		disable_cpuid();
391 
392 	return 0;
393 }
394 
395 /*
396  * Called immediately after a successful exec.
397  */
arch_setup_new_exec(void)398 void arch_setup_new_exec(void)
399 {
400 	/* If cpuid was previously disabled for this task, re-enable it. */
401 	if (test_thread_flag(TIF_NOCPUID))
402 		enable_cpuid();
403 
404 	/*
405 	 * Don't inherit TIF_SSBD across exec boundary when
406 	 * PR_SPEC_DISABLE_NOEXEC is used.
407 	 */
408 	if (test_thread_flag(TIF_SSBD) &&
409 	    task_spec_ssb_noexec(current)) {
410 		clear_thread_flag(TIF_SSBD);
411 		task_clear_spec_ssb_disable(current);
412 		task_clear_spec_ssb_noexec(current);
413 		speculation_ctrl_update(read_thread_flags());
414 	}
415 
416 	mm_reset_untag_mask(current->mm);
417 }
418 
419 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)420 static inline void switch_to_bitmap(unsigned long tifp)
421 {
422 	/*
423 	 * Invalidate I/O bitmap if the previous task used it. This prevents
424 	 * any possible leakage of an active I/O bitmap.
425 	 *
426 	 * If the next task has an I/O bitmap it will handle it on exit to
427 	 * user mode.
428 	 */
429 	if (tifp & _TIF_IO_BITMAP)
430 		tss_invalidate_io_bitmap();
431 }
432 
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)433 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
434 {
435 	/*
436 	 * Copy at least the byte range of the incoming tasks bitmap which
437 	 * covers the permitted I/O ports.
438 	 *
439 	 * If the previous task which used an I/O bitmap had more bits
440 	 * permitted, then the copy needs to cover those as well so they
441 	 * get turned off.
442 	 */
443 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
444 	       max(tss->io_bitmap.prev_max, iobm->max));
445 
446 	/*
447 	 * Store the new max and the sequence number of this bitmap
448 	 * and a pointer to the bitmap itself.
449 	 */
450 	tss->io_bitmap.prev_max = iobm->max;
451 	tss->io_bitmap.prev_sequence = iobm->sequence;
452 }
453 
454 /**
455  * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
456  */
native_tss_update_io_bitmap(void)457 void native_tss_update_io_bitmap(void)
458 {
459 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
460 	struct thread_struct *t = &current->thread;
461 	u16 *base = &tss->x86_tss.io_bitmap_base;
462 
463 	if (!test_thread_flag(TIF_IO_BITMAP)) {
464 		native_tss_invalidate_io_bitmap();
465 		return;
466 	}
467 
468 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
469 		*base = IO_BITMAP_OFFSET_VALID_ALL;
470 	} else {
471 		struct io_bitmap *iobm = t->io_bitmap;
472 
473 		if (WARN_ON_ONCE(!iobm)) {
474 			clear_thread_flag(TIF_IO_BITMAP);
475 			native_tss_invalidate_io_bitmap();
476 		}
477 
478 		/*
479 		 * Only copy bitmap data when the sequence number differs. The
480 		 * update time is accounted to the incoming task.
481 		 */
482 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
483 			tss_copy_io_bitmap(tss, iobm);
484 
485 		/* Enable the bitmap */
486 		*base = IO_BITMAP_OFFSET_VALID_MAP;
487 	}
488 
489 	/*
490 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
491 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
492 	 * access from user space to trigger a #GP because the bitmap is outside
493 	 * the TSS limit.
494 	 */
495 	refresh_tss_limit();
496 }
497 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)498 static inline void switch_to_bitmap(unsigned long tifp) { }
499 #endif
500 
501 #ifdef CONFIG_SMP
502 
503 struct ssb_state {
504 	struct ssb_state	*shared_state;
505 	raw_spinlock_t		lock;
506 	unsigned int		disable_state;
507 	unsigned long		local_state;
508 };
509 
510 #define LSTATE_SSB	0
511 
512 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
513 
speculative_store_bypass_ht_init(void)514 void speculative_store_bypass_ht_init(void)
515 {
516 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
517 	unsigned int this_cpu = smp_processor_id();
518 	unsigned int cpu;
519 
520 	st->local_state = 0;
521 
522 	/*
523 	 * Shared state setup happens once on the first bringup
524 	 * of the CPU. It's not destroyed on CPU hotunplug.
525 	 */
526 	if (st->shared_state)
527 		return;
528 
529 	raw_spin_lock_init(&st->lock);
530 
531 	/*
532 	 * Go over HT siblings and check whether one of them has set up the
533 	 * shared state pointer already.
534 	 */
535 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
536 		if (cpu == this_cpu)
537 			continue;
538 
539 		if (!per_cpu(ssb_state, cpu).shared_state)
540 			continue;
541 
542 		/* Link it to the state of the sibling: */
543 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
544 		return;
545 	}
546 
547 	/*
548 	 * First HT sibling to come up on the core.  Link shared state of
549 	 * the first HT sibling to itself. The siblings on the same core
550 	 * which come up later will see the shared state pointer and link
551 	 * themselves to the state of this CPU.
552 	 */
553 	st->shared_state = st;
554 }
555 
556 /*
557  * Logic is: First HT sibling enables SSBD for both siblings in the core
558  * and last sibling to disable it, disables it for the whole core. This how
559  * MSR_SPEC_CTRL works in "hardware":
560  *
561  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
562  */
amd_set_core_ssb_state(unsigned long tifn)563 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
564 {
565 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
566 	u64 msr = x86_amd_ls_cfg_base;
567 
568 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
569 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
570 		wrmsrl(MSR_AMD64_LS_CFG, msr);
571 		return;
572 	}
573 
574 	if (tifn & _TIF_SSBD) {
575 		/*
576 		 * Since this can race with prctl(), block reentry on the
577 		 * same CPU.
578 		 */
579 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
580 			return;
581 
582 		msr |= x86_amd_ls_cfg_ssbd_mask;
583 
584 		raw_spin_lock(&st->shared_state->lock);
585 		/* First sibling enables SSBD: */
586 		if (!st->shared_state->disable_state)
587 			wrmsrl(MSR_AMD64_LS_CFG, msr);
588 		st->shared_state->disable_state++;
589 		raw_spin_unlock(&st->shared_state->lock);
590 	} else {
591 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
592 			return;
593 
594 		raw_spin_lock(&st->shared_state->lock);
595 		st->shared_state->disable_state--;
596 		if (!st->shared_state->disable_state)
597 			wrmsrl(MSR_AMD64_LS_CFG, msr);
598 		raw_spin_unlock(&st->shared_state->lock);
599 	}
600 }
601 #else
amd_set_core_ssb_state(unsigned long tifn)602 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
603 {
604 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
605 
606 	wrmsrl(MSR_AMD64_LS_CFG, msr);
607 }
608 #endif
609 
amd_set_ssb_virt_state(unsigned long tifn)610 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
611 {
612 	/*
613 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
614 	 * so ssbd_tif_to_spec_ctrl() just works.
615 	 */
616 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
617 }
618 
619 /*
620  * Update the MSRs managing speculation control, during context switch.
621  *
622  * tifp: Previous task's thread flags
623  * tifn: Next task's thread flags
624  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)625 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
626 						      unsigned long tifn)
627 {
628 	unsigned long tif_diff = tifp ^ tifn;
629 	u64 msr = x86_spec_ctrl_base;
630 	bool updmsr = false;
631 
632 	lockdep_assert_irqs_disabled();
633 
634 	/* Handle change of TIF_SSBD depending on the mitigation method. */
635 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
636 		if (tif_diff & _TIF_SSBD)
637 			amd_set_ssb_virt_state(tifn);
638 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
639 		if (tif_diff & _TIF_SSBD)
640 			amd_set_core_ssb_state(tifn);
641 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
642 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
643 		updmsr |= !!(tif_diff & _TIF_SSBD);
644 		msr |= ssbd_tif_to_spec_ctrl(tifn);
645 	}
646 
647 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
648 	if (IS_ENABLED(CONFIG_SMP) &&
649 	    static_branch_unlikely(&switch_to_cond_stibp)) {
650 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
651 		msr |= stibp_tif_to_spec_ctrl(tifn);
652 	}
653 
654 	if (updmsr)
655 		update_spec_ctrl_cond(msr);
656 }
657 
speculation_ctrl_update_tif(struct task_struct * tsk)658 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
659 {
660 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
661 		if (task_spec_ssb_disable(tsk))
662 			set_tsk_thread_flag(tsk, TIF_SSBD);
663 		else
664 			clear_tsk_thread_flag(tsk, TIF_SSBD);
665 
666 		if (task_spec_ib_disable(tsk))
667 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
668 		else
669 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
670 	}
671 	/* Return the updated threadinfo flags*/
672 	return read_task_thread_flags(tsk);
673 }
674 
speculation_ctrl_update(unsigned long tif)675 void speculation_ctrl_update(unsigned long tif)
676 {
677 	unsigned long flags;
678 
679 	/* Forced update. Make sure all relevant TIF flags are different */
680 	local_irq_save(flags);
681 	__speculation_ctrl_update(~tif, tif);
682 	local_irq_restore(flags);
683 }
684 
685 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)686 void speculation_ctrl_update_current(void)
687 {
688 	preempt_disable();
689 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
690 	preempt_enable();
691 }
692 
cr4_toggle_bits_irqsoff(unsigned long mask)693 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
694 {
695 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
696 
697 	newval = cr4 ^ mask;
698 	if (newval != cr4) {
699 		this_cpu_write(cpu_tlbstate.cr4, newval);
700 		__write_cr4(newval);
701 	}
702 }
703 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)704 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
705 {
706 	unsigned long tifp, tifn;
707 
708 	tifn = read_task_thread_flags(next_p);
709 	tifp = read_task_thread_flags(prev_p);
710 
711 	switch_to_bitmap(tifp);
712 
713 	propagate_user_return_notify(prev_p, next_p);
714 
715 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
716 	    arch_has_block_step()) {
717 		unsigned long debugctl, msk;
718 
719 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
720 		debugctl &= ~DEBUGCTLMSR_BTF;
721 		msk = tifn & _TIF_BLOCKSTEP;
722 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
723 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
724 	}
725 
726 	if ((tifp ^ tifn) & _TIF_NOTSC)
727 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
728 
729 	if ((tifp ^ tifn) & _TIF_NOCPUID)
730 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
731 
732 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
733 		__speculation_ctrl_update(tifp, tifn);
734 	} else {
735 		speculation_ctrl_update_tif(prev_p);
736 		tifn = speculation_ctrl_update_tif(next_p);
737 
738 		/* Enforce MSR update to ensure consistent state */
739 		__speculation_ctrl_update(~tifn, tifn);
740 	}
741 }
742 
743 /*
744  * Idle related variables and functions
745  */
746 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
747 EXPORT_SYMBOL(boot_option_idle_override);
748 
749 /*
750  * We use this if we don't have any better idle routine..
751  */
default_idle(void)752 void __cpuidle default_idle(void)
753 {
754 	raw_safe_halt();
755 	raw_local_irq_disable();
756 }
757 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
758 EXPORT_SYMBOL(default_idle);
759 #endif
760 
761 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
762 
x86_idle_set(void)763 static bool x86_idle_set(void)
764 {
765 	return !!static_call_query(x86_idle);
766 }
767 
768 #ifndef CONFIG_SMP
play_dead(void)769 static inline void __noreturn play_dead(void)
770 {
771 	BUG();
772 }
773 #endif
774 
arch_cpu_idle_enter(void)775 void arch_cpu_idle_enter(void)
776 {
777 	tsc_verify_tsc_adjust(false);
778 	local_touch_nmi();
779 }
780 
arch_cpu_idle_dead(void)781 void __noreturn arch_cpu_idle_dead(void)
782 {
783 	play_dead();
784 }
785 
786 /*
787  * Called from the generic idle code.
788  */
arch_cpu_idle(void)789 void __cpuidle arch_cpu_idle(void)
790 {
791 	static_call(x86_idle)();
792 }
793 EXPORT_SYMBOL_GPL(arch_cpu_idle);
794 
795 #ifdef CONFIG_XEN
xen_set_default_idle(void)796 bool xen_set_default_idle(void)
797 {
798 	bool ret = x86_idle_set();
799 
800 	static_call_update(x86_idle, default_idle);
801 
802 	return ret;
803 }
804 #endif
805 
806 struct cpumask cpus_stop_mask;
807 
stop_this_cpu(void * dummy)808 void __noreturn stop_this_cpu(void *dummy)
809 {
810 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
811 	unsigned int cpu = smp_processor_id();
812 
813 	local_irq_disable();
814 
815 	/*
816 	 * Remove this CPU from the online mask and disable it
817 	 * unconditionally. This might be redundant in case that the reboot
818 	 * vector was handled late and stop_other_cpus() sent an NMI.
819 	 *
820 	 * According to SDM and APM NMIs can be accepted even after soft
821 	 * disabling the local APIC.
822 	 */
823 	set_cpu_online(cpu, false);
824 	disable_local_APIC();
825 	mcheck_cpu_clear(c);
826 
827 	/*
828 	 * Use wbinvd on processors that support SME. This provides support
829 	 * for performing a successful kexec when going from SME inactive
830 	 * to SME active (or vice-versa). The cache must be cleared so that
831 	 * if there are entries with the same physical address, both with and
832 	 * without the encryption bit, they don't race each other when flushed
833 	 * and potentially end up with the wrong entry being committed to
834 	 * memory.
835 	 *
836 	 * Test the CPUID bit directly because the machine might've cleared
837 	 * X86_FEATURE_SME due to cmdline options.
838 	 */
839 	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
840 		native_wbinvd();
841 
842 	/*
843 	 * This brings a cache line back and dirties it, but
844 	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
845 	 * observed that all CPUs reported stop. This write will invalidate
846 	 * the related cache line on this CPU.
847 	 */
848 	cpumask_clear_cpu(cpu, &cpus_stop_mask);
849 
850 #ifdef CONFIG_SMP
851 	if (smp_ops.stop_this_cpu) {
852 		smp_ops.stop_this_cpu();
853 		BUG();
854 	}
855 #endif
856 
857 	for (;;) {
858 		/*
859 		 * Use native_halt() so that memory contents don't change
860 		 * (stack usage and variables) after possibly issuing the
861 		 * native_wbinvd() above.
862 		 */
863 		native_halt();
864 	}
865 }
866 
867 /*
868  * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
869  * exists and whenever MONITOR/MWAIT extensions are present there is at
870  * least one C1 substate.
871  *
872  * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
873  * is passed to kernel commandline parameter.
874  */
prefer_mwait_c1_over_halt(void)875 static __init bool prefer_mwait_c1_over_halt(void)
876 {
877 	const struct cpuinfo_x86 *c = &boot_cpu_data;
878 	u32 eax, ebx, ecx, edx;
879 
880 	/* If override is enforced on the command line, fall back to HALT. */
881 	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
882 		return false;
883 
884 	/* MWAIT is not supported on this platform. Fallback to HALT */
885 	if (!cpu_has(c, X86_FEATURE_MWAIT))
886 		return false;
887 
888 	/* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
889 	if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
890 		return false;
891 
892 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
893 
894 	/*
895 	 * If MWAIT extensions are not available, it is safe to use MWAIT
896 	 * with EAX=0, ECX=0.
897 	 */
898 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
899 		return true;
900 
901 	/*
902 	 * If MWAIT extensions are available, there should be at least one
903 	 * MWAIT C1 substate present.
904 	 */
905 	return !!(edx & MWAIT_C1_SUBSTATE_MASK);
906 }
907 
908 /*
909  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
910  * with interrupts enabled and no flags, which is backwards compatible with the
911  * original MWAIT implementation.
912  */
mwait_idle(void)913 static __cpuidle void mwait_idle(void)
914 {
915 	if (need_resched())
916 		return;
917 
918 	x86_idle_clear_cpu_buffers();
919 
920 	if (!current_set_polling_and_test()) {
921 		const void *addr = &current_thread_info()->flags;
922 
923 		alternative_input("", "clflush (%[addr])", X86_BUG_CLFLUSH_MONITOR, [addr] "a" (addr));
924 		__monitor(addr, 0, 0);
925 		if (need_resched())
926 			goto out;
927 
928 		__sti_mwait(0, 0);
929 		raw_local_irq_disable();
930 	}
931 
932 out:
933 	__current_clr_polling();
934 }
935 
select_idle_routine(void)936 void __init select_idle_routine(void)
937 {
938 	if (boot_option_idle_override == IDLE_POLL) {
939 		if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
940 			pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
941 		return;
942 	}
943 
944 	/* Required to guard against xen_set_default_idle() */
945 	if (x86_idle_set())
946 		return;
947 
948 	if (prefer_mwait_c1_over_halt()) {
949 		pr_info("using mwait in idle threads\n");
950 		static_call_update(x86_idle, mwait_idle);
951 	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
952 		pr_info("using TDX aware idle routine\n");
953 		static_call_update(x86_idle, tdx_halt);
954 	} else {
955 		static_call_update(x86_idle, default_idle);
956 	}
957 }
958 
amd_e400_c1e_apic_setup(void)959 void amd_e400_c1e_apic_setup(void)
960 {
961 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
962 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
963 		local_irq_disable();
964 		tick_broadcast_force();
965 		local_irq_enable();
966 	}
967 }
968 
arch_post_acpi_subsys_init(void)969 void __init arch_post_acpi_subsys_init(void)
970 {
971 	u32 lo, hi;
972 
973 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
974 		return;
975 
976 	/*
977 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
978 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
979 	 * MSR_K8_INT_PENDING_MSG.
980 	 */
981 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
982 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
983 		return;
984 
985 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
986 
987 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
988 		mark_tsc_unstable("TSC halt in AMD C1E");
989 
990 	if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
991 		static_branch_enable(&arch_needs_tick_broadcast);
992 	pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
993 }
994 
idle_setup(char * str)995 static int __init idle_setup(char *str)
996 {
997 	if (!str)
998 		return -EINVAL;
999 
1000 	if (!strcmp(str, "poll")) {
1001 		pr_info("using polling idle threads\n");
1002 		boot_option_idle_override = IDLE_POLL;
1003 		cpu_idle_poll_ctrl(true);
1004 	} else if (!strcmp(str, "halt")) {
1005 		/* 'idle=halt' HALT for idle. C-states are disabled. */
1006 		boot_option_idle_override = IDLE_HALT;
1007 	} else if (!strcmp(str, "nomwait")) {
1008 		/* 'idle=nomwait' disables MWAIT for idle */
1009 		boot_option_idle_override = IDLE_NOMWAIT;
1010 	} else {
1011 		return -EINVAL;
1012 	}
1013 
1014 	return 0;
1015 }
1016 early_param("idle", idle_setup);
1017 
arch_align_stack(unsigned long sp)1018 unsigned long arch_align_stack(unsigned long sp)
1019 {
1020 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1021 		sp -= get_random_u32_below(__PAGE_SIZE << 1);
1022 	return sp & ~0xf;
1023 }
1024 
arch_randomize_brk(struct mm_struct * mm)1025 unsigned long arch_randomize_brk(struct mm_struct *mm)
1026 {
1027 	if (mmap_is_ia32())
1028 		return randomize_page(mm->brk, SZ_32M);
1029 
1030 	return randomize_page(mm->brk, SZ_1G);
1031 }
1032 
1033 /*
1034  * Called from fs/proc with a reference on @p to find the function
1035  * which called into schedule(). This needs to be done carefully
1036  * because the task might wake up and we might look at a stack
1037  * changing under us.
1038  */
__get_wchan(struct task_struct * p)1039 unsigned long __get_wchan(struct task_struct *p)
1040 {
1041 	struct unwind_state state;
1042 	unsigned long addr = 0;
1043 
1044 	if (!try_get_task_stack(p))
1045 		return 0;
1046 
1047 	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1048 	     unwind_next_frame(&state)) {
1049 		addr = unwind_get_return_address(&state);
1050 		if (!addr)
1051 			break;
1052 		if (in_sched_functions(addr))
1053 			continue;
1054 		break;
1055 	}
1056 
1057 	put_task_stack(p);
1058 
1059 	return addr;
1060 }
1061 
do_arch_prctl_common(int option,unsigned long arg2)1062 long do_arch_prctl_common(int option, unsigned long arg2)
1063 {
1064 	switch (option) {
1065 	case ARCH_GET_CPUID:
1066 		return get_cpuid_mode();
1067 	case ARCH_SET_CPUID:
1068 		return set_cpuid_mode(arg2);
1069 	case ARCH_GET_XCOMP_SUPP:
1070 	case ARCH_GET_XCOMP_PERM:
1071 	case ARCH_REQ_XCOMP_PERM:
1072 	case ARCH_GET_XCOMP_GUEST_PERM:
1073 	case ARCH_REQ_XCOMP_GUEST_PERM:
1074 		return fpu_xstate_prctl(option, arg2);
1075 	}
1076 
1077 	return -EINVAL;
1078 }
1079