1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/bio-integrity.h>
37 #include <linux/module.h>
38 #include <linux/fs.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/rw_hint.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <linux/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_devinfo.h>
67 #include <scsi/scsi_driver.h>
68 #include <scsi/scsi_eh.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_ioctl.h>
71 #include <scsi/scsicam.h>
72 #include <scsi/scsi_common.h>
73
74 #include "sd.h"
75 #include "scsi_priv.h"
76 #include "scsi_logging.h"
77
78 MODULE_AUTHOR("Eric Youngdale");
79 MODULE_DESCRIPTION("SCSI disk (sd) driver");
80 MODULE_LICENSE("GPL");
81
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
97 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
101 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
102
103 #define SD_MINORS 16
104
105 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
106 unsigned int mode);
107 static void sd_config_write_same(struct scsi_disk *sdkp,
108 struct queue_limits *lim);
109 static int sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static void sd_shutdown(struct device *);
112 static void scsi_disk_release(struct device *cdev);
113
114 static DEFINE_IDA(sd_index_ida);
115
116 static mempool_t *sd_page_pool;
117 static struct lock_class_key sd_bio_compl_lkclass;
118
119 static const char *sd_cache_types[] = {
120 "write through", "none", "write back",
121 "write back, no read (daft)"
122 };
123
sd_set_flush_flag(struct scsi_disk * sdkp,struct queue_limits * lim)124 static void sd_set_flush_flag(struct scsi_disk *sdkp,
125 struct queue_limits *lim)
126 {
127 if (sdkp->WCE) {
128 lim->features |= BLK_FEAT_WRITE_CACHE;
129 if (sdkp->DPOFUA)
130 lim->features |= BLK_FEAT_FUA;
131 else
132 lim->features &= ~BLK_FEAT_FUA;
133 } else {
134 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
135 }
136 }
137
138 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)139 cache_type_store(struct device *dev, struct device_attribute *attr,
140 const char *buf, size_t count)
141 {
142 int ct, rcd, wce, sp;
143 struct scsi_disk *sdkp = to_scsi_disk(dev);
144 struct scsi_device *sdp = sdkp->device;
145 char buffer[64];
146 char *buffer_data;
147 struct scsi_mode_data data;
148 struct scsi_sense_hdr sshdr;
149 static const char temp[] = "temporary ";
150 int len, ret;
151
152 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
153 /* no cache control on RBC devices; theoretically they
154 * can do it, but there's probably so many exceptions
155 * it's not worth the risk */
156 return -EINVAL;
157
158 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
159 buf += sizeof(temp) - 1;
160 sdkp->cache_override = 1;
161 } else {
162 sdkp->cache_override = 0;
163 }
164
165 ct = sysfs_match_string(sd_cache_types, buf);
166 if (ct < 0)
167 return -EINVAL;
168
169 rcd = ct & 0x01 ? 1 : 0;
170 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
171
172 if (sdkp->cache_override) {
173 struct queue_limits lim;
174
175 sdkp->WCE = wce;
176 sdkp->RCD = rcd;
177
178 lim = queue_limits_start_update(sdkp->disk->queue);
179 sd_set_flush_flag(sdkp, &lim);
180 ret = queue_limits_commit_update_frozen(sdkp->disk->queue,
181 &lim);
182 if (ret)
183 return ret;
184 return count;
185 }
186
187 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
188 sdkp->max_retries, &data, NULL))
189 return -EINVAL;
190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
191 data.block_descriptor_length);
192 buffer_data = buffer + data.header_length +
193 data.block_descriptor_length;
194 buffer_data[2] &= ~0x05;
195 buffer_data[2] |= wce << 2 | rcd;
196 sp = buffer_data[0] & 0x80 ? 1 : 0;
197 buffer_data[0] &= ~0x80;
198
199 /*
200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
201 * received mode parameter buffer before doing MODE SELECT.
202 */
203 data.device_specific = 0;
204
205 ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
206 sdkp->max_retries, &data, &sshdr);
207 if (ret) {
208 if (ret > 0 && scsi_sense_valid(&sshdr))
209 sd_print_sense_hdr(sdkp, &sshdr);
210 return -EINVAL;
211 }
212 sd_revalidate_disk(sdkp->disk);
213 return count;
214 }
215
216 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)217 manage_start_stop_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219 {
220 struct scsi_disk *sdkp = to_scsi_disk(dev);
221 struct scsi_device *sdp = sdkp->device;
222
223 return sysfs_emit(buf, "%u\n",
224 sdp->manage_system_start_stop &&
225 sdp->manage_runtime_start_stop &&
226 sdp->manage_shutdown);
227 }
228 static DEVICE_ATTR_RO(manage_start_stop);
229
230 static ssize_t
manage_system_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)231 manage_system_start_stop_show(struct device *dev,
232 struct device_attribute *attr, char *buf)
233 {
234 struct scsi_disk *sdkp = to_scsi_disk(dev);
235 struct scsi_device *sdp = sdkp->device;
236
237 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
238 }
239
240 static ssize_t
manage_system_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)241 manage_system_start_stop_store(struct device *dev,
242 struct device_attribute *attr,
243 const char *buf, size_t count)
244 {
245 struct scsi_disk *sdkp = to_scsi_disk(dev);
246 struct scsi_device *sdp = sdkp->device;
247 bool v;
248
249 if (!capable(CAP_SYS_ADMIN))
250 return -EACCES;
251
252 if (kstrtobool(buf, &v))
253 return -EINVAL;
254
255 sdp->manage_system_start_stop = v;
256
257 return count;
258 }
259 static DEVICE_ATTR_RW(manage_system_start_stop);
260
261 static ssize_t
manage_runtime_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)262 manage_runtime_start_stop_show(struct device *dev,
263 struct device_attribute *attr, char *buf)
264 {
265 struct scsi_disk *sdkp = to_scsi_disk(dev);
266 struct scsi_device *sdp = sdkp->device;
267
268 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
269 }
270
271 static ssize_t
manage_runtime_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)272 manage_runtime_start_stop_store(struct device *dev,
273 struct device_attribute *attr,
274 const char *buf, size_t count)
275 {
276 struct scsi_disk *sdkp = to_scsi_disk(dev);
277 struct scsi_device *sdp = sdkp->device;
278 bool v;
279
280 if (!capable(CAP_SYS_ADMIN))
281 return -EACCES;
282
283 if (kstrtobool(buf, &v))
284 return -EINVAL;
285
286 sdp->manage_runtime_start_stop = v;
287
288 return count;
289 }
290 static DEVICE_ATTR_RW(manage_runtime_start_stop);
291
manage_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)292 static ssize_t manage_shutdown_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294 {
295 struct scsi_disk *sdkp = to_scsi_disk(dev);
296 struct scsi_device *sdp = sdkp->device;
297
298 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
299 }
300
manage_shutdown_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)301 static ssize_t manage_shutdown_store(struct device *dev,
302 struct device_attribute *attr,
303 const char *buf, size_t count)
304 {
305 struct scsi_disk *sdkp = to_scsi_disk(dev);
306 struct scsi_device *sdp = sdkp->device;
307 bool v;
308
309 if (!capable(CAP_SYS_ADMIN))
310 return -EACCES;
311
312 if (kstrtobool(buf, &v))
313 return -EINVAL;
314
315 sdp->manage_shutdown = v;
316
317 return count;
318 }
319 static DEVICE_ATTR_RW(manage_shutdown);
320
321 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)322 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
323 {
324 struct scsi_disk *sdkp = to_scsi_disk(dev);
325
326 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
327 }
328
329 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)330 allow_restart_store(struct device *dev, struct device_attribute *attr,
331 const char *buf, size_t count)
332 {
333 bool v;
334 struct scsi_disk *sdkp = to_scsi_disk(dev);
335 struct scsi_device *sdp = sdkp->device;
336
337 if (!capable(CAP_SYS_ADMIN))
338 return -EACCES;
339
340 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
341 return -EINVAL;
342
343 if (kstrtobool(buf, &v))
344 return -EINVAL;
345
346 sdp->allow_restart = v;
347
348 return count;
349 }
350 static DEVICE_ATTR_RW(allow_restart);
351
352 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)353 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
354 {
355 struct scsi_disk *sdkp = to_scsi_disk(dev);
356 int ct = sdkp->RCD + 2*sdkp->WCE;
357
358 return sprintf(buf, "%s\n", sd_cache_types[ct]);
359 }
360 static DEVICE_ATTR_RW(cache_type);
361
362 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)363 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
364 {
365 struct scsi_disk *sdkp = to_scsi_disk(dev);
366
367 return sprintf(buf, "%u\n", sdkp->DPOFUA);
368 }
369 static DEVICE_ATTR_RO(FUA);
370
371 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)372 protection_type_show(struct device *dev, struct device_attribute *attr,
373 char *buf)
374 {
375 struct scsi_disk *sdkp = to_scsi_disk(dev);
376
377 return sprintf(buf, "%u\n", sdkp->protection_type);
378 }
379
380 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)381 protection_type_store(struct device *dev, struct device_attribute *attr,
382 const char *buf, size_t count)
383 {
384 struct scsi_disk *sdkp = to_scsi_disk(dev);
385 unsigned int val;
386 int err;
387
388 if (!capable(CAP_SYS_ADMIN))
389 return -EACCES;
390
391 err = kstrtouint(buf, 10, &val);
392
393 if (err)
394 return err;
395
396 if (val <= T10_PI_TYPE3_PROTECTION)
397 sdkp->protection_type = val;
398
399 return count;
400 }
401 static DEVICE_ATTR_RW(protection_type);
402
403 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)404 protection_mode_show(struct device *dev, struct device_attribute *attr,
405 char *buf)
406 {
407 struct scsi_disk *sdkp = to_scsi_disk(dev);
408 struct scsi_device *sdp = sdkp->device;
409 unsigned int dif, dix;
410
411 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
412 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
413
414 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
415 dif = 0;
416 dix = 1;
417 }
418
419 if (!dif && !dix)
420 return sprintf(buf, "none\n");
421
422 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
423 }
424 static DEVICE_ATTR_RO(protection_mode);
425
426 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)427 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
428 {
429 struct scsi_disk *sdkp = to_scsi_disk(dev);
430
431 return sprintf(buf, "%u\n", sdkp->ATO);
432 }
433 static DEVICE_ATTR_RO(app_tag_own);
434
435 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)436 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
437 char *buf)
438 {
439 struct scsi_disk *sdkp = to_scsi_disk(dev);
440
441 return sprintf(buf, "%u\n", sdkp->lbpme);
442 }
443 static DEVICE_ATTR_RO(thin_provisioning);
444
445 /* sysfs_match_string() requires dense arrays */
446 static const char *lbp_mode[] = {
447 [SD_LBP_FULL] = "full",
448 [SD_LBP_UNMAP] = "unmap",
449 [SD_LBP_WS16] = "writesame_16",
450 [SD_LBP_WS10] = "writesame_10",
451 [SD_LBP_ZERO] = "writesame_zero",
452 [SD_LBP_DISABLE] = "disabled",
453 };
454
455 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)456 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
457 char *buf)
458 {
459 struct scsi_disk *sdkp = to_scsi_disk(dev);
460
461 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
462 }
463
464 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)465 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
466 const char *buf, size_t count)
467 {
468 struct scsi_disk *sdkp = to_scsi_disk(dev);
469 struct scsi_device *sdp = sdkp->device;
470 struct queue_limits lim;
471 int mode, err;
472
473 if (!capable(CAP_SYS_ADMIN))
474 return -EACCES;
475
476 if (sdp->type != TYPE_DISK)
477 return -EINVAL;
478
479 mode = sysfs_match_string(lbp_mode, buf);
480 if (mode < 0)
481 return -EINVAL;
482
483 lim = queue_limits_start_update(sdkp->disk->queue);
484 sd_config_discard(sdkp, &lim, mode);
485 err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
486 if (err)
487 return err;
488 return count;
489 }
490 static DEVICE_ATTR_RW(provisioning_mode);
491
492 /* sysfs_match_string() requires dense arrays */
493 static const char *zeroing_mode[] = {
494 [SD_ZERO_WRITE] = "write",
495 [SD_ZERO_WS] = "writesame",
496 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
497 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
498 };
499
500 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)501 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
502 char *buf)
503 {
504 struct scsi_disk *sdkp = to_scsi_disk(dev);
505
506 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
507 }
508
509 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)510 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
511 const char *buf, size_t count)
512 {
513 struct scsi_disk *sdkp = to_scsi_disk(dev);
514 int mode;
515
516 if (!capable(CAP_SYS_ADMIN))
517 return -EACCES;
518
519 mode = sysfs_match_string(zeroing_mode, buf);
520 if (mode < 0)
521 return -EINVAL;
522
523 sdkp->zeroing_mode = mode;
524
525 return count;
526 }
527 static DEVICE_ATTR_RW(zeroing_mode);
528
529 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)530 max_medium_access_timeouts_show(struct device *dev,
531 struct device_attribute *attr, char *buf)
532 {
533 struct scsi_disk *sdkp = to_scsi_disk(dev);
534
535 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
536 }
537
538 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)539 max_medium_access_timeouts_store(struct device *dev,
540 struct device_attribute *attr, const char *buf,
541 size_t count)
542 {
543 struct scsi_disk *sdkp = to_scsi_disk(dev);
544 int err;
545
546 if (!capable(CAP_SYS_ADMIN))
547 return -EACCES;
548
549 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
550
551 return err ? err : count;
552 }
553 static DEVICE_ATTR_RW(max_medium_access_timeouts);
554
555 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)556 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
557 char *buf)
558 {
559 struct scsi_disk *sdkp = to_scsi_disk(dev);
560
561 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
562 }
563
564 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)565 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
566 const char *buf, size_t count)
567 {
568 struct scsi_disk *sdkp = to_scsi_disk(dev);
569 struct scsi_device *sdp = sdkp->device;
570 struct queue_limits lim;
571 unsigned long max;
572 int err;
573
574 if (!capable(CAP_SYS_ADMIN))
575 return -EACCES;
576
577 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
578 return -EINVAL;
579
580 err = kstrtoul(buf, 10, &max);
581
582 if (err)
583 return err;
584
585 if (max == 0)
586 sdp->no_write_same = 1;
587 else if (max <= SD_MAX_WS16_BLOCKS) {
588 sdp->no_write_same = 0;
589 sdkp->max_ws_blocks = max;
590 }
591
592 lim = queue_limits_start_update(sdkp->disk->queue);
593 sd_config_write_same(sdkp, &lim);
594 err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
595 if (err)
596 return err;
597 return count;
598 }
599 static DEVICE_ATTR_RW(max_write_same_blocks);
600
601 static ssize_t
zoned_cap_show(struct device * dev,struct device_attribute * attr,char * buf)602 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
603 {
604 struct scsi_disk *sdkp = to_scsi_disk(dev);
605
606 if (sdkp->device->type == TYPE_ZBC)
607 return sprintf(buf, "host-managed\n");
608 if (sdkp->zoned == 1)
609 return sprintf(buf, "host-aware\n");
610 if (sdkp->zoned == 2)
611 return sprintf(buf, "drive-managed\n");
612 return sprintf(buf, "none\n");
613 }
614 static DEVICE_ATTR_RO(zoned_cap);
615
616 static ssize_t
max_retries_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)617 max_retries_store(struct device *dev, struct device_attribute *attr,
618 const char *buf, size_t count)
619 {
620 struct scsi_disk *sdkp = to_scsi_disk(dev);
621 struct scsi_device *sdev = sdkp->device;
622 int retries, err;
623
624 err = kstrtoint(buf, 10, &retries);
625 if (err)
626 return err;
627
628 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
629 sdkp->max_retries = retries;
630 return count;
631 }
632
633 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
634 SD_MAX_RETRIES);
635 return -EINVAL;
636 }
637
638 static ssize_t
max_retries_show(struct device * dev,struct device_attribute * attr,char * buf)639 max_retries_show(struct device *dev, struct device_attribute *attr,
640 char *buf)
641 {
642 struct scsi_disk *sdkp = to_scsi_disk(dev);
643
644 return sprintf(buf, "%d\n", sdkp->max_retries);
645 }
646
647 static DEVICE_ATTR_RW(max_retries);
648
649 static struct attribute *sd_disk_attrs[] = {
650 &dev_attr_cache_type.attr,
651 &dev_attr_FUA.attr,
652 &dev_attr_allow_restart.attr,
653 &dev_attr_manage_start_stop.attr,
654 &dev_attr_manage_system_start_stop.attr,
655 &dev_attr_manage_runtime_start_stop.attr,
656 &dev_attr_manage_shutdown.attr,
657 &dev_attr_protection_type.attr,
658 &dev_attr_protection_mode.attr,
659 &dev_attr_app_tag_own.attr,
660 &dev_attr_thin_provisioning.attr,
661 &dev_attr_provisioning_mode.attr,
662 &dev_attr_zeroing_mode.attr,
663 &dev_attr_max_write_same_blocks.attr,
664 &dev_attr_max_medium_access_timeouts.attr,
665 &dev_attr_zoned_cap.attr,
666 &dev_attr_max_retries.attr,
667 NULL,
668 };
669 ATTRIBUTE_GROUPS(sd_disk);
670
671 static struct class sd_disk_class = {
672 .name = "scsi_disk",
673 .dev_release = scsi_disk_release,
674 .dev_groups = sd_disk_groups,
675 };
676
677 /*
678 * Don't request a new module, as that could deadlock in multipath
679 * environment.
680 */
sd_default_probe(dev_t devt)681 static void sd_default_probe(dev_t devt)
682 {
683 }
684
685 /*
686 * Device no to disk mapping:
687 *
688 * major disc2 disc p1
689 * |............|.............|....|....| <- dev_t
690 * 31 20 19 8 7 4 3 0
691 *
692 * Inside a major, we have 16k disks, however mapped non-
693 * contiguously. The first 16 disks are for major0, the next
694 * ones with major1, ... Disk 256 is for major0 again, disk 272
695 * for major1, ...
696 * As we stay compatible with our numbering scheme, we can reuse
697 * the well-know SCSI majors 8, 65--71, 136--143.
698 */
sd_major(int major_idx)699 static int sd_major(int major_idx)
700 {
701 switch (major_idx) {
702 case 0:
703 return SCSI_DISK0_MAJOR;
704 case 1 ... 7:
705 return SCSI_DISK1_MAJOR + major_idx - 1;
706 case 8 ... 15:
707 return SCSI_DISK8_MAJOR + major_idx - 8;
708 default:
709 BUG();
710 return 0; /* shut up gcc */
711 }
712 }
713
714 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)715 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
716 size_t len, bool send)
717 {
718 struct scsi_disk *sdkp = data;
719 struct scsi_device *sdev = sdkp->device;
720 u8 cdb[12] = { 0, };
721 const struct scsi_exec_args exec_args = {
722 .req_flags = BLK_MQ_REQ_PM,
723 };
724 int ret;
725
726 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
727 cdb[1] = secp;
728 put_unaligned_be16(spsp, &cdb[2]);
729 put_unaligned_be32(len, &cdb[6]);
730
731 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
732 buffer, len, SD_TIMEOUT, sdkp->max_retries,
733 &exec_args);
734 return ret <= 0 ? ret : -EIO;
735 }
736 #endif /* CONFIG_BLK_SED_OPAL */
737
738 /*
739 * Look up the DIX operation based on whether the command is read or
740 * write and whether dix and dif are enabled.
741 */
sd_prot_op(bool write,bool dix,bool dif)742 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
743 {
744 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
745 static const unsigned int ops[] = { /* wrt dix dif */
746 SCSI_PROT_NORMAL, /* 0 0 0 */
747 SCSI_PROT_READ_STRIP, /* 0 0 1 */
748 SCSI_PROT_READ_INSERT, /* 0 1 0 */
749 SCSI_PROT_READ_PASS, /* 0 1 1 */
750 SCSI_PROT_NORMAL, /* 1 0 0 */
751 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
752 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
753 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
754 };
755
756 return ops[write << 2 | dix << 1 | dif];
757 }
758
759 /*
760 * Returns a mask of the protection flags that are valid for a given DIX
761 * operation.
762 */
sd_prot_flag_mask(unsigned int prot_op)763 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
764 {
765 static const unsigned int flag_mask[] = {
766 [SCSI_PROT_NORMAL] = 0,
767
768 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
769 SCSI_PROT_GUARD_CHECK |
770 SCSI_PROT_REF_CHECK |
771 SCSI_PROT_REF_INCREMENT,
772
773 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
774 SCSI_PROT_IP_CHECKSUM,
775
776 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
777 SCSI_PROT_GUARD_CHECK |
778 SCSI_PROT_REF_CHECK |
779 SCSI_PROT_REF_INCREMENT |
780 SCSI_PROT_IP_CHECKSUM,
781
782 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
783 SCSI_PROT_REF_INCREMENT,
784
785 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
786 SCSI_PROT_REF_CHECK |
787 SCSI_PROT_REF_INCREMENT |
788 SCSI_PROT_IP_CHECKSUM,
789
790 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
791 SCSI_PROT_GUARD_CHECK |
792 SCSI_PROT_REF_CHECK |
793 SCSI_PROT_REF_INCREMENT |
794 SCSI_PROT_IP_CHECKSUM,
795 };
796
797 return flag_mask[prot_op];
798 }
799
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)800 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
801 unsigned int dix, unsigned int dif)
802 {
803 struct request *rq = scsi_cmd_to_rq(scmd);
804 struct bio *bio = rq->bio;
805 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
806 unsigned int protect = 0;
807
808 if (dix) { /* DIX Type 0, 1, 2, 3 */
809 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
810 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
811
812 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
813 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
814 }
815
816 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
817 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
818
819 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
820 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
821 }
822
823 if (dif) { /* DIX/DIF Type 1, 2, 3 */
824 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
825
826 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
827 protect = 3 << 5; /* Disable target PI checking */
828 else
829 protect = 1 << 5; /* Enable target PI checking */
830 }
831
832 scsi_set_prot_op(scmd, prot_op);
833 scsi_set_prot_type(scmd, dif);
834 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
835
836 return protect;
837 }
838
sd_disable_discard(struct scsi_disk * sdkp)839 static void sd_disable_discard(struct scsi_disk *sdkp)
840 {
841 sdkp->provisioning_mode = SD_LBP_DISABLE;
842 blk_queue_disable_discard(sdkp->disk->queue);
843 }
844
sd_config_discard(struct scsi_disk * sdkp,struct queue_limits * lim,unsigned int mode)845 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
846 unsigned int mode)
847 {
848 unsigned int logical_block_size = sdkp->device->sector_size;
849 unsigned int max_blocks = 0;
850
851 lim->discard_alignment = sdkp->unmap_alignment * logical_block_size;
852 lim->discard_granularity = max(sdkp->physical_block_size,
853 sdkp->unmap_granularity * logical_block_size);
854 sdkp->provisioning_mode = mode;
855
856 switch (mode) {
857
858 case SD_LBP_FULL:
859 case SD_LBP_DISABLE:
860 break;
861
862 case SD_LBP_UNMAP:
863 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
864 (u32)SD_MAX_WS16_BLOCKS);
865 break;
866
867 case SD_LBP_WS16:
868 if (sdkp->device->unmap_limit_for_ws)
869 max_blocks = sdkp->max_unmap_blocks;
870 else
871 max_blocks = sdkp->max_ws_blocks;
872
873 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
874 break;
875
876 case SD_LBP_WS10:
877 if (sdkp->device->unmap_limit_for_ws)
878 max_blocks = sdkp->max_unmap_blocks;
879 else
880 max_blocks = sdkp->max_ws_blocks;
881
882 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
883 break;
884
885 case SD_LBP_ZERO:
886 max_blocks = min_not_zero(sdkp->max_ws_blocks,
887 (u32)SD_MAX_WS10_BLOCKS);
888 break;
889 }
890
891 lim->max_hw_discard_sectors = max_blocks *
892 (logical_block_size >> SECTOR_SHIFT);
893 }
894
sd_set_special_bvec(struct request * rq,unsigned int data_len)895 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
896 {
897 struct page *page;
898
899 page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
900 if (!page)
901 return NULL;
902 clear_highpage(page);
903 bvec_set_page(&rq->special_vec, page, data_len, 0);
904 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
905 return bvec_virt(&rq->special_vec);
906 }
907
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)908 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
909 {
910 struct scsi_device *sdp = cmd->device;
911 struct request *rq = scsi_cmd_to_rq(cmd);
912 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
913 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
914 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
915 unsigned int data_len = 24;
916 char *buf;
917
918 buf = sd_set_special_bvec(rq, data_len);
919 if (!buf)
920 return BLK_STS_RESOURCE;
921
922 cmd->cmd_len = 10;
923 cmd->cmnd[0] = UNMAP;
924 cmd->cmnd[8] = 24;
925
926 put_unaligned_be16(6 + 16, &buf[0]);
927 put_unaligned_be16(16, &buf[2]);
928 put_unaligned_be64(lba, &buf[8]);
929 put_unaligned_be32(nr_blocks, &buf[16]);
930
931 cmd->allowed = sdkp->max_retries;
932 cmd->transfersize = data_len;
933 rq->timeout = SD_TIMEOUT;
934
935 return scsi_alloc_sgtables(cmd);
936 }
937
sd_config_atomic(struct scsi_disk * sdkp,struct queue_limits * lim)938 static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim)
939 {
940 unsigned int logical_block_size = sdkp->device->sector_size,
941 physical_block_size_sectors, max_atomic, unit_min, unit_max;
942
943 if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) ||
944 sdkp->protection_type == T10_PI_TYPE2_PROTECTION)
945 return;
946
947 physical_block_size_sectors = sdkp->physical_block_size /
948 sdkp->device->sector_size;
949
950 unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ?
951 sdkp->atomic_granularity :
952 physical_block_size_sectors);
953
954 /*
955 * Only use atomic boundary when we have the odd scenario of
956 * sdkp->max_atomic == 0, which the spec does permit.
957 */
958 if (sdkp->max_atomic) {
959 max_atomic = sdkp->max_atomic;
960 unit_max = rounddown_pow_of_two(sdkp->max_atomic);
961 sdkp->use_atomic_write_boundary = 0;
962 } else {
963 max_atomic = sdkp->max_atomic_with_boundary;
964 unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary);
965 sdkp->use_atomic_write_boundary = 1;
966 }
967
968 /*
969 * Ensure compliance with granularity and alignment. For now, keep it
970 * simple and just don't support atomic writes for values mismatched
971 * with max_{boundary}atomic, physical block size, and
972 * atomic_granularity itself.
973 *
974 * We're really being distrustful by checking unit_max also...
975 */
976 if (sdkp->atomic_granularity > 1) {
977 if (unit_min > 1 && unit_min % sdkp->atomic_granularity)
978 return;
979 if (unit_max > 1 && unit_max % sdkp->atomic_granularity)
980 return;
981 }
982
983 if (sdkp->atomic_alignment > 1) {
984 if (unit_min > 1 && unit_min % sdkp->atomic_alignment)
985 return;
986 if (unit_max > 1 && unit_max % sdkp->atomic_alignment)
987 return;
988 }
989
990 lim->atomic_write_hw_max = max_atomic * logical_block_size;
991 lim->atomic_write_hw_boundary = 0;
992 lim->atomic_write_hw_unit_min = unit_min * logical_block_size;
993 lim->atomic_write_hw_unit_max = unit_max * logical_block_size;
994 }
995
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)996 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
997 bool unmap)
998 {
999 struct scsi_device *sdp = cmd->device;
1000 struct request *rq = scsi_cmd_to_rq(cmd);
1001 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1002 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1003 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1004 u32 data_len = sdp->sector_size;
1005
1006 if (!sd_set_special_bvec(rq, data_len))
1007 return BLK_STS_RESOURCE;
1008
1009 cmd->cmd_len = 16;
1010 cmd->cmnd[0] = WRITE_SAME_16;
1011 if (unmap)
1012 cmd->cmnd[1] = 0x8; /* UNMAP */
1013 put_unaligned_be64(lba, &cmd->cmnd[2]);
1014 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1015
1016 cmd->allowed = sdkp->max_retries;
1017 cmd->transfersize = data_len;
1018 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1019
1020 return scsi_alloc_sgtables(cmd);
1021 }
1022
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)1023 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
1024 bool unmap)
1025 {
1026 struct scsi_device *sdp = cmd->device;
1027 struct request *rq = scsi_cmd_to_rq(cmd);
1028 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1029 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1030 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1031 u32 data_len = sdp->sector_size;
1032
1033 if (!sd_set_special_bvec(rq, data_len))
1034 return BLK_STS_RESOURCE;
1035
1036 cmd->cmd_len = 10;
1037 cmd->cmnd[0] = WRITE_SAME;
1038 if (unmap)
1039 cmd->cmnd[1] = 0x8; /* UNMAP */
1040 put_unaligned_be32(lba, &cmd->cmnd[2]);
1041 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042
1043 cmd->allowed = sdkp->max_retries;
1044 cmd->transfersize = data_len;
1045 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1046
1047 return scsi_alloc_sgtables(cmd);
1048 }
1049
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)1050 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
1051 {
1052 struct request *rq = scsi_cmd_to_rq(cmd);
1053 struct scsi_device *sdp = cmd->device;
1054 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1055 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1056 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1057
1058 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
1059 switch (sdkp->zeroing_mode) {
1060 case SD_ZERO_WS16_UNMAP:
1061 return sd_setup_write_same16_cmnd(cmd, true);
1062 case SD_ZERO_WS10_UNMAP:
1063 return sd_setup_write_same10_cmnd(cmd, true);
1064 }
1065 }
1066
1067 if (sdp->no_write_same) {
1068 rq->rq_flags |= RQF_QUIET;
1069 return BLK_STS_TARGET;
1070 }
1071
1072 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
1073 return sd_setup_write_same16_cmnd(cmd, false);
1074
1075 return sd_setup_write_same10_cmnd(cmd, false);
1076 }
1077
sd_disable_write_same(struct scsi_disk * sdkp)1078 static void sd_disable_write_same(struct scsi_disk *sdkp)
1079 {
1080 sdkp->device->no_write_same = 1;
1081 sdkp->max_ws_blocks = 0;
1082 blk_queue_disable_write_zeroes(sdkp->disk->queue);
1083 }
1084
sd_config_write_same(struct scsi_disk * sdkp,struct queue_limits * lim)1085 static void sd_config_write_same(struct scsi_disk *sdkp,
1086 struct queue_limits *lim)
1087 {
1088 unsigned int logical_block_size = sdkp->device->sector_size;
1089
1090 if (sdkp->device->no_write_same) {
1091 sdkp->max_ws_blocks = 0;
1092 goto out;
1093 }
1094
1095 /* Some devices can not handle block counts above 0xffff despite
1096 * supporting WRITE SAME(16). Consequently we default to 64k
1097 * blocks per I/O unless the device explicitly advertises a
1098 * bigger limit.
1099 */
1100 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1101 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1102 (u32)SD_MAX_WS16_BLOCKS);
1103 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1104 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1105 (u32)SD_MAX_WS10_BLOCKS);
1106 else {
1107 sdkp->device->no_write_same = 1;
1108 sdkp->max_ws_blocks = 0;
1109 }
1110
1111 if (sdkp->lbprz && sdkp->lbpws)
1112 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1113 else if (sdkp->lbprz && sdkp->lbpws10)
1114 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1115 else if (sdkp->max_ws_blocks)
1116 sdkp->zeroing_mode = SD_ZERO_WS;
1117 else
1118 sdkp->zeroing_mode = SD_ZERO_WRITE;
1119
1120 if (sdkp->max_ws_blocks &&
1121 sdkp->physical_block_size > logical_block_size) {
1122 /*
1123 * Reporting a maximum number of blocks that is not aligned
1124 * on the device physical size would cause a large write same
1125 * request to be split into physically unaligned chunks by
1126 * __blkdev_issue_write_zeroes() even if the caller of this
1127 * functions took care to align the large request. So make sure
1128 * the maximum reported is aligned to the device physical block
1129 * size. This is only an optional optimization for regular
1130 * disks, but this is mandatory to avoid failure of large write
1131 * same requests directed at sequential write required zones of
1132 * host-managed ZBC disks.
1133 */
1134 sdkp->max_ws_blocks =
1135 round_down(sdkp->max_ws_blocks,
1136 bytes_to_logical(sdkp->device,
1137 sdkp->physical_block_size));
1138 }
1139
1140 out:
1141 lim->max_write_zeroes_sectors =
1142 sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT);
1143 }
1144
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1145 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1146 {
1147 struct request *rq = scsi_cmd_to_rq(cmd);
1148 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1149
1150 /* flush requests don't perform I/O, zero the S/G table */
1151 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1152
1153 if (cmd->device->use_16_for_sync) {
1154 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1155 cmd->cmd_len = 16;
1156 } else {
1157 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1158 cmd->cmd_len = 10;
1159 }
1160 cmd->transfersize = 0;
1161 cmd->allowed = sdkp->max_retries;
1162
1163 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1164 return BLK_STS_OK;
1165 }
1166
1167 /**
1168 * sd_group_number() - Compute the GROUP NUMBER field
1169 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1170 * field.
1171 *
1172 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1173 * 0: no relative lifetime.
1174 * 1: shortest relative lifetime.
1175 * 2: second shortest relative lifetime.
1176 * 3 - 0x3d: intermediate relative lifetimes.
1177 * 0x3e: second longest relative lifetime.
1178 * 0x3f: longest relative lifetime.
1179 */
sd_group_number(struct scsi_cmnd * cmd)1180 static u8 sd_group_number(struct scsi_cmnd *cmd)
1181 {
1182 const struct request *rq = scsi_cmd_to_rq(cmd);
1183 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1184
1185 if (!sdkp->rscs)
1186 return 0;
1187
1188 return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
1189 0x3fu);
1190 }
1191
sd_setup_rw32_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags,unsigned int dld)1192 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1193 sector_t lba, unsigned int nr_blocks,
1194 unsigned char flags, unsigned int dld)
1195 {
1196 cmd->cmd_len = SD_EXT_CDB_SIZE;
1197 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1198 cmd->cmnd[6] = sd_group_number(cmd);
1199 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1200 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1201 cmd->cmnd[10] = flags;
1202 cmd->cmnd[11] = dld & 0x07;
1203 put_unaligned_be64(lba, &cmd->cmnd[12]);
1204 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1205 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1206
1207 return BLK_STS_OK;
1208 }
1209
sd_setup_rw16_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags,unsigned int dld)1210 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1211 sector_t lba, unsigned int nr_blocks,
1212 unsigned char flags, unsigned int dld)
1213 {
1214 cmd->cmd_len = 16;
1215 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1216 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01);
1217 cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1218 cmd->cmnd[15] = 0;
1219 put_unaligned_be64(lba, &cmd->cmnd[2]);
1220 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1221
1222 return BLK_STS_OK;
1223 }
1224
sd_setup_rw10_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1225 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1226 sector_t lba, unsigned int nr_blocks,
1227 unsigned char flags)
1228 {
1229 cmd->cmd_len = 10;
1230 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1231 cmd->cmnd[1] = flags;
1232 cmd->cmnd[6] = sd_group_number(cmd);
1233 cmd->cmnd[9] = 0;
1234 put_unaligned_be32(lba, &cmd->cmnd[2]);
1235 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1236
1237 return BLK_STS_OK;
1238 }
1239
sd_setup_rw6_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1240 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1241 sector_t lba, unsigned int nr_blocks,
1242 unsigned char flags)
1243 {
1244 /* Avoid that 0 blocks gets translated into 256 blocks. */
1245 if (WARN_ON_ONCE(nr_blocks == 0))
1246 return BLK_STS_IOERR;
1247
1248 if (unlikely(flags & 0x8)) {
1249 /*
1250 * This happens only if this drive failed 10byte rw
1251 * command with ILLEGAL_REQUEST during operation and
1252 * thus turned off use_10_for_rw.
1253 */
1254 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1255 return BLK_STS_IOERR;
1256 }
1257
1258 cmd->cmd_len = 6;
1259 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1260 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1261 cmd->cmnd[2] = (lba >> 8) & 0xff;
1262 cmd->cmnd[3] = lba & 0xff;
1263 cmd->cmnd[4] = nr_blocks;
1264 cmd->cmnd[5] = 0;
1265
1266 return BLK_STS_OK;
1267 }
1268
1269 /*
1270 * Check if a command has a duration limit set. If it does, and the target
1271 * device supports CDL and the feature is enabled, return the limit
1272 * descriptor index to use. Return 0 (no limit) otherwise.
1273 */
sd_cdl_dld(struct scsi_disk * sdkp,struct scsi_cmnd * scmd)1274 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1275 {
1276 struct scsi_device *sdp = sdkp->device;
1277 int hint;
1278
1279 if (!sdp->cdl_supported || !sdp->cdl_enable)
1280 return 0;
1281
1282 /*
1283 * Use "no limit" if the request ioprio does not specify a duration
1284 * limit hint.
1285 */
1286 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1287 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1288 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1289 return 0;
1290
1291 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1292 }
1293
sd_setup_atomic_cmnd(struct scsi_cmnd * cmd,sector_t lba,unsigned int nr_blocks,bool boundary,unsigned char flags)1294 static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd,
1295 sector_t lba, unsigned int nr_blocks,
1296 bool boundary, unsigned char flags)
1297 {
1298 cmd->cmd_len = 16;
1299 cmd->cmnd[0] = WRITE_ATOMIC_16;
1300 cmd->cmnd[1] = flags;
1301 put_unaligned_be64(lba, &cmd->cmnd[2]);
1302 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1303 if (boundary)
1304 put_unaligned_be16(nr_blocks, &cmd->cmnd[10]);
1305 else
1306 put_unaligned_be16(0, &cmd->cmnd[10]);
1307 put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1308 cmd->cmnd[14] = 0;
1309 cmd->cmnd[15] = 0;
1310
1311 return BLK_STS_OK;
1312 }
1313
sd_setup_read_write_cmnd(struct scsi_cmnd * cmd)1314 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1315 {
1316 struct request *rq = scsi_cmd_to_rq(cmd);
1317 struct scsi_device *sdp = cmd->device;
1318 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1319 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1320 sector_t threshold;
1321 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1322 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1323 bool write = rq_data_dir(rq) == WRITE;
1324 unsigned char protect, fua;
1325 unsigned int dld;
1326 blk_status_t ret;
1327 unsigned int dif;
1328 bool dix;
1329
1330 ret = scsi_alloc_sgtables(cmd);
1331 if (ret != BLK_STS_OK)
1332 return ret;
1333
1334 ret = BLK_STS_IOERR;
1335 if (!scsi_device_online(sdp) || sdp->changed) {
1336 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1337 goto fail;
1338 }
1339
1340 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1341 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1342 goto fail;
1343 }
1344
1345 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1346 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1347 goto fail;
1348 }
1349
1350 /*
1351 * Some SD card readers can't handle accesses which touch the
1352 * last one or two logical blocks. Split accesses as needed.
1353 */
1354 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1355
1356 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1357 if (lba < threshold) {
1358 /* Access up to the threshold but not beyond */
1359 nr_blocks = threshold - lba;
1360 } else {
1361 /* Access only a single logical block */
1362 nr_blocks = 1;
1363 }
1364 }
1365
1366 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1367 dix = scsi_prot_sg_count(cmd);
1368 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1369 dld = sd_cdl_dld(sdkp, cmd);
1370
1371 if (dif || dix)
1372 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1373 else
1374 protect = 0;
1375
1376 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1377 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1378 protect | fua, dld);
1379 } else if (rq->cmd_flags & REQ_ATOMIC) {
1380 ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks,
1381 sdkp->use_atomic_write_boundary,
1382 protect | fua);
1383 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1384 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1385 protect | fua, dld);
1386 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1387 sdp->use_10_for_rw || protect || rq->write_hint) {
1388 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1389 protect | fua);
1390 } else {
1391 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1392 protect | fua);
1393 }
1394
1395 if (unlikely(ret != BLK_STS_OK))
1396 goto fail;
1397
1398 /*
1399 * We shouldn't disconnect in the middle of a sector, so with a dumb
1400 * host adapter, it's safe to assume that we can at least transfer
1401 * this many bytes between each connect / disconnect.
1402 */
1403 cmd->transfersize = sdp->sector_size;
1404 cmd->underflow = nr_blocks << 9;
1405 cmd->allowed = sdkp->max_retries;
1406 cmd->sdb.length = nr_blocks * sdp->sector_size;
1407
1408 SCSI_LOG_HLQUEUE(1,
1409 scmd_printk(KERN_INFO, cmd,
1410 "%s: block=%llu, count=%d\n", __func__,
1411 (unsigned long long)blk_rq_pos(rq),
1412 blk_rq_sectors(rq)));
1413 SCSI_LOG_HLQUEUE(2,
1414 scmd_printk(KERN_INFO, cmd,
1415 "%s %d/%u 512 byte blocks.\n",
1416 write ? "writing" : "reading", nr_blocks,
1417 blk_rq_sectors(rq)));
1418
1419 /*
1420 * This indicates that the command is ready from our end to be queued.
1421 */
1422 return BLK_STS_OK;
1423 fail:
1424 scsi_free_sgtables(cmd);
1425 return ret;
1426 }
1427
sd_init_command(struct scsi_cmnd * cmd)1428 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1429 {
1430 struct request *rq = scsi_cmd_to_rq(cmd);
1431
1432 switch (req_op(rq)) {
1433 case REQ_OP_DISCARD:
1434 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1435 case SD_LBP_UNMAP:
1436 return sd_setup_unmap_cmnd(cmd);
1437 case SD_LBP_WS16:
1438 return sd_setup_write_same16_cmnd(cmd, true);
1439 case SD_LBP_WS10:
1440 return sd_setup_write_same10_cmnd(cmd, true);
1441 case SD_LBP_ZERO:
1442 return sd_setup_write_same10_cmnd(cmd, false);
1443 default:
1444 return BLK_STS_TARGET;
1445 }
1446 case REQ_OP_WRITE_ZEROES:
1447 return sd_setup_write_zeroes_cmnd(cmd);
1448 case REQ_OP_FLUSH:
1449 return sd_setup_flush_cmnd(cmd);
1450 case REQ_OP_READ:
1451 case REQ_OP_WRITE:
1452 return sd_setup_read_write_cmnd(cmd);
1453 case REQ_OP_ZONE_RESET:
1454 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1455 false);
1456 case REQ_OP_ZONE_RESET_ALL:
1457 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1458 true);
1459 case REQ_OP_ZONE_OPEN:
1460 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1461 case REQ_OP_ZONE_CLOSE:
1462 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1463 case REQ_OP_ZONE_FINISH:
1464 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1465 default:
1466 WARN_ON_ONCE(1);
1467 return BLK_STS_NOTSUPP;
1468 }
1469 }
1470
sd_uninit_command(struct scsi_cmnd * SCpnt)1471 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1472 {
1473 struct request *rq = scsi_cmd_to_rq(SCpnt);
1474
1475 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1476 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1477 }
1478
sd_need_revalidate(struct gendisk * disk,struct scsi_disk * sdkp)1479 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1480 {
1481 if (sdkp->device->removable || sdkp->write_prot) {
1482 if (disk_check_media_change(disk))
1483 return true;
1484 }
1485
1486 /*
1487 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1488 * nothing to do with partitions, BLKRRPART is used to force a full
1489 * revalidate after things like a format for historical reasons.
1490 */
1491 return test_bit(GD_NEED_PART_SCAN, &disk->state);
1492 }
1493
1494 /**
1495 * sd_open - open a scsi disk device
1496 * @disk: disk to open
1497 * @mode: open mode
1498 *
1499 * Returns 0 if successful. Returns a negated errno value in case
1500 * of error.
1501 *
1502 * Note: This can be called from a user context (e.g. fsck(1) )
1503 * or from within the kernel (e.g. as a result of a mount(1) ).
1504 * In the latter case @inode and @filp carry an abridged amount
1505 * of information as noted above.
1506 *
1507 * Locking: called with disk->open_mutex held.
1508 **/
sd_open(struct gendisk * disk,blk_mode_t mode)1509 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1510 {
1511 struct scsi_disk *sdkp = scsi_disk(disk);
1512 struct scsi_device *sdev = sdkp->device;
1513 int retval;
1514
1515 if (scsi_device_get(sdev))
1516 return -ENXIO;
1517
1518 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1519
1520 /*
1521 * If the device is in error recovery, wait until it is done.
1522 * If the device is offline, then disallow any access to it.
1523 */
1524 retval = -ENXIO;
1525 if (!scsi_block_when_processing_errors(sdev))
1526 goto error_out;
1527
1528 if (sd_need_revalidate(disk, sdkp))
1529 sd_revalidate_disk(disk);
1530
1531 /*
1532 * If the drive is empty, just let the open fail.
1533 */
1534 retval = -ENOMEDIUM;
1535 if (sdev->removable && !sdkp->media_present &&
1536 !(mode & BLK_OPEN_NDELAY))
1537 goto error_out;
1538
1539 /*
1540 * If the device has the write protect tab set, have the open fail
1541 * if the user expects to be able to write to the thing.
1542 */
1543 retval = -EROFS;
1544 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1545 goto error_out;
1546
1547 /*
1548 * It is possible that the disk changing stuff resulted in
1549 * the device being taken offline. If this is the case,
1550 * report this to the user, and don't pretend that the
1551 * open actually succeeded.
1552 */
1553 retval = -ENXIO;
1554 if (!scsi_device_online(sdev))
1555 goto error_out;
1556
1557 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1558 if (scsi_block_when_processing_errors(sdev))
1559 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1560 }
1561
1562 return 0;
1563
1564 error_out:
1565 scsi_device_put(sdev);
1566 return retval;
1567 }
1568
1569 /**
1570 * sd_release - invoked when the (last) close(2) is called on this
1571 * scsi disk.
1572 * @disk: disk to release
1573 *
1574 * Returns 0.
1575 *
1576 * Note: may block (uninterruptible) if error recovery is underway
1577 * on this disk.
1578 *
1579 * Locking: called with disk->open_mutex held.
1580 **/
sd_release(struct gendisk * disk)1581 static void sd_release(struct gendisk *disk)
1582 {
1583 struct scsi_disk *sdkp = scsi_disk(disk);
1584 struct scsi_device *sdev = sdkp->device;
1585
1586 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1587
1588 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1589 if (scsi_block_when_processing_errors(sdev))
1590 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1591 }
1592
1593 scsi_device_put(sdev);
1594 }
1595
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1596 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1597 {
1598 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1599 struct scsi_device *sdp = sdkp->device;
1600 struct Scsi_Host *host = sdp->host;
1601 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1602 int diskinfo[4];
1603
1604 /* default to most commonly used values */
1605 diskinfo[0] = 0x40; /* 1 << 6 */
1606 diskinfo[1] = 0x20; /* 1 << 5 */
1607 diskinfo[2] = capacity >> 11;
1608
1609 /* override with calculated, extended default, or driver values */
1610 if (host->hostt->bios_param)
1611 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1612 else
1613 scsicam_bios_param(bdev, capacity, diskinfo);
1614
1615 geo->heads = diskinfo[0];
1616 geo->sectors = diskinfo[1];
1617 geo->cylinders = diskinfo[2];
1618 return 0;
1619 }
1620
1621 /**
1622 * sd_ioctl - process an ioctl
1623 * @bdev: target block device
1624 * @mode: open mode
1625 * @cmd: ioctl command number
1626 * @arg: this is third argument given to ioctl(2) system call.
1627 * Often contains a pointer.
1628 *
1629 * Returns 0 if successful (some ioctls return positive numbers on
1630 * success as well). Returns a negated errno value in case of error.
1631 *
1632 * Note: most ioctls are forward onto the block subsystem or further
1633 * down in the scsi subsystem.
1634 **/
sd_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1635 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1636 unsigned int cmd, unsigned long arg)
1637 {
1638 struct gendisk *disk = bdev->bd_disk;
1639 struct scsi_disk *sdkp = scsi_disk(disk);
1640 struct scsi_device *sdp = sdkp->device;
1641 void __user *p = (void __user *)arg;
1642 int error;
1643
1644 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1645 "cmd=0x%x\n", disk->disk_name, cmd));
1646
1647 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1648 return -ENOIOCTLCMD;
1649
1650 /*
1651 * If we are in the middle of error recovery, don't let anyone
1652 * else try and use this device. Also, if error recovery fails, it
1653 * may try and take the device offline, in which case all further
1654 * access to the device is prohibited.
1655 */
1656 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1657 (mode & BLK_OPEN_NDELAY));
1658 if (error)
1659 return error;
1660
1661 if (is_sed_ioctl(cmd))
1662 return sed_ioctl(sdkp->opal_dev, cmd, p);
1663 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1664 }
1665
set_media_not_present(struct scsi_disk * sdkp)1666 static void set_media_not_present(struct scsi_disk *sdkp)
1667 {
1668 if (sdkp->media_present)
1669 sdkp->device->changed = 1;
1670
1671 if (sdkp->device->removable) {
1672 sdkp->media_present = 0;
1673 sdkp->capacity = 0;
1674 }
1675 }
1676
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1677 static int media_not_present(struct scsi_disk *sdkp,
1678 struct scsi_sense_hdr *sshdr)
1679 {
1680 if (!scsi_sense_valid(sshdr))
1681 return 0;
1682
1683 /* not invoked for commands that could return deferred errors */
1684 switch (sshdr->sense_key) {
1685 case UNIT_ATTENTION:
1686 case NOT_READY:
1687 /* medium not present */
1688 if (sshdr->asc == 0x3A) {
1689 set_media_not_present(sdkp);
1690 return 1;
1691 }
1692 }
1693 return 0;
1694 }
1695
1696 /**
1697 * sd_check_events - check media events
1698 * @disk: kernel device descriptor
1699 * @clearing: disk events currently being cleared
1700 *
1701 * Returns mask of DISK_EVENT_*.
1702 *
1703 * Note: this function is invoked from the block subsystem.
1704 **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1705 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1706 {
1707 struct scsi_disk *sdkp = disk->private_data;
1708 struct scsi_device *sdp;
1709 int retval;
1710 bool disk_changed;
1711
1712 if (!sdkp)
1713 return 0;
1714
1715 sdp = sdkp->device;
1716 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1717
1718 /*
1719 * If the device is offline, don't send any commands - just pretend as
1720 * if the command failed. If the device ever comes back online, we
1721 * can deal with it then. It is only because of unrecoverable errors
1722 * that we would ever take a device offline in the first place.
1723 */
1724 if (!scsi_device_online(sdp)) {
1725 set_media_not_present(sdkp);
1726 goto out;
1727 }
1728
1729 /*
1730 * Using TEST_UNIT_READY enables differentiation between drive with
1731 * no cartridge loaded - NOT READY, drive with changed cartridge -
1732 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1733 *
1734 * Drives that auto spin down. eg iomega jaz 1G, will be started
1735 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1736 * sd_revalidate() is called.
1737 */
1738 if (scsi_block_when_processing_errors(sdp)) {
1739 struct scsi_sense_hdr sshdr = { 0, };
1740
1741 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1742 &sshdr);
1743
1744 /* failed to execute TUR, assume media not present */
1745 if (retval < 0 || host_byte(retval)) {
1746 set_media_not_present(sdkp);
1747 goto out;
1748 }
1749
1750 if (media_not_present(sdkp, &sshdr))
1751 goto out;
1752 }
1753
1754 /*
1755 * For removable scsi disk we have to recognise the presence
1756 * of a disk in the drive.
1757 */
1758 if (!sdkp->media_present)
1759 sdp->changed = 1;
1760 sdkp->media_present = 1;
1761 out:
1762 /*
1763 * sdp->changed is set under the following conditions:
1764 *
1765 * Medium present state has changed in either direction.
1766 * Device has indicated UNIT_ATTENTION.
1767 */
1768 disk_changed = sdp->changed;
1769 sdp->changed = 0;
1770 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1771 }
1772
sd_sync_cache(struct scsi_disk * sdkp)1773 static int sd_sync_cache(struct scsi_disk *sdkp)
1774 {
1775 int res;
1776 struct scsi_device *sdp = sdkp->device;
1777 const int timeout = sdp->request_queue->rq_timeout
1778 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1779 /* Leave the rest of the command zero to indicate flush everything. */
1780 const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1781 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1782 struct scsi_sense_hdr sshdr;
1783 struct scsi_failure failure_defs[] = {
1784 {
1785 .allowed = 3,
1786 .result = SCMD_FAILURE_RESULT_ANY,
1787 },
1788 {}
1789 };
1790 struct scsi_failures failures = {
1791 .failure_definitions = failure_defs,
1792 };
1793 const struct scsi_exec_args exec_args = {
1794 .req_flags = BLK_MQ_REQ_PM,
1795 .sshdr = &sshdr,
1796 .failures = &failures,
1797 };
1798
1799 if (!scsi_device_online(sdp))
1800 return -ENODEV;
1801
1802 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1803 sdkp->max_retries, &exec_args);
1804 if (res) {
1805 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1806
1807 if (res < 0)
1808 return res;
1809
1810 if (scsi_status_is_check_condition(res) &&
1811 scsi_sense_valid(&sshdr)) {
1812 sd_print_sense_hdr(sdkp, &sshdr);
1813
1814 /* we need to evaluate the error return */
1815 if (sshdr.asc == 0x3a || /* medium not present */
1816 sshdr.asc == 0x20 || /* invalid command */
1817 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */
1818 /* this is no error here */
1819 return 0;
1820
1821 /*
1822 * If a format is in progress or if the drive does not
1823 * support sync, there is not much we can do because
1824 * this is called during shutdown or suspend so just
1825 * return success so those operations can proceed.
1826 */
1827 if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) ||
1828 sshdr.sense_key == ILLEGAL_REQUEST)
1829 return 0;
1830 }
1831
1832 switch (host_byte(res)) {
1833 /* ignore errors due to racing a disconnection */
1834 case DID_BAD_TARGET:
1835 case DID_NO_CONNECT:
1836 return 0;
1837 /* signal the upper layer it might try again */
1838 case DID_BUS_BUSY:
1839 case DID_IMM_RETRY:
1840 case DID_REQUEUE:
1841 case DID_SOFT_ERROR:
1842 return -EBUSY;
1843 default:
1844 return -EIO;
1845 }
1846 }
1847 return 0;
1848 }
1849
sd_rescan(struct device * dev)1850 static void sd_rescan(struct device *dev)
1851 {
1852 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1853
1854 sd_revalidate_disk(sdkp->disk);
1855 }
1856
sd_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)1857 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1858 enum blk_unique_id type)
1859 {
1860 struct scsi_device *sdev = scsi_disk(disk)->device;
1861 const struct scsi_vpd *vpd;
1862 const unsigned char *d;
1863 int ret = -ENXIO, len;
1864
1865 rcu_read_lock();
1866 vpd = rcu_dereference(sdev->vpd_pg83);
1867 if (!vpd)
1868 goto out_unlock;
1869
1870 ret = -EINVAL;
1871 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1872 /* we only care about designators with LU association */
1873 if (((d[1] >> 4) & 0x3) != 0x00)
1874 continue;
1875 if ((d[1] & 0xf) != type)
1876 continue;
1877
1878 /*
1879 * Only exit early if a 16-byte descriptor was found. Otherwise
1880 * keep looking as one with more entropy might still show up.
1881 */
1882 len = d[3];
1883 if (len != 8 && len != 12 && len != 16)
1884 continue;
1885 ret = len;
1886 memcpy(id, d + 4, len);
1887 if (len == 16)
1888 break;
1889 }
1890 out_unlock:
1891 rcu_read_unlock();
1892 return ret;
1893 }
1894
sd_scsi_to_pr_err(struct scsi_sense_hdr * sshdr,int result)1895 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1896 {
1897 switch (host_byte(result)) {
1898 case DID_TRANSPORT_MARGINAL:
1899 case DID_TRANSPORT_DISRUPTED:
1900 case DID_BUS_BUSY:
1901 return PR_STS_RETRY_PATH_FAILURE;
1902 case DID_NO_CONNECT:
1903 return PR_STS_PATH_FAILED;
1904 case DID_TRANSPORT_FAILFAST:
1905 return PR_STS_PATH_FAST_FAILED;
1906 }
1907
1908 switch (status_byte(result)) {
1909 case SAM_STAT_RESERVATION_CONFLICT:
1910 return PR_STS_RESERVATION_CONFLICT;
1911 case SAM_STAT_CHECK_CONDITION:
1912 if (!scsi_sense_valid(sshdr))
1913 return PR_STS_IOERR;
1914
1915 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1916 (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1917 return -EINVAL;
1918
1919 fallthrough;
1920 default:
1921 return PR_STS_IOERR;
1922 }
1923 }
1924
sd_pr_in_command(struct block_device * bdev,u8 sa,unsigned char * data,int data_len)1925 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1926 unsigned char *data, int data_len)
1927 {
1928 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1929 struct scsi_device *sdev = sdkp->device;
1930 struct scsi_sense_hdr sshdr;
1931 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1932 struct scsi_failure failure_defs[] = {
1933 {
1934 .sense = UNIT_ATTENTION,
1935 .asc = SCMD_FAILURE_ASC_ANY,
1936 .ascq = SCMD_FAILURE_ASCQ_ANY,
1937 .allowed = 5,
1938 .result = SAM_STAT_CHECK_CONDITION,
1939 },
1940 {}
1941 };
1942 struct scsi_failures failures = {
1943 .failure_definitions = failure_defs,
1944 };
1945 const struct scsi_exec_args exec_args = {
1946 .sshdr = &sshdr,
1947 .failures = &failures,
1948 };
1949 int result;
1950
1951 put_unaligned_be16(data_len, &cmd[7]);
1952
1953 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1954 SD_TIMEOUT, sdkp->max_retries, &exec_args);
1955 if (scsi_status_is_check_condition(result) &&
1956 scsi_sense_valid(&sshdr)) {
1957 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1958 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1959 }
1960
1961 if (result <= 0)
1962 return result;
1963
1964 return sd_scsi_to_pr_err(&sshdr, result);
1965 }
1966
sd_pr_read_keys(struct block_device * bdev,struct pr_keys * keys_info)1967 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1968 {
1969 int result, i, data_offset, num_copy_keys;
1970 u32 num_keys = keys_info->num_keys;
1971 int data_len = num_keys * 8 + 8;
1972 u8 *data;
1973
1974 data = kzalloc(data_len, GFP_KERNEL);
1975 if (!data)
1976 return -ENOMEM;
1977
1978 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1979 if (result)
1980 goto free_data;
1981
1982 keys_info->generation = get_unaligned_be32(&data[0]);
1983 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1984
1985 data_offset = 8;
1986 num_copy_keys = min(num_keys, keys_info->num_keys);
1987
1988 for (i = 0; i < num_copy_keys; i++) {
1989 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1990 data_offset += 8;
1991 }
1992
1993 free_data:
1994 kfree(data);
1995 return result;
1996 }
1997
sd_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)1998 static int sd_pr_read_reservation(struct block_device *bdev,
1999 struct pr_held_reservation *rsv)
2000 {
2001 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2002 struct scsi_device *sdev = sdkp->device;
2003 u8 data[24] = { };
2004 int result, len;
2005
2006 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
2007 if (result)
2008 return result;
2009
2010 len = get_unaligned_be32(&data[4]);
2011 if (!len)
2012 return 0;
2013
2014 /* Make sure we have at least the key and type */
2015 if (len < 14) {
2016 sdev_printk(KERN_INFO, sdev,
2017 "READ RESERVATION failed due to short return buffer of %d bytes\n",
2018 len);
2019 return -EINVAL;
2020 }
2021
2022 rsv->generation = get_unaligned_be32(&data[0]);
2023 rsv->key = get_unaligned_be64(&data[8]);
2024 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
2025 return 0;
2026 }
2027
sd_pr_out_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,enum scsi_pr_type type,u8 flags)2028 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
2029 u64 sa_key, enum scsi_pr_type type, u8 flags)
2030 {
2031 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2032 struct scsi_device *sdev = sdkp->device;
2033 struct scsi_sense_hdr sshdr;
2034 struct scsi_failure failure_defs[] = {
2035 {
2036 .sense = UNIT_ATTENTION,
2037 .asc = SCMD_FAILURE_ASC_ANY,
2038 .ascq = SCMD_FAILURE_ASCQ_ANY,
2039 .allowed = 5,
2040 .result = SAM_STAT_CHECK_CONDITION,
2041 },
2042 {}
2043 };
2044 struct scsi_failures failures = {
2045 .failure_definitions = failure_defs,
2046 };
2047 const struct scsi_exec_args exec_args = {
2048 .sshdr = &sshdr,
2049 .failures = &failures,
2050 };
2051 int result;
2052 u8 cmd[16] = { 0, };
2053 u8 data[24] = { 0, };
2054
2055 cmd[0] = PERSISTENT_RESERVE_OUT;
2056 cmd[1] = sa;
2057 cmd[2] = type;
2058 put_unaligned_be32(sizeof(data), &cmd[5]);
2059
2060 put_unaligned_be64(key, &data[0]);
2061 put_unaligned_be64(sa_key, &data[8]);
2062 data[20] = flags;
2063
2064 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
2065 sizeof(data), SD_TIMEOUT, sdkp->max_retries,
2066 &exec_args);
2067
2068 if (scsi_status_is_check_condition(result) &&
2069 scsi_sense_valid(&sshdr)) {
2070 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
2071 scsi_print_sense_hdr(sdev, NULL, &sshdr);
2072 }
2073
2074 if (result <= 0)
2075 return result;
2076
2077 return sd_scsi_to_pr_err(&sshdr, result);
2078 }
2079
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)2080 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2081 u32 flags)
2082 {
2083 if (flags & ~PR_FL_IGNORE_KEY)
2084 return -EOPNOTSUPP;
2085 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
2086 old_key, new_key, 0,
2087 (1 << 0) /* APTPL */);
2088 }
2089
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)2090 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2091 u32 flags)
2092 {
2093 if (flags)
2094 return -EOPNOTSUPP;
2095 return sd_pr_out_command(bdev, 0x01, key, 0,
2096 block_pr_type_to_scsi(type), 0);
2097 }
2098
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2099 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2100 {
2101 return sd_pr_out_command(bdev, 0x02, key, 0,
2102 block_pr_type_to_scsi(type), 0);
2103 }
2104
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)2105 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2106 enum pr_type type, bool abort)
2107 {
2108 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2109 block_pr_type_to_scsi(type), 0);
2110 }
2111
sd_pr_clear(struct block_device * bdev,u64 key)2112 static int sd_pr_clear(struct block_device *bdev, u64 key)
2113 {
2114 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2115 }
2116
2117 static const struct pr_ops sd_pr_ops = {
2118 .pr_register = sd_pr_register,
2119 .pr_reserve = sd_pr_reserve,
2120 .pr_release = sd_pr_release,
2121 .pr_preempt = sd_pr_preempt,
2122 .pr_clear = sd_pr_clear,
2123 .pr_read_keys = sd_pr_read_keys,
2124 .pr_read_reservation = sd_pr_read_reservation,
2125 };
2126
scsi_disk_free_disk(struct gendisk * disk)2127 static void scsi_disk_free_disk(struct gendisk *disk)
2128 {
2129 struct scsi_disk *sdkp = scsi_disk(disk);
2130
2131 put_device(&sdkp->disk_dev);
2132 }
2133
2134 static const struct block_device_operations sd_fops = {
2135 .owner = THIS_MODULE,
2136 .open = sd_open,
2137 .release = sd_release,
2138 .ioctl = sd_ioctl,
2139 .getgeo = sd_getgeo,
2140 .compat_ioctl = blkdev_compat_ptr_ioctl,
2141 .check_events = sd_check_events,
2142 .unlock_native_capacity = sd_unlock_native_capacity,
2143 .report_zones = sd_zbc_report_zones,
2144 .get_unique_id = sd_get_unique_id,
2145 .free_disk = scsi_disk_free_disk,
2146 .pr_ops = &sd_pr_ops,
2147 };
2148
2149 /**
2150 * sd_eh_reset - reset error handling callback
2151 * @scmd: sd-issued command that has failed
2152 *
2153 * This function is called by the SCSI midlayer before starting
2154 * SCSI EH. When counting medium access failures we have to be
2155 * careful to register it only only once per device and SCSI EH run;
2156 * there might be several timed out commands which will cause the
2157 * 'max_medium_access_timeouts' counter to trigger after the first
2158 * SCSI EH run already and set the device to offline.
2159 * So this function resets the internal counter before starting SCSI EH.
2160 **/
sd_eh_reset(struct scsi_cmnd * scmd)2161 static void sd_eh_reset(struct scsi_cmnd *scmd)
2162 {
2163 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2164
2165 /* New SCSI EH run, reset gate variable */
2166 sdkp->ignore_medium_access_errors = false;
2167 }
2168
2169 /**
2170 * sd_eh_action - error handling callback
2171 * @scmd: sd-issued command that has failed
2172 * @eh_disp: The recovery disposition suggested by the midlayer
2173 *
2174 * This function is called by the SCSI midlayer upon completion of an
2175 * error test command (currently TEST UNIT READY). The result of sending
2176 * the eh command is passed in eh_disp. We're looking for devices that
2177 * fail medium access commands but are OK with non access commands like
2178 * test unit ready (so wrongly see the device as having a successful
2179 * recovery)
2180 **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)2181 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2182 {
2183 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2184 struct scsi_device *sdev = scmd->device;
2185
2186 if (!scsi_device_online(sdev) ||
2187 !scsi_medium_access_command(scmd) ||
2188 host_byte(scmd->result) != DID_TIME_OUT ||
2189 eh_disp != SUCCESS)
2190 return eh_disp;
2191
2192 /*
2193 * The device has timed out executing a medium access command.
2194 * However, the TEST UNIT READY command sent during error
2195 * handling completed successfully. Either the device is in the
2196 * process of recovering or has it suffered an internal failure
2197 * that prevents access to the storage medium.
2198 */
2199 if (!sdkp->ignore_medium_access_errors) {
2200 sdkp->medium_access_timed_out++;
2201 sdkp->ignore_medium_access_errors = true;
2202 }
2203
2204 /*
2205 * If the device keeps failing read/write commands but TEST UNIT
2206 * READY always completes successfully we assume that medium
2207 * access is no longer possible and take the device offline.
2208 */
2209 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2210 scmd_printk(KERN_ERR, scmd,
2211 "Medium access timeout failure. Offlining disk!\n");
2212 mutex_lock(&sdev->state_mutex);
2213 scsi_device_set_state(sdev, SDEV_OFFLINE);
2214 mutex_unlock(&sdev->state_mutex);
2215
2216 return SUCCESS;
2217 }
2218
2219 return eh_disp;
2220 }
2221
sd_completed_bytes(struct scsi_cmnd * scmd)2222 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2223 {
2224 struct request *req = scsi_cmd_to_rq(scmd);
2225 struct scsi_device *sdev = scmd->device;
2226 unsigned int transferred, good_bytes;
2227 u64 start_lba, end_lba, bad_lba;
2228
2229 /*
2230 * Some commands have a payload smaller than the device logical
2231 * block size (e.g. INQUIRY on a 4K disk).
2232 */
2233 if (scsi_bufflen(scmd) <= sdev->sector_size)
2234 return 0;
2235
2236 /* Check if we have a 'bad_lba' information */
2237 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2238 SCSI_SENSE_BUFFERSIZE,
2239 &bad_lba))
2240 return 0;
2241
2242 /*
2243 * If the bad lba was reported incorrectly, we have no idea where
2244 * the error is.
2245 */
2246 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2247 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2248 if (bad_lba < start_lba || bad_lba >= end_lba)
2249 return 0;
2250
2251 /*
2252 * resid is optional but mostly filled in. When it's unused,
2253 * its value is zero, so we assume the whole buffer transferred
2254 */
2255 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2256
2257 /* This computation should always be done in terms of the
2258 * resolution of the device's medium.
2259 */
2260 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2261
2262 return min(good_bytes, transferred);
2263 }
2264
2265 /**
2266 * sd_done - bottom half handler: called when the lower level
2267 * driver has completed (successfully or otherwise) a scsi command.
2268 * @SCpnt: mid-level's per command structure.
2269 *
2270 * Note: potentially run from within an ISR. Must not block.
2271 **/
sd_done(struct scsi_cmnd * SCpnt)2272 static int sd_done(struct scsi_cmnd *SCpnt)
2273 {
2274 int result = SCpnt->result;
2275 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2276 unsigned int sector_size = SCpnt->device->sector_size;
2277 unsigned int resid;
2278 struct scsi_sense_hdr sshdr;
2279 struct request *req = scsi_cmd_to_rq(SCpnt);
2280 struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2281 int sense_valid = 0;
2282 int sense_deferred = 0;
2283
2284 switch (req_op(req)) {
2285 case REQ_OP_DISCARD:
2286 case REQ_OP_WRITE_ZEROES:
2287 case REQ_OP_ZONE_RESET:
2288 case REQ_OP_ZONE_RESET_ALL:
2289 case REQ_OP_ZONE_OPEN:
2290 case REQ_OP_ZONE_CLOSE:
2291 case REQ_OP_ZONE_FINISH:
2292 if (!result) {
2293 good_bytes = blk_rq_bytes(req);
2294 scsi_set_resid(SCpnt, 0);
2295 } else {
2296 good_bytes = 0;
2297 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2298 }
2299 break;
2300 default:
2301 /*
2302 * In case of bogus fw or device, we could end up having
2303 * an unaligned partial completion. Check this here and force
2304 * alignment.
2305 */
2306 resid = scsi_get_resid(SCpnt);
2307 if (resid & (sector_size - 1)) {
2308 sd_printk(KERN_INFO, sdkp,
2309 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2310 resid, sector_size);
2311 scsi_print_command(SCpnt);
2312 resid = min(scsi_bufflen(SCpnt),
2313 round_up(resid, sector_size));
2314 scsi_set_resid(SCpnt, resid);
2315 }
2316 }
2317
2318 if (result) {
2319 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2320 if (sense_valid)
2321 sense_deferred = scsi_sense_is_deferred(&sshdr);
2322 }
2323 sdkp->medium_access_timed_out = 0;
2324
2325 if (!scsi_status_is_check_condition(result) &&
2326 (!sense_valid || sense_deferred))
2327 goto out;
2328
2329 switch (sshdr.sense_key) {
2330 case HARDWARE_ERROR:
2331 case MEDIUM_ERROR:
2332 good_bytes = sd_completed_bytes(SCpnt);
2333 break;
2334 case RECOVERED_ERROR:
2335 good_bytes = scsi_bufflen(SCpnt);
2336 break;
2337 case NO_SENSE:
2338 /* This indicates a false check condition, so ignore it. An
2339 * unknown amount of data was transferred so treat it as an
2340 * error.
2341 */
2342 SCpnt->result = 0;
2343 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2344 break;
2345 case ABORTED_COMMAND:
2346 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2347 good_bytes = sd_completed_bytes(SCpnt);
2348 break;
2349 case ILLEGAL_REQUEST:
2350 switch (sshdr.asc) {
2351 case 0x10: /* DIX: Host detected corruption */
2352 good_bytes = sd_completed_bytes(SCpnt);
2353 break;
2354 case 0x20: /* INVALID COMMAND OPCODE */
2355 case 0x24: /* INVALID FIELD IN CDB */
2356 switch (SCpnt->cmnd[0]) {
2357 case UNMAP:
2358 sd_disable_discard(sdkp);
2359 break;
2360 case WRITE_SAME_16:
2361 case WRITE_SAME:
2362 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2363 sd_disable_discard(sdkp);
2364 } else {
2365 sd_disable_write_same(sdkp);
2366 req->rq_flags |= RQF_QUIET;
2367 }
2368 break;
2369 }
2370 }
2371 break;
2372 default:
2373 break;
2374 }
2375
2376 out:
2377 if (sdkp->device->type == TYPE_ZBC)
2378 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2379
2380 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2381 "sd_done: completed %d of %d bytes\n",
2382 good_bytes, scsi_bufflen(SCpnt)));
2383
2384 return good_bytes;
2385 }
2386
2387 /*
2388 * spinup disk - called only in sd_revalidate_disk()
2389 */
2390 static void
sd_spinup_disk(struct scsi_disk * sdkp)2391 sd_spinup_disk(struct scsi_disk *sdkp)
2392 {
2393 static const u8 cmd[10] = { TEST_UNIT_READY };
2394 unsigned long spintime_expire = 0;
2395 int spintime, sense_valid = 0;
2396 unsigned int the_result;
2397 struct scsi_sense_hdr sshdr;
2398 struct scsi_failure failure_defs[] = {
2399 /* Do not retry Medium Not Present */
2400 {
2401 .sense = UNIT_ATTENTION,
2402 .asc = 0x3A,
2403 .ascq = SCMD_FAILURE_ASCQ_ANY,
2404 .result = SAM_STAT_CHECK_CONDITION,
2405 },
2406 {
2407 .sense = NOT_READY,
2408 .asc = 0x3A,
2409 .ascq = SCMD_FAILURE_ASCQ_ANY,
2410 .result = SAM_STAT_CHECK_CONDITION,
2411 },
2412 /* Retry when scsi_status_is_good would return false 3 times */
2413 {
2414 .result = SCMD_FAILURE_STAT_ANY,
2415 .allowed = 3,
2416 },
2417 {}
2418 };
2419 struct scsi_failures failures = {
2420 .failure_definitions = failure_defs,
2421 };
2422 const struct scsi_exec_args exec_args = {
2423 .sshdr = &sshdr,
2424 .failures = &failures,
2425 };
2426
2427 spintime = 0;
2428
2429 /* Spin up drives, as required. Only do this at boot time */
2430 /* Spinup needs to be done for module loads too. */
2431 do {
2432 bool media_was_present = sdkp->media_present;
2433
2434 scsi_failures_reset_retries(&failures);
2435
2436 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2437 NULL, 0, SD_TIMEOUT,
2438 sdkp->max_retries, &exec_args);
2439
2440
2441 if (the_result > 0) {
2442 /*
2443 * If the drive has indicated to us that it doesn't
2444 * have any media in it, don't bother with any more
2445 * polling.
2446 */
2447 if (media_not_present(sdkp, &sshdr)) {
2448 if (media_was_present)
2449 sd_printk(KERN_NOTICE, sdkp,
2450 "Media removed, stopped polling\n");
2451 return;
2452 }
2453 sense_valid = scsi_sense_valid(&sshdr);
2454 }
2455
2456 if (!scsi_status_is_check_condition(the_result)) {
2457 /* no sense, TUR either succeeded or failed
2458 * with a status error */
2459 if(!spintime && !scsi_status_is_good(the_result)) {
2460 sd_print_result(sdkp, "Test Unit Ready failed",
2461 the_result);
2462 }
2463 break;
2464 }
2465
2466 /*
2467 * The device does not want the automatic start to be issued.
2468 */
2469 if (sdkp->device->no_start_on_add)
2470 break;
2471
2472 if (sense_valid && sshdr.sense_key == NOT_READY) {
2473 if (sshdr.asc == 4 && sshdr.ascq == 3)
2474 break; /* manual intervention required */
2475 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2476 break; /* standby */
2477 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2478 break; /* unavailable */
2479 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2480 break; /* sanitize in progress */
2481 if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2482 break; /* depopulation in progress */
2483 if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2484 break; /* depopulation restoration in progress */
2485 /*
2486 * Issue command to spin up drive when not ready
2487 */
2488 if (!spintime) {
2489 /* Return immediately and start spin cycle */
2490 const u8 start_cmd[10] = {
2491 [0] = START_STOP,
2492 [1] = 1,
2493 [4] = sdkp->device->start_stop_pwr_cond ?
2494 0x11 : 1,
2495 };
2496
2497 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2498 scsi_execute_cmd(sdkp->device, start_cmd,
2499 REQ_OP_DRV_IN, NULL, 0,
2500 SD_TIMEOUT, sdkp->max_retries,
2501 &exec_args);
2502 spintime_expire = jiffies + 100 * HZ;
2503 spintime = 1;
2504 }
2505 /* Wait 1 second for next try */
2506 msleep(1000);
2507 printk(KERN_CONT ".");
2508
2509 /*
2510 * Wait for USB flash devices with slow firmware.
2511 * Yes, this sense key/ASC combination shouldn't
2512 * occur here. It's characteristic of these devices.
2513 */
2514 } else if (sense_valid &&
2515 sshdr.sense_key == UNIT_ATTENTION &&
2516 sshdr.asc == 0x28) {
2517 if (!spintime) {
2518 spintime_expire = jiffies + 5 * HZ;
2519 spintime = 1;
2520 }
2521 /* Wait 1 second for next try */
2522 msleep(1000);
2523 } else {
2524 /* we don't understand the sense code, so it's
2525 * probably pointless to loop */
2526 if(!spintime) {
2527 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2528 sd_print_sense_hdr(sdkp, &sshdr);
2529 }
2530 break;
2531 }
2532
2533 } while (spintime && time_before_eq(jiffies, spintime_expire));
2534
2535 if (spintime) {
2536 if (scsi_status_is_good(the_result))
2537 printk(KERN_CONT "ready\n");
2538 else
2539 printk(KERN_CONT "not responding...\n");
2540 }
2541 }
2542
2543 /*
2544 * Determine whether disk supports Data Integrity Field.
2545 */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2546 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2547 {
2548 struct scsi_device *sdp = sdkp->device;
2549 u8 type;
2550
2551 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2552 sdkp->protection_type = 0;
2553 return 0;
2554 }
2555
2556 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2557
2558 if (type > T10_PI_TYPE3_PROTECTION) {
2559 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2560 " protection type %u. Disabling disk!\n",
2561 type);
2562 sdkp->protection_type = 0;
2563 return -ENODEV;
2564 }
2565
2566 sdkp->protection_type = type;
2567
2568 return 0;
2569 }
2570
sd_config_protection(struct scsi_disk * sdkp,struct queue_limits * lim)2571 static void sd_config_protection(struct scsi_disk *sdkp,
2572 struct queue_limits *lim)
2573 {
2574 struct scsi_device *sdp = sdkp->device;
2575
2576 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
2577 sd_dif_config_host(sdkp, lim);
2578
2579 if (!sdkp->protection_type)
2580 return;
2581
2582 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2583 sd_first_printk(KERN_NOTICE, sdkp,
2584 "Disabling DIF Type %u protection\n",
2585 sdkp->protection_type);
2586 sdkp->protection_type = 0;
2587 }
2588
2589 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2590 sdkp->protection_type);
2591 }
2592
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2593 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2594 struct scsi_sense_hdr *sshdr, int sense_valid,
2595 int the_result)
2596 {
2597 if (sense_valid)
2598 sd_print_sense_hdr(sdkp, sshdr);
2599 else
2600 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2601
2602 /*
2603 * Set dirty bit for removable devices if not ready -
2604 * sometimes drives will not report this properly.
2605 */
2606 if (sdp->removable &&
2607 sense_valid && sshdr->sense_key == NOT_READY)
2608 set_media_not_present(sdkp);
2609
2610 /*
2611 * We used to set media_present to 0 here to indicate no media
2612 * in the drive, but some drives fail read capacity even with
2613 * media present, so we can't do that.
2614 */
2615 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2616 }
2617
2618 #define RC16_LEN 32
2619 #if RC16_LEN > SD_BUF_SIZE
2620 #error RC16_LEN must not be more than SD_BUF_SIZE
2621 #endif
2622
2623 #define READ_CAPACITY_RETRIES_ON_RESET 10
2624
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,struct queue_limits * lim,unsigned char * buffer)2625 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2626 struct queue_limits *lim, unsigned char *buffer)
2627 {
2628 unsigned char cmd[16];
2629 struct scsi_sense_hdr sshdr;
2630 const struct scsi_exec_args exec_args = {
2631 .sshdr = &sshdr,
2632 };
2633 int sense_valid = 0;
2634 int the_result;
2635 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2636 unsigned int alignment;
2637 unsigned long long lba;
2638 unsigned sector_size;
2639
2640 if (sdp->no_read_capacity_16)
2641 return -EINVAL;
2642
2643 do {
2644 memset(cmd, 0, 16);
2645 cmd[0] = SERVICE_ACTION_IN_16;
2646 cmd[1] = SAI_READ_CAPACITY_16;
2647 cmd[13] = RC16_LEN;
2648 memset(buffer, 0, RC16_LEN);
2649
2650 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2651 buffer, RC16_LEN, SD_TIMEOUT,
2652 sdkp->max_retries, &exec_args);
2653 if (the_result > 0) {
2654 if (media_not_present(sdkp, &sshdr))
2655 return -ENODEV;
2656
2657 sense_valid = scsi_sense_valid(&sshdr);
2658 if (sense_valid &&
2659 sshdr.sense_key == ILLEGAL_REQUEST &&
2660 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2661 sshdr.ascq == 0x00)
2662 /* Invalid Command Operation Code or
2663 * Invalid Field in CDB, just retry
2664 * silently with RC10 */
2665 return -EINVAL;
2666 if (sense_valid &&
2667 sshdr.sense_key == UNIT_ATTENTION &&
2668 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2669 /* Device reset might occur several times,
2670 * give it one more chance */
2671 if (--reset_retries > 0)
2672 continue;
2673 }
2674 retries--;
2675
2676 } while (the_result && retries);
2677
2678 if (the_result) {
2679 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2680 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2681 return -EINVAL;
2682 }
2683
2684 sector_size = get_unaligned_be32(&buffer[8]);
2685 lba = get_unaligned_be64(&buffer[0]);
2686
2687 if (sd_read_protection_type(sdkp, buffer) < 0) {
2688 sdkp->capacity = 0;
2689 return -ENODEV;
2690 }
2691
2692 /* Logical blocks per physical block exponent */
2693 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2694
2695 /* RC basis */
2696 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2697
2698 /* Lowest aligned logical block */
2699 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2700 lim->alignment_offset = alignment;
2701 if (alignment && sdkp->first_scan)
2702 sd_printk(KERN_NOTICE, sdkp,
2703 "physical block alignment offset: %u\n", alignment);
2704
2705 if (buffer[14] & 0x80) { /* LBPME */
2706 sdkp->lbpme = 1;
2707
2708 if (buffer[14] & 0x40) /* LBPRZ */
2709 sdkp->lbprz = 1;
2710 }
2711
2712 sdkp->capacity = lba + 1;
2713 return sector_size;
2714 }
2715
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2716 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2717 unsigned char *buffer)
2718 {
2719 static const u8 cmd[10] = { READ_CAPACITY };
2720 struct scsi_sense_hdr sshdr;
2721 struct scsi_failure failure_defs[] = {
2722 /* Do not retry Medium Not Present */
2723 {
2724 .sense = UNIT_ATTENTION,
2725 .asc = 0x3A,
2726 .result = SAM_STAT_CHECK_CONDITION,
2727 },
2728 {
2729 .sense = NOT_READY,
2730 .asc = 0x3A,
2731 .result = SAM_STAT_CHECK_CONDITION,
2732 },
2733 /* Device reset might occur several times so retry a lot */
2734 {
2735 .sense = UNIT_ATTENTION,
2736 .asc = 0x29,
2737 .allowed = READ_CAPACITY_RETRIES_ON_RESET,
2738 .result = SAM_STAT_CHECK_CONDITION,
2739 },
2740 /* Any other error not listed above retry 3 times */
2741 {
2742 .result = SCMD_FAILURE_RESULT_ANY,
2743 .allowed = 3,
2744 },
2745 {}
2746 };
2747 struct scsi_failures failures = {
2748 .failure_definitions = failure_defs,
2749 };
2750 const struct scsi_exec_args exec_args = {
2751 .sshdr = &sshdr,
2752 .failures = &failures,
2753 };
2754 int sense_valid = 0;
2755 int the_result;
2756 sector_t lba;
2757 unsigned sector_size;
2758
2759 memset(buffer, 0, 8);
2760
2761 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2762 8, SD_TIMEOUT, sdkp->max_retries,
2763 &exec_args);
2764
2765 if (the_result > 0) {
2766 sense_valid = scsi_sense_valid(&sshdr);
2767
2768 if (media_not_present(sdkp, &sshdr))
2769 return -ENODEV;
2770 }
2771
2772 if (the_result) {
2773 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2774 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2775 return -EINVAL;
2776 }
2777
2778 sector_size = get_unaligned_be32(&buffer[4]);
2779 lba = get_unaligned_be32(&buffer[0]);
2780
2781 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2782 /* Some buggy (usb cardreader) devices return an lba of
2783 0xffffffff when the want to report a size of 0 (with
2784 which they really mean no media is present) */
2785 sdkp->capacity = 0;
2786 sdkp->physical_block_size = sector_size;
2787 return sector_size;
2788 }
2789
2790 sdkp->capacity = lba + 1;
2791 sdkp->physical_block_size = sector_size;
2792 return sector_size;
2793 }
2794
sd_try_rc16_first(struct scsi_device * sdp)2795 static int sd_try_rc16_first(struct scsi_device *sdp)
2796 {
2797 if (sdp->host->max_cmd_len < 16)
2798 return 0;
2799 if (sdp->try_rc_10_first)
2800 return 0;
2801 if (sdp->scsi_level > SCSI_SPC_2)
2802 return 1;
2803 if (scsi_device_protection(sdp))
2804 return 1;
2805 return 0;
2806 }
2807
2808 /*
2809 * read disk capacity
2810 */
2811 static void
sd_read_capacity(struct scsi_disk * sdkp,struct queue_limits * lim,unsigned char * buffer)2812 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim,
2813 unsigned char *buffer)
2814 {
2815 int sector_size;
2816 struct scsi_device *sdp = sdkp->device;
2817
2818 if (sd_try_rc16_first(sdp)) {
2819 sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2820 if (sector_size == -EOVERFLOW)
2821 goto got_data;
2822 if (sector_size == -ENODEV)
2823 return;
2824 if (sector_size < 0)
2825 sector_size = read_capacity_10(sdkp, sdp, buffer);
2826 if (sector_size < 0)
2827 return;
2828 } else {
2829 sector_size = read_capacity_10(sdkp, sdp, buffer);
2830 if (sector_size == -EOVERFLOW)
2831 goto got_data;
2832 if (sector_size < 0)
2833 return;
2834 if ((sizeof(sdkp->capacity) > 4) &&
2835 (sdkp->capacity > 0xffffffffULL)) {
2836 int old_sector_size = sector_size;
2837 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2838 "Trying to use READ CAPACITY(16).\n");
2839 sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2840 if (sector_size < 0) {
2841 sd_printk(KERN_NOTICE, sdkp,
2842 "Using 0xffffffff as device size\n");
2843 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2844 sector_size = old_sector_size;
2845 goto got_data;
2846 }
2847 /* Remember that READ CAPACITY(16) succeeded */
2848 sdp->try_rc_10_first = 0;
2849 }
2850 }
2851
2852 /* Some devices are known to return the total number of blocks,
2853 * not the highest block number. Some devices have versions
2854 * which do this and others which do not. Some devices we might
2855 * suspect of doing this but we don't know for certain.
2856 *
2857 * If we know the reported capacity is wrong, decrement it. If
2858 * we can only guess, then assume the number of blocks is even
2859 * (usually true but not always) and err on the side of lowering
2860 * the capacity.
2861 */
2862 if (sdp->fix_capacity ||
2863 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2864 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2865 "from its reported value: %llu\n",
2866 (unsigned long long) sdkp->capacity);
2867 --sdkp->capacity;
2868 }
2869
2870 got_data:
2871 if (sector_size == 0) {
2872 sector_size = 512;
2873 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2874 "assuming 512.\n");
2875 }
2876
2877 if (sector_size != 512 &&
2878 sector_size != 1024 &&
2879 sector_size != 2048 &&
2880 sector_size != 4096) {
2881 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2882 sector_size);
2883 /*
2884 * The user might want to re-format the drive with
2885 * a supported sectorsize. Once this happens, it
2886 * would be relatively trivial to set the thing up.
2887 * For this reason, we leave the thing in the table.
2888 */
2889 sdkp->capacity = 0;
2890 /*
2891 * set a bogus sector size so the normal read/write
2892 * logic in the block layer will eventually refuse any
2893 * request on this device without tripping over power
2894 * of two sector size assumptions
2895 */
2896 sector_size = 512;
2897 }
2898 lim->logical_block_size = sector_size;
2899 lim->physical_block_size = sdkp->physical_block_size;
2900 sdkp->device->sector_size = sector_size;
2901
2902 if (sdkp->capacity > 0xffffffff)
2903 sdp->use_16_for_rw = 1;
2904
2905 }
2906
2907 /*
2908 * Print disk capacity
2909 */
2910 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2911 sd_print_capacity(struct scsi_disk *sdkp,
2912 sector_t old_capacity)
2913 {
2914 int sector_size = sdkp->device->sector_size;
2915 char cap_str_2[10], cap_str_10[10];
2916
2917 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2918 return;
2919
2920 string_get_size(sdkp->capacity, sector_size,
2921 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2922 string_get_size(sdkp->capacity, sector_size,
2923 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2924
2925 sd_printk(KERN_NOTICE, sdkp,
2926 "%llu %d-byte logical blocks: (%s/%s)\n",
2927 (unsigned long long)sdkp->capacity,
2928 sector_size, cap_str_10, cap_str_2);
2929
2930 if (sdkp->physical_block_size != sector_size)
2931 sd_printk(KERN_NOTICE, sdkp,
2932 "%u-byte physical blocks\n",
2933 sdkp->physical_block_size);
2934 }
2935
2936 /* called with buffer of length 512 */
2937 static inline int
sd_do_mode_sense(struct scsi_disk * sdkp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2938 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2939 unsigned char *buffer, int len, struct scsi_mode_data *data,
2940 struct scsi_sense_hdr *sshdr)
2941 {
2942 /*
2943 * If we must use MODE SENSE(10), make sure that the buffer length
2944 * is at least 8 bytes so that the mode sense header fits.
2945 */
2946 if (sdkp->device->use_10_for_ms && len < 8)
2947 len = 8;
2948
2949 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2950 SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2951 }
2952
2953 /*
2954 * read write protect setting, if possible - called only in sd_revalidate_disk()
2955 * called with buffer of length SD_BUF_SIZE
2956 */
2957 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2958 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2959 {
2960 int res;
2961 struct scsi_device *sdp = sdkp->device;
2962 struct scsi_mode_data data;
2963 int old_wp = sdkp->write_prot;
2964
2965 set_disk_ro(sdkp->disk, 0);
2966 if (sdp->skip_ms_page_3f) {
2967 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2968 return;
2969 }
2970
2971 if (sdp->use_192_bytes_for_3f) {
2972 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2973 } else {
2974 /*
2975 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2976 * We have to start carefully: some devices hang if we ask
2977 * for more than is available.
2978 */
2979 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2980
2981 /*
2982 * Second attempt: ask for page 0 When only page 0 is
2983 * implemented, a request for page 3F may return Sense Key
2984 * 5: Illegal Request, Sense Code 24: Invalid field in
2985 * CDB.
2986 */
2987 if (res < 0)
2988 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2989
2990 /*
2991 * Third attempt: ask 255 bytes, as we did earlier.
2992 */
2993 if (res < 0)
2994 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2995 &data, NULL);
2996 }
2997
2998 if (res < 0) {
2999 sd_first_printk(KERN_WARNING, sdkp,
3000 "Test WP failed, assume Write Enabled\n");
3001 } else {
3002 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
3003 set_disk_ro(sdkp->disk, sdkp->write_prot);
3004 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
3005 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
3006 sdkp->write_prot ? "on" : "off");
3007 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
3008 }
3009 }
3010 }
3011
3012 /*
3013 * sd_read_cache_type - called only from sd_revalidate_disk()
3014 * called with buffer of length SD_BUF_SIZE
3015 */
3016 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)3017 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
3018 {
3019 int len = 0, res;
3020 struct scsi_device *sdp = sdkp->device;
3021
3022 int dbd;
3023 int modepage;
3024 int first_len;
3025 struct scsi_mode_data data;
3026 struct scsi_sense_hdr sshdr;
3027 int old_wce = sdkp->WCE;
3028 int old_rcd = sdkp->RCD;
3029 int old_dpofua = sdkp->DPOFUA;
3030
3031
3032 if (sdkp->cache_override)
3033 return;
3034
3035 first_len = 4;
3036 if (sdp->skip_ms_page_8) {
3037 if (sdp->type == TYPE_RBC)
3038 goto defaults;
3039 else {
3040 if (sdp->skip_ms_page_3f)
3041 goto defaults;
3042 modepage = 0x3F;
3043 if (sdp->use_192_bytes_for_3f)
3044 first_len = 192;
3045 dbd = 0;
3046 }
3047 } else if (sdp->type == TYPE_RBC) {
3048 modepage = 6;
3049 dbd = 8;
3050 } else {
3051 modepage = 8;
3052 dbd = 0;
3053 }
3054
3055 /* cautiously ask */
3056 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
3057 &data, &sshdr);
3058
3059 if (res < 0)
3060 goto bad_sense;
3061
3062 if (!data.header_length) {
3063 modepage = 6;
3064 first_len = 0;
3065 sd_first_printk(KERN_ERR, sdkp,
3066 "Missing header in MODE_SENSE response\n");
3067 }
3068
3069 /* that went OK, now ask for the proper length */
3070 len = data.length;
3071
3072 /*
3073 * We're only interested in the first three bytes, actually.
3074 * But the data cache page is defined for the first 20.
3075 */
3076 if (len < 3)
3077 goto bad_sense;
3078 else if (len > SD_BUF_SIZE) {
3079 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
3080 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
3081 len = SD_BUF_SIZE;
3082 }
3083 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
3084 len = 192;
3085
3086 /* Get the data */
3087 if (len > first_len)
3088 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
3089 &data, &sshdr);
3090
3091 if (!res) {
3092 int offset = data.header_length + data.block_descriptor_length;
3093
3094 while (offset < len) {
3095 u8 page_code = buffer[offset] & 0x3F;
3096 u8 spf = buffer[offset] & 0x40;
3097
3098 if (page_code == 8 || page_code == 6) {
3099 /* We're interested only in the first 3 bytes.
3100 */
3101 if (len - offset <= 2) {
3102 sd_first_printk(KERN_ERR, sdkp,
3103 "Incomplete mode parameter "
3104 "data\n");
3105 goto defaults;
3106 } else {
3107 modepage = page_code;
3108 goto Page_found;
3109 }
3110 } else {
3111 /* Go to the next page */
3112 if (spf && len - offset > 3)
3113 offset += 4 + (buffer[offset+2] << 8) +
3114 buffer[offset+3];
3115 else if (!spf && len - offset > 1)
3116 offset += 2 + buffer[offset+1];
3117 else {
3118 sd_first_printk(KERN_ERR, sdkp,
3119 "Incomplete mode "
3120 "parameter data\n");
3121 goto defaults;
3122 }
3123 }
3124 }
3125
3126 sd_first_printk(KERN_WARNING, sdkp,
3127 "No Caching mode page found\n");
3128 goto defaults;
3129
3130 Page_found:
3131 if (modepage == 8) {
3132 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3133 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3134 } else {
3135 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3136 sdkp->RCD = 0;
3137 }
3138
3139 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3140 if (sdp->broken_fua) {
3141 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3142 sdkp->DPOFUA = 0;
3143 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3144 !sdkp->device->use_16_for_rw) {
3145 sd_first_printk(KERN_NOTICE, sdkp,
3146 "Uses READ/WRITE(6), disabling FUA\n");
3147 sdkp->DPOFUA = 0;
3148 }
3149
3150 /* No cache flush allowed for write protected devices */
3151 if (sdkp->WCE && sdkp->write_prot)
3152 sdkp->WCE = 0;
3153
3154 if (sdkp->first_scan || old_wce != sdkp->WCE ||
3155 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3156 sd_printk(KERN_NOTICE, sdkp,
3157 "Write cache: %s, read cache: %s, %s\n",
3158 sdkp->WCE ? "enabled" : "disabled",
3159 sdkp->RCD ? "disabled" : "enabled",
3160 sdkp->DPOFUA ? "supports DPO and FUA"
3161 : "doesn't support DPO or FUA");
3162
3163 return;
3164 }
3165
3166 bad_sense:
3167 if (res == -EIO && scsi_sense_valid(&sshdr) &&
3168 sshdr.sense_key == ILLEGAL_REQUEST &&
3169 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3170 /* Invalid field in CDB */
3171 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3172 else
3173 sd_first_printk(KERN_ERR, sdkp,
3174 "Asking for cache data failed\n");
3175
3176 defaults:
3177 if (sdp->wce_default_on) {
3178 sd_first_printk(KERN_NOTICE, sdkp,
3179 "Assuming drive cache: write back\n");
3180 sdkp->WCE = 1;
3181 } else {
3182 sd_first_printk(KERN_WARNING, sdkp,
3183 "Assuming drive cache: write through\n");
3184 sdkp->WCE = 0;
3185 }
3186 sdkp->RCD = 0;
3187 sdkp->DPOFUA = 0;
3188 }
3189
sd_is_perm_stream(struct scsi_disk * sdkp,unsigned int stream_id)3190 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3191 {
3192 u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3193 struct {
3194 struct scsi_stream_status_header h;
3195 struct scsi_stream_status s;
3196 } buf;
3197 struct scsi_device *sdev = sdkp->device;
3198 struct scsi_sense_hdr sshdr;
3199 const struct scsi_exec_args exec_args = {
3200 .sshdr = &sshdr,
3201 };
3202 int res;
3203
3204 put_unaligned_be16(stream_id, &cdb[4]);
3205 put_unaligned_be32(sizeof(buf), &cdb[10]);
3206
3207 res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3208 SD_TIMEOUT, sdkp->max_retries, &exec_args);
3209 if (res < 0)
3210 return false;
3211 if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3212 sd_print_sense_hdr(sdkp, &sshdr);
3213 if (res)
3214 return false;
3215 if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3216 return false;
3217 return buf.h.stream_status[0].perm;
3218 }
3219
sd_read_io_hints(struct scsi_disk * sdkp,unsigned char * buffer)3220 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3221 {
3222 struct scsi_device *sdp = sdkp->device;
3223 const struct scsi_io_group_descriptor *desc, *start, *end;
3224 u16 permanent_stream_count_old;
3225 struct scsi_sense_hdr sshdr;
3226 struct scsi_mode_data data;
3227 int res;
3228
3229 if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS)
3230 return;
3231
3232 res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3233 /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3234 sdkp->max_retries, &data, &sshdr);
3235 if (res < 0)
3236 return;
3237 start = (void *)buffer + data.header_length + 16;
3238 end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3239 sizeof(*end));
3240 /*
3241 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3242 * should assign the lowest numbered stream identifiers to permanent
3243 * streams.
3244 */
3245 for (desc = start; desc < end; desc++)
3246 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3247 break;
3248 permanent_stream_count_old = sdkp->permanent_stream_count;
3249 sdkp->permanent_stream_count = desc - start;
3250 if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3251 sd_printk(KERN_INFO, sdkp,
3252 "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3253 sdkp->permanent_stream_count);
3254 else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3255 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3256 sdkp->permanent_stream_count);
3257 }
3258
3259 /*
3260 * The ATO bit indicates whether the DIF application tag is available
3261 * for use by the operating system.
3262 */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)3263 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3264 {
3265 int res, offset;
3266 struct scsi_device *sdp = sdkp->device;
3267 struct scsi_mode_data data;
3268 struct scsi_sense_hdr sshdr;
3269
3270 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3271 return;
3272
3273 if (sdkp->protection_type == 0)
3274 return;
3275
3276 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3277 sdkp->max_retries, &data, &sshdr);
3278
3279 if (res < 0 || !data.header_length ||
3280 data.length < 6) {
3281 sd_first_printk(KERN_WARNING, sdkp,
3282 "getting Control mode page failed, assume no ATO\n");
3283
3284 if (res == -EIO && scsi_sense_valid(&sshdr))
3285 sd_print_sense_hdr(sdkp, &sshdr);
3286
3287 return;
3288 }
3289
3290 offset = data.header_length + data.block_descriptor_length;
3291
3292 if ((buffer[offset] & 0x3f) != 0x0a) {
3293 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3294 return;
3295 }
3296
3297 if ((buffer[offset + 5] & 0x80) == 0)
3298 return;
3299
3300 sdkp->ATO = 1;
3301
3302 return;
3303 }
3304
sd_discard_mode(struct scsi_disk * sdkp)3305 static unsigned int sd_discard_mode(struct scsi_disk *sdkp)
3306 {
3307 if (!sdkp->lbpme)
3308 return SD_LBP_FULL;
3309
3310 if (!sdkp->lbpvpd) {
3311 /* LBP VPD page not provided */
3312 if (sdkp->max_unmap_blocks)
3313 return SD_LBP_UNMAP;
3314 return SD_LBP_WS16;
3315 }
3316
3317 /* LBP VPD page tells us what to use */
3318 if (sdkp->lbpu && sdkp->max_unmap_blocks)
3319 return SD_LBP_UNMAP;
3320 if (sdkp->lbpws)
3321 return SD_LBP_WS16;
3322 if (sdkp->lbpws10)
3323 return SD_LBP_WS10;
3324 return SD_LBP_DISABLE;
3325 }
3326
3327 /*
3328 * Query disk device for preferred I/O sizes.
3329 */
sd_read_block_limits(struct scsi_disk * sdkp,struct queue_limits * lim)3330 static void sd_read_block_limits(struct scsi_disk *sdkp,
3331 struct queue_limits *lim)
3332 {
3333 struct scsi_vpd *vpd;
3334
3335 rcu_read_lock();
3336
3337 vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3338 if (!vpd || vpd->len < 16)
3339 goto out;
3340
3341 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3342 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3343 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3344
3345 if (vpd->len >= 64) {
3346 unsigned int lba_count, desc_count;
3347
3348 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3349
3350 if (!sdkp->lbpme)
3351 goto config_atomic;
3352
3353 lba_count = get_unaligned_be32(&vpd->data[20]);
3354 desc_count = get_unaligned_be32(&vpd->data[24]);
3355
3356 if (lba_count && desc_count)
3357 sdkp->max_unmap_blocks = lba_count;
3358
3359 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3360
3361 if (vpd->data[32] & 0x80)
3362 sdkp->unmap_alignment =
3363 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3364
3365 config_atomic:
3366 sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]);
3367 sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]);
3368 sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]);
3369 sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]);
3370 sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]);
3371
3372 sd_config_atomic(sdkp, lim);
3373 }
3374
3375 out:
3376 rcu_read_unlock();
3377 }
3378
3379 /* Parse the Block Limits Extension VPD page (0xb7) */
sd_read_block_limits_ext(struct scsi_disk * sdkp)3380 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3381 {
3382 struct scsi_vpd *vpd;
3383
3384 rcu_read_lock();
3385 vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3386 if (vpd && vpd->len >= 6)
3387 sdkp->rscs = vpd->data[5] & 1;
3388 rcu_read_unlock();
3389 }
3390
3391 /* Query block device characteristics */
sd_read_block_characteristics(struct scsi_disk * sdkp,struct queue_limits * lim)3392 static void sd_read_block_characteristics(struct scsi_disk *sdkp,
3393 struct queue_limits *lim)
3394 {
3395 struct scsi_vpd *vpd;
3396 u16 rot;
3397
3398 rcu_read_lock();
3399 vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3400
3401 if (!vpd || vpd->len <= 8) {
3402 rcu_read_unlock();
3403 return;
3404 }
3405
3406 rot = get_unaligned_be16(&vpd->data[4]);
3407 sdkp->zoned = (vpd->data[8] >> 4) & 3;
3408 rcu_read_unlock();
3409
3410 if (rot == 1)
3411 lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3412
3413 if (!sdkp->first_scan)
3414 return;
3415
3416 if (sdkp->device->type == TYPE_ZBC)
3417 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3418 else if (sdkp->zoned == 1)
3419 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3420 else if (sdkp->zoned == 2)
3421 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3422 }
3423
3424 /**
3425 * sd_read_block_provisioning - Query provisioning VPD page
3426 * @sdkp: disk to query
3427 */
sd_read_block_provisioning(struct scsi_disk * sdkp)3428 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3429 {
3430 struct scsi_vpd *vpd;
3431
3432 if (sdkp->lbpme == 0)
3433 return;
3434
3435 rcu_read_lock();
3436 vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3437
3438 if (!vpd || vpd->len < 8) {
3439 rcu_read_unlock();
3440 return;
3441 }
3442
3443 sdkp->lbpvpd = 1;
3444 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */
3445 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3446 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3447 rcu_read_unlock();
3448 }
3449
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3450 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3451 {
3452 struct scsi_device *sdev = sdkp->device;
3453
3454 if (sdev->host->no_write_same) {
3455 sdev->no_write_same = 1;
3456
3457 return;
3458 }
3459
3460 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3461 struct scsi_vpd *vpd;
3462
3463 sdev->no_report_opcodes = 1;
3464
3465 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3466 * CODES is unsupported and the device has an ATA
3467 * Information VPD page (SAT).
3468 */
3469 rcu_read_lock();
3470 vpd = rcu_dereference(sdev->vpd_pg89);
3471 if (vpd)
3472 sdev->no_write_same = 1;
3473 rcu_read_unlock();
3474 }
3475
3476 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3477 sdkp->ws16 = 1;
3478
3479 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3480 sdkp->ws10 = 1;
3481 }
3482
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3483 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3484 {
3485 struct scsi_device *sdev = sdkp->device;
3486
3487 if (!sdev->security_supported)
3488 return;
3489
3490 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3491 SECURITY_PROTOCOL_IN, 0) == 1 &&
3492 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3493 SECURITY_PROTOCOL_OUT, 0) == 1)
3494 sdkp->security = 1;
3495 }
3496
sd64_to_sectors(struct scsi_disk * sdkp,u8 * buf)3497 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3498 {
3499 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3500 }
3501
3502 /**
3503 * sd_read_cpr - Query concurrent positioning ranges
3504 * @sdkp: disk to query
3505 */
sd_read_cpr(struct scsi_disk * sdkp)3506 static void sd_read_cpr(struct scsi_disk *sdkp)
3507 {
3508 struct blk_independent_access_ranges *iars = NULL;
3509 unsigned char *buffer = NULL;
3510 unsigned int nr_cpr = 0;
3511 int i, vpd_len, buf_len = SD_BUF_SIZE;
3512 u8 *desc;
3513
3514 /*
3515 * We need to have the capacity set first for the block layer to be
3516 * able to check the ranges.
3517 */
3518 if (sdkp->first_scan)
3519 return;
3520
3521 if (!sdkp->capacity)
3522 goto out;
3523
3524 /*
3525 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3526 * leading to a maximum page size of 64 + 256*32 bytes.
3527 */
3528 buf_len = 64 + 256*32;
3529 buffer = kmalloc(buf_len, GFP_KERNEL);
3530 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3531 goto out;
3532
3533 /* We must have at least a 64B header and one 32B range descriptor */
3534 vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3535 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3536 sd_printk(KERN_ERR, sdkp,
3537 "Invalid Concurrent Positioning Ranges VPD page\n");
3538 goto out;
3539 }
3540
3541 nr_cpr = (vpd_len - 64) / 32;
3542 if (nr_cpr == 1) {
3543 nr_cpr = 0;
3544 goto out;
3545 }
3546
3547 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3548 if (!iars) {
3549 nr_cpr = 0;
3550 goto out;
3551 }
3552
3553 desc = &buffer[64];
3554 for (i = 0; i < nr_cpr; i++, desc += 32) {
3555 if (desc[0] != i) {
3556 sd_printk(KERN_ERR, sdkp,
3557 "Invalid Concurrent Positioning Range number\n");
3558 nr_cpr = 0;
3559 break;
3560 }
3561
3562 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3563 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3564 }
3565
3566 out:
3567 disk_set_independent_access_ranges(sdkp->disk, iars);
3568 if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3569 sd_printk(KERN_NOTICE, sdkp,
3570 "%u concurrent positioning ranges\n", nr_cpr);
3571 sdkp->nr_actuators = nr_cpr;
3572 }
3573
3574 kfree(buffer);
3575 }
3576
sd_validate_min_xfer_size(struct scsi_disk * sdkp)3577 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3578 {
3579 struct scsi_device *sdp = sdkp->device;
3580 unsigned int min_xfer_bytes =
3581 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3582
3583 if (sdkp->min_xfer_blocks == 0)
3584 return false;
3585
3586 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3587 sd_first_printk(KERN_WARNING, sdkp,
3588 "Preferred minimum I/O size %u bytes not a " \
3589 "multiple of physical block size (%u bytes)\n",
3590 min_xfer_bytes, sdkp->physical_block_size);
3591 sdkp->min_xfer_blocks = 0;
3592 return false;
3593 }
3594
3595 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3596 min_xfer_bytes);
3597 return true;
3598 }
3599
3600 /*
3601 * Determine the device's preferred I/O size for reads and writes
3602 * unless the reported value is unreasonably small, large, not a
3603 * multiple of the physical block size, or simply garbage.
3604 */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3605 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3606 unsigned int dev_max)
3607 {
3608 struct scsi_device *sdp = sdkp->device;
3609 unsigned int opt_xfer_bytes =
3610 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3611 unsigned int min_xfer_bytes =
3612 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3613
3614 if (sdkp->opt_xfer_blocks == 0)
3615 return false;
3616
3617 if (sdkp->opt_xfer_blocks > dev_max) {
3618 sd_first_printk(KERN_WARNING, sdkp,
3619 "Optimal transfer size %u logical blocks " \
3620 "> dev_max (%u logical blocks)\n",
3621 sdkp->opt_xfer_blocks, dev_max);
3622 return false;
3623 }
3624
3625 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3626 sd_first_printk(KERN_WARNING, sdkp,
3627 "Optimal transfer size %u logical blocks " \
3628 "> sd driver limit (%u logical blocks)\n",
3629 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3630 return false;
3631 }
3632
3633 if (opt_xfer_bytes < PAGE_SIZE) {
3634 sd_first_printk(KERN_WARNING, sdkp,
3635 "Optimal transfer size %u bytes < " \
3636 "PAGE_SIZE (%u bytes)\n",
3637 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3638 return false;
3639 }
3640
3641 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3642 sd_first_printk(KERN_WARNING, sdkp,
3643 "Optimal transfer size %u bytes not a " \
3644 "multiple of preferred minimum block " \
3645 "size (%u bytes)\n",
3646 opt_xfer_bytes, min_xfer_bytes);
3647 return false;
3648 }
3649
3650 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3651 sd_first_printk(KERN_WARNING, sdkp,
3652 "Optimal transfer size %u bytes not a " \
3653 "multiple of physical block size (%u bytes)\n",
3654 opt_xfer_bytes, sdkp->physical_block_size);
3655 return false;
3656 }
3657
3658 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3659 opt_xfer_bytes);
3660 return true;
3661 }
3662
sd_read_block_zero(struct scsi_disk * sdkp)3663 static void sd_read_block_zero(struct scsi_disk *sdkp)
3664 {
3665 struct scsi_device *sdev = sdkp->device;
3666 unsigned int buf_len = sdev->sector_size;
3667 u8 *buffer, cmd[16] = { };
3668
3669 buffer = kmalloc(buf_len, GFP_KERNEL);
3670 if (!buffer)
3671 return;
3672
3673 if (sdev->use_16_for_rw) {
3674 cmd[0] = READ_16;
3675 put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
3676 put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
3677 } else {
3678 cmd[0] = READ_10;
3679 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3680 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */
3681 }
3682
3683 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3684 SD_TIMEOUT, sdkp->max_retries, NULL);
3685 kfree(buffer);
3686 }
3687
3688 /**
3689 * sd_revalidate_disk - called the first time a new disk is seen,
3690 * performs disk spin up, read_capacity, etc.
3691 * @disk: struct gendisk we care about
3692 **/
sd_revalidate_disk(struct gendisk * disk)3693 static int sd_revalidate_disk(struct gendisk *disk)
3694 {
3695 struct scsi_disk *sdkp = scsi_disk(disk);
3696 struct scsi_device *sdp = sdkp->device;
3697 sector_t old_capacity = sdkp->capacity;
3698 struct queue_limits lim;
3699 unsigned char *buffer;
3700 unsigned int dev_max;
3701 int err;
3702
3703 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3704 "sd_revalidate_disk\n"));
3705
3706 /*
3707 * If the device is offline, don't try and read capacity or any
3708 * of the other niceties.
3709 */
3710 if (!scsi_device_online(sdp))
3711 goto out;
3712
3713 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3714 if (!buffer) {
3715 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3716 "allocation failure.\n");
3717 goto out;
3718 }
3719
3720 sd_spinup_disk(sdkp);
3721
3722 lim = queue_limits_start_update(sdkp->disk->queue);
3723
3724 /*
3725 * Without media there is no reason to ask; moreover, some devices
3726 * react badly if we do.
3727 */
3728 if (sdkp->media_present) {
3729 sd_read_capacity(sdkp, &lim, buffer);
3730 /*
3731 * Some USB/UAS devices return generic values for mode pages
3732 * until the media has been accessed. Trigger a READ operation
3733 * to force the device to populate mode pages.
3734 */
3735 if (sdp->read_before_ms)
3736 sd_read_block_zero(sdkp);
3737 /*
3738 * set the default to rotational. All non-rotational devices
3739 * support the block characteristics VPD page, which will
3740 * cause this to be updated correctly and any device which
3741 * doesn't support it should be treated as rotational.
3742 */
3743 lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3744
3745 if (scsi_device_supports_vpd(sdp)) {
3746 sd_read_block_provisioning(sdkp);
3747 sd_read_block_limits(sdkp, &lim);
3748 sd_read_block_limits_ext(sdkp);
3749 sd_read_block_characteristics(sdkp, &lim);
3750 sd_zbc_read_zones(sdkp, &lim, buffer);
3751 }
3752
3753 sd_config_discard(sdkp, &lim, sd_discard_mode(sdkp));
3754
3755 sd_print_capacity(sdkp, old_capacity);
3756
3757 sd_read_write_protect_flag(sdkp, buffer);
3758 sd_read_cache_type(sdkp, buffer);
3759 sd_read_io_hints(sdkp, buffer);
3760 sd_read_app_tag_own(sdkp, buffer);
3761 sd_read_write_same(sdkp, buffer);
3762 sd_read_security(sdkp, buffer);
3763 sd_config_protection(sdkp, &lim);
3764 }
3765
3766 /*
3767 * We now have all cache related info, determine how we deal
3768 * with flush requests.
3769 */
3770 sd_set_flush_flag(sdkp, &lim);
3771
3772 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3773 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3774
3775 /* Some devices report a maximum block count for READ/WRITE requests. */
3776 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3777 lim.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3778
3779 if (sd_validate_min_xfer_size(sdkp))
3780 lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3781 else
3782 lim.io_min = 0;
3783
3784 /*
3785 * Limit default to SCSI host optimal sector limit if set. There may be
3786 * an impact on performance for when the size of a request exceeds this
3787 * host limit.
3788 */
3789 lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT;
3790 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3791 lim.io_opt = min_not_zero(lim.io_opt,
3792 logical_to_bytes(sdp, sdkp->opt_xfer_blocks));
3793 }
3794
3795 sdkp->first_scan = 0;
3796
3797 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3798 sd_config_write_same(sdkp, &lim);
3799 kfree(buffer);
3800
3801 err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
3802 if (err)
3803 return err;
3804
3805 /*
3806 * Query concurrent positioning ranges after
3807 * queue_limits_commit_update() unlocked q->limits_lock to avoid
3808 * deadlock with q->sysfs_dir_lock and q->sysfs_lock.
3809 */
3810 if (sdkp->media_present && scsi_device_supports_vpd(sdp))
3811 sd_read_cpr(sdkp);
3812
3813 /*
3814 * For a zoned drive, revalidating the zones can be done only once
3815 * the gendisk capacity is set. So if this fails, set back the gendisk
3816 * capacity to 0.
3817 */
3818 if (sd_zbc_revalidate_zones(sdkp))
3819 set_capacity_and_notify(disk, 0);
3820
3821 out:
3822 return 0;
3823 }
3824
3825 /**
3826 * sd_unlock_native_capacity - unlock native capacity
3827 * @disk: struct gendisk to set capacity for
3828 *
3829 * Block layer calls this function if it detects that partitions
3830 * on @disk reach beyond the end of the device. If the SCSI host
3831 * implements ->unlock_native_capacity() method, it's invoked to
3832 * give it a chance to adjust the device capacity.
3833 *
3834 * CONTEXT:
3835 * Defined by block layer. Might sleep.
3836 */
sd_unlock_native_capacity(struct gendisk * disk)3837 static void sd_unlock_native_capacity(struct gendisk *disk)
3838 {
3839 struct scsi_device *sdev = scsi_disk(disk)->device;
3840
3841 if (sdev->host->hostt->unlock_native_capacity)
3842 sdev->host->hostt->unlock_native_capacity(sdev);
3843 }
3844
3845 /**
3846 * sd_format_disk_name - format disk name
3847 * @prefix: name prefix - ie. "sd" for SCSI disks
3848 * @index: index of the disk to format name for
3849 * @buf: output buffer
3850 * @buflen: length of the output buffer
3851 *
3852 * SCSI disk names starts at sda. The 26th device is sdz and the
3853 * 27th is sdaa. The last one for two lettered suffix is sdzz
3854 * which is followed by sdaaa.
3855 *
3856 * This is basically 26 base counting with one extra 'nil' entry
3857 * at the beginning from the second digit on and can be
3858 * determined using similar method as 26 base conversion with the
3859 * index shifted -1 after each digit is computed.
3860 *
3861 * CONTEXT:
3862 * Don't care.
3863 *
3864 * RETURNS:
3865 * 0 on success, -errno on failure.
3866 */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3867 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3868 {
3869 const int base = 'z' - 'a' + 1;
3870 char *begin = buf + strlen(prefix);
3871 char *end = buf + buflen;
3872 char *p;
3873 int unit;
3874
3875 p = end - 1;
3876 *p = '\0';
3877 unit = base;
3878 do {
3879 if (p == begin)
3880 return -EINVAL;
3881 *--p = 'a' + (index % unit);
3882 index = (index / unit) - 1;
3883 } while (index >= 0);
3884
3885 memmove(begin, p, end - p);
3886 memcpy(buf, prefix, strlen(prefix));
3887
3888 return 0;
3889 }
3890
3891 /**
3892 * sd_probe - called during driver initialization and whenever a
3893 * new scsi device is attached to the system. It is called once
3894 * for each scsi device (not just disks) present.
3895 * @dev: pointer to device object
3896 *
3897 * Returns 0 if successful (or not interested in this scsi device
3898 * (e.g. scanner)); 1 when there is an error.
3899 *
3900 * Note: this function is invoked from the scsi mid-level.
3901 * This function sets up the mapping between a given
3902 * <host,channel,id,lun> (found in sdp) and new device name
3903 * (e.g. /dev/sda). More precisely it is the block device major
3904 * and minor number that is chosen here.
3905 *
3906 * Assume sd_probe is not re-entrant (for time being)
3907 * Also think about sd_probe() and sd_remove() running coincidentally.
3908 **/
sd_probe(struct device * dev)3909 static int sd_probe(struct device *dev)
3910 {
3911 struct scsi_device *sdp = to_scsi_device(dev);
3912 struct scsi_disk *sdkp;
3913 struct gendisk *gd;
3914 int index;
3915 int error;
3916
3917 scsi_autopm_get_device(sdp);
3918 error = -ENODEV;
3919 if (sdp->type != TYPE_DISK &&
3920 sdp->type != TYPE_ZBC &&
3921 sdp->type != TYPE_MOD &&
3922 sdp->type != TYPE_RBC)
3923 goto out;
3924
3925 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3926 sdev_printk(KERN_WARNING, sdp,
3927 "Unsupported ZBC host-managed device.\n");
3928 goto out;
3929 }
3930
3931 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3932 "sd_probe\n"));
3933
3934 error = -ENOMEM;
3935 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3936 if (!sdkp)
3937 goto out;
3938
3939 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3940 &sd_bio_compl_lkclass);
3941 if (!gd)
3942 goto out_free;
3943
3944 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3945 if (index < 0) {
3946 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3947 goto out_put;
3948 }
3949
3950 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3951 if (error) {
3952 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3953 goto out_free_index;
3954 }
3955
3956 sdkp->device = sdp;
3957 sdkp->disk = gd;
3958 sdkp->index = index;
3959 sdkp->max_retries = SD_MAX_RETRIES;
3960 atomic_set(&sdkp->openers, 0);
3961 atomic_set(&sdkp->device->ioerr_cnt, 0);
3962
3963 if (!sdp->request_queue->rq_timeout) {
3964 if (sdp->type != TYPE_MOD)
3965 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3966 else
3967 blk_queue_rq_timeout(sdp->request_queue,
3968 SD_MOD_TIMEOUT);
3969 }
3970
3971 device_initialize(&sdkp->disk_dev);
3972 sdkp->disk_dev.parent = get_device(dev);
3973 sdkp->disk_dev.class = &sd_disk_class;
3974 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3975
3976 error = device_add(&sdkp->disk_dev);
3977 if (error) {
3978 put_device(&sdkp->disk_dev);
3979 goto out;
3980 }
3981
3982 dev_set_drvdata(dev, sdkp);
3983
3984 gd->major = sd_major((index & 0xf0) >> 4);
3985 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3986 gd->minors = SD_MINORS;
3987
3988 gd->fops = &sd_fops;
3989 gd->private_data = sdkp;
3990
3991 /* defaults, until the device tells us otherwise */
3992 sdp->sector_size = 512;
3993 sdkp->capacity = 0;
3994 sdkp->media_present = 1;
3995 sdkp->write_prot = 0;
3996 sdkp->cache_override = 0;
3997 sdkp->WCE = 0;
3998 sdkp->RCD = 0;
3999 sdkp->ATO = 0;
4000 sdkp->first_scan = 1;
4001 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
4002
4003 sd_revalidate_disk(gd);
4004
4005 if (sdp->removable) {
4006 gd->flags |= GENHD_FL_REMOVABLE;
4007 gd->events |= DISK_EVENT_MEDIA_CHANGE;
4008 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
4009 }
4010
4011 blk_pm_runtime_init(sdp->request_queue, dev);
4012 if (sdp->rpm_autosuspend) {
4013 pm_runtime_set_autosuspend_delay(dev,
4014 sdp->host->rpm_autosuspend_delay);
4015 }
4016
4017 error = device_add_disk(dev, gd, NULL);
4018 if (error) {
4019 device_unregister(&sdkp->disk_dev);
4020 put_disk(gd);
4021 goto out;
4022 }
4023
4024 if (sdkp->security) {
4025 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
4026 if (sdkp->opal_dev)
4027 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
4028 }
4029
4030 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
4031 sdp->removable ? "removable " : "");
4032 scsi_autopm_put_device(sdp);
4033
4034 return 0;
4035
4036 out_free_index:
4037 ida_free(&sd_index_ida, index);
4038 out_put:
4039 put_disk(gd);
4040 out_free:
4041 kfree(sdkp);
4042 out:
4043 scsi_autopm_put_device(sdp);
4044 return error;
4045 }
4046
4047 /**
4048 * sd_remove - called whenever a scsi disk (previously recognized by
4049 * sd_probe) is detached from the system. It is called (potentially
4050 * multiple times) during sd module unload.
4051 * @dev: pointer to device object
4052 *
4053 * Note: this function is invoked from the scsi mid-level.
4054 * This function potentially frees up a device name (e.g. /dev/sdc)
4055 * that could be re-used by a subsequent sd_probe().
4056 * This function is not called when the built-in sd driver is "exit-ed".
4057 **/
sd_remove(struct device * dev)4058 static int sd_remove(struct device *dev)
4059 {
4060 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4061
4062 scsi_autopm_get_device(sdkp->device);
4063
4064 device_del(&sdkp->disk_dev);
4065 del_gendisk(sdkp->disk);
4066 if (!sdkp->suspended)
4067 sd_shutdown(dev);
4068
4069 put_disk(sdkp->disk);
4070 return 0;
4071 }
4072
scsi_disk_release(struct device * dev)4073 static void scsi_disk_release(struct device *dev)
4074 {
4075 struct scsi_disk *sdkp = to_scsi_disk(dev);
4076
4077 ida_free(&sd_index_ida, sdkp->index);
4078 put_device(&sdkp->device->sdev_gendev);
4079 free_opal_dev(sdkp->opal_dev);
4080
4081 kfree(sdkp);
4082 }
4083
sd_start_stop_device(struct scsi_disk * sdkp,int start)4084 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
4085 {
4086 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
4087 struct scsi_sense_hdr sshdr;
4088 struct scsi_failure failure_defs[] = {
4089 {
4090 /* Power on, reset, or bus device reset occurred */
4091 .sense = UNIT_ATTENTION,
4092 .asc = 0x29,
4093 .ascq = 0,
4094 .result = SAM_STAT_CHECK_CONDITION,
4095 },
4096 {
4097 /* Power on occurred */
4098 .sense = UNIT_ATTENTION,
4099 .asc = 0x29,
4100 .ascq = 1,
4101 .result = SAM_STAT_CHECK_CONDITION,
4102 },
4103 {
4104 /* SCSI bus reset */
4105 .sense = UNIT_ATTENTION,
4106 .asc = 0x29,
4107 .ascq = 2,
4108 .result = SAM_STAT_CHECK_CONDITION,
4109 },
4110 {}
4111 };
4112 struct scsi_failures failures = {
4113 .total_allowed = 3,
4114 .failure_definitions = failure_defs,
4115 };
4116 const struct scsi_exec_args exec_args = {
4117 .sshdr = &sshdr,
4118 .req_flags = BLK_MQ_REQ_PM,
4119 .failures = &failures,
4120 };
4121 struct scsi_device *sdp = sdkp->device;
4122 int res;
4123
4124 if (start)
4125 cmd[4] |= 1; /* START */
4126
4127 if (sdp->start_stop_pwr_cond)
4128 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
4129
4130 if (!scsi_device_online(sdp))
4131 return -ENODEV;
4132
4133 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4134 sdkp->max_retries, &exec_args);
4135 if (res) {
4136 sd_print_result(sdkp, "Start/Stop Unit failed", res);
4137 if (res > 0 && scsi_sense_valid(&sshdr)) {
4138 sd_print_sense_hdr(sdkp, &sshdr);
4139 /* 0x3a is medium not present */
4140 if (sshdr.asc == 0x3a)
4141 res = 0;
4142 }
4143 }
4144
4145 /* SCSI error codes must not go to the generic layer */
4146 if (res)
4147 return -EIO;
4148
4149 return 0;
4150 }
4151
4152 /*
4153 * Send a SYNCHRONIZE CACHE instruction down to the device through
4154 * the normal SCSI command structure. Wait for the command to
4155 * complete.
4156 */
sd_shutdown(struct device * dev)4157 static void sd_shutdown(struct device *dev)
4158 {
4159 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4160
4161 if (!sdkp)
4162 return; /* this can happen */
4163
4164 if (pm_runtime_suspended(dev))
4165 return;
4166
4167 if (sdkp->WCE && sdkp->media_present) {
4168 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4169 sd_sync_cache(sdkp);
4170 }
4171
4172 if ((system_state != SYSTEM_RESTART &&
4173 sdkp->device->manage_system_start_stop) ||
4174 (system_state == SYSTEM_POWER_OFF &&
4175 sdkp->device->manage_shutdown) ||
4176 (system_state == SYSTEM_RUNNING &&
4177 sdkp->device->manage_runtime_start_stop)) {
4178 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4179 sd_start_stop_device(sdkp, 0);
4180 }
4181 }
4182
sd_do_start_stop(struct scsi_device * sdev,bool runtime)4183 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4184 {
4185 return (sdev->manage_system_start_stop && !runtime) ||
4186 (sdev->manage_runtime_start_stop && runtime);
4187 }
4188
sd_suspend_common(struct device * dev,bool runtime)4189 static int sd_suspend_common(struct device *dev, bool runtime)
4190 {
4191 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4192 int ret = 0;
4193
4194 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
4195 return 0;
4196
4197 if (sdkp->WCE && sdkp->media_present) {
4198 if (!sdkp->device->silence_suspend)
4199 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4200 ret = sd_sync_cache(sdkp);
4201 /* ignore OFFLINE device */
4202 if (ret == -ENODEV)
4203 return 0;
4204
4205 if (ret)
4206 return ret;
4207 }
4208
4209 if (sd_do_start_stop(sdkp->device, runtime)) {
4210 if (!sdkp->device->silence_suspend)
4211 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4212 /* an error is not worth aborting a system sleep */
4213 ret = sd_start_stop_device(sdkp, 0);
4214 if (!runtime)
4215 ret = 0;
4216 }
4217
4218 if (!ret)
4219 sdkp->suspended = true;
4220
4221 return ret;
4222 }
4223
sd_suspend_system(struct device * dev)4224 static int sd_suspend_system(struct device *dev)
4225 {
4226 if (pm_runtime_suspended(dev))
4227 return 0;
4228
4229 return sd_suspend_common(dev, false);
4230 }
4231
sd_suspend_runtime(struct device * dev)4232 static int sd_suspend_runtime(struct device *dev)
4233 {
4234 return sd_suspend_common(dev, true);
4235 }
4236
sd_resume(struct device * dev)4237 static int sd_resume(struct device *dev)
4238 {
4239 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4240
4241 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4242
4243 if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4244 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4245 return -EIO;
4246 }
4247
4248 return 0;
4249 }
4250
sd_resume_common(struct device * dev,bool runtime)4251 static int sd_resume_common(struct device *dev, bool runtime)
4252 {
4253 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4254 int ret;
4255
4256 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
4257 return 0;
4258
4259 if (!sd_do_start_stop(sdkp->device, runtime)) {
4260 sdkp->suspended = false;
4261 return 0;
4262 }
4263
4264 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4265 ret = sd_start_stop_device(sdkp, 1);
4266 if (!ret) {
4267 sd_resume(dev);
4268 sdkp->suspended = false;
4269 }
4270
4271 return ret;
4272 }
4273
sd_resume_system(struct device * dev)4274 static int sd_resume_system(struct device *dev)
4275 {
4276 if (pm_runtime_suspended(dev)) {
4277 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4278 struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4279
4280 if (sdp && sdp->force_runtime_start_on_system_start)
4281 pm_request_resume(dev);
4282
4283 return 0;
4284 }
4285
4286 return sd_resume_common(dev, false);
4287 }
4288
sd_resume_runtime(struct device * dev)4289 static int sd_resume_runtime(struct device *dev)
4290 {
4291 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4292 struct scsi_device *sdp;
4293
4294 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
4295 return 0;
4296
4297 sdp = sdkp->device;
4298
4299 if (sdp->ignore_media_change) {
4300 /* clear the device's sense data */
4301 static const u8 cmd[10] = { REQUEST_SENSE };
4302 const struct scsi_exec_args exec_args = {
4303 .req_flags = BLK_MQ_REQ_PM,
4304 };
4305
4306 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4307 sdp->request_queue->rq_timeout, 1,
4308 &exec_args))
4309 sd_printk(KERN_NOTICE, sdkp,
4310 "Failed to clear sense data\n");
4311 }
4312
4313 return sd_resume_common(dev, true);
4314 }
4315
4316 static const struct dev_pm_ops sd_pm_ops = {
4317 .suspend = sd_suspend_system,
4318 .resume = sd_resume_system,
4319 .poweroff = sd_suspend_system,
4320 .restore = sd_resume_system,
4321 .runtime_suspend = sd_suspend_runtime,
4322 .runtime_resume = sd_resume_runtime,
4323 };
4324
4325 static struct scsi_driver sd_template = {
4326 .gendrv = {
4327 .name = "sd",
4328 .probe = sd_probe,
4329 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
4330 .remove = sd_remove,
4331 .shutdown = sd_shutdown,
4332 .pm = &sd_pm_ops,
4333 },
4334 .rescan = sd_rescan,
4335 .resume = sd_resume,
4336 .init_command = sd_init_command,
4337 .uninit_command = sd_uninit_command,
4338 .done = sd_done,
4339 .eh_action = sd_eh_action,
4340 .eh_reset = sd_eh_reset,
4341 };
4342
4343 /**
4344 * init_sd - entry point for this driver (both when built in or when
4345 * a module).
4346 *
4347 * Note: this function registers this driver with the scsi mid-level.
4348 **/
init_sd(void)4349 static int __init init_sd(void)
4350 {
4351 int majors = 0, i, err;
4352
4353 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4354
4355 for (i = 0; i < SD_MAJORS; i++) {
4356 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4357 continue;
4358 majors++;
4359 }
4360
4361 if (!majors)
4362 return -ENODEV;
4363
4364 err = class_register(&sd_disk_class);
4365 if (err)
4366 goto err_out;
4367
4368 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4369 if (!sd_page_pool) {
4370 printk(KERN_ERR "sd: can't init discard page pool\n");
4371 err = -ENOMEM;
4372 goto err_out_class;
4373 }
4374
4375 err = scsi_register_driver(&sd_template.gendrv);
4376 if (err)
4377 goto err_out_driver;
4378
4379 return 0;
4380
4381 err_out_driver:
4382 mempool_destroy(sd_page_pool);
4383 err_out_class:
4384 class_unregister(&sd_disk_class);
4385 err_out:
4386 for (i = 0; i < SD_MAJORS; i++)
4387 unregister_blkdev(sd_major(i), "sd");
4388 return err;
4389 }
4390
4391 /**
4392 * exit_sd - exit point for this driver (when it is a module).
4393 *
4394 * Note: this function unregisters this driver from the scsi mid-level.
4395 **/
exit_sd(void)4396 static void __exit exit_sd(void)
4397 {
4398 int i;
4399
4400 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4401
4402 scsi_unregister_driver(&sd_template.gendrv);
4403 mempool_destroy(sd_page_pool);
4404
4405 class_unregister(&sd_disk_class);
4406
4407 for (i = 0; i < SD_MAJORS; i++)
4408 unregister_blkdev(sd_major(i), "sd");
4409 }
4410
4411 module_init(init_sd);
4412 module_exit(exit_sd);
4413
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)4414 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4415 {
4416 scsi_print_sense_hdr(sdkp->device,
4417 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4418 }
4419
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)4420 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4421 {
4422 const char *hb_string = scsi_hostbyte_string(result);
4423
4424 if (hb_string)
4425 sd_printk(KERN_INFO, sdkp,
4426 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4427 hb_string ? hb_string : "invalid",
4428 "DRIVER_OK");
4429 else
4430 sd_printk(KERN_INFO, sdkp,
4431 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4432 msg, host_byte(result), "DRIVER_OK");
4433 }
4434