1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49 * page table is updated.
50 */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62 * power of 2MB.
63 */
64 static uint64_t max_svm_range_pages;
65
66 struct criu_svm_metadata {
67 struct list_head list;
68 struct kfd_criu_svm_range_priv_data data;
69 };
70
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 const struct mmu_notifier_range *range,
75 unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 .invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82
83 /**
84 * svm_range_unlink - unlink svm_range from lists and interval tree
85 * @prange: svm range structure to be removed
86 *
87 * Remove the svm_range from the svms and svm_bo lists and the svms
88 * interval tree.
89 *
90 * Context: The caller must hold svms->lock
91 */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 prange, prange->start, prange->last);
96
97 if (prange->svm_bo) {
98 spin_lock(&prange->svm_bo->list_lock);
99 list_del(&prange->svm_bo_list);
100 spin_unlock(&prange->svm_bo->list_lock);
101 }
102
103 list_del(&prange->list);
104 if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 prange, prange->start, prange->last);
113
114 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 prange->start << PAGE_SHIFT,
116 prange->npages << PAGE_SHIFT,
117 &svm_range_mn_ops);
118 }
119
120 /**
121 * svm_range_add_to_svms - add svm range to svms
122 * @prange: svm range structure to be added
123 *
124 * Add the svm range to svms interval tree and link list
125 *
126 * Context: The caller must hold svms->lock
127 */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 prange, prange->start, prange->last);
132
133 list_move_tail(&prange->list, &prange->svms->list);
134 prange->it_node.start = prange->start;
135 prange->it_node.last = prange->last;
136 interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 prange->svms, prange,
143 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145
146 if (prange->notifier.interval_tree.start != 0 &&
147 prange->notifier.interval_tree.last != 0)
148 mmu_interval_notifier_remove(&prange->notifier);
149 }
150
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 unsigned long offset, unsigned long npages,
161 unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 dma_addr_t *addr = prange->dma_addr[gpuidx];
165 struct device *dev = adev->dev;
166 struct page *page;
167 int i, r;
168
169 if (!addr) {
170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 if (!addr)
172 return -ENOMEM;
173 prange->dma_addr[gpuidx] = addr;
174 }
175
176 addr += offset;
177 for (i = 0; i < npages; i++) {
178 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180
181 page = hmm_pfn_to_page(hmm_pfns[i]);
182 if (is_zone_device_page(page)) {
183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184
185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 bo_adev->vm_manager.vram_base_offset -
187 bo_adev->kfd.pgmap.range.start;
188 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 continue;
191 }
192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 r = dma_mapping_error(dev, addr[i]);
194 if (r) {
195 dev_err(dev, "failed %d dma_map_page\n", r);
196 return r;
197 }
198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 }
201
202 return 0;
203 }
204
205 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 unsigned long offset, unsigned long npages,
208 unsigned long *hmm_pfns)
209 {
210 struct kfd_process *p;
211 uint32_t gpuidx;
212 int r;
213
214 p = container_of(prange->svms, struct kfd_process, svms);
215
216 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 struct kfd_process_device *pdd;
218
219 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 if (!pdd) {
222 pr_debug("failed to find device idx %d\n", gpuidx);
223 return -EINVAL;
224 }
225
226 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 hmm_pfns, gpuidx);
228 if (r)
229 break;
230 }
231
232 return r;
233 }
234
svm_range_dma_unmap_dev(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 unsigned long offset, unsigned long npages)
237 {
238 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 int i;
240
241 if (!dma_addr)
242 return;
243
244 for (i = offset; i < offset + npages; i++) {
245 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 continue;
247 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 dma_addr[i] = 0;
250 }
251 }
252
svm_range_dma_unmap(struct svm_range * prange)253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 struct kfd_process_device *pdd;
256 dma_addr_t *dma_addr;
257 struct device *dev;
258 struct kfd_process *p;
259 uint32_t gpuidx;
260
261 p = container_of(prange->svms, struct kfd_process, svms);
262
263 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 dma_addr = prange->dma_addr[gpuidx];
265 if (!dma_addr)
266 continue;
267
268 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 if (!pdd) {
270 pr_debug("failed to find device idx %d\n", gpuidx);
271 continue;
272 }
273 dev = &pdd->dev->adev->pdev->dev;
274
275 svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 }
277 }
278
svm_range_free(struct svm_range * prange,bool do_unmap)279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 uint32_t gpuidx;
284
285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 prange->start, prange->last);
287
288 svm_range_vram_node_free(prange);
289 if (do_unmap)
290 svm_range_dma_unmap(prange);
291
292 if (do_unmap && !p->xnack_enabled) {
293 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 }
297
298 /* free dma_addr array for each gpu */
299 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 if (prange->dma_addr[gpuidx]) {
301 kvfree(prange->dma_addr[gpuidx]);
302 prange->dma_addr[gpuidx] = NULL;
303 }
304 }
305
306 mutex_destroy(&prange->lock);
307 mutex_destroy(&prange->migrate_mutex);
308 kfree(prange);
309 }
310
311 static void
svm_range_set_default_attributes(struct svm_range_list * svms,int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 int32_t *prefetch_loc, uint8_t *granularity,
314 uint32_t *flags)
315 {
316 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 *granularity = svms->default_granularity;
319 *flags =
320 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322
323 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 uint64_t last, bool update_mem_usage)
326 {
327 uint64_t size = last - start + 1;
328 struct svm_range *prange;
329 struct kfd_process *p;
330
331 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 if (!prange)
333 return NULL;
334
335 p = container_of(svms, struct kfd_process, svms);
336 if (!p->xnack_enabled && update_mem_usage &&
337 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 kfree(prange);
341 return NULL;
342 }
343 prange->npages = size;
344 prange->svms = svms;
345 prange->start = start;
346 prange->last = last;
347 INIT_LIST_HEAD(&prange->list);
348 INIT_LIST_HEAD(&prange->update_list);
349 INIT_LIST_HEAD(&prange->svm_bo_list);
350 INIT_LIST_HEAD(&prange->deferred_list);
351 INIT_LIST_HEAD(&prange->child_list);
352 atomic_set(&prange->invalid, 0);
353 prange->validate_timestamp = 0;
354 prange->vram_pages = 0;
355 mutex_init(&prange->migrate_mutex);
356 mutex_init(&prange->lock);
357
358 if (p->xnack_enabled)
359 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 MAX_GPU_INSTANCE);
361
362 svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 &prange->prefetch_loc,
364 &prange->granularity, &prange->flags);
365
366 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367
368 return prange;
369 }
370
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 return false;
375
376 return true;
377 }
378
svm_range_bo_release(struct kref * kref)379 static void svm_range_bo_release(struct kref *kref)
380 {
381 struct svm_range_bo *svm_bo;
382
383 svm_bo = container_of(kref, struct svm_range_bo, kref);
384 pr_debug("svm_bo 0x%p\n", svm_bo);
385
386 spin_lock(&svm_bo->list_lock);
387 while (!list_empty(&svm_bo->range_list)) {
388 struct svm_range *prange =
389 list_first_entry(&svm_bo->range_list,
390 struct svm_range, svm_bo_list);
391 /* list_del_init tells a concurrent svm_range_vram_node_new when
392 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 */
394 list_del_init(&prange->svm_bo_list);
395 spin_unlock(&svm_bo->list_lock);
396
397 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 prange->start, prange->last);
399 mutex_lock(&prange->lock);
400 prange->svm_bo = NULL;
401 /* prange should not hold vram page now */
402 WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 mutex_unlock(&prange->lock);
404
405 spin_lock(&svm_bo->list_lock);
406 }
407 spin_unlock(&svm_bo->list_lock);
408
409 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
410 struct kfd_process_device *pdd;
411 struct kfd_process *p;
412 struct mm_struct *mm;
413
414 mm = svm_bo->eviction_fence->mm;
415 /*
416 * The forked child process takes svm_bo device pages ref, svm_bo could be
417 * released after parent process is gone.
418 */
419 p = kfd_lookup_process_by_mm(mm);
420 if (p) {
421 pdd = kfd_get_process_device_data(svm_bo->node, p);
422 if (pdd)
423 atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
424 kfd_unref_process(p);
425 }
426 mmput(mm);
427 }
428
429 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
430 /* We're not in the eviction worker. Signal the fence. */
431 dma_fence_signal(&svm_bo->eviction_fence->base);
432 dma_fence_put(&svm_bo->eviction_fence->base);
433 amdgpu_bo_unref(&svm_bo->bo);
434 kfree(svm_bo);
435 }
436
svm_range_bo_wq_release(struct work_struct * work)437 static void svm_range_bo_wq_release(struct work_struct *work)
438 {
439 struct svm_range_bo *svm_bo;
440
441 svm_bo = container_of(work, struct svm_range_bo, release_work);
442 svm_range_bo_release(&svm_bo->kref);
443 }
444
svm_range_bo_release_async(struct kref * kref)445 static void svm_range_bo_release_async(struct kref *kref)
446 {
447 struct svm_range_bo *svm_bo;
448
449 svm_bo = container_of(kref, struct svm_range_bo, kref);
450 pr_debug("svm_bo 0x%p\n", svm_bo);
451 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
452 schedule_work(&svm_bo->release_work);
453 }
454
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
456 {
457 kref_put(&svm_bo->kref, svm_range_bo_release_async);
458 }
459
svm_range_bo_unref(struct svm_range_bo * svm_bo)460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
461 {
462 if (svm_bo)
463 kref_put(&svm_bo->kref, svm_range_bo_release);
464 }
465
466 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
468 {
469 mutex_lock(&prange->lock);
470 if (!prange->svm_bo) {
471 mutex_unlock(&prange->lock);
472 return false;
473 }
474 if (prange->ttm_res) {
475 /* We still have a reference, all is well */
476 mutex_unlock(&prange->lock);
477 return true;
478 }
479 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
480 /*
481 * Migrate from GPU to GPU, remove range from source svm_bo->node
482 * range list, and return false to allocate svm_bo from destination
483 * node.
484 */
485 if (prange->svm_bo->node != node) {
486 mutex_unlock(&prange->lock);
487
488 spin_lock(&prange->svm_bo->list_lock);
489 list_del_init(&prange->svm_bo_list);
490 spin_unlock(&prange->svm_bo->list_lock);
491
492 svm_range_bo_unref(prange->svm_bo);
493 return false;
494 }
495 if (READ_ONCE(prange->svm_bo->evicting)) {
496 struct dma_fence *f;
497 struct svm_range_bo *svm_bo;
498 /* The BO is getting evicted,
499 * we need to get a new one
500 */
501 mutex_unlock(&prange->lock);
502 svm_bo = prange->svm_bo;
503 f = dma_fence_get(&svm_bo->eviction_fence->base);
504 svm_range_bo_unref(prange->svm_bo);
505 /* wait for the fence to avoid long spin-loop
506 * at list_empty_careful
507 */
508 dma_fence_wait(f, false);
509 dma_fence_put(f);
510 } else {
511 /* The BO was still around and we got
512 * a new reference to it
513 */
514 mutex_unlock(&prange->lock);
515 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
516 prange->svms, prange->start, prange->last);
517
518 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
519 return true;
520 }
521
522 } else {
523 mutex_unlock(&prange->lock);
524 }
525
526 /* We need a new svm_bo. Spin-loop to wait for concurrent
527 * svm_range_bo_release to finish removing this range from
528 * its range list and set prange->svm_bo to null. After this,
529 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
530 */
531 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
532 cond_resched();
533
534 return false;
535 }
536
svm_range_bo_new(void)537 static struct svm_range_bo *svm_range_bo_new(void)
538 {
539 struct svm_range_bo *svm_bo;
540
541 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
542 if (!svm_bo)
543 return NULL;
544
545 kref_init(&svm_bo->kref);
546 INIT_LIST_HEAD(&svm_bo->range_list);
547 spin_lock_init(&svm_bo->list_lock);
548
549 return svm_bo;
550 }
551
552 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
554 bool clear)
555 {
556 struct kfd_process_device *pdd;
557 struct amdgpu_bo_param bp;
558 struct svm_range_bo *svm_bo;
559 struct amdgpu_bo_user *ubo;
560 struct amdgpu_bo *bo;
561 struct kfd_process *p;
562 struct mm_struct *mm;
563 int r;
564
565 p = container_of(prange->svms, struct kfd_process, svms);
566 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
567 prange->start, prange->last);
568
569 if (svm_range_validate_svm_bo(node, prange))
570 return 0;
571
572 svm_bo = svm_range_bo_new();
573 if (!svm_bo) {
574 pr_debug("failed to alloc svm bo\n");
575 return -ENOMEM;
576 }
577 mm = get_task_mm(p->lead_thread);
578 if (!mm) {
579 pr_debug("failed to get mm\n");
580 kfree(svm_bo);
581 return -ESRCH;
582 }
583 svm_bo->node = node;
584 svm_bo->eviction_fence =
585 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
586 mm,
587 svm_bo);
588 mmput(mm);
589 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
590 svm_bo->evicting = 0;
591 memset(&bp, 0, sizeof(bp));
592 bp.size = prange->npages * PAGE_SIZE;
593 bp.byte_align = PAGE_SIZE;
594 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
595 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
596 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
597 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
598 bp.type = ttm_bo_type_device;
599 bp.resv = NULL;
600 if (node->xcp)
601 bp.xcp_id_plus1 = node->xcp->id + 1;
602
603 r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
604 if (r) {
605 pr_debug("failed %d to create bo\n", r);
606 goto create_bo_failed;
607 }
608 bo = &ubo->bo;
609
610 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
611 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
612 bp.xcp_id_plus1 - 1);
613
614 r = amdgpu_bo_reserve(bo, true);
615 if (r) {
616 pr_debug("failed %d to reserve bo\n", r);
617 goto reserve_bo_failed;
618 }
619
620 if (clear) {
621 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
622 if (r) {
623 pr_debug("failed %d to sync bo\n", r);
624 amdgpu_bo_unreserve(bo);
625 goto reserve_bo_failed;
626 }
627 }
628
629 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
630 if (r) {
631 pr_debug("failed %d to reserve bo\n", r);
632 amdgpu_bo_unreserve(bo);
633 goto reserve_bo_failed;
634 }
635 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
636
637 amdgpu_bo_unreserve(bo);
638
639 svm_bo->bo = bo;
640 prange->svm_bo = svm_bo;
641 prange->ttm_res = bo->tbo.resource;
642 prange->offset = 0;
643
644 spin_lock(&svm_bo->list_lock);
645 list_add(&prange->svm_bo_list, &svm_bo->range_list);
646 spin_unlock(&svm_bo->list_lock);
647
648 pdd = svm_range_get_pdd_by_node(prange, node);
649 if (pdd)
650 atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
651
652 return 0;
653
654 reserve_bo_failed:
655 amdgpu_bo_unref(&bo);
656 create_bo_failed:
657 dma_fence_put(&svm_bo->eviction_fence->base);
658 kfree(svm_bo);
659 prange->ttm_res = NULL;
660
661 return r;
662 }
663
svm_range_vram_node_free(struct svm_range * prange)664 void svm_range_vram_node_free(struct svm_range *prange)
665 {
666 /* serialize prange->svm_bo unref */
667 mutex_lock(&prange->lock);
668 /* prange->svm_bo has not been unref */
669 if (prange->ttm_res) {
670 prange->ttm_res = NULL;
671 mutex_unlock(&prange->lock);
672 svm_range_bo_unref(prange->svm_bo);
673 } else
674 mutex_unlock(&prange->lock);
675 }
676
677 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)678 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
679 {
680 struct kfd_process *p;
681 struct kfd_process_device *pdd;
682
683 p = container_of(prange->svms, struct kfd_process, svms);
684 pdd = kfd_process_device_data_by_id(p, gpu_id);
685 if (!pdd) {
686 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
687 return NULL;
688 }
689
690 return pdd->dev;
691 }
692
693 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)694 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
695 {
696 struct kfd_process *p;
697
698 p = container_of(prange->svms, struct kfd_process, svms);
699
700 return kfd_get_process_device_data(node, p);
701 }
702
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)703 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
704 {
705 struct ttm_operation_ctx ctx = { false, false };
706
707 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
708
709 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
710 }
711
712 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)713 svm_range_check_attr(struct kfd_process *p,
714 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
715 {
716 uint32_t i;
717
718 for (i = 0; i < nattr; i++) {
719 uint32_t val = attrs[i].value;
720 int gpuidx = MAX_GPU_INSTANCE;
721
722 switch (attrs[i].type) {
723 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
724 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
725 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
726 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
727 break;
728 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
729 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
730 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
731 break;
732 case KFD_IOCTL_SVM_ATTR_ACCESS:
733 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
734 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
735 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
736 break;
737 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
738 break;
739 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
740 break;
741 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
742 break;
743 default:
744 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
745 return -EINVAL;
746 }
747
748 if (gpuidx < 0) {
749 pr_debug("no GPU 0x%x found\n", val);
750 return -EINVAL;
751 } else if (gpuidx < MAX_GPU_INSTANCE &&
752 !test_bit(gpuidx, p->svms.bitmap_supported)) {
753 pr_debug("GPU 0x%x not supported\n", val);
754 return -EINVAL;
755 }
756 }
757
758 return 0;
759 }
760
761 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)762 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
763 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
764 bool *update_mapping)
765 {
766 uint32_t i;
767 int gpuidx;
768
769 for (i = 0; i < nattr; i++) {
770 switch (attrs[i].type) {
771 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
772 prange->preferred_loc = attrs[i].value;
773 break;
774 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
775 prange->prefetch_loc = attrs[i].value;
776 break;
777 case KFD_IOCTL_SVM_ATTR_ACCESS:
778 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
779 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
780 if (!p->xnack_enabled)
781 *update_mapping = true;
782
783 gpuidx = kfd_process_gpuidx_from_gpuid(p,
784 attrs[i].value);
785 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
786 bitmap_clear(prange->bitmap_access, gpuidx, 1);
787 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
788 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
789 bitmap_set(prange->bitmap_access, gpuidx, 1);
790 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
791 } else {
792 bitmap_clear(prange->bitmap_access, gpuidx, 1);
793 bitmap_set(prange->bitmap_aip, gpuidx, 1);
794 }
795 break;
796 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
797 *update_mapping = true;
798 prange->flags |= attrs[i].value;
799 break;
800 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
801 *update_mapping = true;
802 prange->flags &= ~attrs[i].value;
803 break;
804 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
805 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
806 break;
807 default:
808 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
809 }
810 }
811 }
812
813 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)814 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
815 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
816 {
817 uint32_t i;
818 int gpuidx;
819
820 for (i = 0; i < nattr; i++) {
821 switch (attrs[i].type) {
822 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
823 if (prange->preferred_loc != attrs[i].value)
824 return false;
825 break;
826 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
827 /* Prefetch should always trigger a migration even
828 * if the value of the attribute didn't change.
829 */
830 return false;
831 case KFD_IOCTL_SVM_ATTR_ACCESS:
832 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
833 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
834 gpuidx = kfd_process_gpuidx_from_gpuid(p,
835 attrs[i].value);
836 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
837 if (test_bit(gpuidx, prange->bitmap_access) ||
838 test_bit(gpuidx, prange->bitmap_aip))
839 return false;
840 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
841 if (!test_bit(gpuidx, prange->bitmap_access))
842 return false;
843 } else {
844 if (!test_bit(gpuidx, prange->bitmap_aip))
845 return false;
846 }
847 break;
848 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
849 if ((prange->flags & attrs[i].value) != attrs[i].value)
850 return false;
851 break;
852 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
853 if ((prange->flags & attrs[i].value) != 0)
854 return false;
855 break;
856 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
857 if (prange->granularity != attrs[i].value)
858 return false;
859 break;
860 default:
861 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
862 }
863 }
864
865 return true;
866 }
867
868 /**
869 * svm_range_debug_dump - print all range information from svms
870 * @svms: svm range list header
871 *
872 * debug output svm range start, end, prefetch location from svms
873 * interval tree and link list
874 *
875 * Context: The caller must hold svms->lock
876 */
svm_range_debug_dump(struct svm_range_list * svms)877 static void svm_range_debug_dump(struct svm_range_list *svms)
878 {
879 struct interval_tree_node *node;
880 struct svm_range *prange;
881
882 pr_debug("dump svms 0x%p list\n", svms);
883 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
884
885 list_for_each_entry(prange, &svms->list, list) {
886 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
887 prange, prange->start, prange->npages,
888 prange->start + prange->npages - 1,
889 prange->actual_loc);
890 }
891
892 pr_debug("dump svms 0x%p interval tree\n", svms);
893 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
894 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
895 while (node) {
896 prange = container_of(node, struct svm_range, it_node);
897 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
898 prange, prange->start, prange->npages,
899 prange->start + prange->npages - 1,
900 prange->actual_loc);
901 node = interval_tree_iter_next(node, 0, ~0ULL);
902 }
903 }
904
905 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset,uint64_t * vram_pages)906 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
907 uint64_t offset, uint64_t *vram_pages)
908 {
909 unsigned char *src = (unsigned char *)psrc + offset;
910 unsigned char *dst;
911 uint64_t i;
912
913 dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
914 if (!dst)
915 return NULL;
916
917 if (!vram_pages) {
918 memcpy(dst, src, num_elements * size);
919 return (void *)dst;
920 }
921
922 *vram_pages = 0;
923 for (i = 0; i < num_elements; i++) {
924 dma_addr_t *temp;
925 temp = (dma_addr_t *)dst + i;
926 *temp = *((dma_addr_t *)src + i);
927 if (*temp&SVM_RANGE_VRAM_DOMAIN)
928 (*vram_pages)++;
929 }
930
931 return (void *)dst;
932 }
933
934 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)935 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
936 {
937 int i;
938
939 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
940 if (!src->dma_addr[i])
941 continue;
942 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
943 sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
944 if (!dst->dma_addr[i])
945 return -ENOMEM;
946 }
947
948 return 0;
949 }
950
951 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n,uint64_t * new_vram_pages)952 svm_range_split_array(void *ppnew, void *ppold, size_t size,
953 uint64_t old_start, uint64_t old_n,
954 uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
955 {
956 unsigned char *new, *old, *pold;
957 uint64_t d;
958
959 if (!ppold)
960 return 0;
961 pold = *(unsigned char **)ppold;
962 if (!pold)
963 return 0;
964
965 d = (new_start - old_start) * size;
966 /* get dma addr array for new range and calculte its vram page number */
967 new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
968 if (!new)
969 return -ENOMEM;
970 d = (new_start == old_start) ? new_n * size : 0;
971 old = svm_range_copy_array(pold, size, old_n, d, NULL);
972 if (!old) {
973 kvfree(new);
974 return -ENOMEM;
975 }
976 kvfree(pold);
977 *(void **)ppold = old;
978 *(void **)ppnew = new;
979
980 return 0;
981 }
982
983 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)984 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
985 uint64_t start, uint64_t last)
986 {
987 uint64_t npages = last - start + 1;
988 int i, r;
989
990 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
991 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
992 sizeof(*old->dma_addr[i]), old->start,
993 npages, new->start, new->npages,
994 old->actual_loc ? &new->vram_pages : NULL);
995 if (r)
996 return r;
997 }
998 if (old->actual_loc)
999 old->vram_pages -= new->vram_pages;
1000
1001 return 0;
1002 }
1003
1004 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1005 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1006 uint64_t start, uint64_t last)
1007 {
1008 uint64_t npages = last - start + 1;
1009
1010 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1011 new->svms, new, new->start, start, last);
1012
1013 if (new->start == old->start) {
1014 new->offset = old->offset;
1015 old->offset += new->npages;
1016 } else {
1017 new->offset = old->offset + npages;
1018 }
1019
1020 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1021 new->ttm_res = old->ttm_res;
1022
1023 spin_lock(&new->svm_bo->list_lock);
1024 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1025 spin_unlock(&new->svm_bo->list_lock);
1026
1027 return 0;
1028 }
1029
1030 /**
1031 * svm_range_split_adjust - split range and adjust
1032 *
1033 * @new: new range
1034 * @old: the old range
1035 * @start: the old range adjust to start address in pages
1036 * @last: the old range adjust to last address in pages
1037 *
1038 * Copy system memory dma_addr or vram ttm_res in old range to new
1039 * range from new_start up to size new->npages, the remaining old range is from
1040 * start to last
1041 *
1042 * Return:
1043 * 0 - OK, -ENOMEM - out of memory
1044 */
1045 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1046 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1047 uint64_t start, uint64_t last)
1048 {
1049 int r;
1050
1051 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1052 new->svms, new->start, old->start, old->last, start, last);
1053
1054 if (new->start < old->start ||
1055 new->last > old->last) {
1056 WARN_ONCE(1, "invalid new range start or last\n");
1057 return -EINVAL;
1058 }
1059
1060 r = svm_range_split_pages(new, old, start, last);
1061 if (r)
1062 return r;
1063
1064 if (old->actual_loc && old->ttm_res) {
1065 r = svm_range_split_nodes(new, old, start, last);
1066 if (r)
1067 return r;
1068 }
1069
1070 old->npages = last - start + 1;
1071 old->start = start;
1072 old->last = last;
1073 new->flags = old->flags;
1074 new->preferred_loc = old->preferred_loc;
1075 new->prefetch_loc = old->prefetch_loc;
1076 new->actual_loc = old->actual_loc;
1077 new->granularity = old->granularity;
1078 new->mapped_to_gpu = old->mapped_to_gpu;
1079 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1080 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1081 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1082
1083 return 0;
1084 }
1085
1086 /**
1087 * svm_range_split - split a range in 2 ranges
1088 *
1089 * @prange: the svm range to split
1090 * @start: the remaining range start address in pages
1091 * @last: the remaining range last address in pages
1092 * @new: the result new range generated
1093 *
1094 * Two cases only:
1095 * case 1: if start == prange->start
1096 * prange ==> prange[start, last]
1097 * new range [last + 1, prange->last]
1098 *
1099 * case 2: if last == prange->last
1100 * prange ==> prange[start, last]
1101 * new range [prange->start, start - 1]
1102 *
1103 * Return:
1104 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1105 */
1106 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1107 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1108 struct svm_range **new)
1109 {
1110 uint64_t old_start = prange->start;
1111 uint64_t old_last = prange->last;
1112 struct svm_range_list *svms;
1113 int r = 0;
1114
1115 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1116 old_start, old_last, start, last);
1117
1118 if (old_start != start && old_last != last)
1119 return -EINVAL;
1120 if (start < old_start || last > old_last)
1121 return -EINVAL;
1122
1123 svms = prange->svms;
1124 if (old_start == start)
1125 *new = svm_range_new(svms, last + 1, old_last, false);
1126 else
1127 *new = svm_range_new(svms, old_start, start - 1, false);
1128 if (!*new)
1129 return -ENOMEM;
1130
1131 r = svm_range_split_adjust(*new, prange, start, last);
1132 if (r) {
1133 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1134 r, old_start, old_last, start, last);
1135 svm_range_free(*new, false);
1136 *new = NULL;
1137 }
1138
1139 return r;
1140 }
1141
1142 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list,struct list_head * remap_list)1143 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1144 struct list_head *insert_list, struct list_head *remap_list)
1145 {
1146 struct svm_range *tail = NULL;
1147 int r = svm_range_split(prange, prange->start, new_last, &tail);
1148
1149 if (!r) {
1150 list_add(&tail->list, insert_list);
1151 if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1152 list_add(&tail->update_list, remap_list);
1153 }
1154 return r;
1155 }
1156
1157 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list,struct list_head * remap_list)1158 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1159 struct list_head *insert_list, struct list_head *remap_list)
1160 {
1161 struct svm_range *head = NULL;
1162 int r = svm_range_split(prange, new_start, prange->last, &head);
1163
1164 if (!r) {
1165 list_add(&head->list, insert_list);
1166 if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1167 list_add(&head->update_list, remap_list);
1168 }
1169 return r;
1170 }
1171
1172 static void
svm_range_add_child(struct svm_range * prange,struct svm_range * pchild,enum svm_work_list_ops op)1173 svm_range_add_child(struct svm_range *prange, struct svm_range *pchild, enum svm_work_list_ops op)
1174 {
1175 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1176 pchild, pchild->start, pchild->last, prange, op);
1177
1178 pchild->work_item.mm = NULL;
1179 pchild->work_item.op = op;
1180 list_add_tail(&pchild->child_list, &prange->child_list);
1181 }
1182
1183 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1184 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1185 {
1186 return (node_a->adev == node_b->adev ||
1187 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1188 }
1189
1190 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1191 svm_range_get_pte_flags(struct kfd_node *node,
1192 struct svm_range *prange, int domain)
1193 {
1194 struct kfd_node *bo_node;
1195 uint32_t flags = prange->flags;
1196 uint32_t mapping_flags = 0;
1197 uint64_t pte_flags;
1198 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1199 bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1200 bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1201 unsigned int mtype_local;
1202
1203 if (domain == SVM_RANGE_VRAM_DOMAIN)
1204 bo_node = prange->svm_bo->node;
1205
1206 switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1207 case IP_VERSION(9, 4, 1):
1208 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1209 if (bo_node == node) {
1210 mapping_flags |= coherent ?
1211 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1212 } else {
1213 mapping_flags |= coherent ?
1214 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1215 if (svm_nodes_in_same_hive(node, bo_node))
1216 snoop = true;
1217 }
1218 } else {
1219 mapping_flags |= coherent ?
1220 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1221 }
1222 break;
1223 case IP_VERSION(9, 4, 2):
1224 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1225 if (bo_node == node) {
1226 mapping_flags |= coherent ?
1227 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1228 if (node->adev->gmc.xgmi.connected_to_cpu)
1229 snoop = true;
1230 } else {
1231 mapping_flags |= coherent ?
1232 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1233 if (svm_nodes_in_same_hive(node, bo_node))
1234 snoop = true;
1235 }
1236 } else {
1237 mapping_flags |= coherent ?
1238 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1239 }
1240 break;
1241 case IP_VERSION(9, 4, 3):
1242 case IP_VERSION(9, 4, 4):
1243 if (ext_coherent)
1244 mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
1245 else
1246 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1247 amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1248 snoop = true;
1249 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1250 /* local HBM region close to partition */
1251 if (bo_node->adev == node->adev &&
1252 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1253 mapping_flags |= mtype_local;
1254 /* local HBM region far from partition or remote XGMI GPU
1255 * with regular system scope coherence
1256 */
1257 else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1258 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1259 /* PCIe P2P or extended system scope coherence */
1260 else
1261 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1262 /* system memory accessed by the APU */
1263 } else if (node->adev->flags & AMD_IS_APU) {
1264 /* On NUMA systems, locality is determined per-page
1265 * in amdgpu_gmc_override_vm_pte_flags
1266 */
1267 if (num_possible_nodes() <= 1)
1268 mapping_flags |= mtype_local;
1269 else
1270 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1271 /* system memory accessed by the dGPU */
1272 } else {
1273 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1274 }
1275 break;
1276 case IP_VERSION(12, 0, 0):
1277 case IP_VERSION(12, 0, 1):
1278 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1279 break;
1280 default:
1281 mapping_flags |= coherent ?
1282 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1283 }
1284
1285 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1286
1287 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1288 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1289 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1290 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1291
1292 pte_flags = AMDGPU_PTE_VALID;
1293 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1294 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1295 if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
1296 pte_flags |= AMDGPU_PTE_IS_PTE;
1297
1298 pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1299 return pte_flags;
1300 }
1301
1302 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1303 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1304 uint64_t start, uint64_t last,
1305 struct dma_fence **fence)
1306 {
1307 uint64_t init_pte_value = 0;
1308
1309 pr_debug("[0x%llx 0x%llx]\n", start, last);
1310
1311 return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1312 last, init_pte_value, 0, 0, NULL, NULL,
1313 fence);
1314 }
1315
1316 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1317 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1318 unsigned long last, uint32_t trigger)
1319 {
1320 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1321 struct kfd_process_device *pdd;
1322 struct dma_fence *fence = NULL;
1323 struct kfd_process *p;
1324 uint32_t gpuidx;
1325 int r = 0;
1326
1327 if (!prange->mapped_to_gpu) {
1328 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1329 prange, prange->start, prange->last);
1330 return 0;
1331 }
1332
1333 if (prange->start == start && prange->last == last) {
1334 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1335 prange->mapped_to_gpu = false;
1336 }
1337
1338 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1339 MAX_GPU_INSTANCE);
1340 p = container_of(prange->svms, struct kfd_process, svms);
1341
1342 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1343 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1344 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1345 if (!pdd) {
1346 pr_debug("failed to find device idx %d\n", gpuidx);
1347 return -EINVAL;
1348 }
1349
1350 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1351 start, last, trigger);
1352
1353 r = svm_range_unmap_from_gpu(pdd->dev->adev,
1354 drm_priv_to_vm(pdd->drm_priv),
1355 start, last, &fence);
1356 if (r)
1357 break;
1358
1359 if (fence) {
1360 r = dma_fence_wait(fence, false);
1361 dma_fence_put(fence);
1362 fence = NULL;
1363 if (r)
1364 break;
1365 }
1366 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1367 }
1368
1369 return r;
1370 }
1371
1372 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1373 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1374 unsigned long offset, unsigned long npages, bool readonly,
1375 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1376 struct dma_fence **fence, bool flush_tlb)
1377 {
1378 struct amdgpu_device *adev = pdd->dev->adev;
1379 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1380 uint64_t pte_flags;
1381 unsigned long last_start;
1382 int last_domain;
1383 int r = 0;
1384 int64_t i, j;
1385
1386 last_start = prange->start + offset;
1387
1388 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1389 last_start, last_start + npages - 1, readonly);
1390
1391 for (i = offset; i < offset + npages; i++) {
1392 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1393 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1394
1395 /* Collect all pages in the same address range and memory domain
1396 * that can be mapped with a single call to update mapping.
1397 */
1398 if (i < offset + npages - 1 &&
1399 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1400 continue;
1401
1402 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1403 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1404
1405 pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1406 if (readonly)
1407 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1408
1409 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1410 prange->svms, last_start, prange->start + i,
1411 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1412 pte_flags);
1413
1414 /* For dGPU mode, we use same vm_manager to allocate VRAM for
1415 * different memory partition based on fpfn/lpfn, we should use
1416 * same vm_manager.vram_base_offset regardless memory partition.
1417 */
1418 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1419 NULL, last_start, prange->start + i,
1420 pte_flags,
1421 (last_start - prange->start) << PAGE_SHIFT,
1422 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1423 NULL, dma_addr, &vm->last_update);
1424
1425 for (j = last_start - prange->start; j <= i; j++)
1426 dma_addr[j] |= last_domain;
1427
1428 if (r) {
1429 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1430 goto out;
1431 }
1432 last_start = prange->start + i + 1;
1433 }
1434
1435 r = amdgpu_vm_update_pdes(adev, vm, false);
1436 if (r) {
1437 pr_debug("failed %d to update directories 0x%lx\n", r,
1438 prange->start);
1439 goto out;
1440 }
1441
1442 if (fence)
1443 *fence = dma_fence_get(vm->last_update);
1444
1445 out:
1446 return r;
1447 }
1448
1449 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1450 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1451 unsigned long npages, bool readonly,
1452 unsigned long *bitmap, bool wait, bool flush_tlb)
1453 {
1454 struct kfd_process_device *pdd;
1455 struct amdgpu_device *bo_adev = NULL;
1456 struct kfd_process *p;
1457 struct dma_fence *fence = NULL;
1458 uint32_t gpuidx;
1459 int r = 0;
1460
1461 if (prange->svm_bo && prange->ttm_res)
1462 bo_adev = prange->svm_bo->node->adev;
1463
1464 p = container_of(prange->svms, struct kfd_process, svms);
1465 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1466 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1467 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1468 if (!pdd) {
1469 pr_debug("failed to find device idx %d\n", gpuidx);
1470 return -EINVAL;
1471 }
1472
1473 pdd = kfd_bind_process_to_device(pdd->dev, p);
1474 if (IS_ERR(pdd))
1475 return -EINVAL;
1476
1477 if (bo_adev && pdd->dev->adev != bo_adev &&
1478 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1479 pr_debug("cannot map to device idx %d\n", gpuidx);
1480 continue;
1481 }
1482
1483 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1484 prange->dma_addr[gpuidx],
1485 bo_adev, wait ? &fence : NULL,
1486 flush_tlb);
1487 if (r)
1488 break;
1489
1490 if (fence) {
1491 r = dma_fence_wait(fence, false);
1492 dma_fence_put(fence);
1493 fence = NULL;
1494 if (r) {
1495 pr_debug("failed %d to dma fence wait\n", r);
1496 break;
1497 }
1498 }
1499
1500 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1501 }
1502
1503 return r;
1504 }
1505
1506 struct svm_validate_context {
1507 struct kfd_process *process;
1508 struct svm_range *prange;
1509 bool intr;
1510 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1511 struct drm_exec exec;
1512 };
1513
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1514 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1515 {
1516 struct kfd_process_device *pdd;
1517 struct amdgpu_vm *vm;
1518 uint32_t gpuidx;
1519 int r;
1520
1521 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1522 drm_exec_until_all_locked(&ctx->exec) {
1523 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1524 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1525 if (!pdd) {
1526 pr_debug("failed to find device idx %d\n", gpuidx);
1527 r = -EINVAL;
1528 goto unreserve_out;
1529 }
1530 vm = drm_priv_to_vm(pdd->drm_priv);
1531
1532 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1533 drm_exec_retry_on_contention(&ctx->exec);
1534 if (unlikely(r)) {
1535 pr_debug("failed %d to reserve bo\n", r);
1536 goto unreserve_out;
1537 }
1538 }
1539 }
1540
1541 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1542 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1543 if (!pdd) {
1544 pr_debug("failed to find device idx %d\n", gpuidx);
1545 r = -EINVAL;
1546 goto unreserve_out;
1547 }
1548
1549 r = amdgpu_vm_validate(pdd->dev->adev,
1550 drm_priv_to_vm(pdd->drm_priv), NULL,
1551 svm_range_bo_validate, NULL);
1552 if (r) {
1553 pr_debug("failed %d validate pt bos\n", r);
1554 goto unreserve_out;
1555 }
1556 }
1557
1558 return 0;
1559
1560 unreserve_out:
1561 drm_exec_fini(&ctx->exec);
1562 return r;
1563 }
1564
svm_range_unreserve_bos(struct svm_validate_context * ctx)1565 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1566 {
1567 drm_exec_fini(&ctx->exec);
1568 }
1569
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1570 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1571 {
1572 struct kfd_process_device *pdd;
1573
1574 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1575 if (!pdd)
1576 return NULL;
1577
1578 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1579 }
1580
1581 /*
1582 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1583 *
1584 * To prevent concurrent destruction or change of range attributes, the
1585 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1586 * because that would block concurrent evictions and lead to deadlocks. To
1587 * serialize concurrent migrations or validations of the same range, the
1588 * prange->migrate_mutex must be held.
1589 *
1590 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1591 * eviction fence.
1592 *
1593 * The following sequence ensures race-free validation and GPU mapping:
1594 *
1595 * 1. Reserve page table (and SVM BO if range is in VRAM)
1596 * 2. hmm_range_fault to get page addresses (if system memory)
1597 * 3. DMA-map pages (if system memory)
1598 * 4-a. Take notifier lock
1599 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1600 * 4-c. Check that the range was not split or otherwise invalidated
1601 * 4-d. Update GPU page table
1602 * 4.e. Release notifier lock
1603 * 5. Release page table (and SVM BO) reservation
1604 */
svm_range_validate_and_map(struct mm_struct * mm,unsigned long map_start,unsigned long map_last,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1605 static int svm_range_validate_and_map(struct mm_struct *mm,
1606 unsigned long map_start, unsigned long map_last,
1607 struct svm_range *prange, int32_t gpuidx,
1608 bool intr, bool wait, bool flush_tlb)
1609 {
1610 struct svm_validate_context *ctx;
1611 unsigned long start, end, addr;
1612 struct kfd_process *p;
1613 void *owner;
1614 int32_t idx;
1615 int r = 0;
1616
1617 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1618 if (!ctx)
1619 return -ENOMEM;
1620 ctx->process = container_of(prange->svms, struct kfd_process, svms);
1621 ctx->prange = prange;
1622 ctx->intr = intr;
1623
1624 if (gpuidx < MAX_GPU_INSTANCE) {
1625 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1626 bitmap_set(ctx->bitmap, gpuidx, 1);
1627 } else if (ctx->process->xnack_enabled) {
1628 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1629
1630 /* If prefetch range to GPU, or GPU retry fault migrate range to
1631 * GPU, which has ACCESS attribute to the range, create mapping
1632 * on that GPU.
1633 */
1634 if (prange->actual_loc) {
1635 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1636 prange->actual_loc);
1637 if (gpuidx < 0) {
1638 WARN_ONCE(1, "failed get device by id 0x%x\n",
1639 prange->actual_loc);
1640 r = -EINVAL;
1641 goto free_ctx;
1642 }
1643 if (test_bit(gpuidx, prange->bitmap_access))
1644 bitmap_set(ctx->bitmap, gpuidx, 1);
1645 }
1646
1647 /*
1648 * If prange is already mapped or with always mapped flag,
1649 * update mapping on GPUs with ACCESS attribute
1650 */
1651 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1652 if (prange->mapped_to_gpu ||
1653 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1654 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1655 }
1656 } else {
1657 bitmap_or(ctx->bitmap, prange->bitmap_access,
1658 prange->bitmap_aip, MAX_GPU_INSTANCE);
1659 }
1660
1661 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1662 r = 0;
1663 goto free_ctx;
1664 }
1665
1666 if (prange->actual_loc && !prange->ttm_res) {
1667 /* This should never happen. actual_loc gets set by
1668 * svm_migrate_ram_to_vram after allocating a BO.
1669 */
1670 WARN_ONCE(1, "VRAM BO missing during validation\n");
1671 r = -EINVAL;
1672 goto free_ctx;
1673 }
1674
1675 r = svm_range_reserve_bos(ctx, intr);
1676 if (r)
1677 goto free_ctx;
1678
1679 p = container_of(prange->svms, struct kfd_process, svms);
1680 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1681 MAX_GPU_INSTANCE));
1682 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1683 if (kfd_svm_page_owner(p, idx) != owner) {
1684 owner = NULL;
1685 break;
1686 }
1687 }
1688
1689 start = map_start << PAGE_SHIFT;
1690 end = (map_last + 1) << PAGE_SHIFT;
1691 for (addr = start; !r && addr < end; ) {
1692 struct hmm_range *hmm_range = NULL;
1693 unsigned long map_start_vma;
1694 unsigned long map_last_vma;
1695 struct vm_area_struct *vma;
1696 unsigned long next = 0;
1697 unsigned long offset;
1698 unsigned long npages;
1699 bool readonly;
1700
1701 vma = vma_lookup(mm, addr);
1702 if (vma) {
1703 readonly = !(vma->vm_flags & VM_WRITE);
1704
1705 next = min(vma->vm_end, end);
1706 npages = (next - addr) >> PAGE_SHIFT;
1707 WRITE_ONCE(p->svms.faulting_task, current);
1708 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1709 readonly, owner, NULL,
1710 &hmm_range);
1711 WRITE_ONCE(p->svms.faulting_task, NULL);
1712 if (r)
1713 pr_debug("failed %d to get svm range pages\n", r);
1714 } else {
1715 r = -EFAULT;
1716 }
1717
1718 if (!r) {
1719 offset = (addr >> PAGE_SHIFT) - prange->start;
1720 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1721 hmm_range->hmm_pfns);
1722 if (r)
1723 pr_debug("failed %d to dma map range\n", r);
1724 }
1725
1726 svm_range_lock(prange);
1727
1728 /* Free backing memory of hmm_range if it was initialized
1729 * Overrride return value to TRY AGAIN only if prior returns
1730 * were successful
1731 */
1732 if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1733 pr_debug("hmm update the range, need validate again\n");
1734 r = -EAGAIN;
1735 }
1736
1737 if (!r && !list_empty(&prange->child_list)) {
1738 pr_debug("range split by unmap in parallel, validate again\n");
1739 r = -EAGAIN;
1740 }
1741
1742 if (!r) {
1743 map_start_vma = max(map_start, prange->start + offset);
1744 map_last_vma = min(map_last, prange->start + offset + npages - 1);
1745 if (map_start_vma <= map_last_vma) {
1746 offset = map_start_vma - prange->start;
1747 npages = map_last_vma - map_start_vma + 1;
1748 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1749 ctx->bitmap, wait, flush_tlb);
1750 }
1751 }
1752
1753 if (!r && next == end)
1754 prange->mapped_to_gpu = true;
1755
1756 svm_range_unlock(prange);
1757
1758 addr = next;
1759 }
1760
1761 svm_range_unreserve_bos(ctx);
1762 if (!r)
1763 prange->validate_timestamp = ktime_get_boottime();
1764
1765 free_ctx:
1766 kfree(ctx);
1767
1768 return r;
1769 }
1770
1771 /**
1772 * svm_range_list_lock_and_flush_work - flush pending deferred work
1773 *
1774 * @svms: the svm range list
1775 * @mm: the mm structure
1776 *
1777 * Context: Returns with mmap write lock held, pending deferred work flushed
1778 *
1779 */
1780 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1781 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1782 struct mm_struct *mm)
1783 {
1784 retry_flush_work:
1785 flush_work(&svms->deferred_list_work);
1786 mmap_write_lock(mm);
1787
1788 if (list_empty(&svms->deferred_range_list))
1789 return;
1790 mmap_write_unlock(mm);
1791 pr_debug("retry flush\n");
1792 goto retry_flush_work;
1793 }
1794
svm_range_restore_work(struct work_struct * work)1795 static void svm_range_restore_work(struct work_struct *work)
1796 {
1797 struct delayed_work *dwork = to_delayed_work(work);
1798 struct amdkfd_process_info *process_info;
1799 struct svm_range_list *svms;
1800 struct svm_range *prange;
1801 struct kfd_process *p;
1802 struct mm_struct *mm;
1803 int evicted_ranges;
1804 int invalid;
1805 int r;
1806
1807 svms = container_of(dwork, struct svm_range_list, restore_work);
1808 evicted_ranges = atomic_read(&svms->evicted_ranges);
1809 if (!evicted_ranges)
1810 return;
1811
1812 pr_debug("restore svm ranges\n");
1813
1814 p = container_of(svms, struct kfd_process, svms);
1815 process_info = p->kgd_process_info;
1816
1817 /* Keep mm reference when svm_range_validate_and_map ranges */
1818 mm = get_task_mm(p->lead_thread);
1819 if (!mm) {
1820 pr_debug("svms 0x%p process mm gone\n", svms);
1821 return;
1822 }
1823
1824 mutex_lock(&process_info->lock);
1825 svm_range_list_lock_and_flush_work(svms, mm);
1826 mutex_lock(&svms->lock);
1827
1828 evicted_ranges = atomic_read(&svms->evicted_ranges);
1829
1830 list_for_each_entry(prange, &svms->list, list) {
1831 invalid = atomic_read(&prange->invalid);
1832 if (!invalid)
1833 continue;
1834
1835 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1836 prange->svms, prange, prange->start, prange->last,
1837 invalid);
1838
1839 /*
1840 * If range is migrating, wait for migration is done.
1841 */
1842 mutex_lock(&prange->migrate_mutex);
1843
1844 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1845 MAX_GPU_INSTANCE, false, true, false);
1846 if (r)
1847 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1848 prange->start);
1849
1850 mutex_unlock(&prange->migrate_mutex);
1851 if (r)
1852 goto out_reschedule;
1853
1854 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1855 goto out_reschedule;
1856 }
1857
1858 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1859 evicted_ranges)
1860 goto out_reschedule;
1861
1862 evicted_ranges = 0;
1863
1864 r = kgd2kfd_resume_mm(mm);
1865 if (r) {
1866 /* No recovery from this failure. Probably the CP is
1867 * hanging. No point trying again.
1868 */
1869 pr_debug("failed %d to resume KFD\n", r);
1870 }
1871
1872 pr_debug("restore svm ranges successfully\n");
1873
1874 out_reschedule:
1875 mutex_unlock(&svms->lock);
1876 mmap_write_unlock(mm);
1877 mutex_unlock(&process_info->lock);
1878
1879 /* If validation failed, reschedule another attempt */
1880 if (evicted_ranges) {
1881 pr_debug("reschedule to restore svm range\n");
1882 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1883 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1884
1885 kfd_smi_event_queue_restore_rescheduled(mm);
1886 }
1887 mmput(mm);
1888 }
1889
1890 /**
1891 * svm_range_evict - evict svm range
1892 * @prange: svm range structure
1893 * @mm: current process mm_struct
1894 * @start: starting process queue number
1895 * @last: last process queue number
1896 * @event: mmu notifier event when range is evicted or migrated
1897 *
1898 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1899 * return to let CPU evict the buffer and proceed CPU pagetable update.
1900 *
1901 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1902 * If invalidation happens while restore work is running, restore work will
1903 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1904 * the queues.
1905 */
1906 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1907 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1908 unsigned long start, unsigned long last,
1909 enum mmu_notifier_event event)
1910 {
1911 struct svm_range_list *svms = prange->svms;
1912 struct svm_range *pchild;
1913 struct kfd_process *p;
1914 int r = 0;
1915
1916 p = container_of(svms, struct kfd_process, svms);
1917
1918 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1919 svms, prange->start, prange->last, start, last);
1920
1921 if (!p->xnack_enabled ||
1922 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1923 int evicted_ranges;
1924 bool mapped = prange->mapped_to_gpu;
1925
1926 list_for_each_entry(pchild, &prange->child_list, child_list) {
1927 if (!pchild->mapped_to_gpu)
1928 continue;
1929 mapped = true;
1930 mutex_lock_nested(&pchild->lock, 1);
1931 if (pchild->start <= last && pchild->last >= start) {
1932 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1933 pchild->start, pchild->last);
1934 atomic_inc(&pchild->invalid);
1935 }
1936 mutex_unlock(&pchild->lock);
1937 }
1938
1939 if (!mapped)
1940 return r;
1941
1942 if (prange->start <= last && prange->last >= start)
1943 atomic_inc(&prange->invalid);
1944
1945 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1946 if (evicted_ranges != 1)
1947 return r;
1948
1949 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1950 prange->svms, prange->start, prange->last);
1951
1952 /* First eviction, stop the queues */
1953 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1954 if (r)
1955 pr_debug("failed to quiesce KFD\n");
1956
1957 pr_debug("schedule to restore svm %p ranges\n", svms);
1958 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1959 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1960 } else {
1961 unsigned long s, l;
1962 uint32_t trigger;
1963
1964 if (event == MMU_NOTIFY_MIGRATE)
1965 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1966 else
1967 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1968
1969 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1970 prange->svms, start, last);
1971 list_for_each_entry(pchild, &prange->child_list, child_list) {
1972 mutex_lock_nested(&pchild->lock, 1);
1973 s = max(start, pchild->start);
1974 l = min(last, pchild->last);
1975 if (l >= s)
1976 svm_range_unmap_from_gpus(pchild, s, l, trigger);
1977 mutex_unlock(&pchild->lock);
1978 }
1979 s = max(start, prange->start);
1980 l = min(last, prange->last);
1981 if (l >= s)
1982 svm_range_unmap_from_gpus(prange, s, l, trigger);
1983 }
1984
1985 return r;
1986 }
1987
svm_range_clone(struct svm_range * old)1988 static struct svm_range *svm_range_clone(struct svm_range *old)
1989 {
1990 struct svm_range *new;
1991
1992 new = svm_range_new(old->svms, old->start, old->last, false);
1993 if (!new)
1994 return NULL;
1995 if (svm_range_copy_dma_addrs(new, old)) {
1996 svm_range_free(new, false);
1997 return NULL;
1998 }
1999 if (old->svm_bo) {
2000 new->ttm_res = old->ttm_res;
2001 new->offset = old->offset;
2002 new->svm_bo = svm_range_bo_ref(old->svm_bo);
2003 spin_lock(&new->svm_bo->list_lock);
2004 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2005 spin_unlock(&new->svm_bo->list_lock);
2006 }
2007 new->flags = old->flags;
2008 new->preferred_loc = old->preferred_loc;
2009 new->prefetch_loc = old->prefetch_loc;
2010 new->actual_loc = old->actual_loc;
2011 new->granularity = old->granularity;
2012 new->mapped_to_gpu = old->mapped_to_gpu;
2013 new->vram_pages = old->vram_pages;
2014 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2015 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2016 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2017
2018 return new;
2019 }
2020
svm_range_set_max_pages(struct amdgpu_device * adev)2021 void svm_range_set_max_pages(struct amdgpu_device *adev)
2022 {
2023 uint64_t max_pages;
2024 uint64_t pages, _pages;
2025 uint64_t min_pages = 0;
2026 int i, id;
2027
2028 for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2029 if (adev->kfd.dev->nodes[i]->xcp)
2030 id = adev->kfd.dev->nodes[i]->xcp->id;
2031 else
2032 id = -1;
2033 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2034 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2035 pages = rounddown_pow_of_two(pages);
2036 min_pages = min_not_zero(min_pages, pages);
2037 }
2038
2039 do {
2040 max_pages = READ_ONCE(max_svm_range_pages);
2041 _pages = min_not_zero(max_pages, min_pages);
2042 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2043 }
2044
2045 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2046 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2047 uint64_t max_pages, struct list_head *insert_list,
2048 struct list_head *update_list)
2049 {
2050 struct svm_range *prange;
2051 uint64_t l;
2052
2053 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2054 max_pages, start, last);
2055
2056 while (last >= start) {
2057 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2058
2059 prange = svm_range_new(svms, start, l, true);
2060 if (!prange)
2061 return -ENOMEM;
2062 list_add(&prange->list, insert_list);
2063 list_add(&prange->update_list, update_list);
2064
2065 start = l + 1;
2066 }
2067 return 0;
2068 }
2069
2070 /**
2071 * svm_range_add - add svm range and handle overlap
2072 * @p: the range add to this process svms
2073 * @start: page size aligned
2074 * @size: page size aligned
2075 * @nattr: number of attributes
2076 * @attrs: array of attributes
2077 * @update_list: output, the ranges need validate and update GPU mapping
2078 * @insert_list: output, the ranges need insert to svms
2079 * @remove_list: output, the ranges are replaced and need remove from svms
2080 * @remap_list: output, remap unaligned svm ranges
2081 *
2082 * Check if the virtual address range has overlap with any existing ranges,
2083 * split partly overlapping ranges and add new ranges in the gaps. All changes
2084 * should be applied to the range_list and interval tree transactionally. If
2085 * any range split or allocation fails, the entire update fails. Therefore any
2086 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2087 * unchanged.
2088 *
2089 * If the transaction succeeds, the caller can update and insert clones and
2090 * new ranges, then free the originals.
2091 *
2092 * Otherwise the caller can free the clones and new ranges, while the old
2093 * svm_ranges remain unchanged.
2094 *
2095 * Context: Process context, caller must hold svms->lock
2096 *
2097 * Return:
2098 * 0 - OK, otherwise error code
2099 */
2100 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list,struct list_head * remap_list)2101 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2102 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2103 struct list_head *update_list, struct list_head *insert_list,
2104 struct list_head *remove_list, struct list_head *remap_list)
2105 {
2106 unsigned long last = start + size - 1UL;
2107 struct svm_range_list *svms = &p->svms;
2108 struct interval_tree_node *node;
2109 struct svm_range *prange;
2110 struct svm_range *tmp;
2111 struct list_head new_list;
2112 int r = 0;
2113
2114 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2115
2116 INIT_LIST_HEAD(update_list);
2117 INIT_LIST_HEAD(insert_list);
2118 INIT_LIST_HEAD(remove_list);
2119 INIT_LIST_HEAD(&new_list);
2120 INIT_LIST_HEAD(remap_list);
2121
2122 node = interval_tree_iter_first(&svms->objects, start, last);
2123 while (node) {
2124 struct interval_tree_node *next;
2125 unsigned long next_start;
2126
2127 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2128 node->last);
2129
2130 prange = container_of(node, struct svm_range, it_node);
2131 next = interval_tree_iter_next(node, start, last);
2132 next_start = min(node->last, last) + 1;
2133
2134 if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2135 prange->mapped_to_gpu) {
2136 /* nothing to do */
2137 } else if (node->start < start || node->last > last) {
2138 /* node intersects the update range and its attributes
2139 * will change. Clone and split it, apply updates only
2140 * to the overlapping part
2141 */
2142 struct svm_range *old = prange;
2143
2144 prange = svm_range_clone(old);
2145 if (!prange) {
2146 r = -ENOMEM;
2147 goto out;
2148 }
2149
2150 list_add(&old->update_list, remove_list);
2151 list_add(&prange->list, insert_list);
2152 list_add(&prange->update_list, update_list);
2153
2154 if (node->start < start) {
2155 pr_debug("change old range start\n");
2156 r = svm_range_split_head(prange, start,
2157 insert_list, remap_list);
2158 if (r)
2159 goto out;
2160 }
2161 if (node->last > last) {
2162 pr_debug("change old range last\n");
2163 r = svm_range_split_tail(prange, last,
2164 insert_list, remap_list);
2165 if (r)
2166 goto out;
2167 }
2168 } else {
2169 /* The node is contained within start..last,
2170 * just update it
2171 */
2172 list_add(&prange->update_list, update_list);
2173 }
2174
2175 /* insert a new node if needed */
2176 if (node->start > start) {
2177 r = svm_range_split_new(svms, start, node->start - 1,
2178 READ_ONCE(max_svm_range_pages),
2179 &new_list, update_list);
2180 if (r)
2181 goto out;
2182 }
2183
2184 node = next;
2185 start = next_start;
2186 }
2187
2188 /* add a final range at the end if needed */
2189 if (start <= last)
2190 r = svm_range_split_new(svms, start, last,
2191 READ_ONCE(max_svm_range_pages),
2192 &new_list, update_list);
2193
2194 out:
2195 if (r) {
2196 list_for_each_entry_safe(prange, tmp, insert_list, list)
2197 svm_range_free(prange, false);
2198 list_for_each_entry_safe(prange, tmp, &new_list, list)
2199 svm_range_free(prange, true);
2200 } else {
2201 list_splice(&new_list, insert_list);
2202 }
2203
2204 return r;
2205 }
2206
2207 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2208 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2209 struct svm_range *prange)
2210 {
2211 unsigned long start;
2212 unsigned long last;
2213
2214 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2215 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2216
2217 if (prange->start == start && prange->last == last)
2218 return;
2219
2220 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2221 prange->svms, prange, start, last, prange->start,
2222 prange->last);
2223
2224 if (start != 0 && last != 0) {
2225 interval_tree_remove(&prange->it_node, &prange->svms->objects);
2226 svm_range_remove_notifier(prange);
2227 }
2228 prange->it_node.start = prange->start;
2229 prange->it_node.last = prange->last;
2230
2231 interval_tree_insert(&prange->it_node, &prange->svms->objects);
2232 svm_range_add_notifier_locked(mm, prange);
2233 }
2234
2235 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2236 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2237 struct mm_struct *mm)
2238 {
2239 switch (prange->work_item.op) {
2240 case SVM_OP_NULL:
2241 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2242 svms, prange, prange->start, prange->last);
2243 break;
2244 case SVM_OP_UNMAP_RANGE:
2245 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2246 svms, prange, prange->start, prange->last);
2247 svm_range_unlink(prange);
2248 svm_range_remove_notifier(prange);
2249 svm_range_free(prange, true);
2250 break;
2251 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2252 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2253 svms, prange, prange->start, prange->last);
2254 svm_range_update_notifier_and_interval_tree(mm, prange);
2255 break;
2256 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2257 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2258 svms, prange, prange->start, prange->last);
2259 svm_range_update_notifier_and_interval_tree(mm, prange);
2260 /* TODO: implement deferred validation and mapping */
2261 break;
2262 case SVM_OP_ADD_RANGE:
2263 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2264 prange->start, prange->last);
2265 svm_range_add_to_svms(prange);
2266 svm_range_add_notifier_locked(mm, prange);
2267 break;
2268 case SVM_OP_ADD_RANGE_AND_MAP:
2269 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2270 prange, prange->start, prange->last);
2271 svm_range_add_to_svms(prange);
2272 svm_range_add_notifier_locked(mm, prange);
2273 /* TODO: implement deferred validation and mapping */
2274 break;
2275 default:
2276 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2277 prange->work_item.op);
2278 }
2279 }
2280
svm_range_drain_retry_fault(struct svm_range_list * svms)2281 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2282 {
2283 struct kfd_process_device *pdd;
2284 struct kfd_process *p;
2285 uint32_t i;
2286
2287 p = container_of(svms, struct kfd_process, svms);
2288
2289 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2290 pdd = p->pdds[i];
2291 if (!pdd)
2292 continue;
2293
2294 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2295
2296 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2297 pdd->dev->adev->irq.retry_cam_enabled ?
2298 &pdd->dev->adev->irq.ih :
2299 &pdd->dev->adev->irq.ih1);
2300
2301 if (pdd->dev->adev->irq.retry_cam_enabled)
2302 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2303 &pdd->dev->adev->irq.ih_soft);
2304
2305
2306 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2307 }
2308 }
2309
svm_range_deferred_list_work(struct work_struct * work)2310 static void svm_range_deferred_list_work(struct work_struct *work)
2311 {
2312 struct svm_range_list *svms;
2313 struct svm_range *prange;
2314 struct mm_struct *mm;
2315
2316 svms = container_of(work, struct svm_range_list, deferred_list_work);
2317 pr_debug("enter svms 0x%p\n", svms);
2318
2319 spin_lock(&svms->deferred_list_lock);
2320 while (!list_empty(&svms->deferred_range_list)) {
2321 prange = list_first_entry(&svms->deferred_range_list,
2322 struct svm_range, deferred_list);
2323 spin_unlock(&svms->deferred_list_lock);
2324
2325 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2326 prange->start, prange->last, prange->work_item.op);
2327
2328 mm = prange->work_item.mm;
2329
2330 mmap_write_lock(mm);
2331
2332 /* Remove from deferred_list must be inside mmap write lock, for
2333 * two race cases:
2334 * 1. unmap_from_cpu may change work_item.op and add the range
2335 * to deferred_list again, cause use after free bug.
2336 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2337 * lock and continue because deferred_list is empty, but
2338 * deferred_list work is actually waiting for mmap lock.
2339 */
2340 spin_lock(&svms->deferred_list_lock);
2341 list_del_init(&prange->deferred_list);
2342 spin_unlock(&svms->deferred_list_lock);
2343
2344 mutex_lock(&svms->lock);
2345 mutex_lock(&prange->migrate_mutex);
2346 while (!list_empty(&prange->child_list)) {
2347 struct svm_range *pchild;
2348
2349 pchild = list_first_entry(&prange->child_list,
2350 struct svm_range, child_list);
2351 pr_debug("child prange 0x%p op %d\n", pchild,
2352 pchild->work_item.op);
2353 list_del_init(&pchild->child_list);
2354 svm_range_handle_list_op(svms, pchild, mm);
2355 }
2356 mutex_unlock(&prange->migrate_mutex);
2357
2358 svm_range_handle_list_op(svms, prange, mm);
2359 mutex_unlock(&svms->lock);
2360 mmap_write_unlock(mm);
2361
2362 /* Pairs with mmget in svm_range_add_list_work. If dropping the
2363 * last mm refcount, schedule release work to avoid circular locking
2364 */
2365 mmput_async(mm);
2366
2367 spin_lock(&svms->deferred_list_lock);
2368 }
2369 spin_unlock(&svms->deferred_list_lock);
2370 pr_debug("exit svms 0x%p\n", svms);
2371 }
2372
2373 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2374 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2375 struct mm_struct *mm, enum svm_work_list_ops op)
2376 {
2377 spin_lock(&svms->deferred_list_lock);
2378 /* if prange is on the deferred list */
2379 if (!list_empty(&prange->deferred_list)) {
2380 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2381 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2382 if (op != SVM_OP_NULL &&
2383 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2384 prange->work_item.op = op;
2385 } else {
2386 /* Pairs with mmput in deferred_list_work.
2387 * If process is exiting and mm is gone, don't update mmu notifier.
2388 */
2389 if (mmget_not_zero(mm)) {
2390 prange->work_item.mm = mm;
2391 prange->work_item.op = op;
2392 list_add_tail(&prange->deferred_list,
2393 &prange->svms->deferred_range_list);
2394 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2395 prange, prange->start, prange->last, op);
2396 }
2397 }
2398 spin_unlock(&svms->deferred_list_lock);
2399 }
2400
schedule_deferred_list_work(struct svm_range_list * svms)2401 void schedule_deferred_list_work(struct svm_range_list *svms)
2402 {
2403 spin_lock(&svms->deferred_list_lock);
2404 if (!list_empty(&svms->deferred_range_list))
2405 schedule_work(&svms->deferred_list_work);
2406 spin_unlock(&svms->deferred_list_lock);
2407 }
2408
2409 static void
svm_range_unmap_split(struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2410 svm_range_unmap_split(struct svm_range *parent, struct svm_range *prange, unsigned long start,
2411 unsigned long last)
2412 {
2413 struct svm_range *head;
2414 struct svm_range *tail;
2415
2416 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2417 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2418 prange->start, prange->last);
2419 return;
2420 }
2421 if (start > prange->last || last < prange->start)
2422 return;
2423
2424 head = tail = prange;
2425 if (start > prange->start)
2426 svm_range_split(prange, prange->start, start - 1, &tail);
2427 if (last < tail->last)
2428 svm_range_split(tail, last + 1, tail->last, &head);
2429
2430 if (head != prange && tail != prange) {
2431 svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2432 svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
2433 } else if (tail != prange) {
2434 svm_range_add_child(parent, tail, SVM_OP_UNMAP_RANGE);
2435 } else if (head != prange) {
2436 svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2437 } else if (parent != prange) {
2438 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2439 }
2440 }
2441
2442 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2443 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2444 unsigned long start, unsigned long last)
2445 {
2446 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2447 struct svm_range_list *svms;
2448 struct svm_range *pchild;
2449 struct kfd_process *p;
2450 unsigned long s, l;
2451 bool unmap_parent;
2452 uint32_t i;
2453
2454 if (atomic_read(&prange->queue_refcount)) {
2455 int r;
2456
2457 pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2458 prange->start << PAGE_SHIFT);
2459 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2460 if (r)
2461 pr_debug("failed %d to quiesce KFD queues\n", r);
2462 }
2463
2464 p = kfd_lookup_process_by_mm(mm);
2465 if (!p)
2466 return;
2467 svms = &p->svms;
2468
2469 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2470 prange, prange->start, prange->last, start, last);
2471
2472 /* calculate time stamps that are used to decide which page faults need be
2473 * dropped or handled before unmap pages from gpu vm
2474 */
2475 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2476 struct kfd_process_device *pdd;
2477 struct amdgpu_device *adev;
2478 struct amdgpu_ih_ring *ih;
2479 uint32_t checkpoint_wptr;
2480
2481 pdd = p->pdds[i];
2482 if (!pdd)
2483 continue;
2484
2485 adev = pdd->dev->adev;
2486
2487 /* Check and drain ih1 ring if cam not available */
2488 if (adev->irq.ih1.ring_size) {
2489 ih = &adev->irq.ih1;
2490 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2491 if (ih->rptr != checkpoint_wptr) {
2492 svms->checkpoint_ts[i] =
2493 amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2494 continue;
2495 }
2496 }
2497
2498 /* check if dev->irq.ih_soft is not empty */
2499 ih = &adev->irq.ih_soft;
2500 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2501 if (ih->rptr != checkpoint_wptr)
2502 svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2503 }
2504
2505 unmap_parent = start <= prange->start && last >= prange->last;
2506
2507 list_for_each_entry(pchild, &prange->child_list, child_list) {
2508 mutex_lock_nested(&pchild->lock, 1);
2509 s = max(start, pchild->start);
2510 l = min(last, pchild->last);
2511 if (l >= s)
2512 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2513 svm_range_unmap_split(prange, pchild, start, last);
2514 mutex_unlock(&pchild->lock);
2515 }
2516 s = max(start, prange->start);
2517 l = min(last, prange->last);
2518 if (l >= s)
2519 svm_range_unmap_from_gpus(prange, s, l, trigger);
2520 svm_range_unmap_split(prange, prange, start, last);
2521
2522 if (unmap_parent)
2523 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2524 else
2525 svm_range_add_list_work(svms, prange, mm,
2526 SVM_OP_UPDATE_RANGE_NOTIFIER);
2527 schedule_deferred_list_work(svms);
2528
2529 kfd_unref_process(p);
2530 }
2531
2532 /**
2533 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2534 * @mni: mmu_interval_notifier struct
2535 * @range: mmu_notifier_range struct
2536 * @cur_seq: value to pass to mmu_interval_set_seq()
2537 *
2538 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2539 * is from migration, or CPU page invalidation callback.
2540 *
2541 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2542 * work thread, and split prange if only part of prange is unmapped.
2543 *
2544 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2545 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2546 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2547 * update GPU mapping to recover.
2548 *
2549 * Context: mmap lock, notifier_invalidate_start lock are held
2550 * for invalidate event, prange lock is held if this is from migration
2551 */
2552 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2553 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2554 const struct mmu_notifier_range *range,
2555 unsigned long cur_seq)
2556 {
2557 struct svm_range *prange;
2558 unsigned long start;
2559 unsigned long last;
2560
2561 if (range->event == MMU_NOTIFY_RELEASE)
2562 return true;
2563
2564 start = mni->interval_tree.start;
2565 last = mni->interval_tree.last;
2566 start = max(start, range->start) >> PAGE_SHIFT;
2567 last = min(last, range->end - 1) >> PAGE_SHIFT;
2568 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2569 start, last, range->start >> PAGE_SHIFT,
2570 (range->end - 1) >> PAGE_SHIFT,
2571 mni->interval_tree.start >> PAGE_SHIFT,
2572 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2573
2574 prange = container_of(mni, struct svm_range, notifier);
2575
2576 svm_range_lock(prange);
2577 mmu_interval_set_seq(mni, cur_seq);
2578
2579 switch (range->event) {
2580 case MMU_NOTIFY_UNMAP:
2581 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2582 break;
2583 default:
2584 svm_range_evict(prange, mni->mm, start, last, range->event);
2585 break;
2586 }
2587
2588 svm_range_unlock(prange);
2589
2590 return true;
2591 }
2592
2593 /**
2594 * svm_range_from_addr - find svm range from fault address
2595 * @svms: svm range list header
2596 * @addr: address to search range interval tree, in pages
2597 * @parent: parent range if range is on child list
2598 *
2599 * Context: The caller must hold svms->lock
2600 *
2601 * Return: the svm_range found or NULL
2602 */
2603 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2604 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2605 struct svm_range **parent)
2606 {
2607 struct interval_tree_node *node;
2608 struct svm_range *prange;
2609 struct svm_range *pchild;
2610
2611 node = interval_tree_iter_first(&svms->objects, addr, addr);
2612 if (!node)
2613 return NULL;
2614
2615 prange = container_of(node, struct svm_range, it_node);
2616 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2617 addr, prange->start, prange->last, node->start, node->last);
2618
2619 if (addr >= prange->start && addr <= prange->last) {
2620 if (parent)
2621 *parent = prange;
2622 return prange;
2623 }
2624 list_for_each_entry(pchild, &prange->child_list, child_list)
2625 if (addr >= pchild->start && addr <= pchild->last) {
2626 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2627 addr, pchild->start, pchild->last);
2628 if (parent)
2629 *parent = prange;
2630 return pchild;
2631 }
2632
2633 return NULL;
2634 }
2635
2636 /* svm_range_best_restore_location - decide the best fault restore location
2637 * @prange: svm range structure
2638 * @adev: the GPU on which vm fault happened
2639 *
2640 * This is only called when xnack is on, to decide the best location to restore
2641 * the range mapping after GPU vm fault. Caller uses the best location to do
2642 * migration if actual loc is not best location, then update GPU page table
2643 * mapping to the best location.
2644 *
2645 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2646 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2647 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2648 * if range actual loc is cpu, best_loc is cpu
2649 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2650 * range actual loc.
2651 * Otherwise, GPU no access, best_loc is -1.
2652 *
2653 * Return:
2654 * -1 means vm fault GPU no access
2655 * 0 for CPU or GPU id
2656 */
2657 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2658 svm_range_best_restore_location(struct svm_range *prange,
2659 struct kfd_node *node,
2660 int32_t *gpuidx)
2661 {
2662 struct kfd_node *bo_node, *preferred_node;
2663 struct kfd_process *p;
2664 uint32_t gpuid;
2665 int r;
2666
2667 p = container_of(prange->svms, struct kfd_process, svms);
2668
2669 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2670 if (r < 0) {
2671 pr_debug("failed to get gpuid from kgd\n");
2672 return -1;
2673 }
2674
2675 if (node->adev->flags & AMD_IS_APU)
2676 return 0;
2677
2678 if (prange->preferred_loc == gpuid ||
2679 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2680 return prange->preferred_loc;
2681 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2682 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2683 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2684 return prange->preferred_loc;
2685 /* fall through */
2686 }
2687
2688 if (test_bit(*gpuidx, prange->bitmap_access))
2689 return gpuid;
2690
2691 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2692 if (!prange->actual_loc)
2693 return 0;
2694
2695 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2696 if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2697 return prange->actual_loc;
2698 else
2699 return 0;
2700 }
2701
2702 return -1;
2703 }
2704
2705 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2706 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2707 unsigned long *start, unsigned long *last,
2708 bool *is_heap_stack)
2709 {
2710 struct vm_area_struct *vma;
2711 struct interval_tree_node *node;
2712 struct rb_node *rb_node;
2713 unsigned long start_limit, end_limit;
2714
2715 vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2716 if (!vma) {
2717 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2718 return -EFAULT;
2719 }
2720
2721 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2722
2723 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2724 (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2725 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2726 (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2727
2728 /* First range that starts after the fault address */
2729 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2730 if (node) {
2731 end_limit = min(end_limit, node->start);
2732 /* Last range that ends before the fault address */
2733 rb_node = rb_prev(&node->rb);
2734 } else {
2735 /* Last range must end before addr because
2736 * there was no range after addr
2737 */
2738 rb_node = rb_last(&p->svms.objects.rb_root);
2739 }
2740 if (rb_node) {
2741 node = container_of(rb_node, struct interval_tree_node, rb);
2742 if (node->last >= addr) {
2743 WARN(1, "Overlap with prev node and page fault addr\n");
2744 return -EFAULT;
2745 }
2746 start_limit = max(start_limit, node->last + 1);
2747 }
2748
2749 *start = start_limit;
2750 *last = end_limit - 1;
2751
2752 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2753 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2754 *start, *last, *is_heap_stack);
2755
2756 return 0;
2757 }
2758
2759 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2760 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2761 uint64_t *bo_s, uint64_t *bo_l)
2762 {
2763 struct amdgpu_bo_va_mapping *mapping;
2764 struct interval_tree_node *node;
2765 struct amdgpu_bo *bo = NULL;
2766 unsigned long userptr;
2767 uint32_t i;
2768 int r;
2769
2770 for (i = 0; i < p->n_pdds; i++) {
2771 struct amdgpu_vm *vm;
2772
2773 if (!p->pdds[i]->drm_priv)
2774 continue;
2775
2776 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2777 r = amdgpu_bo_reserve(vm->root.bo, false);
2778 if (r)
2779 return r;
2780
2781 /* Check userptr by searching entire vm->va interval tree */
2782 node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2783 while (node) {
2784 mapping = container_of((struct rb_node *)node,
2785 struct amdgpu_bo_va_mapping, rb);
2786 bo = mapping->bo_va->base.bo;
2787
2788 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2789 start << PAGE_SHIFT,
2790 last << PAGE_SHIFT,
2791 &userptr)) {
2792 node = interval_tree_iter_next(node, 0, ~0ULL);
2793 continue;
2794 }
2795
2796 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2797 start, last);
2798 if (bo_s && bo_l) {
2799 *bo_s = userptr >> PAGE_SHIFT;
2800 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2801 }
2802 amdgpu_bo_unreserve(vm->root.bo);
2803 return -EADDRINUSE;
2804 }
2805 amdgpu_bo_unreserve(vm->root.bo);
2806 }
2807 return 0;
2808 }
2809
2810 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2811 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2812 struct kfd_process *p,
2813 struct mm_struct *mm,
2814 int64_t addr)
2815 {
2816 struct svm_range *prange = NULL;
2817 unsigned long start, last;
2818 uint32_t gpuid, gpuidx;
2819 bool is_heap_stack;
2820 uint64_t bo_s = 0;
2821 uint64_t bo_l = 0;
2822 int r;
2823
2824 if (svm_range_get_range_boundaries(p, addr, &start, &last,
2825 &is_heap_stack))
2826 return NULL;
2827
2828 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2829 if (r != -EADDRINUSE)
2830 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2831
2832 if (r == -EADDRINUSE) {
2833 if (addr >= bo_s && addr <= bo_l)
2834 return NULL;
2835
2836 /* Create one page svm range if 2MB range overlapping */
2837 start = addr;
2838 last = addr;
2839 }
2840
2841 prange = svm_range_new(&p->svms, start, last, true);
2842 if (!prange) {
2843 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2844 return NULL;
2845 }
2846 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2847 pr_debug("failed to get gpuid from kgd\n");
2848 svm_range_free(prange, true);
2849 return NULL;
2850 }
2851
2852 if (is_heap_stack)
2853 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2854
2855 svm_range_add_to_svms(prange);
2856 svm_range_add_notifier_locked(mm, prange);
2857
2858 return prange;
2859 }
2860
2861 /* svm_range_skip_recover - decide if prange can be recovered
2862 * @prange: svm range structure
2863 *
2864 * GPU vm retry fault handle skip recover the range for cases:
2865 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2866 * deferred list work will drain the stale fault before free the prange.
2867 * 2. prange is on deferred list to add interval notifier after split, or
2868 * 3. prange is child range, it is split from parent prange, recover later
2869 * after interval notifier is added.
2870 *
2871 * Return: true to skip recover, false to recover
2872 */
svm_range_skip_recover(struct svm_range * prange)2873 static bool svm_range_skip_recover(struct svm_range *prange)
2874 {
2875 struct svm_range_list *svms = prange->svms;
2876
2877 spin_lock(&svms->deferred_list_lock);
2878 if (list_empty(&prange->deferred_list) &&
2879 list_empty(&prange->child_list)) {
2880 spin_unlock(&svms->deferred_list_lock);
2881 return false;
2882 }
2883 spin_unlock(&svms->deferred_list_lock);
2884
2885 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2886 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2887 svms, prange, prange->start, prange->last);
2888 return true;
2889 }
2890 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2891 prange->work_item.op == SVM_OP_ADD_RANGE) {
2892 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2893 svms, prange, prange->start, prange->last);
2894 return true;
2895 }
2896 return false;
2897 }
2898
2899 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2900 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2901 int32_t gpuidx)
2902 {
2903 struct kfd_process_device *pdd;
2904
2905 /* fault is on different page of same range
2906 * or fault is skipped to recover later
2907 * or fault is on invalid virtual address
2908 */
2909 if (gpuidx == MAX_GPU_INSTANCE) {
2910 uint32_t gpuid;
2911 int r;
2912
2913 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2914 if (r < 0)
2915 return;
2916 }
2917
2918 /* fault is recovered
2919 * or fault cannot recover because GPU no access on the range
2920 */
2921 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2922 if (pdd)
2923 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2924 }
2925
2926 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2927 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2928 {
2929 unsigned long requested = VM_READ;
2930
2931 if (write_fault)
2932 requested |= VM_WRITE;
2933
2934 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2935 vma->vm_flags);
2936 return (vma->vm_flags & requested) == requested;
2937 }
2938
2939 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,uint64_t ts,bool write_fault)2940 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2941 uint32_t vmid, uint32_t node_id,
2942 uint64_t addr, uint64_t ts, bool write_fault)
2943 {
2944 unsigned long start, last, size;
2945 struct mm_struct *mm = NULL;
2946 struct svm_range_list *svms;
2947 struct svm_range *prange;
2948 struct kfd_process *p;
2949 ktime_t timestamp = ktime_get_boottime();
2950 struct kfd_node *node;
2951 int32_t best_loc;
2952 int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
2953 bool write_locked = false;
2954 struct vm_area_struct *vma;
2955 bool migration = false;
2956 int r = 0;
2957
2958 if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2959 pr_debug("device does not support SVM\n");
2960 return -EFAULT;
2961 }
2962
2963 p = kfd_lookup_process_by_pasid(pasid);
2964 if (!p) {
2965 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2966 return 0;
2967 }
2968 svms = &p->svms;
2969
2970 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2971
2972 if (atomic_read(&svms->drain_pagefaults)) {
2973 pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
2974 r = 0;
2975 goto out;
2976 }
2977
2978 node = kfd_node_by_irq_ids(adev, node_id, vmid);
2979 if (!node) {
2980 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2981 vmid);
2982 r = -EFAULT;
2983 goto out;
2984 }
2985
2986 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2987 pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
2988 r = -EFAULT;
2989 goto out;
2990 }
2991
2992 if (!p->xnack_enabled) {
2993 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2994 r = -EFAULT;
2995 goto out;
2996 }
2997
2998 /* p->lead_thread is available as kfd_process_wq_release flush the work
2999 * before releasing task ref.
3000 */
3001 mm = get_task_mm(p->lead_thread);
3002 if (!mm) {
3003 pr_debug("svms 0x%p failed to get mm\n", svms);
3004 r = 0;
3005 goto out;
3006 }
3007
3008 mmap_read_lock(mm);
3009 retry_write_locked:
3010 mutex_lock(&svms->lock);
3011
3012 /* check if this page fault time stamp is before svms->checkpoint_ts */
3013 if (svms->checkpoint_ts[gpuidx] != 0) {
3014 if (amdgpu_ih_ts_after_or_equal(ts, svms->checkpoint_ts[gpuidx])) {
3015 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3016 r = -EAGAIN;
3017 goto out_unlock_svms;
3018 } else {
3019 /* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3020 * to zero to avoid following ts wrap around give wrong comparing
3021 */
3022 svms->checkpoint_ts[gpuidx] = 0;
3023 }
3024 }
3025
3026 prange = svm_range_from_addr(svms, addr, NULL);
3027 if (!prange) {
3028 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3029 svms, addr);
3030 if (!write_locked) {
3031 /* Need the write lock to create new range with MMU notifier.
3032 * Also flush pending deferred work to make sure the interval
3033 * tree is up to date before we add a new range
3034 */
3035 mutex_unlock(&svms->lock);
3036 mmap_read_unlock(mm);
3037 mmap_write_lock(mm);
3038 write_locked = true;
3039 goto retry_write_locked;
3040 }
3041 prange = svm_range_create_unregistered_range(node, p, mm, addr);
3042 if (!prange) {
3043 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3044 svms, addr);
3045 mmap_write_downgrade(mm);
3046 r = -EFAULT;
3047 goto out_unlock_svms;
3048 }
3049 }
3050 if (write_locked)
3051 mmap_write_downgrade(mm);
3052
3053 mutex_lock(&prange->migrate_mutex);
3054
3055 if (svm_range_skip_recover(prange)) {
3056 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3057 r = 0;
3058 goto out_unlock_range;
3059 }
3060
3061 /* skip duplicate vm fault on different pages of same range */
3062 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3063 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3064 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3065 svms, prange->start, prange->last);
3066 r = 0;
3067 goto out_unlock_range;
3068 }
3069
3070 /* __do_munmap removed VMA, return success as we are handling stale
3071 * retry fault.
3072 */
3073 vma = vma_lookup(mm, addr << PAGE_SHIFT);
3074 if (!vma) {
3075 pr_debug("address 0x%llx VMA is removed\n", addr);
3076 r = 0;
3077 goto out_unlock_range;
3078 }
3079
3080 if (!svm_fault_allowed(vma, write_fault)) {
3081 pr_debug("fault addr 0x%llx no %s permission\n", addr,
3082 write_fault ? "write" : "read");
3083 r = -EPERM;
3084 goto out_unlock_range;
3085 }
3086
3087 best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3088 if (best_loc == -1) {
3089 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3090 svms, prange->start, prange->last);
3091 r = -EACCES;
3092 goto out_unlock_range;
3093 }
3094
3095 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3096 svms, prange->start, prange->last, best_loc,
3097 prange->actual_loc);
3098
3099 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3100 write_fault, timestamp);
3101
3102 /* Align migration range start and size to granularity size */
3103 size = 1UL << prange->granularity;
3104 start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3105 last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3106 if (prange->actual_loc != 0 || best_loc != 0) {
3107 migration = true;
3108
3109 if (best_loc) {
3110 r = svm_migrate_to_vram(prange, best_loc, start, last,
3111 mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3112 if (r) {
3113 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3114 r, addr);
3115 /* Fallback to system memory if migration to
3116 * VRAM failed
3117 */
3118 if (prange->actual_loc && prange->actual_loc != best_loc)
3119 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3120 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3121 else
3122 r = 0;
3123 }
3124 } else {
3125 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3126 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3127 }
3128 if (r) {
3129 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3130 r, svms, start, last);
3131 goto out_unlock_range;
3132 }
3133 }
3134
3135 r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3136 false, false);
3137 if (r)
3138 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3139 r, svms, start, last);
3140
3141 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3142 migration);
3143
3144 out_unlock_range:
3145 mutex_unlock(&prange->migrate_mutex);
3146 out_unlock_svms:
3147 mutex_unlock(&svms->lock);
3148 mmap_read_unlock(mm);
3149
3150 if (r != -EAGAIN)
3151 svm_range_count_fault(node, p, gpuidx);
3152
3153 mmput(mm);
3154 out:
3155 kfd_unref_process(p);
3156
3157 if (r == -EAGAIN) {
3158 pr_debug("recover vm fault later\n");
3159 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3160 r = 0;
3161 }
3162 return r;
3163 }
3164
3165 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3166 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3167 {
3168 struct svm_range *prange, *pchild;
3169 uint64_t reserved_size = 0;
3170 uint64_t size;
3171 int r = 0;
3172
3173 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3174
3175 mutex_lock(&p->svms.lock);
3176
3177 list_for_each_entry(prange, &p->svms.list, list) {
3178 svm_range_lock(prange);
3179 list_for_each_entry(pchild, &prange->child_list, child_list) {
3180 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3181 if (xnack_enabled) {
3182 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3183 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3184 } else {
3185 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3186 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3187 if (r)
3188 goto out_unlock;
3189 reserved_size += size;
3190 }
3191 }
3192
3193 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3194 if (xnack_enabled) {
3195 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3196 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3197 } else {
3198 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3199 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3200 if (r)
3201 goto out_unlock;
3202 reserved_size += size;
3203 }
3204 out_unlock:
3205 svm_range_unlock(prange);
3206 if (r)
3207 break;
3208 }
3209
3210 if (r)
3211 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3212 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3213 else
3214 /* Change xnack mode must be inside svms lock, to avoid race with
3215 * svm_range_deferred_list_work unreserve memory in parallel.
3216 */
3217 p->xnack_enabled = xnack_enabled;
3218
3219 mutex_unlock(&p->svms.lock);
3220 return r;
3221 }
3222
svm_range_list_fini(struct kfd_process * p)3223 void svm_range_list_fini(struct kfd_process *p)
3224 {
3225 struct svm_range *prange;
3226 struct svm_range *next;
3227
3228 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3229
3230 cancel_delayed_work_sync(&p->svms.restore_work);
3231
3232 /* Ensure list work is finished before process is destroyed */
3233 flush_work(&p->svms.deferred_list_work);
3234
3235 /*
3236 * Ensure no retry fault comes in afterwards, as page fault handler will
3237 * not find kfd process and take mm lock to recover fault.
3238 * stop kfd page fault handing, then wait pending page faults got drained
3239 */
3240 atomic_set(&p->svms.drain_pagefaults, 1);
3241 svm_range_drain_retry_fault(&p->svms);
3242
3243 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3244 svm_range_unlink(prange);
3245 svm_range_remove_notifier(prange);
3246 svm_range_free(prange, true);
3247 }
3248
3249 mutex_destroy(&p->svms.lock);
3250
3251 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3252 }
3253
svm_range_list_init(struct kfd_process * p)3254 int svm_range_list_init(struct kfd_process *p)
3255 {
3256 struct svm_range_list *svms = &p->svms;
3257 int i;
3258
3259 svms->objects = RB_ROOT_CACHED;
3260 mutex_init(&svms->lock);
3261 INIT_LIST_HEAD(&svms->list);
3262 atomic_set(&svms->evicted_ranges, 0);
3263 atomic_set(&svms->drain_pagefaults, 0);
3264 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3265 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3266 INIT_LIST_HEAD(&svms->deferred_range_list);
3267 INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3268 spin_lock_init(&svms->deferred_list_lock);
3269
3270 for (i = 0; i < p->n_pdds; i++)
3271 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3272 bitmap_set(svms->bitmap_supported, i, 1);
3273
3274 /* Value of default granularity cannot exceed 0x1B, the
3275 * number of pages supported by a 4-level paging table
3276 */
3277 svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3278 pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3279
3280 return 0;
3281 }
3282
3283 /**
3284 * svm_range_check_vm - check if virtual address range mapped already
3285 * @p: current kfd_process
3286 * @start: range start address, in pages
3287 * @last: range last address, in pages
3288 * @bo_s: mapping start address in pages if address range already mapped
3289 * @bo_l: mapping last address in pages if address range already mapped
3290 *
3291 * The purpose is to avoid virtual address ranges already allocated by
3292 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3293 * It looks for each pdd in the kfd_process.
3294 *
3295 * Context: Process context
3296 *
3297 * Return 0 - OK, if the range is not mapped.
3298 * Otherwise error code:
3299 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3300 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3301 * a signal. Release all buffer reservations and return to user-space.
3302 */
3303 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3304 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3305 uint64_t *bo_s, uint64_t *bo_l)
3306 {
3307 struct amdgpu_bo_va_mapping *mapping;
3308 struct interval_tree_node *node;
3309 uint32_t i;
3310 int r;
3311
3312 for (i = 0; i < p->n_pdds; i++) {
3313 struct amdgpu_vm *vm;
3314
3315 if (!p->pdds[i]->drm_priv)
3316 continue;
3317
3318 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3319 r = amdgpu_bo_reserve(vm->root.bo, false);
3320 if (r)
3321 return r;
3322
3323 node = interval_tree_iter_first(&vm->va, start, last);
3324 if (node) {
3325 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3326 start, last);
3327 mapping = container_of((struct rb_node *)node,
3328 struct amdgpu_bo_va_mapping, rb);
3329 if (bo_s && bo_l) {
3330 *bo_s = mapping->start;
3331 *bo_l = mapping->last;
3332 }
3333 amdgpu_bo_unreserve(vm->root.bo);
3334 return -EADDRINUSE;
3335 }
3336 amdgpu_bo_unreserve(vm->root.bo);
3337 }
3338
3339 return 0;
3340 }
3341
3342 /**
3343 * svm_range_is_valid - check if virtual address range is valid
3344 * @p: current kfd_process
3345 * @start: range start address, in pages
3346 * @size: range size, in pages
3347 *
3348 * Valid virtual address range means it belongs to one or more VMAs
3349 *
3350 * Context: Process context
3351 *
3352 * Return:
3353 * 0 - OK, otherwise error code
3354 */
3355 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3356 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3357 {
3358 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3359 struct vm_area_struct *vma;
3360 unsigned long end;
3361 unsigned long start_unchg = start;
3362
3363 start <<= PAGE_SHIFT;
3364 end = start + (size << PAGE_SHIFT);
3365 do {
3366 vma = vma_lookup(p->mm, start);
3367 if (!vma || (vma->vm_flags & device_vma))
3368 return -EFAULT;
3369 start = min(end, vma->vm_end);
3370 } while (start < end);
3371
3372 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3373 NULL);
3374 }
3375
3376 /**
3377 * svm_range_best_prefetch_location - decide the best prefetch location
3378 * @prange: svm range structure
3379 *
3380 * For xnack off:
3381 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3382 * can be CPU or GPU.
3383 *
3384 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3385 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3386 * the best prefetch location is always CPU, because GPU can not have coherent
3387 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3388 *
3389 * For xnack on:
3390 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3391 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3392 *
3393 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3394 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3395 * prefetch location is always CPU.
3396 *
3397 * Context: Process context
3398 *
3399 * Return:
3400 * 0 for CPU or GPU id
3401 */
3402 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3403 svm_range_best_prefetch_location(struct svm_range *prange)
3404 {
3405 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3406 uint32_t best_loc = prange->prefetch_loc;
3407 struct kfd_process_device *pdd;
3408 struct kfd_node *bo_node;
3409 struct kfd_process *p;
3410 uint32_t gpuidx;
3411
3412 p = container_of(prange->svms, struct kfd_process, svms);
3413
3414 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3415 goto out;
3416
3417 bo_node = svm_range_get_node_by_id(prange, best_loc);
3418 if (!bo_node) {
3419 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3420 best_loc = 0;
3421 goto out;
3422 }
3423
3424 if (bo_node->adev->flags & AMD_IS_APU) {
3425 best_loc = 0;
3426 goto out;
3427 }
3428
3429 if (p->xnack_enabled)
3430 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3431 else
3432 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3433 MAX_GPU_INSTANCE);
3434
3435 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3436 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3437 if (!pdd) {
3438 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3439 continue;
3440 }
3441
3442 if (pdd->dev->adev == bo_node->adev)
3443 continue;
3444
3445 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3446 best_loc = 0;
3447 break;
3448 }
3449 }
3450
3451 out:
3452 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3453 p->xnack_enabled, &p->svms, prange->start, prange->last,
3454 best_loc);
3455
3456 return best_loc;
3457 }
3458
3459 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3460 * @mm: current process mm_struct
3461 * @prange: svm range structure
3462 * @migrated: output, true if migration is triggered
3463 *
3464 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3465 * from ram to vram.
3466 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3467 * from vram to ram.
3468 *
3469 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3470 * and restore work:
3471 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3472 * stops all queues, schedule restore work
3473 * 2. svm_range_restore_work wait for migration is done by
3474 * a. svm_range_validate_vram takes prange->migrate_mutex
3475 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3476 * 3. restore work update mappings of GPU, resume all queues.
3477 *
3478 * Context: Process context
3479 *
3480 * Return:
3481 * 0 - OK, otherwise - error code of migration
3482 */
3483 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3484 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3485 bool *migrated)
3486 {
3487 uint32_t best_loc;
3488 int r = 0;
3489
3490 *migrated = false;
3491 best_loc = svm_range_best_prefetch_location(prange);
3492
3493 /* when best_loc is a gpu node and same as prange->actual_loc
3494 * we still need do migration as prange->actual_loc !=0 does
3495 * not mean all pages in prange are vram. hmm migrate will pick
3496 * up right pages during migration.
3497 */
3498 if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3499 (best_loc == 0 && prange->actual_loc == 0))
3500 return 0;
3501
3502 if (!best_loc) {
3503 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3504 KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3505 *migrated = !r;
3506 return r;
3507 }
3508
3509 r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3510 mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3511 *migrated = !r;
3512
3513 return 0;
3514 }
3515
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3516 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3517 {
3518 /* Dereferencing fence->svm_bo is safe here because the fence hasn't
3519 * signaled yet and we're under the protection of the fence->lock.
3520 * After the fence is signaled in svm_range_bo_release, we cannot get
3521 * here any more.
3522 *
3523 * Reference is dropped in svm_range_evict_svm_bo_worker.
3524 */
3525 if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3526 WRITE_ONCE(fence->svm_bo->evicting, 1);
3527 schedule_work(&fence->svm_bo->eviction_work);
3528 }
3529
3530 return 0;
3531 }
3532
svm_range_evict_svm_bo_worker(struct work_struct * work)3533 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3534 {
3535 struct svm_range_bo *svm_bo;
3536 struct mm_struct *mm;
3537 int r = 0;
3538
3539 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3540
3541 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3542 mm = svm_bo->eviction_fence->mm;
3543 } else {
3544 svm_range_bo_unref(svm_bo);
3545 return;
3546 }
3547
3548 mmap_read_lock(mm);
3549 spin_lock(&svm_bo->list_lock);
3550 while (!list_empty(&svm_bo->range_list) && !r) {
3551 struct svm_range *prange =
3552 list_first_entry(&svm_bo->range_list,
3553 struct svm_range, svm_bo_list);
3554 int retries = 3;
3555
3556 list_del_init(&prange->svm_bo_list);
3557 spin_unlock(&svm_bo->list_lock);
3558
3559 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3560 prange->start, prange->last);
3561
3562 mutex_lock(&prange->migrate_mutex);
3563 do {
3564 /* migrate all vram pages in this prange to sys ram
3565 * after that prange->actual_loc should be zero
3566 */
3567 r = svm_migrate_vram_to_ram(prange, mm,
3568 prange->start, prange->last,
3569 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3570 } while (!r && prange->actual_loc && --retries);
3571
3572 if (!r && prange->actual_loc)
3573 pr_info_once("Migration failed during eviction");
3574
3575 if (!prange->actual_loc) {
3576 mutex_lock(&prange->lock);
3577 prange->svm_bo = NULL;
3578 mutex_unlock(&prange->lock);
3579 }
3580 mutex_unlock(&prange->migrate_mutex);
3581
3582 spin_lock(&svm_bo->list_lock);
3583 }
3584 spin_unlock(&svm_bo->list_lock);
3585 mmap_read_unlock(mm);
3586 mmput(mm);
3587
3588 dma_fence_signal(&svm_bo->eviction_fence->base);
3589
3590 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3591 * has been called in svm_migrate_vram_to_ram
3592 */
3593 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3594 svm_range_bo_unref(svm_bo);
3595 }
3596
3597 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3598 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3599 uint64_t start, uint64_t size, uint32_t nattr,
3600 struct kfd_ioctl_svm_attribute *attrs)
3601 {
3602 struct amdkfd_process_info *process_info = p->kgd_process_info;
3603 struct list_head update_list;
3604 struct list_head insert_list;
3605 struct list_head remove_list;
3606 struct list_head remap_list;
3607 struct svm_range_list *svms;
3608 struct svm_range *prange;
3609 struct svm_range *next;
3610 bool update_mapping = false;
3611 bool flush_tlb;
3612 int r, ret = 0;
3613
3614 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3615 p->pasid, &p->svms, start, start + size - 1, size);
3616
3617 r = svm_range_check_attr(p, nattr, attrs);
3618 if (r)
3619 return r;
3620
3621 svms = &p->svms;
3622
3623 mutex_lock(&process_info->lock);
3624
3625 svm_range_list_lock_and_flush_work(svms, mm);
3626
3627 r = svm_range_is_valid(p, start, size);
3628 if (r) {
3629 pr_debug("invalid range r=%d\n", r);
3630 mmap_write_unlock(mm);
3631 goto out;
3632 }
3633
3634 mutex_lock(&svms->lock);
3635
3636 /* Add new range and split existing ranges as needed */
3637 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3638 &insert_list, &remove_list, &remap_list);
3639 if (r) {
3640 mutex_unlock(&svms->lock);
3641 mmap_write_unlock(mm);
3642 goto out;
3643 }
3644 /* Apply changes as a transaction */
3645 list_for_each_entry_safe(prange, next, &insert_list, list) {
3646 svm_range_add_to_svms(prange);
3647 svm_range_add_notifier_locked(mm, prange);
3648 }
3649 list_for_each_entry(prange, &update_list, update_list) {
3650 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3651 /* TODO: unmap ranges from GPU that lost access */
3652 }
3653 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3654 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3655 prange->svms, prange, prange->start,
3656 prange->last);
3657 svm_range_unlink(prange);
3658 svm_range_remove_notifier(prange);
3659 svm_range_free(prange, false);
3660 }
3661
3662 mmap_write_downgrade(mm);
3663 /* Trigger migrations and revalidate and map to GPUs as needed. If
3664 * this fails we may be left with partially completed actions. There
3665 * is no clean way of rolling back to the previous state in such a
3666 * case because the rollback wouldn't be guaranteed to work either.
3667 */
3668 list_for_each_entry(prange, &update_list, update_list) {
3669 bool migrated;
3670
3671 mutex_lock(&prange->migrate_mutex);
3672
3673 r = svm_range_trigger_migration(mm, prange, &migrated);
3674 if (r)
3675 goto out_unlock_range;
3676
3677 if (migrated && (!p->xnack_enabled ||
3678 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3679 prange->mapped_to_gpu) {
3680 pr_debug("restore_work will update mappings of GPUs\n");
3681 mutex_unlock(&prange->migrate_mutex);
3682 continue;
3683 }
3684
3685 if (!migrated && !update_mapping) {
3686 mutex_unlock(&prange->migrate_mutex);
3687 continue;
3688 }
3689
3690 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3691
3692 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3693 MAX_GPU_INSTANCE, true, true, flush_tlb);
3694 if (r)
3695 pr_debug("failed %d to map svm range\n", r);
3696
3697 out_unlock_range:
3698 mutex_unlock(&prange->migrate_mutex);
3699 if (r)
3700 ret = r;
3701 }
3702
3703 list_for_each_entry(prange, &remap_list, update_list) {
3704 pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3705 prange, prange->start, prange->last);
3706 mutex_lock(&prange->migrate_mutex);
3707 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3708 MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3709 if (r)
3710 pr_debug("failed %d on remap svm range\n", r);
3711 mutex_unlock(&prange->migrate_mutex);
3712 if (r)
3713 ret = r;
3714 }
3715
3716 dynamic_svm_range_dump(svms);
3717
3718 mutex_unlock(&svms->lock);
3719 mmap_read_unlock(mm);
3720 out:
3721 mutex_unlock(&process_info->lock);
3722
3723 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3724 &p->svms, start, start + size - 1, r);
3725
3726 return ret ? ret : r;
3727 }
3728
3729 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3730 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3731 uint64_t start, uint64_t size, uint32_t nattr,
3732 struct kfd_ioctl_svm_attribute *attrs)
3733 {
3734 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3735 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3736 bool get_preferred_loc = false;
3737 bool get_prefetch_loc = false;
3738 bool get_granularity = false;
3739 bool get_accessible = false;
3740 bool get_flags = false;
3741 uint64_t last = start + size - 1UL;
3742 uint8_t granularity = 0xff;
3743 struct interval_tree_node *node;
3744 struct svm_range_list *svms;
3745 struct svm_range *prange;
3746 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3747 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3748 uint32_t flags_and = 0xffffffff;
3749 uint32_t flags_or = 0;
3750 int gpuidx;
3751 uint32_t i;
3752 int r = 0;
3753
3754 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3755 start + size - 1, nattr);
3756
3757 /* Flush pending deferred work to avoid racing with deferred actions from
3758 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3759 * can still race with get_attr because we don't hold the mmap lock. But that
3760 * would be a race condition in the application anyway, and undefined
3761 * behaviour is acceptable in that case.
3762 */
3763 flush_work(&p->svms.deferred_list_work);
3764
3765 mmap_read_lock(mm);
3766 r = svm_range_is_valid(p, start, size);
3767 mmap_read_unlock(mm);
3768 if (r) {
3769 pr_debug("invalid range r=%d\n", r);
3770 return r;
3771 }
3772
3773 for (i = 0; i < nattr; i++) {
3774 switch (attrs[i].type) {
3775 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3776 get_preferred_loc = true;
3777 break;
3778 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3779 get_prefetch_loc = true;
3780 break;
3781 case KFD_IOCTL_SVM_ATTR_ACCESS:
3782 get_accessible = true;
3783 break;
3784 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3785 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3786 get_flags = true;
3787 break;
3788 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3789 get_granularity = true;
3790 break;
3791 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3792 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3793 fallthrough;
3794 default:
3795 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3796 return -EINVAL;
3797 }
3798 }
3799
3800 svms = &p->svms;
3801
3802 mutex_lock(&svms->lock);
3803
3804 node = interval_tree_iter_first(&svms->objects, start, last);
3805 if (!node) {
3806 pr_debug("range attrs not found return default values\n");
3807 svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3808 &granularity, &flags_and);
3809 flags_or = flags_and;
3810 if (p->xnack_enabled)
3811 bitmap_copy(bitmap_access, svms->bitmap_supported,
3812 MAX_GPU_INSTANCE);
3813 else
3814 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3815 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3816 goto fill_values;
3817 }
3818 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3819 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3820
3821 while (node) {
3822 struct interval_tree_node *next;
3823
3824 prange = container_of(node, struct svm_range, it_node);
3825 next = interval_tree_iter_next(node, start, last);
3826
3827 if (get_preferred_loc) {
3828 if (prange->preferred_loc ==
3829 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3830 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3831 location != prange->preferred_loc)) {
3832 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3833 get_preferred_loc = false;
3834 } else {
3835 location = prange->preferred_loc;
3836 }
3837 }
3838 if (get_prefetch_loc) {
3839 if (prange->prefetch_loc ==
3840 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3841 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3842 prefetch_loc != prange->prefetch_loc)) {
3843 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3844 get_prefetch_loc = false;
3845 } else {
3846 prefetch_loc = prange->prefetch_loc;
3847 }
3848 }
3849 if (get_accessible) {
3850 bitmap_and(bitmap_access, bitmap_access,
3851 prange->bitmap_access, MAX_GPU_INSTANCE);
3852 bitmap_and(bitmap_aip, bitmap_aip,
3853 prange->bitmap_aip, MAX_GPU_INSTANCE);
3854 }
3855 if (get_flags) {
3856 flags_and &= prange->flags;
3857 flags_or |= prange->flags;
3858 }
3859
3860 if (get_granularity && prange->granularity < granularity)
3861 granularity = prange->granularity;
3862
3863 node = next;
3864 }
3865 fill_values:
3866 mutex_unlock(&svms->lock);
3867
3868 for (i = 0; i < nattr; i++) {
3869 switch (attrs[i].type) {
3870 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3871 attrs[i].value = location;
3872 break;
3873 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3874 attrs[i].value = prefetch_loc;
3875 break;
3876 case KFD_IOCTL_SVM_ATTR_ACCESS:
3877 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3878 attrs[i].value);
3879 if (gpuidx < 0) {
3880 pr_debug("invalid gpuid %x\n", attrs[i].value);
3881 return -EINVAL;
3882 }
3883 if (test_bit(gpuidx, bitmap_access))
3884 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3885 else if (test_bit(gpuidx, bitmap_aip))
3886 attrs[i].type =
3887 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3888 else
3889 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3890 break;
3891 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3892 attrs[i].value = flags_and;
3893 break;
3894 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3895 attrs[i].value = ~flags_or;
3896 break;
3897 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3898 attrs[i].value = (uint32_t)granularity;
3899 break;
3900 }
3901 }
3902
3903 return 0;
3904 }
3905
kfd_criu_resume_svm(struct kfd_process * p)3906 int kfd_criu_resume_svm(struct kfd_process *p)
3907 {
3908 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3909 int nattr_common = 4, nattr_accessibility = 1;
3910 struct criu_svm_metadata *criu_svm_md = NULL;
3911 struct svm_range_list *svms = &p->svms;
3912 struct criu_svm_metadata *next = NULL;
3913 uint32_t set_flags = 0xffffffff;
3914 int i, j, num_attrs, ret = 0;
3915 uint64_t set_attr_size;
3916 struct mm_struct *mm;
3917
3918 if (list_empty(&svms->criu_svm_metadata_list)) {
3919 pr_debug("No SVM data from CRIU restore stage 2\n");
3920 return ret;
3921 }
3922
3923 mm = get_task_mm(p->lead_thread);
3924 if (!mm) {
3925 pr_err("failed to get mm for the target process\n");
3926 return -ESRCH;
3927 }
3928
3929 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3930
3931 i = j = 0;
3932 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3933 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3934 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3935
3936 for (j = 0; j < num_attrs; j++) {
3937 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3938 i, j, criu_svm_md->data.attrs[j].type,
3939 i, j, criu_svm_md->data.attrs[j].value);
3940 switch (criu_svm_md->data.attrs[j].type) {
3941 /* During Checkpoint operation, the query for
3942 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3943 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3944 * not used by the range which was checkpointed. Care
3945 * must be taken to not restore with an invalid value
3946 * otherwise the gpuidx value will be invalid and
3947 * set_attr would eventually fail so just replace those
3948 * with another dummy attribute such as
3949 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3950 */
3951 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3952 if (criu_svm_md->data.attrs[j].value ==
3953 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3954 criu_svm_md->data.attrs[j].type =
3955 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3956 criu_svm_md->data.attrs[j].value = 0;
3957 }
3958 break;
3959 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3960 set_flags = criu_svm_md->data.attrs[j].value;
3961 break;
3962 default:
3963 break;
3964 }
3965 }
3966
3967 /* CLR_FLAGS is not available via get_attr during checkpoint but
3968 * it needs to be inserted before restoring the ranges so
3969 * allocate extra space for it before calling set_attr
3970 */
3971 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3972 (num_attrs + 1);
3973 set_attr_new = krealloc(set_attr, set_attr_size,
3974 GFP_KERNEL);
3975 if (!set_attr_new) {
3976 ret = -ENOMEM;
3977 goto exit;
3978 }
3979 set_attr = set_attr_new;
3980
3981 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3982 sizeof(struct kfd_ioctl_svm_attribute));
3983 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3984 set_attr[num_attrs].value = ~set_flags;
3985
3986 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3987 criu_svm_md->data.size, num_attrs + 1,
3988 set_attr);
3989 if (ret) {
3990 pr_err("CRIU: failed to set range attributes\n");
3991 goto exit;
3992 }
3993
3994 i++;
3995 }
3996 exit:
3997 kfree(set_attr);
3998 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3999 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4000 criu_svm_md->data.start_addr);
4001 kfree(criu_svm_md);
4002 }
4003
4004 mmput(mm);
4005 return ret;
4006
4007 }
4008
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)4009 int kfd_criu_restore_svm(struct kfd_process *p,
4010 uint8_t __user *user_priv_ptr,
4011 uint64_t *priv_data_offset,
4012 uint64_t max_priv_data_size)
4013 {
4014 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4015 int nattr_common = 4, nattr_accessibility = 1;
4016 struct criu_svm_metadata *criu_svm_md = NULL;
4017 struct svm_range_list *svms = &p->svms;
4018 uint32_t num_devices;
4019 int ret = 0;
4020
4021 num_devices = p->n_pdds;
4022 /* Handle one SVM range object at a time, also the number of gpus are
4023 * assumed to be same on the restore node, checking must be done while
4024 * evaluating the topology earlier
4025 */
4026
4027 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4028 (nattr_common + nattr_accessibility * num_devices);
4029 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4030
4031 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4032 svm_attrs_size;
4033
4034 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4035 if (!criu_svm_md) {
4036 pr_err("failed to allocate memory to store svm metadata\n");
4037 return -ENOMEM;
4038 }
4039 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4040 ret = -EINVAL;
4041 goto exit;
4042 }
4043
4044 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4045 svm_priv_data_size);
4046 if (ret) {
4047 ret = -EFAULT;
4048 goto exit;
4049 }
4050 *priv_data_offset += svm_priv_data_size;
4051
4052 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4053
4054 return 0;
4055
4056
4057 exit:
4058 kfree(criu_svm_md);
4059 return ret;
4060 }
4061
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)4062 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4063 uint64_t *svm_priv_data_size)
4064 {
4065 uint64_t total_size, accessibility_size, common_attr_size;
4066 int nattr_common = 4, nattr_accessibility = 1;
4067 int num_devices = p->n_pdds;
4068 struct svm_range_list *svms;
4069 struct svm_range *prange;
4070 uint32_t count = 0;
4071
4072 *svm_priv_data_size = 0;
4073
4074 svms = &p->svms;
4075 if (!svms)
4076 return -EINVAL;
4077
4078 mutex_lock(&svms->lock);
4079 list_for_each_entry(prange, &svms->list, list) {
4080 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4081 prange, prange->start, prange->npages,
4082 prange->start + prange->npages - 1);
4083 count++;
4084 }
4085 mutex_unlock(&svms->lock);
4086
4087 *num_svm_ranges = count;
4088 /* Only the accessbility attributes need to be queried for all the gpus
4089 * individually, remaining ones are spanned across the entire process
4090 * regardless of the various gpu nodes. Of the remaining attributes,
4091 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4092 *
4093 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4094 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4095 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4096 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4097 *
4098 * ** ACCESSBILITY ATTRIBUTES **
4099 * (Considered as one, type is altered during query, value is gpuid)
4100 * KFD_IOCTL_SVM_ATTR_ACCESS
4101 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4102 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4103 */
4104 if (*num_svm_ranges > 0) {
4105 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4106 nattr_common;
4107 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4108 nattr_accessibility * num_devices;
4109
4110 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4111 common_attr_size + accessibility_size;
4112
4113 *svm_priv_data_size = *num_svm_ranges * total_size;
4114 }
4115
4116 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4117 *svm_priv_data_size);
4118 return 0;
4119 }
4120
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4121 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4122 uint8_t __user *user_priv_data,
4123 uint64_t *priv_data_offset)
4124 {
4125 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4126 struct kfd_ioctl_svm_attribute *query_attr = NULL;
4127 uint64_t svm_priv_data_size, query_attr_size = 0;
4128 int index, nattr_common = 4, ret = 0;
4129 struct svm_range_list *svms;
4130 int num_devices = p->n_pdds;
4131 struct svm_range *prange;
4132 struct mm_struct *mm;
4133
4134 svms = &p->svms;
4135 if (!svms)
4136 return -EINVAL;
4137
4138 mm = get_task_mm(p->lead_thread);
4139 if (!mm) {
4140 pr_err("failed to get mm for the target process\n");
4141 return -ESRCH;
4142 }
4143
4144 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4145 (nattr_common + num_devices);
4146
4147 query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4148 if (!query_attr) {
4149 ret = -ENOMEM;
4150 goto exit;
4151 }
4152
4153 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4154 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4155 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4156 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4157
4158 for (index = 0; index < num_devices; index++) {
4159 struct kfd_process_device *pdd = p->pdds[index];
4160
4161 query_attr[index + nattr_common].type =
4162 KFD_IOCTL_SVM_ATTR_ACCESS;
4163 query_attr[index + nattr_common].value = pdd->user_gpu_id;
4164 }
4165
4166 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4167
4168 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4169 if (!svm_priv) {
4170 ret = -ENOMEM;
4171 goto exit_query;
4172 }
4173
4174 index = 0;
4175 list_for_each_entry(prange, &svms->list, list) {
4176
4177 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4178 svm_priv->start_addr = prange->start;
4179 svm_priv->size = prange->npages;
4180 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4181 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4182 prange, prange->start, prange->npages,
4183 prange->start + prange->npages - 1,
4184 prange->npages * PAGE_SIZE);
4185
4186 ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4187 svm_priv->size,
4188 (nattr_common + num_devices),
4189 svm_priv->attrs);
4190 if (ret) {
4191 pr_err("CRIU: failed to obtain range attributes\n");
4192 goto exit_priv;
4193 }
4194
4195 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4196 svm_priv_data_size)) {
4197 pr_err("Failed to copy svm priv to user\n");
4198 ret = -EFAULT;
4199 goto exit_priv;
4200 }
4201
4202 *priv_data_offset += svm_priv_data_size;
4203
4204 }
4205
4206
4207 exit_priv:
4208 kfree(svm_priv);
4209 exit_query:
4210 kfree(query_attr);
4211 exit:
4212 mmput(mm);
4213 return ret;
4214 }
4215
4216 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4217 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4218 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4219 {
4220 struct mm_struct *mm = current->mm;
4221 int r;
4222
4223 start >>= PAGE_SHIFT;
4224 size >>= PAGE_SHIFT;
4225
4226 switch (op) {
4227 case KFD_IOCTL_SVM_OP_SET_ATTR:
4228 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4229 break;
4230 case KFD_IOCTL_SVM_OP_GET_ATTR:
4231 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4232 break;
4233 default:
4234 r = EINVAL;
4235 break;
4236 }
4237
4238 return r;
4239 }
4240