1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	IP multicast routing support for mrouted 3.6/3.8
4  *
5  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *	  Linux Consultancy and Custom Driver Development
7  *
8  *	Fixes:
9  *	Michael Chastain	:	Incorrect size of copying.
10  *	Alan Cox		:	Added the cache manager code
11  *	Alan Cox		:	Fixed the clone/copy bug and device race.
12  *	Mike McLagan		:	Routing by source
13  *	Malcolm Beattie		:	Buffer handling fixes.
14  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
15  *	SVR Anand		:	Fixed several multicast bugs and problems.
16  *	Alexey Kuznetsov	:	Status, optimisations and more.
17  *	Brad Parker		:	Better behaviour on mrouted upcall
18  *					overflow.
19  *      Carlos Picoto           :       PIMv1 Support
20  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
21  *					Relax this requirement to work with older peers.
22  */
23 
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65 #include <net/inet_dscp.h>
66 
67 #include <linux/nospec.h>
68 
69 struct ipmr_rule {
70 	struct fib_rule		common;
71 };
72 
73 struct ipmr_result {
74 	struct mr_table		*mrt;
75 };
76 
77 /* Big lock, protecting vif table, mrt cache and mroute socket state.
78  * Note that the changes are semaphored via rtnl_lock.
79  */
80 
81 static DEFINE_SPINLOCK(mrt_lock);
82 
vif_dev_read(const struct vif_device * vif)83 static struct net_device *vif_dev_read(const struct vif_device *vif)
84 {
85 	return rcu_dereference(vif->dev);
86 }
87 
88 /* Multicast router control variables */
89 
90 /* Special spinlock for queue of unresolved entries */
91 static DEFINE_SPINLOCK(mfc_unres_lock);
92 
93 /* We return to original Alan's scheme. Hash table of resolved
94  * entries is changed only in process context and protected
95  * with weak lock mrt_lock. Queue of unresolved entries is protected
96  * with strong spinlock mfc_unres_lock.
97  *
98  * In this case data path is free of exclusive locks at all.
99  */
100 
101 static struct kmem_cache *mrt_cachep __ro_after_init;
102 
103 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
104 static void ipmr_free_table(struct mr_table *mrt);
105 
106 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
107 			  struct net_device *dev, struct sk_buff *skb,
108 			  struct mfc_cache *cache, int local);
109 static int ipmr_cache_report(const struct mr_table *mrt,
110 			     struct sk_buff *pkt, vifi_t vifi, int assert);
111 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
112 				 int cmd);
113 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
114 static void mroute_clean_tables(struct mr_table *mrt, int flags);
115 static void ipmr_expire_process(struct timer_list *t);
116 
117 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
118 #define ipmr_for_each_table(mrt, net)					\
119 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
120 				lockdep_rtnl_is_held() ||		\
121 				list_empty(&net->ipv4.mr_tables))
122 
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)123 static struct mr_table *ipmr_mr_table_iter(struct net *net,
124 					   struct mr_table *mrt)
125 {
126 	struct mr_table *ret;
127 
128 	if (!mrt)
129 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
130 				     struct mr_table, list);
131 	else
132 		ret = list_entry_rcu(mrt->list.next,
133 				     struct mr_table, list);
134 
135 	if (&ret->list == &net->ipv4.mr_tables)
136 		return NULL;
137 	return ret;
138 }
139 
__ipmr_get_table(struct net * net,u32 id)140 static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
141 {
142 	struct mr_table *mrt;
143 
144 	ipmr_for_each_table(mrt, net) {
145 		if (mrt->id == id)
146 			return mrt;
147 	}
148 	return NULL;
149 }
150 
ipmr_get_table(struct net * net,u32 id)151 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
152 {
153 	struct mr_table *mrt;
154 
155 	rcu_read_lock();
156 	mrt = __ipmr_get_table(net, id);
157 	rcu_read_unlock();
158 	return mrt;
159 }
160 
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)161 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
162 			   struct mr_table **mrt)
163 {
164 	int err;
165 	struct ipmr_result res;
166 	struct fib_lookup_arg arg = {
167 		.result = &res,
168 		.flags = FIB_LOOKUP_NOREF,
169 	};
170 
171 	/* update flow if oif or iif point to device enslaved to l3mdev */
172 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
173 
174 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
175 			       flowi4_to_flowi(flp4), 0, &arg);
176 	if (err < 0)
177 		return err;
178 	*mrt = res.mrt;
179 	return 0;
180 }
181 
ipmr_rule_action(struct fib_rule * rule,struct flowi * flp,int flags,struct fib_lookup_arg * arg)182 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
183 			    int flags, struct fib_lookup_arg *arg)
184 {
185 	struct ipmr_result *res = arg->result;
186 	struct mr_table *mrt;
187 
188 	switch (rule->action) {
189 	case FR_ACT_TO_TBL:
190 		break;
191 	case FR_ACT_UNREACHABLE:
192 		return -ENETUNREACH;
193 	case FR_ACT_PROHIBIT:
194 		return -EACCES;
195 	case FR_ACT_BLACKHOLE:
196 	default:
197 		return -EINVAL;
198 	}
199 
200 	arg->table = fib_rule_get_table(rule, arg);
201 
202 	mrt = __ipmr_get_table(rule->fr_net, arg->table);
203 	if (!mrt)
204 		return -EAGAIN;
205 	res->mrt = mrt;
206 	return 0;
207 }
208 
ipmr_rule_match(struct fib_rule * rule,struct flowi * fl,int flags)209 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
210 {
211 	return 1;
212 }
213 
ipmr_rule_configure(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh,struct nlattr ** tb,struct netlink_ext_ack * extack)214 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
215 			       struct fib_rule_hdr *frh, struct nlattr **tb,
216 			       struct netlink_ext_ack *extack)
217 {
218 	return 0;
219 }
220 
ipmr_rule_compare(struct fib_rule * rule,struct fib_rule_hdr * frh,struct nlattr ** tb)221 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
222 			     struct nlattr **tb)
223 {
224 	return 1;
225 }
226 
ipmr_rule_fill(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh)227 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
228 			  struct fib_rule_hdr *frh)
229 {
230 	frh->dst_len = 0;
231 	frh->src_len = 0;
232 	frh->tos     = 0;
233 	return 0;
234 }
235 
236 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
237 	.family		= RTNL_FAMILY_IPMR,
238 	.rule_size	= sizeof(struct ipmr_rule),
239 	.addr_size	= sizeof(u32),
240 	.action		= ipmr_rule_action,
241 	.match		= ipmr_rule_match,
242 	.configure	= ipmr_rule_configure,
243 	.compare	= ipmr_rule_compare,
244 	.fill		= ipmr_rule_fill,
245 	.nlgroup	= RTNLGRP_IPV4_RULE,
246 	.owner		= THIS_MODULE,
247 };
248 
ipmr_rules_init(struct net * net)249 static int __net_init ipmr_rules_init(struct net *net)
250 {
251 	struct fib_rules_ops *ops;
252 	struct mr_table *mrt;
253 	int err;
254 
255 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
256 	if (IS_ERR(ops))
257 		return PTR_ERR(ops);
258 
259 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
260 
261 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
262 	if (IS_ERR(mrt)) {
263 		err = PTR_ERR(mrt);
264 		goto err1;
265 	}
266 
267 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
268 	if (err < 0)
269 		goto err2;
270 
271 	net->ipv4.mr_rules_ops = ops;
272 	return 0;
273 
274 err2:
275 	rtnl_lock();
276 	ipmr_free_table(mrt);
277 	rtnl_unlock();
278 err1:
279 	fib_rules_unregister(ops);
280 	return err;
281 }
282 
ipmr_rules_exit(struct net * net)283 static void __net_exit ipmr_rules_exit(struct net *net)
284 {
285 	struct mr_table *mrt, *next;
286 
287 	ASSERT_RTNL();
288 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
289 		list_del(&mrt->list);
290 		ipmr_free_table(mrt);
291 	}
292 	fib_rules_unregister(net->ipv4.mr_rules_ops);
293 }
294 
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)295 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
296 			   struct netlink_ext_ack *extack)
297 {
298 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
299 }
300 
ipmr_rules_seq_read(struct net * net)301 static unsigned int ipmr_rules_seq_read(struct net *net)
302 {
303 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
304 }
305 
ipmr_rule_default(const struct fib_rule * rule)306 bool ipmr_rule_default(const struct fib_rule *rule)
307 {
308 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
309 }
310 EXPORT_SYMBOL(ipmr_rule_default);
311 #else
312 #define ipmr_for_each_table(mrt, net) \
313 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
314 
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)315 static struct mr_table *ipmr_mr_table_iter(struct net *net,
316 					   struct mr_table *mrt)
317 {
318 	if (!mrt)
319 		return net->ipv4.mrt;
320 	return NULL;
321 }
322 
ipmr_get_table(struct net * net,u32 id)323 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
324 {
325 	return net->ipv4.mrt;
326 }
327 
328 #define __ipmr_get_table ipmr_get_table
329 
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)330 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
331 			   struct mr_table **mrt)
332 {
333 	*mrt = net->ipv4.mrt;
334 	return 0;
335 }
336 
ipmr_rules_init(struct net * net)337 static int __net_init ipmr_rules_init(struct net *net)
338 {
339 	struct mr_table *mrt;
340 
341 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
342 	if (IS_ERR(mrt))
343 		return PTR_ERR(mrt);
344 	net->ipv4.mrt = mrt;
345 	return 0;
346 }
347 
ipmr_rules_exit(struct net * net)348 static void __net_exit ipmr_rules_exit(struct net *net)
349 {
350 	ASSERT_RTNL();
351 	ipmr_free_table(net->ipv4.mrt);
352 	net->ipv4.mrt = NULL;
353 }
354 
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)355 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
356 			   struct netlink_ext_ack *extack)
357 {
358 	return 0;
359 }
360 
ipmr_rules_seq_read(struct net * net)361 static unsigned int ipmr_rules_seq_read(struct net *net)
362 {
363 	return 0;
364 }
365 
ipmr_rule_default(const struct fib_rule * rule)366 bool ipmr_rule_default(const struct fib_rule *rule)
367 {
368 	return true;
369 }
370 EXPORT_SYMBOL(ipmr_rule_default);
371 #endif
372 
ipmr_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)373 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
374 				const void *ptr)
375 {
376 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
377 	const struct mfc_cache *c = ptr;
378 
379 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
380 	       cmparg->mfc_origin != c->mfc_origin;
381 }
382 
383 static const struct rhashtable_params ipmr_rht_params = {
384 	.head_offset = offsetof(struct mr_mfc, mnode),
385 	.key_offset = offsetof(struct mfc_cache, cmparg),
386 	.key_len = sizeof(struct mfc_cache_cmp_arg),
387 	.nelem_hint = 3,
388 	.obj_cmpfn = ipmr_hash_cmp,
389 	.automatic_shrinking = true,
390 };
391 
ipmr_new_table_set(struct mr_table * mrt,struct net * net)392 static void ipmr_new_table_set(struct mr_table *mrt,
393 			       struct net *net)
394 {
395 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
396 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
397 #endif
398 }
399 
400 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
401 	.mfc_mcastgrp = htonl(INADDR_ANY),
402 	.mfc_origin = htonl(INADDR_ANY),
403 };
404 
405 static struct mr_table_ops ipmr_mr_table_ops = {
406 	.rht_params = &ipmr_rht_params,
407 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
408 };
409 
ipmr_new_table(struct net * net,u32 id)410 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
411 {
412 	struct mr_table *mrt;
413 
414 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
415 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
416 		return ERR_PTR(-EINVAL);
417 
418 	mrt = __ipmr_get_table(net, id);
419 	if (mrt)
420 		return mrt;
421 
422 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
423 			      ipmr_expire_process, ipmr_new_table_set);
424 }
425 
ipmr_free_table(struct mr_table * mrt)426 static void ipmr_free_table(struct mr_table *mrt)
427 {
428 	timer_shutdown_sync(&mrt->ipmr_expire_timer);
429 	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
430 				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
431 	rhltable_destroy(&mrt->mfc_hash);
432 	kfree(mrt);
433 }
434 
435 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
436 
437 /* Initialize ipmr pimreg/tunnel in_device */
ipmr_init_vif_indev(const struct net_device * dev)438 static bool ipmr_init_vif_indev(const struct net_device *dev)
439 {
440 	struct in_device *in_dev;
441 
442 	ASSERT_RTNL();
443 
444 	in_dev = __in_dev_get_rtnl(dev);
445 	if (!in_dev)
446 		return false;
447 	ipv4_devconf_setall(in_dev);
448 	neigh_parms_data_state_setall(in_dev->arp_parms);
449 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
450 
451 	return true;
452 }
453 
ipmr_new_tunnel(struct net * net,struct vifctl * v)454 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
455 {
456 	struct net_device *tunnel_dev, *new_dev;
457 	struct ip_tunnel_parm_kern p = { };
458 	int err;
459 
460 	tunnel_dev = __dev_get_by_name(net, "tunl0");
461 	if (!tunnel_dev)
462 		goto out;
463 
464 	p.iph.daddr = v->vifc_rmt_addr.s_addr;
465 	p.iph.saddr = v->vifc_lcl_addr.s_addr;
466 	p.iph.version = 4;
467 	p.iph.ihl = 5;
468 	p.iph.protocol = IPPROTO_IPIP;
469 	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
470 
471 	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
472 		goto out;
473 	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
474 			SIOCADDTUNNEL);
475 	if (err)
476 		goto out;
477 
478 	new_dev = __dev_get_by_name(net, p.name);
479 	if (!new_dev)
480 		goto out;
481 
482 	new_dev->flags |= IFF_MULTICAST;
483 	if (!ipmr_init_vif_indev(new_dev))
484 		goto out_unregister;
485 	if (dev_open(new_dev, NULL))
486 		goto out_unregister;
487 	dev_hold(new_dev);
488 	err = dev_set_allmulti(new_dev, 1);
489 	if (err) {
490 		dev_close(new_dev);
491 		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
492 				SIOCDELTUNNEL);
493 		dev_put(new_dev);
494 		new_dev = ERR_PTR(err);
495 	}
496 	return new_dev;
497 
498 out_unregister:
499 	unregister_netdevice(new_dev);
500 out:
501 	return ERR_PTR(-ENOBUFS);
502 }
503 
504 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
reg_vif_xmit(struct sk_buff * skb,struct net_device * dev)505 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
506 {
507 	struct net *net = dev_net(dev);
508 	struct mr_table *mrt;
509 	struct flowi4 fl4 = {
510 		.flowi4_oif	= dev->ifindex,
511 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
512 		.flowi4_mark	= skb->mark,
513 	};
514 	int err;
515 
516 	err = ipmr_fib_lookup(net, &fl4, &mrt);
517 	if (err < 0) {
518 		kfree_skb(skb);
519 		return err;
520 	}
521 
522 	DEV_STATS_ADD(dev, tx_bytes, skb->len);
523 	DEV_STATS_INC(dev, tx_packets);
524 	rcu_read_lock();
525 
526 	/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
527 	ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
528 			  IGMPMSG_WHOLEPKT);
529 
530 	rcu_read_unlock();
531 	kfree_skb(skb);
532 	return NETDEV_TX_OK;
533 }
534 
reg_vif_get_iflink(const struct net_device * dev)535 static int reg_vif_get_iflink(const struct net_device *dev)
536 {
537 	return 0;
538 }
539 
540 static const struct net_device_ops reg_vif_netdev_ops = {
541 	.ndo_start_xmit	= reg_vif_xmit,
542 	.ndo_get_iflink = reg_vif_get_iflink,
543 };
544 
reg_vif_setup(struct net_device * dev)545 static void reg_vif_setup(struct net_device *dev)
546 {
547 	dev->type		= ARPHRD_PIMREG;
548 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
549 	dev->flags		= IFF_NOARP;
550 	dev->netdev_ops		= ®_vif_netdev_ops;
551 	dev->needs_free_netdev	= true;
552 	dev->netns_local	= true;
553 }
554 
ipmr_reg_vif(struct net * net,struct mr_table * mrt)555 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
556 {
557 	struct net_device *dev;
558 	char name[IFNAMSIZ];
559 
560 	if (mrt->id == RT_TABLE_DEFAULT)
561 		sprintf(name, "pimreg");
562 	else
563 		sprintf(name, "pimreg%u", mrt->id);
564 
565 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
566 
567 	if (!dev)
568 		return NULL;
569 
570 	dev_net_set(dev, net);
571 
572 	if (register_netdevice(dev)) {
573 		free_netdev(dev);
574 		return NULL;
575 	}
576 
577 	if (!ipmr_init_vif_indev(dev))
578 		goto failure;
579 	if (dev_open(dev, NULL))
580 		goto failure;
581 
582 	dev_hold(dev);
583 
584 	return dev;
585 
586 failure:
587 	unregister_netdevice(dev);
588 	return NULL;
589 }
590 
591 /* called with rcu_read_lock() */
__pim_rcv(struct mr_table * mrt,struct sk_buff * skb,unsigned int pimlen)592 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
593 		     unsigned int pimlen)
594 {
595 	struct net_device *reg_dev = NULL;
596 	struct iphdr *encap;
597 	int vif_num;
598 
599 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
600 	/* Check that:
601 	 * a. packet is really sent to a multicast group
602 	 * b. packet is not a NULL-REGISTER
603 	 * c. packet is not truncated
604 	 */
605 	if (!ipv4_is_multicast(encap->daddr) ||
606 	    encap->tot_len == 0 ||
607 	    ntohs(encap->tot_len) + pimlen > skb->len)
608 		return 1;
609 
610 	/* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
611 	vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
612 	if (vif_num >= 0)
613 		reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
614 	if (!reg_dev)
615 		return 1;
616 
617 	skb->mac_header = skb->network_header;
618 	skb_pull(skb, (u8 *)encap - skb->data);
619 	skb_reset_network_header(skb);
620 	skb->protocol = htons(ETH_P_IP);
621 	skb->ip_summed = CHECKSUM_NONE;
622 
623 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
624 
625 	netif_rx(skb);
626 
627 	return NET_RX_SUCCESS;
628 }
629 #else
ipmr_reg_vif(struct net * net,struct mr_table * mrt)630 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
631 {
632 	return NULL;
633 }
634 #endif
635 
call_ipmr_vif_entry_notifiers(struct net * net,enum fib_event_type event_type,struct vif_device * vif,struct net_device * vif_dev,vifi_t vif_index,u32 tb_id)636 static int call_ipmr_vif_entry_notifiers(struct net *net,
637 					 enum fib_event_type event_type,
638 					 struct vif_device *vif,
639 					 struct net_device *vif_dev,
640 					 vifi_t vif_index, u32 tb_id)
641 {
642 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
643 				     vif, vif_dev, vif_index, tb_id,
644 				     &net->ipv4.ipmr_seq);
645 }
646 
call_ipmr_mfc_entry_notifiers(struct net * net,enum fib_event_type event_type,struct mfc_cache * mfc,u32 tb_id)647 static int call_ipmr_mfc_entry_notifiers(struct net *net,
648 					 enum fib_event_type event_type,
649 					 struct mfc_cache *mfc, u32 tb_id)
650 {
651 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
652 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
653 }
654 
655 /**
656  *	vif_delete - Delete a VIF entry
657  *	@mrt: Table to delete from
658  *	@vifi: VIF identifier to delete
659  *	@notify: Set to 1, if the caller is a notifier_call
660  *	@head: if unregistering the VIF, place it on this queue
661  */
vif_delete(struct mr_table * mrt,int vifi,int notify,struct list_head * head)662 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
663 		      struct list_head *head)
664 {
665 	struct net *net = read_pnet(&mrt->net);
666 	struct vif_device *v;
667 	struct net_device *dev;
668 	struct in_device *in_dev;
669 
670 	if (vifi < 0 || vifi >= mrt->maxvif)
671 		return -EADDRNOTAVAIL;
672 
673 	v = &mrt->vif_table[vifi];
674 
675 	dev = rtnl_dereference(v->dev);
676 	if (!dev)
677 		return -EADDRNOTAVAIL;
678 
679 	spin_lock(&mrt_lock);
680 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
681 				      vifi, mrt->id);
682 	RCU_INIT_POINTER(v->dev, NULL);
683 
684 	if (vifi == mrt->mroute_reg_vif_num) {
685 		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
686 		WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
687 	}
688 	if (vifi + 1 == mrt->maxvif) {
689 		int tmp;
690 
691 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
692 			if (VIF_EXISTS(mrt, tmp))
693 				break;
694 		}
695 		WRITE_ONCE(mrt->maxvif, tmp + 1);
696 	}
697 
698 	spin_unlock(&mrt_lock);
699 
700 	dev_set_allmulti(dev, -1);
701 
702 	in_dev = __in_dev_get_rtnl(dev);
703 	if (in_dev) {
704 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
705 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
706 					    NETCONFA_MC_FORWARDING,
707 					    dev->ifindex, &in_dev->cnf);
708 		ip_rt_multicast_event(in_dev);
709 	}
710 
711 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
712 		unregister_netdevice_queue(dev, head);
713 
714 	netdev_put(dev, &v->dev_tracker);
715 	return 0;
716 }
717 
ipmr_cache_free_rcu(struct rcu_head * head)718 static void ipmr_cache_free_rcu(struct rcu_head *head)
719 {
720 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
721 
722 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
723 }
724 
ipmr_cache_free(struct mfc_cache * c)725 static void ipmr_cache_free(struct mfc_cache *c)
726 {
727 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
728 }
729 
730 /* Destroy an unresolved cache entry, killing queued skbs
731  * and reporting error to netlink readers.
732  */
ipmr_destroy_unres(struct mr_table * mrt,struct mfc_cache * c)733 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
734 {
735 	struct net *net = read_pnet(&mrt->net);
736 	struct sk_buff *skb;
737 	struct nlmsgerr *e;
738 
739 	atomic_dec(&mrt->cache_resolve_queue_len);
740 
741 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
742 		if (ip_hdr(skb)->version == 0) {
743 			struct nlmsghdr *nlh = skb_pull(skb,
744 							sizeof(struct iphdr));
745 			nlh->nlmsg_type = NLMSG_ERROR;
746 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
747 			skb_trim(skb, nlh->nlmsg_len);
748 			e = nlmsg_data(nlh);
749 			e->error = -ETIMEDOUT;
750 			memset(&e->msg, 0, sizeof(e->msg));
751 
752 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
753 		} else {
754 			kfree_skb(skb);
755 		}
756 	}
757 
758 	ipmr_cache_free(c);
759 }
760 
761 /* Timer process for the unresolved queue. */
ipmr_expire_process(struct timer_list * t)762 static void ipmr_expire_process(struct timer_list *t)
763 {
764 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
765 	struct mr_mfc *c, *next;
766 	unsigned long expires;
767 	unsigned long now;
768 
769 	if (!spin_trylock(&mfc_unres_lock)) {
770 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
771 		return;
772 	}
773 
774 	if (list_empty(&mrt->mfc_unres_queue))
775 		goto out;
776 
777 	now = jiffies;
778 	expires = 10*HZ;
779 
780 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
781 		if (time_after(c->mfc_un.unres.expires, now)) {
782 			unsigned long interval = c->mfc_un.unres.expires - now;
783 			if (interval < expires)
784 				expires = interval;
785 			continue;
786 		}
787 
788 		list_del(&c->list);
789 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
790 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
791 	}
792 
793 	if (!list_empty(&mrt->mfc_unres_queue))
794 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
795 
796 out:
797 	spin_unlock(&mfc_unres_lock);
798 }
799 
800 /* Fill oifs list. It is called under locked mrt_lock. */
ipmr_update_thresholds(struct mr_table * mrt,struct mr_mfc * cache,unsigned char * ttls)801 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
802 				   unsigned char *ttls)
803 {
804 	int vifi;
805 
806 	cache->mfc_un.res.minvif = MAXVIFS;
807 	cache->mfc_un.res.maxvif = 0;
808 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
809 
810 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
811 		if (VIF_EXISTS(mrt, vifi) &&
812 		    ttls[vifi] && ttls[vifi] < 255) {
813 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
814 			if (cache->mfc_un.res.minvif > vifi)
815 				cache->mfc_un.res.minvif = vifi;
816 			if (cache->mfc_un.res.maxvif <= vifi)
817 				cache->mfc_un.res.maxvif = vifi + 1;
818 		}
819 	}
820 	WRITE_ONCE(cache->mfc_un.res.lastuse, jiffies);
821 }
822 
vif_add(struct net * net,struct mr_table * mrt,struct vifctl * vifc,int mrtsock)823 static int vif_add(struct net *net, struct mr_table *mrt,
824 		   struct vifctl *vifc, int mrtsock)
825 {
826 	struct netdev_phys_item_id ppid = { };
827 	int vifi = vifc->vifc_vifi;
828 	struct vif_device *v = &mrt->vif_table[vifi];
829 	struct net_device *dev;
830 	struct in_device *in_dev;
831 	int err;
832 
833 	/* Is vif busy ? */
834 	if (VIF_EXISTS(mrt, vifi))
835 		return -EADDRINUSE;
836 
837 	switch (vifc->vifc_flags) {
838 	case VIFF_REGISTER:
839 		if (!ipmr_pimsm_enabled())
840 			return -EINVAL;
841 		/* Special Purpose VIF in PIM
842 		 * All the packets will be sent to the daemon
843 		 */
844 		if (mrt->mroute_reg_vif_num >= 0)
845 			return -EADDRINUSE;
846 		dev = ipmr_reg_vif(net, mrt);
847 		if (!dev)
848 			return -ENOBUFS;
849 		err = dev_set_allmulti(dev, 1);
850 		if (err) {
851 			unregister_netdevice(dev);
852 			dev_put(dev);
853 			return err;
854 		}
855 		break;
856 	case VIFF_TUNNEL:
857 		dev = ipmr_new_tunnel(net, vifc);
858 		if (IS_ERR(dev))
859 			return PTR_ERR(dev);
860 		break;
861 	case VIFF_USE_IFINDEX:
862 	case 0:
863 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
864 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
865 			if (dev && !__in_dev_get_rtnl(dev)) {
866 				dev_put(dev);
867 				return -EADDRNOTAVAIL;
868 			}
869 		} else {
870 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
871 		}
872 		if (!dev)
873 			return -EADDRNOTAVAIL;
874 		err = dev_set_allmulti(dev, 1);
875 		if (err) {
876 			dev_put(dev);
877 			return err;
878 		}
879 		break;
880 	default:
881 		return -EINVAL;
882 	}
883 
884 	in_dev = __in_dev_get_rtnl(dev);
885 	if (!in_dev) {
886 		dev_put(dev);
887 		return -EADDRNOTAVAIL;
888 	}
889 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
890 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
891 				    dev->ifindex, &in_dev->cnf);
892 	ip_rt_multicast_event(in_dev);
893 
894 	/* Fill in the VIF structures */
895 	vif_device_init(v, dev, vifc->vifc_rate_limit,
896 			vifc->vifc_threshold,
897 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
898 			(VIFF_TUNNEL | VIFF_REGISTER));
899 
900 	err = dev_get_port_parent_id(dev, &ppid, true);
901 	if (err == 0) {
902 		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
903 		v->dev_parent_id.id_len = ppid.id_len;
904 	} else {
905 		v->dev_parent_id.id_len = 0;
906 	}
907 
908 	v->local = vifc->vifc_lcl_addr.s_addr;
909 	v->remote = vifc->vifc_rmt_addr.s_addr;
910 
911 	/* And finish update writing critical data */
912 	spin_lock(&mrt_lock);
913 	rcu_assign_pointer(v->dev, dev);
914 	netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
915 	if (v->flags & VIFF_REGISTER) {
916 		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
917 		WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
918 	}
919 	if (vifi+1 > mrt->maxvif)
920 		WRITE_ONCE(mrt->maxvif, vifi + 1);
921 	spin_unlock(&mrt_lock);
922 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
923 				      vifi, mrt->id);
924 	return 0;
925 }
926 
927 /* called with rcu_read_lock() */
ipmr_cache_find(struct mr_table * mrt,__be32 origin,__be32 mcastgrp)928 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
929 					 __be32 origin,
930 					 __be32 mcastgrp)
931 {
932 	struct mfc_cache_cmp_arg arg = {
933 			.mfc_mcastgrp = mcastgrp,
934 			.mfc_origin = origin
935 	};
936 
937 	return mr_mfc_find(mrt, &arg);
938 }
939 
940 /* Look for a (*,G) entry */
ipmr_cache_find_any(struct mr_table * mrt,__be32 mcastgrp,int vifi)941 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
942 					     __be32 mcastgrp, int vifi)
943 {
944 	struct mfc_cache_cmp_arg arg = {
945 			.mfc_mcastgrp = mcastgrp,
946 			.mfc_origin = htonl(INADDR_ANY)
947 	};
948 
949 	if (mcastgrp == htonl(INADDR_ANY))
950 		return mr_mfc_find_any_parent(mrt, vifi);
951 	return mr_mfc_find_any(mrt, vifi, &arg);
952 }
953 
954 /* Look for a (S,G,iif) entry if parent != -1 */
ipmr_cache_find_parent(struct mr_table * mrt,__be32 origin,__be32 mcastgrp,int parent)955 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
956 						__be32 origin, __be32 mcastgrp,
957 						int parent)
958 {
959 	struct mfc_cache_cmp_arg arg = {
960 			.mfc_mcastgrp = mcastgrp,
961 			.mfc_origin = origin,
962 	};
963 
964 	return mr_mfc_find_parent(mrt, &arg, parent);
965 }
966 
967 /* Allocate a multicast cache entry */
ipmr_cache_alloc(void)968 static struct mfc_cache *ipmr_cache_alloc(void)
969 {
970 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
971 
972 	if (c) {
973 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
974 		c->_c.mfc_un.res.minvif = MAXVIFS;
975 		c->_c.free = ipmr_cache_free_rcu;
976 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
977 	}
978 	return c;
979 }
980 
ipmr_cache_alloc_unres(void)981 static struct mfc_cache *ipmr_cache_alloc_unres(void)
982 {
983 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
984 
985 	if (c) {
986 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
987 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
988 	}
989 	return c;
990 }
991 
992 /* A cache entry has gone into a resolved state from queued */
ipmr_cache_resolve(struct net * net,struct mr_table * mrt,struct mfc_cache * uc,struct mfc_cache * c)993 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
994 			       struct mfc_cache *uc, struct mfc_cache *c)
995 {
996 	struct sk_buff *skb;
997 	struct nlmsgerr *e;
998 
999 	/* Play the pending entries through our router */
1000 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1001 		if (ip_hdr(skb)->version == 0) {
1002 			struct nlmsghdr *nlh = skb_pull(skb,
1003 							sizeof(struct iphdr));
1004 
1005 			if (mr_fill_mroute(mrt, skb, &c->_c,
1006 					   nlmsg_data(nlh)) > 0) {
1007 				nlh->nlmsg_len = skb_tail_pointer(skb) -
1008 						 (u8 *)nlh;
1009 			} else {
1010 				nlh->nlmsg_type = NLMSG_ERROR;
1011 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1012 				skb_trim(skb, nlh->nlmsg_len);
1013 				e = nlmsg_data(nlh);
1014 				e->error = -EMSGSIZE;
1015 				memset(&e->msg, 0, sizeof(e->msg));
1016 			}
1017 
1018 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1019 		} else {
1020 			rcu_read_lock();
1021 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1022 			rcu_read_unlock();
1023 		}
1024 	}
1025 }
1026 
1027 /* Bounce a cache query up to mrouted and netlink.
1028  *
1029  * Called under rcu_read_lock().
1030  */
ipmr_cache_report(const struct mr_table * mrt,struct sk_buff * pkt,vifi_t vifi,int assert)1031 static int ipmr_cache_report(const struct mr_table *mrt,
1032 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1033 {
1034 	const int ihl = ip_hdrlen(pkt);
1035 	struct sock *mroute_sk;
1036 	struct igmphdr *igmp;
1037 	struct igmpmsg *msg;
1038 	struct sk_buff *skb;
1039 	int ret;
1040 
1041 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1042 	if (!mroute_sk)
1043 		return -EINVAL;
1044 
1045 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1046 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1047 	else
1048 		skb = alloc_skb(128, GFP_ATOMIC);
1049 
1050 	if (!skb)
1051 		return -ENOBUFS;
1052 
1053 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1054 		/* Ugly, but we have no choice with this interface.
1055 		 * Duplicate old header, fix ihl, length etc.
1056 		 * And all this only to mangle msg->im_msgtype and
1057 		 * to set msg->im_mbz to "mbz" :-)
1058 		 */
1059 		skb_push(skb, sizeof(struct iphdr));
1060 		skb_reset_network_header(skb);
1061 		skb_reset_transport_header(skb);
1062 		msg = (struct igmpmsg *)skb_network_header(skb);
1063 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1064 		msg->im_msgtype = assert;
1065 		msg->im_mbz = 0;
1066 		if (assert == IGMPMSG_WRVIFWHOLE) {
1067 			msg->im_vif = vifi;
1068 			msg->im_vif_hi = vifi >> 8;
1069 		} else {
1070 			/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1071 			int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1072 
1073 			msg->im_vif = vif_num;
1074 			msg->im_vif_hi = vif_num >> 8;
1075 		}
1076 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1077 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1078 					     sizeof(struct iphdr));
1079 	} else {
1080 		/* Copy the IP header */
1081 		skb_set_network_header(skb, skb->len);
1082 		skb_put(skb, ihl);
1083 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1084 		/* Flag to the kernel this is a route add */
1085 		ip_hdr(skb)->protocol = 0;
1086 		msg = (struct igmpmsg *)skb_network_header(skb);
1087 		msg->im_vif = vifi;
1088 		msg->im_vif_hi = vifi >> 8;
1089 		ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1090 		memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1091 		/* Add our header */
1092 		igmp = skb_put(skb, sizeof(struct igmphdr));
1093 		igmp->type = assert;
1094 		msg->im_msgtype = assert;
1095 		igmp->code = 0;
1096 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1097 		skb->transport_header = skb->network_header;
1098 	}
1099 
1100 	igmpmsg_netlink_event(mrt, skb);
1101 
1102 	/* Deliver to mrouted */
1103 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1104 
1105 	if (ret < 0) {
1106 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1107 		kfree_skb(skb);
1108 	}
1109 
1110 	return ret;
1111 }
1112 
1113 /* Queue a packet for resolution. It gets locked cache entry! */
1114 /* Called under rcu_read_lock() */
ipmr_cache_unresolved(struct mr_table * mrt,vifi_t vifi,struct sk_buff * skb,struct net_device * dev)1115 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1116 				 struct sk_buff *skb, struct net_device *dev)
1117 {
1118 	const struct iphdr *iph = ip_hdr(skb);
1119 	struct mfc_cache *c;
1120 	bool found = false;
1121 	int err;
1122 
1123 	spin_lock_bh(&mfc_unres_lock);
1124 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1125 		if (c->mfc_mcastgrp == iph->daddr &&
1126 		    c->mfc_origin == iph->saddr) {
1127 			found = true;
1128 			break;
1129 		}
1130 	}
1131 
1132 	if (!found) {
1133 		/* Create a new entry if allowable */
1134 		c = ipmr_cache_alloc_unres();
1135 		if (!c) {
1136 			spin_unlock_bh(&mfc_unres_lock);
1137 
1138 			kfree_skb(skb);
1139 			return -ENOBUFS;
1140 		}
1141 
1142 		/* Fill in the new cache entry */
1143 		c->_c.mfc_parent = -1;
1144 		c->mfc_origin	= iph->saddr;
1145 		c->mfc_mcastgrp	= iph->daddr;
1146 
1147 		/* Reflect first query at mrouted. */
1148 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1149 
1150 		if (err < 0) {
1151 			/* If the report failed throw the cache entry
1152 			   out - Brad Parker
1153 			 */
1154 			spin_unlock_bh(&mfc_unres_lock);
1155 
1156 			ipmr_cache_free(c);
1157 			kfree_skb(skb);
1158 			return err;
1159 		}
1160 
1161 		atomic_inc(&mrt->cache_resolve_queue_len);
1162 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1163 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1164 
1165 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1166 			mod_timer(&mrt->ipmr_expire_timer,
1167 				  c->_c.mfc_un.unres.expires);
1168 	}
1169 
1170 	/* See if we can append the packet */
1171 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1172 		kfree_skb(skb);
1173 		err = -ENOBUFS;
1174 	} else {
1175 		if (dev) {
1176 			skb->dev = dev;
1177 			skb->skb_iif = dev->ifindex;
1178 		}
1179 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1180 		err = 0;
1181 	}
1182 
1183 	spin_unlock_bh(&mfc_unres_lock);
1184 	return err;
1185 }
1186 
1187 /* MFC cache manipulation by user space mroute daemon */
1188 
ipmr_mfc_delete(struct mr_table * mrt,struct mfcctl * mfc,int parent)1189 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1190 {
1191 	struct net *net = read_pnet(&mrt->net);
1192 	struct mfc_cache *c;
1193 
1194 	/* The entries are added/deleted only under RTNL */
1195 	rcu_read_lock();
1196 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1197 				   mfc->mfcc_mcastgrp.s_addr, parent);
1198 	rcu_read_unlock();
1199 	if (!c)
1200 		return -ENOENT;
1201 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1202 	list_del_rcu(&c->_c.list);
1203 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1204 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1205 	mr_cache_put(&c->_c);
1206 
1207 	return 0;
1208 }
1209 
ipmr_mfc_add(struct net * net,struct mr_table * mrt,struct mfcctl * mfc,int mrtsock,int parent)1210 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1211 			struct mfcctl *mfc, int mrtsock, int parent)
1212 {
1213 	struct mfc_cache *uc, *c;
1214 	struct mr_mfc *_uc;
1215 	bool found;
1216 	int ret;
1217 
1218 	if (mfc->mfcc_parent >= MAXVIFS)
1219 		return -ENFILE;
1220 
1221 	/* The entries are added/deleted only under RTNL */
1222 	rcu_read_lock();
1223 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1224 				   mfc->mfcc_mcastgrp.s_addr, parent);
1225 	rcu_read_unlock();
1226 	if (c) {
1227 		spin_lock(&mrt_lock);
1228 		c->_c.mfc_parent = mfc->mfcc_parent;
1229 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1230 		if (!mrtsock)
1231 			c->_c.mfc_flags |= MFC_STATIC;
1232 		spin_unlock(&mrt_lock);
1233 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1234 					      mrt->id);
1235 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1236 		return 0;
1237 	}
1238 
1239 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1240 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1241 		return -EINVAL;
1242 
1243 	c = ipmr_cache_alloc();
1244 	if (!c)
1245 		return -ENOMEM;
1246 
1247 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1248 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1249 	c->_c.mfc_parent = mfc->mfcc_parent;
1250 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1251 	if (!mrtsock)
1252 		c->_c.mfc_flags |= MFC_STATIC;
1253 
1254 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1255 				  ipmr_rht_params);
1256 	if (ret) {
1257 		pr_err("ipmr: rhtable insert error %d\n", ret);
1258 		ipmr_cache_free(c);
1259 		return ret;
1260 	}
1261 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1262 	/* Check to see if we resolved a queued list. If so we
1263 	 * need to send on the frames and tidy up.
1264 	 */
1265 	found = false;
1266 	spin_lock_bh(&mfc_unres_lock);
1267 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1268 		uc = (struct mfc_cache *)_uc;
1269 		if (uc->mfc_origin == c->mfc_origin &&
1270 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1271 			list_del(&_uc->list);
1272 			atomic_dec(&mrt->cache_resolve_queue_len);
1273 			found = true;
1274 			break;
1275 		}
1276 	}
1277 	if (list_empty(&mrt->mfc_unres_queue))
1278 		del_timer(&mrt->ipmr_expire_timer);
1279 	spin_unlock_bh(&mfc_unres_lock);
1280 
1281 	if (found) {
1282 		ipmr_cache_resolve(net, mrt, uc, c);
1283 		ipmr_cache_free(uc);
1284 	}
1285 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1286 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1287 	return 0;
1288 }
1289 
1290 /* Close the multicast socket, and clear the vif tables etc */
mroute_clean_tables(struct mr_table * mrt,int flags)1291 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1292 {
1293 	struct net *net = read_pnet(&mrt->net);
1294 	struct mr_mfc *c, *tmp;
1295 	struct mfc_cache *cache;
1296 	LIST_HEAD(list);
1297 	int i;
1298 
1299 	/* Shut down all active vif entries */
1300 	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1301 		for (i = 0; i < mrt->maxvif; i++) {
1302 			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1303 			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1304 			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1305 				continue;
1306 			vif_delete(mrt, i, 0, &list);
1307 		}
1308 		unregister_netdevice_many(&list);
1309 	}
1310 
1311 	/* Wipe the cache */
1312 	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1313 		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1314 			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1315 			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1316 				continue;
1317 			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1318 			list_del_rcu(&c->list);
1319 			cache = (struct mfc_cache *)c;
1320 			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1321 						      mrt->id);
1322 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1323 			mr_cache_put(c);
1324 		}
1325 	}
1326 
1327 	if (flags & MRT_FLUSH_MFC) {
1328 		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1329 			spin_lock_bh(&mfc_unres_lock);
1330 			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1331 				list_del(&c->list);
1332 				cache = (struct mfc_cache *)c;
1333 				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1334 				ipmr_destroy_unres(mrt, cache);
1335 			}
1336 			spin_unlock_bh(&mfc_unres_lock);
1337 		}
1338 	}
1339 }
1340 
1341 /* called from ip_ra_control(), before an RCU grace period,
1342  * we don't need to call synchronize_rcu() here
1343  */
mrtsock_destruct(struct sock * sk)1344 static void mrtsock_destruct(struct sock *sk)
1345 {
1346 	struct net *net = sock_net(sk);
1347 	struct mr_table *mrt;
1348 
1349 	rtnl_lock();
1350 	ipmr_for_each_table(mrt, net) {
1351 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1352 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1353 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1354 						    NETCONFA_MC_FORWARDING,
1355 						    NETCONFA_IFINDEX_ALL,
1356 						    net->ipv4.devconf_all);
1357 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1358 			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1359 		}
1360 	}
1361 	rtnl_unlock();
1362 }
1363 
1364 /* Socket options and virtual interface manipulation. The whole
1365  * virtual interface system is a complete heap, but unfortunately
1366  * that's how BSD mrouted happens to think. Maybe one day with a proper
1367  * MOSPF/PIM router set up we can clean this up.
1368  */
1369 
ip_mroute_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)1370 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1371 			 unsigned int optlen)
1372 {
1373 	struct net *net = sock_net(sk);
1374 	int val, ret = 0, parent = 0;
1375 	struct mr_table *mrt;
1376 	struct vifctl vif;
1377 	struct mfcctl mfc;
1378 	bool do_wrvifwhole;
1379 	u32 uval;
1380 
1381 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1382 	rtnl_lock();
1383 	if (sk->sk_type != SOCK_RAW ||
1384 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1385 		ret = -EOPNOTSUPP;
1386 		goto out_unlock;
1387 	}
1388 
1389 	mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1390 	if (!mrt) {
1391 		ret = -ENOENT;
1392 		goto out_unlock;
1393 	}
1394 	if (optname != MRT_INIT) {
1395 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1396 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1397 			ret = -EACCES;
1398 			goto out_unlock;
1399 		}
1400 	}
1401 
1402 	switch (optname) {
1403 	case MRT_INIT:
1404 		if (optlen != sizeof(int)) {
1405 			ret = -EINVAL;
1406 			break;
1407 		}
1408 		if (rtnl_dereference(mrt->mroute_sk)) {
1409 			ret = -EADDRINUSE;
1410 			break;
1411 		}
1412 
1413 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1414 		if (ret == 0) {
1415 			rcu_assign_pointer(mrt->mroute_sk, sk);
1416 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1417 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1418 						    NETCONFA_MC_FORWARDING,
1419 						    NETCONFA_IFINDEX_ALL,
1420 						    net->ipv4.devconf_all);
1421 		}
1422 		break;
1423 	case MRT_DONE:
1424 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1425 			ret = -EACCES;
1426 		} else {
1427 			/* We need to unlock here because mrtsock_destruct takes
1428 			 * care of rtnl itself and we can't change that due to
1429 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1430 			 */
1431 			rtnl_unlock();
1432 			ret = ip_ra_control(sk, 0, NULL);
1433 			goto out;
1434 		}
1435 		break;
1436 	case MRT_ADD_VIF:
1437 	case MRT_DEL_VIF:
1438 		if (optlen != sizeof(vif)) {
1439 			ret = -EINVAL;
1440 			break;
1441 		}
1442 		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1443 			ret = -EFAULT;
1444 			break;
1445 		}
1446 		if (vif.vifc_vifi >= MAXVIFS) {
1447 			ret = -ENFILE;
1448 			break;
1449 		}
1450 		if (optname == MRT_ADD_VIF) {
1451 			ret = vif_add(net, mrt, &vif,
1452 				      sk == rtnl_dereference(mrt->mroute_sk));
1453 		} else {
1454 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1455 		}
1456 		break;
1457 	/* Manipulate the forwarding caches. These live
1458 	 * in a sort of kernel/user symbiosis.
1459 	 */
1460 	case MRT_ADD_MFC:
1461 	case MRT_DEL_MFC:
1462 		parent = -1;
1463 		fallthrough;
1464 	case MRT_ADD_MFC_PROXY:
1465 	case MRT_DEL_MFC_PROXY:
1466 		if (optlen != sizeof(mfc)) {
1467 			ret = -EINVAL;
1468 			break;
1469 		}
1470 		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1471 			ret = -EFAULT;
1472 			break;
1473 		}
1474 		if (parent == 0)
1475 			parent = mfc.mfcc_parent;
1476 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1477 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1478 		else
1479 			ret = ipmr_mfc_add(net, mrt, &mfc,
1480 					   sk == rtnl_dereference(mrt->mroute_sk),
1481 					   parent);
1482 		break;
1483 	case MRT_FLUSH:
1484 		if (optlen != sizeof(val)) {
1485 			ret = -EINVAL;
1486 			break;
1487 		}
1488 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1489 			ret = -EFAULT;
1490 			break;
1491 		}
1492 		mroute_clean_tables(mrt, val);
1493 		break;
1494 	/* Control PIM assert. */
1495 	case MRT_ASSERT:
1496 		if (optlen != sizeof(val)) {
1497 			ret = -EINVAL;
1498 			break;
1499 		}
1500 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1501 			ret = -EFAULT;
1502 			break;
1503 		}
1504 		mrt->mroute_do_assert = val;
1505 		break;
1506 	case MRT_PIM:
1507 		if (!ipmr_pimsm_enabled()) {
1508 			ret = -ENOPROTOOPT;
1509 			break;
1510 		}
1511 		if (optlen != sizeof(val)) {
1512 			ret = -EINVAL;
1513 			break;
1514 		}
1515 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1516 			ret = -EFAULT;
1517 			break;
1518 		}
1519 
1520 		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1521 		val = !!val;
1522 		if (val != mrt->mroute_do_pim) {
1523 			mrt->mroute_do_pim = val;
1524 			mrt->mroute_do_assert = val;
1525 			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1526 		}
1527 		break;
1528 	case MRT_TABLE:
1529 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1530 			ret = -ENOPROTOOPT;
1531 			break;
1532 		}
1533 		if (optlen != sizeof(uval)) {
1534 			ret = -EINVAL;
1535 			break;
1536 		}
1537 		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1538 			ret = -EFAULT;
1539 			break;
1540 		}
1541 
1542 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1543 			ret = -EBUSY;
1544 		} else {
1545 			mrt = ipmr_new_table(net, uval);
1546 			if (IS_ERR(mrt))
1547 				ret = PTR_ERR(mrt);
1548 			else
1549 				raw_sk(sk)->ipmr_table = uval;
1550 		}
1551 		break;
1552 	/* Spurious command, or MRT_VERSION which you cannot set. */
1553 	default:
1554 		ret = -ENOPROTOOPT;
1555 	}
1556 out_unlock:
1557 	rtnl_unlock();
1558 out:
1559 	return ret;
1560 }
1561 
1562 /* Execute if this ioctl is a special mroute ioctl */
ipmr_sk_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1563 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1564 {
1565 	switch (cmd) {
1566 	/* These userspace buffers will be consumed by ipmr_ioctl() */
1567 	case SIOCGETVIFCNT: {
1568 		struct sioc_vif_req buffer;
1569 
1570 		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1571 				      sizeof(buffer));
1572 		}
1573 	case SIOCGETSGCNT: {
1574 		struct sioc_sg_req buffer;
1575 
1576 		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1577 				      sizeof(buffer));
1578 		}
1579 	}
1580 	/* return code > 0 means that the ioctl was not executed */
1581 	return 1;
1582 }
1583 
1584 /* Getsock opt support for the multicast routing system. */
ip_mroute_getsockopt(struct sock * sk,int optname,sockptr_t optval,sockptr_t optlen)1585 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1586 			 sockptr_t optlen)
1587 {
1588 	int olr;
1589 	int val;
1590 	struct net *net = sock_net(sk);
1591 	struct mr_table *mrt;
1592 
1593 	if (sk->sk_type != SOCK_RAW ||
1594 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1595 		return -EOPNOTSUPP;
1596 
1597 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1598 	if (!mrt)
1599 		return -ENOENT;
1600 
1601 	switch (optname) {
1602 	case MRT_VERSION:
1603 		val = 0x0305;
1604 		break;
1605 	case MRT_PIM:
1606 		if (!ipmr_pimsm_enabled())
1607 			return -ENOPROTOOPT;
1608 		val = mrt->mroute_do_pim;
1609 		break;
1610 	case MRT_ASSERT:
1611 		val = mrt->mroute_do_assert;
1612 		break;
1613 	default:
1614 		return -ENOPROTOOPT;
1615 	}
1616 
1617 	if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1618 		return -EFAULT;
1619 	if (olr < 0)
1620 		return -EINVAL;
1621 
1622 	olr = min_t(unsigned int, olr, sizeof(int));
1623 
1624 	if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1625 		return -EFAULT;
1626 	if (copy_to_sockptr(optval, &val, olr))
1627 		return -EFAULT;
1628 	return 0;
1629 }
1630 
1631 /* The IP multicast ioctl support routines. */
ipmr_ioctl(struct sock * sk,int cmd,void * arg)1632 int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1633 {
1634 	struct vif_device *vif;
1635 	struct mfc_cache *c;
1636 	struct net *net = sock_net(sk);
1637 	struct sioc_vif_req *vr;
1638 	struct sioc_sg_req *sr;
1639 	struct mr_table *mrt;
1640 
1641 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1642 	if (!mrt)
1643 		return -ENOENT;
1644 
1645 	switch (cmd) {
1646 	case SIOCGETVIFCNT:
1647 		vr = (struct sioc_vif_req *)arg;
1648 		if (vr->vifi >= mrt->maxvif)
1649 			return -EINVAL;
1650 		vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1651 		rcu_read_lock();
1652 		vif = &mrt->vif_table[vr->vifi];
1653 		if (VIF_EXISTS(mrt, vr->vifi)) {
1654 			vr->icount = READ_ONCE(vif->pkt_in);
1655 			vr->ocount = READ_ONCE(vif->pkt_out);
1656 			vr->ibytes = READ_ONCE(vif->bytes_in);
1657 			vr->obytes = READ_ONCE(vif->bytes_out);
1658 			rcu_read_unlock();
1659 
1660 			return 0;
1661 		}
1662 		rcu_read_unlock();
1663 		return -EADDRNOTAVAIL;
1664 	case SIOCGETSGCNT:
1665 		sr = (struct sioc_sg_req *)arg;
1666 
1667 		rcu_read_lock();
1668 		c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1669 		if (c) {
1670 			sr->pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1671 			sr->bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1672 			sr->wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1673 			rcu_read_unlock();
1674 			return 0;
1675 		}
1676 		rcu_read_unlock();
1677 		return -EADDRNOTAVAIL;
1678 	default:
1679 		return -ENOIOCTLCMD;
1680 	}
1681 }
1682 
1683 #ifdef CONFIG_COMPAT
1684 struct compat_sioc_sg_req {
1685 	struct in_addr src;
1686 	struct in_addr grp;
1687 	compat_ulong_t pktcnt;
1688 	compat_ulong_t bytecnt;
1689 	compat_ulong_t wrong_if;
1690 };
1691 
1692 struct compat_sioc_vif_req {
1693 	vifi_t	vifi;		/* Which iface */
1694 	compat_ulong_t icount;
1695 	compat_ulong_t ocount;
1696 	compat_ulong_t ibytes;
1697 	compat_ulong_t obytes;
1698 };
1699 
ipmr_compat_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1700 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1701 {
1702 	struct compat_sioc_sg_req sr;
1703 	struct compat_sioc_vif_req vr;
1704 	struct vif_device *vif;
1705 	struct mfc_cache *c;
1706 	struct net *net = sock_net(sk);
1707 	struct mr_table *mrt;
1708 
1709 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1710 	if (!mrt)
1711 		return -ENOENT;
1712 
1713 	switch (cmd) {
1714 	case SIOCGETVIFCNT:
1715 		if (copy_from_user(&vr, arg, sizeof(vr)))
1716 			return -EFAULT;
1717 		if (vr.vifi >= mrt->maxvif)
1718 			return -EINVAL;
1719 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1720 		rcu_read_lock();
1721 		vif = &mrt->vif_table[vr.vifi];
1722 		if (VIF_EXISTS(mrt, vr.vifi)) {
1723 			vr.icount = READ_ONCE(vif->pkt_in);
1724 			vr.ocount = READ_ONCE(vif->pkt_out);
1725 			vr.ibytes = READ_ONCE(vif->bytes_in);
1726 			vr.obytes = READ_ONCE(vif->bytes_out);
1727 			rcu_read_unlock();
1728 
1729 			if (copy_to_user(arg, &vr, sizeof(vr)))
1730 				return -EFAULT;
1731 			return 0;
1732 		}
1733 		rcu_read_unlock();
1734 		return -EADDRNOTAVAIL;
1735 	case SIOCGETSGCNT:
1736 		if (copy_from_user(&sr, arg, sizeof(sr)))
1737 			return -EFAULT;
1738 
1739 		rcu_read_lock();
1740 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1741 		if (c) {
1742 			sr.pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1743 			sr.bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1744 			sr.wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1745 			rcu_read_unlock();
1746 
1747 			if (copy_to_user(arg, &sr, sizeof(sr)))
1748 				return -EFAULT;
1749 			return 0;
1750 		}
1751 		rcu_read_unlock();
1752 		return -EADDRNOTAVAIL;
1753 	default:
1754 		return -ENOIOCTLCMD;
1755 	}
1756 }
1757 #endif
1758 
ipmr_device_event(struct notifier_block * this,unsigned long event,void * ptr)1759 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1760 {
1761 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1762 	struct net *net = dev_net(dev);
1763 	struct mr_table *mrt;
1764 	struct vif_device *v;
1765 	int ct;
1766 
1767 	if (event != NETDEV_UNREGISTER)
1768 		return NOTIFY_DONE;
1769 
1770 	ipmr_for_each_table(mrt, net) {
1771 		v = &mrt->vif_table[0];
1772 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1773 			if (rcu_access_pointer(v->dev) == dev)
1774 				vif_delete(mrt, ct, 1, NULL);
1775 		}
1776 	}
1777 	return NOTIFY_DONE;
1778 }
1779 
1780 static struct notifier_block ip_mr_notifier = {
1781 	.notifier_call = ipmr_device_event,
1782 };
1783 
1784 /* Encapsulate a packet by attaching a valid IPIP header to it.
1785  * This avoids tunnel drivers and other mess and gives us the speed so
1786  * important for multicast video.
1787  */
ip_encap(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr)1788 static void ip_encap(struct net *net, struct sk_buff *skb,
1789 		     __be32 saddr, __be32 daddr)
1790 {
1791 	struct iphdr *iph;
1792 	const struct iphdr *old_iph = ip_hdr(skb);
1793 
1794 	skb_push(skb, sizeof(struct iphdr));
1795 	skb->transport_header = skb->network_header;
1796 	skb_reset_network_header(skb);
1797 	iph = ip_hdr(skb);
1798 
1799 	iph->version	=	4;
1800 	iph->tos	=	old_iph->tos;
1801 	iph->ttl	=	old_iph->ttl;
1802 	iph->frag_off	=	0;
1803 	iph->daddr	=	daddr;
1804 	iph->saddr	=	saddr;
1805 	iph->protocol	=	IPPROTO_IPIP;
1806 	iph->ihl	=	5;
1807 	iph->tot_len	=	htons(skb->len);
1808 	ip_select_ident(net, skb, NULL);
1809 	ip_send_check(iph);
1810 
1811 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1812 	nf_reset_ct(skb);
1813 }
1814 
ipmr_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1815 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1816 				      struct sk_buff *skb)
1817 {
1818 	struct ip_options *opt = &(IPCB(skb)->opt);
1819 
1820 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1821 
1822 	if (unlikely(opt->optlen))
1823 		ip_forward_options(skb);
1824 
1825 	return dst_output(net, sk, skb);
1826 }
1827 
1828 #ifdef CONFIG_NET_SWITCHDEV
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1829 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1830 				   int in_vifi, int out_vifi)
1831 {
1832 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1833 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1834 
1835 	if (!skb->offload_l3_fwd_mark)
1836 		return false;
1837 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1838 		return false;
1839 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1840 					&in_vif->dev_parent_id);
1841 }
1842 #else
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1843 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1844 				   int in_vifi, int out_vifi)
1845 {
1846 	return false;
1847 }
1848 #endif
1849 
1850 /* Processing handlers for ipmr_forward, under rcu_read_lock() */
1851 
ipmr_queue_xmit(struct net * net,struct mr_table * mrt,int in_vifi,struct sk_buff * skb,int vifi)1852 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1853 			    int in_vifi, struct sk_buff *skb, int vifi)
1854 {
1855 	const struct iphdr *iph = ip_hdr(skb);
1856 	struct vif_device *vif = &mrt->vif_table[vifi];
1857 	struct net_device *vif_dev;
1858 	struct net_device *dev;
1859 	struct rtable *rt;
1860 	struct flowi4 fl4;
1861 	int    encap = 0;
1862 
1863 	vif_dev = vif_dev_read(vif);
1864 	if (!vif_dev)
1865 		goto out_free;
1866 
1867 	if (vif->flags & VIFF_REGISTER) {
1868 		WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1869 		WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1870 		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1871 		DEV_STATS_INC(vif_dev, tx_packets);
1872 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1873 		goto out_free;
1874 	}
1875 
1876 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1877 		goto out_free;
1878 
1879 	if (vif->flags & VIFF_TUNNEL) {
1880 		rt = ip_route_output_ports(net, &fl4, NULL,
1881 					   vif->remote, vif->local,
1882 					   0, 0,
1883 					   IPPROTO_IPIP,
1884 					   iph->tos & INET_DSCP_MASK, vif->link);
1885 		if (IS_ERR(rt))
1886 			goto out_free;
1887 		encap = sizeof(struct iphdr);
1888 	} else {
1889 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1890 					   0, 0,
1891 					   IPPROTO_IPIP,
1892 					   iph->tos & INET_DSCP_MASK, vif->link);
1893 		if (IS_ERR(rt))
1894 			goto out_free;
1895 	}
1896 
1897 	dev = rt->dst.dev;
1898 
1899 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1900 		/* Do not fragment multicasts. Alas, IPv4 does not
1901 		 * allow to send ICMP, so that packets will disappear
1902 		 * to blackhole.
1903 		 */
1904 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1905 		ip_rt_put(rt);
1906 		goto out_free;
1907 	}
1908 
1909 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1910 
1911 	if (skb_cow(skb, encap)) {
1912 		ip_rt_put(rt);
1913 		goto out_free;
1914 	}
1915 
1916 	WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1917 	WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1918 
1919 	skb_dst_drop(skb);
1920 	skb_dst_set(skb, &rt->dst);
1921 	ip_decrease_ttl(ip_hdr(skb));
1922 
1923 	/* FIXME: forward and output firewalls used to be called here.
1924 	 * What do we do with netfilter? -- RR
1925 	 */
1926 	if (vif->flags & VIFF_TUNNEL) {
1927 		ip_encap(net, skb, vif->local, vif->remote);
1928 		/* FIXME: extra output firewall step used to be here. --RR */
1929 		DEV_STATS_INC(vif_dev, tx_packets);
1930 		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1931 	}
1932 
1933 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1934 
1935 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1936 	 * not only before forwarding, but after forwarding on all output
1937 	 * interfaces. It is clear, if mrouter runs a multicasting
1938 	 * program, it should receive packets not depending to what interface
1939 	 * program is joined.
1940 	 * If we will not make it, the program will have to join on all
1941 	 * interfaces. On the other hand, multihoming host (or router, but
1942 	 * not mrouter) cannot join to more than one interface - it will
1943 	 * result in receiving multiple packets.
1944 	 */
1945 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1946 		net, NULL, skb, skb->dev, dev,
1947 		ipmr_forward_finish);
1948 	return;
1949 
1950 out_free:
1951 	kfree_skb(skb);
1952 }
1953 
1954 /* Called with mrt_lock or rcu_read_lock() */
ipmr_find_vif(const struct mr_table * mrt,struct net_device * dev)1955 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1956 {
1957 	int ct;
1958 	/* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1959 	for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1960 		if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1961 			break;
1962 	}
1963 	return ct;
1964 }
1965 
1966 /* "local" means that we should preserve one skb (for local delivery) */
1967 /* Called uner rcu_read_lock() */
ip_mr_forward(struct net * net,struct mr_table * mrt,struct net_device * dev,struct sk_buff * skb,struct mfc_cache * c,int local)1968 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1969 			  struct net_device *dev, struct sk_buff *skb,
1970 			  struct mfc_cache *c, int local)
1971 {
1972 	int true_vifi = ipmr_find_vif(mrt, dev);
1973 	int psend = -1;
1974 	int vif, ct;
1975 
1976 	vif = c->_c.mfc_parent;
1977 	atomic_long_inc(&c->_c.mfc_un.res.pkt);
1978 	atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
1979 	WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
1980 
1981 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1982 		struct mfc_cache *cache_proxy;
1983 
1984 		/* For an (*,G) entry, we only check that the incoming
1985 		 * interface is part of the static tree.
1986 		 */
1987 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1988 		if (cache_proxy &&
1989 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1990 			goto forward;
1991 	}
1992 
1993 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1994 	if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1995 		if (rt_is_output_route(skb_rtable(skb))) {
1996 			/* It is our own packet, looped back.
1997 			 * Very complicated situation...
1998 			 *
1999 			 * The best workaround until routing daemons will be
2000 			 * fixed is not to redistribute packet, if it was
2001 			 * send through wrong interface. It means, that
2002 			 * multicast applications WILL NOT work for
2003 			 * (S,G), which have default multicast route pointing
2004 			 * to wrong oif. In any case, it is not a good
2005 			 * idea to use multicasting applications on router.
2006 			 */
2007 			goto dont_forward;
2008 		}
2009 
2010 		atomic_long_inc(&c->_c.mfc_un.res.wrong_if);
2011 
2012 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
2013 		    /* pimsm uses asserts, when switching from RPT to SPT,
2014 		     * so that we cannot check that packet arrived on an oif.
2015 		     * It is bad, but otherwise we would need to move pretty
2016 		     * large chunk of pimd to kernel. Ough... --ANK
2017 		     */
2018 		    (mrt->mroute_do_pim ||
2019 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2020 		    time_after(jiffies,
2021 			       c->_c.mfc_un.res.last_assert +
2022 			       MFC_ASSERT_THRESH)) {
2023 			c->_c.mfc_un.res.last_assert = jiffies;
2024 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2025 			if (mrt->mroute_do_wrvifwhole)
2026 				ipmr_cache_report(mrt, skb, true_vifi,
2027 						  IGMPMSG_WRVIFWHOLE);
2028 		}
2029 		goto dont_forward;
2030 	}
2031 
2032 forward:
2033 	WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2034 		   mrt->vif_table[vif].pkt_in + 1);
2035 	WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2036 		   mrt->vif_table[vif].bytes_in + skb->len);
2037 
2038 	/* Forward the frame */
2039 	if (c->mfc_origin == htonl(INADDR_ANY) &&
2040 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2041 		if (true_vifi >= 0 &&
2042 		    true_vifi != c->_c.mfc_parent &&
2043 		    ip_hdr(skb)->ttl >
2044 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2045 			/* It's an (*,*) entry and the packet is not coming from
2046 			 * the upstream: forward the packet to the upstream
2047 			 * only.
2048 			 */
2049 			psend = c->_c.mfc_parent;
2050 			goto last_forward;
2051 		}
2052 		goto dont_forward;
2053 	}
2054 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2055 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2056 		/* For (*,G) entry, don't forward to the incoming interface */
2057 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2058 		     ct != true_vifi) &&
2059 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2060 			if (psend != -1) {
2061 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2062 
2063 				if (skb2)
2064 					ipmr_queue_xmit(net, mrt, true_vifi,
2065 							skb2, psend);
2066 			}
2067 			psend = ct;
2068 		}
2069 	}
2070 last_forward:
2071 	if (psend != -1) {
2072 		if (local) {
2073 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2074 
2075 			if (skb2)
2076 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2077 						psend);
2078 		} else {
2079 			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2080 			return;
2081 		}
2082 	}
2083 
2084 dont_forward:
2085 	if (!local)
2086 		kfree_skb(skb);
2087 }
2088 
ipmr_rt_fib_lookup(struct net * net,struct sk_buff * skb)2089 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2090 {
2091 	struct rtable *rt = skb_rtable(skb);
2092 	struct iphdr *iph = ip_hdr(skb);
2093 	struct flowi4 fl4 = {
2094 		.daddr = iph->daddr,
2095 		.saddr = iph->saddr,
2096 		.flowi4_tos = iph->tos & INET_DSCP_MASK,
2097 		.flowi4_oif = (rt_is_output_route(rt) ?
2098 			       skb->dev->ifindex : 0),
2099 		.flowi4_iif = (rt_is_output_route(rt) ?
2100 			       LOOPBACK_IFINDEX :
2101 			       skb->dev->ifindex),
2102 		.flowi4_mark = skb->mark,
2103 	};
2104 	struct mr_table *mrt;
2105 	int err;
2106 
2107 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2108 	if (err)
2109 		return ERR_PTR(err);
2110 	return mrt;
2111 }
2112 
2113 /* Multicast packets for forwarding arrive here
2114  * Called with rcu_read_lock();
2115  */
ip_mr_input(struct sk_buff * skb)2116 int ip_mr_input(struct sk_buff *skb)
2117 {
2118 	struct mfc_cache *cache;
2119 	struct net *net = dev_net(skb->dev);
2120 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2121 	struct mr_table *mrt;
2122 	struct net_device *dev;
2123 
2124 	/* skb->dev passed in is the loX master dev for vrfs.
2125 	 * As there are no vifs associated with loopback devices,
2126 	 * get the proper interface that does have a vif associated with it.
2127 	 */
2128 	dev = skb->dev;
2129 	if (netif_is_l3_master(skb->dev)) {
2130 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2131 		if (!dev) {
2132 			kfree_skb(skb);
2133 			return -ENODEV;
2134 		}
2135 	}
2136 
2137 	/* Packet is looped back after forward, it should not be
2138 	 * forwarded second time, but still can be delivered locally.
2139 	 */
2140 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2141 		goto dont_forward;
2142 
2143 	mrt = ipmr_rt_fib_lookup(net, skb);
2144 	if (IS_ERR(mrt)) {
2145 		kfree_skb(skb);
2146 		return PTR_ERR(mrt);
2147 	}
2148 	if (!local) {
2149 		if (IPCB(skb)->opt.router_alert) {
2150 			if (ip_call_ra_chain(skb))
2151 				return 0;
2152 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2153 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2154 			 * Cisco IOS <= 11.2(8)) do not put router alert
2155 			 * option to IGMP packets destined to routable
2156 			 * groups. It is very bad, because it means
2157 			 * that we can forward NO IGMP messages.
2158 			 */
2159 			struct sock *mroute_sk;
2160 
2161 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2162 			if (mroute_sk) {
2163 				nf_reset_ct(skb);
2164 				raw_rcv(mroute_sk, skb);
2165 				return 0;
2166 			}
2167 		}
2168 	}
2169 
2170 	/* already under rcu_read_lock() */
2171 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2172 	if (!cache) {
2173 		int vif = ipmr_find_vif(mrt, dev);
2174 
2175 		if (vif >= 0)
2176 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2177 						    vif);
2178 	}
2179 
2180 	/* No usable cache entry */
2181 	if (!cache) {
2182 		int vif;
2183 
2184 		if (local) {
2185 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2186 			ip_local_deliver(skb);
2187 			if (!skb2)
2188 				return -ENOBUFS;
2189 			skb = skb2;
2190 		}
2191 
2192 		vif = ipmr_find_vif(mrt, dev);
2193 		if (vif >= 0)
2194 			return ipmr_cache_unresolved(mrt, vif, skb, dev);
2195 		kfree_skb(skb);
2196 		return -ENODEV;
2197 	}
2198 
2199 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2200 
2201 	if (local)
2202 		return ip_local_deliver(skb);
2203 
2204 	return 0;
2205 
2206 dont_forward:
2207 	if (local)
2208 		return ip_local_deliver(skb);
2209 	kfree_skb(skb);
2210 	return 0;
2211 }
2212 
2213 #ifdef CONFIG_IP_PIMSM_V1
2214 /* Handle IGMP messages of PIMv1 */
pim_rcv_v1(struct sk_buff * skb)2215 int pim_rcv_v1(struct sk_buff *skb)
2216 {
2217 	struct igmphdr *pim;
2218 	struct net *net = dev_net(skb->dev);
2219 	struct mr_table *mrt;
2220 
2221 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2222 		goto drop;
2223 
2224 	pim = igmp_hdr(skb);
2225 
2226 	mrt = ipmr_rt_fib_lookup(net, skb);
2227 	if (IS_ERR(mrt))
2228 		goto drop;
2229 	if (!mrt->mroute_do_pim ||
2230 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2231 		goto drop;
2232 
2233 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2234 drop:
2235 		kfree_skb(skb);
2236 	}
2237 	return 0;
2238 }
2239 #endif
2240 
2241 #ifdef CONFIG_IP_PIMSM_V2
pim_rcv(struct sk_buff * skb)2242 static int pim_rcv(struct sk_buff *skb)
2243 {
2244 	struct pimreghdr *pim;
2245 	struct net *net = dev_net(skb->dev);
2246 	struct mr_table *mrt;
2247 
2248 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2249 		goto drop;
2250 
2251 	pim = (struct pimreghdr *)skb_transport_header(skb);
2252 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2253 	    (pim->flags & PIM_NULL_REGISTER) ||
2254 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2255 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2256 		goto drop;
2257 
2258 	mrt = ipmr_rt_fib_lookup(net, skb);
2259 	if (IS_ERR(mrt))
2260 		goto drop;
2261 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2262 drop:
2263 		kfree_skb(skb);
2264 	}
2265 	return 0;
2266 }
2267 #endif
2268 
ipmr_get_route(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr,struct rtmsg * rtm,u32 portid)2269 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2270 		   __be32 saddr, __be32 daddr,
2271 		   struct rtmsg *rtm, u32 portid)
2272 {
2273 	struct mfc_cache *cache;
2274 	struct mr_table *mrt;
2275 	int err;
2276 
2277 	rcu_read_lock();
2278 	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2279 	if (!mrt) {
2280 		rcu_read_unlock();
2281 		return -ENOENT;
2282 	}
2283 
2284 	cache = ipmr_cache_find(mrt, saddr, daddr);
2285 	if (!cache && skb->dev) {
2286 		int vif = ipmr_find_vif(mrt, skb->dev);
2287 
2288 		if (vif >= 0)
2289 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2290 	}
2291 	if (!cache) {
2292 		struct sk_buff *skb2;
2293 		struct iphdr *iph;
2294 		struct net_device *dev;
2295 		int vif = -1;
2296 
2297 		dev = skb->dev;
2298 		if (dev)
2299 			vif = ipmr_find_vif(mrt, dev);
2300 		if (vif < 0) {
2301 			rcu_read_unlock();
2302 			return -ENODEV;
2303 		}
2304 
2305 		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2306 		if (!skb2) {
2307 			rcu_read_unlock();
2308 			return -ENOMEM;
2309 		}
2310 
2311 		NETLINK_CB(skb2).portid = portid;
2312 		skb_push(skb2, sizeof(struct iphdr));
2313 		skb_reset_network_header(skb2);
2314 		iph = ip_hdr(skb2);
2315 		iph->ihl = sizeof(struct iphdr) >> 2;
2316 		iph->saddr = saddr;
2317 		iph->daddr = daddr;
2318 		iph->version = 0;
2319 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2320 		rcu_read_unlock();
2321 		return err;
2322 	}
2323 
2324 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2325 	rcu_read_unlock();
2326 	return err;
2327 }
2328 
ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mfc_cache * c,int cmd,int flags)2329 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2330 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2331 			    int flags)
2332 {
2333 	struct nlmsghdr *nlh;
2334 	struct rtmsg *rtm;
2335 	int err;
2336 
2337 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2338 	if (!nlh)
2339 		return -EMSGSIZE;
2340 
2341 	rtm = nlmsg_data(nlh);
2342 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2343 	rtm->rtm_dst_len  = 32;
2344 	rtm->rtm_src_len  = 32;
2345 	rtm->rtm_tos      = 0;
2346 	rtm->rtm_table    = mrt->id;
2347 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2348 		goto nla_put_failure;
2349 	rtm->rtm_type     = RTN_MULTICAST;
2350 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2351 	if (c->_c.mfc_flags & MFC_STATIC)
2352 		rtm->rtm_protocol = RTPROT_STATIC;
2353 	else
2354 		rtm->rtm_protocol = RTPROT_MROUTED;
2355 	rtm->rtm_flags    = 0;
2356 
2357 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2358 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2359 		goto nla_put_failure;
2360 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2361 	/* do not break the dump if cache is unresolved */
2362 	if (err < 0 && err != -ENOENT)
2363 		goto nla_put_failure;
2364 
2365 	nlmsg_end(skb, nlh);
2366 	return 0;
2367 
2368 nla_put_failure:
2369 	nlmsg_cancel(skb, nlh);
2370 	return -EMSGSIZE;
2371 }
2372 
_ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mr_mfc * c,int cmd,int flags)2373 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2374 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2375 			     int flags)
2376 {
2377 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2378 				cmd, flags);
2379 }
2380 
mroute_msgsize(bool unresolved,int maxvif)2381 static size_t mroute_msgsize(bool unresolved, int maxvif)
2382 {
2383 	size_t len =
2384 		NLMSG_ALIGN(sizeof(struct rtmsg))
2385 		+ nla_total_size(4)	/* RTA_TABLE */
2386 		+ nla_total_size(4)	/* RTA_SRC */
2387 		+ nla_total_size(4)	/* RTA_DST */
2388 		;
2389 
2390 	if (!unresolved)
2391 		len = len
2392 		      + nla_total_size(4)	/* RTA_IIF */
2393 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2394 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2395 						/* RTA_MFC_STATS */
2396 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2397 		;
2398 
2399 	return len;
2400 }
2401 
mroute_netlink_event(struct mr_table * mrt,struct mfc_cache * mfc,int cmd)2402 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2403 				 int cmd)
2404 {
2405 	struct net *net = read_pnet(&mrt->net);
2406 	struct sk_buff *skb;
2407 	int err = -ENOBUFS;
2408 
2409 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2410 				       mrt->maxvif),
2411 			GFP_ATOMIC);
2412 	if (!skb)
2413 		goto errout;
2414 
2415 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2416 	if (err < 0)
2417 		goto errout;
2418 
2419 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2420 	return;
2421 
2422 errout:
2423 	kfree_skb(skb);
2424 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2425 }
2426 
igmpmsg_netlink_msgsize(size_t payloadlen)2427 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2428 {
2429 	size_t len =
2430 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2431 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2432 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2433 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2434 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2435 		+ nla_total_size(4)	/* IPMRA_CREPORT_TABLE */
2436 					/* IPMRA_CREPORT_PKT */
2437 		+ nla_total_size(payloadlen)
2438 		;
2439 
2440 	return len;
2441 }
2442 
igmpmsg_netlink_event(const struct mr_table * mrt,struct sk_buff * pkt)2443 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2444 {
2445 	struct net *net = read_pnet(&mrt->net);
2446 	struct nlmsghdr *nlh;
2447 	struct rtgenmsg *rtgenm;
2448 	struct igmpmsg *msg;
2449 	struct sk_buff *skb;
2450 	struct nlattr *nla;
2451 	int payloadlen;
2452 
2453 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2454 	msg = (struct igmpmsg *)skb_network_header(pkt);
2455 
2456 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2457 	if (!skb)
2458 		goto errout;
2459 
2460 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2461 			sizeof(struct rtgenmsg), 0);
2462 	if (!nlh)
2463 		goto errout;
2464 	rtgenm = nlmsg_data(nlh);
2465 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2466 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2467 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2468 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2469 			    msg->im_src.s_addr) ||
2470 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2471 			    msg->im_dst.s_addr) ||
2472 	    nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2473 		goto nla_put_failure;
2474 
2475 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2476 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2477 				  nla_data(nla), payloadlen))
2478 		goto nla_put_failure;
2479 
2480 	nlmsg_end(skb, nlh);
2481 
2482 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2483 	return;
2484 
2485 nla_put_failure:
2486 	nlmsg_cancel(skb, nlh);
2487 errout:
2488 	kfree_skb(skb);
2489 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2490 }
2491 
ipmr_rtm_valid_getroute_req(struct sk_buff * skb,const struct nlmsghdr * nlh,struct nlattr ** tb,struct netlink_ext_ack * extack)2492 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2493 				       const struct nlmsghdr *nlh,
2494 				       struct nlattr **tb,
2495 				       struct netlink_ext_ack *extack)
2496 {
2497 	struct rtmsg *rtm;
2498 	int i, err;
2499 
2500 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2501 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2502 		return -EINVAL;
2503 	}
2504 
2505 	if (!netlink_strict_get_check(skb))
2506 		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2507 					      rtm_ipv4_policy, extack);
2508 
2509 	rtm = nlmsg_data(nlh);
2510 	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2511 	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2512 	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2513 	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2514 		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2515 		return -EINVAL;
2516 	}
2517 
2518 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2519 					    rtm_ipv4_policy, extack);
2520 	if (err)
2521 		return err;
2522 
2523 	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2524 	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2525 		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2526 		return -EINVAL;
2527 	}
2528 
2529 	for (i = 0; i <= RTA_MAX; i++) {
2530 		if (!tb[i])
2531 			continue;
2532 
2533 		switch (i) {
2534 		case RTA_SRC:
2535 		case RTA_DST:
2536 		case RTA_TABLE:
2537 			break;
2538 		default:
2539 			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2540 			return -EINVAL;
2541 		}
2542 	}
2543 
2544 	return 0;
2545 }
2546 
ipmr_rtm_getroute(struct sk_buff * in_skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2547 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2548 			     struct netlink_ext_ack *extack)
2549 {
2550 	struct net *net = sock_net(in_skb->sk);
2551 	struct nlattr *tb[RTA_MAX + 1];
2552 	struct sk_buff *skb = NULL;
2553 	struct mfc_cache *cache;
2554 	struct mr_table *mrt;
2555 	__be32 src, grp;
2556 	u32 tableid;
2557 	int err;
2558 
2559 	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2560 	if (err < 0)
2561 		goto errout;
2562 
2563 	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2564 	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2565 	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2566 
2567 	mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2568 	if (!mrt) {
2569 		err = -ENOENT;
2570 		goto errout_free;
2571 	}
2572 
2573 	/* entries are added/deleted only under RTNL */
2574 	rcu_read_lock();
2575 	cache = ipmr_cache_find(mrt, src, grp);
2576 	rcu_read_unlock();
2577 	if (!cache) {
2578 		err = -ENOENT;
2579 		goto errout_free;
2580 	}
2581 
2582 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2583 	if (!skb) {
2584 		err = -ENOBUFS;
2585 		goto errout_free;
2586 	}
2587 
2588 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2589 			       nlh->nlmsg_seq, cache,
2590 			       RTM_NEWROUTE, 0);
2591 	if (err < 0)
2592 		goto errout_free;
2593 
2594 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2595 
2596 errout:
2597 	return err;
2598 
2599 errout_free:
2600 	kfree_skb(skb);
2601 	goto errout;
2602 }
2603 
ipmr_rtm_dumproute(struct sk_buff * skb,struct netlink_callback * cb)2604 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2605 {
2606 	struct fib_dump_filter filter = {
2607 		.rtnl_held = true,
2608 	};
2609 	int err;
2610 
2611 	if (cb->strict_check) {
2612 		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2613 					    &filter, cb);
2614 		if (err < 0)
2615 			return err;
2616 	}
2617 
2618 	if (filter.table_id) {
2619 		struct mr_table *mrt;
2620 
2621 		mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id);
2622 		if (!mrt) {
2623 			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2624 				return skb->len;
2625 
2626 			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2627 			return -ENOENT;
2628 		}
2629 		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2630 				    &mfc_unres_lock, &filter);
2631 		return skb->len ? : err;
2632 	}
2633 
2634 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2635 				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2636 }
2637 
2638 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2639 	[RTA_SRC]	= { .type = NLA_U32 },
2640 	[RTA_DST]	= { .type = NLA_U32 },
2641 	[RTA_IIF]	= { .type = NLA_U32 },
2642 	[RTA_TABLE]	= { .type = NLA_U32 },
2643 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2644 };
2645 
ipmr_rtm_validate_proto(unsigned char rtm_protocol)2646 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2647 {
2648 	switch (rtm_protocol) {
2649 	case RTPROT_STATIC:
2650 	case RTPROT_MROUTED:
2651 		return true;
2652 	}
2653 	return false;
2654 }
2655 
ipmr_nla_get_ttls(const struct nlattr * nla,struct mfcctl * mfcc)2656 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2657 {
2658 	struct rtnexthop *rtnh = nla_data(nla);
2659 	int remaining = nla_len(nla), vifi = 0;
2660 
2661 	while (rtnh_ok(rtnh, remaining)) {
2662 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2663 		if (++vifi == MAXVIFS)
2664 			break;
2665 		rtnh = rtnh_next(rtnh, &remaining);
2666 	}
2667 
2668 	return remaining > 0 ? -EINVAL : vifi;
2669 }
2670 
2671 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
rtm_to_ipmr_mfcc(struct net * net,struct nlmsghdr * nlh,struct mfcctl * mfcc,int * mrtsock,struct mr_table ** mrtret,struct netlink_ext_ack * extack)2672 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2673 			    struct mfcctl *mfcc, int *mrtsock,
2674 			    struct mr_table **mrtret,
2675 			    struct netlink_ext_ack *extack)
2676 {
2677 	struct net_device *dev = NULL;
2678 	u32 tblid = RT_TABLE_DEFAULT;
2679 	struct mr_table *mrt;
2680 	struct nlattr *attr;
2681 	struct rtmsg *rtm;
2682 	int ret, rem;
2683 
2684 	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2685 					rtm_ipmr_policy, extack);
2686 	if (ret < 0)
2687 		goto out;
2688 	rtm = nlmsg_data(nlh);
2689 
2690 	ret = -EINVAL;
2691 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2692 	    rtm->rtm_type != RTN_MULTICAST ||
2693 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2694 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2695 		goto out;
2696 
2697 	memset(mfcc, 0, sizeof(*mfcc));
2698 	mfcc->mfcc_parent = -1;
2699 	ret = 0;
2700 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2701 		switch (nla_type(attr)) {
2702 		case RTA_SRC:
2703 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2704 			break;
2705 		case RTA_DST:
2706 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2707 			break;
2708 		case RTA_IIF:
2709 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2710 			if (!dev) {
2711 				ret = -ENODEV;
2712 				goto out;
2713 			}
2714 			break;
2715 		case RTA_MULTIPATH:
2716 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2717 				ret = -EINVAL;
2718 				goto out;
2719 			}
2720 			break;
2721 		case RTA_PREFSRC:
2722 			ret = 1;
2723 			break;
2724 		case RTA_TABLE:
2725 			tblid = nla_get_u32(attr);
2726 			break;
2727 		}
2728 	}
2729 	mrt = __ipmr_get_table(net, tblid);
2730 	if (!mrt) {
2731 		ret = -ENOENT;
2732 		goto out;
2733 	}
2734 	*mrtret = mrt;
2735 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2736 	if (dev)
2737 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2738 
2739 out:
2740 	return ret;
2741 }
2742 
2743 /* takes care of both newroute and delroute */
ipmr_rtm_route(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2744 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2745 			  struct netlink_ext_ack *extack)
2746 {
2747 	struct net *net = sock_net(skb->sk);
2748 	int ret, mrtsock, parent;
2749 	struct mr_table *tbl;
2750 	struct mfcctl mfcc;
2751 
2752 	mrtsock = 0;
2753 	tbl = NULL;
2754 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2755 	if (ret < 0)
2756 		return ret;
2757 
2758 	parent = ret ? mfcc.mfcc_parent : -1;
2759 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2760 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2761 	else
2762 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2763 }
2764 
ipmr_fill_table(struct mr_table * mrt,struct sk_buff * skb)2765 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2766 {
2767 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2768 
2769 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2770 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2771 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2772 			mrt->mroute_reg_vif_num) ||
2773 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2774 		       mrt->mroute_do_assert) ||
2775 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2776 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2777 		       mrt->mroute_do_wrvifwhole))
2778 		return false;
2779 
2780 	return true;
2781 }
2782 
ipmr_fill_vif(struct mr_table * mrt,u32 vifid,struct sk_buff * skb)2783 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2784 {
2785 	struct net_device *vif_dev;
2786 	struct nlattr *vif_nest;
2787 	struct vif_device *vif;
2788 
2789 	vif = &mrt->vif_table[vifid];
2790 	vif_dev = rtnl_dereference(vif->dev);
2791 	/* if the VIF doesn't exist just continue */
2792 	if (!vif_dev)
2793 		return true;
2794 
2795 	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2796 	if (!vif_nest)
2797 		return false;
2798 
2799 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2800 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2801 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2802 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2803 			      IPMRA_VIFA_PAD) ||
2804 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2805 			      IPMRA_VIFA_PAD) ||
2806 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2807 			      IPMRA_VIFA_PAD) ||
2808 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2809 			      IPMRA_VIFA_PAD) ||
2810 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2811 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2812 		nla_nest_cancel(skb, vif_nest);
2813 		return false;
2814 	}
2815 	nla_nest_end(skb, vif_nest);
2816 
2817 	return true;
2818 }
2819 
ipmr_valid_dumplink(const struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2820 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2821 			       struct netlink_ext_ack *extack)
2822 {
2823 	struct ifinfomsg *ifm;
2824 
2825 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2826 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2827 		return -EINVAL;
2828 	}
2829 
2830 	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2831 		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2832 		return -EINVAL;
2833 	}
2834 
2835 	ifm = nlmsg_data(nlh);
2836 	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2837 	    ifm->ifi_change || ifm->ifi_index) {
2838 		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2839 		return -EINVAL;
2840 	}
2841 
2842 	return 0;
2843 }
2844 
ipmr_rtm_dumplink(struct sk_buff * skb,struct netlink_callback * cb)2845 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2846 {
2847 	struct net *net = sock_net(skb->sk);
2848 	struct nlmsghdr *nlh = NULL;
2849 	unsigned int t = 0, s_t;
2850 	unsigned int e = 0, s_e;
2851 	struct mr_table *mrt;
2852 
2853 	if (cb->strict_check) {
2854 		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2855 
2856 		if (err < 0)
2857 			return err;
2858 	}
2859 
2860 	s_t = cb->args[0];
2861 	s_e = cb->args[1];
2862 
2863 	ipmr_for_each_table(mrt, net) {
2864 		struct nlattr *vifs, *af;
2865 		struct ifinfomsg *hdr;
2866 		u32 i;
2867 
2868 		if (t < s_t)
2869 			goto skip_table;
2870 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2871 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2872 				sizeof(*hdr), NLM_F_MULTI);
2873 		if (!nlh)
2874 			break;
2875 
2876 		hdr = nlmsg_data(nlh);
2877 		memset(hdr, 0, sizeof(*hdr));
2878 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2879 
2880 		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2881 		if (!af) {
2882 			nlmsg_cancel(skb, nlh);
2883 			goto out;
2884 		}
2885 
2886 		if (!ipmr_fill_table(mrt, skb)) {
2887 			nlmsg_cancel(skb, nlh);
2888 			goto out;
2889 		}
2890 
2891 		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2892 		if (!vifs) {
2893 			nla_nest_end(skb, af);
2894 			nlmsg_end(skb, nlh);
2895 			goto out;
2896 		}
2897 		for (i = 0; i < mrt->maxvif; i++) {
2898 			if (e < s_e)
2899 				goto skip_entry;
2900 			if (!ipmr_fill_vif(mrt, i, skb)) {
2901 				nla_nest_end(skb, vifs);
2902 				nla_nest_end(skb, af);
2903 				nlmsg_end(skb, nlh);
2904 				goto out;
2905 			}
2906 skip_entry:
2907 			e++;
2908 		}
2909 		s_e = 0;
2910 		e = 0;
2911 		nla_nest_end(skb, vifs);
2912 		nla_nest_end(skb, af);
2913 		nlmsg_end(skb, nlh);
2914 skip_table:
2915 		t++;
2916 	}
2917 
2918 out:
2919 	cb->args[1] = e;
2920 	cb->args[0] = t;
2921 
2922 	return skb->len;
2923 }
2924 
2925 #ifdef CONFIG_PROC_FS
2926 /* The /proc interfaces to multicast routing :
2927  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2928  */
2929 
ipmr_vif_seq_start(struct seq_file * seq,loff_t * pos)2930 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2931 	__acquires(RCU)
2932 {
2933 	struct mr_vif_iter *iter = seq->private;
2934 	struct net *net = seq_file_net(seq);
2935 	struct mr_table *mrt;
2936 
2937 	rcu_read_lock();
2938 	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2939 	if (!mrt) {
2940 		rcu_read_unlock();
2941 		return ERR_PTR(-ENOENT);
2942 	}
2943 
2944 	iter->mrt = mrt;
2945 
2946 	return mr_vif_seq_start(seq, pos);
2947 }
2948 
ipmr_vif_seq_stop(struct seq_file * seq,void * v)2949 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2950 	__releases(RCU)
2951 {
2952 	rcu_read_unlock();
2953 }
2954 
ipmr_vif_seq_show(struct seq_file * seq,void * v)2955 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2956 {
2957 	struct mr_vif_iter *iter = seq->private;
2958 	struct mr_table *mrt = iter->mrt;
2959 
2960 	if (v == SEQ_START_TOKEN) {
2961 		seq_puts(seq,
2962 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2963 	} else {
2964 		const struct vif_device *vif = v;
2965 		const struct net_device *vif_dev;
2966 		const char *name;
2967 
2968 		vif_dev = vif_dev_read(vif);
2969 		name = vif_dev ? vif_dev->name : "none";
2970 		seq_printf(seq,
2971 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2972 			   vif - mrt->vif_table,
2973 			   name, vif->bytes_in, vif->pkt_in,
2974 			   vif->bytes_out, vif->pkt_out,
2975 			   vif->flags, vif->local, vif->remote);
2976 	}
2977 	return 0;
2978 }
2979 
2980 static const struct seq_operations ipmr_vif_seq_ops = {
2981 	.start = ipmr_vif_seq_start,
2982 	.next  = mr_vif_seq_next,
2983 	.stop  = ipmr_vif_seq_stop,
2984 	.show  = ipmr_vif_seq_show,
2985 };
2986 
ipmr_mfc_seq_start(struct seq_file * seq,loff_t * pos)2987 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2988 {
2989 	struct net *net = seq_file_net(seq);
2990 	struct mr_table *mrt;
2991 
2992 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2993 	if (!mrt)
2994 		return ERR_PTR(-ENOENT);
2995 
2996 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2997 }
2998 
ipmr_mfc_seq_show(struct seq_file * seq,void * v)2999 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
3000 {
3001 	int n;
3002 
3003 	if (v == SEQ_START_TOKEN) {
3004 		seq_puts(seq,
3005 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
3006 	} else {
3007 		const struct mfc_cache *mfc = v;
3008 		const struct mr_mfc_iter *it = seq->private;
3009 		const struct mr_table *mrt = it->mrt;
3010 
3011 		seq_printf(seq, "%08X %08X %-3hd",
3012 			   (__force u32) mfc->mfc_mcastgrp,
3013 			   (__force u32) mfc->mfc_origin,
3014 			   mfc->_c.mfc_parent);
3015 
3016 		if (it->cache != &mrt->mfc_unres_queue) {
3017 			seq_printf(seq, " %8lu %8lu %8lu",
3018 				   atomic_long_read(&mfc->_c.mfc_un.res.pkt),
3019 				   atomic_long_read(&mfc->_c.mfc_un.res.bytes),
3020 				   atomic_long_read(&mfc->_c.mfc_un.res.wrong_if));
3021 			for (n = mfc->_c.mfc_un.res.minvif;
3022 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
3023 				if (VIF_EXISTS(mrt, n) &&
3024 				    mfc->_c.mfc_un.res.ttls[n] < 255)
3025 					seq_printf(seq,
3026 					   " %2d:%-3d",
3027 					   n, mfc->_c.mfc_un.res.ttls[n]);
3028 			}
3029 		} else {
3030 			/* unresolved mfc_caches don't contain
3031 			 * pkt, bytes and wrong_if values
3032 			 */
3033 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3034 		}
3035 		seq_putc(seq, '\n');
3036 	}
3037 	return 0;
3038 }
3039 
3040 static const struct seq_operations ipmr_mfc_seq_ops = {
3041 	.start = ipmr_mfc_seq_start,
3042 	.next  = mr_mfc_seq_next,
3043 	.stop  = mr_mfc_seq_stop,
3044 	.show  = ipmr_mfc_seq_show,
3045 };
3046 #endif
3047 
3048 #ifdef CONFIG_IP_PIMSM_V2
3049 static const struct net_protocol pim_protocol = {
3050 	.handler	=	pim_rcv,
3051 };
3052 #endif
3053 
ipmr_seq_read(struct net * net)3054 static unsigned int ipmr_seq_read(struct net *net)
3055 {
3056 	ASSERT_RTNL();
3057 
3058 	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3059 }
3060 
ipmr_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)3061 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3062 		     struct netlink_ext_ack *extack)
3063 {
3064 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3065 		       ipmr_mr_table_iter, extack);
3066 }
3067 
3068 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3069 	.family		= RTNL_FAMILY_IPMR,
3070 	.fib_seq_read	= ipmr_seq_read,
3071 	.fib_dump	= ipmr_dump,
3072 	.owner		= THIS_MODULE,
3073 };
3074 
ipmr_notifier_init(struct net * net)3075 static int __net_init ipmr_notifier_init(struct net *net)
3076 {
3077 	struct fib_notifier_ops *ops;
3078 
3079 	net->ipv4.ipmr_seq = 0;
3080 
3081 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3082 	if (IS_ERR(ops))
3083 		return PTR_ERR(ops);
3084 	net->ipv4.ipmr_notifier_ops = ops;
3085 
3086 	return 0;
3087 }
3088 
ipmr_notifier_exit(struct net * net)3089 static void __net_exit ipmr_notifier_exit(struct net *net)
3090 {
3091 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3092 	net->ipv4.ipmr_notifier_ops = NULL;
3093 }
3094 
3095 /* Setup for IP multicast routing */
ipmr_net_init(struct net * net)3096 static int __net_init ipmr_net_init(struct net *net)
3097 {
3098 	int err;
3099 
3100 	err = ipmr_notifier_init(net);
3101 	if (err)
3102 		goto ipmr_notifier_fail;
3103 
3104 	err = ipmr_rules_init(net);
3105 	if (err < 0)
3106 		goto ipmr_rules_fail;
3107 
3108 #ifdef CONFIG_PROC_FS
3109 	err = -ENOMEM;
3110 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3111 			sizeof(struct mr_vif_iter)))
3112 		goto proc_vif_fail;
3113 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3114 			sizeof(struct mr_mfc_iter)))
3115 		goto proc_cache_fail;
3116 #endif
3117 	return 0;
3118 
3119 #ifdef CONFIG_PROC_FS
3120 proc_cache_fail:
3121 	remove_proc_entry("ip_mr_vif", net->proc_net);
3122 proc_vif_fail:
3123 	rtnl_lock();
3124 	ipmr_rules_exit(net);
3125 	rtnl_unlock();
3126 #endif
3127 ipmr_rules_fail:
3128 	ipmr_notifier_exit(net);
3129 ipmr_notifier_fail:
3130 	return err;
3131 }
3132 
ipmr_net_exit(struct net * net)3133 static void __net_exit ipmr_net_exit(struct net *net)
3134 {
3135 #ifdef CONFIG_PROC_FS
3136 	remove_proc_entry("ip_mr_cache", net->proc_net);
3137 	remove_proc_entry("ip_mr_vif", net->proc_net);
3138 #endif
3139 	ipmr_notifier_exit(net);
3140 }
3141 
ipmr_net_exit_batch(struct list_head * net_list)3142 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3143 {
3144 	struct net *net;
3145 
3146 	rtnl_lock();
3147 	list_for_each_entry(net, net_list, exit_list)
3148 		ipmr_rules_exit(net);
3149 	rtnl_unlock();
3150 }
3151 
3152 static struct pernet_operations ipmr_net_ops = {
3153 	.init = ipmr_net_init,
3154 	.exit = ipmr_net_exit,
3155 	.exit_batch = ipmr_net_exit_batch,
3156 };
3157 
ip_mr_init(void)3158 int __init ip_mr_init(void)
3159 {
3160 	int err;
3161 
3162 	mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3163 
3164 	err = register_pernet_subsys(&ipmr_net_ops);
3165 	if (err)
3166 		goto reg_pernet_fail;
3167 
3168 	err = register_netdevice_notifier(&ip_mr_notifier);
3169 	if (err)
3170 		goto reg_notif_fail;
3171 #ifdef CONFIG_IP_PIMSM_V2
3172 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3173 		pr_err("%s: can't add PIM protocol\n", __func__);
3174 		err = -EAGAIN;
3175 		goto add_proto_fail;
3176 	}
3177 #endif
3178 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3179 		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3180 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3181 		      ipmr_rtm_route, NULL, 0);
3182 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3183 		      ipmr_rtm_route, NULL, 0);
3184 
3185 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3186 		      NULL, ipmr_rtm_dumplink, 0);
3187 	return 0;
3188 
3189 #ifdef CONFIG_IP_PIMSM_V2
3190 add_proto_fail:
3191 	unregister_netdevice_notifier(&ip_mr_notifier);
3192 #endif
3193 reg_notif_fail:
3194 	unregister_pernet_subsys(&ipmr_net_ops);
3195 reg_pernet_fail:
3196 	kmem_cache_destroy(mrt_cachep);
3197 	return err;
3198 }
3199