1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/process.c
4 *
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
8 */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
44 #include <trace/hooks/mpam.h>
45 #include <trace/hooks/fpsimd.h>
46
47 #include <asm/alternative.h>
48 #include <asm/arch_timer.h>
49 #include <asm/compat.h>
50 #include <asm/cpufeature.h>
51 #include <asm/cacheflush.h>
52 #include <asm/exec.h>
53 #include <asm/fpsimd.h>
54 #include <asm/mmu_context.h>
55 #include <asm/mte.h>
56 #include <asm/processor.h>
57 #include <asm/pointer_auth.h>
58 #include <asm/stacktrace.h>
59 #include <asm/switch_to.h>
60 #include <asm/system_misc.h>
61
62 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
63 #include <linux/stackprotector.h>
64 unsigned long __stack_chk_guard __ro_after_init;
65 EXPORT_SYMBOL(__stack_chk_guard);
66 #endif
67
68 /*
69 * Function pointers to optional machine specific functions
70 */
71 void (*pm_power_off)(void);
72 EXPORT_SYMBOL_GPL(pm_power_off);
73
74 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)75 void __noreturn arch_cpu_idle_dead(void)
76 {
77 cpu_die();
78 }
79 #endif
80
81 /*
82 * Called by kexec, immediately prior to machine_kexec().
83 *
84 * This must completely disable all secondary CPUs; simply causing those CPUs
85 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
86 * kexec'd kernel to use any and all RAM as it sees fit, without having to
87 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
88 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
89 */
machine_shutdown(void)90 void machine_shutdown(void)
91 {
92 smp_shutdown_nonboot_cpus(reboot_cpu);
93 }
94
95 /*
96 * Halting simply requires that the secondary CPUs stop performing any
97 * activity (executing tasks, handling interrupts). smp_send_stop()
98 * achieves this.
99 */
machine_halt(void)100 void machine_halt(void)
101 {
102 local_irq_disable();
103 smp_send_stop();
104 while (1);
105 }
106
107 /*
108 * Power-off simply requires that the secondary CPUs stop performing any
109 * activity (executing tasks, handling interrupts). smp_send_stop()
110 * achieves this. When the system power is turned off, it will take all CPUs
111 * with it.
112 */
machine_power_off(void)113 void machine_power_off(void)
114 {
115 local_irq_disable();
116 smp_send_stop();
117 do_kernel_power_off();
118 }
119
120 /*
121 * Restart requires that the secondary CPUs stop performing any activity
122 * while the primary CPU resets the system. Systems with multiple CPUs must
123 * provide a HW restart implementation, to ensure that all CPUs reset at once.
124 * This is required so that any code running after reset on the primary CPU
125 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
126 * executing pre-reset code, and using RAM that the primary CPU's code wishes
127 * to use. Implementing such co-ordination would be essentially impossible.
128 */
machine_restart(char * cmd)129 void machine_restart(char *cmd)
130 {
131 /* Disable interrupts first */
132 local_irq_disable();
133 smp_send_stop();
134
135 /*
136 * UpdateCapsule() depends on the system being reset via
137 * ResetSystem().
138 */
139 if (efi_enabled(EFI_RUNTIME_SERVICES))
140 efi_reboot(reboot_mode, NULL);
141
142 /* Now call the architecture specific reboot code. */
143 do_kernel_restart(cmd);
144
145 /*
146 * Whoops - the architecture was unable to reboot.
147 */
148 printk("Reboot failed -- System halted\n");
149 while (1);
150 }
151
152 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
153 static const char *const btypes[] = {
154 bstr(NONE, "--"),
155 bstr( JC, "jc"),
156 bstr( C, "-c"),
157 bstr( J , "j-")
158 };
159 #undef bstr
160
print_pstate(struct pt_regs * regs)161 static void print_pstate(struct pt_regs *regs)
162 {
163 u64 pstate = regs->pstate;
164
165 if (compat_user_mode(regs)) {
166 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
167 pstate,
168 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
169 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
170 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
171 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
172 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
173 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
174 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
175 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
176 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
177 pstate & PSR_AA32_F_BIT ? 'F' : 'f',
178 pstate & PSR_AA32_DIT_BIT ? '+' : '-',
179 pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
180 } else {
181 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
182 PSR_BTYPE_SHIFT];
183
184 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
185 pstate,
186 pstate & PSR_N_BIT ? 'N' : 'n',
187 pstate & PSR_Z_BIT ? 'Z' : 'z',
188 pstate & PSR_C_BIT ? 'C' : 'c',
189 pstate & PSR_V_BIT ? 'V' : 'v',
190 pstate & PSR_D_BIT ? 'D' : 'd',
191 pstate & PSR_A_BIT ? 'A' : 'a',
192 pstate & PSR_I_BIT ? 'I' : 'i',
193 pstate & PSR_F_BIT ? 'F' : 'f',
194 pstate & PSR_PAN_BIT ? '+' : '-',
195 pstate & PSR_UAO_BIT ? '+' : '-',
196 pstate & PSR_TCO_BIT ? '+' : '-',
197 pstate & PSR_DIT_BIT ? '+' : '-',
198 pstate & PSR_SSBS_BIT ? '+' : '-',
199 btype_str);
200 }
201 }
202
__show_regs(struct pt_regs * regs)203 void __show_regs(struct pt_regs *regs)
204 {
205 int i, top_reg;
206 u64 lr, sp;
207
208 if (compat_user_mode(regs)) {
209 lr = regs->compat_lr;
210 sp = regs->compat_sp;
211 top_reg = 12;
212 } else {
213 lr = regs->regs[30];
214 sp = regs->sp;
215 top_reg = 29;
216 }
217
218 show_regs_print_info(KERN_DEFAULT);
219 print_pstate(regs);
220
221 if (!user_mode(regs)) {
222 printk("pc : %pS\n", (void *)regs->pc);
223 printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
224 } else {
225 printk("pc : %016llx\n", regs->pc);
226 printk("lr : %016llx\n", lr);
227 }
228
229 printk("sp : %016llx\n", sp);
230
231 if (system_uses_irq_prio_masking())
232 printk("pmr_save: %08llx\n", regs->pmr_save);
233
234 i = top_reg;
235
236 while (i >= 0) {
237 printk("x%-2d: %016llx", i, regs->regs[i]);
238
239 while (i-- % 3)
240 pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
241
242 pr_cont("\n");
243 }
244 }
245
show_regs(struct pt_regs * regs)246 void show_regs(struct pt_regs *regs)
247 {
248 __show_regs(regs);
249 dump_backtrace(regs, NULL, KERN_DEFAULT);
250 }
251 EXPORT_SYMBOL_GPL(show_regs);
252
tls_thread_flush(void)253 static void tls_thread_flush(void)
254 {
255 write_sysreg(0, tpidr_el0);
256 if (system_supports_tpidr2())
257 write_sysreg_s(0, SYS_TPIDR2_EL0);
258
259 if (is_compat_task()) {
260 current->thread.uw.tp_value = 0;
261
262 /*
263 * We need to ensure ordering between the shadow state and the
264 * hardware state, so that we don't corrupt the hardware state
265 * with a stale shadow state during context switch.
266 */
267 barrier();
268 write_sysreg(0, tpidrro_el0);
269 }
270 }
271
flush_tagged_addr_state(void)272 static void flush_tagged_addr_state(void)
273 {
274 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
275 clear_thread_flag(TIF_TAGGED_ADDR);
276 }
277
flush_poe(void)278 static void flush_poe(void)
279 {
280 if (!system_supports_poe())
281 return;
282
283 write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
284 }
285
flush_thread(void)286 void flush_thread(void)
287 {
288 fpsimd_flush_thread();
289 tls_thread_flush();
290 flush_ptrace_hw_breakpoint(current);
291 flush_tagged_addr_state();
292 flush_poe();
293 }
294
arch_release_task_struct(struct task_struct * tsk)295 void arch_release_task_struct(struct task_struct *tsk)
296 {
297 fpsimd_release_task(tsk);
298 }
299
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)300 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
301 {
302 /*
303 * The current/src task's FPSIMD state may or may not be live, and may
304 * have been altered by ptrace after entry to the kernel. Save the
305 * effective FPSIMD state so that this will be copied into dst.
306 */
307 fpsimd_save_and_flush_current_state();
308 fpsimd_sync_from_effective_state(src);
309
310 *dst = *src;
311
312 /*
313 * Drop stale reference to src's sve_state and convert dst to
314 * non-streaming FPSIMD mode.
315 */
316 dst->thread.fp_type = FP_STATE_FPSIMD;
317 dst->thread.sve_state = NULL;
318 clear_tsk_thread_flag(dst, TIF_SVE);
319 task_smstop_sm(dst);
320
321 /*
322 * Drop stale reference to src's sme_state and ensure dst has ZA
323 * disabled.
324 *
325 * When necessary, ZA will be inherited later in copy_thread_za().
326 */
327 dst->thread.sme_state = NULL;
328 clear_tsk_thread_flag(dst, TIF_SME);
329 dst->thread.svcr &= ~SVCR_ZA_MASK;
330
331 /* clear any pending asynchronous tag fault raised by the parent */
332 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
333
334 return 0;
335 }
336
copy_thread_za(struct task_struct * dst,struct task_struct * src)337 static int copy_thread_za(struct task_struct *dst, struct task_struct *src)
338 {
339 if (!thread_za_enabled(&src->thread))
340 return 0;
341
342 dst->thread.sve_state = kzalloc(sve_state_size(src),
343 GFP_KERNEL);
344 if (!dst->thread.sve_state)
345 return -ENOMEM;
346
347 dst->thread.sme_state = kmemdup(src->thread.sme_state,
348 sme_state_size(src),
349 GFP_KERNEL);
350 if (!dst->thread.sme_state) {
351 kfree(dst->thread.sve_state);
352 dst->thread.sve_state = NULL;
353 return -ENOMEM;
354 }
355
356 set_tsk_thread_flag(dst, TIF_SME);
357 dst->thread.svcr |= SVCR_ZA_MASK;
358
359 return 0;
360 }
361
362 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
363
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)364 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
365 {
366 unsigned long clone_flags = args->flags;
367 unsigned long stack_start = args->stack;
368 unsigned long tls = args->tls;
369 struct pt_regs *childregs = task_pt_regs(p);
370 int ret;
371
372 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
373
374 /*
375 * In case p was allocated the same task_struct pointer as some
376 * other recently-exited task, make sure p is disassociated from
377 * any cpu that may have run that now-exited task recently.
378 * Otherwise we could erroneously skip reloading the FPSIMD
379 * registers for p.
380 */
381 fpsimd_flush_task_state(p);
382
383 ptrauth_thread_init_kernel(p);
384
385 if (likely(!args->fn)) {
386 *childregs = *current_pt_regs();
387 childregs->regs[0] = 0;
388
389 /*
390 * Read the current TLS pointer from tpidr_el0 as it may be
391 * out-of-sync with the saved value.
392 */
393 *task_user_tls(p) = read_sysreg(tpidr_el0);
394
395 if (system_supports_poe())
396 p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
397
398 if (stack_start) {
399 if (is_compat_thread(task_thread_info(p)))
400 childregs->compat_sp = stack_start;
401 else
402 childregs->sp = stack_start;
403 }
404
405 /*
406 * Due to the AAPCS64 "ZA lazy saving scheme", PSTATE.ZA and
407 * TPIDR2 need to be manipulated as a pair, and either both
408 * need to be inherited or both need to be reset.
409 *
410 * Within a process, child threads must not inherit their
411 * parent's TPIDR2 value or they may clobber their parent's
412 * stack at some later point.
413 *
414 * When a process is fork()'d, the child must inherit ZA and
415 * TPIDR2 from its parent in case there was dormant ZA state.
416 *
417 * Use CLONE_VM to determine when the child will share the
418 * address space with the parent, and cannot safely inherit the
419 * state.
420 */
421 if (system_supports_sme()) {
422 if (!(clone_flags & CLONE_VM)) {
423 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
424 ret = copy_thread_za(p, current);
425 if (ret)
426 return ret;
427 } else {
428 p->thread.tpidr2_el0 = 0;
429 WARN_ON_ONCE(p->thread.svcr & SVCR_ZA_MASK);
430 }
431 }
432
433 /*
434 * If a TLS pointer was passed to clone, use it for the new
435 * thread.
436 */
437 if (clone_flags & CLONE_SETTLS)
438 p->thread.uw.tp_value = tls;
439 } else {
440 /*
441 * A kthread has no context to ERET to, so ensure any buggy
442 * ERET is treated as an illegal exception return.
443 *
444 * When a user task is created from a kthread, childregs will
445 * be initialized by start_thread() or start_compat_thread().
446 */
447 memset(childregs, 0, sizeof(struct pt_regs));
448 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
449
450 p->thread.cpu_context.x19 = (unsigned long)args->fn;
451 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
452
453 if (system_supports_poe())
454 p->thread.por_el0 = POR_EL0_INIT;
455 }
456 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
457 p->thread.cpu_context.sp = (unsigned long)childregs;
458 /*
459 * For the benefit of the unwinder, set up childregs->stackframe
460 * as the final frame for the new task.
461 */
462 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
463
464 ptrace_hw_copy_thread(p);
465
466 return 0;
467 }
468
tls_preserve_current_state(void)469 void tls_preserve_current_state(void)
470 {
471 *task_user_tls(current) = read_sysreg(tpidr_el0);
472 if (system_supports_tpidr2() && !is_compat_task())
473 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
474 }
475
tls_thread_switch(struct task_struct * next)476 static void tls_thread_switch(struct task_struct *next)
477 {
478 tls_preserve_current_state();
479
480 if (is_compat_thread(task_thread_info(next)))
481 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
482 else
483 write_sysreg(0, tpidrro_el0);
484
485 write_sysreg(*task_user_tls(next), tpidr_el0);
486 if (system_supports_tpidr2())
487 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
488 }
489
490 /*
491 * Force SSBS state on context-switch, since it may be lost after migrating
492 * from a CPU which treats the bit as RES0 in a heterogeneous system.
493 */
ssbs_thread_switch(struct task_struct * next)494 static void ssbs_thread_switch(struct task_struct *next)
495 {
496 /*
497 * Nothing to do for kernel threads, but 'regs' may be junk
498 * (e.g. idle task) so check the flags and bail early.
499 */
500 if (unlikely(next->flags & PF_KTHREAD))
501 return;
502
503 /*
504 * If all CPUs implement the SSBS extension, then we just need to
505 * context-switch the PSTATE field.
506 */
507 if (alternative_has_cap_unlikely(ARM64_SSBS))
508 return;
509
510 spectre_v4_enable_task_mitigation(next);
511 }
512
513 /*
514 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
515 * shadow copy so that we can restore this upon entry from userspace.
516 *
517 * This is *only* for exception entry from EL0, and is not valid until we
518 * __switch_to() a user task.
519 */
520 DEFINE_PER_CPU(struct task_struct *, __entry_task);
521
entry_task_switch(struct task_struct * next)522 static void entry_task_switch(struct task_struct *next)
523 {
524 __this_cpu_write(__entry_task, next);
525 }
526
527 /*
528 * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
529 * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
530 * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
531 * required or PR_TSC_SIGSEGV is set.
532 */
update_cntkctl_el1(struct task_struct * next)533 static void update_cntkctl_el1(struct task_struct *next)
534 {
535 struct thread_info *ti = task_thread_info(next);
536
537 if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) ||
538 has_erratum_handler(read_cntvct_el0) ||
539 (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
540 this_cpu_has_cap(ARM64_WORKAROUND_1418040) &&
541 is_compat_thread(ti)))
542 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
543 else
544 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
545 }
546
cntkctl_thread_switch(struct task_struct * prev,struct task_struct * next)547 static void cntkctl_thread_switch(struct task_struct *prev,
548 struct task_struct *next)
549 {
550 if ((read_ti_thread_flags(task_thread_info(prev)) &
551 (_TIF_32BIT | _TIF_TSC_SIGSEGV)) !=
552 (read_ti_thread_flags(task_thread_info(next)) &
553 (_TIF_32BIT | _TIF_TSC_SIGSEGV)))
554 update_cntkctl_el1(next);
555 }
556
do_set_tsc_mode(unsigned int val)557 static int do_set_tsc_mode(unsigned int val)
558 {
559 bool tsc_sigsegv;
560
561 if (val == PR_TSC_SIGSEGV)
562 tsc_sigsegv = true;
563 else if (val == PR_TSC_ENABLE)
564 tsc_sigsegv = false;
565 else
566 return -EINVAL;
567
568 preempt_disable();
569 update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv);
570 update_cntkctl_el1(current);
571 preempt_enable();
572
573 return 0;
574 }
575
permission_overlay_switch(struct task_struct * next)576 static void permission_overlay_switch(struct task_struct *next)
577 {
578 if (!system_supports_poe())
579 return;
580
581 current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
582 if (current->thread.por_el0 != next->thread.por_el0) {
583 write_sysreg_s(next->thread.por_el0, SYS_POR_EL0);
584 /*
585 * No ISB required as we can tolerate spurious Overlay faults -
586 * the fault handler will check again based on the new value
587 * of POR_EL0.
588 */
589 }
590 }
591
592 /*
593 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
594 * this function must be called with preemption disabled and the update to
595 * sctlr_user must be made in the same preemption disabled block so that
596 * __switch_to() does not see the variable update before the SCTLR_EL1 one.
597 */
update_sctlr_el1(u64 sctlr)598 void update_sctlr_el1(u64 sctlr)
599 {
600 /*
601 * EnIA must not be cleared while in the kernel as this is necessary for
602 * in-kernel PAC. It will be cleared on kernel exit if needed.
603 */
604 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
605
606 /* ISB required for the kernel uaccess routines when setting TCF0. */
607 isb();
608 }
609
610 /*
611 * Thread switching.
612 */
613 __notrace_funcgraph __sched
__switch_to(struct task_struct * prev,struct task_struct * next)614 struct task_struct *__switch_to(struct task_struct *prev,
615 struct task_struct *next)
616 {
617 struct task_struct *last;
618
619 fpsimd_thread_switch(next);
620 tls_thread_switch(next);
621 hw_breakpoint_thread_switch(next);
622 contextidr_thread_switch(next);
623 entry_task_switch(next);
624 ssbs_thread_switch(next);
625 cntkctl_thread_switch(prev, next);
626 ptrauth_thread_switch_user(next);
627 permission_overlay_switch(next);
628
629 /*
630 * vendor hook is needed before the dsb(),
631 * because MPAM is related to cache maintenance.
632 */
633 trace_android_vh_mpam_set(prev, next);
634
635 /*
636 * Complete any pending TLB or cache maintenance on this CPU in case
637 * the thread migrates to a different CPU.
638 * This full barrier is also required by the membarrier system
639 * call.
640 */
641 dsb(ish);
642
643 /*
644 * MTE thread switching must happen after the DSB above to ensure that
645 * any asynchronous tag check faults have been logged in the TFSR*_EL1
646 * registers.
647 */
648 mte_thread_switch(next);
649 /* avoid expensive SCTLR_EL1 accesses if no change */
650 if (prev->thread.sctlr_user != next->thread.sctlr_user)
651 update_sctlr_el1(next->thread.sctlr_user);
652
653 trace_android_vh_is_fpsimd_save(prev, next);
654
655 /* the actual thread switch */
656 last = cpu_switch_to(prev, next);
657
658 return last;
659 }
660
661 struct wchan_info {
662 unsigned long pc;
663 int count;
664 };
665
get_wchan_cb(void * arg,unsigned long pc)666 static bool get_wchan_cb(void *arg, unsigned long pc)
667 {
668 struct wchan_info *wchan_info = arg;
669
670 if (!in_sched_functions(pc)) {
671 wchan_info->pc = pc;
672 return false;
673 }
674 return wchan_info->count++ < 16;
675 }
676
__get_wchan(struct task_struct * p)677 unsigned long __get_wchan(struct task_struct *p)
678 {
679 struct wchan_info wchan_info = {
680 .pc = 0,
681 .count = 0,
682 };
683
684 if (!try_get_task_stack(p))
685 return 0;
686
687 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
688
689 put_task_stack(p);
690
691 return wchan_info.pc;
692 }
693
arch_align_stack(unsigned long sp)694 unsigned long arch_align_stack(unsigned long sp)
695 {
696 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
697 sp -= get_random_u32_below(PAGE_SIZE);
698 return sp & ~0xf;
699 }
700
701 #ifdef CONFIG_COMPAT
compat_elf_check_arch(const struct elf32_hdr * hdr)702 int compat_elf_check_arch(const struct elf32_hdr *hdr)
703 {
704 if (!system_supports_32bit_el0())
705 return false;
706
707 if ((hdr)->e_machine != EM_ARM)
708 return false;
709
710 if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
711 return false;
712
713 /*
714 * Prevent execve() of a 32-bit program from a deadline task
715 * if the restricted affinity mask would be inadmissible on an
716 * asymmetric system.
717 */
718 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
719 !dl_task_check_affinity(current, system_32bit_el0_cpumask());
720 }
721 #endif
722
723 /*
724 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
725 */
arch_setup_new_exec(void)726 void arch_setup_new_exec(void)
727 {
728 unsigned long mmflags = 0;
729
730 if (is_compat_task()) {
731 mmflags = MMCF_AARCH32;
732
733 /*
734 * Restrict the CPU affinity mask for a 32-bit task so that
735 * it contains only 32-bit-capable CPUs.
736 *
737 * From the perspective of the task, this looks similar to
738 * what would happen if the 64-bit-only CPUs were hot-unplugged
739 * at the point of execve(), although we try a bit harder to
740 * honour the cpuset hierarchy.
741 */
742 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
743 force_compatible_cpus_allowed_ptr(current);
744 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
745 relax_compatible_cpus_allowed_ptr(current);
746 }
747
748 current->mm->context.flags = mmflags;
749 ptrauth_thread_init_user();
750 mte_thread_init_user();
751 do_set_tsc_mode(PR_TSC_ENABLE);
752
753 if (task_spec_ssb_noexec(current)) {
754 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
755 PR_SPEC_ENABLE);
756 }
757 }
758
759 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
760 /*
761 * Control the relaxed ABI allowing tagged user addresses into the kernel.
762 */
763 static unsigned int tagged_addr_disabled;
764
set_tagged_addr_ctrl(struct task_struct * task,unsigned long arg)765 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
766 {
767 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
768 struct thread_info *ti = task_thread_info(task);
769
770 if (is_compat_thread(ti))
771 return -EINVAL;
772
773 if (system_supports_mte())
774 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
775 | PR_MTE_TAG_MASK;
776
777 if (arg & ~valid_mask)
778 return -EINVAL;
779
780 /*
781 * Do not allow the enabling of the tagged address ABI if globally
782 * disabled via sysctl abi.tagged_addr_disabled.
783 */
784 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
785 return -EINVAL;
786
787 if (set_mte_ctrl(task, arg) != 0)
788 return -EINVAL;
789
790 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
791
792 return 0;
793 }
794
get_tagged_addr_ctrl(struct task_struct * task)795 long get_tagged_addr_ctrl(struct task_struct *task)
796 {
797 long ret = 0;
798 struct thread_info *ti = task_thread_info(task);
799
800 if (is_compat_thread(ti))
801 return -EINVAL;
802
803 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
804 ret = PR_TAGGED_ADDR_ENABLE;
805
806 ret |= get_mte_ctrl(task);
807
808 return ret;
809 }
810
811 /*
812 * Global sysctl to disable the tagged user addresses support. This control
813 * only prevents the tagged address ABI enabling via prctl() and does not
814 * disable it for tasks that already opted in to the relaxed ABI.
815 */
816
817 static struct ctl_table tagged_addr_sysctl_table[] = {
818 {
819 .procname = "tagged_addr_disabled",
820 .mode = 0644,
821 .data = &tagged_addr_disabled,
822 .maxlen = sizeof(int),
823 .proc_handler = proc_dointvec_minmax,
824 .extra1 = SYSCTL_ZERO,
825 .extra2 = SYSCTL_ONE,
826 },
827 };
828
tagged_addr_init(void)829 static int __init tagged_addr_init(void)
830 {
831 if (!register_sysctl("abi", tagged_addr_sysctl_table))
832 return -EINVAL;
833 return 0;
834 }
835
836 core_initcall(tagged_addr_init);
837 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
838
839 #ifdef CONFIG_BINFMT_ELF
arch_elf_adjust_prot(int prot,const struct arch_elf_state * state,bool has_interp,bool is_interp)840 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
841 bool has_interp, bool is_interp)
842 {
843 /*
844 * For dynamically linked executables the interpreter is
845 * responsible for setting PROT_BTI on everything except
846 * itself.
847 */
848 if (is_interp != has_interp)
849 return prot;
850
851 if (!(state->flags & ARM64_ELF_BTI))
852 return prot;
853
854 if (prot & PROT_EXEC)
855 prot |= PROT_BTI;
856
857 return prot;
858 }
859 #endif
860
get_tsc_mode(unsigned long adr)861 int get_tsc_mode(unsigned long adr)
862 {
863 unsigned int val;
864
865 if (is_compat_task())
866 return -EINVAL;
867
868 if (test_thread_flag(TIF_TSC_SIGSEGV))
869 val = PR_TSC_SIGSEGV;
870 else
871 val = PR_TSC_ENABLE;
872
873 return put_user(val, (unsigned int __user *)adr);
874 }
875
set_tsc_mode(unsigned int val)876 int set_tsc_mode(unsigned int val)
877 {
878 if (is_compat_task())
879 return -EINVAL;
880
881 return do_set_tsc_mode(val);
882 }
883