1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/bio-integrity.h>
37 #include <linux/module.h>
38 #include <linux/fs.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/rw_hint.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <linux/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_devinfo.h>
67 #include <scsi/scsi_driver.h>
68 #include <scsi/scsi_eh.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_ioctl.h>
71 #include <scsi/scsicam.h>
72 #include <scsi/scsi_common.h>
73 
74 #include "sd.h"
75 #include "scsi_priv.h"
76 #include "scsi_logging.h"
77 
78 MODULE_AUTHOR("Eric Youngdale");
79 MODULE_DESCRIPTION("SCSI disk (sd) driver");
80 MODULE_LICENSE("GPL");
81 
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
97 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
101 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
102 
103 #define SD_MINORS	16
104 
105 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
106 		unsigned int mode);
107 static void sd_config_write_same(struct scsi_disk *sdkp,
108 		struct queue_limits *lim);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static void sd_shutdown(struct device *);
112 static void scsi_disk_release(struct device *cdev);
113 
114 static DEFINE_IDA(sd_index_ida);
115 
116 static mempool_t *sd_page_pool;
117 static struct lock_class_key sd_bio_compl_lkclass;
118 
119 static const char *sd_cache_types[] = {
120 	"write through", "none", "write back",
121 	"write back, no read (daft)"
122 };
123 
sd_set_flush_flag(struct scsi_disk * sdkp,struct queue_limits * lim)124 static void sd_set_flush_flag(struct scsi_disk *sdkp,
125 		struct queue_limits *lim)
126 {
127 	if (sdkp->WCE) {
128 		lim->features |= BLK_FEAT_WRITE_CACHE;
129 		if (sdkp->DPOFUA)
130 			lim->features |= BLK_FEAT_FUA;
131 		else
132 			lim->features &= ~BLK_FEAT_FUA;
133 	} else {
134 		lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
135 	}
136 }
137 
138 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)139 cache_type_store(struct device *dev, struct device_attribute *attr,
140 		 const char *buf, size_t count)
141 {
142 	int ct, rcd, wce, sp;
143 	struct scsi_disk *sdkp = to_scsi_disk(dev);
144 	struct scsi_device *sdp = sdkp->device;
145 	char buffer[64];
146 	char *buffer_data;
147 	struct scsi_mode_data data;
148 	struct scsi_sense_hdr sshdr;
149 	static const char temp[] = "temporary ";
150 	int len, ret;
151 
152 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
153 		/* no cache control on RBC devices; theoretically they
154 		 * can do it, but there's probably so many exceptions
155 		 * it's not worth the risk */
156 		return -EINVAL;
157 
158 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
159 		buf += sizeof(temp) - 1;
160 		sdkp->cache_override = 1;
161 	} else {
162 		sdkp->cache_override = 0;
163 	}
164 
165 	ct = sysfs_match_string(sd_cache_types, buf);
166 	if (ct < 0)
167 		return -EINVAL;
168 
169 	rcd = ct & 0x01 ? 1 : 0;
170 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
171 
172 	if (sdkp->cache_override) {
173 		struct queue_limits lim;
174 
175 		sdkp->WCE = wce;
176 		sdkp->RCD = rcd;
177 
178 		lim = queue_limits_start_update(sdkp->disk->queue);
179 		sd_set_flush_flag(sdkp, &lim);
180 		ret = queue_limits_commit_update_frozen(sdkp->disk->queue,
181 				&lim);
182 		if (ret)
183 			return ret;
184 		return count;
185 	}
186 
187 	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
188 			    sdkp->max_retries, &data, NULL))
189 		return -EINVAL;
190 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
191 		  data.block_descriptor_length);
192 	buffer_data = buffer + data.header_length +
193 		data.block_descriptor_length;
194 	buffer_data[2] &= ~0x05;
195 	buffer_data[2] |= wce << 2 | rcd;
196 	sp = buffer_data[0] & 0x80 ? 1 : 0;
197 	buffer_data[0] &= ~0x80;
198 
199 	/*
200 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
201 	 * received mode parameter buffer before doing MODE SELECT.
202 	 */
203 	data.device_specific = 0;
204 
205 	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
206 			       sdkp->max_retries, &data, &sshdr);
207 	if (ret) {
208 		if (ret > 0 && scsi_sense_valid(&sshdr))
209 			sd_print_sense_hdr(sdkp, &sshdr);
210 		return -EINVAL;
211 	}
212 	sd_revalidate_disk(sdkp->disk);
213 	return count;
214 }
215 
216 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)217 manage_start_stop_show(struct device *dev,
218 		       struct device_attribute *attr, char *buf)
219 {
220 	struct scsi_disk *sdkp = to_scsi_disk(dev);
221 	struct scsi_device *sdp = sdkp->device;
222 
223 	return sysfs_emit(buf, "%u\n",
224 			  sdp->manage_system_start_stop &&
225 			  sdp->manage_runtime_start_stop &&
226 			  sdp->manage_shutdown);
227 }
228 static DEVICE_ATTR_RO(manage_start_stop);
229 
230 static ssize_t
manage_system_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)231 manage_system_start_stop_show(struct device *dev,
232 			      struct device_attribute *attr, char *buf)
233 {
234 	struct scsi_disk *sdkp = to_scsi_disk(dev);
235 	struct scsi_device *sdp = sdkp->device;
236 
237 	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
238 }
239 
240 static ssize_t
manage_system_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)241 manage_system_start_stop_store(struct device *dev,
242 			       struct device_attribute *attr,
243 			       const char *buf, size_t count)
244 {
245 	struct scsi_disk *sdkp = to_scsi_disk(dev);
246 	struct scsi_device *sdp = sdkp->device;
247 	bool v;
248 
249 	if (!capable(CAP_SYS_ADMIN))
250 		return -EACCES;
251 
252 	if (kstrtobool(buf, &v))
253 		return -EINVAL;
254 
255 	sdp->manage_system_start_stop = v;
256 
257 	return count;
258 }
259 static DEVICE_ATTR_RW(manage_system_start_stop);
260 
261 static ssize_t
manage_runtime_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)262 manage_runtime_start_stop_show(struct device *dev,
263 			       struct device_attribute *attr, char *buf)
264 {
265 	struct scsi_disk *sdkp = to_scsi_disk(dev);
266 	struct scsi_device *sdp = sdkp->device;
267 
268 	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
269 }
270 
271 static ssize_t
manage_runtime_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)272 manage_runtime_start_stop_store(struct device *dev,
273 				struct device_attribute *attr,
274 				const char *buf, size_t count)
275 {
276 	struct scsi_disk *sdkp = to_scsi_disk(dev);
277 	struct scsi_device *sdp = sdkp->device;
278 	bool v;
279 
280 	if (!capable(CAP_SYS_ADMIN))
281 		return -EACCES;
282 
283 	if (kstrtobool(buf, &v))
284 		return -EINVAL;
285 
286 	sdp->manage_runtime_start_stop = v;
287 
288 	return count;
289 }
290 static DEVICE_ATTR_RW(manage_runtime_start_stop);
291 
manage_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)292 static ssize_t manage_shutdown_show(struct device *dev,
293 				    struct device_attribute *attr, char *buf)
294 {
295 	struct scsi_disk *sdkp = to_scsi_disk(dev);
296 	struct scsi_device *sdp = sdkp->device;
297 
298 	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
299 }
300 
manage_shutdown_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)301 static ssize_t manage_shutdown_store(struct device *dev,
302 				     struct device_attribute *attr,
303 				     const char *buf, size_t count)
304 {
305 	struct scsi_disk *sdkp = to_scsi_disk(dev);
306 	struct scsi_device *sdp = sdkp->device;
307 	bool v;
308 
309 	if (!capable(CAP_SYS_ADMIN))
310 		return -EACCES;
311 
312 	if (kstrtobool(buf, &v))
313 		return -EINVAL;
314 
315 	sdp->manage_shutdown = v;
316 
317 	return count;
318 }
319 static DEVICE_ATTR_RW(manage_shutdown);
320 
321 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)322 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
323 {
324 	struct scsi_disk *sdkp = to_scsi_disk(dev);
325 
326 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
327 }
328 
329 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)330 allow_restart_store(struct device *dev, struct device_attribute *attr,
331 		    const char *buf, size_t count)
332 {
333 	bool v;
334 	struct scsi_disk *sdkp = to_scsi_disk(dev);
335 	struct scsi_device *sdp = sdkp->device;
336 
337 	if (!capable(CAP_SYS_ADMIN))
338 		return -EACCES;
339 
340 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
341 		return -EINVAL;
342 
343 	if (kstrtobool(buf, &v))
344 		return -EINVAL;
345 
346 	sdp->allow_restart = v;
347 
348 	return count;
349 }
350 static DEVICE_ATTR_RW(allow_restart);
351 
352 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)353 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
354 {
355 	struct scsi_disk *sdkp = to_scsi_disk(dev);
356 	int ct = sdkp->RCD + 2*sdkp->WCE;
357 
358 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
359 }
360 static DEVICE_ATTR_RW(cache_type);
361 
362 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)363 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
364 {
365 	struct scsi_disk *sdkp = to_scsi_disk(dev);
366 
367 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
368 }
369 static DEVICE_ATTR_RO(FUA);
370 
371 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)372 protection_type_show(struct device *dev, struct device_attribute *attr,
373 		     char *buf)
374 {
375 	struct scsi_disk *sdkp = to_scsi_disk(dev);
376 
377 	return sprintf(buf, "%u\n", sdkp->protection_type);
378 }
379 
380 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)381 protection_type_store(struct device *dev, struct device_attribute *attr,
382 		      const char *buf, size_t count)
383 {
384 	struct scsi_disk *sdkp = to_scsi_disk(dev);
385 	unsigned int val;
386 	int err;
387 
388 	if (!capable(CAP_SYS_ADMIN))
389 		return -EACCES;
390 
391 	err = kstrtouint(buf, 10, &val);
392 
393 	if (err)
394 		return err;
395 
396 	if (val <= T10_PI_TYPE3_PROTECTION)
397 		sdkp->protection_type = val;
398 
399 	return count;
400 }
401 static DEVICE_ATTR_RW(protection_type);
402 
403 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)404 protection_mode_show(struct device *dev, struct device_attribute *attr,
405 		     char *buf)
406 {
407 	struct scsi_disk *sdkp = to_scsi_disk(dev);
408 	struct scsi_device *sdp = sdkp->device;
409 	unsigned int dif, dix;
410 
411 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
412 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
413 
414 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
415 		dif = 0;
416 		dix = 1;
417 	}
418 
419 	if (!dif && !dix)
420 		return sprintf(buf, "none\n");
421 
422 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
423 }
424 static DEVICE_ATTR_RO(protection_mode);
425 
426 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)427 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
428 {
429 	struct scsi_disk *sdkp = to_scsi_disk(dev);
430 
431 	return sprintf(buf, "%u\n", sdkp->ATO);
432 }
433 static DEVICE_ATTR_RO(app_tag_own);
434 
435 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)436 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
437 		       char *buf)
438 {
439 	struct scsi_disk *sdkp = to_scsi_disk(dev);
440 
441 	return sprintf(buf, "%u\n", sdkp->lbpme);
442 }
443 static DEVICE_ATTR_RO(thin_provisioning);
444 
445 /* sysfs_match_string() requires dense arrays */
446 static const char *lbp_mode[] = {
447 	[SD_LBP_FULL]		= "full",
448 	[SD_LBP_UNMAP]		= "unmap",
449 	[SD_LBP_WS16]		= "writesame_16",
450 	[SD_LBP_WS10]		= "writesame_10",
451 	[SD_LBP_ZERO]		= "writesame_zero",
452 	[SD_LBP_DISABLE]	= "disabled",
453 };
454 
455 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)456 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
457 		       char *buf)
458 {
459 	struct scsi_disk *sdkp = to_scsi_disk(dev);
460 
461 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
462 }
463 
464 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)465 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
466 			const char *buf, size_t count)
467 {
468 	struct scsi_disk *sdkp = to_scsi_disk(dev);
469 	struct scsi_device *sdp = sdkp->device;
470 	struct queue_limits lim;
471 	int mode, err;
472 
473 	if (!capable(CAP_SYS_ADMIN))
474 		return -EACCES;
475 
476 	if (sdp->type != TYPE_DISK)
477 		return -EINVAL;
478 
479 	mode = sysfs_match_string(lbp_mode, buf);
480 	if (mode < 0)
481 		return -EINVAL;
482 
483 	lim = queue_limits_start_update(sdkp->disk->queue);
484 	sd_config_discard(sdkp, &lim, mode);
485 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
486 	if (err)
487 		return err;
488 	return count;
489 }
490 static DEVICE_ATTR_RW(provisioning_mode);
491 
492 /* sysfs_match_string() requires dense arrays */
493 static const char *zeroing_mode[] = {
494 	[SD_ZERO_WRITE]		= "write",
495 	[SD_ZERO_WS]		= "writesame",
496 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
497 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
498 };
499 
500 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)501 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
502 		  char *buf)
503 {
504 	struct scsi_disk *sdkp = to_scsi_disk(dev);
505 
506 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
507 }
508 
509 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)510 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
511 		   const char *buf, size_t count)
512 {
513 	struct scsi_disk *sdkp = to_scsi_disk(dev);
514 	int mode;
515 
516 	if (!capable(CAP_SYS_ADMIN))
517 		return -EACCES;
518 
519 	mode = sysfs_match_string(zeroing_mode, buf);
520 	if (mode < 0)
521 		return -EINVAL;
522 
523 	sdkp->zeroing_mode = mode;
524 
525 	return count;
526 }
527 static DEVICE_ATTR_RW(zeroing_mode);
528 
529 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)530 max_medium_access_timeouts_show(struct device *dev,
531 				struct device_attribute *attr, char *buf)
532 {
533 	struct scsi_disk *sdkp = to_scsi_disk(dev);
534 
535 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
536 }
537 
538 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)539 max_medium_access_timeouts_store(struct device *dev,
540 				 struct device_attribute *attr, const char *buf,
541 				 size_t count)
542 {
543 	struct scsi_disk *sdkp = to_scsi_disk(dev);
544 	int err;
545 
546 	if (!capable(CAP_SYS_ADMIN))
547 		return -EACCES;
548 
549 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
550 
551 	return err ? err : count;
552 }
553 static DEVICE_ATTR_RW(max_medium_access_timeouts);
554 
555 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)556 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
557 			   char *buf)
558 {
559 	struct scsi_disk *sdkp = to_scsi_disk(dev);
560 
561 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
562 }
563 
564 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)565 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
566 			    const char *buf, size_t count)
567 {
568 	struct scsi_disk *sdkp = to_scsi_disk(dev);
569 	struct scsi_device *sdp = sdkp->device;
570 	struct queue_limits lim;
571 	unsigned long max;
572 	int err;
573 
574 	if (!capable(CAP_SYS_ADMIN))
575 		return -EACCES;
576 
577 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
578 		return -EINVAL;
579 
580 	err = kstrtoul(buf, 10, &max);
581 
582 	if (err)
583 		return err;
584 
585 	if (max == 0)
586 		sdp->no_write_same = 1;
587 	else if (max <= SD_MAX_WS16_BLOCKS) {
588 		sdp->no_write_same = 0;
589 		sdkp->max_ws_blocks = max;
590 	}
591 
592 	lim = queue_limits_start_update(sdkp->disk->queue);
593 	sd_config_write_same(sdkp, &lim);
594 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
595 	if (err)
596 		return err;
597 	return count;
598 }
599 static DEVICE_ATTR_RW(max_write_same_blocks);
600 
601 static ssize_t
zoned_cap_show(struct device * dev,struct device_attribute * attr,char * buf)602 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
603 {
604 	struct scsi_disk *sdkp = to_scsi_disk(dev);
605 
606 	if (sdkp->device->type == TYPE_ZBC)
607 		return sprintf(buf, "host-managed\n");
608 	if (sdkp->zoned == 1)
609 		return sprintf(buf, "host-aware\n");
610 	if (sdkp->zoned == 2)
611 		return sprintf(buf, "drive-managed\n");
612 	return sprintf(buf, "none\n");
613 }
614 static DEVICE_ATTR_RO(zoned_cap);
615 
616 static ssize_t
max_retries_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)617 max_retries_store(struct device *dev, struct device_attribute *attr,
618 		  const char *buf, size_t count)
619 {
620 	struct scsi_disk *sdkp = to_scsi_disk(dev);
621 	struct scsi_device *sdev = sdkp->device;
622 	int retries, err;
623 
624 	err = kstrtoint(buf, 10, &retries);
625 	if (err)
626 		return err;
627 
628 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
629 		sdkp->max_retries = retries;
630 		return count;
631 	}
632 
633 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
634 		    SD_MAX_RETRIES);
635 	return -EINVAL;
636 }
637 
638 static ssize_t
max_retries_show(struct device * dev,struct device_attribute * attr,char * buf)639 max_retries_show(struct device *dev, struct device_attribute *attr,
640 		 char *buf)
641 {
642 	struct scsi_disk *sdkp = to_scsi_disk(dev);
643 
644 	return sprintf(buf, "%d\n", sdkp->max_retries);
645 }
646 
647 static DEVICE_ATTR_RW(max_retries);
648 
649 static struct attribute *sd_disk_attrs[] = {
650 	&dev_attr_cache_type.attr,
651 	&dev_attr_FUA.attr,
652 	&dev_attr_allow_restart.attr,
653 	&dev_attr_manage_start_stop.attr,
654 	&dev_attr_manage_system_start_stop.attr,
655 	&dev_attr_manage_runtime_start_stop.attr,
656 	&dev_attr_manage_shutdown.attr,
657 	&dev_attr_protection_type.attr,
658 	&dev_attr_protection_mode.attr,
659 	&dev_attr_app_tag_own.attr,
660 	&dev_attr_thin_provisioning.attr,
661 	&dev_attr_provisioning_mode.attr,
662 	&dev_attr_zeroing_mode.attr,
663 	&dev_attr_max_write_same_blocks.attr,
664 	&dev_attr_max_medium_access_timeouts.attr,
665 	&dev_attr_zoned_cap.attr,
666 	&dev_attr_max_retries.attr,
667 	NULL,
668 };
669 ATTRIBUTE_GROUPS(sd_disk);
670 
671 static struct class sd_disk_class = {
672 	.name		= "scsi_disk",
673 	.dev_release	= scsi_disk_release,
674 	.dev_groups	= sd_disk_groups,
675 };
676 
677 /*
678  * Don't request a new module, as that could deadlock in multipath
679  * environment.
680  */
sd_default_probe(dev_t devt)681 static void sd_default_probe(dev_t devt)
682 {
683 }
684 
685 /*
686  * Device no to disk mapping:
687  *
688  *       major         disc2     disc  p1
689  *   |............|.............|....|....| <- dev_t
690  *    31        20 19          8 7  4 3  0
691  *
692  * Inside a major, we have 16k disks, however mapped non-
693  * contiguously. The first 16 disks are for major0, the next
694  * ones with major1, ... Disk 256 is for major0 again, disk 272
695  * for major1, ...
696  * As we stay compatible with our numbering scheme, we can reuse
697  * the well-know SCSI majors 8, 65--71, 136--143.
698  */
sd_major(int major_idx)699 static int sd_major(int major_idx)
700 {
701 	switch (major_idx) {
702 	case 0:
703 		return SCSI_DISK0_MAJOR;
704 	case 1 ... 7:
705 		return SCSI_DISK1_MAJOR + major_idx - 1;
706 	case 8 ... 15:
707 		return SCSI_DISK8_MAJOR + major_idx - 8;
708 	default:
709 		BUG();
710 		return 0;	/* shut up gcc */
711 	}
712 }
713 
714 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)715 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
716 		size_t len, bool send)
717 {
718 	struct scsi_disk *sdkp = data;
719 	struct scsi_device *sdev = sdkp->device;
720 	u8 cdb[12] = { 0, };
721 	const struct scsi_exec_args exec_args = {
722 		.req_flags = BLK_MQ_REQ_PM,
723 	};
724 	int ret;
725 
726 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
727 	cdb[1] = secp;
728 	put_unaligned_be16(spsp, &cdb[2]);
729 	put_unaligned_be32(len, &cdb[6]);
730 
731 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
732 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
733 			       &exec_args);
734 	return ret <= 0 ? ret : -EIO;
735 }
736 #endif /* CONFIG_BLK_SED_OPAL */
737 
738 /*
739  * Look up the DIX operation based on whether the command is read or
740  * write and whether dix and dif are enabled.
741  */
sd_prot_op(bool write,bool dix,bool dif)742 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
743 {
744 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
745 	static const unsigned int ops[] = {	/* wrt dix dif */
746 		SCSI_PROT_NORMAL,		/*  0	0   0  */
747 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
748 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
749 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
750 		SCSI_PROT_NORMAL,		/*  1	0   0  */
751 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
752 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
753 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
754 	};
755 
756 	return ops[write << 2 | dix << 1 | dif];
757 }
758 
759 /*
760  * Returns a mask of the protection flags that are valid for a given DIX
761  * operation.
762  */
sd_prot_flag_mask(unsigned int prot_op)763 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
764 {
765 	static const unsigned int flag_mask[] = {
766 		[SCSI_PROT_NORMAL]		= 0,
767 
768 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
769 						  SCSI_PROT_GUARD_CHECK |
770 						  SCSI_PROT_REF_CHECK |
771 						  SCSI_PROT_REF_INCREMENT,
772 
773 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
774 						  SCSI_PROT_IP_CHECKSUM,
775 
776 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
777 						  SCSI_PROT_GUARD_CHECK |
778 						  SCSI_PROT_REF_CHECK |
779 						  SCSI_PROT_REF_INCREMENT |
780 						  SCSI_PROT_IP_CHECKSUM,
781 
782 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
783 						  SCSI_PROT_REF_INCREMENT,
784 
785 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
786 						  SCSI_PROT_REF_CHECK |
787 						  SCSI_PROT_REF_INCREMENT |
788 						  SCSI_PROT_IP_CHECKSUM,
789 
790 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
791 						  SCSI_PROT_GUARD_CHECK |
792 						  SCSI_PROT_REF_CHECK |
793 						  SCSI_PROT_REF_INCREMENT |
794 						  SCSI_PROT_IP_CHECKSUM,
795 	};
796 
797 	return flag_mask[prot_op];
798 }
799 
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)800 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
801 					   unsigned int dix, unsigned int dif)
802 {
803 	struct request *rq = scsi_cmd_to_rq(scmd);
804 	struct bio *bio = rq->bio;
805 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
806 	unsigned int protect = 0;
807 
808 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
809 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
810 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
811 
812 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
813 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
814 	}
815 
816 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
817 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
818 
819 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
820 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
821 	}
822 
823 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
824 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
825 
826 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
827 			protect = 3 << 5;	/* Disable target PI checking */
828 		else
829 			protect = 1 << 5;	/* Enable target PI checking */
830 	}
831 
832 	scsi_set_prot_op(scmd, prot_op);
833 	scsi_set_prot_type(scmd, dif);
834 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
835 
836 	return protect;
837 }
838 
sd_disable_discard(struct scsi_disk * sdkp)839 static void sd_disable_discard(struct scsi_disk *sdkp)
840 {
841 	sdkp->provisioning_mode = SD_LBP_DISABLE;
842 	blk_queue_disable_discard(sdkp->disk->queue);
843 }
844 
sd_config_discard(struct scsi_disk * sdkp,struct queue_limits * lim,unsigned int mode)845 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
846 		unsigned int mode)
847 {
848 	unsigned int logical_block_size = sdkp->device->sector_size;
849 	unsigned int max_blocks = 0;
850 
851 	lim->discard_alignment = sdkp->unmap_alignment * logical_block_size;
852 	lim->discard_granularity = max(sdkp->physical_block_size,
853 			sdkp->unmap_granularity * logical_block_size);
854 	sdkp->provisioning_mode = mode;
855 
856 	switch (mode) {
857 
858 	case SD_LBP_FULL:
859 	case SD_LBP_DISABLE:
860 		break;
861 
862 	case SD_LBP_UNMAP:
863 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
864 					  (u32)SD_MAX_WS16_BLOCKS);
865 		break;
866 
867 	case SD_LBP_WS16:
868 		if (sdkp->device->unmap_limit_for_ws)
869 			max_blocks = sdkp->max_unmap_blocks;
870 		else
871 			max_blocks = sdkp->max_ws_blocks;
872 
873 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
874 		break;
875 
876 	case SD_LBP_WS10:
877 		if (sdkp->device->unmap_limit_for_ws)
878 			max_blocks = sdkp->max_unmap_blocks;
879 		else
880 			max_blocks = sdkp->max_ws_blocks;
881 
882 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
883 		break;
884 
885 	case SD_LBP_ZERO:
886 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
887 					  (u32)SD_MAX_WS10_BLOCKS);
888 		break;
889 	}
890 
891 	lim->max_hw_discard_sectors = max_blocks *
892 		(logical_block_size >> SECTOR_SHIFT);
893 }
894 
sd_set_special_bvec(struct request * rq,unsigned int data_len)895 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
896 {
897 	struct page *page;
898 
899 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
900 	if (!page)
901 		return NULL;
902 	clear_highpage(page);
903 	bvec_set_page(&rq->special_vec, page, data_len, 0);
904 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
905 	return bvec_virt(&rq->special_vec);
906 }
907 
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)908 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
909 {
910 	struct scsi_device *sdp = cmd->device;
911 	struct request *rq = scsi_cmd_to_rq(cmd);
912 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
913 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
914 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
915 	unsigned int data_len = 24;
916 	char *buf;
917 
918 	buf = sd_set_special_bvec(rq, data_len);
919 	if (!buf)
920 		return BLK_STS_RESOURCE;
921 
922 	cmd->cmd_len = 10;
923 	cmd->cmnd[0] = UNMAP;
924 	cmd->cmnd[8] = 24;
925 
926 	put_unaligned_be16(6 + 16, &buf[0]);
927 	put_unaligned_be16(16, &buf[2]);
928 	put_unaligned_be64(lba, &buf[8]);
929 	put_unaligned_be32(nr_blocks, &buf[16]);
930 
931 	cmd->allowed = sdkp->max_retries;
932 	cmd->transfersize = data_len;
933 	rq->timeout = SD_TIMEOUT;
934 
935 	return scsi_alloc_sgtables(cmd);
936 }
937 
sd_config_atomic(struct scsi_disk * sdkp,struct queue_limits * lim)938 static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim)
939 {
940 	unsigned int logical_block_size = sdkp->device->sector_size,
941 		physical_block_size_sectors, max_atomic, unit_min, unit_max;
942 
943 	if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) ||
944 	    sdkp->protection_type == T10_PI_TYPE2_PROTECTION)
945 		return;
946 
947 	physical_block_size_sectors = sdkp->physical_block_size /
948 					sdkp->device->sector_size;
949 
950 	unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ?
951 					sdkp->atomic_granularity :
952 					physical_block_size_sectors);
953 
954 	/*
955 	 * Only use atomic boundary when we have the odd scenario of
956 	 * sdkp->max_atomic == 0, which the spec does permit.
957 	 */
958 	if (sdkp->max_atomic) {
959 		max_atomic = sdkp->max_atomic;
960 		unit_max = rounddown_pow_of_two(sdkp->max_atomic);
961 		sdkp->use_atomic_write_boundary = 0;
962 	} else {
963 		max_atomic = sdkp->max_atomic_with_boundary;
964 		unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary);
965 		sdkp->use_atomic_write_boundary = 1;
966 	}
967 
968 	/*
969 	 * Ensure compliance with granularity and alignment. For now, keep it
970 	 * simple and just don't support atomic writes for values mismatched
971 	 * with max_{boundary}atomic, physical block size, and
972 	 * atomic_granularity itself.
973 	 *
974 	 * We're really being distrustful by checking unit_max also...
975 	 */
976 	if (sdkp->atomic_granularity > 1) {
977 		if (unit_min > 1 && unit_min % sdkp->atomic_granularity)
978 			return;
979 		if (unit_max > 1 && unit_max % sdkp->atomic_granularity)
980 			return;
981 	}
982 
983 	if (sdkp->atomic_alignment > 1) {
984 		if (unit_min > 1 && unit_min % sdkp->atomic_alignment)
985 			return;
986 		if (unit_max > 1 && unit_max % sdkp->atomic_alignment)
987 			return;
988 	}
989 
990 	lim->atomic_write_hw_max = max_atomic * logical_block_size;
991 	lim->atomic_write_hw_boundary = 0;
992 	lim->atomic_write_hw_unit_min = unit_min * logical_block_size;
993 	lim->atomic_write_hw_unit_max = unit_max * logical_block_size;
994 }
995 
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)996 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
997 		bool unmap)
998 {
999 	struct scsi_device *sdp = cmd->device;
1000 	struct request *rq = scsi_cmd_to_rq(cmd);
1001 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1002 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1003 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1004 	u32 data_len = sdp->sector_size;
1005 
1006 	if (!sd_set_special_bvec(rq, data_len))
1007 		return BLK_STS_RESOURCE;
1008 
1009 	cmd->cmd_len = 16;
1010 	cmd->cmnd[0] = WRITE_SAME_16;
1011 	if (unmap)
1012 		cmd->cmnd[1] = 0x8; /* UNMAP */
1013 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1014 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1015 
1016 	cmd->allowed = sdkp->max_retries;
1017 	cmd->transfersize = data_len;
1018 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1019 
1020 	return scsi_alloc_sgtables(cmd);
1021 }
1022 
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)1023 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
1024 		bool unmap)
1025 {
1026 	struct scsi_device *sdp = cmd->device;
1027 	struct request *rq = scsi_cmd_to_rq(cmd);
1028 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1029 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1030 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1031 	u32 data_len = sdp->sector_size;
1032 
1033 	if (!sd_set_special_bvec(rq, data_len))
1034 		return BLK_STS_RESOURCE;
1035 
1036 	cmd->cmd_len = 10;
1037 	cmd->cmnd[0] = WRITE_SAME;
1038 	if (unmap)
1039 		cmd->cmnd[1] = 0x8; /* UNMAP */
1040 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1041 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042 
1043 	cmd->allowed = sdkp->max_retries;
1044 	cmd->transfersize = data_len;
1045 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1046 
1047 	return scsi_alloc_sgtables(cmd);
1048 }
1049 
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)1050 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
1051 {
1052 	struct request *rq = scsi_cmd_to_rq(cmd);
1053 	struct scsi_device *sdp = cmd->device;
1054 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1055 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1056 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1057 
1058 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
1059 		switch (sdkp->zeroing_mode) {
1060 		case SD_ZERO_WS16_UNMAP:
1061 			return sd_setup_write_same16_cmnd(cmd, true);
1062 		case SD_ZERO_WS10_UNMAP:
1063 			return sd_setup_write_same10_cmnd(cmd, true);
1064 		}
1065 	}
1066 
1067 	if (sdp->no_write_same) {
1068 		rq->rq_flags |= RQF_QUIET;
1069 		return BLK_STS_TARGET;
1070 	}
1071 
1072 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
1073 		return sd_setup_write_same16_cmnd(cmd, false);
1074 
1075 	return sd_setup_write_same10_cmnd(cmd, false);
1076 }
1077 
sd_disable_write_same(struct scsi_disk * sdkp)1078 static void sd_disable_write_same(struct scsi_disk *sdkp)
1079 {
1080 	sdkp->device->no_write_same = 1;
1081 	sdkp->max_ws_blocks = 0;
1082 	blk_queue_disable_write_zeroes(sdkp->disk->queue);
1083 }
1084 
sd_config_write_same(struct scsi_disk * sdkp,struct queue_limits * lim)1085 static void sd_config_write_same(struct scsi_disk *sdkp,
1086 		struct queue_limits *lim)
1087 {
1088 	unsigned int logical_block_size = sdkp->device->sector_size;
1089 
1090 	if (sdkp->device->no_write_same) {
1091 		sdkp->max_ws_blocks = 0;
1092 		goto out;
1093 	}
1094 
1095 	/* Some devices can not handle block counts above 0xffff despite
1096 	 * supporting WRITE SAME(16). Consequently we default to 64k
1097 	 * blocks per I/O unless the device explicitly advertises a
1098 	 * bigger limit.
1099 	 */
1100 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1101 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1102 						   (u32)SD_MAX_WS16_BLOCKS);
1103 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1104 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1105 						   (u32)SD_MAX_WS10_BLOCKS);
1106 	else {
1107 		sdkp->device->no_write_same = 1;
1108 		sdkp->max_ws_blocks = 0;
1109 	}
1110 
1111 	if (sdkp->lbprz && sdkp->lbpws)
1112 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1113 	else if (sdkp->lbprz && sdkp->lbpws10)
1114 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1115 	else if (sdkp->max_ws_blocks)
1116 		sdkp->zeroing_mode = SD_ZERO_WS;
1117 	else
1118 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1119 
1120 	if (sdkp->max_ws_blocks &&
1121 	    sdkp->physical_block_size > logical_block_size) {
1122 		/*
1123 		 * Reporting a maximum number of blocks that is not aligned
1124 		 * on the device physical size would cause a large write same
1125 		 * request to be split into physically unaligned chunks by
1126 		 * __blkdev_issue_write_zeroes() even if the caller of this
1127 		 * functions took care to align the large request. So make sure
1128 		 * the maximum reported is aligned to the device physical block
1129 		 * size. This is only an optional optimization for regular
1130 		 * disks, but this is mandatory to avoid failure of large write
1131 		 * same requests directed at sequential write required zones of
1132 		 * host-managed ZBC disks.
1133 		 */
1134 		sdkp->max_ws_blocks =
1135 			round_down(sdkp->max_ws_blocks,
1136 				   bytes_to_logical(sdkp->device,
1137 						    sdkp->physical_block_size));
1138 	}
1139 
1140 out:
1141 	lim->max_write_zeroes_sectors =
1142 		sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT);
1143 }
1144 
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1145 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1146 {
1147 	struct request *rq = scsi_cmd_to_rq(cmd);
1148 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1149 
1150 	/* flush requests don't perform I/O, zero the S/G table */
1151 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1152 
1153 	if (cmd->device->use_16_for_sync) {
1154 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1155 		cmd->cmd_len = 16;
1156 	} else {
1157 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1158 		cmd->cmd_len = 10;
1159 	}
1160 	cmd->transfersize = 0;
1161 	cmd->allowed = sdkp->max_retries;
1162 
1163 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1164 	return BLK_STS_OK;
1165 }
1166 
1167 /**
1168  * sd_group_number() - Compute the GROUP NUMBER field
1169  * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1170  *	field.
1171  *
1172  * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1173  * 0: no relative lifetime.
1174  * 1: shortest relative lifetime.
1175  * 2: second shortest relative lifetime.
1176  * 3 - 0x3d: intermediate relative lifetimes.
1177  * 0x3e: second longest relative lifetime.
1178  * 0x3f: longest relative lifetime.
1179  */
sd_group_number(struct scsi_cmnd * cmd)1180 static u8 sd_group_number(struct scsi_cmnd *cmd)
1181 {
1182 	const struct request *rq = scsi_cmd_to_rq(cmd);
1183 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1184 
1185 	if (!sdkp->rscs)
1186 		return 0;
1187 
1188 	return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
1189 		    0x3fu);
1190 }
1191 
sd_setup_rw32_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags,unsigned int dld)1192 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1193 				       sector_t lba, unsigned int nr_blocks,
1194 				       unsigned char flags, unsigned int dld)
1195 {
1196 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1197 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1198 	cmd->cmnd[6]  = sd_group_number(cmd);
1199 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1200 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1201 	cmd->cmnd[10] = flags;
1202 	cmd->cmnd[11] = dld & 0x07;
1203 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1204 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1205 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1206 
1207 	return BLK_STS_OK;
1208 }
1209 
sd_setup_rw16_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags,unsigned int dld)1210 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1211 				       sector_t lba, unsigned int nr_blocks,
1212 				       unsigned char flags, unsigned int dld)
1213 {
1214 	cmd->cmd_len  = 16;
1215 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1216 	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1217 	cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1218 	cmd->cmnd[15] = 0;
1219 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1220 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1221 
1222 	return BLK_STS_OK;
1223 }
1224 
sd_setup_rw10_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1225 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1226 				       sector_t lba, unsigned int nr_blocks,
1227 				       unsigned char flags)
1228 {
1229 	cmd->cmd_len = 10;
1230 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1231 	cmd->cmnd[1] = flags;
1232 	cmd->cmnd[6] = sd_group_number(cmd);
1233 	cmd->cmnd[9] = 0;
1234 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1235 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1236 
1237 	return BLK_STS_OK;
1238 }
1239 
sd_setup_rw6_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1240 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1241 				      sector_t lba, unsigned int nr_blocks,
1242 				      unsigned char flags)
1243 {
1244 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1245 	if (WARN_ON_ONCE(nr_blocks == 0))
1246 		return BLK_STS_IOERR;
1247 
1248 	if (unlikely(flags & 0x8)) {
1249 		/*
1250 		 * This happens only if this drive failed 10byte rw
1251 		 * command with ILLEGAL_REQUEST during operation and
1252 		 * thus turned off use_10_for_rw.
1253 		 */
1254 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1255 		return BLK_STS_IOERR;
1256 	}
1257 
1258 	cmd->cmd_len = 6;
1259 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1260 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1261 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1262 	cmd->cmnd[3] = lba & 0xff;
1263 	cmd->cmnd[4] = nr_blocks;
1264 	cmd->cmnd[5] = 0;
1265 
1266 	return BLK_STS_OK;
1267 }
1268 
1269 /*
1270  * Check if a command has a duration limit set. If it does, and the target
1271  * device supports CDL and the feature is enabled, return the limit
1272  * descriptor index to use. Return 0 (no limit) otherwise.
1273  */
sd_cdl_dld(struct scsi_disk * sdkp,struct scsi_cmnd * scmd)1274 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1275 {
1276 	struct scsi_device *sdp = sdkp->device;
1277 	int hint;
1278 
1279 	if (!sdp->cdl_supported || !sdp->cdl_enable)
1280 		return 0;
1281 
1282 	/*
1283 	 * Use "no limit" if the request ioprio does not specify a duration
1284 	 * limit hint.
1285 	 */
1286 	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1287 	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1288 	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1289 		return 0;
1290 
1291 	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1292 }
1293 
sd_setup_atomic_cmnd(struct scsi_cmnd * cmd,sector_t lba,unsigned int nr_blocks,bool boundary,unsigned char flags)1294 static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd,
1295 					sector_t lba, unsigned int nr_blocks,
1296 					bool boundary, unsigned char flags)
1297 {
1298 	cmd->cmd_len  = 16;
1299 	cmd->cmnd[0]  = WRITE_ATOMIC_16;
1300 	cmd->cmnd[1]  = flags;
1301 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1302 	put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1303 	if (boundary)
1304 		put_unaligned_be16(nr_blocks, &cmd->cmnd[10]);
1305 	else
1306 		put_unaligned_be16(0, &cmd->cmnd[10]);
1307 	put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1308 	cmd->cmnd[14] = 0;
1309 	cmd->cmnd[15] = 0;
1310 
1311 	return BLK_STS_OK;
1312 }
1313 
sd_setup_read_write_cmnd(struct scsi_cmnd * cmd)1314 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1315 {
1316 	struct request *rq = scsi_cmd_to_rq(cmd);
1317 	struct scsi_device *sdp = cmd->device;
1318 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1319 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1320 	sector_t threshold;
1321 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1322 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1323 	bool write = rq_data_dir(rq) == WRITE;
1324 	unsigned char protect, fua;
1325 	unsigned int dld;
1326 	blk_status_t ret;
1327 	unsigned int dif;
1328 	bool dix;
1329 
1330 	ret = scsi_alloc_sgtables(cmd);
1331 	if (ret != BLK_STS_OK)
1332 		return ret;
1333 
1334 	ret = BLK_STS_IOERR;
1335 	if (!scsi_device_online(sdp) || sdp->changed) {
1336 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1337 		goto fail;
1338 	}
1339 
1340 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1341 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1342 		goto fail;
1343 	}
1344 
1345 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1346 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1347 		goto fail;
1348 	}
1349 
1350 	/*
1351 	 * Some SD card readers can't handle accesses which touch the
1352 	 * last one or two logical blocks. Split accesses as needed.
1353 	 */
1354 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1355 
1356 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1357 		if (lba < threshold) {
1358 			/* Access up to the threshold but not beyond */
1359 			nr_blocks = threshold - lba;
1360 		} else {
1361 			/* Access only a single logical block */
1362 			nr_blocks = 1;
1363 		}
1364 	}
1365 
1366 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1367 	dix = scsi_prot_sg_count(cmd);
1368 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1369 	dld = sd_cdl_dld(sdkp, cmd);
1370 
1371 	if (dif || dix)
1372 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1373 	else
1374 		protect = 0;
1375 
1376 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1377 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1378 					 protect | fua, dld);
1379 	} else if (rq->cmd_flags & REQ_ATOMIC) {
1380 		ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks,
1381 				sdkp->use_atomic_write_boundary,
1382 				protect | fua);
1383 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1384 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1385 					 protect | fua, dld);
1386 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1387 		   sdp->use_10_for_rw || protect || rq->write_hint) {
1388 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1389 					 protect | fua);
1390 	} else {
1391 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1392 					protect | fua);
1393 	}
1394 
1395 	if (unlikely(ret != BLK_STS_OK))
1396 		goto fail;
1397 
1398 	/*
1399 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1400 	 * host adapter, it's safe to assume that we can at least transfer
1401 	 * this many bytes between each connect / disconnect.
1402 	 */
1403 	cmd->transfersize = sdp->sector_size;
1404 	cmd->underflow = nr_blocks << 9;
1405 	cmd->allowed = sdkp->max_retries;
1406 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1407 
1408 	SCSI_LOG_HLQUEUE(1,
1409 			 scmd_printk(KERN_INFO, cmd,
1410 				     "%s: block=%llu, count=%d\n", __func__,
1411 				     (unsigned long long)blk_rq_pos(rq),
1412 				     blk_rq_sectors(rq)));
1413 	SCSI_LOG_HLQUEUE(2,
1414 			 scmd_printk(KERN_INFO, cmd,
1415 				     "%s %d/%u 512 byte blocks.\n",
1416 				     write ? "writing" : "reading", nr_blocks,
1417 				     blk_rq_sectors(rq)));
1418 
1419 	/*
1420 	 * This indicates that the command is ready from our end to be queued.
1421 	 */
1422 	return BLK_STS_OK;
1423 fail:
1424 	scsi_free_sgtables(cmd);
1425 	return ret;
1426 }
1427 
sd_init_command(struct scsi_cmnd * cmd)1428 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1429 {
1430 	struct request *rq = scsi_cmd_to_rq(cmd);
1431 
1432 	switch (req_op(rq)) {
1433 	case REQ_OP_DISCARD:
1434 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1435 		case SD_LBP_UNMAP:
1436 			return sd_setup_unmap_cmnd(cmd);
1437 		case SD_LBP_WS16:
1438 			return sd_setup_write_same16_cmnd(cmd, true);
1439 		case SD_LBP_WS10:
1440 			return sd_setup_write_same10_cmnd(cmd, true);
1441 		case SD_LBP_ZERO:
1442 			return sd_setup_write_same10_cmnd(cmd, false);
1443 		default:
1444 			return BLK_STS_TARGET;
1445 		}
1446 	case REQ_OP_WRITE_ZEROES:
1447 		return sd_setup_write_zeroes_cmnd(cmd);
1448 	case REQ_OP_FLUSH:
1449 		return sd_setup_flush_cmnd(cmd);
1450 	case REQ_OP_READ:
1451 	case REQ_OP_WRITE:
1452 		return sd_setup_read_write_cmnd(cmd);
1453 	case REQ_OP_ZONE_RESET:
1454 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1455 						   false);
1456 	case REQ_OP_ZONE_RESET_ALL:
1457 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1458 						   true);
1459 	case REQ_OP_ZONE_OPEN:
1460 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1461 	case REQ_OP_ZONE_CLOSE:
1462 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1463 	case REQ_OP_ZONE_FINISH:
1464 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1465 	default:
1466 		WARN_ON_ONCE(1);
1467 		return BLK_STS_NOTSUPP;
1468 	}
1469 }
1470 
sd_uninit_command(struct scsi_cmnd * SCpnt)1471 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1472 {
1473 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1474 
1475 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1476 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1477 }
1478 
sd_need_revalidate(struct gendisk * disk,struct scsi_disk * sdkp)1479 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1480 {
1481 	if (sdkp->device->removable || sdkp->write_prot) {
1482 		if (disk_check_media_change(disk))
1483 			return true;
1484 	}
1485 
1486 	/*
1487 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1488 	 * nothing to do with partitions, BLKRRPART is used to force a full
1489 	 * revalidate after things like a format for historical reasons.
1490 	 */
1491 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1492 }
1493 
1494 /**
1495  *	sd_open - open a scsi disk device
1496  *	@disk: disk to open
1497  *	@mode: open mode
1498  *
1499  *	Returns 0 if successful. Returns a negated errno value in case
1500  *	of error.
1501  *
1502  *	Note: This can be called from a user context (e.g. fsck(1) )
1503  *	or from within the kernel (e.g. as a result of a mount(1) ).
1504  *	In the latter case @inode and @filp carry an abridged amount
1505  *	of information as noted above.
1506  *
1507  *	Locking: called with disk->open_mutex held.
1508  **/
sd_open(struct gendisk * disk,blk_mode_t mode)1509 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1510 {
1511 	struct scsi_disk *sdkp = scsi_disk(disk);
1512 	struct scsi_device *sdev = sdkp->device;
1513 	int retval;
1514 
1515 	if (scsi_device_get(sdev))
1516 		return -ENXIO;
1517 
1518 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1519 
1520 	/*
1521 	 * If the device is in error recovery, wait until it is done.
1522 	 * If the device is offline, then disallow any access to it.
1523 	 */
1524 	retval = -ENXIO;
1525 	if (!scsi_block_when_processing_errors(sdev))
1526 		goto error_out;
1527 
1528 	if (sd_need_revalidate(disk, sdkp))
1529 		sd_revalidate_disk(disk);
1530 
1531 	/*
1532 	 * If the drive is empty, just let the open fail.
1533 	 */
1534 	retval = -ENOMEDIUM;
1535 	if (sdev->removable && !sdkp->media_present &&
1536 	    !(mode & BLK_OPEN_NDELAY))
1537 		goto error_out;
1538 
1539 	/*
1540 	 * If the device has the write protect tab set, have the open fail
1541 	 * if the user expects to be able to write to the thing.
1542 	 */
1543 	retval = -EROFS;
1544 	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1545 		goto error_out;
1546 
1547 	/*
1548 	 * It is possible that the disk changing stuff resulted in
1549 	 * the device being taken offline.  If this is the case,
1550 	 * report this to the user, and don't pretend that the
1551 	 * open actually succeeded.
1552 	 */
1553 	retval = -ENXIO;
1554 	if (!scsi_device_online(sdev))
1555 		goto error_out;
1556 
1557 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1558 		if (scsi_block_when_processing_errors(sdev))
1559 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1560 	}
1561 
1562 	return 0;
1563 
1564 error_out:
1565 	scsi_device_put(sdev);
1566 	return retval;
1567 }
1568 
1569 /**
1570  *	sd_release - invoked when the (last) close(2) is called on this
1571  *	scsi disk.
1572  *	@disk: disk to release
1573  *
1574  *	Returns 0.
1575  *
1576  *	Note: may block (uninterruptible) if error recovery is underway
1577  *	on this disk.
1578  *
1579  *	Locking: called with disk->open_mutex held.
1580  **/
sd_release(struct gendisk * disk)1581 static void sd_release(struct gendisk *disk)
1582 {
1583 	struct scsi_disk *sdkp = scsi_disk(disk);
1584 	struct scsi_device *sdev = sdkp->device;
1585 
1586 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1587 
1588 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1589 		if (scsi_block_when_processing_errors(sdev))
1590 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1591 	}
1592 
1593 	scsi_device_put(sdev);
1594 }
1595 
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1596 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1597 {
1598 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1599 	struct scsi_device *sdp = sdkp->device;
1600 	struct Scsi_Host *host = sdp->host;
1601 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1602 	int diskinfo[4];
1603 
1604 	/* default to most commonly used values */
1605 	diskinfo[0] = 0x40;	/* 1 << 6 */
1606 	diskinfo[1] = 0x20;	/* 1 << 5 */
1607 	diskinfo[2] = capacity >> 11;
1608 
1609 	/* override with calculated, extended default, or driver values */
1610 	if (host->hostt->bios_param)
1611 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1612 	else
1613 		scsicam_bios_param(bdev, capacity, diskinfo);
1614 
1615 	geo->heads = diskinfo[0];
1616 	geo->sectors = diskinfo[1];
1617 	geo->cylinders = diskinfo[2];
1618 	return 0;
1619 }
1620 
1621 /**
1622  *	sd_ioctl - process an ioctl
1623  *	@bdev: target block device
1624  *	@mode: open mode
1625  *	@cmd: ioctl command number
1626  *	@arg: this is third argument given to ioctl(2) system call.
1627  *	Often contains a pointer.
1628  *
1629  *	Returns 0 if successful (some ioctls return positive numbers on
1630  *	success as well). Returns a negated errno value in case of error.
1631  *
1632  *	Note: most ioctls are forward onto the block subsystem or further
1633  *	down in the scsi subsystem.
1634  **/
sd_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1635 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1636 		    unsigned int cmd, unsigned long arg)
1637 {
1638 	struct gendisk *disk = bdev->bd_disk;
1639 	struct scsi_disk *sdkp = scsi_disk(disk);
1640 	struct scsi_device *sdp = sdkp->device;
1641 	void __user *p = (void __user *)arg;
1642 	int error;
1643 
1644 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1645 				    "cmd=0x%x\n", disk->disk_name, cmd));
1646 
1647 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1648 		return -ENOIOCTLCMD;
1649 
1650 	/*
1651 	 * If we are in the middle of error recovery, don't let anyone
1652 	 * else try and use this device.  Also, if error recovery fails, it
1653 	 * may try and take the device offline, in which case all further
1654 	 * access to the device is prohibited.
1655 	 */
1656 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1657 			(mode & BLK_OPEN_NDELAY));
1658 	if (error)
1659 		return error;
1660 
1661 	if (is_sed_ioctl(cmd))
1662 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1663 	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1664 }
1665 
set_media_not_present(struct scsi_disk * sdkp)1666 static void set_media_not_present(struct scsi_disk *sdkp)
1667 {
1668 	if (sdkp->media_present)
1669 		sdkp->device->changed = 1;
1670 
1671 	if (sdkp->device->removable) {
1672 		sdkp->media_present = 0;
1673 		sdkp->capacity = 0;
1674 	}
1675 }
1676 
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1677 static int media_not_present(struct scsi_disk *sdkp,
1678 			     struct scsi_sense_hdr *sshdr)
1679 {
1680 	if (!scsi_sense_valid(sshdr))
1681 		return 0;
1682 
1683 	/* not invoked for commands that could return deferred errors */
1684 	switch (sshdr->sense_key) {
1685 	case UNIT_ATTENTION:
1686 	case NOT_READY:
1687 		/* medium not present */
1688 		if (sshdr->asc == 0x3A) {
1689 			set_media_not_present(sdkp);
1690 			return 1;
1691 		}
1692 	}
1693 	return 0;
1694 }
1695 
1696 /**
1697  *	sd_check_events - check media events
1698  *	@disk: kernel device descriptor
1699  *	@clearing: disk events currently being cleared
1700  *
1701  *	Returns mask of DISK_EVENT_*.
1702  *
1703  *	Note: this function is invoked from the block subsystem.
1704  **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1705 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1706 {
1707 	struct scsi_disk *sdkp = disk->private_data;
1708 	struct scsi_device *sdp;
1709 	int retval;
1710 	bool disk_changed;
1711 
1712 	if (!sdkp)
1713 		return 0;
1714 
1715 	sdp = sdkp->device;
1716 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1717 
1718 	/*
1719 	 * If the device is offline, don't send any commands - just pretend as
1720 	 * if the command failed.  If the device ever comes back online, we
1721 	 * can deal with it then.  It is only because of unrecoverable errors
1722 	 * that we would ever take a device offline in the first place.
1723 	 */
1724 	if (!scsi_device_online(sdp)) {
1725 		set_media_not_present(sdkp);
1726 		goto out;
1727 	}
1728 
1729 	/*
1730 	 * Using TEST_UNIT_READY enables differentiation between drive with
1731 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1732 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1733 	 *
1734 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1735 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1736 	 * sd_revalidate() is called.
1737 	 */
1738 	if (scsi_block_when_processing_errors(sdp)) {
1739 		struct scsi_sense_hdr sshdr = { 0, };
1740 
1741 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1742 					      &sshdr);
1743 
1744 		/* failed to execute TUR, assume media not present */
1745 		if (retval < 0 || host_byte(retval)) {
1746 			set_media_not_present(sdkp);
1747 			goto out;
1748 		}
1749 
1750 		if (media_not_present(sdkp, &sshdr))
1751 			goto out;
1752 	}
1753 
1754 	/*
1755 	 * For removable scsi disk we have to recognise the presence
1756 	 * of a disk in the drive.
1757 	 */
1758 	if (!sdkp->media_present)
1759 		sdp->changed = 1;
1760 	sdkp->media_present = 1;
1761 out:
1762 	/*
1763 	 * sdp->changed is set under the following conditions:
1764 	 *
1765 	 *	Medium present state has changed in either direction.
1766 	 *	Device has indicated UNIT_ATTENTION.
1767 	 */
1768 	disk_changed = sdp->changed;
1769 	sdp->changed = 0;
1770 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1771 }
1772 
sd_sync_cache(struct scsi_disk * sdkp)1773 static int sd_sync_cache(struct scsi_disk *sdkp)
1774 {
1775 	int res;
1776 	struct scsi_device *sdp = sdkp->device;
1777 	const int timeout = sdp->request_queue->rq_timeout
1778 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1779 	/* Leave the rest of the command zero to indicate flush everything. */
1780 	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1781 				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1782 	struct scsi_sense_hdr sshdr;
1783 	struct scsi_failure failure_defs[] = {
1784 		{
1785 			.allowed = 3,
1786 			.result = SCMD_FAILURE_RESULT_ANY,
1787 		},
1788 		{}
1789 	};
1790 	struct scsi_failures failures = {
1791 		.failure_definitions = failure_defs,
1792 	};
1793 	const struct scsi_exec_args exec_args = {
1794 		.req_flags = BLK_MQ_REQ_PM,
1795 		.sshdr = &sshdr,
1796 		.failures = &failures,
1797 	};
1798 
1799 	if (!scsi_device_online(sdp))
1800 		return -ENODEV;
1801 
1802 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1803 			       sdkp->max_retries, &exec_args);
1804 	if (res) {
1805 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1806 
1807 		if (res < 0)
1808 			return res;
1809 
1810 		if (scsi_status_is_check_condition(res) &&
1811 		    scsi_sense_valid(&sshdr)) {
1812 			sd_print_sense_hdr(sdkp, &sshdr);
1813 
1814 			/* we need to evaluate the error return  */
1815 			if (sshdr.asc == 0x3a ||	/* medium not present */
1816 			    sshdr.asc == 0x20 ||	/* invalid command */
1817 			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1818 				/* this is no error here */
1819 				return 0;
1820 
1821 			/*
1822 			 * If a format is in progress or if the drive does not
1823 			 * support sync, there is not much we can do because
1824 			 * this is called during shutdown or suspend so just
1825 			 * return success so those operations can proceed.
1826 			 */
1827 			if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) ||
1828 			    sshdr.sense_key == ILLEGAL_REQUEST)
1829 				return 0;
1830 		}
1831 
1832 		switch (host_byte(res)) {
1833 		/* ignore errors due to racing a disconnection */
1834 		case DID_BAD_TARGET:
1835 		case DID_NO_CONNECT:
1836 			return 0;
1837 		/* signal the upper layer it might try again */
1838 		case DID_BUS_BUSY:
1839 		case DID_IMM_RETRY:
1840 		case DID_REQUEUE:
1841 		case DID_SOFT_ERROR:
1842 			return -EBUSY;
1843 		default:
1844 			return -EIO;
1845 		}
1846 	}
1847 	return 0;
1848 }
1849 
sd_rescan(struct device * dev)1850 static void sd_rescan(struct device *dev)
1851 {
1852 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1853 
1854 	sd_revalidate_disk(sdkp->disk);
1855 }
1856 
sd_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)1857 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1858 		enum blk_unique_id type)
1859 {
1860 	struct scsi_device *sdev = scsi_disk(disk)->device;
1861 	const struct scsi_vpd *vpd;
1862 	const unsigned char *d;
1863 	int ret = -ENXIO, len;
1864 
1865 	rcu_read_lock();
1866 	vpd = rcu_dereference(sdev->vpd_pg83);
1867 	if (!vpd)
1868 		goto out_unlock;
1869 
1870 	ret = -EINVAL;
1871 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1872 		/* we only care about designators with LU association */
1873 		if (((d[1] >> 4) & 0x3) != 0x00)
1874 			continue;
1875 		if ((d[1] & 0xf) != type)
1876 			continue;
1877 
1878 		/*
1879 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1880 		 * keep looking as one with more entropy might still show up.
1881 		 */
1882 		len = d[3];
1883 		if (len != 8 && len != 12 && len != 16)
1884 			continue;
1885 		ret = len;
1886 		memcpy(id, d + 4, len);
1887 		if (len == 16)
1888 			break;
1889 	}
1890 out_unlock:
1891 	rcu_read_unlock();
1892 	return ret;
1893 }
1894 
sd_scsi_to_pr_err(struct scsi_sense_hdr * sshdr,int result)1895 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1896 {
1897 	switch (host_byte(result)) {
1898 	case DID_TRANSPORT_MARGINAL:
1899 	case DID_TRANSPORT_DISRUPTED:
1900 	case DID_BUS_BUSY:
1901 		return PR_STS_RETRY_PATH_FAILURE;
1902 	case DID_NO_CONNECT:
1903 		return PR_STS_PATH_FAILED;
1904 	case DID_TRANSPORT_FAILFAST:
1905 		return PR_STS_PATH_FAST_FAILED;
1906 	}
1907 
1908 	switch (status_byte(result)) {
1909 	case SAM_STAT_RESERVATION_CONFLICT:
1910 		return PR_STS_RESERVATION_CONFLICT;
1911 	case SAM_STAT_CHECK_CONDITION:
1912 		if (!scsi_sense_valid(sshdr))
1913 			return PR_STS_IOERR;
1914 
1915 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1916 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1917 			return -EINVAL;
1918 
1919 		fallthrough;
1920 	default:
1921 		return PR_STS_IOERR;
1922 	}
1923 }
1924 
sd_pr_in_command(struct block_device * bdev,u8 sa,unsigned char * data,int data_len)1925 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1926 			    unsigned char *data, int data_len)
1927 {
1928 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1929 	struct scsi_device *sdev = sdkp->device;
1930 	struct scsi_sense_hdr sshdr;
1931 	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1932 	struct scsi_failure failure_defs[] = {
1933 		{
1934 			.sense = UNIT_ATTENTION,
1935 			.asc = SCMD_FAILURE_ASC_ANY,
1936 			.ascq = SCMD_FAILURE_ASCQ_ANY,
1937 			.allowed = 5,
1938 			.result = SAM_STAT_CHECK_CONDITION,
1939 		},
1940 		{}
1941 	};
1942 	struct scsi_failures failures = {
1943 		.failure_definitions = failure_defs,
1944 	};
1945 	const struct scsi_exec_args exec_args = {
1946 		.sshdr = &sshdr,
1947 		.failures = &failures,
1948 	};
1949 	int result;
1950 
1951 	put_unaligned_be16(data_len, &cmd[7]);
1952 
1953 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1954 				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1955 	if (scsi_status_is_check_condition(result) &&
1956 	    scsi_sense_valid(&sshdr)) {
1957 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1958 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1959 	}
1960 
1961 	if (result <= 0)
1962 		return result;
1963 
1964 	return sd_scsi_to_pr_err(&sshdr, result);
1965 }
1966 
sd_pr_read_keys(struct block_device * bdev,struct pr_keys * keys_info)1967 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1968 {
1969 	int result, i, data_offset, num_copy_keys;
1970 	u32 num_keys = keys_info->num_keys;
1971 	int data_len = num_keys * 8 + 8;
1972 	u8 *data;
1973 
1974 	data = kzalloc(data_len, GFP_KERNEL);
1975 	if (!data)
1976 		return -ENOMEM;
1977 
1978 	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1979 	if (result)
1980 		goto free_data;
1981 
1982 	keys_info->generation = get_unaligned_be32(&data[0]);
1983 	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1984 
1985 	data_offset = 8;
1986 	num_copy_keys = min(num_keys, keys_info->num_keys);
1987 
1988 	for (i = 0; i < num_copy_keys; i++) {
1989 		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1990 		data_offset += 8;
1991 	}
1992 
1993 free_data:
1994 	kfree(data);
1995 	return result;
1996 }
1997 
sd_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)1998 static int sd_pr_read_reservation(struct block_device *bdev,
1999 				  struct pr_held_reservation *rsv)
2000 {
2001 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2002 	struct scsi_device *sdev = sdkp->device;
2003 	u8 data[24] = { };
2004 	int result, len;
2005 
2006 	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
2007 	if (result)
2008 		return result;
2009 
2010 	len = get_unaligned_be32(&data[4]);
2011 	if (!len)
2012 		return 0;
2013 
2014 	/* Make sure we have at least the key and type */
2015 	if (len < 14) {
2016 		sdev_printk(KERN_INFO, sdev,
2017 			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
2018 			    len);
2019 		return -EINVAL;
2020 	}
2021 
2022 	rsv->generation = get_unaligned_be32(&data[0]);
2023 	rsv->key = get_unaligned_be64(&data[8]);
2024 	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
2025 	return 0;
2026 }
2027 
sd_pr_out_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,enum scsi_pr_type type,u8 flags)2028 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
2029 			     u64 sa_key, enum scsi_pr_type type, u8 flags)
2030 {
2031 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2032 	struct scsi_device *sdev = sdkp->device;
2033 	struct scsi_sense_hdr sshdr;
2034 	struct scsi_failure failure_defs[] = {
2035 		{
2036 			.sense = UNIT_ATTENTION,
2037 			.asc = SCMD_FAILURE_ASC_ANY,
2038 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2039 			.allowed = 5,
2040 			.result = SAM_STAT_CHECK_CONDITION,
2041 		},
2042 		{}
2043 	};
2044 	struct scsi_failures failures = {
2045 		.failure_definitions = failure_defs,
2046 	};
2047 	const struct scsi_exec_args exec_args = {
2048 		.sshdr = &sshdr,
2049 		.failures = &failures,
2050 	};
2051 	int result;
2052 	u8 cmd[16] = { 0, };
2053 	u8 data[24] = { 0, };
2054 
2055 	cmd[0] = PERSISTENT_RESERVE_OUT;
2056 	cmd[1] = sa;
2057 	cmd[2] = type;
2058 	put_unaligned_be32(sizeof(data), &cmd[5]);
2059 
2060 	put_unaligned_be64(key, &data[0]);
2061 	put_unaligned_be64(sa_key, &data[8]);
2062 	data[20] = flags;
2063 
2064 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
2065 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
2066 				  &exec_args);
2067 
2068 	if (scsi_status_is_check_condition(result) &&
2069 	    scsi_sense_valid(&sshdr)) {
2070 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
2071 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
2072 	}
2073 
2074 	if (result <= 0)
2075 		return result;
2076 
2077 	return sd_scsi_to_pr_err(&sshdr, result);
2078 }
2079 
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)2080 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2081 		u32 flags)
2082 {
2083 	if (flags & ~PR_FL_IGNORE_KEY)
2084 		return -EOPNOTSUPP;
2085 	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
2086 			old_key, new_key, 0,
2087 			(1 << 0) /* APTPL */);
2088 }
2089 
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)2090 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2091 		u32 flags)
2092 {
2093 	if (flags)
2094 		return -EOPNOTSUPP;
2095 	return sd_pr_out_command(bdev, 0x01, key, 0,
2096 				 block_pr_type_to_scsi(type), 0);
2097 }
2098 
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2099 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2100 {
2101 	return sd_pr_out_command(bdev, 0x02, key, 0,
2102 				 block_pr_type_to_scsi(type), 0);
2103 }
2104 
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)2105 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2106 		enum pr_type type, bool abort)
2107 {
2108 	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2109 				 block_pr_type_to_scsi(type), 0);
2110 }
2111 
sd_pr_clear(struct block_device * bdev,u64 key)2112 static int sd_pr_clear(struct block_device *bdev, u64 key)
2113 {
2114 	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2115 }
2116 
2117 static const struct pr_ops sd_pr_ops = {
2118 	.pr_register	= sd_pr_register,
2119 	.pr_reserve	= sd_pr_reserve,
2120 	.pr_release	= sd_pr_release,
2121 	.pr_preempt	= sd_pr_preempt,
2122 	.pr_clear	= sd_pr_clear,
2123 	.pr_read_keys	= sd_pr_read_keys,
2124 	.pr_read_reservation = sd_pr_read_reservation,
2125 };
2126 
scsi_disk_free_disk(struct gendisk * disk)2127 static void scsi_disk_free_disk(struct gendisk *disk)
2128 {
2129 	struct scsi_disk *sdkp = scsi_disk(disk);
2130 
2131 	put_device(&sdkp->disk_dev);
2132 }
2133 
2134 static const struct block_device_operations sd_fops = {
2135 	.owner			= THIS_MODULE,
2136 	.open			= sd_open,
2137 	.release		= sd_release,
2138 	.ioctl			= sd_ioctl,
2139 	.getgeo			= sd_getgeo,
2140 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
2141 	.check_events		= sd_check_events,
2142 	.unlock_native_capacity	= sd_unlock_native_capacity,
2143 	.report_zones		= sd_zbc_report_zones,
2144 	.get_unique_id		= sd_get_unique_id,
2145 	.free_disk		= scsi_disk_free_disk,
2146 	.pr_ops			= &sd_pr_ops,
2147 };
2148 
2149 /**
2150  *	sd_eh_reset - reset error handling callback
2151  *	@scmd:		sd-issued command that has failed
2152  *
2153  *	This function is called by the SCSI midlayer before starting
2154  *	SCSI EH. When counting medium access failures we have to be
2155  *	careful to register it only only once per device and SCSI EH run;
2156  *	there might be several timed out commands which will cause the
2157  *	'max_medium_access_timeouts' counter to trigger after the first
2158  *	SCSI EH run already and set the device to offline.
2159  *	So this function resets the internal counter before starting SCSI EH.
2160  **/
sd_eh_reset(struct scsi_cmnd * scmd)2161 static void sd_eh_reset(struct scsi_cmnd *scmd)
2162 {
2163 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2164 
2165 	/* New SCSI EH run, reset gate variable */
2166 	sdkp->ignore_medium_access_errors = false;
2167 }
2168 
2169 /**
2170  *	sd_eh_action - error handling callback
2171  *	@scmd:		sd-issued command that has failed
2172  *	@eh_disp:	The recovery disposition suggested by the midlayer
2173  *
2174  *	This function is called by the SCSI midlayer upon completion of an
2175  *	error test command (currently TEST UNIT READY). The result of sending
2176  *	the eh command is passed in eh_disp.  We're looking for devices that
2177  *	fail medium access commands but are OK with non access commands like
2178  *	test unit ready (so wrongly see the device as having a successful
2179  *	recovery)
2180  **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)2181 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2182 {
2183 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2184 	struct scsi_device *sdev = scmd->device;
2185 
2186 	if (!scsi_device_online(sdev) ||
2187 	    !scsi_medium_access_command(scmd) ||
2188 	    host_byte(scmd->result) != DID_TIME_OUT ||
2189 	    eh_disp != SUCCESS)
2190 		return eh_disp;
2191 
2192 	/*
2193 	 * The device has timed out executing a medium access command.
2194 	 * However, the TEST UNIT READY command sent during error
2195 	 * handling completed successfully. Either the device is in the
2196 	 * process of recovering or has it suffered an internal failure
2197 	 * that prevents access to the storage medium.
2198 	 */
2199 	if (!sdkp->ignore_medium_access_errors) {
2200 		sdkp->medium_access_timed_out++;
2201 		sdkp->ignore_medium_access_errors = true;
2202 	}
2203 
2204 	/*
2205 	 * If the device keeps failing read/write commands but TEST UNIT
2206 	 * READY always completes successfully we assume that medium
2207 	 * access is no longer possible and take the device offline.
2208 	 */
2209 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2210 		scmd_printk(KERN_ERR, scmd,
2211 			    "Medium access timeout failure. Offlining disk!\n");
2212 		mutex_lock(&sdev->state_mutex);
2213 		scsi_device_set_state(sdev, SDEV_OFFLINE);
2214 		mutex_unlock(&sdev->state_mutex);
2215 
2216 		return SUCCESS;
2217 	}
2218 
2219 	return eh_disp;
2220 }
2221 
sd_completed_bytes(struct scsi_cmnd * scmd)2222 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2223 {
2224 	struct request *req = scsi_cmd_to_rq(scmd);
2225 	struct scsi_device *sdev = scmd->device;
2226 	unsigned int transferred, good_bytes;
2227 	u64 start_lba, end_lba, bad_lba;
2228 
2229 	/*
2230 	 * Some commands have a payload smaller than the device logical
2231 	 * block size (e.g. INQUIRY on a 4K disk).
2232 	 */
2233 	if (scsi_bufflen(scmd) <= sdev->sector_size)
2234 		return 0;
2235 
2236 	/* Check if we have a 'bad_lba' information */
2237 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2238 				     SCSI_SENSE_BUFFERSIZE,
2239 				     &bad_lba))
2240 		return 0;
2241 
2242 	/*
2243 	 * If the bad lba was reported incorrectly, we have no idea where
2244 	 * the error is.
2245 	 */
2246 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2247 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2248 	if (bad_lba < start_lba || bad_lba >= end_lba)
2249 		return 0;
2250 
2251 	/*
2252 	 * resid is optional but mostly filled in.  When it's unused,
2253 	 * its value is zero, so we assume the whole buffer transferred
2254 	 */
2255 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2256 
2257 	/* This computation should always be done in terms of the
2258 	 * resolution of the device's medium.
2259 	 */
2260 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2261 
2262 	return min(good_bytes, transferred);
2263 }
2264 
2265 /**
2266  *	sd_done - bottom half handler: called when the lower level
2267  *	driver has completed (successfully or otherwise) a scsi command.
2268  *	@SCpnt: mid-level's per command structure.
2269  *
2270  *	Note: potentially run from within an ISR. Must not block.
2271  **/
sd_done(struct scsi_cmnd * SCpnt)2272 static int sd_done(struct scsi_cmnd *SCpnt)
2273 {
2274 	int result = SCpnt->result;
2275 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2276 	unsigned int sector_size = SCpnt->device->sector_size;
2277 	unsigned int resid;
2278 	struct scsi_sense_hdr sshdr;
2279 	struct request *req = scsi_cmd_to_rq(SCpnt);
2280 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2281 	int sense_valid = 0;
2282 	int sense_deferred = 0;
2283 
2284 	switch (req_op(req)) {
2285 	case REQ_OP_DISCARD:
2286 	case REQ_OP_WRITE_ZEROES:
2287 	case REQ_OP_ZONE_RESET:
2288 	case REQ_OP_ZONE_RESET_ALL:
2289 	case REQ_OP_ZONE_OPEN:
2290 	case REQ_OP_ZONE_CLOSE:
2291 	case REQ_OP_ZONE_FINISH:
2292 		if (!result) {
2293 			good_bytes = blk_rq_bytes(req);
2294 			scsi_set_resid(SCpnt, 0);
2295 		} else {
2296 			good_bytes = 0;
2297 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2298 		}
2299 		break;
2300 	default:
2301 		/*
2302 		 * In case of bogus fw or device, we could end up having
2303 		 * an unaligned partial completion. Check this here and force
2304 		 * alignment.
2305 		 */
2306 		resid = scsi_get_resid(SCpnt);
2307 		if (resid & (sector_size - 1)) {
2308 			sd_printk(KERN_INFO, sdkp,
2309 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2310 				resid, sector_size);
2311 			scsi_print_command(SCpnt);
2312 			resid = min(scsi_bufflen(SCpnt),
2313 				    round_up(resid, sector_size));
2314 			scsi_set_resid(SCpnt, resid);
2315 		}
2316 	}
2317 
2318 	if (result) {
2319 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2320 		if (sense_valid)
2321 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2322 	}
2323 	sdkp->medium_access_timed_out = 0;
2324 
2325 	if (!scsi_status_is_check_condition(result) &&
2326 	    (!sense_valid || sense_deferred))
2327 		goto out;
2328 
2329 	switch (sshdr.sense_key) {
2330 	case HARDWARE_ERROR:
2331 	case MEDIUM_ERROR:
2332 		good_bytes = sd_completed_bytes(SCpnt);
2333 		break;
2334 	case RECOVERED_ERROR:
2335 		good_bytes = scsi_bufflen(SCpnt);
2336 		break;
2337 	case NO_SENSE:
2338 		/* This indicates a false check condition, so ignore it.  An
2339 		 * unknown amount of data was transferred so treat it as an
2340 		 * error.
2341 		 */
2342 		SCpnt->result = 0;
2343 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2344 		break;
2345 	case ABORTED_COMMAND:
2346 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2347 			good_bytes = sd_completed_bytes(SCpnt);
2348 		break;
2349 	case ILLEGAL_REQUEST:
2350 		switch (sshdr.asc) {
2351 		case 0x10:	/* DIX: Host detected corruption */
2352 			good_bytes = sd_completed_bytes(SCpnt);
2353 			break;
2354 		case 0x20:	/* INVALID COMMAND OPCODE */
2355 		case 0x24:	/* INVALID FIELD IN CDB */
2356 			switch (SCpnt->cmnd[0]) {
2357 			case UNMAP:
2358 				sd_disable_discard(sdkp);
2359 				break;
2360 			case WRITE_SAME_16:
2361 			case WRITE_SAME:
2362 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2363 					sd_disable_discard(sdkp);
2364 				} else {
2365 					sd_disable_write_same(sdkp);
2366 					req->rq_flags |= RQF_QUIET;
2367 				}
2368 				break;
2369 			}
2370 		}
2371 		break;
2372 	default:
2373 		break;
2374 	}
2375 
2376  out:
2377 	if (sdkp->device->type == TYPE_ZBC)
2378 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2379 
2380 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2381 					   "sd_done: completed %d of %d bytes\n",
2382 					   good_bytes, scsi_bufflen(SCpnt)));
2383 
2384 	return good_bytes;
2385 }
2386 
2387 /*
2388  * spinup disk - called only in sd_revalidate_disk()
2389  */
2390 static void
sd_spinup_disk(struct scsi_disk * sdkp)2391 sd_spinup_disk(struct scsi_disk *sdkp)
2392 {
2393 	static const u8 cmd[10] = { TEST_UNIT_READY };
2394 	unsigned long spintime_expire = 0;
2395 	int spintime, sense_valid = 0;
2396 	unsigned int the_result;
2397 	struct scsi_sense_hdr sshdr;
2398 	struct scsi_failure failure_defs[] = {
2399 		/* Do not retry Medium Not Present */
2400 		{
2401 			.sense = UNIT_ATTENTION,
2402 			.asc = 0x3A,
2403 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2404 			.result = SAM_STAT_CHECK_CONDITION,
2405 		},
2406 		{
2407 			.sense = NOT_READY,
2408 			.asc = 0x3A,
2409 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2410 			.result = SAM_STAT_CHECK_CONDITION,
2411 		},
2412 		/* Retry when scsi_status_is_good would return false 3 times */
2413 		{
2414 			.result = SCMD_FAILURE_STAT_ANY,
2415 			.allowed = 3,
2416 		},
2417 		{}
2418 	};
2419 	struct scsi_failures failures = {
2420 		.failure_definitions = failure_defs,
2421 	};
2422 	const struct scsi_exec_args exec_args = {
2423 		.sshdr = &sshdr,
2424 		.failures = &failures,
2425 	};
2426 
2427 	spintime = 0;
2428 
2429 	/* Spin up drives, as required.  Only do this at boot time */
2430 	/* Spinup needs to be done for module loads too. */
2431 	do {
2432 		bool media_was_present = sdkp->media_present;
2433 
2434 		scsi_failures_reset_retries(&failures);
2435 
2436 		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2437 					      NULL, 0, SD_TIMEOUT,
2438 					      sdkp->max_retries, &exec_args);
2439 
2440 
2441 		if (the_result > 0) {
2442 			/*
2443 			 * If the drive has indicated to us that it doesn't
2444 			 * have any media in it, don't bother with any more
2445 			 * polling.
2446 			 */
2447 			if (media_not_present(sdkp, &sshdr)) {
2448 				if (media_was_present)
2449 					sd_printk(KERN_NOTICE, sdkp,
2450 						  "Media removed, stopped polling\n");
2451 				return;
2452 			}
2453 			sense_valid = scsi_sense_valid(&sshdr);
2454 		}
2455 
2456 		if (!scsi_status_is_check_condition(the_result)) {
2457 			/* no sense, TUR either succeeded or failed
2458 			 * with a status error */
2459 			if(!spintime && !scsi_status_is_good(the_result)) {
2460 				sd_print_result(sdkp, "Test Unit Ready failed",
2461 						the_result);
2462 			}
2463 			break;
2464 		}
2465 
2466 		/*
2467 		 * The device does not want the automatic start to be issued.
2468 		 */
2469 		if (sdkp->device->no_start_on_add)
2470 			break;
2471 
2472 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2473 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2474 				break;	/* manual intervention required */
2475 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2476 				break;	/* standby */
2477 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2478 				break;	/* unavailable */
2479 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2480 				break;	/* sanitize in progress */
2481 			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2482 				break;	/* depopulation in progress */
2483 			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2484 				break;	/* depopulation restoration in progress */
2485 			/*
2486 			 * Issue command to spin up drive when not ready
2487 			 */
2488 			if (!spintime) {
2489 				/* Return immediately and start spin cycle */
2490 				const u8 start_cmd[10] = {
2491 					[0] = START_STOP,
2492 					[1] = 1,
2493 					[4] = sdkp->device->start_stop_pwr_cond ?
2494 						0x11 : 1,
2495 				};
2496 
2497 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2498 				scsi_execute_cmd(sdkp->device, start_cmd,
2499 						 REQ_OP_DRV_IN, NULL, 0,
2500 						 SD_TIMEOUT, sdkp->max_retries,
2501 						 &exec_args);
2502 				spintime_expire = jiffies + 100 * HZ;
2503 				spintime = 1;
2504 			}
2505 			/* Wait 1 second for next try */
2506 			msleep(1000);
2507 			printk(KERN_CONT ".");
2508 
2509 		/*
2510 		 * Wait for USB flash devices with slow firmware.
2511 		 * Yes, this sense key/ASC combination shouldn't
2512 		 * occur here.  It's characteristic of these devices.
2513 		 */
2514 		} else if (sense_valid &&
2515 				sshdr.sense_key == UNIT_ATTENTION &&
2516 				sshdr.asc == 0x28) {
2517 			if (!spintime) {
2518 				spintime_expire = jiffies + 5 * HZ;
2519 				spintime = 1;
2520 			}
2521 			/* Wait 1 second for next try */
2522 			msleep(1000);
2523 		} else {
2524 			/* we don't understand the sense code, so it's
2525 			 * probably pointless to loop */
2526 			if(!spintime) {
2527 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2528 				sd_print_sense_hdr(sdkp, &sshdr);
2529 			}
2530 			break;
2531 		}
2532 
2533 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2534 
2535 	if (spintime) {
2536 		if (scsi_status_is_good(the_result))
2537 			printk(KERN_CONT "ready\n");
2538 		else
2539 			printk(KERN_CONT "not responding...\n");
2540 	}
2541 }
2542 
2543 /*
2544  * Determine whether disk supports Data Integrity Field.
2545  */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2546 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2547 {
2548 	struct scsi_device *sdp = sdkp->device;
2549 	u8 type;
2550 
2551 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2552 		sdkp->protection_type = 0;
2553 		return 0;
2554 	}
2555 
2556 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2557 
2558 	if (type > T10_PI_TYPE3_PROTECTION) {
2559 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2560 			  " protection type %u. Disabling disk!\n",
2561 			  type);
2562 		sdkp->protection_type = 0;
2563 		return -ENODEV;
2564 	}
2565 
2566 	sdkp->protection_type = type;
2567 
2568 	return 0;
2569 }
2570 
sd_config_protection(struct scsi_disk * sdkp,struct queue_limits * lim)2571 static void sd_config_protection(struct scsi_disk *sdkp,
2572 		struct queue_limits *lim)
2573 {
2574 	struct scsi_device *sdp = sdkp->device;
2575 
2576 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
2577 		sd_dif_config_host(sdkp, lim);
2578 
2579 	if (!sdkp->protection_type)
2580 		return;
2581 
2582 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2583 		sd_first_printk(KERN_NOTICE, sdkp,
2584 				"Disabling DIF Type %u protection\n",
2585 				sdkp->protection_type);
2586 		sdkp->protection_type = 0;
2587 	}
2588 
2589 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2590 			sdkp->protection_type);
2591 }
2592 
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2593 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2594 			struct scsi_sense_hdr *sshdr, int sense_valid,
2595 			int the_result)
2596 {
2597 	if (sense_valid)
2598 		sd_print_sense_hdr(sdkp, sshdr);
2599 	else
2600 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2601 
2602 	/*
2603 	 * Set dirty bit for removable devices if not ready -
2604 	 * sometimes drives will not report this properly.
2605 	 */
2606 	if (sdp->removable &&
2607 	    sense_valid && sshdr->sense_key == NOT_READY)
2608 		set_media_not_present(sdkp);
2609 
2610 	/*
2611 	 * We used to set media_present to 0 here to indicate no media
2612 	 * in the drive, but some drives fail read capacity even with
2613 	 * media present, so we can't do that.
2614 	 */
2615 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2616 }
2617 
2618 #define RC16_LEN 32
2619 #if RC16_LEN > SD_BUF_SIZE
2620 #error RC16_LEN must not be more than SD_BUF_SIZE
2621 #endif
2622 
2623 #define READ_CAPACITY_RETRIES_ON_RESET	10
2624 
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,struct queue_limits * lim,unsigned char * buffer)2625 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2626 		struct queue_limits *lim, unsigned char *buffer)
2627 {
2628 	unsigned char cmd[16];
2629 	struct scsi_sense_hdr sshdr;
2630 	const struct scsi_exec_args exec_args = {
2631 		.sshdr = &sshdr,
2632 	};
2633 	int sense_valid = 0;
2634 	int the_result;
2635 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2636 	unsigned int alignment;
2637 	unsigned long long lba;
2638 	unsigned sector_size;
2639 
2640 	if (sdp->no_read_capacity_16)
2641 		return -EINVAL;
2642 
2643 	do {
2644 		memset(cmd, 0, 16);
2645 		cmd[0] = SERVICE_ACTION_IN_16;
2646 		cmd[1] = SAI_READ_CAPACITY_16;
2647 		cmd[13] = RC16_LEN;
2648 		memset(buffer, 0, RC16_LEN);
2649 
2650 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2651 					      buffer, RC16_LEN, SD_TIMEOUT,
2652 					      sdkp->max_retries, &exec_args);
2653 		if (the_result > 0) {
2654 			if (media_not_present(sdkp, &sshdr))
2655 				return -ENODEV;
2656 
2657 			sense_valid = scsi_sense_valid(&sshdr);
2658 			if (sense_valid &&
2659 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2660 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2661 			    sshdr.ascq == 0x00)
2662 				/* Invalid Command Operation Code or
2663 				 * Invalid Field in CDB, just retry
2664 				 * silently with RC10 */
2665 				return -EINVAL;
2666 			if (sense_valid &&
2667 			    sshdr.sense_key == UNIT_ATTENTION &&
2668 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2669 				/* Device reset might occur several times,
2670 				 * give it one more chance */
2671 				if (--reset_retries > 0)
2672 					continue;
2673 		}
2674 		retries--;
2675 
2676 	} while (the_result && retries);
2677 
2678 	if (the_result) {
2679 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2680 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2681 		return -EINVAL;
2682 	}
2683 
2684 	sector_size = get_unaligned_be32(&buffer[8]);
2685 	lba = get_unaligned_be64(&buffer[0]);
2686 
2687 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2688 		sdkp->capacity = 0;
2689 		return -ENODEV;
2690 	}
2691 
2692 	/* Logical blocks per physical block exponent */
2693 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2694 
2695 	/* RC basis */
2696 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2697 
2698 	/* Lowest aligned logical block */
2699 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2700 	lim->alignment_offset = alignment;
2701 	if (alignment && sdkp->first_scan)
2702 		sd_printk(KERN_NOTICE, sdkp,
2703 			  "physical block alignment offset: %u\n", alignment);
2704 
2705 	if (buffer[14] & 0x80) { /* LBPME */
2706 		sdkp->lbpme = 1;
2707 
2708 		if (buffer[14] & 0x40) /* LBPRZ */
2709 			sdkp->lbprz = 1;
2710 	}
2711 
2712 	sdkp->capacity = lba + 1;
2713 	return sector_size;
2714 }
2715 
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2716 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2717 						unsigned char *buffer)
2718 {
2719 	static const u8 cmd[10] = { READ_CAPACITY };
2720 	struct scsi_sense_hdr sshdr;
2721 	struct scsi_failure failure_defs[] = {
2722 		/* Do not retry Medium Not Present */
2723 		{
2724 			.sense = UNIT_ATTENTION,
2725 			.asc = 0x3A,
2726 			.result = SAM_STAT_CHECK_CONDITION,
2727 		},
2728 		{
2729 			.sense = NOT_READY,
2730 			.asc = 0x3A,
2731 			.result = SAM_STAT_CHECK_CONDITION,
2732 		},
2733 		 /* Device reset might occur several times so retry a lot */
2734 		{
2735 			.sense = UNIT_ATTENTION,
2736 			.asc = 0x29,
2737 			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2738 			.result = SAM_STAT_CHECK_CONDITION,
2739 		},
2740 		/* Any other error not listed above retry 3 times */
2741 		{
2742 			.result = SCMD_FAILURE_RESULT_ANY,
2743 			.allowed = 3,
2744 		},
2745 		{}
2746 	};
2747 	struct scsi_failures failures = {
2748 		.failure_definitions = failure_defs,
2749 	};
2750 	const struct scsi_exec_args exec_args = {
2751 		.sshdr = &sshdr,
2752 		.failures = &failures,
2753 	};
2754 	int sense_valid = 0;
2755 	int the_result;
2756 	sector_t lba;
2757 	unsigned sector_size;
2758 
2759 	memset(buffer, 0, 8);
2760 
2761 	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2762 				      8, SD_TIMEOUT, sdkp->max_retries,
2763 				      &exec_args);
2764 
2765 	if (the_result > 0) {
2766 		sense_valid = scsi_sense_valid(&sshdr);
2767 
2768 		if (media_not_present(sdkp, &sshdr))
2769 			return -ENODEV;
2770 	}
2771 
2772 	if (the_result) {
2773 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2774 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2775 		return -EINVAL;
2776 	}
2777 
2778 	sector_size = get_unaligned_be32(&buffer[4]);
2779 	lba = get_unaligned_be32(&buffer[0]);
2780 
2781 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2782 		/* Some buggy (usb cardreader) devices return an lba of
2783 		   0xffffffff when the want to report a size of 0 (with
2784 		   which they really mean no media is present) */
2785 		sdkp->capacity = 0;
2786 		sdkp->physical_block_size = sector_size;
2787 		return sector_size;
2788 	}
2789 
2790 	sdkp->capacity = lba + 1;
2791 	sdkp->physical_block_size = sector_size;
2792 	return sector_size;
2793 }
2794 
sd_try_rc16_first(struct scsi_device * sdp)2795 static int sd_try_rc16_first(struct scsi_device *sdp)
2796 {
2797 	if (sdp->host->max_cmd_len < 16)
2798 		return 0;
2799 	if (sdp->try_rc_10_first)
2800 		return 0;
2801 	if (sdp->scsi_level > SCSI_SPC_2)
2802 		return 1;
2803 	if (scsi_device_protection(sdp))
2804 		return 1;
2805 	return 0;
2806 }
2807 
2808 /*
2809  * read disk capacity
2810  */
2811 static void
sd_read_capacity(struct scsi_disk * sdkp,struct queue_limits * lim,unsigned char * buffer)2812 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim,
2813 		unsigned char *buffer)
2814 {
2815 	int sector_size;
2816 	struct scsi_device *sdp = sdkp->device;
2817 
2818 	if (sd_try_rc16_first(sdp)) {
2819 		sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2820 		if (sector_size == -EOVERFLOW)
2821 			goto got_data;
2822 		if (sector_size == -ENODEV)
2823 			return;
2824 		if (sector_size < 0)
2825 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2826 		if (sector_size < 0)
2827 			return;
2828 	} else {
2829 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2830 		if (sector_size == -EOVERFLOW)
2831 			goto got_data;
2832 		if (sector_size < 0)
2833 			return;
2834 		if ((sizeof(sdkp->capacity) > 4) &&
2835 		    (sdkp->capacity > 0xffffffffULL)) {
2836 			int old_sector_size = sector_size;
2837 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2838 					"Trying to use READ CAPACITY(16).\n");
2839 			sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2840 			if (sector_size < 0) {
2841 				sd_printk(KERN_NOTICE, sdkp,
2842 					"Using 0xffffffff as device size\n");
2843 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2844 				sector_size = old_sector_size;
2845 				goto got_data;
2846 			}
2847 			/* Remember that READ CAPACITY(16) succeeded */
2848 			sdp->try_rc_10_first = 0;
2849 		}
2850 	}
2851 
2852 	/* Some devices are known to return the total number of blocks,
2853 	 * not the highest block number.  Some devices have versions
2854 	 * which do this and others which do not.  Some devices we might
2855 	 * suspect of doing this but we don't know for certain.
2856 	 *
2857 	 * If we know the reported capacity is wrong, decrement it.  If
2858 	 * we can only guess, then assume the number of blocks is even
2859 	 * (usually true but not always) and err on the side of lowering
2860 	 * the capacity.
2861 	 */
2862 	if (sdp->fix_capacity ||
2863 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2864 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2865 				"from its reported value: %llu\n",
2866 				(unsigned long long) sdkp->capacity);
2867 		--sdkp->capacity;
2868 	}
2869 
2870 got_data:
2871 	if (sector_size == 0) {
2872 		sector_size = 512;
2873 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2874 			  "assuming 512.\n");
2875 	}
2876 
2877 	if (sector_size != 512 &&
2878 	    sector_size != 1024 &&
2879 	    sector_size != 2048 &&
2880 	    sector_size != 4096) {
2881 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2882 			  sector_size);
2883 		/*
2884 		 * The user might want to re-format the drive with
2885 		 * a supported sectorsize.  Once this happens, it
2886 		 * would be relatively trivial to set the thing up.
2887 		 * For this reason, we leave the thing in the table.
2888 		 */
2889 		sdkp->capacity = 0;
2890 		/*
2891 		 * set a bogus sector size so the normal read/write
2892 		 * logic in the block layer will eventually refuse any
2893 		 * request on this device without tripping over power
2894 		 * of two sector size assumptions
2895 		 */
2896 		sector_size = 512;
2897 	}
2898 	lim->logical_block_size = sector_size;
2899 	lim->physical_block_size = sdkp->physical_block_size;
2900 	sdkp->device->sector_size = sector_size;
2901 
2902 	if (sdkp->capacity > 0xffffffff)
2903 		sdp->use_16_for_rw = 1;
2904 
2905 }
2906 
2907 /*
2908  * Print disk capacity
2909  */
2910 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2911 sd_print_capacity(struct scsi_disk *sdkp,
2912 		  sector_t old_capacity)
2913 {
2914 	int sector_size = sdkp->device->sector_size;
2915 	char cap_str_2[10], cap_str_10[10];
2916 
2917 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2918 		return;
2919 
2920 	string_get_size(sdkp->capacity, sector_size,
2921 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2922 	string_get_size(sdkp->capacity, sector_size,
2923 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2924 
2925 	sd_printk(KERN_NOTICE, sdkp,
2926 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2927 		  (unsigned long long)sdkp->capacity,
2928 		  sector_size, cap_str_10, cap_str_2);
2929 
2930 	if (sdkp->physical_block_size != sector_size)
2931 		sd_printk(KERN_NOTICE, sdkp,
2932 			  "%u-byte physical blocks\n",
2933 			  sdkp->physical_block_size);
2934 }
2935 
2936 /* called with buffer of length 512 */
2937 static inline int
sd_do_mode_sense(struct scsi_disk * sdkp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2938 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2939 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2940 		 struct scsi_sense_hdr *sshdr)
2941 {
2942 	/*
2943 	 * If we must use MODE SENSE(10), make sure that the buffer length
2944 	 * is at least 8 bytes so that the mode sense header fits.
2945 	 */
2946 	if (sdkp->device->use_10_for_ms && len < 8)
2947 		len = 8;
2948 
2949 	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2950 			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2951 }
2952 
2953 /*
2954  * read write protect setting, if possible - called only in sd_revalidate_disk()
2955  * called with buffer of length SD_BUF_SIZE
2956  */
2957 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2958 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2959 {
2960 	int res;
2961 	struct scsi_device *sdp = sdkp->device;
2962 	struct scsi_mode_data data;
2963 	int old_wp = sdkp->write_prot;
2964 
2965 	set_disk_ro(sdkp->disk, 0);
2966 	if (sdp->skip_ms_page_3f) {
2967 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2968 		return;
2969 	}
2970 
2971 	if (sdp->use_192_bytes_for_3f) {
2972 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2973 	} else {
2974 		/*
2975 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2976 		 * We have to start carefully: some devices hang if we ask
2977 		 * for more than is available.
2978 		 */
2979 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2980 
2981 		/*
2982 		 * Second attempt: ask for page 0 When only page 0 is
2983 		 * implemented, a request for page 3F may return Sense Key
2984 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2985 		 * CDB.
2986 		 */
2987 		if (res < 0)
2988 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2989 
2990 		/*
2991 		 * Third attempt: ask 255 bytes, as we did earlier.
2992 		 */
2993 		if (res < 0)
2994 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2995 					       &data, NULL);
2996 	}
2997 
2998 	if (res < 0) {
2999 		sd_first_printk(KERN_WARNING, sdkp,
3000 			  "Test WP failed, assume Write Enabled\n");
3001 	} else {
3002 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
3003 		set_disk_ro(sdkp->disk, sdkp->write_prot);
3004 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
3005 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
3006 				  sdkp->write_prot ? "on" : "off");
3007 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
3008 		}
3009 	}
3010 }
3011 
3012 /*
3013  * sd_read_cache_type - called only from sd_revalidate_disk()
3014  * called with buffer of length SD_BUF_SIZE
3015  */
3016 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)3017 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
3018 {
3019 	int len = 0, res;
3020 	struct scsi_device *sdp = sdkp->device;
3021 
3022 	int dbd;
3023 	int modepage;
3024 	int first_len;
3025 	struct scsi_mode_data data;
3026 	struct scsi_sense_hdr sshdr;
3027 	int old_wce = sdkp->WCE;
3028 	int old_rcd = sdkp->RCD;
3029 	int old_dpofua = sdkp->DPOFUA;
3030 
3031 
3032 	if (sdkp->cache_override)
3033 		return;
3034 
3035 	first_len = 4;
3036 	if (sdp->skip_ms_page_8) {
3037 		if (sdp->type == TYPE_RBC)
3038 			goto defaults;
3039 		else {
3040 			if (sdp->skip_ms_page_3f)
3041 				goto defaults;
3042 			modepage = 0x3F;
3043 			if (sdp->use_192_bytes_for_3f)
3044 				first_len = 192;
3045 			dbd = 0;
3046 		}
3047 	} else if (sdp->type == TYPE_RBC) {
3048 		modepage = 6;
3049 		dbd = 8;
3050 	} else {
3051 		modepage = 8;
3052 		dbd = 0;
3053 	}
3054 
3055 	/* cautiously ask */
3056 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
3057 			&data, &sshdr);
3058 
3059 	if (res < 0)
3060 		goto bad_sense;
3061 
3062 	if (!data.header_length) {
3063 		modepage = 6;
3064 		first_len = 0;
3065 		sd_first_printk(KERN_ERR, sdkp,
3066 				"Missing header in MODE_SENSE response\n");
3067 	}
3068 
3069 	/* that went OK, now ask for the proper length */
3070 	len = data.length;
3071 
3072 	/*
3073 	 * We're only interested in the first three bytes, actually.
3074 	 * But the data cache page is defined for the first 20.
3075 	 */
3076 	if (len < 3)
3077 		goto bad_sense;
3078 	else if (len > SD_BUF_SIZE) {
3079 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
3080 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
3081 		len = SD_BUF_SIZE;
3082 	}
3083 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
3084 		len = 192;
3085 
3086 	/* Get the data */
3087 	if (len > first_len)
3088 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
3089 				&data, &sshdr);
3090 
3091 	if (!res) {
3092 		int offset = data.header_length + data.block_descriptor_length;
3093 
3094 		while (offset < len) {
3095 			u8 page_code = buffer[offset] & 0x3F;
3096 			u8 spf       = buffer[offset] & 0x40;
3097 
3098 			if (page_code == 8 || page_code == 6) {
3099 				/* We're interested only in the first 3 bytes.
3100 				 */
3101 				if (len - offset <= 2) {
3102 					sd_first_printk(KERN_ERR, sdkp,
3103 						"Incomplete mode parameter "
3104 							"data\n");
3105 					goto defaults;
3106 				} else {
3107 					modepage = page_code;
3108 					goto Page_found;
3109 				}
3110 			} else {
3111 				/* Go to the next page */
3112 				if (spf && len - offset > 3)
3113 					offset += 4 + (buffer[offset+2] << 8) +
3114 						buffer[offset+3];
3115 				else if (!spf && len - offset > 1)
3116 					offset += 2 + buffer[offset+1];
3117 				else {
3118 					sd_first_printk(KERN_ERR, sdkp,
3119 							"Incomplete mode "
3120 							"parameter data\n");
3121 					goto defaults;
3122 				}
3123 			}
3124 		}
3125 
3126 		sd_first_printk(KERN_WARNING, sdkp,
3127 				"No Caching mode page found\n");
3128 		goto defaults;
3129 
3130 	Page_found:
3131 		if (modepage == 8) {
3132 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3133 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3134 		} else {
3135 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3136 			sdkp->RCD = 0;
3137 		}
3138 
3139 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3140 		if (sdp->broken_fua) {
3141 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3142 			sdkp->DPOFUA = 0;
3143 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3144 			   !sdkp->device->use_16_for_rw) {
3145 			sd_first_printk(KERN_NOTICE, sdkp,
3146 				  "Uses READ/WRITE(6), disabling FUA\n");
3147 			sdkp->DPOFUA = 0;
3148 		}
3149 
3150 		/* No cache flush allowed for write protected devices */
3151 		if (sdkp->WCE && sdkp->write_prot)
3152 			sdkp->WCE = 0;
3153 
3154 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3155 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3156 			sd_printk(KERN_NOTICE, sdkp,
3157 				  "Write cache: %s, read cache: %s, %s\n",
3158 				  sdkp->WCE ? "enabled" : "disabled",
3159 				  sdkp->RCD ? "disabled" : "enabled",
3160 				  sdkp->DPOFUA ? "supports DPO and FUA"
3161 				  : "doesn't support DPO or FUA");
3162 
3163 		return;
3164 	}
3165 
3166 bad_sense:
3167 	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3168 	    sshdr.sense_key == ILLEGAL_REQUEST &&
3169 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3170 		/* Invalid field in CDB */
3171 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3172 	else
3173 		sd_first_printk(KERN_ERR, sdkp,
3174 				"Asking for cache data failed\n");
3175 
3176 defaults:
3177 	if (sdp->wce_default_on) {
3178 		sd_first_printk(KERN_NOTICE, sdkp,
3179 				"Assuming drive cache: write back\n");
3180 		sdkp->WCE = 1;
3181 	} else {
3182 		sd_first_printk(KERN_WARNING, sdkp,
3183 				"Assuming drive cache: write through\n");
3184 		sdkp->WCE = 0;
3185 	}
3186 	sdkp->RCD = 0;
3187 	sdkp->DPOFUA = 0;
3188 }
3189 
sd_is_perm_stream(struct scsi_disk * sdkp,unsigned int stream_id)3190 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3191 {
3192 	u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3193 	struct {
3194 		struct scsi_stream_status_header h;
3195 		struct scsi_stream_status s;
3196 	} buf;
3197 	struct scsi_device *sdev = sdkp->device;
3198 	struct scsi_sense_hdr sshdr;
3199 	const struct scsi_exec_args exec_args = {
3200 		.sshdr = &sshdr,
3201 	};
3202 	int res;
3203 
3204 	put_unaligned_be16(stream_id, &cdb[4]);
3205 	put_unaligned_be32(sizeof(buf), &cdb[10]);
3206 
3207 	res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3208 			       SD_TIMEOUT, sdkp->max_retries, &exec_args);
3209 	if (res < 0)
3210 		return false;
3211 	if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3212 		sd_print_sense_hdr(sdkp, &sshdr);
3213 	if (res)
3214 		return false;
3215 	if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3216 		return false;
3217 	return buf.h.stream_status[0].perm;
3218 }
3219 
sd_read_io_hints(struct scsi_disk * sdkp,unsigned char * buffer)3220 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3221 {
3222 	struct scsi_device *sdp = sdkp->device;
3223 	const struct scsi_io_group_descriptor *desc, *start, *end;
3224 	u16 permanent_stream_count_old;
3225 	struct scsi_sense_hdr sshdr;
3226 	struct scsi_mode_data data;
3227 	int res;
3228 
3229 	if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS)
3230 		return;
3231 
3232 	res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3233 			      /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3234 			      sdkp->max_retries, &data, &sshdr);
3235 	if (res < 0)
3236 		return;
3237 	start = (void *)buffer + data.header_length + 16;
3238 	end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3239 					  sizeof(*end));
3240 	/*
3241 	 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3242 	 * should assign the lowest numbered stream identifiers to permanent
3243 	 * streams.
3244 	 */
3245 	for (desc = start; desc < end; desc++)
3246 		if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3247 			break;
3248 	permanent_stream_count_old = sdkp->permanent_stream_count;
3249 	sdkp->permanent_stream_count = desc - start;
3250 	if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3251 		sd_printk(KERN_INFO, sdkp,
3252 			  "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3253 			  sdkp->permanent_stream_count);
3254 	else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3255 		sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3256 			  sdkp->permanent_stream_count);
3257 }
3258 
3259 /*
3260  * The ATO bit indicates whether the DIF application tag is available
3261  * for use by the operating system.
3262  */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)3263 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3264 {
3265 	int res, offset;
3266 	struct scsi_device *sdp = sdkp->device;
3267 	struct scsi_mode_data data;
3268 	struct scsi_sense_hdr sshdr;
3269 
3270 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3271 		return;
3272 
3273 	if (sdkp->protection_type == 0)
3274 		return;
3275 
3276 	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3277 			      sdkp->max_retries, &data, &sshdr);
3278 
3279 	if (res < 0 || !data.header_length ||
3280 	    data.length < 6) {
3281 		sd_first_printk(KERN_WARNING, sdkp,
3282 			  "getting Control mode page failed, assume no ATO\n");
3283 
3284 		if (res == -EIO && scsi_sense_valid(&sshdr))
3285 			sd_print_sense_hdr(sdkp, &sshdr);
3286 
3287 		return;
3288 	}
3289 
3290 	offset = data.header_length + data.block_descriptor_length;
3291 
3292 	if ((buffer[offset] & 0x3f) != 0x0a) {
3293 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3294 		return;
3295 	}
3296 
3297 	if ((buffer[offset + 5] & 0x80) == 0)
3298 		return;
3299 
3300 	sdkp->ATO = 1;
3301 
3302 	return;
3303 }
3304 
sd_discard_mode(struct scsi_disk * sdkp)3305 static unsigned int sd_discard_mode(struct scsi_disk *sdkp)
3306 {
3307 	if (!sdkp->lbpme)
3308 		return SD_LBP_FULL;
3309 
3310 	if (!sdkp->lbpvpd) {
3311 		/* LBP VPD page not provided */
3312 		if (sdkp->max_unmap_blocks)
3313 			return SD_LBP_UNMAP;
3314 		return SD_LBP_WS16;
3315 	}
3316 
3317 	/* LBP VPD page tells us what to use */
3318 	if (sdkp->lbpu && sdkp->max_unmap_blocks)
3319 		return SD_LBP_UNMAP;
3320 	if (sdkp->lbpws)
3321 		return SD_LBP_WS16;
3322 	if (sdkp->lbpws10)
3323 		return SD_LBP_WS10;
3324 	return SD_LBP_DISABLE;
3325 }
3326 
3327 /*
3328  * Query disk device for preferred I/O sizes.
3329  */
sd_read_block_limits(struct scsi_disk * sdkp,struct queue_limits * lim)3330 static void sd_read_block_limits(struct scsi_disk *sdkp,
3331 		struct queue_limits *lim)
3332 {
3333 	struct scsi_vpd *vpd;
3334 
3335 	rcu_read_lock();
3336 
3337 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3338 	if (!vpd || vpd->len < 16)
3339 		goto out;
3340 
3341 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3342 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3343 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3344 
3345 	if (vpd->len >= 64) {
3346 		unsigned int lba_count, desc_count;
3347 
3348 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3349 
3350 		if (!sdkp->lbpme)
3351 			goto config_atomic;
3352 
3353 		lba_count = get_unaligned_be32(&vpd->data[20]);
3354 		desc_count = get_unaligned_be32(&vpd->data[24]);
3355 
3356 		if (lba_count && desc_count)
3357 			sdkp->max_unmap_blocks = lba_count;
3358 
3359 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3360 
3361 		if (vpd->data[32] & 0x80)
3362 			sdkp->unmap_alignment =
3363 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3364 
3365 config_atomic:
3366 		sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]);
3367 		sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]);
3368 		sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]);
3369 		sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]);
3370 		sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]);
3371 
3372 		sd_config_atomic(sdkp, lim);
3373 	}
3374 
3375  out:
3376 	rcu_read_unlock();
3377 }
3378 
3379 /* Parse the Block Limits Extension VPD page (0xb7) */
sd_read_block_limits_ext(struct scsi_disk * sdkp)3380 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3381 {
3382 	struct scsi_vpd *vpd;
3383 
3384 	rcu_read_lock();
3385 	vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3386 	if (vpd && vpd->len >= 6)
3387 		sdkp->rscs = vpd->data[5] & 1;
3388 	rcu_read_unlock();
3389 }
3390 
3391 /* Query block device characteristics */
sd_read_block_characteristics(struct scsi_disk * sdkp,struct queue_limits * lim)3392 static void sd_read_block_characteristics(struct scsi_disk *sdkp,
3393 		struct queue_limits *lim)
3394 {
3395 	struct scsi_vpd *vpd;
3396 	u16 rot;
3397 
3398 	rcu_read_lock();
3399 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3400 
3401 	if (!vpd || vpd->len <= 8) {
3402 		rcu_read_unlock();
3403 	        return;
3404 	}
3405 
3406 	rot = get_unaligned_be16(&vpd->data[4]);
3407 	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3408 	rcu_read_unlock();
3409 
3410 	if (rot == 1)
3411 		lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3412 
3413 	if (!sdkp->first_scan)
3414 		return;
3415 
3416 	if (sdkp->device->type == TYPE_ZBC)
3417 		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3418 	else if (sdkp->zoned == 1)
3419 		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3420 	else if (sdkp->zoned == 2)
3421 		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3422 }
3423 
3424 /**
3425  * sd_read_block_provisioning - Query provisioning VPD page
3426  * @sdkp: disk to query
3427  */
sd_read_block_provisioning(struct scsi_disk * sdkp)3428 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3429 {
3430 	struct scsi_vpd *vpd;
3431 
3432 	if (sdkp->lbpme == 0)
3433 		return;
3434 
3435 	rcu_read_lock();
3436 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3437 
3438 	if (!vpd || vpd->len < 8) {
3439 		rcu_read_unlock();
3440 		return;
3441 	}
3442 
3443 	sdkp->lbpvpd	= 1;
3444 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3445 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3446 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3447 	rcu_read_unlock();
3448 }
3449 
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3450 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3451 {
3452 	struct scsi_device *sdev = sdkp->device;
3453 
3454 	if (sdev->host->no_write_same) {
3455 		sdev->no_write_same = 1;
3456 
3457 		return;
3458 	}
3459 
3460 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3461 		struct scsi_vpd *vpd;
3462 
3463 		sdev->no_report_opcodes = 1;
3464 
3465 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3466 		 * CODES is unsupported and the device has an ATA
3467 		 * Information VPD page (SAT).
3468 		 */
3469 		rcu_read_lock();
3470 		vpd = rcu_dereference(sdev->vpd_pg89);
3471 		if (vpd)
3472 			sdev->no_write_same = 1;
3473 		rcu_read_unlock();
3474 	}
3475 
3476 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3477 		sdkp->ws16 = 1;
3478 
3479 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3480 		sdkp->ws10 = 1;
3481 }
3482 
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3483 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3484 {
3485 	struct scsi_device *sdev = sdkp->device;
3486 
3487 	if (!sdev->security_supported)
3488 		return;
3489 
3490 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3491 			SECURITY_PROTOCOL_IN, 0) == 1 &&
3492 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3493 			SECURITY_PROTOCOL_OUT, 0) == 1)
3494 		sdkp->security = 1;
3495 }
3496 
sd64_to_sectors(struct scsi_disk * sdkp,u8 * buf)3497 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3498 {
3499 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3500 }
3501 
3502 /**
3503  * sd_read_cpr - Query concurrent positioning ranges
3504  * @sdkp:	disk to query
3505  */
sd_read_cpr(struct scsi_disk * sdkp)3506 static void sd_read_cpr(struct scsi_disk *sdkp)
3507 {
3508 	struct blk_independent_access_ranges *iars = NULL;
3509 	unsigned char *buffer = NULL;
3510 	unsigned int nr_cpr = 0;
3511 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3512 	u8 *desc;
3513 
3514 	/*
3515 	 * We need to have the capacity set first for the block layer to be
3516 	 * able to check the ranges.
3517 	 */
3518 	if (sdkp->first_scan)
3519 		return;
3520 
3521 	if (!sdkp->capacity)
3522 		goto out;
3523 
3524 	/*
3525 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3526 	 * leading to a maximum page size of 64 + 256*32 bytes.
3527 	 */
3528 	buf_len = 64 + 256*32;
3529 	buffer = kmalloc(buf_len, GFP_KERNEL);
3530 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3531 		goto out;
3532 
3533 	/* We must have at least a 64B header and one 32B range descriptor */
3534 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3535 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3536 		sd_printk(KERN_ERR, sdkp,
3537 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3538 		goto out;
3539 	}
3540 
3541 	nr_cpr = (vpd_len - 64) / 32;
3542 	if (nr_cpr == 1) {
3543 		nr_cpr = 0;
3544 		goto out;
3545 	}
3546 
3547 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3548 	if (!iars) {
3549 		nr_cpr = 0;
3550 		goto out;
3551 	}
3552 
3553 	desc = &buffer[64];
3554 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3555 		if (desc[0] != i) {
3556 			sd_printk(KERN_ERR, sdkp,
3557 				"Invalid Concurrent Positioning Range number\n");
3558 			nr_cpr = 0;
3559 			break;
3560 		}
3561 
3562 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3563 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3564 	}
3565 
3566 out:
3567 	disk_set_independent_access_ranges(sdkp->disk, iars);
3568 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3569 		sd_printk(KERN_NOTICE, sdkp,
3570 			  "%u concurrent positioning ranges\n", nr_cpr);
3571 		sdkp->nr_actuators = nr_cpr;
3572 	}
3573 
3574 	kfree(buffer);
3575 }
3576 
sd_validate_min_xfer_size(struct scsi_disk * sdkp)3577 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3578 {
3579 	struct scsi_device *sdp = sdkp->device;
3580 	unsigned int min_xfer_bytes =
3581 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3582 
3583 	if (sdkp->min_xfer_blocks == 0)
3584 		return false;
3585 
3586 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3587 		sd_first_printk(KERN_WARNING, sdkp,
3588 				"Preferred minimum I/O size %u bytes not a " \
3589 				"multiple of physical block size (%u bytes)\n",
3590 				min_xfer_bytes, sdkp->physical_block_size);
3591 		sdkp->min_xfer_blocks = 0;
3592 		return false;
3593 	}
3594 
3595 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3596 			min_xfer_bytes);
3597 	return true;
3598 }
3599 
3600 /*
3601  * Determine the device's preferred I/O size for reads and writes
3602  * unless the reported value is unreasonably small, large, not a
3603  * multiple of the physical block size, or simply garbage.
3604  */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3605 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3606 				      unsigned int dev_max)
3607 {
3608 	struct scsi_device *sdp = sdkp->device;
3609 	unsigned int opt_xfer_bytes =
3610 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3611 	unsigned int min_xfer_bytes =
3612 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3613 
3614 	if (sdkp->opt_xfer_blocks == 0)
3615 		return false;
3616 
3617 	if (sdkp->opt_xfer_blocks > dev_max) {
3618 		sd_first_printk(KERN_WARNING, sdkp,
3619 				"Optimal transfer size %u logical blocks " \
3620 				"> dev_max (%u logical blocks)\n",
3621 				sdkp->opt_xfer_blocks, dev_max);
3622 		return false;
3623 	}
3624 
3625 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3626 		sd_first_printk(KERN_WARNING, sdkp,
3627 				"Optimal transfer size %u logical blocks " \
3628 				"> sd driver limit (%u logical blocks)\n",
3629 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3630 		return false;
3631 	}
3632 
3633 	if (opt_xfer_bytes < PAGE_SIZE) {
3634 		sd_first_printk(KERN_WARNING, sdkp,
3635 				"Optimal transfer size %u bytes < " \
3636 				"PAGE_SIZE (%u bytes)\n",
3637 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3638 		return false;
3639 	}
3640 
3641 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3642 		sd_first_printk(KERN_WARNING, sdkp,
3643 				"Optimal transfer size %u bytes not a " \
3644 				"multiple of preferred minimum block " \
3645 				"size (%u bytes)\n",
3646 				opt_xfer_bytes, min_xfer_bytes);
3647 		return false;
3648 	}
3649 
3650 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3651 		sd_first_printk(KERN_WARNING, sdkp,
3652 				"Optimal transfer size %u bytes not a " \
3653 				"multiple of physical block size (%u bytes)\n",
3654 				opt_xfer_bytes, sdkp->physical_block_size);
3655 		return false;
3656 	}
3657 
3658 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3659 			opt_xfer_bytes);
3660 	return true;
3661 }
3662 
sd_read_block_zero(struct scsi_disk * sdkp)3663 static void sd_read_block_zero(struct scsi_disk *sdkp)
3664 {
3665 	struct scsi_device *sdev = sdkp->device;
3666 	unsigned int buf_len = sdev->sector_size;
3667 	u8 *buffer, cmd[16] = { };
3668 
3669 	buffer = kmalloc(buf_len, GFP_KERNEL);
3670 	if (!buffer)
3671 		return;
3672 
3673 	if (sdev->use_16_for_rw) {
3674 		cmd[0] = READ_16;
3675 		put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
3676 		put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
3677 	} else {
3678 		cmd[0] = READ_10;
3679 		put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3680 		put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3681 	}
3682 
3683 	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3684 			 SD_TIMEOUT, sdkp->max_retries, NULL);
3685 	kfree(buffer);
3686 }
3687 
3688 /**
3689  *	sd_revalidate_disk - called the first time a new disk is seen,
3690  *	performs disk spin up, read_capacity, etc.
3691  *	@disk: struct gendisk we care about
3692  **/
sd_revalidate_disk(struct gendisk * disk)3693 static int sd_revalidate_disk(struct gendisk *disk)
3694 {
3695 	struct scsi_disk *sdkp = scsi_disk(disk);
3696 	struct scsi_device *sdp = sdkp->device;
3697 	sector_t old_capacity = sdkp->capacity;
3698 	struct queue_limits lim;
3699 	unsigned char *buffer;
3700 	unsigned int dev_max;
3701 	int err;
3702 
3703 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3704 				      "sd_revalidate_disk\n"));
3705 
3706 	/*
3707 	 * If the device is offline, don't try and read capacity or any
3708 	 * of the other niceties.
3709 	 */
3710 	if (!scsi_device_online(sdp))
3711 		goto out;
3712 
3713 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3714 	if (!buffer) {
3715 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3716 			  "allocation failure.\n");
3717 		goto out;
3718 	}
3719 
3720 	sd_spinup_disk(sdkp);
3721 
3722 	lim = queue_limits_start_update(sdkp->disk->queue);
3723 
3724 	/*
3725 	 * Without media there is no reason to ask; moreover, some devices
3726 	 * react badly if we do.
3727 	 */
3728 	if (sdkp->media_present) {
3729 		sd_read_capacity(sdkp, &lim, buffer);
3730 		/*
3731 		 * Some USB/UAS devices return generic values for mode pages
3732 		 * until the media has been accessed. Trigger a READ operation
3733 		 * to force the device to populate mode pages.
3734 		 */
3735 		if (sdp->read_before_ms)
3736 			sd_read_block_zero(sdkp);
3737 		/*
3738 		 * set the default to rotational.  All non-rotational devices
3739 		 * support the block characteristics VPD page, which will
3740 		 * cause this to be updated correctly and any device which
3741 		 * doesn't support it should be treated as rotational.
3742 		 */
3743 		lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3744 
3745 		if (scsi_device_supports_vpd(sdp)) {
3746 			sd_read_block_provisioning(sdkp);
3747 			sd_read_block_limits(sdkp, &lim);
3748 			sd_read_block_limits_ext(sdkp);
3749 			sd_read_block_characteristics(sdkp, &lim);
3750 			sd_zbc_read_zones(sdkp, &lim, buffer);
3751 		}
3752 
3753 		sd_config_discard(sdkp, &lim, sd_discard_mode(sdkp));
3754 
3755 		sd_print_capacity(sdkp, old_capacity);
3756 
3757 		sd_read_write_protect_flag(sdkp, buffer);
3758 		sd_read_cache_type(sdkp, buffer);
3759 		sd_read_io_hints(sdkp, buffer);
3760 		sd_read_app_tag_own(sdkp, buffer);
3761 		sd_read_write_same(sdkp, buffer);
3762 		sd_read_security(sdkp, buffer);
3763 		sd_config_protection(sdkp, &lim);
3764 	}
3765 
3766 	/*
3767 	 * We now have all cache related info, determine how we deal
3768 	 * with flush requests.
3769 	 */
3770 	sd_set_flush_flag(sdkp, &lim);
3771 
3772 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3773 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3774 
3775 	/* Some devices report a maximum block count for READ/WRITE requests. */
3776 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3777 	lim.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3778 
3779 	if (sd_validate_min_xfer_size(sdkp))
3780 		lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3781 	else
3782 		lim.io_min = 0;
3783 
3784 	/*
3785 	 * Limit default to SCSI host optimal sector limit if set. There may be
3786 	 * an impact on performance for when the size of a request exceeds this
3787 	 * host limit.
3788 	 */
3789 	lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT;
3790 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3791 		lim.io_opt = min_not_zero(lim.io_opt,
3792 				logical_to_bytes(sdp, sdkp->opt_xfer_blocks));
3793 	}
3794 
3795 	sdkp->first_scan = 0;
3796 
3797 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3798 	sd_config_write_same(sdkp, &lim);
3799 	kfree(buffer);
3800 
3801 	err = queue_limits_commit_update_frozen(sdkp->disk->queue, &lim);
3802 	if (err)
3803 		return err;
3804 
3805 	/*
3806 	 * Query concurrent positioning ranges after
3807 	 * queue_limits_commit_update() unlocked q->limits_lock to avoid
3808 	 * deadlock with q->sysfs_dir_lock and q->sysfs_lock.
3809 	 */
3810 	if (sdkp->media_present && scsi_device_supports_vpd(sdp))
3811 		sd_read_cpr(sdkp);
3812 
3813 	/*
3814 	 * For a zoned drive, revalidating the zones can be done only once
3815 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3816 	 * capacity to 0.
3817 	 */
3818 	if (sd_zbc_revalidate_zones(sdkp))
3819 		set_capacity_and_notify(disk, 0);
3820 
3821  out:
3822 	return 0;
3823 }
3824 
3825 /**
3826  *	sd_unlock_native_capacity - unlock native capacity
3827  *	@disk: struct gendisk to set capacity for
3828  *
3829  *	Block layer calls this function if it detects that partitions
3830  *	on @disk reach beyond the end of the device.  If the SCSI host
3831  *	implements ->unlock_native_capacity() method, it's invoked to
3832  *	give it a chance to adjust the device capacity.
3833  *
3834  *	CONTEXT:
3835  *	Defined by block layer.  Might sleep.
3836  */
sd_unlock_native_capacity(struct gendisk * disk)3837 static void sd_unlock_native_capacity(struct gendisk *disk)
3838 {
3839 	struct scsi_device *sdev = scsi_disk(disk)->device;
3840 
3841 	if (sdev->host->hostt->unlock_native_capacity)
3842 		sdev->host->hostt->unlock_native_capacity(sdev);
3843 }
3844 
3845 /**
3846  *	sd_format_disk_name - format disk name
3847  *	@prefix: name prefix - ie. "sd" for SCSI disks
3848  *	@index: index of the disk to format name for
3849  *	@buf: output buffer
3850  *	@buflen: length of the output buffer
3851  *
3852  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3853  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3854  *	which is followed by sdaaa.
3855  *
3856  *	This is basically 26 base counting with one extra 'nil' entry
3857  *	at the beginning from the second digit on and can be
3858  *	determined using similar method as 26 base conversion with the
3859  *	index shifted -1 after each digit is computed.
3860  *
3861  *	CONTEXT:
3862  *	Don't care.
3863  *
3864  *	RETURNS:
3865  *	0 on success, -errno on failure.
3866  */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3867 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3868 {
3869 	const int base = 'z' - 'a' + 1;
3870 	char *begin = buf + strlen(prefix);
3871 	char *end = buf + buflen;
3872 	char *p;
3873 	int unit;
3874 
3875 	p = end - 1;
3876 	*p = '\0';
3877 	unit = base;
3878 	do {
3879 		if (p == begin)
3880 			return -EINVAL;
3881 		*--p = 'a' + (index % unit);
3882 		index = (index / unit) - 1;
3883 	} while (index >= 0);
3884 
3885 	memmove(begin, p, end - p);
3886 	memcpy(buf, prefix, strlen(prefix));
3887 
3888 	return 0;
3889 }
3890 
3891 /**
3892  *	sd_probe - called during driver initialization and whenever a
3893  *	new scsi device is attached to the system. It is called once
3894  *	for each scsi device (not just disks) present.
3895  *	@dev: pointer to device object
3896  *
3897  *	Returns 0 if successful (or not interested in this scsi device
3898  *	(e.g. scanner)); 1 when there is an error.
3899  *
3900  *	Note: this function is invoked from the scsi mid-level.
3901  *	This function sets up the mapping between a given
3902  *	<host,channel,id,lun> (found in sdp) and new device name
3903  *	(e.g. /dev/sda). More precisely it is the block device major
3904  *	and minor number that is chosen here.
3905  *
3906  *	Assume sd_probe is not re-entrant (for time being)
3907  *	Also think about sd_probe() and sd_remove() running coincidentally.
3908  **/
sd_probe(struct device * dev)3909 static int sd_probe(struct device *dev)
3910 {
3911 	struct scsi_device *sdp = to_scsi_device(dev);
3912 	struct scsi_disk *sdkp;
3913 	struct gendisk *gd;
3914 	int index;
3915 	int error;
3916 
3917 	scsi_autopm_get_device(sdp);
3918 	error = -ENODEV;
3919 	if (sdp->type != TYPE_DISK &&
3920 	    sdp->type != TYPE_ZBC &&
3921 	    sdp->type != TYPE_MOD &&
3922 	    sdp->type != TYPE_RBC)
3923 		goto out;
3924 
3925 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3926 		sdev_printk(KERN_WARNING, sdp,
3927 			    "Unsupported ZBC host-managed device.\n");
3928 		goto out;
3929 	}
3930 
3931 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3932 					"sd_probe\n"));
3933 
3934 	error = -ENOMEM;
3935 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3936 	if (!sdkp)
3937 		goto out;
3938 
3939 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3940 					 &sd_bio_compl_lkclass);
3941 	if (!gd)
3942 		goto out_free;
3943 
3944 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3945 	if (index < 0) {
3946 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3947 		goto out_put;
3948 	}
3949 
3950 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3951 	if (error) {
3952 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3953 		goto out_free_index;
3954 	}
3955 
3956 	sdkp->device = sdp;
3957 	sdkp->disk = gd;
3958 	sdkp->index = index;
3959 	sdkp->max_retries = SD_MAX_RETRIES;
3960 	atomic_set(&sdkp->openers, 0);
3961 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3962 
3963 	if (!sdp->request_queue->rq_timeout) {
3964 		if (sdp->type != TYPE_MOD)
3965 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3966 		else
3967 			blk_queue_rq_timeout(sdp->request_queue,
3968 					     SD_MOD_TIMEOUT);
3969 	}
3970 
3971 	device_initialize(&sdkp->disk_dev);
3972 	sdkp->disk_dev.parent = get_device(dev);
3973 	sdkp->disk_dev.class = &sd_disk_class;
3974 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3975 
3976 	error = device_add(&sdkp->disk_dev);
3977 	if (error) {
3978 		put_device(&sdkp->disk_dev);
3979 		goto out;
3980 	}
3981 
3982 	dev_set_drvdata(dev, sdkp);
3983 
3984 	gd->major = sd_major((index & 0xf0) >> 4);
3985 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3986 	gd->minors = SD_MINORS;
3987 
3988 	gd->fops = &sd_fops;
3989 	gd->private_data = sdkp;
3990 
3991 	/* defaults, until the device tells us otherwise */
3992 	sdp->sector_size = 512;
3993 	sdkp->capacity = 0;
3994 	sdkp->media_present = 1;
3995 	sdkp->write_prot = 0;
3996 	sdkp->cache_override = 0;
3997 	sdkp->WCE = 0;
3998 	sdkp->RCD = 0;
3999 	sdkp->ATO = 0;
4000 	sdkp->first_scan = 1;
4001 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
4002 
4003 	sd_revalidate_disk(gd);
4004 
4005 	if (sdp->removable) {
4006 		gd->flags |= GENHD_FL_REMOVABLE;
4007 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
4008 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
4009 	}
4010 
4011 	blk_pm_runtime_init(sdp->request_queue, dev);
4012 	if (sdp->rpm_autosuspend) {
4013 		pm_runtime_set_autosuspend_delay(dev,
4014 			sdp->host->rpm_autosuspend_delay);
4015 	}
4016 
4017 	error = device_add_disk(dev, gd, NULL);
4018 	if (error) {
4019 		device_unregister(&sdkp->disk_dev);
4020 		put_disk(gd);
4021 		goto out;
4022 	}
4023 
4024 	if (sdkp->security) {
4025 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
4026 		if (sdkp->opal_dev)
4027 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
4028 	}
4029 
4030 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
4031 		  sdp->removable ? "removable " : "");
4032 	scsi_autopm_put_device(sdp);
4033 
4034 	return 0;
4035 
4036  out_free_index:
4037 	ida_free(&sd_index_ida, index);
4038  out_put:
4039 	put_disk(gd);
4040  out_free:
4041 	kfree(sdkp);
4042  out:
4043 	scsi_autopm_put_device(sdp);
4044 	return error;
4045 }
4046 
4047 /**
4048  *	sd_remove - called whenever a scsi disk (previously recognized by
4049  *	sd_probe) is detached from the system. It is called (potentially
4050  *	multiple times) during sd module unload.
4051  *	@dev: pointer to device object
4052  *
4053  *	Note: this function is invoked from the scsi mid-level.
4054  *	This function potentially frees up a device name (e.g. /dev/sdc)
4055  *	that could be re-used by a subsequent sd_probe().
4056  *	This function is not called when the built-in sd driver is "exit-ed".
4057  **/
sd_remove(struct device * dev)4058 static int sd_remove(struct device *dev)
4059 {
4060 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4061 
4062 	scsi_autopm_get_device(sdkp->device);
4063 
4064 	device_del(&sdkp->disk_dev);
4065 	del_gendisk(sdkp->disk);
4066 	if (!sdkp->suspended)
4067 		sd_shutdown(dev);
4068 
4069 	put_disk(sdkp->disk);
4070 	return 0;
4071 }
4072 
scsi_disk_release(struct device * dev)4073 static void scsi_disk_release(struct device *dev)
4074 {
4075 	struct scsi_disk *sdkp = to_scsi_disk(dev);
4076 
4077 	ida_free(&sd_index_ida, sdkp->index);
4078 	put_device(&sdkp->device->sdev_gendev);
4079 	free_opal_dev(sdkp->opal_dev);
4080 
4081 	kfree(sdkp);
4082 }
4083 
sd_start_stop_device(struct scsi_disk * sdkp,int start)4084 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
4085 {
4086 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
4087 	struct scsi_sense_hdr sshdr;
4088 	struct scsi_failure failure_defs[] = {
4089 		{
4090 			/* Power on, reset, or bus device reset occurred */
4091 			.sense = UNIT_ATTENTION,
4092 			.asc = 0x29,
4093 			.ascq = 0,
4094 			.result = SAM_STAT_CHECK_CONDITION,
4095 		},
4096 		{
4097 			/* Power on occurred */
4098 			.sense = UNIT_ATTENTION,
4099 			.asc = 0x29,
4100 			.ascq = 1,
4101 			.result = SAM_STAT_CHECK_CONDITION,
4102 		},
4103 		{
4104 			/* SCSI bus reset */
4105 			.sense = UNIT_ATTENTION,
4106 			.asc = 0x29,
4107 			.ascq = 2,
4108 			.result = SAM_STAT_CHECK_CONDITION,
4109 		},
4110 		{}
4111 	};
4112 	struct scsi_failures failures = {
4113 		.total_allowed = 3,
4114 		.failure_definitions = failure_defs,
4115 	};
4116 	const struct scsi_exec_args exec_args = {
4117 		.sshdr = &sshdr,
4118 		.req_flags = BLK_MQ_REQ_PM,
4119 		.failures = &failures,
4120 	};
4121 	struct scsi_device *sdp = sdkp->device;
4122 	int res;
4123 
4124 	if (start)
4125 		cmd[4] |= 1;	/* START */
4126 
4127 	if (sdp->start_stop_pwr_cond)
4128 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
4129 
4130 	if (!scsi_device_online(sdp))
4131 		return -ENODEV;
4132 
4133 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4134 			       sdkp->max_retries, &exec_args);
4135 	if (res) {
4136 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
4137 		if (res > 0 && scsi_sense_valid(&sshdr)) {
4138 			sd_print_sense_hdr(sdkp, &sshdr);
4139 			/* 0x3a is medium not present */
4140 			if (sshdr.asc == 0x3a)
4141 				res = 0;
4142 		}
4143 	}
4144 
4145 	/* SCSI error codes must not go to the generic layer */
4146 	if (res)
4147 		return -EIO;
4148 
4149 	return 0;
4150 }
4151 
4152 /*
4153  * Send a SYNCHRONIZE CACHE instruction down to the device through
4154  * the normal SCSI command structure.  Wait for the command to
4155  * complete.
4156  */
sd_shutdown(struct device * dev)4157 static void sd_shutdown(struct device *dev)
4158 {
4159 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4160 
4161 	if (!sdkp)
4162 		return;         /* this can happen */
4163 
4164 	if (pm_runtime_suspended(dev))
4165 		return;
4166 
4167 	if (sdkp->WCE && sdkp->media_present) {
4168 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4169 		sd_sync_cache(sdkp);
4170 	}
4171 
4172 	if ((system_state != SYSTEM_RESTART &&
4173 	     sdkp->device->manage_system_start_stop) ||
4174 	    (system_state == SYSTEM_POWER_OFF &&
4175 	     sdkp->device->manage_shutdown) ||
4176 	    (system_state == SYSTEM_RUNNING &&
4177 	     sdkp->device->manage_runtime_start_stop)) {
4178 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4179 		sd_start_stop_device(sdkp, 0);
4180 	}
4181 }
4182 
sd_do_start_stop(struct scsi_device * sdev,bool runtime)4183 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4184 {
4185 	return (sdev->manage_system_start_stop && !runtime) ||
4186 		(sdev->manage_runtime_start_stop && runtime);
4187 }
4188 
sd_suspend_common(struct device * dev,bool runtime)4189 static int sd_suspend_common(struct device *dev, bool runtime)
4190 {
4191 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4192 	int ret = 0;
4193 
4194 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
4195 		return 0;
4196 
4197 	if (sdkp->WCE && sdkp->media_present) {
4198 		if (!sdkp->device->silence_suspend)
4199 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4200 		ret = sd_sync_cache(sdkp);
4201 		/* ignore OFFLINE device */
4202 		if (ret == -ENODEV)
4203 			return 0;
4204 
4205 		if (ret)
4206 			return ret;
4207 	}
4208 
4209 	if (sd_do_start_stop(sdkp->device, runtime)) {
4210 		if (!sdkp->device->silence_suspend)
4211 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4212 		/* an error is not worth aborting a system sleep */
4213 		ret = sd_start_stop_device(sdkp, 0);
4214 		if (!runtime)
4215 			ret = 0;
4216 	}
4217 
4218 	if (!ret)
4219 		sdkp->suspended = true;
4220 
4221 	return ret;
4222 }
4223 
sd_suspend_system(struct device * dev)4224 static int sd_suspend_system(struct device *dev)
4225 {
4226 	if (pm_runtime_suspended(dev))
4227 		return 0;
4228 
4229 	return sd_suspend_common(dev, false);
4230 }
4231 
sd_suspend_runtime(struct device * dev)4232 static int sd_suspend_runtime(struct device *dev)
4233 {
4234 	return sd_suspend_common(dev, true);
4235 }
4236 
sd_resume(struct device * dev)4237 static int sd_resume(struct device *dev)
4238 {
4239 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4240 
4241 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4242 
4243 	if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4244 		sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4245 		return -EIO;
4246 	}
4247 
4248 	return 0;
4249 }
4250 
sd_resume_common(struct device * dev,bool runtime)4251 static int sd_resume_common(struct device *dev, bool runtime)
4252 {
4253 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4254 	int ret;
4255 
4256 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4257 		return 0;
4258 
4259 	if (!sd_do_start_stop(sdkp->device, runtime)) {
4260 		sdkp->suspended = false;
4261 		return 0;
4262 	}
4263 
4264 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4265 	ret = sd_start_stop_device(sdkp, 1);
4266 	if (!ret) {
4267 		sd_resume(dev);
4268 		sdkp->suspended = false;
4269 	}
4270 
4271 	return ret;
4272 }
4273 
sd_resume_system(struct device * dev)4274 static int sd_resume_system(struct device *dev)
4275 {
4276 	if (pm_runtime_suspended(dev)) {
4277 		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4278 		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4279 
4280 		if (sdp && sdp->force_runtime_start_on_system_start)
4281 			pm_request_resume(dev);
4282 
4283 		return 0;
4284 	}
4285 
4286 	return sd_resume_common(dev, false);
4287 }
4288 
sd_resume_runtime(struct device * dev)4289 static int sd_resume_runtime(struct device *dev)
4290 {
4291 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4292 	struct scsi_device *sdp;
4293 
4294 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4295 		return 0;
4296 
4297 	sdp = sdkp->device;
4298 
4299 	if (sdp->ignore_media_change) {
4300 		/* clear the device's sense data */
4301 		static const u8 cmd[10] = { REQUEST_SENSE };
4302 		const struct scsi_exec_args exec_args = {
4303 			.req_flags = BLK_MQ_REQ_PM,
4304 		};
4305 
4306 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4307 				     sdp->request_queue->rq_timeout, 1,
4308 				     &exec_args))
4309 			sd_printk(KERN_NOTICE, sdkp,
4310 				  "Failed to clear sense data\n");
4311 	}
4312 
4313 	return sd_resume_common(dev, true);
4314 }
4315 
4316 static const struct dev_pm_ops sd_pm_ops = {
4317 	.suspend		= sd_suspend_system,
4318 	.resume			= sd_resume_system,
4319 	.poweroff		= sd_suspend_system,
4320 	.restore		= sd_resume_system,
4321 	.runtime_suspend	= sd_suspend_runtime,
4322 	.runtime_resume		= sd_resume_runtime,
4323 };
4324 
4325 static struct scsi_driver sd_template = {
4326 	.gendrv = {
4327 		.name		= "sd",
4328 		.probe		= sd_probe,
4329 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4330 		.remove		= sd_remove,
4331 		.shutdown	= sd_shutdown,
4332 		.pm		= &sd_pm_ops,
4333 	},
4334 	.rescan			= sd_rescan,
4335 	.resume			= sd_resume,
4336 	.init_command		= sd_init_command,
4337 	.uninit_command		= sd_uninit_command,
4338 	.done			= sd_done,
4339 	.eh_action		= sd_eh_action,
4340 	.eh_reset		= sd_eh_reset,
4341 };
4342 
4343 /**
4344  *	init_sd - entry point for this driver (both when built in or when
4345  *	a module).
4346  *
4347  *	Note: this function registers this driver with the scsi mid-level.
4348  **/
init_sd(void)4349 static int __init init_sd(void)
4350 {
4351 	int majors = 0, i, err;
4352 
4353 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4354 
4355 	for (i = 0; i < SD_MAJORS; i++) {
4356 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4357 			continue;
4358 		majors++;
4359 	}
4360 
4361 	if (!majors)
4362 		return -ENODEV;
4363 
4364 	err = class_register(&sd_disk_class);
4365 	if (err)
4366 		goto err_out;
4367 
4368 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4369 	if (!sd_page_pool) {
4370 		printk(KERN_ERR "sd: can't init discard page pool\n");
4371 		err = -ENOMEM;
4372 		goto err_out_class;
4373 	}
4374 
4375 	err = scsi_register_driver(&sd_template.gendrv);
4376 	if (err)
4377 		goto err_out_driver;
4378 
4379 	return 0;
4380 
4381 err_out_driver:
4382 	mempool_destroy(sd_page_pool);
4383 err_out_class:
4384 	class_unregister(&sd_disk_class);
4385 err_out:
4386 	for (i = 0; i < SD_MAJORS; i++)
4387 		unregister_blkdev(sd_major(i), "sd");
4388 	return err;
4389 }
4390 
4391 /**
4392  *	exit_sd - exit point for this driver (when it is a module).
4393  *
4394  *	Note: this function unregisters this driver from the scsi mid-level.
4395  **/
exit_sd(void)4396 static void __exit exit_sd(void)
4397 {
4398 	int i;
4399 
4400 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4401 
4402 	scsi_unregister_driver(&sd_template.gendrv);
4403 	mempool_destroy(sd_page_pool);
4404 
4405 	class_unregister(&sd_disk_class);
4406 
4407 	for (i = 0; i < SD_MAJORS; i++)
4408 		unregister_blkdev(sd_major(i), "sd");
4409 }
4410 
4411 module_init(init_sd);
4412 module_exit(exit_sd);
4413 
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)4414 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4415 {
4416 	scsi_print_sense_hdr(sdkp->device,
4417 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4418 }
4419 
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)4420 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4421 {
4422 	const char *hb_string = scsi_hostbyte_string(result);
4423 
4424 	if (hb_string)
4425 		sd_printk(KERN_INFO, sdkp,
4426 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4427 			  hb_string ? hb_string : "invalid",
4428 			  "DRIVER_OK");
4429 	else
4430 		sd_printk(KERN_INFO, sdkp,
4431 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4432 			  msg, host_byte(result), "DRIVER_OK");
4433 }
4434