• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 ARM Ltd.
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 #include <linux/uio.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/mte.h>
24 #include <asm/ptrace.h>
25 #include <asm/sysreg.h>
26 
27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28 
29 #ifdef CONFIG_KASAN_HW_TAGS
30 /*
31  * The asynchronous and asymmetric MTE modes have the same behavior for
32  * store operations. This flag is set when either of these modes is enabled.
33  */
34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36 #endif
37 
mte_sync_tags(pte_t pte,unsigned int nr_pages)38 void mte_sync_tags(pte_t pte, unsigned int nr_pages)
39 {
40 	struct page *page = pte_page(pte);
41 	unsigned int i;
42 
43 	/* if PG_mte_tagged is set, tags have already been initialised */
44 	for (i = 0; i < nr_pages; i++, page++) {
45 		if (try_page_mte_tagging(page)) {
46 			mte_clear_page_tags(page_address(page));
47 			set_page_mte_tagged(page);
48 		}
49 	}
50 
51 	/* ensure the tags are visible before the PTE is set */
52 	smp_wmb();
53 }
54 EXPORT_SYMBOL_GPL(mte_sync_tags);
55 
memcmp_pages(struct page * page1,struct page * page2)56 int memcmp_pages(struct page *page1, struct page *page2)
57 {
58 	char *addr1, *addr2;
59 	int ret;
60 
61 	addr1 = page_address(page1);
62 	addr2 = page_address(page2);
63 	ret = memcmp(addr1, addr2, PAGE_SIZE);
64 
65 	if (!system_supports_mte() || ret)
66 		return ret;
67 
68 	/*
69 	 * If the page content is identical but at least one of the pages is
70 	 * tagged, return non-zero to avoid KSM merging. If only one of the
71 	 * pages is tagged, __set_ptes() may zero or change the tags of the
72 	 * other page via mte_sync_tags().
73 	 */
74 	if (page_mte_tagged(page1) || page_mte_tagged(page2))
75 		return addr1 != addr2;
76 
77 	return ret;
78 }
79 
__mte_enable_kernel(const char * mode,unsigned long tcf)80 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
81 {
82 	/* Enable MTE Sync Mode for EL1. */
83 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
84 			 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
85 	isb();
86 
87 	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
88 }
89 
90 #ifdef CONFIG_KASAN_HW_TAGS
mte_enable_kernel_sync(void)91 void mte_enable_kernel_sync(void)
92 {
93 	/*
94 	 * Make sure we enter this function when no PE has set
95 	 * async mode previously.
96 	 */
97 	WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
98 			"MTE async mode enabled system wide!");
99 
100 	__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
101 }
102 
mte_enable_kernel_async(void)103 void mte_enable_kernel_async(void)
104 {
105 	__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
106 
107 	/*
108 	 * MTE async mode is set system wide by the first PE that
109 	 * executes this function.
110 	 *
111 	 * Note: If in future KASAN acquires a runtime switching
112 	 * mode in between sync and async, this strategy needs
113 	 * to be reviewed.
114 	 */
115 	if (!system_uses_mte_async_or_asymm_mode())
116 		static_branch_enable(&mte_async_or_asymm_mode);
117 }
118 
mte_enable_kernel_asymm(void)119 void mte_enable_kernel_asymm(void)
120 {
121 	if (cpus_have_cap(ARM64_MTE_ASYMM)) {
122 		__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
123 
124 		/*
125 		 * MTE asymm mode behaves as async mode for store
126 		 * operations. The mode is set system wide by the
127 		 * first PE that executes this function.
128 		 *
129 		 * Note: If in future KASAN acquires a runtime switching
130 		 * mode in between sync and async, this strategy needs
131 		 * to be reviewed.
132 		 */
133 		if (!system_uses_mte_async_or_asymm_mode())
134 			static_branch_enable(&mte_async_or_asymm_mode);
135 	} else {
136 		/*
137 		 * If the CPU does not support MTE asymmetric mode the
138 		 * kernel falls back on synchronous mode which is the
139 		 * default for kasan=on.
140 		 */
141 		mte_enable_kernel_sync();
142 	}
143 }
144 #endif
145 
146 #ifdef CONFIG_KASAN_HW_TAGS
mte_check_tfsr_el1(void)147 void mte_check_tfsr_el1(void)
148 {
149 	u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
150 
151 	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
152 		/*
153 		 * Note: isb() is not required after this direct write
154 		 * because there is no indirect read subsequent to it
155 		 * (per ARM DDI 0487F.c table D13-1).
156 		 */
157 		write_sysreg_s(0, SYS_TFSR_EL1);
158 
159 		kasan_report_async();
160 	}
161 }
162 #endif
163 
164 /*
165  * This is where we actually resolve the system and process MTE mode
166  * configuration into an actual value in SCTLR_EL1 that affects
167  * userspace.
168  */
mte_update_sctlr_user(struct task_struct * task)169 static void mte_update_sctlr_user(struct task_struct *task)
170 {
171 	/*
172 	 * This must be called with preemption disabled and can only be called
173 	 * on the current or next task since the CPU must match where the thread
174 	 * is going to run. The caller is responsible for calling
175 	 * update_sctlr_el1() later in the same preemption disabled block.
176 	 */
177 	unsigned long sctlr = task->thread.sctlr_user;
178 	unsigned long mte_ctrl = task->thread.mte_ctrl;
179 	unsigned long pref, resolved_mte_tcf;
180 
181 	pref = __this_cpu_read(mte_tcf_preferred);
182 	/*
183 	 * If there is no overlap between the system preferred and
184 	 * program requested values go with what was requested.
185 	 */
186 	resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
187 	sctlr &= ~SCTLR_EL1_TCF0_MASK;
188 	/*
189 	 * Pick an actual setting. The order in which we check for
190 	 * set bits and map into register values determines our
191 	 * default order.
192 	 */
193 	if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
194 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
195 	else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
196 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
197 	else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
198 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
199 	task->thread.sctlr_user = sctlr;
200 }
201 
mte_update_gcr_excl(struct task_struct * task)202 static void mte_update_gcr_excl(struct task_struct *task)
203 {
204 	/*
205 	 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
206 	 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
207 	 */
208 	if (kasan_hw_tags_enabled())
209 		return;
210 
211 	write_sysreg_s(
212 		((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
213 		 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
214 		SYS_GCR_EL1);
215 }
216 
217 #ifdef CONFIG_KASAN_HW_TAGS
218 /* Only called from assembly, silence sparse */
219 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
220 				 __le32 *updptr, int nr_inst);
221 
kasan_hw_tags_enable(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)222 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
223 				 __le32 *updptr, int nr_inst)
224 {
225 	BUG_ON(nr_inst != 1); /* Branch -> NOP */
226 
227 	if (kasan_hw_tags_enabled())
228 		*updptr = cpu_to_le32(aarch64_insn_gen_nop());
229 }
230 #endif
231 
mte_thread_init_user(void)232 void mte_thread_init_user(void)
233 {
234 	if (!system_supports_mte())
235 		return;
236 
237 	/* clear any pending asynchronous tag fault */
238 	dsb(ish);
239 	write_sysreg_s(0, SYS_TFSRE0_EL1);
240 	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
241 	/* disable tag checking and reset tag generation mask */
242 	set_mte_ctrl(current, 0);
243 }
244 
mte_thread_switch(struct task_struct * next)245 void mte_thread_switch(struct task_struct *next)
246 {
247 	if (!system_supports_mte())
248 		return;
249 
250 	mte_update_sctlr_user(next);
251 	mte_update_gcr_excl(next);
252 
253 	/* TCO may not have been disabled on exception entry for the current task. */
254 	mte_disable_tco_entry(next);
255 
256 	/*
257 	 * Check if an async tag exception occurred at EL1.
258 	 *
259 	 * Note: On the context switch path we rely on the dsb() present
260 	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
261 	 * are synchronized before this point.
262 	 */
263 	isb();
264 	mte_check_tfsr_el1();
265 }
266 
mte_cpu_setup(void)267 void mte_cpu_setup(void)
268 {
269 	u64 rgsr;
270 
271 	/*
272 	 * CnP must be enabled only after the MAIR_EL1 register has been set
273 	 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
274 	 * lead to the wrong memory type being used for a brief window during
275 	 * CPU power-up.
276 	 *
277 	 * CnP is not a boot feature so MTE gets enabled before CnP, but let's
278 	 * make sure that is the case.
279 	 */
280 	BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
281 	BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
282 
283 	/* Normal Tagged memory type at the corresponding MAIR index */
284 	sysreg_clear_set(mair_el1,
285 			 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
286 			 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
287 				      MT_NORMAL_TAGGED));
288 
289 	write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
290 
291 	/*
292 	 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
293 	 * RGSR_EL1.SEED must be non-zero for IRG to produce
294 	 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
295 	 * must initialize it.
296 	 */
297 	rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
298 	       SYS_RGSR_EL1_SEED_SHIFT;
299 	if (rgsr == 0)
300 		rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
301 	write_sysreg_s(rgsr, SYS_RGSR_EL1);
302 
303 	/* clear any pending tag check faults in TFSR*_EL1 */
304 	write_sysreg_s(0, SYS_TFSR_EL1);
305 	write_sysreg_s(0, SYS_TFSRE0_EL1);
306 
307 	local_flush_tlb_all();
308 }
309 
mte_suspend_enter(void)310 void mte_suspend_enter(void)
311 {
312 	if (!system_supports_mte())
313 		return;
314 
315 	/*
316 	 * The barriers are required to guarantee that the indirect writes
317 	 * to TFSR_EL1 are synchronized before we report the state.
318 	 */
319 	dsb(nsh);
320 	isb();
321 
322 	/* Report SYS_TFSR_EL1 before suspend entry */
323 	mte_check_tfsr_el1();
324 }
325 
mte_suspend_exit(void)326 void mte_suspend_exit(void)
327 {
328 	if (!system_supports_mte())
329 		return;
330 
331 	mte_cpu_setup();
332 }
333 
set_mte_ctrl(struct task_struct * task,unsigned long arg)334 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
335 {
336 	u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
337 			SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
338 
339 	if (!system_supports_mte())
340 		return 0;
341 
342 	if (arg & PR_MTE_TCF_ASYNC)
343 		mte_ctrl |= MTE_CTRL_TCF_ASYNC;
344 	if (arg & PR_MTE_TCF_SYNC)
345 		mte_ctrl |= MTE_CTRL_TCF_SYNC;
346 
347 	/*
348 	 * If the system supports it and both sync and async modes are
349 	 * specified then implicitly enable asymmetric mode.
350 	 * Userspace could see a mix of both sync and async anyway due
351 	 * to differing or changing defaults on CPUs.
352 	 */
353 	if (cpus_have_cap(ARM64_MTE_ASYMM) &&
354 	    (arg & PR_MTE_TCF_ASYNC) &&
355 	    (arg & PR_MTE_TCF_SYNC))
356 		mte_ctrl |= MTE_CTRL_TCF_ASYMM;
357 
358 	task->thread.mte_ctrl = mte_ctrl;
359 	if (task == current) {
360 		preempt_disable();
361 		mte_update_sctlr_user(task);
362 		mte_update_gcr_excl(task);
363 		update_sctlr_el1(task->thread.sctlr_user);
364 		preempt_enable();
365 	}
366 
367 	return 0;
368 }
369 
get_mte_ctrl(struct task_struct * task)370 long get_mte_ctrl(struct task_struct *task)
371 {
372 	unsigned long ret;
373 	u64 mte_ctrl = task->thread.mte_ctrl;
374 	u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
375 		   SYS_GCR_EL1_EXCL_MASK;
376 
377 	if (!system_supports_mte())
378 		return 0;
379 
380 	ret = incl << PR_MTE_TAG_SHIFT;
381 	if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
382 		ret |= PR_MTE_TCF_ASYNC;
383 	if (mte_ctrl & MTE_CTRL_TCF_SYNC)
384 		ret |= PR_MTE_TCF_SYNC;
385 
386 	return ret;
387 }
388 
389 /*
390  * Access MTE tags in another process' address space as given in mm. Update
391  * the number of tags copied. Return 0 if any tags copied, error otherwise.
392  * Inspired by __access_remote_vm().
393  */
__access_remote_tags(struct mm_struct * mm,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)394 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
395 				struct iovec *kiov, unsigned int gup_flags)
396 {
397 	void __user *buf = kiov->iov_base;
398 	size_t len = kiov->iov_len;
399 	int err = 0;
400 	int write = gup_flags & FOLL_WRITE;
401 
402 	if (!access_ok(buf, len))
403 		return -EFAULT;
404 
405 	if (mmap_read_lock_killable(mm))
406 		return -EIO;
407 
408 	while (len) {
409 		struct vm_area_struct *vma;
410 		unsigned long tags, offset;
411 		void *maddr;
412 		struct page *page = get_user_page_vma_remote(mm, addr,
413 							     gup_flags, &vma);
414 
415 		if (IS_ERR(page)) {
416 			err = PTR_ERR(page);
417 			break;
418 		}
419 
420 		/*
421 		 * Only copy tags if the page has been mapped as PROT_MTE
422 		 * (PG_mte_tagged set). Otherwise the tags are not valid and
423 		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
424 		 * would cause the existing tags to be cleared if the page
425 		 * was never mapped with PROT_MTE.
426 		 */
427 		if (!(vma->vm_flags & VM_MTE)) {
428 			err = -EOPNOTSUPP;
429 			put_page(page);
430 			break;
431 		}
432 		WARN_ON_ONCE(!page_mte_tagged(page));
433 
434 		/* limit access to the end of the page */
435 		offset = offset_in_page(addr);
436 		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
437 
438 		maddr = page_address(page);
439 		if (write) {
440 			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
441 			set_page_dirty_lock(page);
442 		} else {
443 			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
444 		}
445 		put_page(page);
446 
447 		/* error accessing the tracer's buffer */
448 		if (!tags)
449 			break;
450 
451 		len -= tags;
452 		buf += tags;
453 		addr += tags * MTE_GRANULE_SIZE;
454 	}
455 	mmap_read_unlock(mm);
456 
457 	/* return an error if no tags copied */
458 	kiov->iov_len = buf - kiov->iov_base;
459 	if (!kiov->iov_len) {
460 		/* check for error accessing the tracee's address space */
461 		if (err)
462 			return -EIO;
463 		else
464 			return -EFAULT;
465 	}
466 
467 	return 0;
468 }
469 
470 /*
471  * Copy MTE tags in another process' address space at 'addr' to/from tracer's
472  * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
473  */
access_remote_tags(struct task_struct * tsk,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)474 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
475 			      struct iovec *kiov, unsigned int gup_flags)
476 {
477 	struct mm_struct *mm;
478 	int ret;
479 
480 	mm = get_task_mm(tsk);
481 	if (!mm)
482 		return -EPERM;
483 
484 	if (!tsk->ptrace || (current != tsk->parent) ||
485 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
486 	     !ptracer_capable(tsk, mm->user_ns))) {
487 		mmput(mm);
488 		return -EPERM;
489 	}
490 
491 	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
492 	mmput(mm);
493 
494 	return ret;
495 }
496 
mte_ptrace_copy_tags(struct task_struct * child,long request,unsigned long addr,unsigned long data)497 int mte_ptrace_copy_tags(struct task_struct *child, long request,
498 			 unsigned long addr, unsigned long data)
499 {
500 	int ret;
501 	struct iovec kiov;
502 	struct iovec __user *uiov = (void __user *)data;
503 	unsigned int gup_flags = FOLL_FORCE;
504 
505 	if (!system_supports_mte())
506 		return -EIO;
507 
508 	if (get_user(kiov.iov_base, &uiov->iov_base) ||
509 	    get_user(kiov.iov_len, &uiov->iov_len))
510 		return -EFAULT;
511 
512 	if (request == PTRACE_POKEMTETAGS)
513 		gup_flags |= FOLL_WRITE;
514 
515 	/* align addr to the MTE tag granule */
516 	addr &= MTE_GRANULE_MASK;
517 
518 	ret = access_remote_tags(child, addr, &kiov, gup_flags);
519 	if (!ret)
520 		ret = put_user(kiov.iov_len, &uiov->iov_len);
521 
522 	return ret;
523 }
524 
mte_tcf_preferred_show(struct device * dev,struct device_attribute * attr,char * buf)525 static ssize_t mte_tcf_preferred_show(struct device *dev,
526 				      struct device_attribute *attr, char *buf)
527 {
528 	switch (per_cpu(mte_tcf_preferred, dev->id)) {
529 	case MTE_CTRL_TCF_ASYNC:
530 		return sysfs_emit(buf, "async\n");
531 	case MTE_CTRL_TCF_SYNC:
532 		return sysfs_emit(buf, "sync\n");
533 	case MTE_CTRL_TCF_ASYMM:
534 		return sysfs_emit(buf, "asymm\n");
535 	default:
536 		return sysfs_emit(buf, "???\n");
537 	}
538 }
539 
mte_tcf_preferred_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)540 static ssize_t mte_tcf_preferred_store(struct device *dev,
541 				       struct device_attribute *attr,
542 				       const char *buf, size_t count)
543 {
544 	u64 tcf;
545 
546 	if (sysfs_streq(buf, "async"))
547 		tcf = MTE_CTRL_TCF_ASYNC;
548 	else if (sysfs_streq(buf, "sync"))
549 		tcf = MTE_CTRL_TCF_SYNC;
550 	else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
551 		tcf = MTE_CTRL_TCF_ASYMM;
552 	else
553 		return -EINVAL;
554 
555 	device_lock(dev);
556 	per_cpu(mte_tcf_preferred, dev->id) = tcf;
557 	device_unlock(dev);
558 
559 	return count;
560 }
561 static DEVICE_ATTR_RW(mte_tcf_preferred);
562 
register_mte_tcf_preferred_sysctl(void)563 static int register_mte_tcf_preferred_sysctl(void)
564 {
565 	unsigned int cpu;
566 
567 	if (!system_supports_mte())
568 		return 0;
569 
570 	for_each_possible_cpu(cpu) {
571 		per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
572 		device_create_file(get_cpu_device(cpu),
573 				   &dev_attr_mte_tcf_preferred);
574 	}
575 
576 	return 0;
577 }
578 subsys_initcall(register_mte_tcf_preferred_sysctl);
579 
580 /*
581  * Return 0 on success, the number of bytes not probed otherwise.
582  */
mte_probe_user_range(const char __user * uaddr,size_t size)583 size_t mte_probe_user_range(const char __user *uaddr, size_t size)
584 {
585 	const char __user *end = uaddr + size;
586 	char val;
587 
588 	__raw_get_user(val, uaddr, efault);
589 
590 	uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
591 	while (uaddr < end) {
592 		/*
593 		 * A read is sufficient for mte, the caller should have probed
594 		 * for the pte write permission if required.
595 		 */
596 		__raw_get_user(val, uaddr, efault);
597 		uaddr += MTE_GRANULE_SIZE;
598 	}
599 	(void)val;
600 
601 	return 0;
602 
603 efault:
604 	return end - uaddr;
605 }
606