• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap
22  */
23 #define VMALLOC_START		(MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30 
31 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32 
33 #ifndef __ASSEMBLY__
34 
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42 
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
44 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
45 
46 /* Set stride and tlb_level in flush_*_tlb_range */
47 #define flush_pmd_tlb_range(vma, addr, end)	\
48 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
49 #define flush_pud_tlb_range(vma, addr, end)	\
50 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
51 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
52 
53 /*
54  * Outside of a few very special situations (e.g. hibernation), we always
55  * use broadcast TLB invalidation instructions, therefore a spurious page
56  * fault on one CPU which has been handled concurrently by another CPU
57  * does not need to perform additional invalidation.
58  */
59 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
60 
61 /*
62  * ZERO_PAGE is a global shared page that is always zero: used
63  * for zero-mapped memory areas etc..
64  */
65 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
66 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
67 
68 #define pte_ERROR(e)	\
69 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
70 
71 /*
72  * Macros to convert between a physical address and its placement in a
73  * page table entry, taking care of 52-bit addresses.
74  */
75 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)76 static inline phys_addr_t __pte_to_phys(pte_t pte)
77 {
78 	pte_val(pte) &= ~PTE_MAYBE_SHARED;
79 	return (pte_val(pte) & PTE_ADDR_LOW) |
80 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
81 }
__phys_to_pte_val(phys_addr_t phys)82 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
83 {
84 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
85 }
86 #else
87 #define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_LOW)
88 #define __phys_to_pte_val(phys)	(phys)
89 #endif
90 
91 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
92 #define pfn_pte(pfn,prot)	\
93 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
94 
95 #define pte_none(pte)		(!pte_val(pte))
96 #define __pte_clear(mm, addr, ptep) \
97 				__set_pte(ptep, __pte(0))
98 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
99 
100 /*
101  * The following only work if pte_present(). Undefined behaviour otherwise.
102  */
103 #define pte_present(pte)	(pte_valid(pte) || pte_present_invalid(pte))
104 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
105 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
106 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
107 #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
108 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
109 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
110 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
111 #define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
112 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
113 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
114 
115 #define pte_cont_addr_end(addr, end)						\
116 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
117 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
118 })
119 
120 #define pmd_cont_addr_end(addr, end)						\
121 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
122 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
123 })
124 
125 #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
126 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
127 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
128 
129 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
130 #define pte_present_invalid(pte) \
131 	((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
132 /*
133  * Execute-only user mappings do not have the PTE_USER bit set. All valid
134  * kernel mappings have the PTE_UXN bit set.
135  */
136 #define pte_valid_not_user(pte) \
137 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
138 /*
139  * Returns true if the pte is valid and has the contiguous bit set.
140  */
141 #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
142 /*
143  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
144  * so that we don't erroneously return false for pages that have been
145  * remapped as PROT_NONE but are yet to be flushed from the TLB.
146  * Note that we can't make any assumptions based on the state of the access
147  * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
148  * TLB.
149  */
150 #define pte_accessible(mm, pte)	\
151 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
152 
por_el0_allows_pkey(u8 pkey,bool write,bool execute)153 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
154 {
155 	u64 por;
156 
157 	if (!system_supports_poe())
158 		return true;
159 
160 	por = read_sysreg_s(SYS_POR_EL0);
161 
162 	if (write)
163 		return por_elx_allows_write(por, pkey);
164 
165 	if (execute)
166 		return por_elx_allows_exec(por, pkey);
167 
168 	return por_elx_allows_read(por, pkey);
169 }
170 
171 /*
172  * p??_access_permitted() is true for valid user mappings (PTE_USER
173  * bit set, subject to the write permission check). For execute-only
174  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
175  * not set) must return false. PROT_NONE mappings do not have the
176  * PTE_VALID bit set.
177  */
178 #define pte_access_permitted_no_overlay(pte, write) \
179 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
180 #define pte_access_permitted(pte, write) \
181 	(pte_access_permitted_no_overlay(pte, write) && \
182 	por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
183 #define pmd_access_permitted(pmd, write) \
184 	(pte_access_permitted(pmd_pte(pmd), (write)))
185 #define pud_access_permitted(pud, write) \
186 	(pte_access_permitted(pud_pte(pud), (write)))
187 
clear_pte_bit(pte_t pte,pgprot_t prot)188 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
189 {
190 	pte_val(pte) &= ~pgprot_val(prot);
191 	return pte;
192 }
193 
set_pte_bit(pte_t pte,pgprot_t prot)194 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
195 {
196 	pte_val(pte) |= pgprot_val(prot);
197 	return pte;
198 }
199 
clear_pmd_bit(pmd_t pmd,pgprot_t prot)200 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
201 {
202 	pmd_val(pmd) &= ~pgprot_val(prot);
203 	return pmd;
204 }
205 
set_pmd_bit(pmd_t pmd,pgprot_t prot)206 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
207 {
208 	pmd_val(pmd) |= pgprot_val(prot);
209 	return pmd;
210 }
211 
pte_mkwrite_novma(pte_t pte)212 static inline pte_t pte_mkwrite_novma(pte_t pte)
213 {
214 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
215 	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
216 	return pte;
217 }
218 
pte_mkclean(pte_t pte)219 static inline pte_t pte_mkclean(pte_t pte)
220 {
221 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
222 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
223 
224 	return pte;
225 }
226 
pte_mkdirty(pte_t pte)227 static inline pte_t pte_mkdirty(pte_t pte)
228 {
229 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
230 
231 	if (pte_write(pte))
232 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
233 
234 	return pte;
235 }
236 
pte_wrprotect(pte_t pte)237 static inline pte_t pte_wrprotect(pte_t pte)
238 {
239 	/*
240 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
241 	 * clear), set the PTE_DIRTY bit.
242 	 */
243 	if (pte_hw_dirty(pte))
244 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
245 
246 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
247 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
248 	return pte;
249 }
250 
pte_mkold(pte_t pte)251 static inline pte_t pte_mkold(pte_t pte)
252 {
253 	return clear_pte_bit(pte, __pgprot(PTE_AF));
254 }
255 
pte_mkyoung(pte_t pte)256 static inline pte_t pte_mkyoung(pte_t pte)
257 {
258 	return set_pte_bit(pte, __pgprot(PTE_AF));
259 }
260 
pte_mkspecial(pte_t pte)261 static inline pte_t pte_mkspecial(pte_t pte)
262 {
263 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
264 }
265 
pte_mkcont(pte_t pte)266 static inline pte_t pte_mkcont(pte_t pte)
267 {
268 	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
269 	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
270 }
271 
pte_mknoncont(pte_t pte)272 static inline pte_t pte_mknoncont(pte_t pte)
273 {
274 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
275 }
276 
pte_mkpresent(pte_t pte)277 static inline pte_t pte_mkpresent(pte_t pte)
278 {
279 	return set_pte_bit(pte, __pgprot(PTE_VALID));
280 }
281 
pte_mkinvalid(pte_t pte)282 static inline pte_t pte_mkinvalid(pte_t pte)
283 {
284 	pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
285 	pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
286 	return pte;
287 }
288 
pmd_mkcont(pmd_t pmd)289 static inline pmd_t pmd_mkcont(pmd_t pmd)
290 {
291 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
292 }
293 
pte_mkdevmap(pte_t pte)294 static inline pte_t pte_mkdevmap(pte_t pte)
295 {
296 	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
297 }
298 
299 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)300 static inline int pte_uffd_wp(pte_t pte)
301 {
302 	return !!(pte_val(pte) & PTE_UFFD_WP);
303 }
304 
pte_mkuffd_wp(pte_t pte)305 static inline pte_t pte_mkuffd_wp(pte_t pte)
306 {
307 	return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
308 }
309 
pte_clear_uffd_wp(pte_t pte)310 static inline pte_t pte_clear_uffd_wp(pte_t pte)
311 {
312 	return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
313 }
314 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
315 
__set_pte_nosync(pte_t * ptep,pte_t pte)316 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
317 {
318 	WRITE_ONCE(*ptep, pte);
319 }
320 
__set_pte(pte_t * ptep,pte_t pte)321 static inline void __set_pte(pte_t *ptep, pte_t pte)
322 {
323 	__set_pte_nosync(ptep, pte);
324 
325 	/*
326 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
327 	 * or update_mmu_cache() have the necessary barriers.
328 	 */
329 	if (pte_valid_not_user(pte)) {
330 		dsb(ishst);
331 		isb();
332 	}
333 }
334 
__ptep_get(pte_t * ptep)335 static inline pte_t __ptep_get(pte_t *ptep)
336 {
337 	return READ_ONCE(*ptep);
338 }
339 
340 extern void __sync_icache_dcache(pte_t pteval);
341 bool pgattr_change_is_safe(u64 old, u64 new);
342 
343 /*
344  * PTE bits configuration in the presence of hardware Dirty Bit Management
345  * (PTE_WRITE == PTE_DBM):
346  *
347  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
348  *   0      0      |   1           0          0
349  *   0      1      |   1           1          0
350  *   1      0      |   1           0          1
351  *   1      1      |   0           1          x
352  *
353  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
354  * the page fault mechanism. Checking the dirty status of a pte becomes:
355  *
356  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
357  */
358 
__check_safe_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)359 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
360 					   pte_t pte)
361 {
362 	pte_t old_pte;
363 
364 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
365 		return;
366 
367 	old_pte = __ptep_get(ptep);
368 
369 	if (!pte_valid(old_pte) || !pte_valid(pte))
370 		return;
371 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
372 		return;
373 
374 	/*
375 	 * Check for potential race with hardware updates of the pte
376 	 * (__ptep_set_access_flags safely changes valid ptes without going
377 	 * through an invalid entry).
378 	 */
379 	VM_WARN_ONCE(!pte_young(pte),
380 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
381 		     __func__, pte_val(old_pte), pte_val(pte));
382 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
383 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
384 		     __func__, pte_val(old_pte), pte_val(pte));
385 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
386 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
387 		     __func__, pte_val(old_pte), pte_val(pte));
388 }
389 
__sync_cache_and_tags(pte_t pte,unsigned int nr_pages)390 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
391 {
392 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
393 		__sync_icache_dcache(pte);
394 
395 	/*
396 	 * If the PTE would provide user space access to the tags associated
397 	 * with it then ensure that the MTE tags are synchronised.  Although
398 	 * pte_access_permitted_no_overlay() returns false for exec only
399 	 * mappings, they don't expose tags (instruction fetches don't check
400 	 * tags).
401 	 */
402 	if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
403 	    !pte_special(pte) && pte_tagged(pte))
404 		mte_sync_tags(pte, nr_pages);
405 }
406 
407 /*
408  * Select all bits except the pfn
409  */
410 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)411 static inline pgprot_t pte_pgprot(pte_t pte)
412 {
413 	unsigned long pfn = pte_pfn(pte);
414 
415 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
416 }
417 
418 #define pte_advance_pfn pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)419 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
420 {
421 	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
422 }
423 
__set_ptes(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)424 static inline void __set_ptes(struct mm_struct *mm,
425 			      unsigned long __always_unused addr,
426 			      pte_t *ptep, pte_t pte, unsigned int nr)
427 {
428 	page_table_check_ptes_set(mm, ptep, pte, nr);
429 	__sync_cache_and_tags(pte, nr);
430 
431 	for (;;) {
432 		__check_safe_pte_update(mm, ptep, pte);
433 		__set_pte(ptep, pte);
434 		if (--nr == 0)
435 			break;
436 		ptep++;
437 		pte = pte_advance_pfn(pte, 1);
438 	}
439 }
440 
441 /*
442  * Huge pte definitions.
443  */
444 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
445 
446 /*
447  * Hugetlb definitions.
448  */
449 #define HUGE_MAX_HSTATE		4
450 #define HPAGE_SHIFT		PMD_SHIFT
451 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
452 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
453 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
454 
pgd_pte(pgd_t pgd)455 static inline pte_t pgd_pte(pgd_t pgd)
456 {
457 	return __pte(pgd_val(pgd));
458 }
459 
p4d_pte(p4d_t p4d)460 static inline pte_t p4d_pte(p4d_t p4d)
461 {
462 	return __pte(p4d_val(p4d));
463 }
464 
pud_pte(pud_t pud)465 static inline pte_t pud_pte(pud_t pud)
466 {
467 	return __pte(pud_val(pud));
468 }
469 
pte_pud(pte_t pte)470 static inline pud_t pte_pud(pte_t pte)
471 {
472 	return __pud(pte_val(pte));
473 }
474 
pud_pmd(pud_t pud)475 static inline pmd_t pud_pmd(pud_t pud)
476 {
477 	return __pmd(pud_val(pud));
478 }
479 
pmd_pte(pmd_t pmd)480 static inline pte_t pmd_pte(pmd_t pmd)
481 {
482 	return __pte(pmd_val(pmd));
483 }
484 
pte_pmd(pte_t pte)485 static inline pmd_t pte_pmd(pte_t pte)
486 {
487 	return __pmd(pte_val(pte));
488 }
489 
mk_pud_sect_prot(pgprot_t prot)490 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
491 {
492 	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
493 }
494 
mk_pmd_sect_prot(pgprot_t prot)495 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
496 {
497 	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
498 }
499 
pte_swp_mkexclusive(pte_t pte)500 static inline pte_t pte_swp_mkexclusive(pte_t pte)
501 {
502 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
503 }
504 
pte_swp_exclusive(pte_t pte)505 static inline int pte_swp_exclusive(pte_t pte)
506 {
507 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
508 }
509 
pte_swp_clear_exclusive(pte_t pte)510 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
511 {
512 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
513 }
514 
515 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)516 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
517 {
518 	return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
519 }
520 
pte_swp_uffd_wp(pte_t pte)521 static inline int pte_swp_uffd_wp(pte_t pte)
522 {
523 	return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
524 }
525 
pte_swp_clear_uffd_wp(pte_t pte)526 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
527 {
528 	return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
529 }
530 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
531 
532 #ifdef CONFIG_NUMA_BALANCING
533 /*
534  * See the comment in include/linux/pgtable.h
535  */
pte_protnone(pte_t pte)536 static inline int pte_protnone(pte_t pte)
537 {
538 	/*
539 	 * pte_present_invalid() tells us that the pte is invalid from HW
540 	 * perspective but present from SW perspective, so the fields are to be
541 	 * interpretted as per the HW layout. The second 2 checks are the unique
542 	 * encoding that we use for PROT_NONE. It is insufficient to only use
543 	 * the first check because we share the same encoding scheme with pmds
544 	 * which support pmd_mkinvalid(), so can be present-invalid without
545 	 * being PROT_NONE.
546 	 */
547 	return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
548 }
549 
pmd_protnone(pmd_t pmd)550 static inline int pmd_protnone(pmd_t pmd)
551 {
552 	return pte_protnone(pmd_pte(pmd));
553 }
554 #endif
555 
556 #define pmd_present(pmd)	pte_present(pmd_pte(pmd))
557 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
558 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
559 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
560 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
561 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
562 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
563 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
564 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
565 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
566 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
567 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
568 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
569 #define pmd_mkinvalid(pmd)	pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
570 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
571 #define pmd_uffd_wp(pmd)	pte_uffd_wp(pmd_pte(pmd))
572 #define pmd_mkuffd_wp(pmd)	pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
573 #define pmd_clear_uffd_wp(pmd)	pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
574 #define pmd_swp_uffd_wp(pmd)	pte_swp_uffd_wp(pmd_pte(pmd))
575 #define pmd_swp_mkuffd_wp(pmd)	pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
576 #define pmd_swp_clear_uffd_wp(pmd) \
577 				pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
578 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
579 
580 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
581 
582 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
583 
584 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
585 #define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
586 #endif
pmd_mkdevmap(pmd_t pmd)587 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
588 {
589 	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
590 }
591 
592 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
593 #define pmd_special(pte)	(!!((pmd_val(pte) & PTE_SPECIAL)))
pmd_mkspecial(pmd_t pmd)594 static inline pmd_t pmd_mkspecial(pmd_t pmd)
595 {
596 	return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
597 }
598 #endif
599 
600 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
601 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
602 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
603 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
604 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
605 
606 #define pud_young(pud)		pte_young(pud_pte(pud))
607 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
608 #define pud_write(pud)		pte_write(pud_pte(pud))
609 
610 #define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
611 
612 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
613 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
614 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
615 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
616 
617 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
618 #define pud_special(pte)	pte_special(pud_pte(pud))
619 #define pud_mkspecial(pte)	pte_pud(pte_mkspecial(pud_pte(pud)))
620 #endif
621 
622 #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)623 static inline pgprot_t pmd_pgprot(pmd_t pmd)
624 {
625 	unsigned long pfn = pmd_pfn(pmd);
626 
627 	return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
628 }
629 
630 #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)631 static inline pgprot_t pud_pgprot(pud_t pud)
632 {
633 	unsigned long pfn = pud_pfn(pud);
634 
635 	return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
636 }
637 
__set_pte_at(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)638 static inline void __set_pte_at(struct mm_struct *mm,
639 				unsigned long __always_unused addr,
640 				pte_t *ptep, pte_t pte, unsigned int nr)
641 {
642 	__sync_cache_and_tags(pte, nr);
643 	__check_safe_pte_update(mm, ptep, pte);
644 	__set_pte(ptep, pte);
645 }
646 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)647 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
648 			      pmd_t *pmdp, pmd_t pmd)
649 {
650 	page_table_check_pmd_set(mm, pmdp, pmd);
651 	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
652 						PMD_SIZE >> PAGE_SHIFT);
653 }
654 
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)655 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
656 			      pud_t *pudp, pud_t pud)
657 {
658 	page_table_check_pud_set(mm, pudp, pud);
659 	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
660 						PUD_SIZE >> PAGE_SHIFT);
661 }
662 
663 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
664 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
665 
666 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
667 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
668 
669 #define __pgprot_modify(prot,mask,bits) \
670 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
671 
672 #define pgprot_nx(prot) \
673 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
674 
675 /*
676  * Mark the prot value as uncacheable and unbufferable.
677  */
678 #define pgprot_noncached(prot) \
679 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
680 #define pgprot_writecombine(prot) \
681 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
682 #define pgprot_device(prot) \
683 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
684 #define pgprot_tagged(prot) \
685 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
686 #define pgprot_mhp	pgprot_tagged
687 /*
688  * DMA allocations for non-coherent devices use what the Arm architecture calls
689  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
690  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
691  * is intended for MMIO and thus forbids speculation, preserves access size,
692  * requires strict alignment and can also force write responses to come from the
693  * endpoint.
694  */
695 #define pgprot_dmacoherent(prot) \
696 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
697 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
698 
699 #define __HAVE_PHYS_MEM_ACCESS_PROT
700 struct file;
701 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
702 				     unsigned long size, pgprot_t vma_prot);
703 
704 #define pmd_none(pmd)		(!pmd_val(pmd))
705 
706 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
707 				 PMD_TYPE_TABLE)
708 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
709 				 PMD_TYPE_SECT)
710 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
711 #define pmd_bad(pmd)		(!pmd_table(pmd))
712 
713 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
714 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
715 
716 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)717 static inline int pmd_trans_huge(pmd_t pmd)
718 {
719 	/*
720 	 * If pmd is present-invalid, pmd_table() won't detect it
721 	 * as a table, so force the valid bit for the comparison.
722 	 */
723 	return pmd_val(pmd) && pmd_present(pmd) &&
724 	       !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID));
725 }
726 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
727 
728 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)729 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)730 static inline bool pud_table(pud_t pud) { return true; }
731 #else
732 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
733 				 PUD_TYPE_SECT)
734 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
735 				 PUD_TYPE_TABLE)
736 #endif
737 
738 extern pgd_t init_pg_dir[];
739 extern pgd_t init_pg_end[];
740 extern pgd_t swapper_pg_dir[];
741 extern pgd_t idmap_pg_dir[];
742 extern pgd_t tramp_pg_dir[];
743 extern pgd_t reserved_pg_dir[];
744 
745 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
746 
in_swapper_pgdir(void * addr)747 static inline bool in_swapper_pgdir(void *addr)
748 {
749 	return ((unsigned long)addr & PAGE_MASK) ==
750 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
751 }
752 
set_pmd(pmd_t * pmdp,pmd_t pmd)753 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
754 {
755 #ifdef __PAGETABLE_PMD_FOLDED
756 	if (in_swapper_pgdir(pmdp)) {
757 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
758 		return;
759 	}
760 #endif /* __PAGETABLE_PMD_FOLDED */
761 
762 	WRITE_ONCE(*pmdp, pmd);
763 
764 	if (pmd_valid(pmd)) {
765 		dsb(ishst);
766 		isb();
767 	}
768 }
769 
pmd_clear(pmd_t * pmdp)770 static inline void pmd_clear(pmd_t *pmdp)
771 {
772 	set_pmd(pmdp, __pmd(0));
773 }
774 
pmd_page_paddr(pmd_t pmd)775 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
776 {
777 	return __pmd_to_phys(pmd);
778 }
779 
pmd_page_vaddr(pmd_t pmd)780 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
781 {
782 	return (unsigned long)__va(pmd_page_paddr(pmd));
783 }
784 
785 /* Find an entry in the third-level page table. */
786 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
787 
788 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
789 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
790 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
791 
792 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
793 
794 /* use ONLY for statically allocated translation tables */
795 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
796 
797 /*
798  * Conversion functions: convert a page and protection to a page entry,
799  * and a page entry and page directory to the page they refer to.
800  */
801 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
802 
803 #if CONFIG_PGTABLE_LEVELS > 2
804 
805 #define pmd_ERROR(e)	\
806 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
807 
808 #define pud_none(pud)		(!pud_val(pud))
809 #define pud_bad(pud)		((pud_val(pud) & PUD_TYPE_MASK) != \
810 				 PUD_TYPE_TABLE)
811 #define pud_present(pud)	pte_present(pud_pte(pud))
812 #ifndef __PAGETABLE_PMD_FOLDED
813 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
814 #else
815 #define pud_leaf(pud)		false
816 #endif
817 #define pud_valid(pud)		pte_valid(pud_pte(pud))
818 #define pud_user(pud)		pte_user(pud_pte(pud))
819 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
820 
821 static inline bool pgtable_l4_enabled(void);
822 
set_pud(pud_t * pudp,pud_t pud)823 static inline void set_pud(pud_t *pudp, pud_t pud)
824 {
825 	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
826 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
827 		return;
828 	}
829 
830 	WRITE_ONCE(*pudp, pud);
831 
832 	if (pud_valid(pud)) {
833 		dsb(ishst);
834 		isb();
835 	}
836 }
837 
pud_clear(pud_t * pudp)838 static inline void pud_clear(pud_t *pudp)
839 {
840 	set_pud(pudp, __pud(0));
841 }
842 
pud_page_paddr(pud_t pud)843 static inline phys_addr_t pud_page_paddr(pud_t pud)
844 {
845 	return __pud_to_phys(pud);
846 }
847 
pud_pgtable(pud_t pud)848 static inline pmd_t *pud_pgtable(pud_t pud)
849 {
850 	return (pmd_t *)__va(pud_page_paddr(pud));
851 }
852 
853 /* Find an entry in the second-level page table. */
854 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
855 
856 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
857 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
858 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
859 
860 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
861 
862 /* use ONLY for statically allocated translation tables */
863 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
864 
865 #else
866 
867 #define pud_valid(pud)		false
868 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
869 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
870 
871 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
872 #define pmd_set_fixmap(addr)		NULL
873 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
874 #define pmd_clear_fixmap()
875 
876 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
877 
878 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
879 
880 #if CONFIG_PGTABLE_LEVELS > 3
881 
pgtable_l4_enabled(void)882 static __always_inline bool pgtable_l4_enabled(void)
883 {
884 	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
885 		return true;
886 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
887 		return vabits_actual == VA_BITS;
888 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
889 }
890 
mm_pud_folded(const struct mm_struct * mm)891 static inline bool mm_pud_folded(const struct mm_struct *mm)
892 {
893 	return !pgtable_l4_enabled();
894 }
895 #define mm_pud_folded  mm_pud_folded
896 
897 #define pud_ERROR(e)	\
898 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
899 
900 #define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
901 #define p4d_bad(p4d)		(pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
902 #define p4d_present(p4d)	(!p4d_none(p4d))
903 
set_p4d(p4d_t * p4dp,p4d_t p4d)904 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
905 {
906 	if (in_swapper_pgdir(p4dp)) {
907 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
908 		return;
909 	}
910 
911 	WRITE_ONCE(*p4dp, p4d);
912 	dsb(ishst);
913 	isb();
914 }
915 
p4d_clear(p4d_t * p4dp)916 static inline void p4d_clear(p4d_t *p4dp)
917 {
918 	if (pgtable_l4_enabled())
919 		set_p4d(p4dp, __p4d(0));
920 }
921 
p4d_page_paddr(p4d_t p4d)922 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
923 {
924 	return __p4d_to_phys(p4d);
925 }
926 
927 #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
928 
p4d_to_folded_pud(p4d_t * p4dp,unsigned long addr)929 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
930 {
931 	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
932 }
933 
p4d_pgtable(p4d_t p4d)934 static inline pud_t *p4d_pgtable(p4d_t p4d)
935 {
936 	return (pud_t *)__va(p4d_page_paddr(p4d));
937 }
938 
pud_offset_phys(p4d_t * p4dp,unsigned long addr)939 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
940 {
941 	BUG_ON(!pgtable_l4_enabled());
942 
943 	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
944 }
945 
946 static inline
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long addr)947 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
948 {
949 	if (!pgtable_l4_enabled())
950 		return p4d_to_folded_pud(p4dp, addr);
951 	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
952 }
953 #define pud_offset_lockless pud_offset_lockless
954 
pud_offset(p4d_t * p4dp,unsigned long addr)955 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
956 {
957 	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
958 }
959 #define pud_offset	pud_offset
960 
pud_set_fixmap(unsigned long addr)961 static inline pud_t *pud_set_fixmap(unsigned long addr)
962 {
963 	if (!pgtable_l4_enabled())
964 		return NULL;
965 	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
966 }
967 
pud_set_fixmap_offset(p4d_t * p4dp,unsigned long addr)968 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
969 {
970 	if (!pgtable_l4_enabled())
971 		return p4d_to_folded_pud(p4dp, addr);
972 	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
973 }
974 
pud_clear_fixmap(void)975 static inline void pud_clear_fixmap(void)
976 {
977 	if (pgtable_l4_enabled())
978 		clear_fixmap(FIX_PUD);
979 }
980 
981 /* use ONLY for statically allocated translation tables */
pud_offset_kimg(p4d_t * p4dp,u64 addr)982 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
983 {
984 	if (!pgtable_l4_enabled())
985 		return p4d_to_folded_pud(p4dp, addr);
986 	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
987 }
988 
989 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
990 
991 #else
992 
pgtable_l4_enabled(void)993 static inline bool pgtable_l4_enabled(void) { return false; }
994 
995 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
996 
997 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
998 #define pud_set_fixmap(addr)		NULL
999 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
1000 #define pud_clear_fixmap()
1001 
1002 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
1003 
1004 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1005 
1006 #if CONFIG_PGTABLE_LEVELS > 4
1007 
pgtable_l5_enabled(void)1008 static __always_inline bool pgtable_l5_enabled(void)
1009 {
1010 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1011 		return vabits_actual == VA_BITS;
1012 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1013 }
1014 
mm_p4d_folded(const struct mm_struct * mm)1015 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1016 {
1017 	return !pgtable_l5_enabled();
1018 }
1019 #define mm_p4d_folded  mm_p4d_folded
1020 
1021 #define p4d_ERROR(e)	\
1022 	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1023 
1024 #define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
1025 #define pgd_bad(pgd)		(pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
1026 #define pgd_present(pgd)	(!pgd_none(pgd))
1027 
set_pgd(pgd_t * pgdp,pgd_t pgd)1028 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1029 {
1030 	if (in_swapper_pgdir(pgdp)) {
1031 		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1032 		return;
1033 	}
1034 
1035 	WRITE_ONCE(*pgdp, pgd);
1036 	dsb(ishst);
1037 	isb();
1038 }
1039 
pgd_clear(pgd_t * pgdp)1040 static inline void pgd_clear(pgd_t *pgdp)
1041 {
1042 	if (pgtable_l5_enabled())
1043 		set_pgd(pgdp, __pgd(0));
1044 }
1045 
pgd_page_paddr(pgd_t pgd)1046 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1047 {
1048 	return __pgd_to_phys(pgd);
1049 }
1050 
1051 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1052 
pgd_to_folded_p4d(pgd_t * pgdp,unsigned long addr)1053 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1054 {
1055 	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1056 }
1057 
p4d_offset_phys(pgd_t * pgdp,unsigned long addr)1058 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1059 {
1060 	BUG_ON(!pgtable_l5_enabled());
1061 
1062 	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1063 }
1064 
1065 static inline
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1066 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1067 {
1068 	if (!pgtable_l5_enabled())
1069 		return pgd_to_folded_p4d(pgdp, addr);
1070 	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1071 }
1072 #define p4d_offset_lockless p4d_offset_lockless
1073 
p4d_offset(pgd_t * pgdp,unsigned long addr)1074 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1075 {
1076 	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1077 }
1078 
p4d_set_fixmap(unsigned long addr)1079 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1080 {
1081 	if (!pgtable_l5_enabled())
1082 		return NULL;
1083 	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1084 }
1085 
p4d_set_fixmap_offset(pgd_t * pgdp,unsigned long addr)1086 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1087 {
1088 	if (!pgtable_l5_enabled())
1089 		return pgd_to_folded_p4d(pgdp, addr);
1090 	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1091 }
1092 
p4d_clear_fixmap(void)1093 static inline void p4d_clear_fixmap(void)
1094 {
1095 	if (pgtable_l5_enabled())
1096 		clear_fixmap(FIX_P4D);
1097 }
1098 
1099 /* use ONLY for statically allocated translation tables */
p4d_offset_kimg(pgd_t * pgdp,u64 addr)1100 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1101 {
1102 	if (!pgtable_l5_enabled())
1103 		return pgd_to_folded_p4d(pgdp, addr);
1104 	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1105 }
1106 
1107 #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1108 
1109 #else
1110 
pgtable_l5_enabled(void)1111 static inline bool pgtable_l5_enabled(void) { return false; }
1112 
1113 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1114 
1115 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1116 #define p4d_set_fixmap(addr)		NULL
1117 #define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1118 #define p4d_clear_fixmap()
1119 
1120 #define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1121 
1122 static inline
p4d_offset_lockless_folded(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1123 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1124 {
1125 	/*
1126 	 * With runtime folding of the pud, pud_offset_lockless() passes
1127 	 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1128 	 * will offset the pointer assuming that it points into
1129 	 * a page-table page. However, the fast GUP path passes us a
1130 	 * pgd_t allocated on the stack and so we must use the original
1131 	 * pointer in 'pgdp' to construct the p4d pointer instead of
1132 	 * using the generic p4d_offset_lockless() implementation.
1133 	 *
1134 	 * Note: reusing the original pointer means that we may
1135 	 * dereference the same (live) page-table entry multiple times.
1136 	 * This is safe because it is still only loaded once in the
1137 	 * context of each level and the CPU guarantees same-address
1138 	 * read-after-read ordering.
1139 	 */
1140 	return p4d_offset(pgdp, addr);
1141 }
1142 #define p4d_offset_lockless p4d_offset_lockless_folded
1143 
1144 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1145 
1146 #define pgd_ERROR(e)	\
1147 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1148 
1149 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1150 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1151 
pte_modify(pte_t pte,pgprot_t newprot)1152 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1153 {
1154 	/*
1155 	 * Normal and Normal-Tagged are two different memory types and indices
1156 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1157 	 */
1158 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1159 			      PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1160 			      PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1161 
1162 	/* preserve the hardware dirty information */
1163 	if (pte_hw_dirty(pte))
1164 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1165 
1166 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1167 	/*
1168 	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1169 	 * dirtiness again.
1170 	 */
1171 	if (pte_sw_dirty(pte))
1172 		pte = pte_mkdirty(pte);
1173 	return pte;
1174 }
1175 
pmd_modify(pmd_t pmd,pgprot_t newprot)1176 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1177 {
1178 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1179 }
1180 
1181 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1182 				 unsigned long address, pte_t *ptep,
1183 				 pte_t entry, int dirty);
1184 
1185 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1186 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)1187 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1188 					unsigned long address, pmd_t *pmdp,
1189 					pmd_t entry, int dirty)
1190 {
1191 	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1192 							pmd_pte(entry), dirty);
1193 }
1194 
pud_devmap(pud_t pud)1195 static inline int pud_devmap(pud_t pud)
1196 {
1197 	return 0;
1198 }
1199 
pgd_devmap(pgd_t pgd)1200 static inline int pgd_devmap(pgd_t pgd)
1201 {
1202 	return 0;
1203 }
1204 #endif
1205 
1206 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1207 static inline bool pte_user_accessible_page(pte_t pte)
1208 {
1209 	return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1210 }
1211 
pmd_user_accessible_page(pmd_t pmd)1212 static inline bool pmd_user_accessible_page(pmd_t pmd)
1213 {
1214 	return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1215 }
1216 
pud_user_accessible_page(pud_t pud)1217 static inline bool pud_user_accessible_page(pud_t pud)
1218 {
1219 	return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1220 }
1221 #endif
1222 
1223 /*
1224  * Atomic pte/pmd modifications.
1225  */
__ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1226 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1227 					      unsigned long address,
1228 					      pte_t *ptep)
1229 {
1230 	pte_t old_pte, pte;
1231 
1232 	pte = __ptep_get(ptep);
1233 	do {
1234 		old_pte = pte;
1235 		pte = pte_mkold(pte);
1236 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1237 					       pte_val(old_pte), pte_val(pte));
1238 	} while (pte_val(pte) != pte_val(old_pte));
1239 
1240 	return pte_young(pte);
1241 }
1242 
__ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1243 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1244 					 unsigned long address, pte_t *ptep)
1245 {
1246 	int young = __ptep_test_and_clear_young(vma, address, ptep);
1247 
1248 	if (young) {
1249 		/*
1250 		 * We can elide the trailing DSB here since the worst that can
1251 		 * happen is that a CPU continues to use the young entry in its
1252 		 * TLB and we mistakenly reclaim the associated page. The
1253 		 * window for such an event is bounded by the next
1254 		 * context-switch, which provides a DSB to complete the TLB
1255 		 * invalidation.
1256 		 */
1257 		flush_tlb_page_nosync(vma, address);
1258 	}
1259 
1260 	return young;
1261 }
1262 
1263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1264 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1265 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1266 					    unsigned long address,
1267 					    pmd_t *pmdp)
1268 {
1269 	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1270 }
1271 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1272 
__ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)1273 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1274 				       unsigned long address, pte_t *ptep)
1275 {
1276 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1277 
1278 	page_table_check_pte_clear(mm, pte);
1279 
1280 	return pte;
1281 }
1282 
__clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1283 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1284 				pte_t *ptep, unsigned int nr, int full)
1285 {
1286 	for (;;) {
1287 		__ptep_get_and_clear(mm, addr, ptep);
1288 		if (--nr == 0)
1289 			break;
1290 		ptep++;
1291 		addr += PAGE_SIZE;
1292 	}
1293 }
1294 
__get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1295 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1296 				unsigned long addr, pte_t *ptep,
1297 				unsigned int nr, int full)
1298 {
1299 	pte_t pte, tmp_pte;
1300 
1301 	pte = __ptep_get_and_clear(mm, addr, ptep);
1302 	while (--nr) {
1303 		ptep++;
1304 		addr += PAGE_SIZE;
1305 		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1306 		if (pte_dirty(tmp_pte))
1307 			pte = pte_mkdirty(pte);
1308 		if (pte_young(tmp_pte))
1309 			pte = pte_mkyoung(pte);
1310 	}
1311 	return pte;
1312 }
1313 
1314 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1315 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1316 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1317 					    unsigned long address, pmd_t *pmdp)
1318 {
1319 	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
1320 
1321 	page_table_check_pmd_clear(mm, pmd);
1322 
1323 	return pmd;
1324 }
1325 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1326 
___ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1327 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1328 					unsigned long address, pte_t *ptep,
1329 					pte_t pte)
1330 {
1331 	pte_t old_pte;
1332 
1333 	do {
1334 		old_pte = pte;
1335 		pte = pte_wrprotect(pte);
1336 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1337 					       pte_val(old_pte), pte_val(pte));
1338 	} while (pte_val(pte) != pte_val(old_pte));
1339 }
1340 
1341 /*
1342  * __ptep_set_wrprotect - mark read-only while trasferring potential hardware
1343  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1344  */
__ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1345 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1346 					unsigned long address, pte_t *ptep)
1347 {
1348 	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1349 }
1350 
__wrprotect_ptes(struct mm_struct * mm,unsigned long address,pte_t * ptep,unsigned int nr)1351 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1352 				pte_t *ptep, unsigned int nr)
1353 {
1354 	unsigned int i;
1355 
1356 	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1357 		__ptep_set_wrprotect(mm, address, ptep);
1358 }
1359 
__clear_young_dirty_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,cydp_t flags)1360 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1361 					   unsigned long addr, pte_t *ptep,
1362 					   pte_t pte, cydp_t flags)
1363 {
1364 	pte_t old_pte;
1365 
1366 	do {
1367 		old_pte = pte;
1368 
1369 		if (flags & CYDP_CLEAR_YOUNG)
1370 			pte = pte_mkold(pte);
1371 		if (flags & CYDP_CLEAR_DIRTY)
1372 			pte = pte_mkclean(pte);
1373 
1374 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1375 					       pte_val(old_pte), pte_val(pte));
1376 	} while (pte_val(pte) != pte_val(old_pte));
1377 }
1378 
__clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1379 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1380 					    unsigned long addr, pte_t *ptep,
1381 					    unsigned int nr, cydp_t flags)
1382 {
1383 	pte_t pte;
1384 
1385 	for (;;) {
1386 		pte = __ptep_get(ptep);
1387 
1388 		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1389 			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1390 		else
1391 			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1392 
1393 		if (--nr == 0)
1394 			break;
1395 		ptep++;
1396 		addr += PAGE_SIZE;
1397 	}
1398 }
1399 
1400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1401 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1402 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1403 				      unsigned long address, pmd_t *pmdp)
1404 {
1405 	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1406 }
1407 
1408 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1409 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1410 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1411 {
1412 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1413 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1414 }
1415 #endif
1416 
1417 /*
1418  * Encode and decode a swap entry:
1419  *	bits 0-1:	present (must be zero)
1420  *	bits 2:		remember PG_anon_exclusive
1421  *	bit  3:		remember uffd-wp state
1422  *	bits 6-10:	swap type
1423  *	bit  11:	PTE_PRESENT_INVALID (must be zero)
1424  *	bits 12-61:	swap offset
1425  */
1426 #define __SWP_TYPE_SHIFT	6
1427 #define __SWP_TYPE_BITS		5
1428 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1429 #define __SWP_OFFSET_SHIFT	12
1430 #define __SWP_OFFSET_BITS	50
1431 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1432 
1433 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1434 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1435 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1436 
1437 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1438 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1439 
1440 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1441 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1442 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1443 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1444 
1445 /*
1446  * Ensure that there are not more swap files than can be encoded in the kernel
1447  * PTEs.
1448  */
1449 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1450 
1451 #ifdef CONFIG_ARM64_MTE
1452 
1453 #define __HAVE_ARCH_PREPARE_TO_SWAP
1454 extern int arch_prepare_to_swap(struct folio *folio);
1455 
1456 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1457 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1458 {
1459 	if (system_supports_mte())
1460 		mte_invalidate_tags(type, offset);
1461 }
1462 
arch_swap_invalidate_area(int type)1463 static inline void arch_swap_invalidate_area(int type)
1464 {
1465 	if (system_supports_mte())
1466 		mte_invalidate_tags_area(type);
1467 }
1468 
1469 #define __HAVE_ARCH_SWAP_RESTORE
1470 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1471 
1472 #endif /* CONFIG_ARM64_MTE */
1473 
1474 /*
1475  * On AArch64, the cache coherency is handled via the __set_ptes() function.
1476  */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1477 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1478 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1479 		unsigned int nr)
1480 {
1481 	/*
1482 	 * We don't do anything here, so there's a very small chance of
1483 	 * us retaking a user fault which we just fixed up. The alternative
1484 	 * is doing a dsb(ishst), but that penalises the fastpath.
1485 	 */
1486 }
1487 
1488 #define update_mmu_cache(vma, addr, ptep) \
1489 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1490 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1491 
1492 #ifdef CONFIG_ARM64_PA_BITS_52
1493 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1494 #else
1495 #define phys_to_ttbr(addr)	(addr)
1496 #endif
1497 
1498 /*
1499  * On arm64 without hardware Access Flag, copying from user will fail because
1500  * the pte is old and cannot be marked young. So we always end up with zeroed
1501  * page after fork() + CoW for pfn mappings. We don't always have a
1502  * hardware-managed access flag on arm64.
1503  */
1504 #define arch_has_hw_pte_young		cpu_has_hw_af
1505 
1506 /*
1507  * Experimentally, it's cheap to set the access flag in hardware and we
1508  * benefit from prefaulting mappings as 'old' to start with.
1509  */
1510 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1511 
pud_sect_supported(void)1512 static inline bool pud_sect_supported(void)
1513 {
1514 	return PAGE_SIZE == SZ_4K;
1515 }
1516 
1517 
1518 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1519 #define ptep_modify_prot_start ptep_modify_prot_start
1520 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1521 				    unsigned long addr, pte_t *ptep);
1522 
1523 #define ptep_modify_prot_commit ptep_modify_prot_commit
1524 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1525 				    unsigned long addr, pte_t *ptep,
1526 				    pte_t old_pte, pte_t new_pte);
1527 
1528 #ifdef CONFIG_ARM64_CONTPTE
1529 
1530 /*
1531  * The contpte APIs are used to transparently manage the contiguous bit in ptes
1532  * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1533  * a private implementation detail of the public ptep API (see below).
1534  */
1535 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1536 				pte_t *ptep, pte_t pte);
1537 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1538 				pte_t *ptep, pte_t pte);
1539 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1540 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1541 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1542 				pte_t *ptep, pte_t pte, unsigned int nr);
1543 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1544 				pte_t *ptep, unsigned int nr, int full);
1545 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1546 				unsigned long addr, pte_t *ptep,
1547 				unsigned int nr, int full);
1548 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1549 				unsigned long addr, pte_t *ptep);
1550 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1551 				unsigned long addr, pte_t *ptep);
1552 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1553 				pte_t *ptep, unsigned int nr);
1554 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1555 				unsigned long addr, pte_t *ptep,
1556 				pte_t entry, int dirty);
1557 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1558 				unsigned long addr, pte_t *ptep,
1559 				unsigned int nr, cydp_t flags);
1560 
contpte_try_fold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1561 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1562 				unsigned long addr, pte_t *ptep, pte_t pte)
1563 {
1564 	/*
1565 	 * Only bother trying if both the virtual and physical addresses are
1566 	 * aligned and correspond to the last entry in a contig range. The core
1567 	 * code mostly modifies ranges from low to high, so this is the likely
1568 	 * the last modification in the contig range, so a good time to fold.
1569 	 * We can't fold special mappings, because there is no associated folio.
1570 	 */
1571 
1572 	const unsigned long contmask = CONT_PTES - 1;
1573 	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1574 
1575 	if (unlikely(valign)) {
1576 		bool palign = (pte_pfn(pte) & contmask) == contmask;
1577 
1578 		if (unlikely(palign &&
1579 		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1580 			__contpte_try_fold(mm, addr, ptep, pte);
1581 	}
1582 }
1583 
contpte_try_unfold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1584 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1585 				unsigned long addr, pte_t *ptep, pte_t pte)
1586 {
1587 	if (unlikely(pte_valid_cont(pte)))
1588 		__contpte_try_unfold(mm, addr, ptep, pte);
1589 }
1590 
1591 #define pte_batch_hint pte_batch_hint
pte_batch_hint(pte_t * ptep,pte_t pte)1592 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1593 {
1594 	if (!pte_valid_cont(pte))
1595 		return 1;
1596 
1597 	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1598 }
1599 
1600 /*
1601  * The below functions constitute the public API that arm64 presents to the
1602  * core-mm to manipulate PTE entries within their page tables (or at least this
1603  * is the subset of the API that arm64 needs to implement). These public
1604  * versions will automatically and transparently apply the contiguous bit where
1605  * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1606  * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1607  * private versions, which are prefixed with double underscore. All of these
1608  * APIs except for ptep_get_lockless() are expected to be called with the PTL
1609  * held. Although the contiguous bit is considered private to the
1610  * implementation, it is deliberately allowed to leak through the getters (e.g.
1611  * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1612  * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1613  * its possible a pte will be passed to a setter with the contiguous bit set, so
1614  * we explicitly clear the contiguous bit in those cases to prevent accidentally
1615  * setting it in the pgtable.
1616  */
1617 
1618 #define ptep_get ptep_get
ptep_get(pte_t * ptep)1619 static inline pte_t ptep_get(pte_t *ptep)
1620 {
1621 	pte_t pte = __ptep_get(ptep);
1622 
1623 	if (likely(!pte_valid_cont(pte)))
1624 		return pte;
1625 
1626 	return contpte_ptep_get(ptep, pte);
1627 }
1628 
1629 #define ptep_get_lockless ptep_get_lockless
ptep_get_lockless(pte_t * ptep)1630 static inline pte_t ptep_get_lockless(pte_t *ptep)
1631 {
1632 	pte_t pte = __ptep_get(ptep);
1633 
1634 	if (likely(!pte_valid_cont(pte)))
1635 		return pte;
1636 
1637 	return contpte_ptep_get_lockless(ptep);
1638 }
1639 
set_pte(pte_t * ptep,pte_t pte)1640 static inline void set_pte(pte_t *ptep, pte_t pte)
1641 {
1642 	/*
1643 	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1644 	 * it requires tlb maintenance). set_pte() is not used in core code, so
1645 	 * this should never even be called. Regardless do our best to service
1646 	 * any call and emit a warning if there is any attempt to set a pte on
1647 	 * top of an existing contig range.
1648 	 */
1649 	pte_t orig_pte = __ptep_get(ptep);
1650 
1651 	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1652 	__set_pte(ptep, pte_mknoncont(pte));
1653 }
1654 
1655 #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)1656 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1657 				pte_t *ptep, pte_t pte, unsigned int nr)
1658 {
1659 	pte = pte_mknoncont(pte);
1660 
1661 	if (likely(nr == 1)) {
1662 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1663 		__set_ptes(mm, addr, ptep, pte, 1);
1664 		contpte_try_fold(mm, addr, ptep, pte);
1665 	} else {
1666 		contpte_set_ptes(mm, addr, ptep, pte, nr);
1667 	}
1668 }
1669 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1670 static inline void pte_clear(struct mm_struct *mm,
1671 				unsigned long addr, pte_t *ptep)
1672 {
1673 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1674 	__pte_clear(mm, addr, ptep);
1675 }
1676 
1677 #define clear_full_ptes clear_full_ptes
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1678 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1679 				pte_t *ptep, unsigned int nr, int full)
1680 {
1681 	if (likely(nr == 1)) {
1682 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1683 		__clear_full_ptes(mm, addr, ptep, nr, full);
1684 	} else {
1685 		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1686 	}
1687 }
1688 
1689 #define get_and_clear_full_ptes get_and_clear_full_ptes
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1690 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1691 				unsigned long addr, pte_t *ptep,
1692 				unsigned int nr, int full)
1693 {
1694 	pte_t pte;
1695 
1696 	if (likely(nr == 1)) {
1697 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1698 		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1699 	} else {
1700 		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1701 	}
1702 
1703 	return pte;
1704 }
1705 
1706 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1707 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1708 				unsigned long addr, pte_t *ptep)
1709 {
1710 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1711 	return __ptep_get_and_clear(mm, addr, ptep);
1712 }
1713 
1714 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1715 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1716 				unsigned long addr, pte_t *ptep)
1717 {
1718 	pte_t orig_pte = __ptep_get(ptep);
1719 
1720 	if (likely(!pte_valid_cont(orig_pte)))
1721 		return __ptep_test_and_clear_young(vma, addr, ptep);
1722 
1723 	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1724 }
1725 
1726 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1727 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1728 				unsigned long addr, pte_t *ptep)
1729 {
1730 	pte_t orig_pte = __ptep_get(ptep);
1731 
1732 	if (likely(!pte_valid_cont(orig_pte)))
1733 		return __ptep_clear_flush_young(vma, addr, ptep);
1734 
1735 	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1736 }
1737 
1738 #define wrprotect_ptes wrprotect_ptes
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)1739 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1740 				unsigned long addr, pte_t *ptep, unsigned int nr)
1741 {
1742 	if (likely(nr == 1)) {
1743 		/*
1744 		 * Optimization: wrprotect_ptes() can only be called for present
1745 		 * ptes so we only need to check contig bit as condition for
1746 		 * unfold, and we can remove the contig bit from the pte we read
1747 		 * to avoid re-reading. This speeds up fork() which is sensitive
1748 		 * for order-0 folios. Equivalent to contpte_try_unfold().
1749 		 */
1750 		pte_t orig_pte = __ptep_get(ptep);
1751 
1752 		if (unlikely(pte_cont(orig_pte))) {
1753 			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1754 			orig_pte = pte_mknoncont(orig_pte);
1755 		}
1756 		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1757 	} else {
1758 		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1759 	}
1760 }
1761 
1762 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1763 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1764 				unsigned long addr, pte_t *ptep)
1765 {
1766 	wrprotect_ptes(mm, addr, ptep, 1);
1767 }
1768 
1769 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1770 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1771 				unsigned long addr, pte_t *ptep,
1772 				pte_t entry, int dirty)
1773 {
1774 	pte_t orig_pte = __ptep_get(ptep);
1775 
1776 	entry = pte_mknoncont(entry);
1777 
1778 	if (likely(!pte_valid_cont(orig_pte)))
1779 		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1780 
1781 	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1782 }
1783 
1784 #define clear_young_dirty_ptes clear_young_dirty_ptes
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1785 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1786 					  unsigned long addr, pte_t *ptep,
1787 					  unsigned int nr, cydp_t flags)
1788 {
1789 	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1790 		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1791 	else
1792 		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1793 }
1794 
1795 #else /* CONFIG_ARM64_CONTPTE */
1796 
1797 #define ptep_get				__ptep_get
1798 #define set_pte					__set_pte
1799 #define set_ptes				__set_ptes
1800 #define pte_clear				__pte_clear
1801 #define clear_full_ptes				__clear_full_ptes
1802 #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1803 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1804 #define ptep_get_and_clear			__ptep_get_and_clear
1805 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1806 #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1807 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1808 #define ptep_clear_flush_young			__ptep_clear_flush_young
1809 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1810 #define ptep_set_wrprotect			__ptep_set_wrprotect
1811 #define wrprotect_ptes				__wrprotect_ptes
1812 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1813 #define ptep_set_access_flags			__ptep_set_access_flags
1814 #define clear_young_dirty_ptes			__clear_young_dirty_ptes
1815 
1816 #endif /* CONFIG_ARM64_CONTPTE */
1817 
1818 #endif /* !__ASSEMBLY__ */
1819 
1820 #endif /* __ASM_PGTABLE_H */
1821