1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * IP multicast routing support for mrouted 3.6/3.8
4 *
5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6 * Linux Consultancy and Custom Driver Development
7 *
8 * Fixes:
9 * Michael Chastain : Incorrect size of copying.
10 * Alan Cox : Added the cache manager code
11 * Alan Cox : Fixed the clone/copy bug and device race.
12 * Mike McLagan : Routing by source
13 * Malcolm Beattie : Buffer handling fixes.
14 * Alexey Kuznetsov : Double buffer free and other fixes.
15 * SVR Anand : Fixed several multicast bugs and problems.
16 * Alexey Kuznetsov : Status, optimisations and more.
17 * Brad Parker : Better behaviour on mrouted upcall
18 * overflow.
19 * Carlos Picoto : PIMv1 Support
20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
21 * Relax this requirement to work with older peers.
22 */
23
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65 #include <net/inet_dscp.h>
66
67 #include <linux/nospec.h>
68
69 struct ipmr_rule {
70 struct fib_rule common;
71 };
72
73 struct ipmr_result {
74 struct mr_table *mrt;
75 };
76
77 /* Big lock, protecting vif table, mrt cache and mroute socket state.
78 * Note that the changes are semaphored via rtnl_lock.
79 */
80
81 static DEFINE_SPINLOCK(mrt_lock);
82
vif_dev_read(const struct vif_device * vif)83 static struct net_device *vif_dev_read(const struct vif_device *vif)
84 {
85 return rcu_dereference(vif->dev);
86 }
87
88 /* Multicast router control variables */
89
90 /* Special spinlock for queue of unresolved entries */
91 static DEFINE_SPINLOCK(mfc_unres_lock);
92
93 /* We return to original Alan's scheme. Hash table of resolved
94 * entries is changed only in process context and protected
95 * with weak lock mrt_lock. Queue of unresolved entries is protected
96 * with strong spinlock mfc_unres_lock.
97 *
98 * In this case data path is free of exclusive locks at all.
99 */
100
101 static struct kmem_cache *mrt_cachep __ro_after_init;
102
103 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
104 static void ipmr_free_table(struct mr_table *mrt);
105
106 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
107 struct net_device *dev, struct sk_buff *skb,
108 struct mfc_cache *cache, int local);
109 static int ipmr_cache_report(const struct mr_table *mrt,
110 struct sk_buff *pkt, vifi_t vifi, int assert);
111 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
112 int cmd);
113 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
114 static void mroute_clean_tables(struct mr_table *mrt, int flags);
115 static void ipmr_expire_process(struct timer_list *t);
116
117 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
118 #define ipmr_for_each_table(mrt, net) \
119 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \
120 lockdep_rtnl_is_held() || \
121 list_empty(&net->ipv4.mr_tables))
122
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)123 static struct mr_table *ipmr_mr_table_iter(struct net *net,
124 struct mr_table *mrt)
125 {
126 struct mr_table *ret;
127
128 if (!mrt)
129 ret = list_entry_rcu(net->ipv4.mr_tables.next,
130 struct mr_table, list);
131 else
132 ret = list_entry_rcu(mrt->list.next,
133 struct mr_table, list);
134
135 if (&ret->list == &net->ipv4.mr_tables)
136 return NULL;
137 return ret;
138 }
139
__ipmr_get_table(struct net * net,u32 id)140 static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
141 {
142 struct mr_table *mrt;
143
144 ipmr_for_each_table(mrt, net) {
145 if (mrt->id == id)
146 return mrt;
147 }
148 return NULL;
149 }
150
ipmr_get_table(struct net * net,u32 id)151 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
152 {
153 struct mr_table *mrt;
154
155 rcu_read_lock();
156 mrt = __ipmr_get_table(net, id);
157 rcu_read_unlock();
158 return mrt;
159 }
160
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)161 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
162 struct mr_table **mrt)
163 {
164 int err;
165 struct ipmr_result res;
166 struct fib_lookup_arg arg = {
167 .result = &res,
168 .flags = FIB_LOOKUP_NOREF,
169 };
170
171 /* update flow if oif or iif point to device enslaved to l3mdev */
172 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
173
174 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
175 flowi4_to_flowi(flp4), 0, &arg);
176 if (err < 0)
177 return err;
178 *mrt = res.mrt;
179 return 0;
180 }
181
ipmr_rule_action(struct fib_rule * rule,struct flowi * flp,int flags,struct fib_lookup_arg * arg)182 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
183 int flags, struct fib_lookup_arg *arg)
184 {
185 struct ipmr_result *res = arg->result;
186 struct mr_table *mrt;
187
188 switch (rule->action) {
189 case FR_ACT_TO_TBL:
190 break;
191 case FR_ACT_UNREACHABLE:
192 return -ENETUNREACH;
193 case FR_ACT_PROHIBIT:
194 return -EACCES;
195 case FR_ACT_BLACKHOLE:
196 default:
197 return -EINVAL;
198 }
199
200 arg->table = fib_rule_get_table(rule, arg);
201
202 mrt = __ipmr_get_table(rule->fr_net, arg->table);
203 if (!mrt)
204 return -EAGAIN;
205 res->mrt = mrt;
206 return 0;
207 }
208
ipmr_rule_match(struct fib_rule * rule,struct flowi * fl,int flags)209 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
210 {
211 return 1;
212 }
213
ipmr_rule_configure(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh,struct nlattr ** tb,struct netlink_ext_ack * extack)214 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
215 struct fib_rule_hdr *frh, struct nlattr **tb,
216 struct netlink_ext_ack *extack)
217 {
218 return 0;
219 }
220
ipmr_rule_compare(struct fib_rule * rule,struct fib_rule_hdr * frh,struct nlattr ** tb)221 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
222 struct nlattr **tb)
223 {
224 return 1;
225 }
226
ipmr_rule_fill(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh)227 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
228 struct fib_rule_hdr *frh)
229 {
230 frh->dst_len = 0;
231 frh->src_len = 0;
232 frh->tos = 0;
233 return 0;
234 }
235
236 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
237 .family = RTNL_FAMILY_IPMR,
238 .rule_size = sizeof(struct ipmr_rule),
239 .addr_size = sizeof(u32),
240 .action = ipmr_rule_action,
241 .match = ipmr_rule_match,
242 .configure = ipmr_rule_configure,
243 .compare = ipmr_rule_compare,
244 .fill = ipmr_rule_fill,
245 .nlgroup = RTNLGRP_IPV4_RULE,
246 .owner = THIS_MODULE,
247 };
248
ipmr_rules_init(struct net * net)249 static int __net_init ipmr_rules_init(struct net *net)
250 {
251 struct fib_rules_ops *ops;
252 struct mr_table *mrt;
253 int err;
254
255 ops = fib_rules_register(&ipmr_rules_ops_template, net);
256 if (IS_ERR(ops))
257 return PTR_ERR(ops);
258
259 INIT_LIST_HEAD(&net->ipv4.mr_tables);
260
261 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
262 if (IS_ERR(mrt)) {
263 err = PTR_ERR(mrt);
264 goto err1;
265 }
266
267 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
268 if (err < 0)
269 goto err2;
270
271 net->ipv4.mr_rules_ops = ops;
272 return 0;
273
274 err2:
275 rtnl_lock();
276 ipmr_free_table(mrt);
277 rtnl_unlock();
278 err1:
279 fib_rules_unregister(ops);
280 return err;
281 }
282
ipmr_rules_exit(struct net * net)283 static void __net_exit ipmr_rules_exit(struct net *net)
284 {
285 struct mr_table *mrt, *next;
286
287 ASSERT_RTNL();
288 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
289 list_del(&mrt->list);
290 ipmr_free_table(mrt);
291 }
292 fib_rules_unregister(net->ipv4.mr_rules_ops);
293 }
294
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)295 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
296 struct netlink_ext_ack *extack)
297 {
298 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
299 }
300
ipmr_rules_seq_read(struct net * net)301 static unsigned int ipmr_rules_seq_read(struct net *net)
302 {
303 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
304 }
305
ipmr_rule_default(const struct fib_rule * rule)306 bool ipmr_rule_default(const struct fib_rule *rule)
307 {
308 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
309 }
310 EXPORT_SYMBOL(ipmr_rule_default);
311 #else
312 #define ipmr_for_each_table(mrt, net) \
313 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
314
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)315 static struct mr_table *ipmr_mr_table_iter(struct net *net,
316 struct mr_table *mrt)
317 {
318 if (!mrt)
319 return net->ipv4.mrt;
320 return NULL;
321 }
322
ipmr_get_table(struct net * net,u32 id)323 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
324 {
325 return net->ipv4.mrt;
326 }
327
328 #define __ipmr_get_table ipmr_get_table
329
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)330 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
331 struct mr_table **mrt)
332 {
333 *mrt = net->ipv4.mrt;
334 return 0;
335 }
336
ipmr_rules_init(struct net * net)337 static int __net_init ipmr_rules_init(struct net *net)
338 {
339 struct mr_table *mrt;
340
341 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
342 if (IS_ERR(mrt))
343 return PTR_ERR(mrt);
344 net->ipv4.mrt = mrt;
345 return 0;
346 }
347
ipmr_rules_exit(struct net * net)348 static void __net_exit ipmr_rules_exit(struct net *net)
349 {
350 ASSERT_RTNL();
351 ipmr_free_table(net->ipv4.mrt);
352 net->ipv4.mrt = NULL;
353 }
354
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)355 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
356 struct netlink_ext_ack *extack)
357 {
358 return 0;
359 }
360
ipmr_rules_seq_read(struct net * net)361 static unsigned int ipmr_rules_seq_read(struct net *net)
362 {
363 return 0;
364 }
365
ipmr_rule_default(const struct fib_rule * rule)366 bool ipmr_rule_default(const struct fib_rule *rule)
367 {
368 return true;
369 }
370 EXPORT_SYMBOL(ipmr_rule_default);
371 #endif
372
ipmr_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)373 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
374 const void *ptr)
375 {
376 const struct mfc_cache_cmp_arg *cmparg = arg->key;
377 const struct mfc_cache *c = ptr;
378
379 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
380 cmparg->mfc_origin != c->mfc_origin;
381 }
382
383 static const struct rhashtable_params ipmr_rht_params = {
384 .head_offset = offsetof(struct mr_mfc, mnode),
385 .key_offset = offsetof(struct mfc_cache, cmparg),
386 .key_len = sizeof(struct mfc_cache_cmp_arg),
387 .nelem_hint = 3,
388 .obj_cmpfn = ipmr_hash_cmp,
389 .automatic_shrinking = true,
390 };
391
ipmr_new_table_set(struct mr_table * mrt,struct net * net)392 static void ipmr_new_table_set(struct mr_table *mrt,
393 struct net *net)
394 {
395 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
396 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
397 #endif
398 }
399
400 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
401 .mfc_mcastgrp = htonl(INADDR_ANY),
402 .mfc_origin = htonl(INADDR_ANY),
403 };
404
405 static struct mr_table_ops ipmr_mr_table_ops = {
406 .rht_params = &ipmr_rht_params,
407 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
408 };
409
ipmr_new_table(struct net * net,u32 id)410 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
411 {
412 struct mr_table *mrt;
413
414 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
415 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
416 return ERR_PTR(-EINVAL);
417
418 mrt = __ipmr_get_table(net, id);
419 if (mrt)
420 return mrt;
421
422 return mr_table_alloc(net, id, &ipmr_mr_table_ops,
423 ipmr_expire_process, ipmr_new_table_set);
424 }
425
ipmr_free_table(struct mr_table * mrt)426 static void ipmr_free_table(struct mr_table *mrt)
427 {
428 timer_shutdown_sync(&mrt->ipmr_expire_timer);
429 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
430 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
431 rhltable_destroy(&mrt->mfc_hash);
432 kfree(mrt);
433 }
434
435 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
436
437 /* Initialize ipmr pimreg/tunnel in_device */
ipmr_init_vif_indev(const struct net_device * dev)438 static bool ipmr_init_vif_indev(const struct net_device *dev)
439 {
440 struct in_device *in_dev;
441
442 ASSERT_RTNL();
443
444 in_dev = __in_dev_get_rtnl(dev);
445 if (!in_dev)
446 return false;
447 ipv4_devconf_setall(in_dev);
448 neigh_parms_data_state_setall(in_dev->arp_parms);
449 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
450
451 return true;
452 }
453
ipmr_new_tunnel(struct net * net,struct vifctl * v)454 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
455 {
456 struct net_device *tunnel_dev, *new_dev;
457 struct ip_tunnel_parm_kern p = { };
458 int err;
459
460 tunnel_dev = __dev_get_by_name(net, "tunl0");
461 if (!tunnel_dev)
462 goto out;
463
464 p.iph.daddr = v->vifc_rmt_addr.s_addr;
465 p.iph.saddr = v->vifc_lcl_addr.s_addr;
466 p.iph.version = 4;
467 p.iph.ihl = 5;
468 p.iph.protocol = IPPROTO_IPIP;
469 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
470
471 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
472 goto out;
473 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
474 SIOCADDTUNNEL);
475 if (err)
476 goto out;
477
478 new_dev = __dev_get_by_name(net, p.name);
479 if (!new_dev)
480 goto out;
481
482 new_dev->flags |= IFF_MULTICAST;
483 if (!ipmr_init_vif_indev(new_dev))
484 goto out_unregister;
485 if (dev_open(new_dev, NULL))
486 goto out_unregister;
487 dev_hold(new_dev);
488 err = dev_set_allmulti(new_dev, 1);
489 if (err) {
490 dev_close(new_dev);
491 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
492 SIOCDELTUNNEL);
493 dev_put(new_dev);
494 new_dev = ERR_PTR(err);
495 }
496 return new_dev;
497
498 out_unregister:
499 unregister_netdevice(new_dev);
500 out:
501 return ERR_PTR(-ENOBUFS);
502 }
503
504 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
reg_vif_xmit(struct sk_buff * skb,struct net_device * dev)505 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
506 {
507 struct net *net = dev_net(dev);
508 struct mr_table *mrt;
509 struct flowi4 fl4 = {
510 .flowi4_oif = dev->ifindex,
511 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
512 .flowi4_mark = skb->mark,
513 };
514 int err;
515
516 err = ipmr_fib_lookup(net, &fl4, &mrt);
517 if (err < 0) {
518 kfree_skb(skb);
519 return err;
520 }
521
522 DEV_STATS_ADD(dev, tx_bytes, skb->len);
523 DEV_STATS_INC(dev, tx_packets);
524 rcu_read_lock();
525
526 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
527 ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
528 IGMPMSG_WHOLEPKT);
529
530 rcu_read_unlock();
531 kfree_skb(skb);
532 return NETDEV_TX_OK;
533 }
534
reg_vif_get_iflink(const struct net_device * dev)535 static int reg_vif_get_iflink(const struct net_device *dev)
536 {
537 return 0;
538 }
539
540 static const struct net_device_ops reg_vif_netdev_ops = {
541 .ndo_start_xmit = reg_vif_xmit,
542 .ndo_get_iflink = reg_vif_get_iflink,
543 };
544
reg_vif_setup(struct net_device * dev)545 static void reg_vif_setup(struct net_device *dev)
546 {
547 dev->type = ARPHRD_PIMREG;
548 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
549 dev->flags = IFF_NOARP;
550 dev->netdev_ops = ®_vif_netdev_ops;
551 dev->needs_free_netdev = true;
552 dev->netns_local = true;
553 }
554
ipmr_reg_vif(struct net * net,struct mr_table * mrt)555 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
556 {
557 struct net_device *dev;
558 char name[IFNAMSIZ];
559
560 if (mrt->id == RT_TABLE_DEFAULT)
561 sprintf(name, "pimreg");
562 else
563 sprintf(name, "pimreg%u", mrt->id);
564
565 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
566
567 if (!dev)
568 return NULL;
569
570 dev_net_set(dev, net);
571
572 if (register_netdevice(dev)) {
573 free_netdev(dev);
574 return NULL;
575 }
576
577 if (!ipmr_init_vif_indev(dev))
578 goto failure;
579 if (dev_open(dev, NULL))
580 goto failure;
581
582 dev_hold(dev);
583
584 return dev;
585
586 failure:
587 unregister_netdevice(dev);
588 return NULL;
589 }
590
591 /* called with rcu_read_lock() */
__pim_rcv(struct mr_table * mrt,struct sk_buff * skb,unsigned int pimlen)592 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
593 unsigned int pimlen)
594 {
595 struct net_device *reg_dev = NULL;
596 struct iphdr *encap;
597 int vif_num;
598
599 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
600 /* Check that:
601 * a. packet is really sent to a multicast group
602 * b. packet is not a NULL-REGISTER
603 * c. packet is not truncated
604 */
605 if (!ipv4_is_multicast(encap->daddr) ||
606 encap->tot_len == 0 ||
607 ntohs(encap->tot_len) + pimlen > skb->len)
608 return 1;
609
610 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
611 vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
612 if (vif_num >= 0)
613 reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
614 if (!reg_dev)
615 return 1;
616
617 skb->mac_header = skb->network_header;
618 skb_pull(skb, (u8 *)encap - skb->data);
619 skb_reset_network_header(skb);
620 skb->protocol = htons(ETH_P_IP);
621 skb->ip_summed = CHECKSUM_NONE;
622
623 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
624
625 netif_rx(skb);
626
627 return NET_RX_SUCCESS;
628 }
629 #else
ipmr_reg_vif(struct net * net,struct mr_table * mrt)630 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
631 {
632 return NULL;
633 }
634 #endif
635
call_ipmr_vif_entry_notifiers(struct net * net,enum fib_event_type event_type,struct vif_device * vif,struct net_device * vif_dev,vifi_t vif_index,u32 tb_id)636 static int call_ipmr_vif_entry_notifiers(struct net *net,
637 enum fib_event_type event_type,
638 struct vif_device *vif,
639 struct net_device *vif_dev,
640 vifi_t vif_index, u32 tb_id)
641 {
642 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
643 vif, vif_dev, vif_index, tb_id,
644 &net->ipv4.ipmr_seq);
645 }
646
call_ipmr_mfc_entry_notifiers(struct net * net,enum fib_event_type event_type,struct mfc_cache * mfc,u32 tb_id)647 static int call_ipmr_mfc_entry_notifiers(struct net *net,
648 enum fib_event_type event_type,
649 struct mfc_cache *mfc, u32 tb_id)
650 {
651 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
652 &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
653 }
654
655 /**
656 * vif_delete - Delete a VIF entry
657 * @mrt: Table to delete from
658 * @vifi: VIF identifier to delete
659 * @notify: Set to 1, if the caller is a notifier_call
660 * @head: if unregistering the VIF, place it on this queue
661 */
vif_delete(struct mr_table * mrt,int vifi,int notify,struct list_head * head)662 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
663 struct list_head *head)
664 {
665 struct net *net = read_pnet(&mrt->net);
666 struct vif_device *v;
667 struct net_device *dev;
668 struct in_device *in_dev;
669
670 if (vifi < 0 || vifi >= mrt->maxvif)
671 return -EADDRNOTAVAIL;
672
673 v = &mrt->vif_table[vifi];
674
675 dev = rtnl_dereference(v->dev);
676 if (!dev)
677 return -EADDRNOTAVAIL;
678
679 spin_lock(&mrt_lock);
680 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
681 vifi, mrt->id);
682 RCU_INIT_POINTER(v->dev, NULL);
683
684 if (vifi == mrt->mroute_reg_vif_num) {
685 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
686 WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
687 }
688 if (vifi + 1 == mrt->maxvif) {
689 int tmp;
690
691 for (tmp = vifi - 1; tmp >= 0; tmp--) {
692 if (VIF_EXISTS(mrt, tmp))
693 break;
694 }
695 WRITE_ONCE(mrt->maxvif, tmp + 1);
696 }
697
698 spin_unlock(&mrt_lock);
699
700 dev_set_allmulti(dev, -1);
701
702 in_dev = __in_dev_get_rtnl(dev);
703 if (in_dev) {
704 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
705 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
706 NETCONFA_MC_FORWARDING,
707 dev->ifindex, &in_dev->cnf);
708 ip_rt_multicast_event(in_dev);
709 }
710
711 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
712 unregister_netdevice_queue(dev, head);
713
714 netdev_put(dev, &v->dev_tracker);
715 return 0;
716 }
717
ipmr_cache_free_rcu(struct rcu_head * head)718 static void ipmr_cache_free_rcu(struct rcu_head *head)
719 {
720 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
721
722 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
723 }
724
ipmr_cache_free(struct mfc_cache * c)725 static void ipmr_cache_free(struct mfc_cache *c)
726 {
727 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
728 }
729
730 /* Destroy an unresolved cache entry, killing queued skbs
731 * and reporting error to netlink readers.
732 */
ipmr_destroy_unres(struct mr_table * mrt,struct mfc_cache * c)733 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
734 {
735 struct net *net = read_pnet(&mrt->net);
736 struct sk_buff *skb;
737 struct nlmsgerr *e;
738
739 atomic_dec(&mrt->cache_resolve_queue_len);
740
741 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
742 if (ip_hdr(skb)->version == 0) {
743 struct nlmsghdr *nlh = skb_pull(skb,
744 sizeof(struct iphdr));
745 nlh->nlmsg_type = NLMSG_ERROR;
746 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
747 skb_trim(skb, nlh->nlmsg_len);
748 e = nlmsg_data(nlh);
749 e->error = -ETIMEDOUT;
750 memset(&e->msg, 0, sizeof(e->msg));
751
752 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
753 } else {
754 kfree_skb(skb);
755 }
756 }
757
758 ipmr_cache_free(c);
759 }
760
761 /* Timer process for the unresolved queue. */
ipmr_expire_process(struct timer_list * t)762 static void ipmr_expire_process(struct timer_list *t)
763 {
764 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
765 struct mr_mfc *c, *next;
766 unsigned long expires;
767 unsigned long now;
768
769 if (!spin_trylock(&mfc_unres_lock)) {
770 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
771 return;
772 }
773
774 if (list_empty(&mrt->mfc_unres_queue))
775 goto out;
776
777 now = jiffies;
778 expires = 10*HZ;
779
780 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
781 if (time_after(c->mfc_un.unres.expires, now)) {
782 unsigned long interval = c->mfc_un.unres.expires - now;
783 if (interval < expires)
784 expires = interval;
785 continue;
786 }
787
788 list_del(&c->list);
789 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
790 ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
791 }
792
793 if (!list_empty(&mrt->mfc_unres_queue))
794 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
795
796 out:
797 spin_unlock(&mfc_unres_lock);
798 }
799
800 /* Fill oifs list. It is called under locked mrt_lock. */
ipmr_update_thresholds(struct mr_table * mrt,struct mr_mfc * cache,unsigned char * ttls)801 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
802 unsigned char *ttls)
803 {
804 int vifi;
805
806 cache->mfc_un.res.minvif = MAXVIFS;
807 cache->mfc_un.res.maxvif = 0;
808 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
809
810 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
811 if (VIF_EXISTS(mrt, vifi) &&
812 ttls[vifi] && ttls[vifi] < 255) {
813 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
814 if (cache->mfc_un.res.minvif > vifi)
815 cache->mfc_un.res.minvif = vifi;
816 if (cache->mfc_un.res.maxvif <= vifi)
817 cache->mfc_un.res.maxvif = vifi + 1;
818 }
819 }
820 WRITE_ONCE(cache->mfc_un.res.lastuse, jiffies);
821 }
822
vif_add(struct net * net,struct mr_table * mrt,struct vifctl * vifc,int mrtsock)823 static int vif_add(struct net *net, struct mr_table *mrt,
824 struct vifctl *vifc, int mrtsock)
825 {
826 struct netdev_phys_item_id ppid = { };
827 int vifi = vifc->vifc_vifi;
828 struct vif_device *v = &mrt->vif_table[vifi];
829 struct net_device *dev;
830 struct in_device *in_dev;
831 int err;
832
833 /* Is vif busy ? */
834 if (VIF_EXISTS(mrt, vifi))
835 return -EADDRINUSE;
836
837 switch (vifc->vifc_flags) {
838 case VIFF_REGISTER:
839 if (!ipmr_pimsm_enabled())
840 return -EINVAL;
841 /* Special Purpose VIF in PIM
842 * All the packets will be sent to the daemon
843 */
844 if (mrt->mroute_reg_vif_num >= 0)
845 return -EADDRINUSE;
846 dev = ipmr_reg_vif(net, mrt);
847 if (!dev)
848 return -ENOBUFS;
849 err = dev_set_allmulti(dev, 1);
850 if (err) {
851 unregister_netdevice(dev);
852 dev_put(dev);
853 return err;
854 }
855 break;
856 case VIFF_TUNNEL:
857 dev = ipmr_new_tunnel(net, vifc);
858 if (IS_ERR(dev))
859 return PTR_ERR(dev);
860 break;
861 case VIFF_USE_IFINDEX:
862 case 0:
863 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
864 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
865 if (dev && !__in_dev_get_rtnl(dev)) {
866 dev_put(dev);
867 return -EADDRNOTAVAIL;
868 }
869 } else {
870 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
871 }
872 if (!dev)
873 return -EADDRNOTAVAIL;
874 err = dev_set_allmulti(dev, 1);
875 if (err) {
876 dev_put(dev);
877 return err;
878 }
879 break;
880 default:
881 return -EINVAL;
882 }
883
884 in_dev = __in_dev_get_rtnl(dev);
885 if (!in_dev) {
886 dev_put(dev);
887 return -EADDRNOTAVAIL;
888 }
889 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
890 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
891 dev->ifindex, &in_dev->cnf);
892 ip_rt_multicast_event(in_dev);
893
894 /* Fill in the VIF structures */
895 vif_device_init(v, dev, vifc->vifc_rate_limit,
896 vifc->vifc_threshold,
897 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
898 (VIFF_TUNNEL | VIFF_REGISTER));
899
900 err = dev_get_port_parent_id(dev, &ppid, true);
901 if (err == 0) {
902 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
903 v->dev_parent_id.id_len = ppid.id_len;
904 } else {
905 v->dev_parent_id.id_len = 0;
906 }
907
908 v->local = vifc->vifc_lcl_addr.s_addr;
909 v->remote = vifc->vifc_rmt_addr.s_addr;
910
911 /* And finish update writing critical data */
912 spin_lock(&mrt_lock);
913 rcu_assign_pointer(v->dev, dev);
914 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
915 if (v->flags & VIFF_REGISTER) {
916 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
917 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
918 }
919 if (vifi+1 > mrt->maxvif)
920 WRITE_ONCE(mrt->maxvif, vifi + 1);
921 spin_unlock(&mrt_lock);
922 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
923 vifi, mrt->id);
924 return 0;
925 }
926
927 /* called with rcu_read_lock() */
ipmr_cache_find(struct mr_table * mrt,__be32 origin,__be32 mcastgrp)928 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
929 __be32 origin,
930 __be32 mcastgrp)
931 {
932 struct mfc_cache_cmp_arg arg = {
933 .mfc_mcastgrp = mcastgrp,
934 .mfc_origin = origin
935 };
936
937 return mr_mfc_find(mrt, &arg);
938 }
939
940 /* Look for a (*,G) entry */
ipmr_cache_find_any(struct mr_table * mrt,__be32 mcastgrp,int vifi)941 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
942 __be32 mcastgrp, int vifi)
943 {
944 struct mfc_cache_cmp_arg arg = {
945 .mfc_mcastgrp = mcastgrp,
946 .mfc_origin = htonl(INADDR_ANY)
947 };
948
949 if (mcastgrp == htonl(INADDR_ANY))
950 return mr_mfc_find_any_parent(mrt, vifi);
951 return mr_mfc_find_any(mrt, vifi, &arg);
952 }
953
954 /* Look for a (S,G,iif) entry if parent != -1 */
ipmr_cache_find_parent(struct mr_table * mrt,__be32 origin,__be32 mcastgrp,int parent)955 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
956 __be32 origin, __be32 mcastgrp,
957 int parent)
958 {
959 struct mfc_cache_cmp_arg arg = {
960 .mfc_mcastgrp = mcastgrp,
961 .mfc_origin = origin,
962 };
963
964 return mr_mfc_find_parent(mrt, &arg, parent);
965 }
966
967 /* Allocate a multicast cache entry */
ipmr_cache_alloc(void)968 static struct mfc_cache *ipmr_cache_alloc(void)
969 {
970 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
971
972 if (c) {
973 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
974 c->_c.mfc_un.res.minvif = MAXVIFS;
975 c->_c.free = ipmr_cache_free_rcu;
976 refcount_set(&c->_c.mfc_un.res.refcount, 1);
977 }
978 return c;
979 }
980
ipmr_cache_alloc_unres(void)981 static struct mfc_cache *ipmr_cache_alloc_unres(void)
982 {
983 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
984
985 if (c) {
986 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
987 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
988 }
989 return c;
990 }
991
992 /* A cache entry has gone into a resolved state from queued */
ipmr_cache_resolve(struct net * net,struct mr_table * mrt,struct mfc_cache * uc,struct mfc_cache * c)993 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
994 struct mfc_cache *uc, struct mfc_cache *c)
995 {
996 struct sk_buff *skb;
997 struct nlmsgerr *e;
998
999 /* Play the pending entries through our router */
1000 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1001 if (ip_hdr(skb)->version == 0) {
1002 struct nlmsghdr *nlh = skb_pull(skb,
1003 sizeof(struct iphdr));
1004
1005 if (mr_fill_mroute(mrt, skb, &c->_c,
1006 nlmsg_data(nlh)) > 0) {
1007 nlh->nlmsg_len = skb_tail_pointer(skb) -
1008 (u8 *)nlh;
1009 } else {
1010 nlh->nlmsg_type = NLMSG_ERROR;
1011 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1012 skb_trim(skb, nlh->nlmsg_len);
1013 e = nlmsg_data(nlh);
1014 e->error = -EMSGSIZE;
1015 memset(&e->msg, 0, sizeof(e->msg));
1016 }
1017
1018 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1019 } else {
1020 rcu_read_lock();
1021 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1022 rcu_read_unlock();
1023 }
1024 }
1025 }
1026
1027 /* Bounce a cache query up to mrouted and netlink.
1028 *
1029 * Called under rcu_read_lock().
1030 */
ipmr_cache_report(const struct mr_table * mrt,struct sk_buff * pkt,vifi_t vifi,int assert)1031 static int ipmr_cache_report(const struct mr_table *mrt,
1032 struct sk_buff *pkt, vifi_t vifi, int assert)
1033 {
1034 const int ihl = ip_hdrlen(pkt);
1035 struct sock *mroute_sk;
1036 struct igmphdr *igmp;
1037 struct igmpmsg *msg;
1038 struct sk_buff *skb;
1039 int ret;
1040
1041 mroute_sk = rcu_dereference(mrt->mroute_sk);
1042 if (!mroute_sk)
1043 return -EINVAL;
1044
1045 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1046 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1047 else
1048 skb = alloc_skb(128, GFP_ATOMIC);
1049
1050 if (!skb)
1051 return -ENOBUFS;
1052
1053 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1054 /* Ugly, but we have no choice with this interface.
1055 * Duplicate old header, fix ihl, length etc.
1056 * And all this only to mangle msg->im_msgtype and
1057 * to set msg->im_mbz to "mbz" :-)
1058 */
1059 skb_push(skb, sizeof(struct iphdr));
1060 skb_reset_network_header(skb);
1061 skb_reset_transport_header(skb);
1062 msg = (struct igmpmsg *)skb_network_header(skb);
1063 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1064 msg->im_msgtype = assert;
1065 msg->im_mbz = 0;
1066 if (assert == IGMPMSG_WRVIFWHOLE) {
1067 msg->im_vif = vifi;
1068 msg->im_vif_hi = vifi >> 8;
1069 } else {
1070 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1071 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1072
1073 msg->im_vif = vif_num;
1074 msg->im_vif_hi = vif_num >> 8;
1075 }
1076 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1077 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1078 sizeof(struct iphdr));
1079 } else {
1080 /* Copy the IP header */
1081 skb_set_network_header(skb, skb->len);
1082 skb_put(skb, ihl);
1083 skb_copy_to_linear_data(skb, pkt->data, ihl);
1084 /* Flag to the kernel this is a route add */
1085 ip_hdr(skb)->protocol = 0;
1086 msg = (struct igmpmsg *)skb_network_header(skb);
1087 msg->im_vif = vifi;
1088 msg->im_vif_hi = vifi >> 8;
1089 ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1090 memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1091 /* Add our header */
1092 igmp = skb_put(skb, sizeof(struct igmphdr));
1093 igmp->type = assert;
1094 msg->im_msgtype = assert;
1095 igmp->code = 0;
1096 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1097 skb->transport_header = skb->network_header;
1098 }
1099
1100 igmpmsg_netlink_event(mrt, skb);
1101
1102 /* Deliver to mrouted */
1103 ret = sock_queue_rcv_skb(mroute_sk, skb);
1104
1105 if (ret < 0) {
1106 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1107 kfree_skb(skb);
1108 }
1109
1110 return ret;
1111 }
1112
1113 /* Queue a packet for resolution. It gets locked cache entry! */
1114 /* Called under rcu_read_lock() */
ipmr_cache_unresolved(struct mr_table * mrt,vifi_t vifi,struct sk_buff * skb,struct net_device * dev)1115 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1116 struct sk_buff *skb, struct net_device *dev)
1117 {
1118 const struct iphdr *iph = ip_hdr(skb);
1119 struct mfc_cache *c;
1120 bool found = false;
1121 int err;
1122
1123 spin_lock_bh(&mfc_unres_lock);
1124 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1125 if (c->mfc_mcastgrp == iph->daddr &&
1126 c->mfc_origin == iph->saddr) {
1127 found = true;
1128 break;
1129 }
1130 }
1131
1132 if (!found) {
1133 /* Create a new entry if allowable */
1134 c = ipmr_cache_alloc_unres();
1135 if (!c) {
1136 spin_unlock_bh(&mfc_unres_lock);
1137
1138 kfree_skb(skb);
1139 return -ENOBUFS;
1140 }
1141
1142 /* Fill in the new cache entry */
1143 c->_c.mfc_parent = -1;
1144 c->mfc_origin = iph->saddr;
1145 c->mfc_mcastgrp = iph->daddr;
1146
1147 /* Reflect first query at mrouted. */
1148 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1149
1150 if (err < 0) {
1151 /* If the report failed throw the cache entry
1152 out - Brad Parker
1153 */
1154 spin_unlock_bh(&mfc_unres_lock);
1155
1156 ipmr_cache_free(c);
1157 kfree_skb(skb);
1158 return err;
1159 }
1160
1161 atomic_inc(&mrt->cache_resolve_queue_len);
1162 list_add(&c->_c.list, &mrt->mfc_unres_queue);
1163 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1164
1165 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1166 mod_timer(&mrt->ipmr_expire_timer,
1167 c->_c.mfc_un.unres.expires);
1168 }
1169
1170 /* See if we can append the packet */
1171 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1172 kfree_skb(skb);
1173 err = -ENOBUFS;
1174 } else {
1175 if (dev) {
1176 skb->dev = dev;
1177 skb->skb_iif = dev->ifindex;
1178 }
1179 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1180 err = 0;
1181 }
1182
1183 spin_unlock_bh(&mfc_unres_lock);
1184 return err;
1185 }
1186
1187 /* MFC cache manipulation by user space mroute daemon */
1188
ipmr_mfc_delete(struct mr_table * mrt,struct mfcctl * mfc,int parent)1189 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1190 {
1191 struct net *net = read_pnet(&mrt->net);
1192 struct mfc_cache *c;
1193
1194 /* The entries are added/deleted only under RTNL */
1195 rcu_read_lock();
1196 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1197 mfc->mfcc_mcastgrp.s_addr, parent);
1198 rcu_read_unlock();
1199 if (!c)
1200 return -ENOENT;
1201 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1202 list_del_rcu(&c->_c.list);
1203 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1204 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1205 mr_cache_put(&c->_c);
1206
1207 return 0;
1208 }
1209
ipmr_mfc_add(struct net * net,struct mr_table * mrt,struct mfcctl * mfc,int mrtsock,int parent)1210 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1211 struct mfcctl *mfc, int mrtsock, int parent)
1212 {
1213 struct mfc_cache *uc, *c;
1214 struct mr_mfc *_uc;
1215 bool found;
1216 int ret;
1217
1218 if (mfc->mfcc_parent >= MAXVIFS)
1219 return -ENFILE;
1220
1221 /* The entries are added/deleted only under RTNL */
1222 rcu_read_lock();
1223 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1224 mfc->mfcc_mcastgrp.s_addr, parent);
1225 rcu_read_unlock();
1226 if (c) {
1227 spin_lock(&mrt_lock);
1228 c->_c.mfc_parent = mfc->mfcc_parent;
1229 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1230 if (!mrtsock)
1231 c->_c.mfc_flags |= MFC_STATIC;
1232 spin_unlock(&mrt_lock);
1233 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1234 mrt->id);
1235 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1236 return 0;
1237 }
1238
1239 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1240 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1241 return -EINVAL;
1242
1243 c = ipmr_cache_alloc();
1244 if (!c)
1245 return -ENOMEM;
1246
1247 c->mfc_origin = mfc->mfcc_origin.s_addr;
1248 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1249 c->_c.mfc_parent = mfc->mfcc_parent;
1250 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1251 if (!mrtsock)
1252 c->_c.mfc_flags |= MFC_STATIC;
1253
1254 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1255 ipmr_rht_params);
1256 if (ret) {
1257 pr_err("ipmr: rhtable insert error %d\n", ret);
1258 ipmr_cache_free(c);
1259 return ret;
1260 }
1261 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1262 /* Check to see if we resolved a queued list. If so we
1263 * need to send on the frames and tidy up.
1264 */
1265 found = false;
1266 spin_lock_bh(&mfc_unres_lock);
1267 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1268 uc = (struct mfc_cache *)_uc;
1269 if (uc->mfc_origin == c->mfc_origin &&
1270 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1271 list_del(&_uc->list);
1272 atomic_dec(&mrt->cache_resolve_queue_len);
1273 found = true;
1274 break;
1275 }
1276 }
1277 if (list_empty(&mrt->mfc_unres_queue))
1278 del_timer(&mrt->ipmr_expire_timer);
1279 spin_unlock_bh(&mfc_unres_lock);
1280
1281 if (found) {
1282 ipmr_cache_resolve(net, mrt, uc, c);
1283 ipmr_cache_free(uc);
1284 }
1285 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1286 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1287 return 0;
1288 }
1289
1290 /* Close the multicast socket, and clear the vif tables etc */
mroute_clean_tables(struct mr_table * mrt,int flags)1291 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1292 {
1293 struct net *net = read_pnet(&mrt->net);
1294 struct mr_mfc *c, *tmp;
1295 struct mfc_cache *cache;
1296 LIST_HEAD(list);
1297 int i;
1298
1299 /* Shut down all active vif entries */
1300 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1301 for (i = 0; i < mrt->maxvif; i++) {
1302 if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1303 !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1304 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1305 continue;
1306 vif_delete(mrt, i, 0, &list);
1307 }
1308 unregister_netdevice_many(&list);
1309 }
1310
1311 /* Wipe the cache */
1312 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1313 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1314 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1315 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1316 continue;
1317 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1318 list_del_rcu(&c->list);
1319 cache = (struct mfc_cache *)c;
1320 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1321 mrt->id);
1322 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1323 mr_cache_put(c);
1324 }
1325 }
1326
1327 if (flags & MRT_FLUSH_MFC) {
1328 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1329 spin_lock_bh(&mfc_unres_lock);
1330 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1331 list_del(&c->list);
1332 cache = (struct mfc_cache *)c;
1333 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1334 ipmr_destroy_unres(mrt, cache);
1335 }
1336 spin_unlock_bh(&mfc_unres_lock);
1337 }
1338 }
1339 }
1340
1341 /* called from ip_ra_control(), before an RCU grace period,
1342 * we don't need to call synchronize_rcu() here
1343 */
mrtsock_destruct(struct sock * sk)1344 static void mrtsock_destruct(struct sock *sk)
1345 {
1346 struct net *net = sock_net(sk);
1347 struct mr_table *mrt;
1348
1349 rtnl_lock();
1350 ipmr_for_each_table(mrt, net) {
1351 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1352 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1353 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1354 NETCONFA_MC_FORWARDING,
1355 NETCONFA_IFINDEX_ALL,
1356 net->ipv4.devconf_all);
1357 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1358 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1359 }
1360 }
1361 rtnl_unlock();
1362 }
1363
1364 /* Socket options and virtual interface manipulation. The whole
1365 * virtual interface system is a complete heap, but unfortunately
1366 * that's how BSD mrouted happens to think. Maybe one day with a proper
1367 * MOSPF/PIM router set up we can clean this up.
1368 */
1369
ip_mroute_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)1370 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1371 unsigned int optlen)
1372 {
1373 struct net *net = sock_net(sk);
1374 int val, ret = 0, parent = 0;
1375 struct mr_table *mrt;
1376 struct vifctl vif;
1377 struct mfcctl mfc;
1378 bool do_wrvifwhole;
1379 u32 uval;
1380
1381 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1382 rtnl_lock();
1383 if (sk->sk_type != SOCK_RAW ||
1384 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1385 ret = -EOPNOTSUPP;
1386 goto out_unlock;
1387 }
1388
1389 mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1390 if (!mrt) {
1391 ret = -ENOENT;
1392 goto out_unlock;
1393 }
1394 if (optname != MRT_INIT) {
1395 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1396 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1397 ret = -EACCES;
1398 goto out_unlock;
1399 }
1400 }
1401
1402 switch (optname) {
1403 case MRT_INIT:
1404 if (optlen != sizeof(int)) {
1405 ret = -EINVAL;
1406 break;
1407 }
1408 if (rtnl_dereference(mrt->mroute_sk)) {
1409 ret = -EADDRINUSE;
1410 break;
1411 }
1412
1413 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1414 if (ret == 0) {
1415 rcu_assign_pointer(mrt->mroute_sk, sk);
1416 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1417 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1418 NETCONFA_MC_FORWARDING,
1419 NETCONFA_IFINDEX_ALL,
1420 net->ipv4.devconf_all);
1421 }
1422 break;
1423 case MRT_DONE:
1424 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1425 ret = -EACCES;
1426 } else {
1427 /* We need to unlock here because mrtsock_destruct takes
1428 * care of rtnl itself and we can't change that due to
1429 * the IP_ROUTER_ALERT setsockopt which runs without it.
1430 */
1431 rtnl_unlock();
1432 ret = ip_ra_control(sk, 0, NULL);
1433 goto out;
1434 }
1435 break;
1436 case MRT_ADD_VIF:
1437 case MRT_DEL_VIF:
1438 if (optlen != sizeof(vif)) {
1439 ret = -EINVAL;
1440 break;
1441 }
1442 if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1443 ret = -EFAULT;
1444 break;
1445 }
1446 if (vif.vifc_vifi >= MAXVIFS) {
1447 ret = -ENFILE;
1448 break;
1449 }
1450 if (optname == MRT_ADD_VIF) {
1451 ret = vif_add(net, mrt, &vif,
1452 sk == rtnl_dereference(mrt->mroute_sk));
1453 } else {
1454 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1455 }
1456 break;
1457 /* Manipulate the forwarding caches. These live
1458 * in a sort of kernel/user symbiosis.
1459 */
1460 case MRT_ADD_MFC:
1461 case MRT_DEL_MFC:
1462 parent = -1;
1463 fallthrough;
1464 case MRT_ADD_MFC_PROXY:
1465 case MRT_DEL_MFC_PROXY:
1466 if (optlen != sizeof(mfc)) {
1467 ret = -EINVAL;
1468 break;
1469 }
1470 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1471 ret = -EFAULT;
1472 break;
1473 }
1474 if (parent == 0)
1475 parent = mfc.mfcc_parent;
1476 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1477 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1478 else
1479 ret = ipmr_mfc_add(net, mrt, &mfc,
1480 sk == rtnl_dereference(mrt->mroute_sk),
1481 parent);
1482 break;
1483 case MRT_FLUSH:
1484 if (optlen != sizeof(val)) {
1485 ret = -EINVAL;
1486 break;
1487 }
1488 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1489 ret = -EFAULT;
1490 break;
1491 }
1492 mroute_clean_tables(mrt, val);
1493 break;
1494 /* Control PIM assert. */
1495 case MRT_ASSERT:
1496 if (optlen != sizeof(val)) {
1497 ret = -EINVAL;
1498 break;
1499 }
1500 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1501 ret = -EFAULT;
1502 break;
1503 }
1504 mrt->mroute_do_assert = val;
1505 break;
1506 case MRT_PIM:
1507 if (!ipmr_pimsm_enabled()) {
1508 ret = -ENOPROTOOPT;
1509 break;
1510 }
1511 if (optlen != sizeof(val)) {
1512 ret = -EINVAL;
1513 break;
1514 }
1515 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1516 ret = -EFAULT;
1517 break;
1518 }
1519
1520 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1521 val = !!val;
1522 if (val != mrt->mroute_do_pim) {
1523 mrt->mroute_do_pim = val;
1524 mrt->mroute_do_assert = val;
1525 mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1526 }
1527 break;
1528 case MRT_TABLE:
1529 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1530 ret = -ENOPROTOOPT;
1531 break;
1532 }
1533 if (optlen != sizeof(uval)) {
1534 ret = -EINVAL;
1535 break;
1536 }
1537 if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1538 ret = -EFAULT;
1539 break;
1540 }
1541
1542 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1543 ret = -EBUSY;
1544 } else {
1545 mrt = ipmr_new_table(net, uval);
1546 if (IS_ERR(mrt))
1547 ret = PTR_ERR(mrt);
1548 else
1549 raw_sk(sk)->ipmr_table = uval;
1550 }
1551 break;
1552 /* Spurious command, or MRT_VERSION which you cannot set. */
1553 default:
1554 ret = -ENOPROTOOPT;
1555 }
1556 out_unlock:
1557 rtnl_unlock();
1558 out:
1559 return ret;
1560 }
1561
1562 /* Execute if this ioctl is a special mroute ioctl */
ipmr_sk_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1563 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1564 {
1565 switch (cmd) {
1566 /* These userspace buffers will be consumed by ipmr_ioctl() */
1567 case SIOCGETVIFCNT: {
1568 struct sioc_vif_req buffer;
1569
1570 return sock_ioctl_inout(sk, cmd, arg, &buffer,
1571 sizeof(buffer));
1572 }
1573 case SIOCGETSGCNT: {
1574 struct sioc_sg_req buffer;
1575
1576 return sock_ioctl_inout(sk, cmd, arg, &buffer,
1577 sizeof(buffer));
1578 }
1579 }
1580 /* return code > 0 means that the ioctl was not executed */
1581 return 1;
1582 }
1583
1584 /* Getsock opt support for the multicast routing system. */
ip_mroute_getsockopt(struct sock * sk,int optname,sockptr_t optval,sockptr_t optlen)1585 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1586 sockptr_t optlen)
1587 {
1588 int olr;
1589 int val;
1590 struct net *net = sock_net(sk);
1591 struct mr_table *mrt;
1592
1593 if (sk->sk_type != SOCK_RAW ||
1594 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1595 return -EOPNOTSUPP;
1596
1597 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1598 if (!mrt)
1599 return -ENOENT;
1600
1601 switch (optname) {
1602 case MRT_VERSION:
1603 val = 0x0305;
1604 break;
1605 case MRT_PIM:
1606 if (!ipmr_pimsm_enabled())
1607 return -ENOPROTOOPT;
1608 val = mrt->mroute_do_pim;
1609 break;
1610 case MRT_ASSERT:
1611 val = mrt->mroute_do_assert;
1612 break;
1613 default:
1614 return -ENOPROTOOPT;
1615 }
1616
1617 if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1618 return -EFAULT;
1619 if (olr < 0)
1620 return -EINVAL;
1621
1622 olr = min_t(unsigned int, olr, sizeof(int));
1623
1624 if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1625 return -EFAULT;
1626 if (copy_to_sockptr(optval, &val, olr))
1627 return -EFAULT;
1628 return 0;
1629 }
1630
1631 /* The IP multicast ioctl support routines. */
ipmr_ioctl(struct sock * sk,int cmd,void * arg)1632 int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1633 {
1634 struct vif_device *vif;
1635 struct mfc_cache *c;
1636 struct net *net = sock_net(sk);
1637 struct sioc_vif_req *vr;
1638 struct sioc_sg_req *sr;
1639 struct mr_table *mrt;
1640
1641 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1642 if (!mrt)
1643 return -ENOENT;
1644
1645 switch (cmd) {
1646 case SIOCGETVIFCNT:
1647 vr = (struct sioc_vif_req *)arg;
1648 if (vr->vifi >= mrt->maxvif)
1649 return -EINVAL;
1650 vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1651 rcu_read_lock();
1652 vif = &mrt->vif_table[vr->vifi];
1653 if (VIF_EXISTS(mrt, vr->vifi)) {
1654 vr->icount = READ_ONCE(vif->pkt_in);
1655 vr->ocount = READ_ONCE(vif->pkt_out);
1656 vr->ibytes = READ_ONCE(vif->bytes_in);
1657 vr->obytes = READ_ONCE(vif->bytes_out);
1658 rcu_read_unlock();
1659
1660 return 0;
1661 }
1662 rcu_read_unlock();
1663 return -EADDRNOTAVAIL;
1664 case SIOCGETSGCNT:
1665 sr = (struct sioc_sg_req *)arg;
1666
1667 rcu_read_lock();
1668 c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1669 if (c) {
1670 sr->pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1671 sr->bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1672 sr->wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1673 rcu_read_unlock();
1674 return 0;
1675 }
1676 rcu_read_unlock();
1677 return -EADDRNOTAVAIL;
1678 default:
1679 return -ENOIOCTLCMD;
1680 }
1681 }
1682
1683 #ifdef CONFIG_COMPAT
1684 struct compat_sioc_sg_req {
1685 struct in_addr src;
1686 struct in_addr grp;
1687 compat_ulong_t pktcnt;
1688 compat_ulong_t bytecnt;
1689 compat_ulong_t wrong_if;
1690 };
1691
1692 struct compat_sioc_vif_req {
1693 vifi_t vifi; /* Which iface */
1694 compat_ulong_t icount;
1695 compat_ulong_t ocount;
1696 compat_ulong_t ibytes;
1697 compat_ulong_t obytes;
1698 };
1699
ipmr_compat_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1700 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1701 {
1702 struct compat_sioc_sg_req sr;
1703 struct compat_sioc_vif_req vr;
1704 struct vif_device *vif;
1705 struct mfc_cache *c;
1706 struct net *net = sock_net(sk);
1707 struct mr_table *mrt;
1708
1709 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1710 if (!mrt)
1711 return -ENOENT;
1712
1713 switch (cmd) {
1714 case SIOCGETVIFCNT:
1715 if (copy_from_user(&vr, arg, sizeof(vr)))
1716 return -EFAULT;
1717 if (vr.vifi >= mrt->maxvif)
1718 return -EINVAL;
1719 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1720 rcu_read_lock();
1721 vif = &mrt->vif_table[vr.vifi];
1722 if (VIF_EXISTS(mrt, vr.vifi)) {
1723 vr.icount = READ_ONCE(vif->pkt_in);
1724 vr.ocount = READ_ONCE(vif->pkt_out);
1725 vr.ibytes = READ_ONCE(vif->bytes_in);
1726 vr.obytes = READ_ONCE(vif->bytes_out);
1727 rcu_read_unlock();
1728
1729 if (copy_to_user(arg, &vr, sizeof(vr)))
1730 return -EFAULT;
1731 return 0;
1732 }
1733 rcu_read_unlock();
1734 return -EADDRNOTAVAIL;
1735 case SIOCGETSGCNT:
1736 if (copy_from_user(&sr, arg, sizeof(sr)))
1737 return -EFAULT;
1738
1739 rcu_read_lock();
1740 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1741 if (c) {
1742 sr.pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1743 sr.bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1744 sr.wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1745 rcu_read_unlock();
1746
1747 if (copy_to_user(arg, &sr, sizeof(sr)))
1748 return -EFAULT;
1749 return 0;
1750 }
1751 rcu_read_unlock();
1752 return -EADDRNOTAVAIL;
1753 default:
1754 return -ENOIOCTLCMD;
1755 }
1756 }
1757 #endif
1758
ipmr_device_event(struct notifier_block * this,unsigned long event,void * ptr)1759 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1760 {
1761 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1762 struct net *net = dev_net(dev);
1763 struct mr_table *mrt;
1764 struct vif_device *v;
1765 int ct;
1766
1767 if (event != NETDEV_UNREGISTER)
1768 return NOTIFY_DONE;
1769
1770 ipmr_for_each_table(mrt, net) {
1771 v = &mrt->vif_table[0];
1772 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1773 if (rcu_access_pointer(v->dev) == dev)
1774 vif_delete(mrt, ct, 1, NULL);
1775 }
1776 }
1777 return NOTIFY_DONE;
1778 }
1779
1780 static struct notifier_block ip_mr_notifier = {
1781 .notifier_call = ipmr_device_event,
1782 };
1783
1784 /* Encapsulate a packet by attaching a valid IPIP header to it.
1785 * This avoids tunnel drivers and other mess and gives us the speed so
1786 * important for multicast video.
1787 */
ip_encap(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr)1788 static void ip_encap(struct net *net, struct sk_buff *skb,
1789 __be32 saddr, __be32 daddr)
1790 {
1791 struct iphdr *iph;
1792 const struct iphdr *old_iph = ip_hdr(skb);
1793
1794 skb_push(skb, sizeof(struct iphdr));
1795 skb->transport_header = skb->network_header;
1796 skb_reset_network_header(skb);
1797 iph = ip_hdr(skb);
1798
1799 iph->version = 4;
1800 iph->tos = old_iph->tos;
1801 iph->ttl = old_iph->ttl;
1802 iph->frag_off = 0;
1803 iph->daddr = daddr;
1804 iph->saddr = saddr;
1805 iph->protocol = IPPROTO_IPIP;
1806 iph->ihl = 5;
1807 iph->tot_len = htons(skb->len);
1808 ip_select_ident(net, skb, NULL);
1809 ip_send_check(iph);
1810
1811 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1812 nf_reset_ct(skb);
1813 }
1814
ipmr_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1815 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1816 struct sk_buff *skb)
1817 {
1818 struct ip_options *opt = &(IPCB(skb)->opt);
1819
1820 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1821
1822 if (unlikely(opt->optlen))
1823 ip_forward_options(skb);
1824
1825 return dst_output(net, sk, skb);
1826 }
1827
1828 #ifdef CONFIG_NET_SWITCHDEV
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1829 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1830 int in_vifi, int out_vifi)
1831 {
1832 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1833 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1834
1835 if (!skb->offload_l3_fwd_mark)
1836 return false;
1837 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1838 return false;
1839 return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1840 &in_vif->dev_parent_id);
1841 }
1842 #else
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1843 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1844 int in_vifi, int out_vifi)
1845 {
1846 return false;
1847 }
1848 #endif
1849
1850 /* Processing handlers for ipmr_forward, under rcu_read_lock() */
1851
ipmr_queue_xmit(struct net * net,struct mr_table * mrt,int in_vifi,struct sk_buff * skb,int vifi)1852 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1853 int in_vifi, struct sk_buff *skb, int vifi)
1854 {
1855 const struct iphdr *iph = ip_hdr(skb);
1856 struct vif_device *vif = &mrt->vif_table[vifi];
1857 struct net_device *vif_dev;
1858 struct net_device *dev;
1859 struct rtable *rt;
1860 struct flowi4 fl4;
1861 int encap = 0;
1862
1863 vif_dev = vif_dev_read(vif);
1864 if (!vif_dev)
1865 goto out_free;
1866
1867 if (vif->flags & VIFF_REGISTER) {
1868 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1869 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1870 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1871 DEV_STATS_INC(vif_dev, tx_packets);
1872 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1873 goto out_free;
1874 }
1875
1876 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1877 goto out_free;
1878
1879 if (vif->flags & VIFF_TUNNEL) {
1880 rt = ip_route_output_ports(net, &fl4, NULL,
1881 vif->remote, vif->local,
1882 0, 0,
1883 IPPROTO_IPIP,
1884 iph->tos & INET_DSCP_MASK, vif->link);
1885 if (IS_ERR(rt))
1886 goto out_free;
1887 encap = sizeof(struct iphdr);
1888 } else {
1889 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1890 0, 0,
1891 IPPROTO_IPIP,
1892 iph->tos & INET_DSCP_MASK, vif->link);
1893 if (IS_ERR(rt))
1894 goto out_free;
1895 }
1896
1897 dev = rt->dst.dev;
1898
1899 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1900 /* Do not fragment multicasts. Alas, IPv4 does not
1901 * allow to send ICMP, so that packets will disappear
1902 * to blackhole.
1903 */
1904 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1905 ip_rt_put(rt);
1906 goto out_free;
1907 }
1908
1909 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1910
1911 if (skb_cow(skb, encap)) {
1912 ip_rt_put(rt);
1913 goto out_free;
1914 }
1915
1916 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1917 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1918
1919 skb_dst_drop(skb);
1920 skb_dst_set(skb, &rt->dst);
1921 ip_decrease_ttl(ip_hdr(skb));
1922
1923 /* FIXME: forward and output firewalls used to be called here.
1924 * What do we do with netfilter? -- RR
1925 */
1926 if (vif->flags & VIFF_TUNNEL) {
1927 ip_encap(net, skb, vif->local, vif->remote);
1928 /* FIXME: extra output firewall step used to be here. --RR */
1929 DEV_STATS_INC(vif_dev, tx_packets);
1930 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1931 }
1932
1933 IPCB(skb)->flags |= IPSKB_FORWARDED;
1934
1935 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1936 * not only before forwarding, but after forwarding on all output
1937 * interfaces. It is clear, if mrouter runs a multicasting
1938 * program, it should receive packets not depending to what interface
1939 * program is joined.
1940 * If we will not make it, the program will have to join on all
1941 * interfaces. On the other hand, multihoming host (or router, but
1942 * not mrouter) cannot join to more than one interface - it will
1943 * result in receiving multiple packets.
1944 */
1945 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1946 net, NULL, skb, skb->dev, dev,
1947 ipmr_forward_finish);
1948 return;
1949
1950 out_free:
1951 kfree_skb(skb);
1952 }
1953
1954 /* Called with mrt_lock or rcu_read_lock() */
ipmr_find_vif(const struct mr_table * mrt,struct net_device * dev)1955 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1956 {
1957 int ct;
1958 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1959 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1960 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1961 break;
1962 }
1963 return ct;
1964 }
1965
1966 /* "local" means that we should preserve one skb (for local delivery) */
1967 /* Called uner rcu_read_lock() */
ip_mr_forward(struct net * net,struct mr_table * mrt,struct net_device * dev,struct sk_buff * skb,struct mfc_cache * c,int local)1968 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1969 struct net_device *dev, struct sk_buff *skb,
1970 struct mfc_cache *c, int local)
1971 {
1972 int true_vifi = ipmr_find_vif(mrt, dev);
1973 int psend = -1;
1974 int vif, ct;
1975
1976 vif = c->_c.mfc_parent;
1977 atomic_long_inc(&c->_c.mfc_un.res.pkt);
1978 atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
1979 WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
1980
1981 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1982 struct mfc_cache *cache_proxy;
1983
1984 /* For an (*,G) entry, we only check that the incoming
1985 * interface is part of the static tree.
1986 */
1987 cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1988 if (cache_proxy &&
1989 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1990 goto forward;
1991 }
1992
1993 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1994 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1995 if (rt_is_output_route(skb_rtable(skb))) {
1996 /* It is our own packet, looped back.
1997 * Very complicated situation...
1998 *
1999 * The best workaround until routing daemons will be
2000 * fixed is not to redistribute packet, if it was
2001 * send through wrong interface. It means, that
2002 * multicast applications WILL NOT work for
2003 * (S,G), which have default multicast route pointing
2004 * to wrong oif. In any case, it is not a good
2005 * idea to use multicasting applications on router.
2006 */
2007 goto dont_forward;
2008 }
2009
2010 atomic_long_inc(&c->_c.mfc_un.res.wrong_if);
2011
2012 if (true_vifi >= 0 && mrt->mroute_do_assert &&
2013 /* pimsm uses asserts, when switching from RPT to SPT,
2014 * so that we cannot check that packet arrived on an oif.
2015 * It is bad, but otherwise we would need to move pretty
2016 * large chunk of pimd to kernel. Ough... --ANK
2017 */
2018 (mrt->mroute_do_pim ||
2019 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2020 time_after(jiffies,
2021 c->_c.mfc_un.res.last_assert +
2022 MFC_ASSERT_THRESH)) {
2023 c->_c.mfc_un.res.last_assert = jiffies;
2024 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2025 if (mrt->mroute_do_wrvifwhole)
2026 ipmr_cache_report(mrt, skb, true_vifi,
2027 IGMPMSG_WRVIFWHOLE);
2028 }
2029 goto dont_forward;
2030 }
2031
2032 forward:
2033 WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2034 mrt->vif_table[vif].pkt_in + 1);
2035 WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2036 mrt->vif_table[vif].bytes_in + skb->len);
2037
2038 /* Forward the frame */
2039 if (c->mfc_origin == htonl(INADDR_ANY) &&
2040 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2041 if (true_vifi >= 0 &&
2042 true_vifi != c->_c.mfc_parent &&
2043 ip_hdr(skb)->ttl >
2044 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2045 /* It's an (*,*) entry and the packet is not coming from
2046 * the upstream: forward the packet to the upstream
2047 * only.
2048 */
2049 psend = c->_c.mfc_parent;
2050 goto last_forward;
2051 }
2052 goto dont_forward;
2053 }
2054 for (ct = c->_c.mfc_un.res.maxvif - 1;
2055 ct >= c->_c.mfc_un.res.minvif; ct--) {
2056 /* For (*,G) entry, don't forward to the incoming interface */
2057 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2058 ct != true_vifi) &&
2059 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2060 if (psend != -1) {
2061 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2062
2063 if (skb2)
2064 ipmr_queue_xmit(net, mrt, true_vifi,
2065 skb2, psend);
2066 }
2067 psend = ct;
2068 }
2069 }
2070 last_forward:
2071 if (psend != -1) {
2072 if (local) {
2073 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2074
2075 if (skb2)
2076 ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2077 psend);
2078 } else {
2079 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2080 return;
2081 }
2082 }
2083
2084 dont_forward:
2085 if (!local)
2086 kfree_skb(skb);
2087 }
2088
ipmr_rt_fib_lookup(struct net * net,struct sk_buff * skb)2089 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2090 {
2091 struct rtable *rt = skb_rtable(skb);
2092 struct iphdr *iph = ip_hdr(skb);
2093 struct flowi4 fl4 = {
2094 .daddr = iph->daddr,
2095 .saddr = iph->saddr,
2096 .flowi4_tos = iph->tos & INET_DSCP_MASK,
2097 .flowi4_oif = (rt_is_output_route(rt) ?
2098 skb->dev->ifindex : 0),
2099 .flowi4_iif = (rt_is_output_route(rt) ?
2100 LOOPBACK_IFINDEX :
2101 skb->dev->ifindex),
2102 .flowi4_mark = skb->mark,
2103 };
2104 struct mr_table *mrt;
2105 int err;
2106
2107 err = ipmr_fib_lookup(net, &fl4, &mrt);
2108 if (err)
2109 return ERR_PTR(err);
2110 return mrt;
2111 }
2112
2113 /* Multicast packets for forwarding arrive here
2114 * Called with rcu_read_lock();
2115 */
ip_mr_input(struct sk_buff * skb)2116 int ip_mr_input(struct sk_buff *skb)
2117 {
2118 struct mfc_cache *cache;
2119 struct net *net = dev_net(skb->dev);
2120 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2121 struct mr_table *mrt;
2122 struct net_device *dev;
2123
2124 /* skb->dev passed in is the loX master dev for vrfs.
2125 * As there are no vifs associated with loopback devices,
2126 * get the proper interface that does have a vif associated with it.
2127 */
2128 dev = skb->dev;
2129 if (netif_is_l3_master(skb->dev)) {
2130 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2131 if (!dev) {
2132 kfree_skb(skb);
2133 return -ENODEV;
2134 }
2135 }
2136
2137 /* Packet is looped back after forward, it should not be
2138 * forwarded second time, but still can be delivered locally.
2139 */
2140 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2141 goto dont_forward;
2142
2143 mrt = ipmr_rt_fib_lookup(net, skb);
2144 if (IS_ERR(mrt)) {
2145 kfree_skb(skb);
2146 return PTR_ERR(mrt);
2147 }
2148 if (!local) {
2149 if (IPCB(skb)->opt.router_alert) {
2150 if (ip_call_ra_chain(skb))
2151 return 0;
2152 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2153 /* IGMPv1 (and broken IGMPv2 implementations sort of
2154 * Cisco IOS <= 11.2(8)) do not put router alert
2155 * option to IGMP packets destined to routable
2156 * groups. It is very bad, because it means
2157 * that we can forward NO IGMP messages.
2158 */
2159 struct sock *mroute_sk;
2160
2161 mroute_sk = rcu_dereference(mrt->mroute_sk);
2162 if (mroute_sk) {
2163 nf_reset_ct(skb);
2164 raw_rcv(mroute_sk, skb);
2165 return 0;
2166 }
2167 }
2168 }
2169
2170 /* already under rcu_read_lock() */
2171 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2172 if (!cache) {
2173 int vif = ipmr_find_vif(mrt, dev);
2174
2175 if (vif >= 0)
2176 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2177 vif);
2178 }
2179
2180 /* No usable cache entry */
2181 if (!cache) {
2182 int vif;
2183
2184 if (local) {
2185 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2186 ip_local_deliver(skb);
2187 if (!skb2)
2188 return -ENOBUFS;
2189 skb = skb2;
2190 }
2191
2192 vif = ipmr_find_vif(mrt, dev);
2193 if (vif >= 0)
2194 return ipmr_cache_unresolved(mrt, vif, skb, dev);
2195 kfree_skb(skb);
2196 return -ENODEV;
2197 }
2198
2199 ip_mr_forward(net, mrt, dev, skb, cache, local);
2200
2201 if (local)
2202 return ip_local_deliver(skb);
2203
2204 return 0;
2205
2206 dont_forward:
2207 if (local)
2208 return ip_local_deliver(skb);
2209 kfree_skb(skb);
2210 return 0;
2211 }
2212
2213 #ifdef CONFIG_IP_PIMSM_V1
2214 /* Handle IGMP messages of PIMv1 */
pim_rcv_v1(struct sk_buff * skb)2215 int pim_rcv_v1(struct sk_buff *skb)
2216 {
2217 struct igmphdr *pim;
2218 struct net *net = dev_net(skb->dev);
2219 struct mr_table *mrt;
2220
2221 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2222 goto drop;
2223
2224 pim = igmp_hdr(skb);
2225
2226 mrt = ipmr_rt_fib_lookup(net, skb);
2227 if (IS_ERR(mrt))
2228 goto drop;
2229 if (!mrt->mroute_do_pim ||
2230 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2231 goto drop;
2232
2233 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2234 drop:
2235 kfree_skb(skb);
2236 }
2237 return 0;
2238 }
2239 #endif
2240
2241 #ifdef CONFIG_IP_PIMSM_V2
pim_rcv(struct sk_buff * skb)2242 static int pim_rcv(struct sk_buff *skb)
2243 {
2244 struct pimreghdr *pim;
2245 struct net *net = dev_net(skb->dev);
2246 struct mr_table *mrt;
2247
2248 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2249 goto drop;
2250
2251 pim = (struct pimreghdr *)skb_transport_header(skb);
2252 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2253 (pim->flags & PIM_NULL_REGISTER) ||
2254 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2255 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2256 goto drop;
2257
2258 mrt = ipmr_rt_fib_lookup(net, skb);
2259 if (IS_ERR(mrt))
2260 goto drop;
2261 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2262 drop:
2263 kfree_skb(skb);
2264 }
2265 return 0;
2266 }
2267 #endif
2268
ipmr_get_route(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr,struct rtmsg * rtm,u32 portid)2269 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2270 __be32 saddr, __be32 daddr,
2271 struct rtmsg *rtm, u32 portid)
2272 {
2273 struct mfc_cache *cache;
2274 struct mr_table *mrt;
2275 int err;
2276
2277 rcu_read_lock();
2278 mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2279 if (!mrt) {
2280 rcu_read_unlock();
2281 return -ENOENT;
2282 }
2283
2284 cache = ipmr_cache_find(mrt, saddr, daddr);
2285 if (!cache && skb->dev) {
2286 int vif = ipmr_find_vif(mrt, skb->dev);
2287
2288 if (vif >= 0)
2289 cache = ipmr_cache_find_any(mrt, daddr, vif);
2290 }
2291 if (!cache) {
2292 struct sk_buff *skb2;
2293 struct iphdr *iph;
2294 struct net_device *dev;
2295 int vif = -1;
2296
2297 dev = skb->dev;
2298 if (dev)
2299 vif = ipmr_find_vif(mrt, dev);
2300 if (vif < 0) {
2301 rcu_read_unlock();
2302 return -ENODEV;
2303 }
2304
2305 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2306 if (!skb2) {
2307 rcu_read_unlock();
2308 return -ENOMEM;
2309 }
2310
2311 NETLINK_CB(skb2).portid = portid;
2312 skb_push(skb2, sizeof(struct iphdr));
2313 skb_reset_network_header(skb2);
2314 iph = ip_hdr(skb2);
2315 iph->ihl = sizeof(struct iphdr) >> 2;
2316 iph->saddr = saddr;
2317 iph->daddr = daddr;
2318 iph->version = 0;
2319 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2320 rcu_read_unlock();
2321 return err;
2322 }
2323
2324 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2325 rcu_read_unlock();
2326 return err;
2327 }
2328
ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mfc_cache * c,int cmd,int flags)2329 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2330 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2331 int flags)
2332 {
2333 struct nlmsghdr *nlh;
2334 struct rtmsg *rtm;
2335 int err;
2336
2337 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2338 if (!nlh)
2339 return -EMSGSIZE;
2340
2341 rtm = nlmsg_data(nlh);
2342 rtm->rtm_family = RTNL_FAMILY_IPMR;
2343 rtm->rtm_dst_len = 32;
2344 rtm->rtm_src_len = 32;
2345 rtm->rtm_tos = 0;
2346 rtm->rtm_table = mrt->id;
2347 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2348 goto nla_put_failure;
2349 rtm->rtm_type = RTN_MULTICAST;
2350 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2351 if (c->_c.mfc_flags & MFC_STATIC)
2352 rtm->rtm_protocol = RTPROT_STATIC;
2353 else
2354 rtm->rtm_protocol = RTPROT_MROUTED;
2355 rtm->rtm_flags = 0;
2356
2357 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2358 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2359 goto nla_put_failure;
2360 err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2361 /* do not break the dump if cache is unresolved */
2362 if (err < 0 && err != -ENOENT)
2363 goto nla_put_failure;
2364
2365 nlmsg_end(skb, nlh);
2366 return 0;
2367
2368 nla_put_failure:
2369 nlmsg_cancel(skb, nlh);
2370 return -EMSGSIZE;
2371 }
2372
_ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mr_mfc * c,int cmd,int flags)2373 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2374 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2375 int flags)
2376 {
2377 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2378 cmd, flags);
2379 }
2380
mroute_msgsize(bool unresolved,int maxvif)2381 static size_t mroute_msgsize(bool unresolved, int maxvif)
2382 {
2383 size_t len =
2384 NLMSG_ALIGN(sizeof(struct rtmsg))
2385 + nla_total_size(4) /* RTA_TABLE */
2386 + nla_total_size(4) /* RTA_SRC */
2387 + nla_total_size(4) /* RTA_DST */
2388 ;
2389
2390 if (!unresolved)
2391 len = len
2392 + nla_total_size(4) /* RTA_IIF */
2393 + nla_total_size(0) /* RTA_MULTIPATH */
2394 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2395 /* RTA_MFC_STATS */
2396 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2397 ;
2398
2399 return len;
2400 }
2401
mroute_netlink_event(struct mr_table * mrt,struct mfc_cache * mfc,int cmd)2402 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2403 int cmd)
2404 {
2405 struct net *net = read_pnet(&mrt->net);
2406 struct sk_buff *skb;
2407 int err = -ENOBUFS;
2408
2409 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2410 mrt->maxvif),
2411 GFP_ATOMIC);
2412 if (!skb)
2413 goto errout;
2414
2415 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2416 if (err < 0)
2417 goto errout;
2418
2419 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2420 return;
2421
2422 errout:
2423 kfree_skb(skb);
2424 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2425 }
2426
igmpmsg_netlink_msgsize(size_t payloadlen)2427 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2428 {
2429 size_t len =
2430 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2431 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2432 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2433 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2434 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2435 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */
2436 /* IPMRA_CREPORT_PKT */
2437 + nla_total_size(payloadlen)
2438 ;
2439
2440 return len;
2441 }
2442
igmpmsg_netlink_event(const struct mr_table * mrt,struct sk_buff * pkt)2443 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2444 {
2445 struct net *net = read_pnet(&mrt->net);
2446 struct nlmsghdr *nlh;
2447 struct rtgenmsg *rtgenm;
2448 struct igmpmsg *msg;
2449 struct sk_buff *skb;
2450 struct nlattr *nla;
2451 int payloadlen;
2452
2453 payloadlen = pkt->len - sizeof(struct igmpmsg);
2454 msg = (struct igmpmsg *)skb_network_header(pkt);
2455
2456 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2457 if (!skb)
2458 goto errout;
2459
2460 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2461 sizeof(struct rtgenmsg), 0);
2462 if (!nlh)
2463 goto errout;
2464 rtgenm = nlmsg_data(nlh);
2465 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2466 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2467 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2468 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2469 msg->im_src.s_addr) ||
2470 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2471 msg->im_dst.s_addr) ||
2472 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2473 goto nla_put_failure;
2474
2475 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2476 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2477 nla_data(nla), payloadlen))
2478 goto nla_put_failure;
2479
2480 nlmsg_end(skb, nlh);
2481
2482 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2483 return;
2484
2485 nla_put_failure:
2486 nlmsg_cancel(skb, nlh);
2487 errout:
2488 kfree_skb(skb);
2489 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2490 }
2491
ipmr_rtm_valid_getroute_req(struct sk_buff * skb,const struct nlmsghdr * nlh,struct nlattr ** tb,struct netlink_ext_ack * extack)2492 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2493 const struct nlmsghdr *nlh,
2494 struct nlattr **tb,
2495 struct netlink_ext_ack *extack)
2496 {
2497 struct rtmsg *rtm;
2498 int i, err;
2499
2500 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2501 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2502 return -EINVAL;
2503 }
2504
2505 if (!netlink_strict_get_check(skb))
2506 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2507 rtm_ipv4_policy, extack);
2508
2509 rtm = nlmsg_data(nlh);
2510 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2511 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2512 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2513 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2514 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2515 return -EINVAL;
2516 }
2517
2518 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2519 rtm_ipv4_policy, extack);
2520 if (err)
2521 return err;
2522
2523 if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2524 (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2525 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2526 return -EINVAL;
2527 }
2528
2529 for (i = 0; i <= RTA_MAX; i++) {
2530 if (!tb[i])
2531 continue;
2532
2533 switch (i) {
2534 case RTA_SRC:
2535 case RTA_DST:
2536 case RTA_TABLE:
2537 break;
2538 default:
2539 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2540 return -EINVAL;
2541 }
2542 }
2543
2544 return 0;
2545 }
2546
ipmr_rtm_getroute(struct sk_buff * in_skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2547 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2548 struct netlink_ext_ack *extack)
2549 {
2550 struct net *net = sock_net(in_skb->sk);
2551 struct nlattr *tb[RTA_MAX + 1];
2552 struct sk_buff *skb = NULL;
2553 struct mfc_cache *cache;
2554 struct mr_table *mrt;
2555 __be32 src, grp;
2556 u32 tableid;
2557 int err;
2558
2559 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2560 if (err < 0)
2561 goto errout;
2562
2563 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2564 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2565 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2566
2567 mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2568 if (!mrt) {
2569 err = -ENOENT;
2570 goto errout_free;
2571 }
2572
2573 /* entries are added/deleted only under RTNL */
2574 rcu_read_lock();
2575 cache = ipmr_cache_find(mrt, src, grp);
2576 rcu_read_unlock();
2577 if (!cache) {
2578 err = -ENOENT;
2579 goto errout_free;
2580 }
2581
2582 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2583 if (!skb) {
2584 err = -ENOBUFS;
2585 goto errout_free;
2586 }
2587
2588 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2589 nlh->nlmsg_seq, cache,
2590 RTM_NEWROUTE, 0);
2591 if (err < 0)
2592 goto errout_free;
2593
2594 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2595
2596 errout:
2597 return err;
2598
2599 errout_free:
2600 kfree_skb(skb);
2601 goto errout;
2602 }
2603
ipmr_rtm_dumproute(struct sk_buff * skb,struct netlink_callback * cb)2604 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2605 {
2606 struct fib_dump_filter filter = {
2607 .rtnl_held = true,
2608 };
2609 int err;
2610
2611 if (cb->strict_check) {
2612 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2613 &filter, cb);
2614 if (err < 0)
2615 return err;
2616 }
2617
2618 if (filter.table_id) {
2619 struct mr_table *mrt;
2620
2621 mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id);
2622 if (!mrt) {
2623 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2624 return skb->len;
2625
2626 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2627 return -ENOENT;
2628 }
2629 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2630 &mfc_unres_lock, &filter);
2631 return skb->len ? : err;
2632 }
2633
2634 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2635 _ipmr_fill_mroute, &mfc_unres_lock, &filter);
2636 }
2637
2638 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2639 [RTA_SRC] = { .type = NLA_U32 },
2640 [RTA_DST] = { .type = NLA_U32 },
2641 [RTA_IIF] = { .type = NLA_U32 },
2642 [RTA_TABLE] = { .type = NLA_U32 },
2643 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2644 };
2645
ipmr_rtm_validate_proto(unsigned char rtm_protocol)2646 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2647 {
2648 switch (rtm_protocol) {
2649 case RTPROT_STATIC:
2650 case RTPROT_MROUTED:
2651 return true;
2652 }
2653 return false;
2654 }
2655
ipmr_nla_get_ttls(const struct nlattr * nla,struct mfcctl * mfcc)2656 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2657 {
2658 struct rtnexthop *rtnh = nla_data(nla);
2659 int remaining = nla_len(nla), vifi = 0;
2660
2661 while (rtnh_ok(rtnh, remaining)) {
2662 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2663 if (++vifi == MAXVIFS)
2664 break;
2665 rtnh = rtnh_next(rtnh, &remaining);
2666 }
2667
2668 return remaining > 0 ? -EINVAL : vifi;
2669 }
2670
2671 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
rtm_to_ipmr_mfcc(struct net * net,struct nlmsghdr * nlh,struct mfcctl * mfcc,int * mrtsock,struct mr_table ** mrtret,struct netlink_ext_ack * extack)2672 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2673 struct mfcctl *mfcc, int *mrtsock,
2674 struct mr_table **mrtret,
2675 struct netlink_ext_ack *extack)
2676 {
2677 struct net_device *dev = NULL;
2678 u32 tblid = RT_TABLE_DEFAULT;
2679 struct mr_table *mrt;
2680 struct nlattr *attr;
2681 struct rtmsg *rtm;
2682 int ret, rem;
2683
2684 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2685 rtm_ipmr_policy, extack);
2686 if (ret < 0)
2687 goto out;
2688 rtm = nlmsg_data(nlh);
2689
2690 ret = -EINVAL;
2691 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2692 rtm->rtm_type != RTN_MULTICAST ||
2693 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2694 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2695 goto out;
2696
2697 memset(mfcc, 0, sizeof(*mfcc));
2698 mfcc->mfcc_parent = -1;
2699 ret = 0;
2700 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2701 switch (nla_type(attr)) {
2702 case RTA_SRC:
2703 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2704 break;
2705 case RTA_DST:
2706 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2707 break;
2708 case RTA_IIF:
2709 dev = __dev_get_by_index(net, nla_get_u32(attr));
2710 if (!dev) {
2711 ret = -ENODEV;
2712 goto out;
2713 }
2714 break;
2715 case RTA_MULTIPATH:
2716 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2717 ret = -EINVAL;
2718 goto out;
2719 }
2720 break;
2721 case RTA_PREFSRC:
2722 ret = 1;
2723 break;
2724 case RTA_TABLE:
2725 tblid = nla_get_u32(attr);
2726 break;
2727 }
2728 }
2729 mrt = __ipmr_get_table(net, tblid);
2730 if (!mrt) {
2731 ret = -ENOENT;
2732 goto out;
2733 }
2734 *mrtret = mrt;
2735 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2736 if (dev)
2737 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2738
2739 out:
2740 return ret;
2741 }
2742
2743 /* takes care of both newroute and delroute */
ipmr_rtm_route(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2744 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2745 struct netlink_ext_ack *extack)
2746 {
2747 struct net *net = sock_net(skb->sk);
2748 int ret, mrtsock, parent;
2749 struct mr_table *tbl;
2750 struct mfcctl mfcc;
2751
2752 mrtsock = 0;
2753 tbl = NULL;
2754 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2755 if (ret < 0)
2756 return ret;
2757
2758 parent = ret ? mfcc.mfcc_parent : -1;
2759 if (nlh->nlmsg_type == RTM_NEWROUTE)
2760 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2761 else
2762 return ipmr_mfc_delete(tbl, &mfcc, parent);
2763 }
2764
ipmr_fill_table(struct mr_table * mrt,struct sk_buff * skb)2765 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2766 {
2767 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2768
2769 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2770 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2771 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2772 mrt->mroute_reg_vif_num) ||
2773 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2774 mrt->mroute_do_assert) ||
2775 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2776 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2777 mrt->mroute_do_wrvifwhole))
2778 return false;
2779
2780 return true;
2781 }
2782
ipmr_fill_vif(struct mr_table * mrt,u32 vifid,struct sk_buff * skb)2783 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2784 {
2785 struct net_device *vif_dev;
2786 struct nlattr *vif_nest;
2787 struct vif_device *vif;
2788
2789 vif = &mrt->vif_table[vifid];
2790 vif_dev = rtnl_dereference(vif->dev);
2791 /* if the VIF doesn't exist just continue */
2792 if (!vif_dev)
2793 return true;
2794
2795 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2796 if (!vif_nest)
2797 return false;
2798
2799 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2800 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2801 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2802 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2803 IPMRA_VIFA_PAD) ||
2804 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2805 IPMRA_VIFA_PAD) ||
2806 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2807 IPMRA_VIFA_PAD) ||
2808 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2809 IPMRA_VIFA_PAD) ||
2810 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2811 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2812 nla_nest_cancel(skb, vif_nest);
2813 return false;
2814 }
2815 nla_nest_end(skb, vif_nest);
2816
2817 return true;
2818 }
2819
ipmr_valid_dumplink(const struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2820 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2821 struct netlink_ext_ack *extack)
2822 {
2823 struct ifinfomsg *ifm;
2824
2825 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2826 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2827 return -EINVAL;
2828 }
2829
2830 if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2831 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2832 return -EINVAL;
2833 }
2834
2835 ifm = nlmsg_data(nlh);
2836 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2837 ifm->ifi_change || ifm->ifi_index) {
2838 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2839 return -EINVAL;
2840 }
2841
2842 return 0;
2843 }
2844
ipmr_rtm_dumplink(struct sk_buff * skb,struct netlink_callback * cb)2845 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2846 {
2847 struct net *net = sock_net(skb->sk);
2848 struct nlmsghdr *nlh = NULL;
2849 unsigned int t = 0, s_t;
2850 unsigned int e = 0, s_e;
2851 struct mr_table *mrt;
2852
2853 if (cb->strict_check) {
2854 int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2855
2856 if (err < 0)
2857 return err;
2858 }
2859
2860 s_t = cb->args[0];
2861 s_e = cb->args[1];
2862
2863 ipmr_for_each_table(mrt, net) {
2864 struct nlattr *vifs, *af;
2865 struct ifinfomsg *hdr;
2866 u32 i;
2867
2868 if (t < s_t)
2869 goto skip_table;
2870 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2871 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2872 sizeof(*hdr), NLM_F_MULTI);
2873 if (!nlh)
2874 break;
2875
2876 hdr = nlmsg_data(nlh);
2877 memset(hdr, 0, sizeof(*hdr));
2878 hdr->ifi_family = RTNL_FAMILY_IPMR;
2879
2880 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2881 if (!af) {
2882 nlmsg_cancel(skb, nlh);
2883 goto out;
2884 }
2885
2886 if (!ipmr_fill_table(mrt, skb)) {
2887 nlmsg_cancel(skb, nlh);
2888 goto out;
2889 }
2890
2891 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2892 if (!vifs) {
2893 nla_nest_end(skb, af);
2894 nlmsg_end(skb, nlh);
2895 goto out;
2896 }
2897 for (i = 0; i < mrt->maxvif; i++) {
2898 if (e < s_e)
2899 goto skip_entry;
2900 if (!ipmr_fill_vif(mrt, i, skb)) {
2901 nla_nest_end(skb, vifs);
2902 nla_nest_end(skb, af);
2903 nlmsg_end(skb, nlh);
2904 goto out;
2905 }
2906 skip_entry:
2907 e++;
2908 }
2909 s_e = 0;
2910 e = 0;
2911 nla_nest_end(skb, vifs);
2912 nla_nest_end(skb, af);
2913 nlmsg_end(skb, nlh);
2914 skip_table:
2915 t++;
2916 }
2917
2918 out:
2919 cb->args[1] = e;
2920 cb->args[0] = t;
2921
2922 return skb->len;
2923 }
2924
2925 #ifdef CONFIG_PROC_FS
2926 /* The /proc interfaces to multicast routing :
2927 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2928 */
2929
ipmr_vif_seq_start(struct seq_file * seq,loff_t * pos)2930 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2931 __acquires(RCU)
2932 {
2933 struct mr_vif_iter *iter = seq->private;
2934 struct net *net = seq_file_net(seq);
2935 struct mr_table *mrt;
2936
2937 rcu_read_lock();
2938 mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2939 if (!mrt) {
2940 rcu_read_unlock();
2941 return ERR_PTR(-ENOENT);
2942 }
2943
2944 iter->mrt = mrt;
2945
2946 return mr_vif_seq_start(seq, pos);
2947 }
2948
ipmr_vif_seq_stop(struct seq_file * seq,void * v)2949 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2950 __releases(RCU)
2951 {
2952 rcu_read_unlock();
2953 }
2954
ipmr_vif_seq_show(struct seq_file * seq,void * v)2955 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2956 {
2957 struct mr_vif_iter *iter = seq->private;
2958 struct mr_table *mrt = iter->mrt;
2959
2960 if (v == SEQ_START_TOKEN) {
2961 seq_puts(seq,
2962 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2963 } else {
2964 const struct vif_device *vif = v;
2965 const struct net_device *vif_dev;
2966 const char *name;
2967
2968 vif_dev = vif_dev_read(vif);
2969 name = vif_dev ? vif_dev->name : "none";
2970 seq_printf(seq,
2971 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2972 vif - mrt->vif_table,
2973 name, vif->bytes_in, vif->pkt_in,
2974 vif->bytes_out, vif->pkt_out,
2975 vif->flags, vif->local, vif->remote);
2976 }
2977 return 0;
2978 }
2979
2980 static const struct seq_operations ipmr_vif_seq_ops = {
2981 .start = ipmr_vif_seq_start,
2982 .next = mr_vif_seq_next,
2983 .stop = ipmr_vif_seq_stop,
2984 .show = ipmr_vif_seq_show,
2985 };
2986
ipmr_mfc_seq_start(struct seq_file * seq,loff_t * pos)2987 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2988 {
2989 struct net *net = seq_file_net(seq);
2990 struct mr_table *mrt;
2991
2992 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2993 if (!mrt)
2994 return ERR_PTR(-ENOENT);
2995
2996 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2997 }
2998
ipmr_mfc_seq_show(struct seq_file * seq,void * v)2999 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
3000 {
3001 int n;
3002
3003 if (v == SEQ_START_TOKEN) {
3004 seq_puts(seq,
3005 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
3006 } else {
3007 const struct mfc_cache *mfc = v;
3008 const struct mr_mfc_iter *it = seq->private;
3009 const struct mr_table *mrt = it->mrt;
3010
3011 seq_printf(seq, "%08X %08X %-3hd",
3012 (__force u32) mfc->mfc_mcastgrp,
3013 (__force u32) mfc->mfc_origin,
3014 mfc->_c.mfc_parent);
3015
3016 if (it->cache != &mrt->mfc_unres_queue) {
3017 seq_printf(seq, " %8lu %8lu %8lu",
3018 atomic_long_read(&mfc->_c.mfc_un.res.pkt),
3019 atomic_long_read(&mfc->_c.mfc_un.res.bytes),
3020 atomic_long_read(&mfc->_c.mfc_un.res.wrong_if));
3021 for (n = mfc->_c.mfc_un.res.minvif;
3022 n < mfc->_c.mfc_un.res.maxvif; n++) {
3023 if (VIF_EXISTS(mrt, n) &&
3024 mfc->_c.mfc_un.res.ttls[n] < 255)
3025 seq_printf(seq,
3026 " %2d:%-3d",
3027 n, mfc->_c.mfc_un.res.ttls[n]);
3028 }
3029 } else {
3030 /* unresolved mfc_caches don't contain
3031 * pkt, bytes and wrong_if values
3032 */
3033 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3034 }
3035 seq_putc(seq, '\n');
3036 }
3037 return 0;
3038 }
3039
3040 static const struct seq_operations ipmr_mfc_seq_ops = {
3041 .start = ipmr_mfc_seq_start,
3042 .next = mr_mfc_seq_next,
3043 .stop = mr_mfc_seq_stop,
3044 .show = ipmr_mfc_seq_show,
3045 };
3046 #endif
3047
3048 #ifdef CONFIG_IP_PIMSM_V2
3049 static const struct net_protocol pim_protocol = {
3050 .handler = pim_rcv,
3051 };
3052 #endif
3053
ipmr_seq_read(struct net * net)3054 static unsigned int ipmr_seq_read(struct net *net)
3055 {
3056 ASSERT_RTNL();
3057
3058 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3059 }
3060
ipmr_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)3061 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3062 struct netlink_ext_ack *extack)
3063 {
3064 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3065 ipmr_mr_table_iter, extack);
3066 }
3067
3068 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3069 .family = RTNL_FAMILY_IPMR,
3070 .fib_seq_read = ipmr_seq_read,
3071 .fib_dump = ipmr_dump,
3072 .owner = THIS_MODULE,
3073 };
3074
ipmr_notifier_init(struct net * net)3075 static int __net_init ipmr_notifier_init(struct net *net)
3076 {
3077 struct fib_notifier_ops *ops;
3078
3079 net->ipv4.ipmr_seq = 0;
3080
3081 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3082 if (IS_ERR(ops))
3083 return PTR_ERR(ops);
3084 net->ipv4.ipmr_notifier_ops = ops;
3085
3086 return 0;
3087 }
3088
ipmr_notifier_exit(struct net * net)3089 static void __net_exit ipmr_notifier_exit(struct net *net)
3090 {
3091 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3092 net->ipv4.ipmr_notifier_ops = NULL;
3093 }
3094
3095 /* Setup for IP multicast routing */
ipmr_net_init(struct net * net)3096 static int __net_init ipmr_net_init(struct net *net)
3097 {
3098 int err;
3099
3100 err = ipmr_notifier_init(net);
3101 if (err)
3102 goto ipmr_notifier_fail;
3103
3104 err = ipmr_rules_init(net);
3105 if (err < 0)
3106 goto ipmr_rules_fail;
3107
3108 #ifdef CONFIG_PROC_FS
3109 err = -ENOMEM;
3110 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3111 sizeof(struct mr_vif_iter)))
3112 goto proc_vif_fail;
3113 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3114 sizeof(struct mr_mfc_iter)))
3115 goto proc_cache_fail;
3116 #endif
3117 return 0;
3118
3119 #ifdef CONFIG_PROC_FS
3120 proc_cache_fail:
3121 remove_proc_entry("ip_mr_vif", net->proc_net);
3122 proc_vif_fail:
3123 rtnl_lock();
3124 ipmr_rules_exit(net);
3125 rtnl_unlock();
3126 #endif
3127 ipmr_rules_fail:
3128 ipmr_notifier_exit(net);
3129 ipmr_notifier_fail:
3130 return err;
3131 }
3132
ipmr_net_exit(struct net * net)3133 static void __net_exit ipmr_net_exit(struct net *net)
3134 {
3135 #ifdef CONFIG_PROC_FS
3136 remove_proc_entry("ip_mr_cache", net->proc_net);
3137 remove_proc_entry("ip_mr_vif", net->proc_net);
3138 #endif
3139 ipmr_notifier_exit(net);
3140 }
3141
ipmr_net_exit_batch(struct list_head * net_list)3142 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3143 {
3144 struct net *net;
3145
3146 rtnl_lock();
3147 list_for_each_entry(net, net_list, exit_list)
3148 ipmr_rules_exit(net);
3149 rtnl_unlock();
3150 }
3151
3152 static struct pernet_operations ipmr_net_ops = {
3153 .init = ipmr_net_init,
3154 .exit = ipmr_net_exit,
3155 .exit_batch = ipmr_net_exit_batch,
3156 };
3157
ip_mr_init(void)3158 int __init ip_mr_init(void)
3159 {
3160 int err;
3161
3162 mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3163
3164 err = register_pernet_subsys(&ipmr_net_ops);
3165 if (err)
3166 goto reg_pernet_fail;
3167
3168 err = register_netdevice_notifier(&ip_mr_notifier);
3169 if (err)
3170 goto reg_notif_fail;
3171 #ifdef CONFIG_IP_PIMSM_V2
3172 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3173 pr_err("%s: can't add PIM protocol\n", __func__);
3174 err = -EAGAIN;
3175 goto add_proto_fail;
3176 }
3177 #endif
3178 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3179 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3180 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3181 ipmr_rtm_route, NULL, 0);
3182 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3183 ipmr_rtm_route, NULL, 0);
3184
3185 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3186 NULL, ipmr_rtm_dumplink, 0);
3187 return 0;
3188
3189 #ifdef CONFIG_IP_PIMSM_V2
3190 add_proto_fail:
3191 unregister_netdevice_notifier(&ip_mr_notifier);
3192 #endif
3193 reg_notif_fail:
3194 unregister_pernet_subsys(&ipmr_net_ops);
3195 reg_pernet_fail:
3196 kmem_cache_destroy(mrt_cachep);
3197 return err;
3198 }
3199