1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
5 *
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kgdb.h>
36 #include <linux/kvm_host.h>
37 #include <linux/nmi.h>
38
39 #include <asm/alternative.h>
40 #include <asm/atomic.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cpu.h>
43 #include <asm/cputype.h>
44 #include <asm/cpu_ops.h>
45 #include <asm/daifflags.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/processor.h>
50 #include <asm/smp_plat.h>
51 #include <asm/sections.h>
52 #include <asm/tlbflush.h>
53 #include <asm/ptrace.h>
54 #include <asm/virt.h>
55
56 #include <trace/events/ipi.h>
57 #undef CREATE_TRACE_POINTS
58 #include <trace/hooks/debug.h>
59
60 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_raise);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_entry);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_exit);
63
64 /*
65 * as from 2.5, kernels no longer have an init_tasks structure
66 * so we need some other way of telling a new secondary core
67 * where to place its SVC stack
68 */
69 struct secondary_data secondary_data;
70 /* Number of CPUs which aren't online, but looping in kernel text. */
71 static int cpus_stuck_in_kernel;
72
73 enum ipi_msg_type {
74 IPI_RESCHEDULE,
75 IPI_CALL_FUNC,
76 IPI_CPU_STOP,
77 IPI_CPU_STOP_NMI,
78 IPI_TIMER,
79 IPI_IRQ_WORK,
80 NR_IPI,
81 /*
82 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable
83 * with trace_ipi_*
84 */
85 IPI_CPU_BACKTRACE = NR_IPI,
86 IPI_KGDB_ROUNDUP,
87 MAX_IPI
88 };
89
90 static int ipi_irq_base __ro_after_init;
91 static int nr_ipi __ro_after_init = NR_IPI;
92 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init;
93
94 static bool crash_stop;
95
96 static void ipi_setup(int cpu);
97
98 #ifdef CONFIG_HOTPLUG_CPU
99 static void ipi_teardown(int cpu);
100 static int op_cpu_kill(unsigned int cpu);
101 #else
op_cpu_kill(unsigned int cpu)102 static inline int op_cpu_kill(unsigned int cpu)
103 {
104 return -ENOSYS;
105 }
106 #endif
107
108
109 /*
110 * Boot a secondary CPU, and assign it the specified idle task.
111 * This also gives us the initial stack to use for this CPU.
112 */
boot_secondary(unsigned int cpu,struct task_struct * idle)113 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
114 {
115 const struct cpu_operations *ops = get_cpu_ops(cpu);
116
117 if (ops->cpu_boot)
118 return ops->cpu_boot(cpu);
119
120 return -EOPNOTSUPP;
121 }
122
123 static DECLARE_COMPLETION(cpu_running);
124
__cpu_up(unsigned int cpu,struct task_struct * idle)125 int __cpu_up(unsigned int cpu, struct task_struct *idle)
126 {
127 int ret;
128 long status;
129
130 /*
131 * We need to tell the secondary core where to find its stack and the
132 * page tables.
133 */
134 secondary_data.task = idle;
135 update_cpu_boot_status(CPU_MMU_OFF);
136
137 /* Now bring the CPU into our world */
138 ret = boot_secondary(cpu, idle);
139 if (ret) {
140 if (ret != -EPERM)
141 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
142 return ret;
143 }
144
145 /*
146 * CPU was successfully started, wait for it to come online or
147 * time out.
148 */
149 wait_for_completion_timeout(&cpu_running,
150 msecs_to_jiffies(5000));
151 if (cpu_online(cpu))
152 return 0;
153
154 pr_crit("CPU%u: failed to come online\n", cpu);
155 secondary_data.task = NULL;
156 status = READ_ONCE(secondary_data.status);
157 if (status == CPU_MMU_OFF)
158 status = READ_ONCE(__early_cpu_boot_status);
159
160 switch (status & CPU_BOOT_STATUS_MASK) {
161 default:
162 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
163 cpu, status);
164 cpus_stuck_in_kernel++;
165 break;
166 case CPU_KILL_ME:
167 if (!op_cpu_kill(cpu)) {
168 pr_crit("CPU%u: died during early boot\n", cpu);
169 break;
170 }
171 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
172 fallthrough;
173 case CPU_STUCK_IN_KERNEL:
174 pr_crit("CPU%u: is stuck in kernel\n", cpu);
175 if (status & CPU_STUCK_REASON_52_BIT_VA)
176 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
177 if (status & CPU_STUCK_REASON_NO_GRAN) {
178 pr_crit("CPU%u: does not support %luK granule\n",
179 cpu, PAGE_SIZE / SZ_1K);
180 }
181 cpus_stuck_in_kernel++;
182 break;
183 case CPU_PANIC_KERNEL:
184 panic("CPU%u detected unsupported configuration\n", cpu);
185 }
186
187 return -EIO;
188 }
189
init_gic_priority_masking(void)190 static void init_gic_priority_masking(void)
191 {
192 u32 cpuflags;
193
194 if (WARN_ON(!gic_enable_sre()))
195 return;
196
197 cpuflags = read_sysreg(daif);
198
199 WARN_ON(!(cpuflags & PSR_I_BIT));
200 WARN_ON(!(cpuflags & PSR_F_BIT));
201
202 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
203 }
204
205 /*
206 * This is the secondary CPU boot entry. We're using this CPUs
207 * idle thread stack, but a set of temporary page tables.
208 */
secondary_start_kernel(void)209 asmlinkage notrace void secondary_start_kernel(void)
210 {
211 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
212 struct mm_struct *mm = &init_mm;
213 const struct cpu_operations *ops;
214 unsigned int cpu = smp_processor_id();
215
216 /*
217 * All kernel threads share the same mm context; grab a
218 * reference and switch to it.
219 */
220 mmgrab(mm);
221 current->active_mm = mm;
222
223 /*
224 * TTBR0 is only used for the identity mapping at this stage. Make it
225 * point to zero page to avoid speculatively fetching new entries.
226 */
227 cpu_uninstall_idmap();
228
229 if (system_uses_irq_prio_masking())
230 init_gic_priority_masking();
231
232 rcutree_report_cpu_starting(cpu);
233 trace_hardirqs_off();
234
235 /*
236 * If the system has established the capabilities, make sure
237 * this CPU ticks all of those. If it doesn't, the CPU will
238 * fail to come online.
239 */
240 check_local_cpu_capabilities();
241
242 ops = get_cpu_ops(cpu);
243 if (ops->cpu_postboot)
244 ops->cpu_postboot();
245
246 /*
247 * Log the CPU info before it is marked online and might get read.
248 */
249 cpuinfo_store_cpu();
250 store_cpu_topology(cpu);
251
252 /*
253 * Enable GIC and timers.
254 */
255 notify_cpu_starting(cpu);
256
257 ipi_setup(cpu);
258
259 numa_add_cpu(cpu);
260
261 /*
262 * OK, now it's safe to let the boot CPU continue. Wait for
263 * the CPU migration code to notice that the CPU is online
264 * before we continue.
265 */
266 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
267 cpu, (unsigned long)mpidr,
268 read_cpuid_id());
269 update_cpu_boot_status(CPU_BOOT_SUCCESS);
270 set_cpu_online(cpu, true);
271 complete(&cpu_running);
272
273 /*
274 * Secondary CPUs enter the kernel with all DAIF exceptions masked.
275 *
276 * As with setup_arch() we must unmask Debug and SError exceptions, and
277 * as the root irqchip has already been detected and initialized we can
278 * unmask IRQ and FIQ at the same time.
279 */
280 local_daif_restore(DAIF_PROCCTX);
281
282 /*
283 * OK, it's off to the idle thread for us
284 */
285 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
286 }
287
288 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)289 static int op_cpu_disable(unsigned int cpu)
290 {
291 const struct cpu_operations *ops = get_cpu_ops(cpu);
292
293 /*
294 * If we don't have a cpu_die method, abort before we reach the point
295 * of no return. CPU0 may not have an cpu_ops, so test for it.
296 */
297 if (!ops || !ops->cpu_die)
298 return -EOPNOTSUPP;
299
300 /*
301 * We may need to abort a hot unplug for some other mechanism-specific
302 * reason.
303 */
304 if (ops->cpu_disable)
305 return ops->cpu_disable(cpu);
306
307 return 0;
308 }
309
310 /*
311 * __cpu_disable runs on the processor to be shutdown.
312 */
__cpu_disable(void)313 int __cpu_disable(void)
314 {
315 unsigned int cpu = smp_processor_id();
316 int ret;
317
318 ret = op_cpu_disable(cpu);
319 if (ret)
320 return ret;
321
322 remove_cpu_topology(cpu);
323 numa_remove_cpu(cpu);
324
325 /*
326 * Take this CPU offline. Once we clear this, we can't return,
327 * and we must not schedule until we're ready to give up the cpu.
328 */
329 set_cpu_online(cpu, false);
330 ipi_teardown(cpu);
331
332 /*
333 * OK - migrate IRQs away from this CPU
334 */
335 irq_migrate_all_off_this_cpu();
336
337 return 0;
338 }
339
op_cpu_kill(unsigned int cpu)340 static int op_cpu_kill(unsigned int cpu)
341 {
342 const struct cpu_operations *ops = get_cpu_ops(cpu);
343
344 /*
345 * If we have no means of synchronising with the dying CPU, then assume
346 * that it is really dead. We can only wait for an arbitrary length of
347 * time and hope that it's dead, so let's skip the wait and just hope.
348 */
349 if (!ops->cpu_kill)
350 return 0;
351
352 return ops->cpu_kill(cpu);
353 }
354
355 /*
356 * Called on the thread which is asking for a CPU to be shutdown after the
357 * shutdown completed.
358 */
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)359 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
360 {
361 int err;
362
363 pr_debug("CPU%u: shutdown\n", cpu);
364
365 /*
366 * Now that the dying CPU is beyond the point of no return w.r.t.
367 * in-kernel synchronisation, try to get the firwmare to help us to
368 * verify that it has really left the kernel before we consider
369 * clobbering anything it might still be using.
370 */
371 err = op_cpu_kill(cpu);
372 if (err)
373 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
374 }
375
376 /*
377 * Called from the idle thread for the CPU which has been shutdown.
378 *
379 */
cpu_die(void)380 void __noreturn cpu_die(void)
381 {
382 unsigned int cpu = smp_processor_id();
383 const struct cpu_operations *ops = get_cpu_ops(cpu);
384
385 idle_task_exit();
386
387 local_daif_mask();
388
389 /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
390 cpuhp_ap_report_dead();
391
392 /*
393 * Actually shutdown the CPU. This must never fail. The specific hotplug
394 * mechanism must perform all required cache maintenance to ensure that
395 * no dirty lines are lost in the process of shutting down the CPU.
396 */
397 ops->cpu_die(cpu);
398
399 BUG();
400 }
401 #endif
402
__cpu_try_die(int cpu)403 static void __cpu_try_die(int cpu)
404 {
405 #ifdef CONFIG_HOTPLUG_CPU
406 const struct cpu_operations *ops = get_cpu_ops(cpu);
407
408 if (ops && ops->cpu_die)
409 ops->cpu_die(cpu);
410 #endif
411 }
412
413 /*
414 * Kill the calling secondary CPU, early in bringup before it is turned
415 * online.
416 */
cpu_die_early(void)417 void __noreturn cpu_die_early(void)
418 {
419 int cpu = smp_processor_id();
420
421 pr_crit("CPU%d: will not boot\n", cpu);
422
423 /* Mark this CPU absent */
424 set_cpu_present(cpu, 0);
425 rcutree_report_cpu_dead();
426
427 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
428 update_cpu_boot_status(CPU_KILL_ME);
429 __cpu_try_die(cpu);
430 }
431
432 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
433
434 cpu_park_loop();
435 }
436
hyp_mode_check(void)437 static void __init hyp_mode_check(void)
438 {
439 if (is_hyp_mode_available())
440 pr_info("CPU: All CPU(s) started at EL2\n");
441 else if (is_hyp_mode_mismatched())
442 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
443 "CPU: CPUs started in inconsistent modes");
444 else
445 pr_info("CPU: All CPU(s) started at EL1\n");
446 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
447 kvm_compute_layout();
448 kvm_apply_hyp_relocations();
449 }
450 }
451
smp_cpus_done(unsigned int max_cpus)452 void __init smp_cpus_done(unsigned int max_cpus)
453 {
454 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
455 hyp_mode_check();
456 setup_system_features();
457 setup_user_features();
458 mark_linear_text_alias_ro();
459 }
460
smp_prepare_boot_cpu(void)461 void __init smp_prepare_boot_cpu(void)
462 {
463 /*
464 * The runtime per-cpu areas have been allocated by
465 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
466 * freed shortly, so we must move over to the runtime per-cpu area.
467 */
468 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
469
470 cpuinfo_store_boot_cpu();
471 setup_boot_cpu_features();
472
473 /* Conditionally switch to GIC PMR for interrupt masking */
474 if (system_uses_irq_prio_masking())
475 init_gic_priority_masking();
476
477 kasan_init_hw_tags();
478 /* Init percpu seeds for random tags after cpus are set up. */
479 kasan_init_sw_tags();
480 }
481
482 /*
483 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
484 * entries and check for duplicates. If any is found just ignore the
485 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
486 * matching valid MPIDR values.
487 */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)488 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
489 {
490 unsigned int i;
491
492 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
493 if (cpu_logical_map(i) == hwid)
494 return true;
495 return false;
496 }
497
498 /*
499 * Initialize cpu operations for a logical cpu and
500 * set it in the possible mask on success
501 */
smp_cpu_setup(int cpu)502 static int __init smp_cpu_setup(int cpu)
503 {
504 const struct cpu_operations *ops;
505
506 if (init_cpu_ops(cpu))
507 return -ENODEV;
508
509 ops = get_cpu_ops(cpu);
510 if (ops->cpu_init(cpu))
511 return -ENODEV;
512
513 set_cpu_possible(cpu, true);
514
515 return 0;
516 }
517
518 static bool bootcpu_valid __initdata;
519 static unsigned int cpu_count = 1;
520
arch_register_cpu(int cpu)521 int arch_register_cpu(int cpu)
522 {
523 acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
524 struct cpu *c = &per_cpu(cpu_devices, cpu);
525
526 if (!acpi_disabled && !acpi_handle &&
527 IS_ENABLED(CONFIG_ACPI_HOTPLUG_CPU))
528 return -EPROBE_DEFER;
529
530 #ifdef CONFIG_ACPI_HOTPLUG_CPU
531 /* For now block anything that looks like physical CPU Hotplug */
532 if (invalid_logical_cpuid(cpu) || !cpu_present(cpu)) {
533 pr_err_once("Changing CPU present bit is not supported\n");
534 return -ENODEV;
535 }
536 #endif
537
538 /*
539 * Availability of the acpi handle is sufficient to establish
540 * that _STA has aleady been checked. No need to recheck here.
541 */
542 c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
543
544 return register_cpu(c, cpu);
545 }
546
547 #ifdef CONFIG_ACPI_HOTPLUG_CPU
arch_unregister_cpu(int cpu)548 void arch_unregister_cpu(int cpu)
549 {
550 acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
551 struct cpu *c = &per_cpu(cpu_devices, cpu);
552 acpi_status status;
553 unsigned long long sta;
554
555 if (!acpi_handle) {
556 pr_err_once("Removing a CPU without associated ACPI handle\n");
557 return;
558 }
559
560 status = acpi_evaluate_integer(acpi_handle, "_STA", NULL, &sta);
561 if (ACPI_FAILURE(status))
562 return;
563
564 /* For now do not allow anything that looks like physical CPU HP */
565 if (cpu_present(cpu) && !(sta & ACPI_STA_DEVICE_PRESENT)) {
566 pr_err_once("Changing CPU present bit is not supported\n");
567 return;
568 }
569
570 unregister_cpu(c);
571 }
572 #endif /* CONFIG_ACPI_HOTPLUG_CPU */
573
574 #ifdef CONFIG_ACPI
575 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
576
acpi_cpu_get_madt_gicc(int cpu)577 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
578 {
579 return &cpu_madt_gicc[cpu];
580 }
581 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
582
583 /*
584 * acpi_map_gic_cpu_interface - parse processor MADT entry
585 *
586 * Carry out sanity checks on MADT processor entry and initialize
587 * cpu_logical_map on success
588 */
589 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)590 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
591 {
592 u64 hwid = processor->arm_mpidr;
593
594 if (!(processor->flags &
595 (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) {
596 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
597 return;
598 }
599
600 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
601 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
602 return;
603 }
604
605 if (is_mpidr_duplicate(cpu_count, hwid)) {
606 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
607 return;
608 }
609
610 /* Check if GICC structure of boot CPU is available in the MADT */
611 if (cpu_logical_map(0) == hwid) {
612 if (bootcpu_valid) {
613 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
614 hwid);
615 return;
616 }
617 bootcpu_valid = true;
618 cpu_madt_gicc[0] = *processor;
619 return;
620 }
621
622 if (cpu_count >= NR_CPUS)
623 return;
624
625 /* map the logical cpu id to cpu MPIDR */
626 set_cpu_logical_map(cpu_count, hwid);
627
628 cpu_madt_gicc[cpu_count] = *processor;
629
630 /*
631 * Set-up the ACPI parking protocol cpu entries
632 * while initializing the cpu_logical_map to
633 * avoid parsing MADT entries multiple times for
634 * nothing (ie a valid cpu_logical_map entry should
635 * contain a valid parking protocol data set to
636 * initialize the cpu if the parking protocol is
637 * the only available enable method).
638 */
639 acpi_set_mailbox_entry(cpu_count, processor);
640
641 cpu_count++;
642 }
643
644 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)645 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
646 const unsigned long end)
647 {
648 struct acpi_madt_generic_interrupt *processor;
649
650 processor = (struct acpi_madt_generic_interrupt *)header;
651 if (BAD_MADT_GICC_ENTRY(processor, end))
652 return -EINVAL;
653
654 acpi_table_print_madt_entry(&header->common);
655
656 acpi_map_gic_cpu_interface(processor);
657
658 return 0;
659 }
660
acpi_parse_and_init_cpus(void)661 static void __init acpi_parse_and_init_cpus(void)
662 {
663 int i;
664
665 /*
666 * do a walk of MADT to determine how many CPUs
667 * we have including disabled CPUs, and get information
668 * we need for SMP init.
669 */
670 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
671 acpi_parse_gic_cpu_interface, 0);
672
673 /*
674 * In ACPI, SMP and CPU NUMA information is provided in separate
675 * static tables, namely the MADT and the SRAT.
676 *
677 * Thus, it is simpler to first create the cpu logical map through
678 * an MADT walk and then map the logical cpus to their node ids
679 * as separate steps.
680 */
681 acpi_map_cpus_to_nodes();
682
683 for (i = 0; i < nr_cpu_ids; i++)
684 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
685 }
686 #else
687 #define acpi_parse_and_init_cpus(...) do { } while (0)
688 #endif
689
690 /*
691 * Enumerate the possible CPU set from the device tree and build the
692 * cpu logical map array containing MPIDR values related to logical
693 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
694 */
of_parse_and_init_cpus(void)695 static void __init of_parse_and_init_cpus(void)
696 {
697 struct device_node *dn;
698
699 for_each_of_cpu_node(dn) {
700 u64 hwid = of_get_cpu_hwid(dn, 0);
701
702 if (hwid & ~MPIDR_HWID_BITMASK)
703 goto next;
704
705 if (is_mpidr_duplicate(cpu_count, hwid)) {
706 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
707 dn);
708 goto next;
709 }
710
711 /*
712 * The numbering scheme requires that the boot CPU
713 * must be assigned logical id 0. Record it so that
714 * the logical map built from DT is validated and can
715 * be used.
716 */
717 if (hwid == cpu_logical_map(0)) {
718 if (bootcpu_valid) {
719 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
720 dn);
721 goto next;
722 }
723
724 bootcpu_valid = true;
725 early_map_cpu_to_node(0, of_node_to_nid(dn));
726
727 /*
728 * cpu_logical_map has already been
729 * initialized and the boot cpu doesn't need
730 * the enable-method so continue without
731 * incrementing cpu.
732 */
733 continue;
734 }
735
736 if (cpu_count >= NR_CPUS)
737 goto next;
738
739 pr_debug("cpu logical map 0x%llx\n", hwid);
740 set_cpu_logical_map(cpu_count, hwid);
741
742 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
743 next:
744 cpu_count++;
745 }
746 }
747
748 /*
749 * Enumerate the possible CPU set from the device tree or ACPI and build the
750 * cpu logical map array containing MPIDR values related to logical
751 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
752 */
smp_init_cpus(void)753 void __init smp_init_cpus(void)
754 {
755 int i;
756
757 if (acpi_disabled)
758 of_parse_and_init_cpus();
759 else
760 acpi_parse_and_init_cpus();
761
762 if (cpu_count > nr_cpu_ids)
763 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
764 cpu_count, nr_cpu_ids);
765
766 if (!bootcpu_valid) {
767 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
768 return;
769 }
770
771 /*
772 * We need to set the cpu_logical_map entries before enabling
773 * the cpus so that cpu processor description entries (DT cpu nodes
774 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
775 * with entries in cpu_logical_map while initializing the cpus.
776 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
777 */
778 for (i = 1; i < nr_cpu_ids; i++) {
779 if (cpu_logical_map(i) != INVALID_HWID) {
780 if (smp_cpu_setup(i))
781 set_cpu_logical_map(i, INVALID_HWID);
782 }
783 }
784 }
785
smp_prepare_cpus(unsigned int max_cpus)786 void __init smp_prepare_cpus(unsigned int max_cpus)
787 {
788 const struct cpu_operations *ops;
789 int err;
790 unsigned int cpu;
791 unsigned int this_cpu;
792
793 init_cpu_topology();
794
795 this_cpu = smp_processor_id();
796 store_cpu_topology(this_cpu);
797 numa_store_cpu_info(this_cpu);
798 numa_add_cpu(this_cpu);
799
800 /*
801 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
802 * secondary CPUs present.
803 */
804 if (max_cpus == 0)
805 return;
806
807 /*
808 * Initialise the present map (which describes the set of CPUs
809 * actually populated at the present time) and release the
810 * secondaries from the bootloader.
811 */
812 for_each_possible_cpu(cpu) {
813
814 if (cpu == smp_processor_id())
815 continue;
816
817 ops = get_cpu_ops(cpu);
818 if (!ops)
819 continue;
820
821 err = ops->cpu_prepare(cpu);
822 if (err)
823 continue;
824
825 set_cpu_present(cpu, true);
826 numa_store_cpu_info(cpu);
827 }
828 }
829
830 static const char *ipi_types[MAX_IPI] __tracepoint_string = {
831 [IPI_RESCHEDULE] = "Rescheduling interrupts",
832 [IPI_CALL_FUNC] = "Function call interrupts",
833 [IPI_CPU_STOP] = "CPU stop interrupts",
834 [IPI_CPU_STOP_NMI] = "CPU stop NMIs",
835 [IPI_TIMER] = "Timer broadcast interrupts",
836 [IPI_IRQ_WORK] = "IRQ work interrupts",
837 [IPI_CPU_BACKTRACE] = "CPU backtrace interrupts",
838 [IPI_KGDB_ROUNDUP] = "KGDB roundup interrupts",
839 };
840
841 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
842
843 unsigned long irq_err_count;
844
arch_show_interrupts(struct seq_file * p,int prec)845 int arch_show_interrupts(struct seq_file *p, int prec)
846 {
847 unsigned int cpu, i;
848
849 for (i = 0; i < MAX_IPI; i++) {
850 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
851 prec >= 4 ? " " : "");
852 for_each_online_cpu(cpu)
853 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
854 seq_printf(p, " %s\n", ipi_types[i]);
855 }
856
857 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
858 return 0;
859 }
860
arch_send_call_function_ipi_mask(const struct cpumask * mask)861 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
862 {
863 smp_cross_call(mask, IPI_CALL_FUNC);
864 }
865
arch_send_call_function_single_ipi(int cpu)866 void arch_send_call_function_single_ipi(int cpu)
867 {
868 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
869 }
870
871 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)872 void arch_irq_work_raise(void)
873 {
874 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
875 }
876 #endif
877
local_cpu_stop(unsigned int cpu)878 static void __noreturn local_cpu_stop(unsigned int cpu)
879 {
880 set_cpu_online(cpu, false);
881
882 local_daif_mask();
883 sdei_mask_local_cpu();
884 cpu_park_loop();
885 }
886
887 /*
888 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
889 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
890 * CPUs that have already stopped themselves.
891 */
panic_smp_self_stop(void)892 void __noreturn panic_smp_self_stop(void)
893 {
894 local_cpu_stop(smp_processor_id());
895 }
896
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)897 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
898 {
899 #ifdef CONFIG_KEXEC_CORE
900 /*
901 * Use local_daif_mask() instead of local_irq_disable() to make sure
902 * that pseudo-NMIs are disabled. The "crash stop" code starts with
903 * an IRQ and falls back to NMI (which might be pseudo). If the IRQ
904 * finally goes through right as we're timing out then the NMI could
905 * interrupt us. It's better to prevent the NMI and let the IRQ
906 * finish since the pt_regs will be better.
907 */
908 local_daif_mask();
909
910 crash_save_cpu(regs, cpu);
911
912 set_cpu_online(cpu, false);
913
914 sdei_mask_local_cpu();
915
916 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
917 __cpu_try_die(cpu);
918
919 /* just in case */
920 cpu_park_loop();
921 #else
922 BUG();
923 #endif
924 }
925
arm64_backtrace_ipi(cpumask_t * mask)926 static void arm64_backtrace_ipi(cpumask_t *mask)
927 {
928 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
929 }
930
arch_trigger_cpumask_backtrace(const cpumask_t * mask,int exclude_cpu)931 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
932 {
933 /*
934 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name,
935 * nothing about it truly needs to be implemented using an NMI, it's
936 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi()
937 * returned false our backtrace attempt will just use a regular IPI.
938 */
939 nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi);
940 }
941
942 #ifdef CONFIG_KGDB
kgdb_roundup_cpus(void)943 void kgdb_roundup_cpus(void)
944 {
945 int this_cpu = raw_smp_processor_id();
946 int cpu;
947
948 for_each_online_cpu(cpu) {
949 /* No need to roundup ourselves */
950 if (cpu == this_cpu)
951 continue;
952
953 __ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu);
954 }
955 }
956 #endif
957
958 /*
959 * Main handler for inter-processor interrupts
960 */
do_handle_IPI(int ipinr)961 static void do_handle_IPI(int ipinr)
962 {
963 unsigned int cpu = smp_processor_id();
964
965 if ((unsigned)ipinr < NR_IPI)
966 trace_ipi_entry(ipi_types[ipinr]);
967
968 switch (ipinr) {
969 case IPI_RESCHEDULE:
970 scheduler_ipi();
971 break;
972
973 case IPI_CALL_FUNC:
974 generic_smp_call_function_interrupt();
975 break;
976
977 case IPI_CPU_STOP:
978 case IPI_CPU_STOP_NMI:
979 if (IS_ENABLED(CONFIG_KEXEC_CORE) && crash_stop) {
980 ipi_cpu_crash_stop(cpu, get_irq_regs());
981 unreachable();
982 } else {
983 trace_android_vh_ipi_stop(get_irq_regs());
984 local_cpu_stop(cpu);
985 }
986 break;
987
988 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
989 case IPI_TIMER:
990 tick_receive_broadcast();
991 break;
992 #endif
993
994 #ifdef CONFIG_IRQ_WORK
995 case IPI_IRQ_WORK:
996 irq_work_run();
997 break;
998 #endif
999
1000 case IPI_CPU_BACKTRACE:
1001 /*
1002 * NOTE: in some cases this _won't_ be NMI context. See the
1003 * comment in arch_trigger_cpumask_backtrace().
1004 */
1005 nmi_cpu_backtrace(get_irq_regs());
1006 break;
1007
1008 case IPI_KGDB_ROUNDUP:
1009 kgdb_nmicallback(cpu, get_irq_regs());
1010 break;
1011
1012 default:
1013 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
1014 break;
1015 }
1016
1017 if ((unsigned)ipinr < NR_IPI)
1018 trace_ipi_exit(ipi_types[ipinr]);
1019 }
1020
ipi_handler(int irq,void * data)1021 static irqreturn_t ipi_handler(int irq, void *data)
1022 {
1023 do_handle_IPI(irq - ipi_irq_base);
1024 return IRQ_HANDLED;
1025 }
1026
smp_cross_call(const struct cpumask * target,unsigned int ipinr)1027 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
1028 {
1029 trace_ipi_raise(target, ipi_types[ipinr]);
1030 __ipi_send_mask(ipi_desc[ipinr], target);
1031 }
1032
ipi_should_be_nmi(enum ipi_msg_type ipi)1033 static bool ipi_should_be_nmi(enum ipi_msg_type ipi)
1034 {
1035 if (!system_uses_irq_prio_masking())
1036 return false;
1037
1038 switch (ipi) {
1039 case IPI_CPU_STOP_NMI:
1040 case IPI_CPU_BACKTRACE:
1041 case IPI_KGDB_ROUNDUP:
1042 return true;
1043 default:
1044 return false;
1045 }
1046 }
1047
ipi_setup(int cpu)1048 static void ipi_setup(int cpu)
1049 {
1050 int i;
1051
1052 if (WARN_ON_ONCE(!ipi_irq_base))
1053 return;
1054
1055 for (i = 0; i < nr_ipi; i++) {
1056 if (ipi_should_be_nmi(i)) {
1057 prepare_percpu_nmi(ipi_irq_base + i);
1058 enable_percpu_nmi(ipi_irq_base + i, 0);
1059 } else {
1060 enable_percpu_irq(ipi_irq_base + i, 0);
1061 }
1062 }
1063 }
1064
1065 #ifdef CONFIG_HOTPLUG_CPU
ipi_teardown(int cpu)1066 static void ipi_teardown(int cpu)
1067 {
1068 int i;
1069
1070 if (WARN_ON_ONCE(!ipi_irq_base))
1071 return;
1072
1073 for (i = 0; i < nr_ipi; i++) {
1074 if (ipi_should_be_nmi(i)) {
1075 disable_percpu_nmi(ipi_irq_base + i);
1076 teardown_percpu_nmi(ipi_irq_base + i);
1077 } else {
1078 disable_percpu_irq(ipi_irq_base + i);
1079 }
1080 }
1081 }
1082 #endif
1083
set_smp_ipi_range(int ipi_base,int n)1084 void __init set_smp_ipi_range(int ipi_base, int n)
1085 {
1086 int i;
1087
1088 WARN_ON(n < MAX_IPI);
1089 nr_ipi = min(n, MAX_IPI);
1090
1091 for (i = 0; i < nr_ipi; i++) {
1092 int err;
1093
1094 if (ipi_should_be_nmi(i)) {
1095 err = request_percpu_nmi(ipi_base + i, ipi_handler,
1096 "IPI", &irq_stat);
1097 WARN(err, "Could not request IPI %d as NMI, err=%d\n",
1098 i, err);
1099 } else {
1100 err = request_percpu_irq(ipi_base + i, ipi_handler,
1101 "IPI", &irq_stat);
1102 WARN(err, "Could not request IPI %d as IRQ, err=%d\n",
1103 i, err);
1104 }
1105
1106 ipi_desc[i] = irq_to_desc(ipi_base + i);
1107 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1108 }
1109
1110 ipi_irq_base = ipi_base;
1111
1112 /* Setup the boot CPU immediately */
1113 ipi_setup(smp_processor_id());
1114 }
1115
arch_smp_send_reschedule(int cpu)1116 void arch_smp_send_reschedule(int cpu)
1117 {
1118 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1119 }
1120
1121 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi(unsigned int cpu)1122 void arch_send_wakeup_ipi(unsigned int cpu)
1123 {
1124 /*
1125 * We use a scheduler IPI to wake the CPU as this avoids the need for a
1126 * dedicated IPI and we can safely handle spurious scheduler IPIs.
1127 */
1128 smp_send_reschedule(cpu);
1129 }
1130 #endif
1131
1132 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)1133 void tick_broadcast(const struct cpumask *mask)
1134 {
1135 smp_cross_call(mask, IPI_TIMER);
1136 }
1137 #endif
1138
1139 /*
1140 * The number of CPUs online, not counting this CPU (which may not be
1141 * fully online and so not counted in num_online_cpus()).
1142 */
num_other_online_cpus(void)1143 static inline unsigned int num_other_online_cpus(void)
1144 {
1145 unsigned int this_cpu_online = cpu_online(smp_processor_id());
1146
1147 return num_online_cpus() - this_cpu_online;
1148 }
1149
smp_send_stop(void)1150 void smp_send_stop(void)
1151 {
1152 static unsigned long stop_in_progress;
1153 cpumask_t mask;
1154 unsigned long timeout;
1155
1156 /*
1157 * If this cpu is the only one alive at this point in time, online or
1158 * not, there are no stop messages to be sent around, so just back out.
1159 */
1160 if (num_other_online_cpus() == 0)
1161 goto skip_ipi;
1162
1163 /* Only proceed if this is the first CPU to reach this code */
1164 if (test_and_set_bit(0, &stop_in_progress))
1165 return;
1166
1167 /*
1168 * Send an IPI to all currently online CPUs except the CPU running
1169 * this code.
1170 *
1171 * NOTE: we don't do anything here to prevent other CPUs from coming
1172 * online after we snapshot `cpu_online_mask`. Ideally, the calling code
1173 * should do something to prevent other CPUs from coming up. This code
1174 * can be called in the panic path and thus it doesn't seem wise to
1175 * grab the CPU hotplug mutex ourselves. Worst case:
1176 * - If a CPU comes online as we're running, we'll likely notice it
1177 * during the 1 second wait below and then we'll catch it when we try
1178 * with an NMI (assuming NMIs are enabled) since we re-snapshot the
1179 * mask before sending an NMI.
1180 * - If we leave the function and see that CPUs are still online we'll
1181 * at least print a warning. Especially without NMIs this function
1182 * isn't foolproof anyway so calling code will just have to accept
1183 * the fact that there could be cases where a CPU can't be stopped.
1184 */
1185 cpumask_copy(&mask, cpu_online_mask);
1186 cpumask_clear_cpu(smp_processor_id(), &mask);
1187
1188 if (system_state <= SYSTEM_RUNNING)
1189 pr_crit("SMP: stopping secondary CPUs\n");
1190
1191 /*
1192 * Start with a normal IPI and wait up to one second for other CPUs to
1193 * stop. We do this first because it gives other processors a chance
1194 * to exit critical sections / drop locks and makes the rest of the
1195 * stop process (especially console flush) more robust.
1196 */
1197 smp_cross_call(&mask, IPI_CPU_STOP);
1198 timeout = USEC_PER_SEC;
1199 while (num_other_online_cpus() && timeout--)
1200 udelay(1);
1201
1202 /*
1203 * If CPUs are still online, try an NMI. There's no excuse for this to
1204 * be slow, so we only give them an extra 10 ms to respond.
1205 */
1206 if (num_other_online_cpus() && ipi_should_be_nmi(IPI_CPU_STOP_NMI)) {
1207 smp_rmb();
1208 cpumask_copy(&mask, cpu_online_mask);
1209 cpumask_clear_cpu(smp_processor_id(), &mask);
1210
1211 pr_info("SMP: retry stop with NMI for CPUs %*pbl\n",
1212 cpumask_pr_args(&mask));
1213
1214 smp_cross_call(&mask, IPI_CPU_STOP_NMI);
1215 timeout = USEC_PER_MSEC * 10;
1216 while (num_other_online_cpus() && timeout--)
1217 udelay(1);
1218 }
1219
1220 if (num_other_online_cpus()) {
1221 smp_rmb();
1222 cpumask_copy(&mask, cpu_online_mask);
1223 cpumask_clear_cpu(smp_processor_id(), &mask);
1224
1225 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1226 cpumask_pr_args(&mask));
1227 }
1228
1229 skip_ipi:
1230 sdei_mask_local_cpu();
1231 }
1232
1233 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)1234 void crash_smp_send_stop(void)
1235 {
1236 /*
1237 * This function can be called twice in panic path, but obviously
1238 * we execute this only once.
1239 *
1240 * We use this same boolean to tell whether the IPI we send was a
1241 * stop or a "crash stop".
1242 */
1243 if (crash_stop)
1244 return;
1245 crash_stop = 1;
1246
1247 smp_send_stop();
1248
1249 sdei_handler_abort();
1250 }
1251
smp_crash_stop_failed(void)1252 bool smp_crash_stop_failed(void)
1253 {
1254 return num_other_online_cpus() != 0;
1255 }
1256 #endif
1257
have_cpu_die(void)1258 static bool have_cpu_die(void)
1259 {
1260 #ifdef CONFIG_HOTPLUG_CPU
1261 int any_cpu = raw_smp_processor_id();
1262 const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1263
1264 if (ops && ops->cpu_die)
1265 return true;
1266 #endif
1267 return false;
1268 }
1269
cpus_are_stuck_in_kernel(void)1270 bool cpus_are_stuck_in_kernel(void)
1271 {
1272 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1273
1274 return !!cpus_stuck_in_kernel || smp_spin_tables ||
1275 is_protected_kvm_enabled();
1276 }
1277
nr_ipi_get(void)1278 int nr_ipi_get(void)
1279 {
1280 return nr_ipi;
1281 }
1282 EXPORT_SYMBOL_GPL(nr_ipi_get);
1283
ipi_desc_get(void)1284 struct irq_desc **ipi_desc_get(void)
1285 {
1286 return ipi_desc;
1287 }
1288 EXPORT_SYMBOL_GPL(ipi_desc_get);
1289