• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
44 #include <trace/hooks/mpam.h>
45 #include <trace/hooks/fpsimd.h>
46 
47 #include <asm/alternative.h>
48 #include <asm/arch_timer.h>
49 #include <asm/compat.h>
50 #include <asm/cpufeature.h>
51 #include <asm/cacheflush.h>
52 #include <asm/exec.h>
53 #include <asm/fpsimd.h>
54 #include <asm/mmu_context.h>
55 #include <asm/mte.h>
56 #include <asm/processor.h>
57 #include <asm/pointer_auth.h>
58 #include <asm/stacktrace.h>
59 #include <asm/switch_to.h>
60 #include <asm/system_misc.h>
61 
62 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
63 #include <linux/stackprotector.h>
64 unsigned long __stack_chk_guard __ro_after_init;
65 EXPORT_SYMBOL(__stack_chk_guard);
66 #endif
67 
68 /*
69  * Function pointers to optional machine specific functions
70  */
71 void (*pm_power_off)(void);
72 EXPORT_SYMBOL_GPL(pm_power_off);
73 
74 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)75 void __noreturn arch_cpu_idle_dead(void)
76 {
77        cpu_die();
78 }
79 #endif
80 
81 /*
82  * Called by kexec, immediately prior to machine_kexec().
83  *
84  * This must completely disable all secondary CPUs; simply causing those CPUs
85  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
86  * kexec'd kernel to use any and all RAM as it sees fit, without having to
87  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
88  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
89  */
machine_shutdown(void)90 void machine_shutdown(void)
91 {
92 	smp_shutdown_nonboot_cpus(reboot_cpu);
93 }
94 
95 /*
96  * Halting simply requires that the secondary CPUs stop performing any
97  * activity (executing tasks, handling interrupts). smp_send_stop()
98  * achieves this.
99  */
machine_halt(void)100 void machine_halt(void)
101 {
102 	local_irq_disable();
103 	smp_send_stop();
104 	while (1);
105 }
106 
107 /*
108  * Power-off simply requires that the secondary CPUs stop performing any
109  * activity (executing tasks, handling interrupts). smp_send_stop()
110  * achieves this. When the system power is turned off, it will take all CPUs
111  * with it.
112  */
machine_power_off(void)113 void machine_power_off(void)
114 {
115 	local_irq_disable();
116 	smp_send_stop();
117 	do_kernel_power_off();
118 }
119 
120 /*
121  * Restart requires that the secondary CPUs stop performing any activity
122  * while the primary CPU resets the system. Systems with multiple CPUs must
123  * provide a HW restart implementation, to ensure that all CPUs reset at once.
124  * This is required so that any code running after reset on the primary CPU
125  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
126  * executing pre-reset code, and using RAM that the primary CPU's code wishes
127  * to use. Implementing such co-ordination would be essentially impossible.
128  */
machine_restart(char * cmd)129 void machine_restart(char *cmd)
130 {
131 	/* Disable interrupts first */
132 	local_irq_disable();
133 	smp_send_stop();
134 
135 	/*
136 	 * UpdateCapsule() depends on the system being reset via
137 	 * ResetSystem().
138 	 */
139 	if (efi_enabled(EFI_RUNTIME_SERVICES))
140 		efi_reboot(reboot_mode, NULL);
141 
142 	/* Now call the architecture specific reboot code. */
143 	do_kernel_restart(cmd);
144 
145 	/*
146 	 * Whoops - the architecture was unable to reboot.
147 	 */
148 	printk("Reboot failed -- System halted\n");
149 	while (1);
150 }
151 
152 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
153 static const char *const btypes[] = {
154 	bstr(NONE, "--"),
155 	bstr(  JC, "jc"),
156 	bstr(   C, "-c"),
157 	bstr(  J , "j-")
158 };
159 #undef bstr
160 
print_pstate(struct pt_regs * regs)161 static void print_pstate(struct pt_regs *regs)
162 {
163 	u64 pstate = regs->pstate;
164 
165 	if (compat_user_mode(regs)) {
166 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
167 			pstate,
168 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
169 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
170 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
171 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
172 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
173 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
174 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
175 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
176 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
177 			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
178 			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
179 			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
180 	} else {
181 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
182 					       PSR_BTYPE_SHIFT];
183 
184 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
185 			pstate,
186 			pstate & PSR_N_BIT ? 'N' : 'n',
187 			pstate & PSR_Z_BIT ? 'Z' : 'z',
188 			pstate & PSR_C_BIT ? 'C' : 'c',
189 			pstate & PSR_V_BIT ? 'V' : 'v',
190 			pstate & PSR_D_BIT ? 'D' : 'd',
191 			pstate & PSR_A_BIT ? 'A' : 'a',
192 			pstate & PSR_I_BIT ? 'I' : 'i',
193 			pstate & PSR_F_BIT ? 'F' : 'f',
194 			pstate & PSR_PAN_BIT ? '+' : '-',
195 			pstate & PSR_UAO_BIT ? '+' : '-',
196 			pstate & PSR_TCO_BIT ? '+' : '-',
197 			pstate & PSR_DIT_BIT ? '+' : '-',
198 			pstate & PSR_SSBS_BIT ? '+' : '-',
199 			btype_str);
200 	}
201 }
202 
__show_regs(struct pt_regs * regs)203 void __show_regs(struct pt_regs *regs)
204 {
205 	int i, top_reg;
206 	u64 lr, sp;
207 
208 	if (compat_user_mode(regs)) {
209 		lr = regs->compat_lr;
210 		sp = regs->compat_sp;
211 		top_reg = 12;
212 	} else {
213 		lr = regs->regs[30];
214 		sp = regs->sp;
215 		top_reg = 29;
216 	}
217 
218 	show_regs_print_info(KERN_DEFAULT);
219 	print_pstate(regs);
220 
221 	if (!user_mode(regs)) {
222 		printk("pc : %pS\n", (void *)regs->pc);
223 		printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
224 	} else {
225 		printk("pc : %016llx\n", regs->pc);
226 		printk("lr : %016llx\n", lr);
227 	}
228 
229 	printk("sp : %016llx\n", sp);
230 
231 	if (system_uses_irq_prio_masking())
232 		printk("pmr_save: %08llx\n", regs->pmr_save);
233 
234 	i = top_reg;
235 
236 	while (i >= 0) {
237 		printk("x%-2d: %016llx", i, regs->regs[i]);
238 
239 		while (i-- % 3)
240 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
241 
242 		pr_cont("\n");
243 	}
244 }
245 
show_regs(struct pt_regs * regs)246 void show_regs(struct pt_regs *regs)
247 {
248 	__show_regs(regs);
249 	dump_backtrace(regs, NULL, KERN_DEFAULT);
250 }
251 EXPORT_SYMBOL_GPL(show_regs);
252 
tls_thread_flush(void)253 static void tls_thread_flush(void)
254 {
255 	write_sysreg(0, tpidr_el0);
256 	if (system_supports_tpidr2())
257 		write_sysreg_s(0, SYS_TPIDR2_EL0);
258 
259 	if (is_compat_task()) {
260 		current->thread.uw.tp_value = 0;
261 
262 		/*
263 		 * We need to ensure ordering between the shadow state and the
264 		 * hardware state, so that we don't corrupt the hardware state
265 		 * with a stale shadow state during context switch.
266 		 */
267 		barrier();
268 		write_sysreg(0, tpidrro_el0);
269 	}
270 }
271 
flush_tagged_addr_state(void)272 static void flush_tagged_addr_state(void)
273 {
274 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
275 		clear_thread_flag(TIF_TAGGED_ADDR);
276 }
277 
flush_poe(void)278 static void flush_poe(void)
279 {
280 	if (!system_supports_poe())
281 		return;
282 
283 	write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
284 }
285 
flush_thread(void)286 void flush_thread(void)
287 {
288 	fpsimd_flush_thread();
289 	tls_thread_flush();
290 	flush_ptrace_hw_breakpoint(current);
291 	flush_tagged_addr_state();
292 	flush_poe();
293 }
294 
arch_release_task_struct(struct task_struct * tsk)295 void arch_release_task_struct(struct task_struct *tsk)
296 {
297 	fpsimd_release_task(tsk);
298 }
299 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)300 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
301 {
302 	/*
303 	 * The current/src task's FPSIMD state may or may not be live, and may
304 	 * have been altered by ptrace after entry to the kernel. Save the
305 	 * effective FPSIMD state so that this will be copied into dst.
306 	 */
307 	fpsimd_save_and_flush_current_state();
308 	fpsimd_sync_from_effective_state(src);
309 
310 	*dst = *src;
311 
312 	/*
313 	 * Drop stale reference to src's sve_state and convert dst to
314 	 * non-streaming FPSIMD mode.
315 	 */
316 	dst->thread.fp_type = FP_STATE_FPSIMD;
317 	dst->thread.sve_state = NULL;
318 	clear_tsk_thread_flag(dst, TIF_SVE);
319 	task_smstop_sm(dst);
320 
321 	/*
322 	 * Drop stale reference to src's sme_state and ensure dst has ZA
323 	 * disabled.
324 	 *
325 	 * When necessary, ZA will be inherited later in copy_thread_za().
326 	 */
327 	dst->thread.sme_state = NULL;
328 	clear_tsk_thread_flag(dst, TIF_SME);
329 	dst->thread.svcr &= ~SVCR_ZA_MASK;
330 
331 	/* clear any pending asynchronous tag fault raised by the parent */
332 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
333 
334 	return 0;
335 }
336 
copy_thread_za(struct task_struct * dst,struct task_struct * src)337 static int copy_thread_za(struct task_struct *dst, struct task_struct *src)
338 {
339 	if (!thread_za_enabled(&src->thread))
340 		return 0;
341 
342 	dst->thread.sve_state = kzalloc(sve_state_size(src),
343 					GFP_KERNEL);
344 	if (!dst->thread.sve_state)
345 		return -ENOMEM;
346 
347 	dst->thread.sme_state = kmemdup(src->thread.sme_state,
348 					sme_state_size(src),
349 					GFP_KERNEL);
350 	if (!dst->thread.sme_state) {
351 		kfree(dst->thread.sve_state);
352 		dst->thread.sve_state = NULL;
353 		return -ENOMEM;
354 	}
355 
356 	set_tsk_thread_flag(dst, TIF_SME);
357 	dst->thread.svcr |= SVCR_ZA_MASK;
358 
359 	return 0;
360 }
361 
362 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
363 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)364 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
365 {
366 	unsigned long clone_flags = args->flags;
367 	unsigned long stack_start = args->stack;
368 	unsigned long tls = args->tls;
369 	struct pt_regs *childregs = task_pt_regs(p);
370 	int ret;
371 
372 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
373 
374 	/*
375 	 * In case p was allocated the same task_struct pointer as some
376 	 * other recently-exited task, make sure p is disassociated from
377 	 * any cpu that may have run that now-exited task recently.
378 	 * Otherwise we could erroneously skip reloading the FPSIMD
379 	 * registers for p.
380 	 */
381 	fpsimd_flush_task_state(p);
382 
383 	ptrauth_thread_init_kernel(p);
384 
385 	if (likely(!args->fn)) {
386 		*childregs = *current_pt_regs();
387 		childregs->regs[0] = 0;
388 
389 		/*
390 		 * Read the current TLS pointer from tpidr_el0 as it may be
391 		 * out-of-sync with the saved value.
392 		 */
393 		*task_user_tls(p) = read_sysreg(tpidr_el0);
394 
395 		if (system_supports_poe())
396 			p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
397 
398 		if (stack_start) {
399 			if (is_compat_thread(task_thread_info(p)))
400 				childregs->compat_sp = stack_start;
401 			else
402 				childregs->sp = stack_start;
403 		}
404 
405 		/*
406 		 * Due to the AAPCS64 "ZA lazy saving scheme", PSTATE.ZA and
407 		 * TPIDR2 need to be manipulated as a pair, and either both
408 		 * need to be inherited or both need to be reset.
409 		 *
410 		 * Within a process, child threads must not inherit their
411 		 * parent's TPIDR2 value or they may clobber their parent's
412 		 * stack at some later point.
413 		 *
414 		 * When a process is fork()'d, the child must inherit ZA and
415 		 * TPIDR2 from its parent in case there was dormant ZA state.
416 		 *
417 		 * Use CLONE_VM to determine when the child will share the
418 		 * address space with the parent, and cannot safely inherit the
419 		 * state.
420 		 */
421 		if (system_supports_sme()) {
422 			if (!(clone_flags & CLONE_VM)) {
423 				p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
424 				ret = copy_thread_za(p, current);
425 				if (ret)
426 					return ret;
427 			} else {
428 				p->thread.tpidr2_el0 = 0;
429 				WARN_ON_ONCE(p->thread.svcr & SVCR_ZA_MASK);
430 			}
431 		}
432 
433 		/*
434 		 * If a TLS pointer was passed to clone, use it for the new
435 		 * thread.
436 		 */
437 		if (clone_flags & CLONE_SETTLS)
438 			p->thread.uw.tp_value = tls;
439 	} else {
440 		/*
441 		 * A kthread has no context to ERET to, so ensure any buggy
442 		 * ERET is treated as an illegal exception return.
443 		 *
444 		 * When a user task is created from a kthread, childregs will
445 		 * be initialized by start_thread() or start_compat_thread().
446 		 */
447 		memset(childregs, 0, sizeof(struct pt_regs));
448 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
449 
450 		p->thread.cpu_context.x19 = (unsigned long)args->fn;
451 		p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
452 
453 		if (system_supports_poe())
454 			p->thread.por_el0 = POR_EL0_INIT;
455 	}
456 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
457 	p->thread.cpu_context.sp = (unsigned long)childregs;
458 	/*
459 	 * For the benefit of the unwinder, set up childregs->stackframe
460 	 * as the final frame for the new task.
461 	 */
462 	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
463 
464 	ptrace_hw_copy_thread(p);
465 
466 	return 0;
467 }
468 
tls_preserve_current_state(void)469 void tls_preserve_current_state(void)
470 {
471 	*task_user_tls(current) = read_sysreg(tpidr_el0);
472 	if (system_supports_tpidr2() && !is_compat_task())
473 		current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
474 }
475 
tls_thread_switch(struct task_struct * next)476 static void tls_thread_switch(struct task_struct *next)
477 {
478 	tls_preserve_current_state();
479 
480 	if (is_compat_thread(task_thread_info(next)))
481 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
482 	else
483 		write_sysreg(0, tpidrro_el0);
484 
485 	write_sysreg(*task_user_tls(next), tpidr_el0);
486 	if (system_supports_tpidr2())
487 		write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
488 }
489 
490 /*
491  * Force SSBS state on context-switch, since it may be lost after migrating
492  * from a CPU which treats the bit as RES0 in a heterogeneous system.
493  */
ssbs_thread_switch(struct task_struct * next)494 static void ssbs_thread_switch(struct task_struct *next)
495 {
496 	/*
497 	 * Nothing to do for kernel threads, but 'regs' may be junk
498 	 * (e.g. idle task) so check the flags and bail early.
499 	 */
500 	if (unlikely(next->flags & PF_KTHREAD))
501 		return;
502 
503 	/*
504 	 * If all CPUs implement the SSBS extension, then we just need to
505 	 * context-switch the PSTATE field.
506 	 */
507 	if (alternative_has_cap_unlikely(ARM64_SSBS))
508 		return;
509 
510 	spectre_v4_enable_task_mitigation(next);
511 }
512 
513 /*
514  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
515  * shadow copy so that we can restore this upon entry from userspace.
516  *
517  * This is *only* for exception entry from EL0, and is not valid until we
518  * __switch_to() a user task.
519  */
520 DEFINE_PER_CPU(struct task_struct *, __entry_task);
521 
entry_task_switch(struct task_struct * next)522 static void entry_task_switch(struct task_struct *next)
523 {
524 	__this_cpu_write(__entry_task, next);
525 }
526 
527 /*
528  * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
529  * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
530  * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
531  * required or PR_TSC_SIGSEGV is set.
532  */
update_cntkctl_el1(struct task_struct * next)533 static void update_cntkctl_el1(struct task_struct *next)
534 {
535 	struct thread_info *ti = task_thread_info(next);
536 
537 	if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) ||
538 	    has_erratum_handler(read_cntvct_el0) ||
539 	    (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
540 	     this_cpu_has_cap(ARM64_WORKAROUND_1418040) &&
541 	     is_compat_thread(ti)))
542 		sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
543 	else
544 		sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
545 }
546 
cntkctl_thread_switch(struct task_struct * prev,struct task_struct * next)547 static void cntkctl_thread_switch(struct task_struct *prev,
548 				  struct task_struct *next)
549 {
550 	if ((read_ti_thread_flags(task_thread_info(prev)) &
551 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)) !=
552 	    (read_ti_thread_flags(task_thread_info(next)) &
553 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)))
554 		update_cntkctl_el1(next);
555 }
556 
do_set_tsc_mode(unsigned int val)557 static int do_set_tsc_mode(unsigned int val)
558 {
559 	bool tsc_sigsegv;
560 
561 	if (val == PR_TSC_SIGSEGV)
562 		tsc_sigsegv = true;
563 	else if (val == PR_TSC_ENABLE)
564 		tsc_sigsegv = false;
565 	else
566 		return -EINVAL;
567 
568 	preempt_disable();
569 	update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv);
570 	update_cntkctl_el1(current);
571 	preempt_enable();
572 
573 	return 0;
574 }
575 
permission_overlay_switch(struct task_struct * next)576 static void permission_overlay_switch(struct task_struct *next)
577 {
578 	if (!system_supports_poe())
579 		return;
580 
581 	current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
582 	if (current->thread.por_el0 != next->thread.por_el0) {
583 		write_sysreg_s(next->thread.por_el0, SYS_POR_EL0);
584 		/*
585 		 * No ISB required as we can tolerate spurious Overlay faults -
586 		 * the fault handler will check again based on the new value
587 		 * of POR_EL0.
588 		 */
589 	}
590 }
591 
592 /*
593  * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
594  * this function must be called with preemption disabled and the update to
595  * sctlr_user must be made in the same preemption disabled block so that
596  * __switch_to() does not see the variable update before the SCTLR_EL1 one.
597  */
update_sctlr_el1(u64 sctlr)598 void update_sctlr_el1(u64 sctlr)
599 {
600 	/*
601 	 * EnIA must not be cleared while in the kernel as this is necessary for
602 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
603 	 */
604 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
605 
606 	/* ISB required for the kernel uaccess routines when setting TCF0. */
607 	isb();
608 }
609 
610 /*
611  * Thread switching.
612  */
613 __notrace_funcgraph __sched
__switch_to(struct task_struct * prev,struct task_struct * next)614 struct task_struct *__switch_to(struct task_struct *prev,
615 				struct task_struct *next)
616 {
617 	struct task_struct *last;
618 
619 	fpsimd_thread_switch(next);
620 	tls_thread_switch(next);
621 	hw_breakpoint_thread_switch(next);
622 	contextidr_thread_switch(next);
623 	entry_task_switch(next);
624 	ssbs_thread_switch(next);
625 	cntkctl_thread_switch(prev, next);
626 	ptrauth_thread_switch_user(next);
627 	permission_overlay_switch(next);
628 
629 	/*
630 	 *  vendor hook is needed before the dsb(),
631 	 *  because MPAM is related to cache maintenance.
632 	 */
633 	trace_android_vh_mpam_set(prev, next);
634 
635 	/*
636 	 * Complete any pending TLB or cache maintenance on this CPU in case
637 	 * the thread migrates to a different CPU.
638 	 * This full barrier is also required by the membarrier system
639 	 * call.
640 	 */
641 	dsb(ish);
642 
643 	/*
644 	 * MTE thread switching must happen after the DSB above to ensure that
645 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
646 	 * registers.
647 	 */
648 	mte_thread_switch(next);
649 	/* avoid expensive SCTLR_EL1 accesses if no change */
650 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
651 		update_sctlr_el1(next->thread.sctlr_user);
652 
653 	trace_android_vh_is_fpsimd_save(prev, next);
654 
655 	/* the actual thread switch */
656 	last = cpu_switch_to(prev, next);
657 
658 	return last;
659 }
660 
661 struct wchan_info {
662 	unsigned long	pc;
663 	int		count;
664 };
665 
get_wchan_cb(void * arg,unsigned long pc)666 static bool get_wchan_cb(void *arg, unsigned long pc)
667 {
668 	struct wchan_info *wchan_info = arg;
669 
670 	if (!in_sched_functions(pc)) {
671 		wchan_info->pc = pc;
672 		return false;
673 	}
674 	return wchan_info->count++ < 16;
675 }
676 
__get_wchan(struct task_struct * p)677 unsigned long __get_wchan(struct task_struct *p)
678 {
679 	struct wchan_info wchan_info = {
680 		.pc = 0,
681 		.count = 0,
682 	};
683 
684 	if (!try_get_task_stack(p))
685 		return 0;
686 
687 	arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
688 
689 	put_task_stack(p);
690 
691 	return wchan_info.pc;
692 }
693 
arch_align_stack(unsigned long sp)694 unsigned long arch_align_stack(unsigned long sp)
695 {
696 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
697 		sp -= get_random_u32_below(PAGE_SIZE);
698 	return sp & ~0xf;
699 }
700 
701 #ifdef CONFIG_COMPAT
compat_elf_check_arch(const struct elf32_hdr * hdr)702 int compat_elf_check_arch(const struct elf32_hdr *hdr)
703 {
704 	if (!system_supports_32bit_el0())
705 		return false;
706 
707 	if ((hdr)->e_machine != EM_ARM)
708 		return false;
709 
710 	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
711 		return false;
712 
713 	/*
714 	 * Prevent execve() of a 32-bit program from a deadline task
715 	 * if the restricted affinity mask would be inadmissible on an
716 	 * asymmetric system.
717 	 */
718 	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
719 	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
720 }
721 #endif
722 
723 /*
724  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
725  */
arch_setup_new_exec(void)726 void arch_setup_new_exec(void)
727 {
728 	unsigned long mmflags = 0;
729 
730 	if (is_compat_task()) {
731 		mmflags = MMCF_AARCH32;
732 
733 		/*
734 		 * Restrict the CPU affinity mask for a 32-bit task so that
735 		 * it contains only 32-bit-capable CPUs.
736 		 *
737 		 * From the perspective of the task, this looks similar to
738 		 * what would happen if the 64-bit-only CPUs were hot-unplugged
739 		 * at the point of execve(), although we try a bit harder to
740 		 * honour the cpuset hierarchy.
741 		 */
742 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
743 			force_compatible_cpus_allowed_ptr(current);
744 	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
745 		relax_compatible_cpus_allowed_ptr(current);
746 	}
747 
748 	current->mm->context.flags = mmflags;
749 	ptrauth_thread_init_user();
750 	mte_thread_init_user();
751 	do_set_tsc_mode(PR_TSC_ENABLE);
752 
753 	if (task_spec_ssb_noexec(current)) {
754 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
755 					 PR_SPEC_ENABLE);
756 	}
757 }
758 
759 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
760 /*
761  * Control the relaxed ABI allowing tagged user addresses into the kernel.
762  */
763 static unsigned int tagged_addr_disabled;
764 
set_tagged_addr_ctrl(struct task_struct * task,unsigned long arg)765 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
766 {
767 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
768 	struct thread_info *ti = task_thread_info(task);
769 
770 	if (is_compat_thread(ti))
771 		return -EINVAL;
772 
773 	if (system_supports_mte())
774 		valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
775 			| PR_MTE_TAG_MASK;
776 
777 	if (arg & ~valid_mask)
778 		return -EINVAL;
779 
780 	/*
781 	 * Do not allow the enabling of the tagged address ABI if globally
782 	 * disabled via sysctl abi.tagged_addr_disabled.
783 	 */
784 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
785 		return -EINVAL;
786 
787 	if (set_mte_ctrl(task, arg) != 0)
788 		return -EINVAL;
789 
790 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
791 
792 	return 0;
793 }
794 
get_tagged_addr_ctrl(struct task_struct * task)795 long get_tagged_addr_ctrl(struct task_struct *task)
796 {
797 	long ret = 0;
798 	struct thread_info *ti = task_thread_info(task);
799 
800 	if (is_compat_thread(ti))
801 		return -EINVAL;
802 
803 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
804 		ret = PR_TAGGED_ADDR_ENABLE;
805 
806 	ret |= get_mte_ctrl(task);
807 
808 	return ret;
809 }
810 
811 /*
812  * Global sysctl to disable the tagged user addresses support. This control
813  * only prevents the tagged address ABI enabling via prctl() and does not
814  * disable it for tasks that already opted in to the relaxed ABI.
815  */
816 
817 static struct ctl_table tagged_addr_sysctl_table[] = {
818 	{
819 		.procname	= "tagged_addr_disabled",
820 		.mode		= 0644,
821 		.data		= &tagged_addr_disabled,
822 		.maxlen		= sizeof(int),
823 		.proc_handler	= proc_dointvec_minmax,
824 		.extra1		= SYSCTL_ZERO,
825 		.extra2		= SYSCTL_ONE,
826 	},
827 };
828 
tagged_addr_init(void)829 static int __init tagged_addr_init(void)
830 {
831 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
832 		return -EINVAL;
833 	return 0;
834 }
835 
836 core_initcall(tagged_addr_init);
837 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
838 
839 #ifdef CONFIG_BINFMT_ELF
arch_elf_adjust_prot(int prot,const struct arch_elf_state * state,bool has_interp,bool is_interp)840 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
841 			 bool has_interp, bool is_interp)
842 {
843 	/*
844 	 * For dynamically linked executables the interpreter is
845 	 * responsible for setting PROT_BTI on everything except
846 	 * itself.
847 	 */
848 	if (is_interp != has_interp)
849 		return prot;
850 
851 	if (!(state->flags & ARM64_ELF_BTI))
852 		return prot;
853 
854 	if (prot & PROT_EXEC)
855 		prot |= PROT_BTI;
856 
857 	return prot;
858 }
859 #endif
860 
get_tsc_mode(unsigned long adr)861 int get_tsc_mode(unsigned long adr)
862 {
863 	unsigned int val;
864 
865 	if (is_compat_task())
866 		return -EINVAL;
867 
868 	if (test_thread_flag(TIF_TSC_SIGSEGV))
869 		val = PR_TSC_SIGSEGV;
870 	else
871 		val = PR_TSC_ENABLE;
872 
873 	return put_user(val, (unsigned int __user *)adr);
874 }
875 
set_tsc_mode(unsigned int val)876 int set_tsc_mode(unsigned int val)
877 {
878 	if (is_compat_task())
879 		return -EINVAL;
880 
881 	return do_set_tsc_mode(val);
882 }
883