• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 
202 	return 0;
203 }
204 
205 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 		  unsigned long offset, unsigned long npages,
208 		  unsigned long *hmm_pfns)
209 {
210 	struct kfd_process *p;
211 	uint32_t gpuidx;
212 	int r;
213 
214 	p = container_of(prange->svms, struct kfd_process, svms);
215 
216 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 		struct kfd_process_device *pdd;
218 
219 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 		if (!pdd) {
222 			pr_debug("failed to find device idx %d\n", gpuidx);
223 			return -EINVAL;
224 		}
225 
226 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 					  hmm_pfns, gpuidx);
228 		if (r)
229 			break;
230 	}
231 
232 	return r;
233 }
234 
svm_range_dma_unmap_dev(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 			 unsigned long offset, unsigned long npages)
237 {
238 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 	int i;
240 
241 	if (!dma_addr)
242 		return;
243 
244 	for (i = offset; i < offset + npages; i++) {
245 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 			continue;
247 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 		dma_addr[i] = 0;
250 	}
251 }
252 
svm_range_dma_unmap(struct svm_range * prange)253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 	struct kfd_process_device *pdd;
256 	dma_addr_t *dma_addr;
257 	struct device *dev;
258 	struct kfd_process *p;
259 	uint32_t gpuidx;
260 
261 	p = container_of(prange->svms, struct kfd_process, svms);
262 
263 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 		dma_addr = prange->dma_addr[gpuidx];
265 		if (!dma_addr)
266 			continue;
267 
268 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 		if (!pdd) {
270 			pr_debug("failed to find device idx %d\n", gpuidx);
271 			continue;
272 		}
273 		dev = &pdd->dev->adev->pdev->dev;
274 
275 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 	}
277 }
278 
svm_range_free(struct svm_range * prange,bool do_unmap)279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 	uint32_t gpuidx;
284 
285 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 		 prange->start, prange->last);
287 
288 	svm_range_vram_node_free(prange);
289 	if (do_unmap)
290 		svm_range_dma_unmap(prange);
291 
292 	if (do_unmap && !p->xnack_enabled) {
293 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 	}
297 
298 	/* free dma_addr array for each gpu */
299 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 		if (prange->dma_addr[gpuidx]) {
301 			kvfree(prange->dma_addr[gpuidx]);
302 			prange->dma_addr[gpuidx] = NULL;
303 		}
304 	}
305 
306 	mutex_destroy(&prange->lock);
307 	mutex_destroy(&prange->migrate_mutex);
308 	kfree(prange);
309 }
310 
311 static void
svm_range_set_default_attributes(struct svm_range_list * svms,int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 				 int32_t *prefetch_loc, uint8_t *granularity,
314 				 uint32_t *flags)
315 {
316 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 	*granularity = svms->default_granularity;
319 	*flags =
320 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322 
323 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 			 uint64_t last, bool update_mem_usage)
326 {
327 	uint64_t size = last - start + 1;
328 	struct svm_range *prange;
329 	struct kfd_process *p;
330 
331 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 	if (!prange)
333 		return NULL;
334 
335 	p = container_of(svms, struct kfd_process, svms);
336 	if (!p->xnack_enabled && update_mem_usage &&
337 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 		kfree(prange);
341 		return NULL;
342 	}
343 	prange->npages = size;
344 	prange->svms = svms;
345 	prange->start = start;
346 	prange->last = last;
347 	INIT_LIST_HEAD(&prange->list);
348 	INIT_LIST_HEAD(&prange->update_list);
349 	INIT_LIST_HEAD(&prange->svm_bo_list);
350 	INIT_LIST_HEAD(&prange->deferred_list);
351 	INIT_LIST_HEAD(&prange->child_list);
352 	atomic_set(&prange->invalid, 0);
353 	prange->validate_timestamp = 0;
354 	prange->vram_pages = 0;
355 	mutex_init(&prange->migrate_mutex);
356 	mutex_init(&prange->lock);
357 
358 	if (p->xnack_enabled)
359 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 			    MAX_GPU_INSTANCE);
361 
362 	svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 					 &prange->prefetch_loc,
364 					 &prange->granularity, &prange->flags);
365 
366 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367 
368 	return prange;
369 }
370 
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 		return false;
375 
376 	return true;
377 }
378 
svm_range_bo_release(struct kref * kref)379 static void svm_range_bo_release(struct kref *kref)
380 {
381 	struct svm_range_bo *svm_bo;
382 
383 	svm_bo = container_of(kref, struct svm_range_bo, kref);
384 	pr_debug("svm_bo 0x%p\n", svm_bo);
385 
386 	spin_lock(&svm_bo->list_lock);
387 	while (!list_empty(&svm_bo->range_list)) {
388 		struct svm_range *prange =
389 				list_first_entry(&svm_bo->range_list,
390 						struct svm_range, svm_bo_list);
391 		/* list_del_init tells a concurrent svm_range_vram_node_new when
392 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 		 */
394 		list_del_init(&prange->svm_bo_list);
395 		spin_unlock(&svm_bo->list_lock);
396 
397 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 			 prange->start, prange->last);
399 		mutex_lock(&prange->lock);
400 		prange->svm_bo = NULL;
401 		/* prange should not hold vram page now */
402 		WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 		mutex_unlock(&prange->lock);
404 
405 		spin_lock(&svm_bo->list_lock);
406 	}
407 	spin_unlock(&svm_bo->list_lock);
408 
409 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
410 		struct kfd_process_device *pdd;
411 		struct kfd_process *p;
412 		struct mm_struct *mm;
413 
414 		mm = svm_bo->eviction_fence->mm;
415 		/*
416 		 * The forked child process takes svm_bo device pages ref, svm_bo could be
417 		 * released after parent process is gone.
418 		 */
419 		p = kfd_lookup_process_by_mm(mm);
420 		if (p) {
421 			pdd = kfd_get_process_device_data(svm_bo->node, p);
422 			if (pdd)
423 				atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
424 			kfd_unref_process(p);
425 		}
426 		mmput(mm);
427 	}
428 
429 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
430 		/* We're not in the eviction worker. Signal the fence. */
431 		dma_fence_signal(&svm_bo->eviction_fence->base);
432 	dma_fence_put(&svm_bo->eviction_fence->base);
433 	amdgpu_bo_unref(&svm_bo->bo);
434 	kfree(svm_bo);
435 }
436 
svm_range_bo_wq_release(struct work_struct * work)437 static void svm_range_bo_wq_release(struct work_struct *work)
438 {
439 	struct svm_range_bo *svm_bo;
440 
441 	svm_bo = container_of(work, struct svm_range_bo, release_work);
442 	svm_range_bo_release(&svm_bo->kref);
443 }
444 
svm_range_bo_release_async(struct kref * kref)445 static void svm_range_bo_release_async(struct kref *kref)
446 {
447 	struct svm_range_bo *svm_bo;
448 
449 	svm_bo = container_of(kref, struct svm_range_bo, kref);
450 	pr_debug("svm_bo 0x%p\n", svm_bo);
451 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
452 	schedule_work(&svm_bo->release_work);
453 }
454 
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
456 {
457 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
458 }
459 
svm_range_bo_unref(struct svm_range_bo * svm_bo)460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
461 {
462 	if (svm_bo)
463 		kref_put(&svm_bo->kref, svm_range_bo_release);
464 }
465 
466 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
468 {
469 	mutex_lock(&prange->lock);
470 	if (!prange->svm_bo) {
471 		mutex_unlock(&prange->lock);
472 		return false;
473 	}
474 	if (prange->ttm_res) {
475 		/* We still have a reference, all is well */
476 		mutex_unlock(&prange->lock);
477 		return true;
478 	}
479 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
480 		/*
481 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
482 		 * range list, and return false to allocate svm_bo from destination
483 		 * node.
484 		 */
485 		if (prange->svm_bo->node != node) {
486 			mutex_unlock(&prange->lock);
487 
488 			spin_lock(&prange->svm_bo->list_lock);
489 			list_del_init(&prange->svm_bo_list);
490 			spin_unlock(&prange->svm_bo->list_lock);
491 
492 			svm_range_bo_unref(prange->svm_bo);
493 			return false;
494 		}
495 		if (READ_ONCE(prange->svm_bo->evicting)) {
496 			struct dma_fence *f;
497 			struct svm_range_bo *svm_bo;
498 			/* The BO is getting evicted,
499 			 * we need to get a new one
500 			 */
501 			mutex_unlock(&prange->lock);
502 			svm_bo = prange->svm_bo;
503 			f = dma_fence_get(&svm_bo->eviction_fence->base);
504 			svm_range_bo_unref(prange->svm_bo);
505 			/* wait for the fence to avoid long spin-loop
506 			 * at list_empty_careful
507 			 */
508 			dma_fence_wait(f, false);
509 			dma_fence_put(f);
510 		} else {
511 			/* The BO was still around and we got
512 			 * a new reference to it
513 			 */
514 			mutex_unlock(&prange->lock);
515 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
516 				 prange->svms, prange->start, prange->last);
517 
518 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
519 			return true;
520 		}
521 
522 	} else {
523 		mutex_unlock(&prange->lock);
524 	}
525 
526 	/* We need a new svm_bo. Spin-loop to wait for concurrent
527 	 * svm_range_bo_release to finish removing this range from
528 	 * its range list and set prange->svm_bo to null. After this,
529 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
530 	 */
531 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
532 		cond_resched();
533 
534 	return false;
535 }
536 
svm_range_bo_new(void)537 static struct svm_range_bo *svm_range_bo_new(void)
538 {
539 	struct svm_range_bo *svm_bo;
540 
541 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
542 	if (!svm_bo)
543 		return NULL;
544 
545 	kref_init(&svm_bo->kref);
546 	INIT_LIST_HEAD(&svm_bo->range_list);
547 	spin_lock_init(&svm_bo->list_lock);
548 
549 	return svm_bo;
550 }
551 
552 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
554 			bool clear)
555 {
556 	struct kfd_process_device *pdd;
557 	struct amdgpu_bo_param bp;
558 	struct svm_range_bo *svm_bo;
559 	struct amdgpu_bo_user *ubo;
560 	struct amdgpu_bo *bo;
561 	struct kfd_process *p;
562 	struct mm_struct *mm;
563 	int r;
564 
565 	p = container_of(prange->svms, struct kfd_process, svms);
566 	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
567 		 prange->start, prange->last);
568 
569 	if (svm_range_validate_svm_bo(node, prange))
570 		return 0;
571 
572 	svm_bo = svm_range_bo_new();
573 	if (!svm_bo) {
574 		pr_debug("failed to alloc svm bo\n");
575 		return -ENOMEM;
576 	}
577 	mm = get_task_mm(p->lead_thread);
578 	if (!mm) {
579 		pr_debug("failed to get mm\n");
580 		kfree(svm_bo);
581 		return -ESRCH;
582 	}
583 	svm_bo->node = node;
584 	svm_bo->eviction_fence =
585 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
586 					   mm,
587 					   svm_bo);
588 	mmput(mm);
589 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
590 	svm_bo->evicting = 0;
591 	memset(&bp, 0, sizeof(bp));
592 	bp.size = prange->npages * PAGE_SIZE;
593 	bp.byte_align = PAGE_SIZE;
594 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
595 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
596 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
597 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
598 	bp.type = ttm_bo_type_device;
599 	bp.resv = NULL;
600 	if (node->xcp)
601 		bp.xcp_id_plus1 = node->xcp->id + 1;
602 
603 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
604 	if (r) {
605 		pr_debug("failed %d to create bo\n", r);
606 		goto create_bo_failed;
607 	}
608 	bo = &ubo->bo;
609 
610 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
611 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
612 		 bp.xcp_id_plus1 - 1);
613 
614 	r = amdgpu_bo_reserve(bo, true);
615 	if (r) {
616 		pr_debug("failed %d to reserve bo\n", r);
617 		goto reserve_bo_failed;
618 	}
619 
620 	if (clear) {
621 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
622 		if (r) {
623 			pr_debug("failed %d to sync bo\n", r);
624 			amdgpu_bo_unreserve(bo);
625 			goto reserve_bo_failed;
626 		}
627 	}
628 
629 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
630 	if (r) {
631 		pr_debug("failed %d to reserve bo\n", r);
632 		amdgpu_bo_unreserve(bo);
633 		goto reserve_bo_failed;
634 	}
635 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
636 
637 	amdgpu_bo_unreserve(bo);
638 
639 	svm_bo->bo = bo;
640 	prange->svm_bo = svm_bo;
641 	prange->ttm_res = bo->tbo.resource;
642 	prange->offset = 0;
643 
644 	spin_lock(&svm_bo->list_lock);
645 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
646 	spin_unlock(&svm_bo->list_lock);
647 
648 	pdd = svm_range_get_pdd_by_node(prange, node);
649 	if (pdd)
650 		atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
651 
652 	return 0;
653 
654 reserve_bo_failed:
655 	amdgpu_bo_unref(&bo);
656 create_bo_failed:
657 	dma_fence_put(&svm_bo->eviction_fence->base);
658 	kfree(svm_bo);
659 	prange->ttm_res = NULL;
660 
661 	return r;
662 }
663 
svm_range_vram_node_free(struct svm_range * prange)664 void svm_range_vram_node_free(struct svm_range *prange)
665 {
666 	/* serialize prange->svm_bo unref */
667 	mutex_lock(&prange->lock);
668 	/* prange->svm_bo has not been unref */
669 	if (prange->ttm_res) {
670 		prange->ttm_res = NULL;
671 		mutex_unlock(&prange->lock);
672 		svm_range_bo_unref(prange->svm_bo);
673 	} else
674 		mutex_unlock(&prange->lock);
675 }
676 
677 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)678 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
679 {
680 	struct kfd_process *p;
681 	struct kfd_process_device *pdd;
682 
683 	p = container_of(prange->svms, struct kfd_process, svms);
684 	pdd = kfd_process_device_data_by_id(p, gpu_id);
685 	if (!pdd) {
686 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
687 		return NULL;
688 	}
689 
690 	return pdd->dev;
691 }
692 
693 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)694 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
695 {
696 	struct kfd_process *p;
697 
698 	p = container_of(prange->svms, struct kfd_process, svms);
699 
700 	return kfd_get_process_device_data(node, p);
701 }
702 
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)703 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
704 {
705 	struct ttm_operation_ctx ctx = { false, false };
706 
707 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
708 
709 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
710 }
711 
712 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)713 svm_range_check_attr(struct kfd_process *p,
714 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
715 {
716 	uint32_t i;
717 
718 	for (i = 0; i < nattr; i++) {
719 		uint32_t val = attrs[i].value;
720 		int gpuidx = MAX_GPU_INSTANCE;
721 
722 		switch (attrs[i].type) {
723 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
724 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
725 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
726 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
727 			break;
728 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
729 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
730 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
731 			break;
732 		case KFD_IOCTL_SVM_ATTR_ACCESS:
733 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
734 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
735 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
736 			break;
737 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
738 			break;
739 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
740 			break;
741 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
742 			break;
743 		default:
744 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
745 			return -EINVAL;
746 		}
747 
748 		if (gpuidx < 0) {
749 			pr_debug("no GPU 0x%x found\n", val);
750 			return -EINVAL;
751 		} else if (gpuidx < MAX_GPU_INSTANCE &&
752 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
753 			pr_debug("GPU 0x%x not supported\n", val);
754 			return -EINVAL;
755 		}
756 	}
757 
758 	return 0;
759 }
760 
761 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)762 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
763 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
764 		      bool *update_mapping)
765 {
766 	uint32_t i;
767 	int gpuidx;
768 
769 	for (i = 0; i < nattr; i++) {
770 		switch (attrs[i].type) {
771 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
772 			prange->preferred_loc = attrs[i].value;
773 			break;
774 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
775 			prange->prefetch_loc = attrs[i].value;
776 			break;
777 		case KFD_IOCTL_SVM_ATTR_ACCESS:
778 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
779 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
780 			if (!p->xnack_enabled)
781 				*update_mapping = true;
782 
783 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
784 							       attrs[i].value);
785 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
786 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
787 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
788 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
789 				bitmap_set(prange->bitmap_access, gpuidx, 1);
790 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
791 			} else {
792 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
793 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
794 			}
795 			break;
796 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
797 			*update_mapping = true;
798 			prange->flags |= attrs[i].value;
799 			break;
800 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
801 			*update_mapping = true;
802 			prange->flags &= ~attrs[i].value;
803 			break;
804 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
805 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
806 			break;
807 		default:
808 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
809 		}
810 	}
811 }
812 
813 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)814 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
815 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
816 {
817 	uint32_t i;
818 	int gpuidx;
819 
820 	for (i = 0; i < nattr; i++) {
821 		switch (attrs[i].type) {
822 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
823 			if (prange->preferred_loc != attrs[i].value)
824 				return false;
825 			break;
826 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
827 			/* Prefetch should always trigger a migration even
828 			 * if the value of the attribute didn't change.
829 			 */
830 			return false;
831 		case KFD_IOCTL_SVM_ATTR_ACCESS:
832 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
833 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
834 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
835 							       attrs[i].value);
836 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
837 				if (test_bit(gpuidx, prange->bitmap_access) ||
838 				    test_bit(gpuidx, prange->bitmap_aip))
839 					return false;
840 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
841 				if (!test_bit(gpuidx, prange->bitmap_access))
842 					return false;
843 			} else {
844 				if (!test_bit(gpuidx, prange->bitmap_aip))
845 					return false;
846 			}
847 			break;
848 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
849 			if ((prange->flags & attrs[i].value) != attrs[i].value)
850 				return false;
851 			break;
852 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
853 			if ((prange->flags & attrs[i].value) != 0)
854 				return false;
855 			break;
856 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
857 			if (prange->granularity != attrs[i].value)
858 				return false;
859 			break;
860 		default:
861 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
862 		}
863 	}
864 
865 	return true;
866 }
867 
868 /**
869  * svm_range_debug_dump - print all range information from svms
870  * @svms: svm range list header
871  *
872  * debug output svm range start, end, prefetch location from svms
873  * interval tree and link list
874  *
875  * Context: The caller must hold svms->lock
876  */
svm_range_debug_dump(struct svm_range_list * svms)877 static void svm_range_debug_dump(struct svm_range_list *svms)
878 {
879 	struct interval_tree_node *node;
880 	struct svm_range *prange;
881 
882 	pr_debug("dump svms 0x%p list\n", svms);
883 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
884 
885 	list_for_each_entry(prange, &svms->list, list) {
886 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
887 			 prange, prange->start, prange->npages,
888 			 prange->start + prange->npages - 1,
889 			 prange->actual_loc);
890 	}
891 
892 	pr_debug("dump svms 0x%p interval tree\n", svms);
893 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
894 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
895 	while (node) {
896 		prange = container_of(node, struct svm_range, it_node);
897 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
898 			 prange, prange->start, prange->npages,
899 			 prange->start + prange->npages - 1,
900 			 prange->actual_loc);
901 		node = interval_tree_iter_next(node, 0, ~0ULL);
902 	}
903 }
904 
905 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset,uint64_t * vram_pages)906 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
907 		     uint64_t offset, uint64_t *vram_pages)
908 {
909 	unsigned char *src = (unsigned char *)psrc + offset;
910 	unsigned char *dst;
911 	uint64_t i;
912 
913 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
914 	if (!dst)
915 		return NULL;
916 
917 	if (!vram_pages) {
918 		memcpy(dst, src, num_elements * size);
919 		return (void *)dst;
920 	}
921 
922 	*vram_pages = 0;
923 	for (i = 0; i < num_elements; i++) {
924 		dma_addr_t *temp;
925 		temp = (dma_addr_t *)dst + i;
926 		*temp = *((dma_addr_t *)src + i);
927 		if (*temp&SVM_RANGE_VRAM_DOMAIN)
928 			(*vram_pages)++;
929 	}
930 
931 	return (void *)dst;
932 }
933 
934 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)935 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
936 {
937 	int i;
938 
939 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
940 		if (!src->dma_addr[i])
941 			continue;
942 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
943 					sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
944 		if (!dst->dma_addr[i])
945 			return -ENOMEM;
946 	}
947 
948 	return 0;
949 }
950 
951 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n,uint64_t * new_vram_pages)952 svm_range_split_array(void *ppnew, void *ppold, size_t size,
953 		      uint64_t old_start, uint64_t old_n,
954 		      uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
955 {
956 	unsigned char *new, *old, *pold;
957 	uint64_t d;
958 
959 	if (!ppold)
960 		return 0;
961 	pold = *(unsigned char **)ppold;
962 	if (!pold)
963 		return 0;
964 
965 	d = (new_start - old_start) * size;
966 	/* get dma addr array for new range and calculte its vram page number */
967 	new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
968 	if (!new)
969 		return -ENOMEM;
970 	d = (new_start == old_start) ? new_n * size : 0;
971 	old = svm_range_copy_array(pold, size, old_n, d, NULL);
972 	if (!old) {
973 		kvfree(new);
974 		return -ENOMEM;
975 	}
976 	kvfree(pold);
977 	*(void **)ppold = old;
978 	*(void **)ppnew = new;
979 
980 	return 0;
981 }
982 
983 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)984 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
985 		      uint64_t start, uint64_t last)
986 {
987 	uint64_t npages = last - start + 1;
988 	int i, r;
989 
990 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
991 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
992 					  sizeof(*old->dma_addr[i]), old->start,
993 					  npages, new->start, new->npages,
994 					  old->actual_loc ? &new->vram_pages : NULL);
995 		if (r)
996 			return r;
997 	}
998 	if (old->actual_loc)
999 		old->vram_pages -= new->vram_pages;
1000 
1001 	return 0;
1002 }
1003 
1004 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1005 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1006 		      uint64_t start, uint64_t last)
1007 {
1008 	uint64_t npages = last - start + 1;
1009 
1010 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1011 		 new->svms, new, new->start, start, last);
1012 
1013 	if (new->start == old->start) {
1014 		new->offset = old->offset;
1015 		old->offset += new->npages;
1016 	} else {
1017 		new->offset = old->offset + npages;
1018 	}
1019 
1020 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
1021 	new->ttm_res = old->ttm_res;
1022 
1023 	spin_lock(&new->svm_bo->list_lock);
1024 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1025 	spin_unlock(&new->svm_bo->list_lock);
1026 
1027 	return 0;
1028 }
1029 
1030 /**
1031  * svm_range_split_adjust - split range and adjust
1032  *
1033  * @new: new range
1034  * @old: the old range
1035  * @start: the old range adjust to start address in pages
1036  * @last: the old range adjust to last address in pages
1037  *
1038  * Copy system memory dma_addr or vram ttm_res in old range to new
1039  * range from new_start up to size new->npages, the remaining old range is from
1040  * start to last
1041  *
1042  * Return:
1043  * 0 - OK, -ENOMEM - out of memory
1044  */
1045 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1046 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1047 		      uint64_t start, uint64_t last)
1048 {
1049 	int r;
1050 
1051 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1052 		 new->svms, new->start, old->start, old->last, start, last);
1053 
1054 	if (new->start < old->start ||
1055 	    new->last > old->last) {
1056 		WARN_ONCE(1, "invalid new range start or last\n");
1057 		return -EINVAL;
1058 	}
1059 
1060 	r = svm_range_split_pages(new, old, start, last);
1061 	if (r)
1062 		return r;
1063 
1064 	if (old->actual_loc && old->ttm_res) {
1065 		r = svm_range_split_nodes(new, old, start, last);
1066 		if (r)
1067 			return r;
1068 	}
1069 
1070 	old->npages = last - start + 1;
1071 	old->start = start;
1072 	old->last = last;
1073 	new->flags = old->flags;
1074 	new->preferred_loc = old->preferred_loc;
1075 	new->prefetch_loc = old->prefetch_loc;
1076 	new->actual_loc = old->actual_loc;
1077 	new->granularity = old->granularity;
1078 	new->mapped_to_gpu = old->mapped_to_gpu;
1079 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1080 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1081 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1082 
1083 	return 0;
1084 }
1085 
1086 /**
1087  * svm_range_split - split a range in 2 ranges
1088  *
1089  * @prange: the svm range to split
1090  * @start: the remaining range start address in pages
1091  * @last: the remaining range last address in pages
1092  * @new: the result new range generated
1093  *
1094  * Two cases only:
1095  * case 1: if start == prange->start
1096  *         prange ==> prange[start, last]
1097  *         new range [last + 1, prange->last]
1098  *
1099  * case 2: if last == prange->last
1100  *         prange ==> prange[start, last]
1101  *         new range [prange->start, start - 1]
1102  *
1103  * Return:
1104  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1105  */
1106 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1107 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1108 		struct svm_range **new)
1109 {
1110 	uint64_t old_start = prange->start;
1111 	uint64_t old_last = prange->last;
1112 	struct svm_range_list *svms;
1113 	int r = 0;
1114 
1115 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1116 		 old_start, old_last, start, last);
1117 
1118 	if (old_start != start && old_last != last)
1119 		return -EINVAL;
1120 	if (start < old_start || last > old_last)
1121 		return -EINVAL;
1122 
1123 	svms = prange->svms;
1124 	if (old_start == start)
1125 		*new = svm_range_new(svms, last + 1, old_last, false);
1126 	else
1127 		*new = svm_range_new(svms, old_start, start - 1, false);
1128 	if (!*new)
1129 		return -ENOMEM;
1130 
1131 	r = svm_range_split_adjust(*new, prange, start, last);
1132 	if (r) {
1133 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1134 			 r, old_start, old_last, start, last);
1135 		svm_range_free(*new, false);
1136 		*new = NULL;
1137 	}
1138 
1139 	return r;
1140 }
1141 
1142 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list,struct list_head * remap_list)1143 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1144 		     struct list_head *insert_list, struct list_head *remap_list)
1145 {
1146 	struct svm_range *tail = NULL;
1147 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1148 
1149 	if (!r) {
1150 		list_add(&tail->list, insert_list);
1151 		if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1152 			list_add(&tail->update_list, remap_list);
1153 	}
1154 	return r;
1155 }
1156 
1157 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list,struct list_head * remap_list)1158 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1159 		     struct list_head *insert_list, struct list_head *remap_list)
1160 {
1161 	struct svm_range *head = NULL;
1162 	int r = svm_range_split(prange, new_start, prange->last, &head);
1163 
1164 	if (!r) {
1165 		list_add(&head->list, insert_list);
1166 		if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1167 			list_add(&head->update_list, remap_list);
1168 	}
1169 	return r;
1170 }
1171 
1172 static void
svm_range_add_child(struct svm_range * prange,struct svm_range * pchild,enum svm_work_list_ops op)1173 svm_range_add_child(struct svm_range *prange, struct svm_range *pchild, enum svm_work_list_ops op)
1174 {
1175 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1176 		 pchild, pchild->start, pchild->last, prange, op);
1177 
1178 	pchild->work_item.mm = NULL;
1179 	pchild->work_item.op = op;
1180 	list_add_tail(&pchild->child_list, &prange->child_list);
1181 }
1182 
1183 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1184 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1185 {
1186 	return (node_a->adev == node_b->adev ||
1187 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1188 }
1189 
1190 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1191 svm_range_get_pte_flags(struct kfd_node *node,
1192 			struct svm_range *prange, int domain)
1193 {
1194 	struct kfd_node *bo_node;
1195 	uint32_t flags = prange->flags;
1196 	uint32_t mapping_flags = 0;
1197 	uint64_t pte_flags;
1198 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1199 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1200 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1201 	unsigned int mtype_local;
1202 
1203 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1204 		bo_node = prange->svm_bo->node;
1205 
1206 	switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1207 	case IP_VERSION(9, 4, 1):
1208 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1209 			if (bo_node == node) {
1210 				mapping_flags |= coherent ?
1211 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1212 			} else {
1213 				mapping_flags |= coherent ?
1214 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1215 				if (svm_nodes_in_same_hive(node, bo_node))
1216 					snoop = true;
1217 			}
1218 		} else {
1219 			mapping_flags |= coherent ?
1220 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1221 		}
1222 		break;
1223 	case IP_VERSION(9, 4, 2):
1224 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1225 			if (bo_node == node) {
1226 				mapping_flags |= coherent ?
1227 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1228 				if (node->adev->gmc.xgmi.connected_to_cpu)
1229 					snoop = true;
1230 			} else {
1231 				mapping_flags |= coherent ?
1232 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1233 				if (svm_nodes_in_same_hive(node, bo_node))
1234 					snoop = true;
1235 			}
1236 		} else {
1237 			mapping_flags |= coherent ?
1238 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1239 		}
1240 		break;
1241 	case IP_VERSION(9, 4, 3):
1242 	case IP_VERSION(9, 4, 4):
1243 		if (ext_coherent)
1244 			mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
1245 		else
1246 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1247 				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1248 		snoop = true;
1249 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1250 			/* local HBM region close to partition */
1251 			if (bo_node->adev == node->adev &&
1252 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1253 				mapping_flags |= mtype_local;
1254 			/* local HBM region far from partition or remote XGMI GPU
1255 			 * with regular system scope coherence
1256 			 */
1257 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1258 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1259 			/* PCIe P2P or extended system scope coherence */
1260 			else
1261 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1262 		/* system memory accessed by the APU */
1263 		} else if (node->adev->flags & AMD_IS_APU) {
1264 			/* On NUMA systems, locality is determined per-page
1265 			 * in amdgpu_gmc_override_vm_pte_flags
1266 			 */
1267 			if (num_possible_nodes() <= 1)
1268 				mapping_flags |= mtype_local;
1269 			else
1270 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1271 		/* system memory accessed by the dGPU */
1272 		} else {
1273 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1274 		}
1275 		break;
1276 	case IP_VERSION(12, 0, 0):
1277 	case IP_VERSION(12, 0, 1):
1278 		mapping_flags |= AMDGPU_VM_MTYPE_NC;
1279 		break;
1280 	default:
1281 		mapping_flags |= coherent ?
1282 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1283 	}
1284 
1285 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1286 
1287 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1288 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1289 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1290 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1291 
1292 	pte_flags = AMDGPU_PTE_VALID;
1293 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1294 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1295 	if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
1296 		pte_flags |= AMDGPU_PTE_IS_PTE;
1297 
1298 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1299 	return pte_flags;
1300 }
1301 
1302 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1303 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1304 			 uint64_t start, uint64_t last,
1305 			 struct dma_fence **fence)
1306 {
1307 	uint64_t init_pte_value = 0;
1308 
1309 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1310 
1311 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1312 				      last, init_pte_value, 0, 0, NULL, NULL,
1313 				      fence);
1314 }
1315 
1316 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1317 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1318 			  unsigned long last, uint32_t trigger)
1319 {
1320 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1321 	struct kfd_process_device *pdd;
1322 	struct dma_fence *fence = NULL;
1323 	struct kfd_process *p;
1324 	uint32_t gpuidx;
1325 	int r = 0;
1326 
1327 	if (!prange->mapped_to_gpu) {
1328 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1329 			 prange, prange->start, prange->last);
1330 		return 0;
1331 	}
1332 
1333 	if (prange->start == start && prange->last == last) {
1334 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1335 		prange->mapped_to_gpu = false;
1336 	}
1337 
1338 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1339 		  MAX_GPU_INSTANCE);
1340 	p = container_of(prange->svms, struct kfd_process, svms);
1341 
1342 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1343 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1344 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1345 		if (!pdd) {
1346 			pr_debug("failed to find device idx %d\n", gpuidx);
1347 			return -EINVAL;
1348 		}
1349 
1350 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1351 					     start, last, trigger);
1352 
1353 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1354 					     drm_priv_to_vm(pdd->drm_priv),
1355 					     start, last, &fence);
1356 		if (r)
1357 			break;
1358 
1359 		if (fence) {
1360 			r = dma_fence_wait(fence, false);
1361 			dma_fence_put(fence);
1362 			fence = NULL;
1363 			if (r)
1364 				break;
1365 		}
1366 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1367 	}
1368 
1369 	return r;
1370 }
1371 
1372 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1373 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1374 		     unsigned long offset, unsigned long npages, bool readonly,
1375 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1376 		     struct dma_fence **fence, bool flush_tlb)
1377 {
1378 	struct amdgpu_device *adev = pdd->dev->adev;
1379 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1380 	uint64_t pte_flags;
1381 	unsigned long last_start;
1382 	int last_domain;
1383 	int r = 0;
1384 	int64_t i, j;
1385 
1386 	last_start = prange->start + offset;
1387 
1388 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1389 		 last_start, last_start + npages - 1, readonly);
1390 
1391 	for (i = offset; i < offset + npages; i++) {
1392 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1393 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1394 
1395 		/* Collect all pages in the same address range and memory domain
1396 		 * that can be mapped with a single call to update mapping.
1397 		 */
1398 		if (i < offset + npages - 1 &&
1399 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1400 			continue;
1401 
1402 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1403 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1404 
1405 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1406 		if (readonly)
1407 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1408 
1409 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1410 			 prange->svms, last_start, prange->start + i,
1411 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1412 			 pte_flags);
1413 
1414 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1415 		 * different memory partition based on fpfn/lpfn, we should use
1416 		 * same vm_manager.vram_base_offset regardless memory partition.
1417 		 */
1418 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1419 					   NULL, last_start, prange->start + i,
1420 					   pte_flags,
1421 					   (last_start - prange->start) << PAGE_SHIFT,
1422 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1423 					   NULL, dma_addr, &vm->last_update);
1424 
1425 		for (j = last_start - prange->start; j <= i; j++)
1426 			dma_addr[j] |= last_domain;
1427 
1428 		if (r) {
1429 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1430 			goto out;
1431 		}
1432 		last_start = prange->start + i + 1;
1433 	}
1434 
1435 	r = amdgpu_vm_update_pdes(adev, vm, false);
1436 	if (r) {
1437 		pr_debug("failed %d to update directories 0x%lx\n", r,
1438 			 prange->start);
1439 		goto out;
1440 	}
1441 
1442 	if (fence)
1443 		*fence = dma_fence_get(vm->last_update);
1444 
1445 out:
1446 	return r;
1447 }
1448 
1449 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1450 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1451 		      unsigned long npages, bool readonly,
1452 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1453 {
1454 	struct kfd_process_device *pdd;
1455 	struct amdgpu_device *bo_adev = NULL;
1456 	struct kfd_process *p;
1457 	struct dma_fence *fence = NULL;
1458 	uint32_t gpuidx;
1459 	int r = 0;
1460 
1461 	if (prange->svm_bo && prange->ttm_res)
1462 		bo_adev = prange->svm_bo->node->adev;
1463 
1464 	p = container_of(prange->svms, struct kfd_process, svms);
1465 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1466 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1467 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1468 		if (!pdd) {
1469 			pr_debug("failed to find device idx %d\n", gpuidx);
1470 			return -EINVAL;
1471 		}
1472 
1473 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1474 		if (IS_ERR(pdd))
1475 			return -EINVAL;
1476 
1477 		if (bo_adev && pdd->dev->adev != bo_adev &&
1478 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1479 			pr_debug("cannot map to device idx %d\n", gpuidx);
1480 			continue;
1481 		}
1482 
1483 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1484 					 prange->dma_addr[gpuidx],
1485 					 bo_adev, wait ? &fence : NULL,
1486 					 flush_tlb);
1487 		if (r)
1488 			break;
1489 
1490 		if (fence) {
1491 			r = dma_fence_wait(fence, false);
1492 			dma_fence_put(fence);
1493 			fence = NULL;
1494 			if (r) {
1495 				pr_debug("failed %d to dma fence wait\n", r);
1496 				break;
1497 			}
1498 		}
1499 
1500 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1501 	}
1502 
1503 	return r;
1504 }
1505 
1506 struct svm_validate_context {
1507 	struct kfd_process *process;
1508 	struct svm_range *prange;
1509 	bool intr;
1510 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1511 	struct drm_exec exec;
1512 };
1513 
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1514 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1515 {
1516 	struct kfd_process_device *pdd;
1517 	struct amdgpu_vm *vm;
1518 	uint32_t gpuidx;
1519 	int r;
1520 
1521 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1522 	drm_exec_until_all_locked(&ctx->exec) {
1523 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1524 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1525 			if (!pdd) {
1526 				pr_debug("failed to find device idx %d\n", gpuidx);
1527 				r = -EINVAL;
1528 				goto unreserve_out;
1529 			}
1530 			vm = drm_priv_to_vm(pdd->drm_priv);
1531 
1532 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1533 			drm_exec_retry_on_contention(&ctx->exec);
1534 			if (unlikely(r)) {
1535 				pr_debug("failed %d to reserve bo\n", r);
1536 				goto unreserve_out;
1537 			}
1538 		}
1539 	}
1540 
1541 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1542 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1543 		if (!pdd) {
1544 			pr_debug("failed to find device idx %d\n", gpuidx);
1545 			r = -EINVAL;
1546 			goto unreserve_out;
1547 		}
1548 
1549 		r = amdgpu_vm_validate(pdd->dev->adev,
1550 				       drm_priv_to_vm(pdd->drm_priv), NULL,
1551 				       svm_range_bo_validate, NULL);
1552 		if (r) {
1553 			pr_debug("failed %d validate pt bos\n", r);
1554 			goto unreserve_out;
1555 		}
1556 	}
1557 
1558 	return 0;
1559 
1560 unreserve_out:
1561 	drm_exec_fini(&ctx->exec);
1562 	return r;
1563 }
1564 
svm_range_unreserve_bos(struct svm_validate_context * ctx)1565 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1566 {
1567 	drm_exec_fini(&ctx->exec);
1568 }
1569 
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1570 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1571 {
1572 	struct kfd_process_device *pdd;
1573 
1574 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1575 	if (!pdd)
1576 		return NULL;
1577 
1578 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1579 }
1580 
1581 /*
1582  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1583  *
1584  * To prevent concurrent destruction or change of range attributes, the
1585  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1586  * because that would block concurrent evictions and lead to deadlocks. To
1587  * serialize concurrent migrations or validations of the same range, the
1588  * prange->migrate_mutex must be held.
1589  *
1590  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1591  * eviction fence.
1592  *
1593  * The following sequence ensures race-free validation and GPU mapping:
1594  *
1595  * 1. Reserve page table (and SVM BO if range is in VRAM)
1596  * 2. hmm_range_fault to get page addresses (if system memory)
1597  * 3. DMA-map pages (if system memory)
1598  * 4-a. Take notifier lock
1599  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1600  * 4-c. Check that the range was not split or otherwise invalidated
1601  * 4-d. Update GPU page table
1602  * 4.e. Release notifier lock
1603  * 5. Release page table (and SVM BO) reservation
1604  */
svm_range_validate_and_map(struct mm_struct * mm,unsigned long map_start,unsigned long map_last,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1605 static int svm_range_validate_and_map(struct mm_struct *mm,
1606 				      unsigned long map_start, unsigned long map_last,
1607 				      struct svm_range *prange, int32_t gpuidx,
1608 				      bool intr, bool wait, bool flush_tlb)
1609 {
1610 	struct svm_validate_context *ctx;
1611 	unsigned long start, end, addr;
1612 	struct kfd_process *p;
1613 	void *owner;
1614 	int32_t idx;
1615 	int r = 0;
1616 
1617 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1618 	if (!ctx)
1619 		return -ENOMEM;
1620 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1621 	ctx->prange = prange;
1622 	ctx->intr = intr;
1623 
1624 	if (gpuidx < MAX_GPU_INSTANCE) {
1625 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1626 		bitmap_set(ctx->bitmap, gpuidx, 1);
1627 	} else if (ctx->process->xnack_enabled) {
1628 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1629 
1630 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1631 		 * GPU, which has ACCESS attribute to the range, create mapping
1632 		 * on that GPU.
1633 		 */
1634 		if (prange->actual_loc) {
1635 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1636 							prange->actual_loc);
1637 			if (gpuidx < 0) {
1638 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1639 					 prange->actual_loc);
1640 				r = -EINVAL;
1641 				goto free_ctx;
1642 			}
1643 			if (test_bit(gpuidx, prange->bitmap_access))
1644 				bitmap_set(ctx->bitmap, gpuidx, 1);
1645 		}
1646 
1647 		/*
1648 		 * If prange is already mapped or with always mapped flag,
1649 		 * update mapping on GPUs with ACCESS attribute
1650 		 */
1651 		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1652 			if (prange->mapped_to_gpu ||
1653 			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1654 				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1655 		}
1656 	} else {
1657 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1658 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1659 	}
1660 
1661 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1662 		r = 0;
1663 		goto free_ctx;
1664 	}
1665 
1666 	if (prange->actual_loc && !prange->ttm_res) {
1667 		/* This should never happen. actual_loc gets set by
1668 		 * svm_migrate_ram_to_vram after allocating a BO.
1669 		 */
1670 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1671 		r = -EINVAL;
1672 		goto free_ctx;
1673 	}
1674 
1675 	r = svm_range_reserve_bos(ctx, intr);
1676 	if (r)
1677 		goto free_ctx;
1678 
1679 	p = container_of(prange->svms, struct kfd_process, svms);
1680 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1681 						MAX_GPU_INSTANCE));
1682 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1683 		if (kfd_svm_page_owner(p, idx) != owner) {
1684 			owner = NULL;
1685 			break;
1686 		}
1687 	}
1688 
1689 	start = map_start << PAGE_SHIFT;
1690 	end = (map_last + 1) << PAGE_SHIFT;
1691 	for (addr = start; !r && addr < end; ) {
1692 		struct hmm_range *hmm_range = NULL;
1693 		unsigned long map_start_vma;
1694 		unsigned long map_last_vma;
1695 		struct vm_area_struct *vma;
1696 		unsigned long next = 0;
1697 		unsigned long offset;
1698 		unsigned long npages;
1699 		bool readonly;
1700 
1701 		vma = vma_lookup(mm, addr);
1702 		if (vma) {
1703 			readonly = !(vma->vm_flags & VM_WRITE);
1704 
1705 			next = min(vma->vm_end, end);
1706 			npages = (next - addr) >> PAGE_SHIFT;
1707 			WRITE_ONCE(p->svms.faulting_task, current);
1708 			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1709 						       readonly, owner, NULL,
1710 						       &hmm_range);
1711 			WRITE_ONCE(p->svms.faulting_task, NULL);
1712 			if (r)
1713 				pr_debug("failed %d to get svm range pages\n", r);
1714 		} else {
1715 			r = -EFAULT;
1716 		}
1717 
1718 		if (!r) {
1719 			offset = (addr >> PAGE_SHIFT) - prange->start;
1720 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1721 					      hmm_range->hmm_pfns);
1722 			if (r)
1723 				pr_debug("failed %d to dma map range\n", r);
1724 		}
1725 
1726 		svm_range_lock(prange);
1727 
1728 		/* Free backing memory of hmm_range if it was initialized
1729 		 * Overrride return value to TRY AGAIN only if prior returns
1730 		 * were successful
1731 		 */
1732 		if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1733 			pr_debug("hmm update the range, need validate again\n");
1734 			r = -EAGAIN;
1735 		}
1736 
1737 		if (!r && !list_empty(&prange->child_list)) {
1738 			pr_debug("range split by unmap in parallel, validate again\n");
1739 			r = -EAGAIN;
1740 		}
1741 
1742 		if (!r) {
1743 			map_start_vma = max(map_start, prange->start + offset);
1744 			map_last_vma = min(map_last, prange->start + offset + npages - 1);
1745 			if (map_start_vma <= map_last_vma) {
1746 				offset = map_start_vma - prange->start;
1747 				npages = map_last_vma - map_start_vma + 1;
1748 				r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1749 							  ctx->bitmap, wait, flush_tlb);
1750 			}
1751 		}
1752 
1753 		if (!r && next == end)
1754 			prange->mapped_to_gpu = true;
1755 
1756 		svm_range_unlock(prange);
1757 
1758 		addr = next;
1759 	}
1760 
1761 	svm_range_unreserve_bos(ctx);
1762 	if (!r)
1763 		prange->validate_timestamp = ktime_get_boottime();
1764 
1765 free_ctx:
1766 	kfree(ctx);
1767 
1768 	return r;
1769 }
1770 
1771 /**
1772  * svm_range_list_lock_and_flush_work - flush pending deferred work
1773  *
1774  * @svms: the svm range list
1775  * @mm: the mm structure
1776  *
1777  * Context: Returns with mmap write lock held, pending deferred work flushed
1778  *
1779  */
1780 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1781 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1782 				   struct mm_struct *mm)
1783 {
1784 retry_flush_work:
1785 	flush_work(&svms->deferred_list_work);
1786 	mmap_write_lock(mm);
1787 
1788 	if (list_empty(&svms->deferred_range_list))
1789 		return;
1790 	mmap_write_unlock(mm);
1791 	pr_debug("retry flush\n");
1792 	goto retry_flush_work;
1793 }
1794 
svm_range_restore_work(struct work_struct * work)1795 static void svm_range_restore_work(struct work_struct *work)
1796 {
1797 	struct delayed_work *dwork = to_delayed_work(work);
1798 	struct amdkfd_process_info *process_info;
1799 	struct svm_range_list *svms;
1800 	struct svm_range *prange;
1801 	struct kfd_process *p;
1802 	struct mm_struct *mm;
1803 	int evicted_ranges;
1804 	int invalid;
1805 	int r;
1806 
1807 	svms = container_of(dwork, struct svm_range_list, restore_work);
1808 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1809 	if (!evicted_ranges)
1810 		return;
1811 
1812 	pr_debug("restore svm ranges\n");
1813 
1814 	p = container_of(svms, struct kfd_process, svms);
1815 	process_info = p->kgd_process_info;
1816 
1817 	/* Keep mm reference when svm_range_validate_and_map ranges */
1818 	mm = get_task_mm(p->lead_thread);
1819 	if (!mm) {
1820 		pr_debug("svms 0x%p process mm gone\n", svms);
1821 		return;
1822 	}
1823 
1824 	mutex_lock(&process_info->lock);
1825 	svm_range_list_lock_and_flush_work(svms, mm);
1826 	mutex_lock(&svms->lock);
1827 
1828 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1829 
1830 	list_for_each_entry(prange, &svms->list, list) {
1831 		invalid = atomic_read(&prange->invalid);
1832 		if (!invalid)
1833 			continue;
1834 
1835 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1836 			 prange->svms, prange, prange->start, prange->last,
1837 			 invalid);
1838 
1839 		/*
1840 		 * If range is migrating, wait for migration is done.
1841 		 */
1842 		mutex_lock(&prange->migrate_mutex);
1843 
1844 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1845 					       MAX_GPU_INSTANCE, false, true, false);
1846 		if (r)
1847 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1848 				 prange->start);
1849 
1850 		mutex_unlock(&prange->migrate_mutex);
1851 		if (r)
1852 			goto out_reschedule;
1853 
1854 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1855 			goto out_reschedule;
1856 	}
1857 
1858 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1859 	    evicted_ranges)
1860 		goto out_reschedule;
1861 
1862 	evicted_ranges = 0;
1863 
1864 	r = kgd2kfd_resume_mm(mm);
1865 	if (r) {
1866 		/* No recovery from this failure. Probably the CP is
1867 		 * hanging. No point trying again.
1868 		 */
1869 		pr_debug("failed %d to resume KFD\n", r);
1870 	}
1871 
1872 	pr_debug("restore svm ranges successfully\n");
1873 
1874 out_reschedule:
1875 	mutex_unlock(&svms->lock);
1876 	mmap_write_unlock(mm);
1877 	mutex_unlock(&process_info->lock);
1878 
1879 	/* If validation failed, reschedule another attempt */
1880 	if (evicted_ranges) {
1881 		pr_debug("reschedule to restore svm range\n");
1882 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1883 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1884 
1885 		kfd_smi_event_queue_restore_rescheduled(mm);
1886 	}
1887 	mmput(mm);
1888 }
1889 
1890 /**
1891  * svm_range_evict - evict svm range
1892  * @prange: svm range structure
1893  * @mm: current process mm_struct
1894  * @start: starting process queue number
1895  * @last: last process queue number
1896  * @event: mmu notifier event when range is evicted or migrated
1897  *
1898  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1899  * return to let CPU evict the buffer and proceed CPU pagetable update.
1900  *
1901  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1902  * If invalidation happens while restore work is running, restore work will
1903  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1904  * the queues.
1905  */
1906 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1907 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1908 		unsigned long start, unsigned long last,
1909 		enum mmu_notifier_event event)
1910 {
1911 	struct svm_range_list *svms = prange->svms;
1912 	struct svm_range *pchild;
1913 	struct kfd_process *p;
1914 	int r = 0;
1915 
1916 	p = container_of(svms, struct kfd_process, svms);
1917 
1918 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1919 		 svms, prange->start, prange->last, start, last);
1920 
1921 	if (!p->xnack_enabled ||
1922 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1923 		int evicted_ranges;
1924 		bool mapped = prange->mapped_to_gpu;
1925 
1926 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1927 			if (!pchild->mapped_to_gpu)
1928 				continue;
1929 			mapped = true;
1930 			mutex_lock_nested(&pchild->lock, 1);
1931 			if (pchild->start <= last && pchild->last >= start) {
1932 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1933 					 pchild->start, pchild->last);
1934 				atomic_inc(&pchild->invalid);
1935 			}
1936 			mutex_unlock(&pchild->lock);
1937 		}
1938 
1939 		if (!mapped)
1940 			return r;
1941 
1942 		if (prange->start <= last && prange->last >= start)
1943 			atomic_inc(&prange->invalid);
1944 
1945 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1946 		if (evicted_ranges != 1)
1947 			return r;
1948 
1949 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1950 			 prange->svms, prange->start, prange->last);
1951 
1952 		/* First eviction, stop the queues */
1953 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1954 		if (r)
1955 			pr_debug("failed to quiesce KFD\n");
1956 
1957 		pr_debug("schedule to restore svm %p ranges\n", svms);
1958 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1959 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1960 	} else {
1961 		unsigned long s, l;
1962 		uint32_t trigger;
1963 
1964 		if (event == MMU_NOTIFY_MIGRATE)
1965 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1966 		else
1967 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1968 
1969 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1970 			 prange->svms, start, last);
1971 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1972 			mutex_lock_nested(&pchild->lock, 1);
1973 			s = max(start, pchild->start);
1974 			l = min(last, pchild->last);
1975 			if (l >= s)
1976 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1977 			mutex_unlock(&pchild->lock);
1978 		}
1979 		s = max(start, prange->start);
1980 		l = min(last, prange->last);
1981 		if (l >= s)
1982 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1983 	}
1984 
1985 	return r;
1986 }
1987 
svm_range_clone(struct svm_range * old)1988 static struct svm_range *svm_range_clone(struct svm_range *old)
1989 {
1990 	struct svm_range *new;
1991 
1992 	new = svm_range_new(old->svms, old->start, old->last, false);
1993 	if (!new)
1994 		return NULL;
1995 	if (svm_range_copy_dma_addrs(new, old)) {
1996 		svm_range_free(new, false);
1997 		return NULL;
1998 	}
1999 	if (old->svm_bo) {
2000 		new->ttm_res = old->ttm_res;
2001 		new->offset = old->offset;
2002 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
2003 		spin_lock(&new->svm_bo->list_lock);
2004 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2005 		spin_unlock(&new->svm_bo->list_lock);
2006 	}
2007 	new->flags = old->flags;
2008 	new->preferred_loc = old->preferred_loc;
2009 	new->prefetch_loc = old->prefetch_loc;
2010 	new->actual_loc = old->actual_loc;
2011 	new->granularity = old->granularity;
2012 	new->mapped_to_gpu = old->mapped_to_gpu;
2013 	new->vram_pages = old->vram_pages;
2014 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2015 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2016 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2017 
2018 	return new;
2019 }
2020 
svm_range_set_max_pages(struct amdgpu_device * adev)2021 void svm_range_set_max_pages(struct amdgpu_device *adev)
2022 {
2023 	uint64_t max_pages;
2024 	uint64_t pages, _pages;
2025 	uint64_t min_pages = 0;
2026 	int i, id;
2027 
2028 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2029 		if (adev->kfd.dev->nodes[i]->xcp)
2030 			id = adev->kfd.dev->nodes[i]->xcp->id;
2031 		else
2032 			id = -1;
2033 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2034 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2035 		pages = rounddown_pow_of_two(pages);
2036 		min_pages = min_not_zero(min_pages, pages);
2037 	}
2038 
2039 	do {
2040 		max_pages = READ_ONCE(max_svm_range_pages);
2041 		_pages = min_not_zero(max_pages, min_pages);
2042 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2043 }
2044 
2045 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2046 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2047 		    uint64_t max_pages, struct list_head *insert_list,
2048 		    struct list_head *update_list)
2049 {
2050 	struct svm_range *prange;
2051 	uint64_t l;
2052 
2053 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2054 		 max_pages, start, last);
2055 
2056 	while (last >= start) {
2057 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2058 
2059 		prange = svm_range_new(svms, start, l, true);
2060 		if (!prange)
2061 			return -ENOMEM;
2062 		list_add(&prange->list, insert_list);
2063 		list_add(&prange->update_list, update_list);
2064 
2065 		start = l + 1;
2066 	}
2067 	return 0;
2068 }
2069 
2070 /**
2071  * svm_range_add - add svm range and handle overlap
2072  * @p: the range add to this process svms
2073  * @start: page size aligned
2074  * @size: page size aligned
2075  * @nattr: number of attributes
2076  * @attrs: array of attributes
2077  * @update_list: output, the ranges need validate and update GPU mapping
2078  * @insert_list: output, the ranges need insert to svms
2079  * @remove_list: output, the ranges are replaced and need remove from svms
2080  * @remap_list: output, remap unaligned svm ranges
2081  *
2082  * Check if the virtual address range has overlap with any existing ranges,
2083  * split partly overlapping ranges and add new ranges in the gaps. All changes
2084  * should be applied to the range_list and interval tree transactionally. If
2085  * any range split or allocation fails, the entire update fails. Therefore any
2086  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2087  * unchanged.
2088  *
2089  * If the transaction succeeds, the caller can update and insert clones and
2090  * new ranges, then free the originals.
2091  *
2092  * Otherwise the caller can free the clones and new ranges, while the old
2093  * svm_ranges remain unchanged.
2094  *
2095  * Context: Process context, caller must hold svms->lock
2096  *
2097  * Return:
2098  * 0 - OK, otherwise error code
2099  */
2100 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list,struct list_head * remap_list)2101 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2102 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2103 	      struct list_head *update_list, struct list_head *insert_list,
2104 	      struct list_head *remove_list, struct list_head *remap_list)
2105 {
2106 	unsigned long last = start + size - 1UL;
2107 	struct svm_range_list *svms = &p->svms;
2108 	struct interval_tree_node *node;
2109 	struct svm_range *prange;
2110 	struct svm_range *tmp;
2111 	struct list_head new_list;
2112 	int r = 0;
2113 
2114 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2115 
2116 	INIT_LIST_HEAD(update_list);
2117 	INIT_LIST_HEAD(insert_list);
2118 	INIT_LIST_HEAD(remove_list);
2119 	INIT_LIST_HEAD(&new_list);
2120 	INIT_LIST_HEAD(remap_list);
2121 
2122 	node = interval_tree_iter_first(&svms->objects, start, last);
2123 	while (node) {
2124 		struct interval_tree_node *next;
2125 		unsigned long next_start;
2126 
2127 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2128 			 node->last);
2129 
2130 		prange = container_of(node, struct svm_range, it_node);
2131 		next = interval_tree_iter_next(node, start, last);
2132 		next_start = min(node->last, last) + 1;
2133 
2134 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2135 		    prange->mapped_to_gpu) {
2136 			/* nothing to do */
2137 		} else if (node->start < start || node->last > last) {
2138 			/* node intersects the update range and its attributes
2139 			 * will change. Clone and split it, apply updates only
2140 			 * to the overlapping part
2141 			 */
2142 			struct svm_range *old = prange;
2143 
2144 			prange = svm_range_clone(old);
2145 			if (!prange) {
2146 				r = -ENOMEM;
2147 				goto out;
2148 			}
2149 
2150 			list_add(&old->update_list, remove_list);
2151 			list_add(&prange->list, insert_list);
2152 			list_add(&prange->update_list, update_list);
2153 
2154 			if (node->start < start) {
2155 				pr_debug("change old range start\n");
2156 				r = svm_range_split_head(prange, start,
2157 							 insert_list, remap_list);
2158 				if (r)
2159 					goto out;
2160 			}
2161 			if (node->last > last) {
2162 				pr_debug("change old range last\n");
2163 				r = svm_range_split_tail(prange, last,
2164 							 insert_list, remap_list);
2165 				if (r)
2166 					goto out;
2167 			}
2168 		} else {
2169 			/* The node is contained within start..last,
2170 			 * just update it
2171 			 */
2172 			list_add(&prange->update_list, update_list);
2173 		}
2174 
2175 		/* insert a new node if needed */
2176 		if (node->start > start) {
2177 			r = svm_range_split_new(svms, start, node->start - 1,
2178 						READ_ONCE(max_svm_range_pages),
2179 						&new_list, update_list);
2180 			if (r)
2181 				goto out;
2182 		}
2183 
2184 		node = next;
2185 		start = next_start;
2186 	}
2187 
2188 	/* add a final range at the end if needed */
2189 	if (start <= last)
2190 		r = svm_range_split_new(svms, start, last,
2191 					READ_ONCE(max_svm_range_pages),
2192 					&new_list, update_list);
2193 
2194 out:
2195 	if (r) {
2196 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2197 			svm_range_free(prange, false);
2198 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2199 			svm_range_free(prange, true);
2200 	} else {
2201 		list_splice(&new_list, insert_list);
2202 	}
2203 
2204 	return r;
2205 }
2206 
2207 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2208 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2209 					    struct svm_range *prange)
2210 {
2211 	unsigned long start;
2212 	unsigned long last;
2213 
2214 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2215 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2216 
2217 	if (prange->start == start && prange->last == last)
2218 		return;
2219 
2220 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2221 		  prange->svms, prange, start, last, prange->start,
2222 		  prange->last);
2223 
2224 	if (start != 0 && last != 0) {
2225 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2226 		svm_range_remove_notifier(prange);
2227 	}
2228 	prange->it_node.start = prange->start;
2229 	prange->it_node.last = prange->last;
2230 
2231 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2232 	svm_range_add_notifier_locked(mm, prange);
2233 }
2234 
2235 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2236 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2237 			 struct mm_struct *mm)
2238 {
2239 	switch (prange->work_item.op) {
2240 	case SVM_OP_NULL:
2241 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2242 			 svms, prange, prange->start, prange->last);
2243 		break;
2244 	case SVM_OP_UNMAP_RANGE:
2245 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2246 			 svms, prange, prange->start, prange->last);
2247 		svm_range_unlink(prange);
2248 		svm_range_remove_notifier(prange);
2249 		svm_range_free(prange, true);
2250 		break;
2251 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2252 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2253 			 svms, prange, prange->start, prange->last);
2254 		svm_range_update_notifier_and_interval_tree(mm, prange);
2255 		break;
2256 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2257 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2258 			 svms, prange, prange->start, prange->last);
2259 		svm_range_update_notifier_and_interval_tree(mm, prange);
2260 		/* TODO: implement deferred validation and mapping */
2261 		break;
2262 	case SVM_OP_ADD_RANGE:
2263 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2264 			 prange->start, prange->last);
2265 		svm_range_add_to_svms(prange);
2266 		svm_range_add_notifier_locked(mm, prange);
2267 		break;
2268 	case SVM_OP_ADD_RANGE_AND_MAP:
2269 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2270 			 prange, prange->start, prange->last);
2271 		svm_range_add_to_svms(prange);
2272 		svm_range_add_notifier_locked(mm, prange);
2273 		/* TODO: implement deferred validation and mapping */
2274 		break;
2275 	default:
2276 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2277 			 prange->work_item.op);
2278 	}
2279 }
2280 
svm_range_drain_retry_fault(struct svm_range_list * svms)2281 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2282 {
2283 	struct kfd_process_device *pdd;
2284 	struct kfd_process *p;
2285 	uint32_t i;
2286 
2287 	p = container_of(svms, struct kfd_process, svms);
2288 
2289 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2290 		pdd = p->pdds[i];
2291 		if (!pdd)
2292 			continue;
2293 
2294 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2295 
2296 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2297 				pdd->dev->adev->irq.retry_cam_enabled ?
2298 				&pdd->dev->adev->irq.ih :
2299 				&pdd->dev->adev->irq.ih1);
2300 
2301 		if (pdd->dev->adev->irq.retry_cam_enabled)
2302 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2303 				&pdd->dev->adev->irq.ih_soft);
2304 
2305 
2306 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2307 	}
2308 }
2309 
svm_range_deferred_list_work(struct work_struct * work)2310 static void svm_range_deferred_list_work(struct work_struct *work)
2311 {
2312 	struct svm_range_list *svms;
2313 	struct svm_range *prange;
2314 	struct mm_struct *mm;
2315 
2316 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2317 	pr_debug("enter svms 0x%p\n", svms);
2318 
2319 	spin_lock(&svms->deferred_list_lock);
2320 	while (!list_empty(&svms->deferred_range_list)) {
2321 		prange = list_first_entry(&svms->deferred_range_list,
2322 					  struct svm_range, deferred_list);
2323 		spin_unlock(&svms->deferred_list_lock);
2324 
2325 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2326 			 prange->start, prange->last, prange->work_item.op);
2327 
2328 		mm = prange->work_item.mm;
2329 
2330 		mmap_write_lock(mm);
2331 
2332 		/* Remove from deferred_list must be inside mmap write lock, for
2333 		 * two race cases:
2334 		 * 1. unmap_from_cpu may change work_item.op and add the range
2335 		 *    to deferred_list again, cause use after free bug.
2336 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2337 		 *    lock and continue because deferred_list is empty, but
2338 		 *    deferred_list work is actually waiting for mmap lock.
2339 		 */
2340 		spin_lock(&svms->deferred_list_lock);
2341 		list_del_init(&prange->deferred_list);
2342 		spin_unlock(&svms->deferred_list_lock);
2343 
2344 		mutex_lock(&svms->lock);
2345 		mutex_lock(&prange->migrate_mutex);
2346 		while (!list_empty(&prange->child_list)) {
2347 			struct svm_range *pchild;
2348 
2349 			pchild = list_first_entry(&prange->child_list,
2350 						struct svm_range, child_list);
2351 			pr_debug("child prange 0x%p op %d\n", pchild,
2352 				 pchild->work_item.op);
2353 			list_del_init(&pchild->child_list);
2354 			svm_range_handle_list_op(svms, pchild, mm);
2355 		}
2356 		mutex_unlock(&prange->migrate_mutex);
2357 
2358 		svm_range_handle_list_op(svms, prange, mm);
2359 		mutex_unlock(&svms->lock);
2360 		mmap_write_unlock(mm);
2361 
2362 		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2363 		 * last mm refcount, schedule release work to avoid circular locking
2364 		 */
2365 		mmput_async(mm);
2366 
2367 		spin_lock(&svms->deferred_list_lock);
2368 	}
2369 	spin_unlock(&svms->deferred_list_lock);
2370 	pr_debug("exit svms 0x%p\n", svms);
2371 }
2372 
2373 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2374 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2375 			struct mm_struct *mm, enum svm_work_list_ops op)
2376 {
2377 	spin_lock(&svms->deferred_list_lock);
2378 	/* if prange is on the deferred list */
2379 	if (!list_empty(&prange->deferred_list)) {
2380 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2381 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2382 		if (op != SVM_OP_NULL &&
2383 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2384 			prange->work_item.op = op;
2385 	} else {
2386 		/* Pairs with mmput in deferred_list_work.
2387 		 * If process is exiting and mm is gone, don't update mmu notifier.
2388 		 */
2389 		if (mmget_not_zero(mm)) {
2390 			prange->work_item.mm = mm;
2391 			prange->work_item.op = op;
2392 			list_add_tail(&prange->deferred_list,
2393 				      &prange->svms->deferred_range_list);
2394 			pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2395 				 prange, prange->start, prange->last, op);
2396 		}
2397 	}
2398 	spin_unlock(&svms->deferred_list_lock);
2399 }
2400 
schedule_deferred_list_work(struct svm_range_list * svms)2401 void schedule_deferred_list_work(struct svm_range_list *svms)
2402 {
2403 	spin_lock(&svms->deferred_list_lock);
2404 	if (!list_empty(&svms->deferred_range_list))
2405 		schedule_work(&svms->deferred_list_work);
2406 	spin_unlock(&svms->deferred_list_lock);
2407 }
2408 
2409 static void
svm_range_unmap_split(struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2410 svm_range_unmap_split(struct svm_range *parent, struct svm_range *prange, unsigned long start,
2411 		      unsigned long last)
2412 {
2413 	struct svm_range *head;
2414 	struct svm_range *tail;
2415 
2416 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2417 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2418 			 prange->start, prange->last);
2419 		return;
2420 	}
2421 	if (start > prange->last || last < prange->start)
2422 		return;
2423 
2424 	head = tail = prange;
2425 	if (start > prange->start)
2426 		svm_range_split(prange, prange->start, start - 1, &tail);
2427 	if (last < tail->last)
2428 		svm_range_split(tail, last + 1, tail->last, &head);
2429 
2430 	if (head != prange && tail != prange) {
2431 		svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2432 		svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
2433 	} else if (tail != prange) {
2434 		svm_range_add_child(parent, tail, SVM_OP_UNMAP_RANGE);
2435 	} else if (head != prange) {
2436 		svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2437 	} else if (parent != prange) {
2438 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2439 	}
2440 }
2441 
2442 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2443 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2444 			 unsigned long start, unsigned long last)
2445 {
2446 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2447 	struct svm_range_list *svms;
2448 	struct svm_range *pchild;
2449 	struct kfd_process *p;
2450 	unsigned long s, l;
2451 	bool unmap_parent;
2452 	uint32_t i;
2453 
2454 	if (atomic_read(&prange->queue_refcount)) {
2455 		int r;
2456 
2457 		pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2458 			prange->start << PAGE_SHIFT);
2459 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2460 		if (r)
2461 			pr_debug("failed %d to quiesce KFD queues\n", r);
2462 	}
2463 
2464 	p = kfd_lookup_process_by_mm(mm);
2465 	if (!p)
2466 		return;
2467 	svms = &p->svms;
2468 
2469 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2470 		 prange, prange->start, prange->last, start, last);
2471 
2472 	/* calculate time stamps that are used to decide which page faults need be
2473 	 * dropped or handled before unmap pages from gpu vm
2474 	 */
2475 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2476 		struct kfd_process_device *pdd;
2477 		struct amdgpu_device *adev;
2478 		struct amdgpu_ih_ring *ih;
2479 		uint32_t checkpoint_wptr;
2480 
2481 		pdd = p->pdds[i];
2482 		if (!pdd)
2483 			continue;
2484 
2485 		adev = pdd->dev->adev;
2486 
2487 		/* Check and drain ih1 ring if cam not available */
2488 		if (adev->irq.ih1.ring_size) {
2489 			ih = &adev->irq.ih1;
2490 			checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2491 			if (ih->rptr != checkpoint_wptr) {
2492 				svms->checkpoint_ts[i] =
2493 					amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2494 				continue;
2495 			}
2496 		}
2497 
2498 		/* check if dev->irq.ih_soft is not empty */
2499 		ih = &adev->irq.ih_soft;
2500 		checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2501 		if (ih->rptr != checkpoint_wptr)
2502 			svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2503 	}
2504 
2505 	unmap_parent = start <= prange->start && last >= prange->last;
2506 
2507 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2508 		mutex_lock_nested(&pchild->lock, 1);
2509 		s = max(start, pchild->start);
2510 		l = min(last, pchild->last);
2511 		if (l >= s)
2512 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2513 		svm_range_unmap_split(prange, pchild, start, last);
2514 		mutex_unlock(&pchild->lock);
2515 	}
2516 	s = max(start, prange->start);
2517 	l = min(last, prange->last);
2518 	if (l >= s)
2519 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2520 	svm_range_unmap_split(prange, prange, start, last);
2521 
2522 	if (unmap_parent)
2523 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2524 	else
2525 		svm_range_add_list_work(svms, prange, mm,
2526 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2527 	schedule_deferred_list_work(svms);
2528 
2529 	kfd_unref_process(p);
2530 }
2531 
2532 /**
2533  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2534  * @mni: mmu_interval_notifier struct
2535  * @range: mmu_notifier_range struct
2536  * @cur_seq: value to pass to mmu_interval_set_seq()
2537  *
2538  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2539  * is from migration, or CPU page invalidation callback.
2540  *
2541  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2542  * work thread, and split prange if only part of prange is unmapped.
2543  *
2544  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2545  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2546  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2547  * update GPU mapping to recover.
2548  *
2549  * Context: mmap lock, notifier_invalidate_start lock are held
2550  *          for invalidate event, prange lock is held if this is from migration
2551  */
2552 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2553 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2554 				    const struct mmu_notifier_range *range,
2555 				    unsigned long cur_seq)
2556 {
2557 	struct svm_range *prange;
2558 	unsigned long start;
2559 	unsigned long last;
2560 
2561 	if (range->event == MMU_NOTIFY_RELEASE)
2562 		return true;
2563 
2564 	start = mni->interval_tree.start;
2565 	last = mni->interval_tree.last;
2566 	start = max(start, range->start) >> PAGE_SHIFT;
2567 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2568 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2569 		 start, last, range->start >> PAGE_SHIFT,
2570 		 (range->end - 1) >> PAGE_SHIFT,
2571 		 mni->interval_tree.start >> PAGE_SHIFT,
2572 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2573 
2574 	prange = container_of(mni, struct svm_range, notifier);
2575 
2576 	svm_range_lock(prange);
2577 	mmu_interval_set_seq(mni, cur_seq);
2578 
2579 	switch (range->event) {
2580 	case MMU_NOTIFY_UNMAP:
2581 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2582 		break;
2583 	default:
2584 		svm_range_evict(prange, mni->mm, start, last, range->event);
2585 		break;
2586 	}
2587 
2588 	svm_range_unlock(prange);
2589 
2590 	return true;
2591 }
2592 
2593 /**
2594  * svm_range_from_addr - find svm range from fault address
2595  * @svms: svm range list header
2596  * @addr: address to search range interval tree, in pages
2597  * @parent: parent range if range is on child list
2598  *
2599  * Context: The caller must hold svms->lock
2600  *
2601  * Return: the svm_range found or NULL
2602  */
2603 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2604 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2605 		    struct svm_range **parent)
2606 {
2607 	struct interval_tree_node *node;
2608 	struct svm_range *prange;
2609 	struct svm_range *pchild;
2610 
2611 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2612 	if (!node)
2613 		return NULL;
2614 
2615 	prange = container_of(node, struct svm_range, it_node);
2616 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2617 		 addr, prange->start, prange->last, node->start, node->last);
2618 
2619 	if (addr >= prange->start && addr <= prange->last) {
2620 		if (parent)
2621 			*parent = prange;
2622 		return prange;
2623 	}
2624 	list_for_each_entry(pchild, &prange->child_list, child_list)
2625 		if (addr >= pchild->start && addr <= pchild->last) {
2626 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2627 				 addr, pchild->start, pchild->last);
2628 			if (parent)
2629 				*parent = prange;
2630 			return pchild;
2631 		}
2632 
2633 	return NULL;
2634 }
2635 
2636 /* svm_range_best_restore_location - decide the best fault restore location
2637  * @prange: svm range structure
2638  * @adev: the GPU on which vm fault happened
2639  *
2640  * This is only called when xnack is on, to decide the best location to restore
2641  * the range mapping after GPU vm fault. Caller uses the best location to do
2642  * migration if actual loc is not best location, then update GPU page table
2643  * mapping to the best location.
2644  *
2645  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2646  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2647  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2648  *    if range actual loc is cpu, best_loc is cpu
2649  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2650  *    range actual loc.
2651  * Otherwise, GPU no access, best_loc is -1.
2652  *
2653  * Return:
2654  * -1 means vm fault GPU no access
2655  * 0 for CPU or GPU id
2656  */
2657 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2658 svm_range_best_restore_location(struct svm_range *prange,
2659 				struct kfd_node *node,
2660 				int32_t *gpuidx)
2661 {
2662 	struct kfd_node *bo_node, *preferred_node;
2663 	struct kfd_process *p;
2664 	uint32_t gpuid;
2665 	int r;
2666 
2667 	p = container_of(prange->svms, struct kfd_process, svms);
2668 
2669 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2670 	if (r < 0) {
2671 		pr_debug("failed to get gpuid from kgd\n");
2672 		return -1;
2673 	}
2674 
2675 	if (node->adev->flags & AMD_IS_APU)
2676 		return 0;
2677 
2678 	if (prange->preferred_loc == gpuid ||
2679 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2680 		return prange->preferred_loc;
2681 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2682 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2683 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2684 			return prange->preferred_loc;
2685 		/* fall through */
2686 	}
2687 
2688 	if (test_bit(*gpuidx, prange->bitmap_access))
2689 		return gpuid;
2690 
2691 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2692 		if (!prange->actual_loc)
2693 			return 0;
2694 
2695 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2696 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2697 			return prange->actual_loc;
2698 		else
2699 			return 0;
2700 	}
2701 
2702 	return -1;
2703 }
2704 
2705 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2706 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2707 			       unsigned long *start, unsigned long *last,
2708 			       bool *is_heap_stack)
2709 {
2710 	struct vm_area_struct *vma;
2711 	struct interval_tree_node *node;
2712 	struct rb_node *rb_node;
2713 	unsigned long start_limit, end_limit;
2714 
2715 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2716 	if (!vma) {
2717 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2718 		return -EFAULT;
2719 	}
2720 
2721 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2722 
2723 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2724 		      (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2725 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2726 		    (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2727 
2728 	/* First range that starts after the fault address */
2729 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2730 	if (node) {
2731 		end_limit = min(end_limit, node->start);
2732 		/* Last range that ends before the fault address */
2733 		rb_node = rb_prev(&node->rb);
2734 	} else {
2735 		/* Last range must end before addr because
2736 		 * there was no range after addr
2737 		 */
2738 		rb_node = rb_last(&p->svms.objects.rb_root);
2739 	}
2740 	if (rb_node) {
2741 		node = container_of(rb_node, struct interval_tree_node, rb);
2742 		if (node->last >= addr) {
2743 			WARN(1, "Overlap with prev node and page fault addr\n");
2744 			return -EFAULT;
2745 		}
2746 		start_limit = max(start_limit, node->last + 1);
2747 	}
2748 
2749 	*start = start_limit;
2750 	*last = end_limit - 1;
2751 
2752 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2753 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2754 		 *start, *last, *is_heap_stack);
2755 
2756 	return 0;
2757 }
2758 
2759 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2760 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2761 			   uint64_t *bo_s, uint64_t *bo_l)
2762 {
2763 	struct amdgpu_bo_va_mapping *mapping;
2764 	struct interval_tree_node *node;
2765 	struct amdgpu_bo *bo = NULL;
2766 	unsigned long userptr;
2767 	uint32_t i;
2768 	int r;
2769 
2770 	for (i = 0; i < p->n_pdds; i++) {
2771 		struct amdgpu_vm *vm;
2772 
2773 		if (!p->pdds[i]->drm_priv)
2774 			continue;
2775 
2776 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2777 		r = amdgpu_bo_reserve(vm->root.bo, false);
2778 		if (r)
2779 			return r;
2780 
2781 		/* Check userptr by searching entire vm->va interval tree */
2782 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2783 		while (node) {
2784 			mapping = container_of((struct rb_node *)node,
2785 					       struct amdgpu_bo_va_mapping, rb);
2786 			bo = mapping->bo_va->base.bo;
2787 
2788 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2789 							 start << PAGE_SHIFT,
2790 							 last << PAGE_SHIFT,
2791 							 &userptr)) {
2792 				node = interval_tree_iter_next(node, 0, ~0ULL);
2793 				continue;
2794 			}
2795 
2796 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2797 				 start, last);
2798 			if (bo_s && bo_l) {
2799 				*bo_s = userptr >> PAGE_SHIFT;
2800 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2801 			}
2802 			amdgpu_bo_unreserve(vm->root.bo);
2803 			return -EADDRINUSE;
2804 		}
2805 		amdgpu_bo_unreserve(vm->root.bo);
2806 	}
2807 	return 0;
2808 }
2809 
2810 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2811 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2812 						struct kfd_process *p,
2813 						struct mm_struct *mm,
2814 						int64_t addr)
2815 {
2816 	struct svm_range *prange = NULL;
2817 	unsigned long start, last;
2818 	uint32_t gpuid, gpuidx;
2819 	bool is_heap_stack;
2820 	uint64_t bo_s = 0;
2821 	uint64_t bo_l = 0;
2822 	int r;
2823 
2824 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2825 					   &is_heap_stack))
2826 		return NULL;
2827 
2828 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2829 	if (r != -EADDRINUSE)
2830 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2831 
2832 	if (r == -EADDRINUSE) {
2833 		if (addr >= bo_s && addr <= bo_l)
2834 			return NULL;
2835 
2836 		/* Create one page svm range if 2MB range overlapping */
2837 		start = addr;
2838 		last = addr;
2839 	}
2840 
2841 	prange = svm_range_new(&p->svms, start, last, true);
2842 	if (!prange) {
2843 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2844 		return NULL;
2845 	}
2846 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2847 		pr_debug("failed to get gpuid from kgd\n");
2848 		svm_range_free(prange, true);
2849 		return NULL;
2850 	}
2851 
2852 	if (is_heap_stack)
2853 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2854 
2855 	svm_range_add_to_svms(prange);
2856 	svm_range_add_notifier_locked(mm, prange);
2857 
2858 	return prange;
2859 }
2860 
2861 /* svm_range_skip_recover - decide if prange can be recovered
2862  * @prange: svm range structure
2863  *
2864  * GPU vm retry fault handle skip recover the range for cases:
2865  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2866  *    deferred list work will drain the stale fault before free the prange.
2867  * 2. prange is on deferred list to add interval notifier after split, or
2868  * 3. prange is child range, it is split from parent prange, recover later
2869  *    after interval notifier is added.
2870  *
2871  * Return: true to skip recover, false to recover
2872  */
svm_range_skip_recover(struct svm_range * prange)2873 static bool svm_range_skip_recover(struct svm_range *prange)
2874 {
2875 	struct svm_range_list *svms = prange->svms;
2876 
2877 	spin_lock(&svms->deferred_list_lock);
2878 	if (list_empty(&prange->deferred_list) &&
2879 	    list_empty(&prange->child_list)) {
2880 		spin_unlock(&svms->deferred_list_lock);
2881 		return false;
2882 	}
2883 	spin_unlock(&svms->deferred_list_lock);
2884 
2885 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2886 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2887 			 svms, prange, prange->start, prange->last);
2888 		return true;
2889 	}
2890 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2891 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2892 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2893 			 svms, prange, prange->start, prange->last);
2894 		return true;
2895 	}
2896 	return false;
2897 }
2898 
2899 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2900 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2901 		      int32_t gpuidx)
2902 {
2903 	struct kfd_process_device *pdd;
2904 
2905 	/* fault is on different page of same range
2906 	 * or fault is skipped to recover later
2907 	 * or fault is on invalid virtual address
2908 	 */
2909 	if (gpuidx == MAX_GPU_INSTANCE) {
2910 		uint32_t gpuid;
2911 		int r;
2912 
2913 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2914 		if (r < 0)
2915 			return;
2916 	}
2917 
2918 	/* fault is recovered
2919 	 * or fault cannot recover because GPU no access on the range
2920 	 */
2921 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2922 	if (pdd)
2923 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2924 }
2925 
2926 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2927 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2928 {
2929 	unsigned long requested = VM_READ;
2930 
2931 	if (write_fault)
2932 		requested |= VM_WRITE;
2933 
2934 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2935 		vma->vm_flags);
2936 	return (vma->vm_flags & requested) == requested;
2937 }
2938 
2939 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,uint64_t ts,bool write_fault)2940 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2941 			uint32_t vmid, uint32_t node_id,
2942 			uint64_t addr, uint64_t ts, bool write_fault)
2943 {
2944 	unsigned long start, last, size;
2945 	struct mm_struct *mm = NULL;
2946 	struct svm_range_list *svms;
2947 	struct svm_range *prange;
2948 	struct kfd_process *p;
2949 	ktime_t timestamp = ktime_get_boottime();
2950 	struct kfd_node *node;
2951 	int32_t best_loc;
2952 	int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
2953 	bool write_locked = false;
2954 	struct vm_area_struct *vma;
2955 	bool migration = false;
2956 	int r = 0;
2957 
2958 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2959 		pr_debug("device does not support SVM\n");
2960 		return -EFAULT;
2961 	}
2962 
2963 	p = kfd_lookup_process_by_pasid(pasid);
2964 	if (!p) {
2965 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2966 		return 0;
2967 	}
2968 	svms = &p->svms;
2969 
2970 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2971 
2972 	if (atomic_read(&svms->drain_pagefaults)) {
2973 		pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
2974 		r = 0;
2975 		goto out;
2976 	}
2977 
2978 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2979 	if (!node) {
2980 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2981 			 vmid);
2982 		r = -EFAULT;
2983 		goto out;
2984 	}
2985 
2986 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2987 		pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
2988 		r = -EFAULT;
2989 		goto out;
2990 	}
2991 
2992 	if (!p->xnack_enabled) {
2993 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2994 		r = -EFAULT;
2995 		goto out;
2996 	}
2997 
2998 	/* p->lead_thread is available as kfd_process_wq_release flush the work
2999 	 * before releasing task ref.
3000 	 */
3001 	mm = get_task_mm(p->lead_thread);
3002 	if (!mm) {
3003 		pr_debug("svms 0x%p failed to get mm\n", svms);
3004 		r = 0;
3005 		goto out;
3006 	}
3007 
3008 	mmap_read_lock(mm);
3009 retry_write_locked:
3010 	mutex_lock(&svms->lock);
3011 
3012 	/* check if this page fault time stamp is before svms->checkpoint_ts */
3013 	if (svms->checkpoint_ts[gpuidx] != 0) {
3014 		if (amdgpu_ih_ts_after_or_equal(ts,  svms->checkpoint_ts[gpuidx])) {
3015 			pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3016 			r = -EAGAIN;
3017 			goto out_unlock_svms;
3018 		} else {
3019 			/* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3020 			 * to zero to avoid following ts wrap around give wrong comparing
3021 			 */
3022 			svms->checkpoint_ts[gpuidx] = 0;
3023 		}
3024 	}
3025 
3026 	prange = svm_range_from_addr(svms, addr, NULL);
3027 	if (!prange) {
3028 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3029 			 svms, addr);
3030 		if (!write_locked) {
3031 			/* Need the write lock to create new range with MMU notifier.
3032 			 * Also flush pending deferred work to make sure the interval
3033 			 * tree is up to date before we add a new range
3034 			 */
3035 			mutex_unlock(&svms->lock);
3036 			mmap_read_unlock(mm);
3037 			mmap_write_lock(mm);
3038 			write_locked = true;
3039 			goto retry_write_locked;
3040 		}
3041 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
3042 		if (!prange) {
3043 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3044 				 svms, addr);
3045 			mmap_write_downgrade(mm);
3046 			r = -EFAULT;
3047 			goto out_unlock_svms;
3048 		}
3049 	}
3050 	if (write_locked)
3051 		mmap_write_downgrade(mm);
3052 
3053 	mutex_lock(&prange->migrate_mutex);
3054 
3055 	if (svm_range_skip_recover(prange)) {
3056 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3057 		r = 0;
3058 		goto out_unlock_range;
3059 	}
3060 
3061 	/* skip duplicate vm fault on different pages of same range */
3062 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3063 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3064 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3065 			 svms, prange->start, prange->last);
3066 		r = 0;
3067 		goto out_unlock_range;
3068 	}
3069 
3070 	/* __do_munmap removed VMA, return success as we are handling stale
3071 	 * retry fault.
3072 	 */
3073 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3074 	if (!vma) {
3075 		pr_debug("address 0x%llx VMA is removed\n", addr);
3076 		r = 0;
3077 		goto out_unlock_range;
3078 	}
3079 
3080 	if (!svm_fault_allowed(vma, write_fault)) {
3081 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3082 			write_fault ? "write" : "read");
3083 		r = -EPERM;
3084 		goto out_unlock_range;
3085 	}
3086 
3087 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3088 	if (best_loc == -1) {
3089 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3090 			 svms, prange->start, prange->last);
3091 		r = -EACCES;
3092 		goto out_unlock_range;
3093 	}
3094 
3095 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3096 		 svms, prange->start, prange->last, best_loc,
3097 		 prange->actual_loc);
3098 
3099 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3100 				       write_fault, timestamp);
3101 
3102 	/* Align migration range start and size to granularity size */
3103 	size = 1UL << prange->granularity;
3104 	start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3105 	last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3106 	if (prange->actual_loc != 0 || best_loc != 0) {
3107 		migration = true;
3108 
3109 		if (best_loc) {
3110 			r = svm_migrate_to_vram(prange, best_loc, start, last,
3111 					mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3112 			if (r) {
3113 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3114 					 r, addr);
3115 				/* Fallback to system memory if migration to
3116 				 * VRAM failed
3117 				 */
3118 				if (prange->actual_loc && prange->actual_loc != best_loc)
3119 					r = svm_migrate_vram_to_ram(prange, mm, start, last,
3120 						KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3121 				else
3122 					r = 0;
3123 			}
3124 		} else {
3125 			r = svm_migrate_vram_to_ram(prange, mm, start, last,
3126 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3127 		}
3128 		if (r) {
3129 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3130 				 r, svms, start, last);
3131 			goto out_unlock_range;
3132 		}
3133 	}
3134 
3135 	r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3136 				       false, false);
3137 	if (r)
3138 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3139 			 r, svms, start, last);
3140 
3141 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3142 				     migration);
3143 
3144 out_unlock_range:
3145 	mutex_unlock(&prange->migrate_mutex);
3146 out_unlock_svms:
3147 	mutex_unlock(&svms->lock);
3148 	mmap_read_unlock(mm);
3149 
3150 	if (r != -EAGAIN)
3151 		svm_range_count_fault(node, p, gpuidx);
3152 
3153 	mmput(mm);
3154 out:
3155 	kfd_unref_process(p);
3156 
3157 	if (r == -EAGAIN) {
3158 		pr_debug("recover vm fault later\n");
3159 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3160 		r = 0;
3161 	}
3162 	return r;
3163 }
3164 
3165 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3166 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3167 {
3168 	struct svm_range *prange, *pchild;
3169 	uint64_t reserved_size = 0;
3170 	uint64_t size;
3171 	int r = 0;
3172 
3173 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3174 
3175 	mutex_lock(&p->svms.lock);
3176 
3177 	list_for_each_entry(prange, &p->svms.list, list) {
3178 		svm_range_lock(prange);
3179 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3180 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3181 			if (xnack_enabled) {
3182 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3183 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3184 			} else {
3185 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3186 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3187 				if (r)
3188 					goto out_unlock;
3189 				reserved_size += size;
3190 			}
3191 		}
3192 
3193 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3194 		if (xnack_enabled) {
3195 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3196 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3197 		} else {
3198 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3199 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3200 			if (r)
3201 				goto out_unlock;
3202 			reserved_size += size;
3203 		}
3204 out_unlock:
3205 		svm_range_unlock(prange);
3206 		if (r)
3207 			break;
3208 	}
3209 
3210 	if (r)
3211 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3212 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3213 	else
3214 		/* Change xnack mode must be inside svms lock, to avoid race with
3215 		 * svm_range_deferred_list_work unreserve memory in parallel.
3216 		 */
3217 		p->xnack_enabled = xnack_enabled;
3218 
3219 	mutex_unlock(&p->svms.lock);
3220 	return r;
3221 }
3222 
svm_range_list_fini(struct kfd_process * p)3223 void svm_range_list_fini(struct kfd_process *p)
3224 {
3225 	struct svm_range *prange;
3226 	struct svm_range *next;
3227 
3228 	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3229 
3230 	cancel_delayed_work_sync(&p->svms.restore_work);
3231 
3232 	/* Ensure list work is finished before process is destroyed */
3233 	flush_work(&p->svms.deferred_list_work);
3234 
3235 	/*
3236 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3237 	 * not find kfd process and take mm lock to recover fault.
3238 	 * stop kfd page fault handing, then wait pending page faults got drained
3239 	 */
3240 	atomic_set(&p->svms.drain_pagefaults, 1);
3241 	svm_range_drain_retry_fault(&p->svms);
3242 
3243 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3244 		svm_range_unlink(prange);
3245 		svm_range_remove_notifier(prange);
3246 		svm_range_free(prange, true);
3247 	}
3248 
3249 	mutex_destroy(&p->svms.lock);
3250 
3251 	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3252 }
3253 
svm_range_list_init(struct kfd_process * p)3254 int svm_range_list_init(struct kfd_process *p)
3255 {
3256 	struct svm_range_list *svms = &p->svms;
3257 	int i;
3258 
3259 	svms->objects = RB_ROOT_CACHED;
3260 	mutex_init(&svms->lock);
3261 	INIT_LIST_HEAD(&svms->list);
3262 	atomic_set(&svms->evicted_ranges, 0);
3263 	atomic_set(&svms->drain_pagefaults, 0);
3264 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3265 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3266 	INIT_LIST_HEAD(&svms->deferred_range_list);
3267 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3268 	spin_lock_init(&svms->deferred_list_lock);
3269 
3270 	for (i = 0; i < p->n_pdds; i++)
3271 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3272 			bitmap_set(svms->bitmap_supported, i, 1);
3273 
3274 	 /* Value of default granularity cannot exceed 0x1B, the
3275 	  * number of pages supported by a 4-level paging table
3276 	  */
3277 	svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3278 	pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3279 
3280 	return 0;
3281 }
3282 
3283 /**
3284  * svm_range_check_vm - check if virtual address range mapped already
3285  * @p: current kfd_process
3286  * @start: range start address, in pages
3287  * @last: range last address, in pages
3288  * @bo_s: mapping start address in pages if address range already mapped
3289  * @bo_l: mapping last address in pages if address range already mapped
3290  *
3291  * The purpose is to avoid virtual address ranges already allocated by
3292  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3293  * It looks for each pdd in the kfd_process.
3294  *
3295  * Context: Process context
3296  *
3297  * Return 0 - OK, if the range is not mapped.
3298  * Otherwise error code:
3299  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3300  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3301  * a signal. Release all buffer reservations and return to user-space.
3302  */
3303 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3304 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3305 		   uint64_t *bo_s, uint64_t *bo_l)
3306 {
3307 	struct amdgpu_bo_va_mapping *mapping;
3308 	struct interval_tree_node *node;
3309 	uint32_t i;
3310 	int r;
3311 
3312 	for (i = 0; i < p->n_pdds; i++) {
3313 		struct amdgpu_vm *vm;
3314 
3315 		if (!p->pdds[i]->drm_priv)
3316 			continue;
3317 
3318 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3319 		r = amdgpu_bo_reserve(vm->root.bo, false);
3320 		if (r)
3321 			return r;
3322 
3323 		node = interval_tree_iter_first(&vm->va, start, last);
3324 		if (node) {
3325 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3326 				 start, last);
3327 			mapping = container_of((struct rb_node *)node,
3328 					       struct amdgpu_bo_va_mapping, rb);
3329 			if (bo_s && bo_l) {
3330 				*bo_s = mapping->start;
3331 				*bo_l = mapping->last;
3332 			}
3333 			amdgpu_bo_unreserve(vm->root.bo);
3334 			return -EADDRINUSE;
3335 		}
3336 		amdgpu_bo_unreserve(vm->root.bo);
3337 	}
3338 
3339 	return 0;
3340 }
3341 
3342 /**
3343  * svm_range_is_valid - check if virtual address range is valid
3344  * @p: current kfd_process
3345  * @start: range start address, in pages
3346  * @size: range size, in pages
3347  *
3348  * Valid virtual address range means it belongs to one or more VMAs
3349  *
3350  * Context: Process context
3351  *
3352  * Return:
3353  *  0 - OK, otherwise error code
3354  */
3355 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3356 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3357 {
3358 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3359 	struct vm_area_struct *vma;
3360 	unsigned long end;
3361 	unsigned long start_unchg = start;
3362 
3363 	start <<= PAGE_SHIFT;
3364 	end = start + (size << PAGE_SHIFT);
3365 	do {
3366 		vma = vma_lookup(p->mm, start);
3367 		if (!vma || (vma->vm_flags & device_vma))
3368 			return -EFAULT;
3369 		start = min(end, vma->vm_end);
3370 	} while (start < end);
3371 
3372 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3373 				  NULL);
3374 }
3375 
3376 /**
3377  * svm_range_best_prefetch_location - decide the best prefetch location
3378  * @prange: svm range structure
3379  *
3380  * For xnack off:
3381  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3382  * can be CPU or GPU.
3383  *
3384  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3385  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3386  * the best prefetch location is always CPU, because GPU can not have coherent
3387  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3388  *
3389  * For xnack on:
3390  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3391  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3392  *
3393  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3394  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3395  * prefetch location is always CPU.
3396  *
3397  * Context: Process context
3398  *
3399  * Return:
3400  * 0 for CPU or GPU id
3401  */
3402 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3403 svm_range_best_prefetch_location(struct svm_range *prange)
3404 {
3405 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3406 	uint32_t best_loc = prange->prefetch_loc;
3407 	struct kfd_process_device *pdd;
3408 	struct kfd_node *bo_node;
3409 	struct kfd_process *p;
3410 	uint32_t gpuidx;
3411 
3412 	p = container_of(prange->svms, struct kfd_process, svms);
3413 
3414 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3415 		goto out;
3416 
3417 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3418 	if (!bo_node) {
3419 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3420 		best_loc = 0;
3421 		goto out;
3422 	}
3423 
3424 	if (bo_node->adev->flags & AMD_IS_APU) {
3425 		best_loc = 0;
3426 		goto out;
3427 	}
3428 
3429 	if (p->xnack_enabled)
3430 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3431 	else
3432 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3433 			  MAX_GPU_INSTANCE);
3434 
3435 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3436 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3437 		if (!pdd) {
3438 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3439 			continue;
3440 		}
3441 
3442 		if (pdd->dev->adev == bo_node->adev)
3443 			continue;
3444 
3445 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3446 			best_loc = 0;
3447 			break;
3448 		}
3449 	}
3450 
3451 out:
3452 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3453 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3454 		 best_loc);
3455 
3456 	return best_loc;
3457 }
3458 
3459 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3460  * @mm: current process mm_struct
3461  * @prange: svm range structure
3462  * @migrated: output, true if migration is triggered
3463  *
3464  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3465  * from ram to vram.
3466  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3467  * from vram to ram.
3468  *
3469  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3470  * and restore work:
3471  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3472  *    stops all queues, schedule restore work
3473  * 2. svm_range_restore_work wait for migration is done by
3474  *    a. svm_range_validate_vram takes prange->migrate_mutex
3475  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3476  * 3. restore work update mappings of GPU, resume all queues.
3477  *
3478  * Context: Process context
3479  *
3480  * Return:
3481  * 0 - OK, otherwise - error code of migration
3482  */
3483 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3484 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3485 			    bool *migrated)
3486 {
3487 	uint32_t best_loc;
3488 	int r = 0;
3489 
3490 	*migrated = false;
3491 	best_loc = svm_range_best_prefetch_location(prange);
3492 
3493 	/* when best_loc is a gpu node and same as prange->actual_loc
3494 	 * we still need do migration as prange->actual_loc !=0 does
3495 	 * not mean all pages in prange are vram. hmm migrate will pick
3496 	 * up right pages during migration.
3497 	 */
3498 	if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3499 	    (best_loc == 0 && prange->actual_loc == 0))
3500 		return 0;
3501 
3502 	if (!best_loc) {
3503 		r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3504 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3505 		*migrated = !r;
3506 		return r;
3507 	}
3508 
3509 	r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3510 				mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3511 	*migrated = !r;
3512 
3513 	return 0;
3514 }
3515 
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3516 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3517 {
3518 	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3519 	 * signaled yet and we're under the protection of the fence->lock.
3520 	 * After the fence is signaled in svm_range_bo_release, we cannot get
3521 	 * here any more.
3522 	 *
3523 	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3524 	 */
3525 	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3526 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3527 		schedule_work(&fence->svm_bo->eviction_work);
3528 	}
3529 
3530 	return 0;
3531 }
3532 
svm_range_evict_svm_bo_worker(struct work_struct * work)3533 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3534 {
3535 	struct svm_range_bo *svm_bo;
3536 	struct mm_struct *mm;
3537 	int r = 0;
3538 
3539 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3540 
3541 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3542 		mm = svm_bo->eviction_fence->mm;
3543 	} else {
3544 		svm_range_bo_unref(svm_bo);
3545 		return;
3546 	}
3547 
3548 	mmap_read_lock(mm);
3549 	spin_lock(&svm_bo->list_lock);
3550 	while (!list_empty(&svm_bo->range_list) && !r) {
3551 		struct svm_range *prange =
3552 				list_first_entry(&svm_bo->range_list,
3553 						struct svm_range, svm_bo_list);
3554 		int retries = 3;
3555 
3556 		list_del_init(&prange->svm_bo_list);
3557 		spin_unlock(&svm_bo->list_lock);
3558 
3559 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3560 			 prange->start, prange->last);
3561 
3562 		mutex_lock(&prange->migrate_mutex);
3563 		do {
3564 			/* migrate all vram pages in this prange to sys ram
3565 			 * after that prange->actual_loc should be zero
3566 			 */
3567 			r = svm_migrate_vram_to_ram(prange, mm,
3568 					prange->start, prange->last,
3569 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3570 		} while (!r && prange->actual_loc && --retries);
3571 
3572 		if (!r && prange->actual_loc)
3573 			pr_info_once("Migration failed during eviction");
3574 
3575 		if (!prange->actual_loc) {
3576 			mutex_lock(&prange->lock);
3577 			prange->svm_bo = NULL;
3578 			mutex_unlock(&prange->lock);
3579 		}
3580 		mutex_unlock(&prange->migrate_mutex);
3581 
3582 		spin_lock(&svm_bo->list_lock);
3583 	}
3584 	spin_unlock(&svm_bo->list_lock);
3585 	mmap_read_unlock(mm);
3586 	mmput(mm);
3587 
3588 	dma_fence_signal(&svm_bo->eviction_fence->base);
3589 
3590 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3591 	 * has been called in svm_migrate_vram_to_ram
3592 	 */
3593 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3594 	svm_range_bo_unref(svm_bo);
3595 }
3596 
3597 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3598 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3599 		   uint64_t start, uint64_t size, uint32_t nattr,
3600 		   struct kfd_ioctl_svm_attribute *attrs)
3601 {
3602 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3603 	struct list_head update_list;
3604 	struct list_head insert_list;
3605 	struct list_head remove_list;
3606 	struct list_head remap_list;
3607 	struct svm_range_list *svms;
3608 	struct svm_range *prange;
3609 	struct svm_range *next;
3610 	bool update_mapping = false;
3611 	bool flush_tlb;
3612 	int r, ret = 0;
3613 
3614 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3615 		 p->pasid, &p->svms, start, start + size - 1, size);
3616 
3617 	r = svm_range_check_attr(p, nattr, attrs);
3618 	if (r)
3619 		return r;
3620 
3621 	svms = &p->svms;
3622 
3623 	mutex_lock(&process_info->lock);
3624 
3625 	svm_range_list_lock_and_flush_work(svms, mm);
3626 
3627 	r = svm_range_is_valid(p, start, size);
3628 	if (r) {
3629 		pr_debug("invalid range r=%d\n", r);
3630 		mmap_write_unlock(mm);
3631 		goto out;
3632 	}
3633 
3634 	mutex_lock(&svms->lock);
3635 
3636 	/* Add new range and split existing ranges as needed */
3637 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3638 			  &insert_list, &remove_list, &remap_list);
3639 	if (r) {
3640 		mutex_unlock(&svms->lock);
3641 		mmap_write_unlock(mm);
3642 		goto out;
3643 	}
3644 	/* Apply changes as a transaction */
3645 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3646 		svm_range_add_to_svms(prange);
3647 		svm_range_add_notifier_locked(mm, prange);
3648 	}
3649 	list_for_each_entry(prange, &update_list, update_list) {
3650 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3651 		/* TODO: unmap ranges from GPU that lost access */
3652 	}
3653 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3654 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3655 			 prange->svms, prange, prange->start,
3656 			 prange->last);
3657 		svm_range_unlink(prange);
3658 		svm_range_remove_notifier(prange);
3659 		svm_range_free(prange, false);
3660 	}
3661 
3662 	mmap_write_downgrade(mm);
3663 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3664 	 * this fails we may be left with partially completed actions. There
3665 	 * is no clean way of rolling back to the previous state in such a
3666 	 * case because the rollback wouldn't be guaranteed to work either.
3667 	 */
3668 	list_for_each_entry(prange, &update_list, update_list) {
3669 		bool migrated;
3670 
3671 		mutex_lock(&prange->migrate_mutex);
3672 
3673 		r = svm_range_trigger_migration(mm, prange, &migrated);
3674 		if (r)
3675 			goto out_unlock_range;
3676 
3677 		if (migrated && (!p->xnack_enabled ||
3678 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3679 		    prange->mapped_to_gpu) {
3680 			pr_debug("restore_work will update mappings of GPUs\n");
3681 			mutex_unlock(&prange->migrate_mutex);
3682 			continue;
3683 		}
3684 
3685 		if (!migrated && !update_mapping) {
3686 			mutex_unlock(&prange->migrate_mutex);
3687 			continue;
3688 		}
3689 
3690 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3691 
3692 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3693 					       MAX_GPU_INSTANCE, true, true, flush_tlb);
3694 		if (r)
3695 			pr_debug("failed %d to map svm range\n", r);
3696 
3697 out_unlock_range:
3698 		mutex_unlock(&prange->migrate_mutex);
3699 		if (r)
3700 			ret = r;
3701 	}
3702 
3703 	list_for_each_entry(prange, &remap_list, update_list) {
3704 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3705 			 prange, prange->start, prange->last);
3706 		mutex_lock(&prange->migrate_mutex);
3707 		r = svm_range_validate_and_map(mm,  prange->start, prange->last, prange,
3708 					       MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3709 		if (r)
3710 			pr_debug("failed %d on remap svm range\n", r);
3711 		mutex_unlock(&prange->migrate_mutex);
3712 		if (r)
3713 			ret = r;
3714 	}
3715 
3716 	dynamic_svm_range_dump(svms);
3717 
3718 	mutex_unlock(&svms->lock);
3719 	mmap_read_unlock(mm);
3720 out:
3721 	mutex_unlock(&process_info->lock);
3722 
3723 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3724 		 &p->svms, start, start + size - 1, r);
3725 
3726 	return ret ? ret : r;
3727 }
3728 
3729 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3730 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3731 		   uint64_t start, uint64_t size, uint32_t nattr,
3732 		   struct kfd_ioctl_svm_attribute *attrs)
3733 {
3734 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3735 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3736 	bool get_preferred_loc = false;
3737 	bool get_prefetch_loc = false;
3738 	bool get_granularity = false;
3739 	bool get_accessible = false;
3740 	bool get_flags = false;
3741 	uint64_t last = start + size - 1UL;
3742 	uint8_t granularity = 0xff;
3743 	struct interval_tree_node *node;
3744 	struct svm_range_list *svms;
3745 	struct svm_range *prange;
3746 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3747 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3748 	uint32_t flags_and = 0xffffffff;
3749 	uint32_t flags_or = 0;
3750 	int gpuidx;
3751 	uint32_t i;
3752 	int r = 0;
3753 
3754 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3755 		 start + size - 1, nattr);
3756 
3757 	/* Flush pending deferred work to avoid racing with deferred actions from
3758 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3759 	 * can still race with get_attr because we don't hold the mmap lock. But that
3760 	 * would be a race condition in the application anyway, and undefined
3761 	 * behaviour is acceptable in that case.
3762 	 */
3763 	flush_work(&p->svms.deferred_list_work);
3764 
3765 	mmap_read_lock(mm);
3766 	r = svm_range_is_valid(p, start, size);
3767 	mmap_read_unlock(mm);
3768 	if (r) {
3769 		pr_debug("invalid range r=%d\n", r);
3770 		return r;
3771 	}
3772 
3773 	for (i = 0; i < nattr; i++) {
3774 		switch (attrs[i].type) {
3775 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3776 			get_preferred_loc = true;
3777 			break;
3778 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3779 			get_prefetch_loc = true;
3780 			break;
3781 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3782 			get_accessible = true;
3783 			break;
3784 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3785 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3786 			get_flags = true;
3787 			break;
3788 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3789 			get_granularity = true;
3790 			break;
3791 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3792 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3793 			fallthrough;
3794 		default:
3795 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3796 			return -EINVAL;
3797 		}
3798 	}
3799 
3800 	svms = &p->svms;
3801 
3802 	mutex_lock(&svms->lock);
3803 
3804 	node = interval_tree_iter_first(&svms->objects, start, last);
3805 	if (!node) {
3806 		pr_debug("range attrs not found return default values\n");
3807 		svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3808 						 &granularity, &flags_and);
3809 		flags_or = flags_and;
3810 		if (p->xnack_enabled)
3811 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3812 				    MAX_GPU_INSTANCE);
3813 		else
3814 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3815 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3816 		goto fill_values;
3817 	}
3818 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3819 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3820 
3821 	while (node) {
3822 		struct interval_tree_node *next;
3823 
3824 		prange = container_of(node, struct svm_range, it_node);
3825 		next = interval_tree_iter_next(node, start, last);
3826 
3827 		if (get_preferred_loc) {
3828 			if (prange->preferred_loc ==
3829 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3830 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3831 			     location != prange->preferred_loc)) {
3832 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3833 				get_preferred_loc = false;
3834 			} else {
3835 				location = prange->preferred_loc;
3836 			}
3837 		}
3838 		if (get_prefetch_loc) {
3839 			if (prange->prefetch_loc ==
3840 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3841 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3842 			     prefetch_loc != prange->prefetch_loc)) {
3843 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3844 				get_prefetch_loc = false;
3845 			} else {
3846 				prefetch_loc = prange->prefetch_loc;
3847 			}
3848 		}
3849 		if (get_accessible) {
3850 			bitmap_and(bitmap_access, bitmap_access,
3851 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3852 			bitmap_and(bitmap_aip, bitmap_aip,
3853 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3854 		}
3855 		if (get_flags) {
3856 			flags_and &= prange->flags;
3857 			flags_or |= prange->flags;
3858 		}
3859 
3860 		if (get_granularity && prange->granularity < granularity)
3861 			granularity = prange->granularity;
3862 
3863 		node = next;
3864 	}
3865 fill_values:
3866 	mutex_unlock(&svms->lock);
3867 
3868 	for (i = 0; i < nattr; i++) {
3869 		switch (attrs[i].type) {
3870 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3871 			attrs[i].value = location;
3872 			break;
3873 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3874 			attrs[i].value = prefetch_loc;
3875 			break;
3876 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3877 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3878 							       attrs[i].value);
3879 			if (gpuidx < 0) {
3880 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3881 				return -EINVAL;
3882 			}
3883 			if (test_bit(gpuidx, bitmap_access))
3884 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3885 			else if (test_bit(gpuidx, bitmap_aip))
3886 				attrs[i].type =
3887 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3888 			else
3889 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3890 			break;
3891 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3892 			attrs[i].value = flags_and;
3893 			break;
3894 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3895 			attrs[i].value = ~flags_or;
3896 			break;
3897 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3898 			attrs[i].value = (uint32_t)granularity;
3899 			break;
3900 		}
3901 	}
3902 
3903 	return 0;
3904 }
3905 
kfd_criu_resume_svm(struct kfd_process * p)3906 int kfd_criu_resume_svm(struct kfd_process *p)
3907 {
3908 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3909 	int nattr_common = 4, nattr_accessibility = 1;
3910 	struct criu_svm_metadata *criu_svm_md = NULL;
3911 	struct svm_range_list *svms = &p->svms;
3912 	struct criu_svm_metadata *next = NULL;
3913 	uint32_t set_flags = 0xffffffff;
3914 	int i, j, num_attrs, ret = 0;
3915 	uint64_t set_attr_size;
3916 	struct mm_struct *mm;
3917 
3918 	if (list_empty(&svms->criu_svm_metadata_list)) {
3919 		pr_debug("No SVM data from CRIU restore stage 2\n");
3920 		return ret;
3921 	}
3922 
3923 	mm = get_task_mm(p->lead_thread);
3924 	if (!mm) {
3925 		pr_err("failed to get mm for the target process\n");
3926 		return -ESRCH;
3927 	}
3928 
3929 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3930 
3931 	i = j = 0;
3932 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3933 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3934 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3935 
3936 		for (j = 0; j < num_attrs; j++) {
3937 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3938 				 i, j, criu_svm_md->data.attrs[j].type,
3939 				 i, j, criu_svm_md->data.attrs[j].value);
3940 			switch (criu_svm_md->data.attrs[j].type) {
3941 			/* During Checkpoint operation, the query for
3942 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3943 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3944 			 * not used by the range which was checkpointed. Care
3945 			 * must be taken to not restore with an invalid value
3946 			 * otherwise the gpuidx value will be invalid and
3947 			 * set_attr would eventually fail so just replace those
3948 			 * with another dummy attribute such as
3949 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3950 			 */
3951 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3952 				if (criu_svm_md->data.attrs[j].value ==
3953 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3954 					criu_svm_md->data.attrs[j].type =
3955 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3956 					criu_svm_md->data.attrs[j].value = 0;
3957 				}
3958 				break;
3959 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3960 				set_flags = criu_svm_md->data.attrs[j].value;
3961 				break;
3962 			default:
3963 				break;
3964 			}
3965 		}
3966 
3967 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3968 		 * it needs to be inserted before restoring the ranges so
3969 		 * allocate extra space for it before calling set_attr
3970 		 */
3971 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3972 						(num_attrs + 1);
3973 		set_attr_new = krealloc(set_attr, set_attr_size,
3974 					    GFP_KERNEL);
3975 		if (!set_attr_new) {
3976 			ret = -ENOMEM;
3977 			goto exit;
3978 		}
3979 		set_attr = set_attr_new;
3980 
3981 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3982 					sizeof(struct kfd_ioctl_svm_attribute));
3983 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3984 		set_attr[num_attrs].value = ~set_flags;
3985 
3986 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3987 					 criu_svm_md->data.size, num_attrs + 1,
3988 					 set_attr);
3989 		if (ret) {
3990 			pr_err("CRIU: failed to set range attributes\n");
3991 			goto exit;
3992 		}
3993 
3994 		i++;
3995 	}
3996 exit:
3997 	kfree(set_attr);
3998 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3999 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4000 						criu_svm_md->data.start_addr);
4001 		kfree(criu_svm_md);
4002 	}
4003 
4004 	mmput(mm);
4005 	return ret;
4006 
4007 }
4008 
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)4009 int kfd_criu_restore_svm(struct kfd_process *p,
4010 			 uint8_t __user *user_priv_ptr,
4011 			 uint64_t *priv_data_offset,
4012 			 uint64_t max_priv_data_size)
4013 {
4014 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4015 	int nattr_common = 4, nattr_accessibility = 1;
4016 	struct criu_svm_metadata *criu_svm_md = NULL;
4017 	struct svm_range_list *svms = &p->svms;
4018 	uint32_t num_devices;
4019 	int ret = 0;
4020 
4021 	num_devices = p->n_pdds;
4022 	/* Handle one SVM range object at a time, also the number of gpus are
4023 	 * assumed to be same on the restore node, checking must be done while
4024 	 * evaluating the topology earlier
4025 	 */
4026 
4027 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4028 		(nattr_common + nattr_accessibility * num_devices);
4029 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4030 
4031 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4032 								svm_attrs_size;
4033 
4034 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4035 	if (!criu_svm_md) {
4036 		pr_err("failed to allocate memory to store svm metadata\n");
4037 		return -ENOMEM;
4038 	}
4039 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4040 		ret = -EINVAL;
4041 		goto exit;
4042 	}
4043 
4044 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4045 			     svm_priv_data_size);
4046 	if (ret) {
4047 		ret = -EFAULT;
4048 		goto exit;
4049 	}
4050 	*priv_data_offset += svm_priv_data_size;
4051 
4052 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4053 
4054 	return 0;
4055 
4056 
4057 exit:
4058 	kfree(criu_svm_md);
4059 	return ret;
4060 }
4061 
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)4062 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4063 		       uint64_t *svm_priv_data_size)
4064 {
4065 	uint64_t total_size, accessibility_size, common_attr_size;
4066 	int nattr_common = 4, nattr_accessibility = 1;
4067 	int num_devices = p->n_pdds;
4068 	struct svm_range_list *svms;
4069 	struct svm_range *prange;
4070 	uint32_t count = 0;
4071 
4072 	*svm_priv_data_size = 0;
4073 
4074 	svms = &p->svms;
4075 	if (!svms)
4076 		return -EINVAL;
4077 
4078 	mutex_lock(&svms->lock);
4079 	list_for_each_entry(prange, &svms->list, list) {
4080 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4081 			 prange, prange->start, prange->npages,
4082 			 prange->start + prange->npages - 1);
4083 		count++;
4084 	}
4085 	mutex_unlock(&svms->lock);
4086 
4087 	*num_svm_ranges = count;
4088 	/* Only the accessbility attributes need to be queried for all the gpus
4089 	 * individually, remaining ones are spanned across the entire process
4090 	 * regardless of the various gpu nodes. Of the remaining attributes,
4091 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4092 	 *
4093 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4094 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4095 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4096 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4097 	 *
4098 	 * ** ACCESSBILITY ATTRIBUTES **
4099 	 * (Considered as one, type is altered during query, value is gpuid)
4100 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4101 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4102 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4103 	 */
4104 	if (*num_svm_ranges > 0) {
4105 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4106 			nattr_common;
4107 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4108 			nattr_accessibility * num_devices;
4109 
4110 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4111 			common_attr_size + accessibility_size;
4112 
4113 		*svm_priv_data_size = *num_svm_ranges * total_size;
4114 	}
4115 
4116 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4117 		 *svm_priv_data_size);
4118 	return 0;
4119 }
4120 
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4121 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4122 			    uint8_t __user *user_priv_data,
4123 			    uint64_t *priv_data_offset)
4124 {
4125 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4126 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4127 	uint64_t svm_priv_data_size, query_attr_size = 0;
4128 	int index, nattr_common = 4, ret = 0;
4129 	struct svm_range_list *svms;
4130 	int num_devices = p->n_pdds;
4131 	struct svm_range *prange;
4132 	struct mm_struct *mm;
4133 
4134 	svms = &p->svms;
4135 	if (!svms)
4136 		return -EINVAL;
4137 
4138 	mm = get_task_mm(p->lead_thread);
4139 	if (!mm) {
4140 		pr_err("failed to get mm for the target process\n");
4141 		return -ESRCH;
4142 	}
4143 
4144 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4145 				(nattr_common + num_devices);
4146 
4147 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4148 	if (!query_attr) {
4149 		ret = -ENOMEM;
4150 		goto exit;
4151 	}
4152 
4153 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4154 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4155 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4156 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4157 
4158 	for (index = 0; index < num_devices; index++) {
4159 		struct kfd_process_device *pdd = p->pdds[index];
4160 
4161 		query_attr[index + nattr_common].type =
4162 			KFD_IOCTL_SVM_ATTR_ACCESS;
4163 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4164 	}
4165 
4166 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4167 
4168 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4169 	if (!svm_priv) {
4170 		ret = -ENOMEM;
4171 		goto exit_query;
4172 	}
4173 
4174 	index = 0;
4175 	list_for_each_entry(prange, &svms->list, list) {
4176 
4177 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4178 		svm_priv->start_addr = prange->start;
4179 		svm_priv->size = prange->npages;
4180 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4181 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4182 			 prange, prange->start, prange->npages,
4183 			 prange->start + prange->npages - 1,
4184 			 prange->npages * PAGE_SIZE);
4185 
4186 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4187 					 svm_priv->size,
4188 					 (nattr_common + num_devices),
4189 					 svm_priv->attrs);
4190 		if (ret) {
4191 			pr_err("CRIU: failed to obtain range attributes\n");
4192 			goto exit_priv;
4193 		}
4194 
4195 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4196 				 svm_priv_data_size)) {
4197 			pr_err("Failed to copy svm priv to user\n");
4198 			ret = -EFAULT;
4199 			goto exit_priv;
4200 		}
4201 
4202 		*priv_data_offset += svm_priv_data_size;
4203 
4204 	}
4205 
4206 
4207 exit_priv:
4208 	kfree(svm_priv);
4209 exit_query:
4210 	kfree(query_attr);
4211 exit:
4212 	mmput(mm);
4213 	return ret;
4214 }
4215 
4216 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4217 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4218 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4219 {
4220 	struct mm_struct *mm = current->mm;
4221 	int r;
4222 
4223 	start >>= PAGE_SHIFT;
4224 	size >>= PAGE_SHIFT;
4225 
4226 	switch (op) {
4227 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4228 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4229 		break;
4230 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4231 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4232 		break;
4233 	default:
4234 		r = EINVAL;
4235 		break;
4236 	}
4237 
4238 	return r;
4239 }
4240