• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1.. SPDX-License-Identifier: GPL-2.0
2
3===================================
4Using AutoFDO with the Linux kernel
5===================================
6
7This enables AutoFDO build support for the kernel when using
8the Clang compiler. AutoFDO (Auto-Feedback-Directed Optimization)
9is a type of profile-guided optimization (PGO) used to enhance the
10performance of binary executables. It gathers information about the
11frequency of execution of various code paths within a binary using
12hardware sampling. This data is then used to guide the compiler's
13optimization decisions, resulting in a more efficient binary. AutoFDO
14is a powerful optimization technique, and data indicates that it can
15significantly improve kernel performance. It's especially beneficial
16for workloads affected by front-end stalls.
17
18For AutoFDO builds, unlike non-FDO builds, the user must supply a
19profile. Acquiring an AutoFDO profile can be done in several ways.
20AutoFDO profiles are created by converting hardware sampling using
21the "perf" tool. It is crucial that the workload used to create these
22perf files is representative; they must exhibit runtime
23characteristics similar to the workloads that are intended to be
24optimized. Failure to do so will result in the compiler optimizing
25for the wrong objective.
26
27The AutoFDO profile often encapsulates the program's behavior. If the
28performance-critical codes are architecture-independent, the profile
29can be applied across platforms to achieve performance gains. For
30instance, using the profile generated on Intel architecture to build
31a kernel for AMD architecture can also yield performance improvements.
32
33There are two methods for acquiring a representative profile:
34(1) Sample real workloads using a production environment.
35(2) Generate the profile using a representative load test.
36When enabling the AutoFDO build configuration without providing an
37AutoFDO profile, the compiler only modifies the dwarf information in
38the kernel without impacting runtime performance. It's advisable to
39use a kernel binary built with the same AutoFDO configuration to
40collect the perf profile. While it's possible to use a kernel built
41with different options, it may result in inferior performance.
42
43One can collect profiles using AutoFDO build for the previous kernel.
44AutoFDO employs relative line numbers to match the profiles, offering
45some tolerance for source changes. This mode is commonly used in a
46production environment for profile collection.
47
48In a profile collection based on a load test, the AutoFDO collection
49process consists of the following steps:
50
51#. Initial build: The kernel is built with AutoFDO options
52   without a profile.
53
54#. Profiling: The above kernel is then run with a representative
55   workload to gather execution frequency data. This data is
56   collected using hardware sampling, via perf. AutoFDO is most
57   effective on platforms supporting advanced PMU features like
58   LBR on Intel machines, ETM traces on ARM machines.
59
60#. AutoFDO profile generation: Perf output file is converted to
61   the AutoFDO profile via offline tools.
62
63The support requires a Clang compiler LLVM 17 or later.
64
65Preparation
66===========
67
68Configure the kernel with::
69
70   CONFIG_AUTOFDO_CLANG=y
71
72Customization
73=============
74
75The default CONFIG_AUTOFDO_CLANG setting covers kernel space objects for
76AutoFDO builds. One can, however, enable or disable AutoFDO build for
77individual files and directories by adding a line similar to the following
78to the respective kernel Makefile:
79
80- For enabling a single file (e.g. foo.o) ::
81
82   AUTOFDO_PROFILE_foo.o := y
83
84- For enabling all files in one directory ::
85
86   AUTOFDO_PROFILE := y
87
88- For disabling one file ::
89
90   AUTOFDO_PROFILE_foo.o := n
91
92- For disabling all files in one directory ::
93
94   AUTOFDO_PROFILE := n
95
96Workflow
97========
98
99Here is an example workflow for AutoFDO kernel:
100
1011)  Build the kernel on the host machine with LLVM enabled,
102    for example, ::
103
104      $ make menuconfig LLVM=1
105
106    Turn on AutoFDO build config::
107
108      CONFIG_AUTOFDO_CLANG=y
109
110    With a configuration that with LLVM enabled, use the following command::
111
112      $ scripts/config -e AUTOFDO_CLANG
113
114    After getting the config, build with ::
115
116      $ make LLVM=1
117
1182) Install the kernel on the test machine.
119
1203) Run the load tests. The '-c' option in perf specifies the sample
121   event period. We suggest using a suitable prime number, like 500009,
122   for this purpose.
123
124   - For Intel platforms::
125
126      $ perf record -e BR_INST_RETIRED.NEAR_TAKEN:k -a -N -b -c <count> -o <perf_file> -- <loadtest>
127
128   - For AMD platforms:
129
130     The supported systems are: Zen3 with BRS, or Zen4 with amd_lbr_v2. To check,
131
132     For Zen3::
133
134      $ cat proc/cpuinfo | grep " brs"
135
136     For Zen4::
137
138      $ cat proc/cpuinfo | grep amd_lbr_v2
139
140     The following command generated the perf data file::
141
142      $ perf record --pfm-events RETIRED_TAKEN_BRANCH_INSTRUCTIONS:k -a -N -b -c <count> -o <perf_file> -- <loadtest>
143
144   - For ARM platforms with ETM trace:
145
146     Follow the instructions in the `Linaro OpenCSD document
147     https://github.com/Linaro/OpenCSD/blob/master/decoder/tests/auto-fdo/autofdo.md`_
148     to record ETM traces for AutoFDO::
149
150      $ perf record -e cs_etm/@tmc_etr0/k -a -o <etm_perf_file> -- <loadtest>
151      $ perf inject -i <etm_perf_file> -o <perf_file> --itrace=i500009il
152
153     For ARM platforms running Android, follow the instructions in the
154     `Android simpleperf document
155     <https://android.googlesource.com/platform/system/extras/+/main/simpleperf/doc/collect_etm_data_for_autofdo.md>`_
156     to record ETM traces for AutoFDO::
157
158      $ simpleperf record -e cs-etm:k -a -o <perf_file> -- <loadtest>
159
1604) (Optional) Download the raw perf file to the host machine.
161
1625) To generate an AutoFDO profile, two offline tools are available:
163   create_llvm_prof and llvm_profgen. The create_llvm_prof tool is part
164   of the AutoFDO project and can be found on GitHub
165   (https://github.com/google/autofdo), version v0.30.1 or later.
166   The llvm_profgen tool is included in the LLVM compiler itself. It's
167   important to note that the version of llvm_profgen doesn't need to match
168   the version of Clang. It needs to be the LLVM 19 release of Clang
169   or later, or just from the LLVM trunk. ::
170
171      $ llvm-profgen --kernel --binary=<vmlinux> --perfdata=<perf_file> -o <profile_file>
172
173   or ::
174
175      $ create_llvm_prof --binary=<vmlinux> --profile=<perf_file> --format=extbinary --out=<profile_file>
176
177   Note that multiple AutoFDO profile files can be merged into one via::
178
179      $ llvm-profdata merge -o <profile_file> <profile_1> <profile_2> ... <profile_n>
180
1816) Rebuild the kernel using the AutoFDO profile file with the same config as step 1,
182   (Note CONFIG_AUTOFDO_CLANG needs to be enabled)::
183
184      $ make LLVM=1 CLANG_AUTOFDO_PROFILE=<profile_file>
185