• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 - Google Inc
4  * Author: Andrew Scull <ascull@google.com>
5  */
6 
7 #include <kvm/arm_hypercalls.h>
8 
9 #include <hyp/adjust_pc.h>
10 #include <hyp/switch.h>
11 
12 #include <asm/pgtable-types.h>
13 #include <asm/kvm_asm.h>
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_host.h>
16 #include <asm/kvm_hyp.h>
17 #include <asm/kvm_hypevents.h>
18 #include <asm/kvm_mmu.h>
19 
20 #include <nvhe/alloc.h>
21 #include <nvhe/alloc_mgt.h>
22 #include <nvhe/ffa.h>
23 #include <nvhe/iommu.h>
24 #include <nvhe/mem_protect.h>
25 #include <nvhe/modules.h>
26 #include <nvhe/mm.h>
27 #include <nvhe/pkvm.h>
28 #include <nvhe/pviommu-host.h>
29 #include <nvhe/trace.h>
30 #include <nvhe/trap_handler.h>
31 
32 #include <linux/irqchip/arm-gic-v3.h>
33 #include <uapi/linux/psci.h>
34 
35 #include "../../sys_regs.h"
36 
37 DEFINE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
38 
39 /*
40  * Holds one request only, in theory we can compress more, but
41  * typically HVC returns on first failure.
42  */
43 DEFINE_PER_CPU(struct kvm_hyp_req, host_hyp_reqs);
44 
45 /* Serialize request in SMCCC return context. */
hyp_reqs_smccc_encode(unsigned long ret,struct kvm_cpu_context * host_ctxt,struct kvm_hyp_req * req)46 static inline void hyp_reqs_smccc_encode(unsigned long ret, struct kvm_cpu_context *host_ctxt,
47 					 struct kvm_hyp_req *req)
48 {
49 	cpu_reg(host_ctxt, 1) = ret;
50 	cpu_reg(host_ctxt, 2) = 0;
51 	cpu_reg(host_ctxt, 3) = 0;
52 
53 	if (req->type == KVM_HYP_REQ_TYPE_MEM) {
54 		cpu_reg(host_ctxt, 2) = FIELD_PREP(SMCCC_REQ_TYPE_MASK, req->type) |
55 					FIELD_PREP(SMCCC_REQ_DEST_MASK, req->mem.dest);
56 
57 		cpu_reg(host_ctxt, 3) = FIELD_PREP(SMCCC_REQ_NR_PAGES_MASK, req->mem.nr_pages) |
58 					FIELD_PREP(SMCCC_REQ_SZ_ALLOC_MASK, req->mem.sz_alloc);
59 	}
60 
61 	/* We can't encode others */
62 	WARN_ON((req->type != KVM_HYP_REQ_TYPE_MEM) && ((req->type != KVM_HYP_LAST_REQ)));
63 	req->type = KVM_HYP_LAST_REQ;
64 }
65 
66 void __kvm_hyp_host_forward_smc(struct kvm_cpu_context *host_ctxt);
67 
68 static bool (*default_trap_handler)(struct user_pt_regs *regs);
69 static bool (*unmask_serror)(void);
70 static void (*mask_serror)(void);
71 
__pkvm_register_default_trap_handler(bool (* cb)(struct user_pt_regs *))72 int __pkvm_register_default_trap_handler(bool (*cb)(struct user_pt_regs *))
73 {
74 	return cmpxchg(&default_trap_handler, NULL, cb) ? -EBUSY : 0;
75 }
76 
__pkvm_unmask_serror(void)77 void __pkvm_unmask_serror(void)
78 {
79 	u64 hcr = read_sysreg(HCR_EL2);
80 
81 	if (!unmask_serror || !unmask_serror())
82 		return;
83 
84 	write_sysreg(hcr | HCR_AMO, HCR_EL2);
85 	asm volatile("msr daifclr, #4");
86 	isb();
87 }
88 
__pkvm_mask_serror(void)89 static void __pkvm_mask_serror(void)
90 {
91 	u64 hcr = read_sysreg(HCR_EL2);
92 
93 	if (!mask_serror)
94 		return;
95 
96 	mask_serror();
97 
98 	write_sysreg(hcr & ~HCR_AMO, HCR_EL2);
99 	asm volatile("msr daifset, #4");
100 	isb();
101 }
102 
__pkvm_register_unmask_serror(bool (* unmask)(void),void (* mask)(void))103 int __pkvm_register_unmask_serror(bool (*unmask)(void),
104 				  void (*mask)(void))
105 {
106 	static bool registered;
107 
108 	if (!unmask || !mask)
109 		return -EINVAL;
110 
111 	if (cmpxchg(&registered, false, true))
112 		return -EBUSY;
113 
114 	mask_serror = mask;
115 	/*
116 	 * Paired with the CB + isb() in __pkvm_unmask_serror(). Makes sure a
117 	 * reader can't unmask serrors before being able to mask them.
118 	 */
119 	smp_wmb();
120 	unmask_serror = unmask;
121 
122 	return 0;
123 }
124 
__hyp_enter(void)125 void __hyp_enter(void)
126 {
127 	trace_hyp_enter();
128 	__pkvm_unmask_serror();
129 }
130 
__hyp_exit(void)131 void __hyp_exit(void)
132 {
133 	__pkvm_mask_serror();
134 	trace_hyp_exit();
135 }
136 
pkvm_refill_memcache(struct pkvm_hyp_vcpu * hyp_vcpu)137 static int pkvm_refill_memcache(struct pkvm_hyp_vcpu *hyp_vcpu)
138 {
139 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
140 
141 	return refill_memcache(&hyp_vcpu->vcpu.arch.stage2_mc,
142 			       host_vcpu->arch.stage2_mc.nr_pages,
143 			       &host_vcpu->arch.stage2_mc);
144 }
145 
146 typedef void (*hyp_entry_exit_handler_fn)(struct pkvm_hyp_vcpu *);
147 
handle_pvm_entry_wfx(struct pkvm_hyp_vcpu * hyp_vcpu)148 static void handle_pvm_entry_wfx(struct pkvm_hyp_vcpu *hyp_vcpu)
149 {
150 	if (vcpu_get_flag(hyp_vcpu->host_vcpu, INCREMENT_PC)) {
151 		vcpu_clear_flag(&hyp_vcpu->vcpu, PC_UPDATE_REQ);
152 		kvm_incr_pc(&hyp_vcpu->vcpu);
153 	}
154 }
155 
handle_pvm_entry_psci(struct pkvm_hyp_vcpu * hyp_vcpu)156 static void handle_pvm_entry_psci(struct pkvm_hyp_vcpu *hyp_vcpu)
157 {
158 	u32 psci_fn = smccc_get_function(&hyp_vcpu->vcpu);
159 	u64 ret = READ_ONCE(hyp_vcpu->host_vcpu->arch.ctxt.regs.regs[0]);
160 
161 	switch (psci_fn) {
162 	case PSCI_0_2_FN_CPU_ON:
163 	case PSCI_0_2_FN64_CPU_ON:
164 		/*
165 		 * Check whether the cpu_on request to the host was successful.
166 		 * If not, reset the vcpu state from ON_PENDING to OFF.
167 		 * This could happen if this vcpu attempted to turn on the other
168 		 * vcpu while the other one is in the process of turning itself
169 		 * off.
170 		 */
171 		if (ret != PSCI_RET_SUCCESS) {
172 			unsigned long cpu_id = smccc_get_arg1(&hyp_vcpu->vcpu);
173 			struct pkvm_hyp_vcpu *target_vcpu;
174 			struct pkvm_hyp_vm *hyp_vm;
175 
176 			hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
177 			target_vcpu = pkvm_mpidr_to_hyp_vcpu(hyp_vm, cpu_id);
178 
179 			if (target_vcpu && READ_ONCE(target_vcpu->power_state) == PSCI_0_2_AFFINITY_LEVEL_ON_PENDING)
180 				WRITE_ONCE(target_vcpu->power_state, PSCI_0_2_AFFINITY_LEVEL_OFF);
181 
182 			ret = PSCI_RET_INTERNAL_FAILURE;
183 		}
184 
185 		break;
186 	default:
187 		break;
188 	}
189 
190 	vcpu_set_reg(&hyp_vcpu->vcpu, 0, ret);
191 }
192 
handle_pvm_entry_hvc64(struct pkvm_hyp_vcpu * hyp_vcpu)193 static void handle_pvm_entry_hvc64(struct pkvm_hyp_vcpu *hyp_vcpu)
194 {
195 	u32 fn = smccc_get_function(&hyp_vcpu->vcpu);
196 
197 	switch (fn) {
198 	case ARM_SMCCC_VENDOR_HYP_KVM_MEM_SHARE_FUNC_ID:
199 		fallthrough;
200 	case ARM_SMCCC_VENDOR_HYP_KVM_MEM_UNSHARE_FUNC_ID:
201 		fallthrough;
202 	case ARM_SMCCC_VENDOR_HYP_KVM_MEM_RELINQUISH_FUNC_ID:
203 		vcpu_set_reg(&hyp_vcpu->vcpu, 0, SMCCC_RET_SUCCESS);
204 		break;
205 	default:
206 		handle_pvm_entry_psci(hyp_vcpu);
207 		break;
208 	}
209 }
210 
handle_pvm_entry_sys64(struct pkvm_hyp_vcpu * hyp_vcpu)211 static void handle_pvm_entry_sys64(struct pkvm_hyp_vcpu *hyp_vcpu)
212 {
213 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
214 
215 	/* Exceptions have priority on anything else */
216 	if (vcpu_get_flag(host_vcpu, PENDING_EXCEPTION)) {
217 		/* Exceptions caused by this should be undef exceptions. */
218 		u32 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);
219 
220 		__vcpu_sys_reg(&hyp_vcpu->vcpu, ESR_EL1) = esr;
221 		kvm_pend_exception(&hyp_vcpu->vcpu, EXCEPT_AA64_EL1_SYNC);
222 		return;
223 	}
224 
225 	if (vcpu_get_flag(host_vcpu, INCREMENT_PC)) {
226 		vcpu_clear_flag(&hyp_vcpu->vcpu, PC_UPDATE_REQ);
227 		kvm_incr_pc(&hyp_vcpu->vcpu);
228 	}
229 
230 	if (!esr_sys64_to_params(hyp_vcpu->vcpu.arch.fault.esr_el2).is_write) {
231 		/* r0 as transfer register between the guest and the host. */
232 		u64 rt_val = READ_ONCE(host_vcpu->arch.ctxt.regs.regs[0]);
233 		int rt = kvm_vcpu_sys_get_rt(&hyp_vcpu->vcpu);
234 
235 		vcpu_set_reg(&hyp_vcpu->vcpu, rt, rt_val);
236 	}
237 }
238 
handle_pvm_entry_iabt(struct pkvm_hyp_vcpu * hyp_vcpu)239 static void handle_pvm_entry_iabt(struct pkvm_hyp_vcpu *hyp_vcpu)
240 {
241 	unsigned long cpsr = *vcpu_cpsr(&hyp_vcpu->vcpu);
242 	u32 esr = ESR_ELx_IL;
243 
244 	if (!vcpu_get_flag(hyp_vcpu->host_vcpu, PENDING_EXCEPTION))
245 		return;
246 
247 	/*
248 	 * If the host wants to inject an exception, get syndrom and
249 	 * fault address.
250 	 */
251 	if ((cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t)
252 		esr |= (ESR_ELx_EC_IABT_LOW << ESR_ELx_EC_SHIFT);
253 	else
254 		esr |= (ESR_ELx_EC_IABT_CUR << ESR_ELx_EC_SHIFT);
255 
256 	esr |= ESR_ELx_FSC_EXTABT;
257 
258 	__vcpu_sys_reg(&hyp_vcpu->vcpu, ESR_EL1) = esr;
259 	__vcpu_sys_reg(&hyp_vcpu->vcpu, FAR_EL1) =
260 		kvm_vcpu_get_hfar(&hyp_vcpu->vcpu);
261 
262 	/* Tell the run loop that we want to inject something */
263 	kvm_pend_exception(&hyp_vcpu->vcpu, EXCEPT_AA64_EL1_SYNC);
264 }
265 
handle_pvm_entry_dabt(struct pkvm_hyp_vcpu * hyp_vcpu)266 static void handle_pvm_entry_dabt(struct pkvm_hyp_vcpu *hyp_vcpu)
267 {
268 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
269 	bool pc_update;
270 
271 	/* Exceptions have priority over anything else */
272 	if (vcpu_get_flag(host_vcpu, PENDING_EXCEPTION)) {
273 		unsigned long cpsr = *vcpu_cpsr(&hyp_vcpu->vcpu);
274 		u32 esr = ESR_ELx_IL;
275 
276 		if ((cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t)
277 			esr |= (ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT);
278 		else
279 			esr |= (ESR_ELx_EC_DABT_CUR << ESR_ELx_EC_SHIFT);
280 
281 		esr |= ESR_ELx_FSC_EXTABT;
282 
283 		__vcpu_sys_reg(&hyp_vcpu->vcpu, ESR_EL1) = esr;
284 		__vcpu_sys_reg(&hyp_vcpu->vcpu, FAR_EL1) =
285 			kvm_vcpu_get_hfar(&hyp_vcpu->vcpu);
286 
287 		/* Tell the run loop that we want to inject something */
288 		kvm_pend_exception(&hyp_vcpu->vcpu, EXCEPT_AA64_EL1_SYNC);
289 
290 		/* Cancel potential in-flight MMIO */
291 		hyp_vcpu->vcpu.mmio_needed = false;
292 		return;
293 	}
294 
295 	/* Handle PC increment on MMIO */
296 	pc_update = (hyp_vcpu->vcpu.mmio_needed &&
297 		     vcpu_get_flag(host_vcpu, INCREMENT_PC));
298 	if (pc_update) {
299 		vcpu_clear_flag(&hyp_vcpu->vcpu, PC_UPDATE_REQ);
300 		kvm_incr_pc(&hyp_vcpu->vcpu);
301 	}
302 
303 	/* If we were doing an MMIO read access, update the register*/
304 	if (pc_update && !kvm_vcpu_dabt_iswrite(&hyp_vcpu->vcpu)) {
305 		/* r0 as transfer register between the guest and the host. */
306 		u64 rd_val = READ_ONCE(host_vcpu->arch.ctxt.regs.regs[0]);
307 		int rd = kvm_vcpu_dabt_get_rd(&hyp_vcpu->vcpu);
308 
309 		vcpu_set_reg(&hyp_vcpu->vcpu, rd, rd_val);
310 	}
311 
312 	hyp_vcpu->vcpu.mmio_needed = false;
313 }
314 
handle_pvm_exit_wfx(struct pkvm_hyp_vcpu * hyp_vcpu)315 static void handle_pvm_exit_wfx(struct pkvm_hyp_vcpu *hyp_vcpu)
316 {
317 	WRITE_ONCE(hyp_vcpu->host_vcpu->arch.ctxt.regs.pstate,
318 		   hyp_vcpu->vcpu.arch.ctxt.regs.pstate & PSR_MODE_MASK);
319 	WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.esr_el2,
320 		   hyp_vcpu->vcpu.arch.fault.esr_el2);
321 }
322 
handle_pvm_exit_sys64(struct pkvm_hyp_vcpu * hyp_vcpu)323 static void handle_pvm_exit_sys64(struct pkvm_hyp_vcpu *hyp_vcpu)
324 {
325 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
326 	u32 esr_el2 = hyp_vcpu->vcpu.arch.fault.esr_el2;
327 
328 	/* r0 as transfer register between the guest and the host. */
329 	WRITE_ONCE(host_vcpu->arch.fault.esr_el2,
330 		   esr_el2 & ~ESR_ELx_SYS64_ISS_RT_MASK);
331 
332 	/* The mode is required for the host to emulate some sysregs */
333 	WRITE_ONCE(host_vcpu->arch.ctxt.regs.pstate,
334 		   hyp_vcpu->vcpu.arch.ctxt.regs.pstate & PSR_MODE_MASK);
335 
336 	if (esr_sys64_to_params(esr_el2).is_write) {
337 		int rt = kvm_vcpu_sys_get_rt(&hyp_vcpu->vcpu);
338 		u64 rt_val = vcpu_get_reg(&hyp_vcpu->vcpu, rt);
339 
340 		WRITE_ONCE(host_vcpu->arch.ctxt.regs.regs[0], rt_val);
341 	}
342 }
343 
handle_pvm_exit_hvc64(struct pkvm_hyp_vcpu * hyp_vcpu)344 static void handle_pvm_exit_hvc64(struct pkvm_hyp_vcpu *hyp_vcpu)
345 {
346 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
347 	int n, i;
348 
349 	switch (smccc_get_function(&hyp_vcpu->vcpu)) {
350 	/*
351 	 * CPU_ON takes 3 arguments, however, to wake up the target vcpu the
352 	 * host only needs to know the target's cpu_id, which is passed as the
353 	 * first argument. The processing of the reset state is done at hyp.
354 	 */
355 	case PSCI_0_2_FN_CPU_ON:
356 	case PSCI_0_2_FN64_CPU_ON:
357 		n = 2;
358 		break;
359 
360 	case PSCI_0_2_FN_CPU_OFF:
361 	case PSCI_0_2_FN_SYSTEM_OFF:
362 	case PSCI_0_2_FN_SYSTEM_RESET:
363 	case PSCI_0_2_FN_CPU_SUSPEND:
364 	case PSCI_0_2_FN64_CPU_SUSPEND:
365 		n = 1;
366 		break;
367 
368 	case ARM_SMCCC_VENDOR_HYP_KVM_MEM_RELINQUISH_FUNC_ID:
369 		n = 4;
370 		break;
371 
372 	case PSCI_1_1_FN_SYSTEM_RESET2:
373 	case PSCI_1_1_FN64_SYSTEM_RESET2:
374 		n = 3;
375 		break;
376 
377 	/*
378 	 * The rest are either blocked or handled by HYP, so we should
379 	 * really never be here.
380 	 */
381 	default:
382 		BUG();
383 	}
384 
385 	WRITE_ONCE(host_vcpu->arch.fault.esr_el2,
386 		   hyp_vcpu->vcpu.arch.fault.esr_el2);
387 
388 	/* Pass the hvc function id (r0) as well as any potential arguments. */
389 	for (i = 0; i < n; i++) {
390 		WRITE_ONCE(host_vcpu->arch.ctxt.regs.regs[i],
391 			   vcpu_get_reg(&hyp_vcpu->vcpu, i));
392 	}
393 }
394 
handle_pvm_exit_iabt(struct pkvm_hyp_vcpu * hyp_vcpu)395 static void handle_pvm_exit_iabt(struct pkvm_hyp_vcpu *hyp_vcpu)
396 {
397 	WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.esr_el2,
398 		   hyp_vcpu->vcpu.arch.fault.esr_el2);
399 	WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.hpfar_el2,
400 		   hyp_vcpu->vcpu.arch.fault.hpfar_el2);
401 }
402 
handle_pvm_exit_dabt(struct pkvm_hyp_vcpu * hyp_vcpu)403 static void handle_pvm_exit_dabt(struct pkvm_hyp_vcpu *hyp_vcpu)
404 {
405 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
406 
407 	hyp_vcpu->vcpu.mmio_needed = __pkvm_check_ioguard_page(hyp_vcpu);
408 
409 	if (hyp_vcpu->vcpu.mmio_needed) {
410 		/* r0 as transfer register between the guest and the host. */
411 		WRITE_ONCE(host_vcpu->arch.fault.esr_el2,
412 			   hyp_vcpu->vcpu.arch.fault.esr_el2 & ~ESR_ELx_SRT_MASK);
413 
414 		if (kvm_vcpu_dabt_iswrite(&hyp_vcpu->vcpu)) {
415 			int rt = kvm_vcpu_dabt_get_rd(&hyp_vcpu->vcpu);
416 			u64 rt_val = vcpu_get_reg(&hyp_vcpu->vcpu, rt);
417 
418 			WRITE_ONCE(host_vcpu->arch.ctxt.regs.regs[0], rt_val);
419 		}
420 	} else {
421 		WRITE_ONCE(host_vcpu->arch.fault.esr_el2,
422 			   hyp_vcpu->vcpu.arch.fault.esr_el2 & ~ESR_ELx_ISV);
423 	}
424 
425 	WRITE_ONCE(host_vcpu->arch.ctxt.regs.pstate,
426 		   hyp_vcpu->vcpu.arch.ctxt.regs.pstate & PSR_MODE_MASK);
427 	WRITE_ONCE(host_vcpu->arch.fault.far_el2,
428 		   hyp_vcpu->vcpu.arch.fault.far_el2 & GENMASK(11, 0));
429 	WRITE_ONCE(host_vcpu->arch.fault.hpfar_el2,
430 		   hyp_vcpu->vcpu.arch.fault.hpfar_el2);
431 	WRITE_ONCE(__vcpu_sys_reg(host_vcpu, SCTLR_EL1),
432 		   __vcpu_sys_reg(&hyp_vcpu->vcpu, SCTLR_EL1) &
433 			(SCTLR_ELx_EE | SCTLR_EL1_E0E));
434 }
435 
handle_vm_entry_generic(struct pkvm_hyp_vcpu * hyp_vcpu)436 static void handle_vm_entry_generic(struct pkvm_hyp_vcpu *hyp_vcpu)
437 {
438 	vcpu_copy_flag(&hyp_vcpu->vcpu, hyp_vcpu->host_vcpu, PC_UPDATE_REQ);
439 }
440 
handle_vm_exit_generic(struct pkvm_hyp_vcpu * hyp_vcpu)441 static void handle_vm_exit_generic(struct pkvm_hyp_vcpu *hyp_vcpu)
442 {
443 	WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.esr_el2,
444 		   hyp_vcpu->vcpu.arch.fault.esr_el2);
445 }
446 
handle_vm_exit_abt(struct pkvm_hyp_vcpu * hyp_vcpu)447 static void handle_vm_exit_abt(struct pkvm_hyp_vcpu *hyp_vcpu)
448 {
449 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
450 
451 	WRITE_ONCE(host_vcpu->arch.fault.esr_el2,
452 		   hyp_vcpu->vcpu.arch.fault.esr_el2);
453 	WRITE_ONCE(host_vcpu->arch.fault.far_el2,
454 		   hyp_vcpu->vcpu.arch.fault.far_el2);
455 	WRITE_ONCE(host_vcpu->arch.fault.hpfar_el2,
456 		   hyp_vcpu->vcpu.arch.fault.hpfar_el2);
457 	WRITE_ONCE(host_vcpu->arch.fault.disr_el1,
458 		   hyp_vcpu->vcpu.arch.fault.disr_el1);
459 }
460 
461 static const hyp_entry_exit_handler_fn entry_hyp_pvm_handlers[] = {
462 	[0 ... ESR_ELx_EC_MAX]		= NULL,
463 	[ESR_ELx_EC_WFx]		= handle_pvm_entry_wfx,
464 	[ESR_ELx_EC_HVC64]		= handle_pvm_entry_hvc64,
465 	[ESR_ELx_EC_SYS64]		= handle_pvm_entry_sys64,
466 	[ESR_ELx_EC_IABT_LOW]		= handle_pvm_entry_iabt,
467 	[ESR_ELx_EC_DABT_LOW]		= handle_pvm_entry_dabt,
468 };
469 
470 static const hyp_entry_exit_handler_fn exit_hyp_pvm_handlers[] = {
471 	[0 ... ESR_ELx_EC_MAX]		= NULL,
472 	[ESR_ELx_EC_WFx]		= handle_pvm_exit_wfx,
473 	[ESR_ELx_EC_HVC64]		= handle_pvm_exit_hvc64,
474 	[ESR_ELx_EC_SYS64]		= handle_pvm_exit_sys64,
475 	[ESR_ELx_EC_IABT_LOW]		= handle_pvm_exit_iabt,
476 	[ESR_ELx_EC_DABT_LOW]		= handle_pvm_exit_dabt,
477 };
478 
479 static const hyp_entry_exit_handler_fn entry_hyp_vm_handlers[] = {
480 	[0 ... ESR_ELx_EC_MAX]		= handle_vm_entry_generic,
481 };
482 
483 static const hyp_entry_exit_handler_fn exit_hyp_vm_handlers[] = {
484 	[0 ... ESR_ELx_EC_MAX]		= handle_vm_exit_generic,
485 	[ESR_ELx_EC_IABT_LOW]		= handle_vm_exit_abt,
486 	[ESR_ELx_EC_DABT_LOW]		= handle_vm_exit_abt,
487 };
488 
__hyp_sve_save_guest(struct kvm_vcpu * vcpu)489 static void __hyp_sve_save_guest(struct kvm_vcpu *vcpu)
490 {
491 	__vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR);
492 	/*
493 	 * On saving/restoring guest sve state, always use the maximum VL for
494 	 * the guest. The layout of the data when saving the sve state depends
495 	 * on the VL, so use a consistent (i.e., the maximum) guest VL.
496 	 */
497 	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
498 	__sve_save_state(vcpu_sve_pffr(vcpu), &vcpu->arch.ctxt.fp_regs.fpsr, true);
499 	write_sysreg_s(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, SYS_ZCR_EL2);
500 }
501 
__hyp_sve_restore_host(void)502 static void __hyp_sve_restore_host(void)
503 {
504 	struct cpu_sve_state *sve_state = *host_data_ptr(sve_state);
505 
506 	/*
507 	 * On saving/restoring host sve state, always use the maximum VL for
508 	 * the host. The layout of the data when saving the sve state depends
509 	 * on the VL, so use a consistent (i.e., the maximum) host VL.
510 	 *
511 	 * Note that this constrains the PE to the maximum shared VL
512 	 * that was discovered, if we wish to use larger VLs this will
513 	 * need to be revisited.
514 	 */
515 	write_sysreg_s(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, SYS_ZCR_EL2);
516 	__sve_restore_state(sve_state->sve_regs + sve_ffr_offset(kvm_host_sve_max_vl),
517 			    &sve_state->fpsr,
518 			    true);
519 	write_sysreg_el1(sve_state->zcr_el1, SYS_ZCR);
520 }
521 
fpsimd_sve_flush(void)522 static void fpsimd_sve_flush(void)
523 {
524 	*host_data_ptr(fp_owner) = FP_STATE_HOST_OWNED;
525 }
526 
fpsimd_sve_sync(struct kvm_vcpu * vcpu)527 static void fpsimd_sve_sync(struct kvm_vcpu *vcpu)
528 {
529 	bool has_fpmr;
530 
531 	if (!guest_owns_fp_regs())
532 		return;
533 
534 	cpacr_clear_set(0, CPACR_ELx_FPEN | CPACR_ELx_ZEN);
535 	isb();
536 
537 	if (vcpu_has_sve(vcpu))
538 		__hyp_sve_save_guest(vcpu);
539 	else
540 		__fpsimd_save_state(&vcpu->arch.ctxt.fp_regs);
541 
542 	has_fpmr = kvm_has_fpmr(kern_hyp_va(vcpu->kvm));
543 	if (has_fpmr)
544 		__vcpu_sys_reg(vcpu, FPMR) = read_sysreg_s(SYS_FPMR);
545 
546 	if (system_supports_sve())
547 		__hyp_sve_restore_host();
548 	else
549 		__fpsimd_restore_state(host_data_ptr(host_ctxt.fp_regs));
550 
551 	if (has_fpmr)
552 		write_sysreg_s(*host_data_ptr(fpmr), SYS_FPMR);
553 
554 	*host_data_ptr(fp_owner) = FP_STATE_HOST_OWNED;
555 }
556 
flush_hyp_vgic_state(struct pkvm_hyp_vcpu * hyp_vcpu)557 static void flush_hyp_vgic_state(struct pkvm_hyp_vcpu *hyp_vcpu)
558 {
559 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
560 	struct vgic_v3_cpu_if *host_cpu_if, *hyp_cpu_if;
561 	unsigned int used_lrs, max_lrs, i;
562 
563 	host_cpu_if	= &host_vcpu->arch.vgic_cpu.vgic_v3;
564 	hyp_cpu_if	= &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3;
565 
566 	max_lrs		= (read_gicreg(ICH_VTR_EL2) & 0xf) + 1;
567 	used_lrs	= READ_ONCE(host_cpu_if->used_lrs);
568 	used_lrs	= min(used_lrs, max_lrs);
569 
570 	hyp_cpu_if->vgic_hcr	= READ_ONCE(host_cpu_if->vgic_hcr);
571 	/* Should be a one-off */
572 	hyp_cpu_if->vgic_sre	= (ICC_SRE_EL1_DIB |
573 				   ICC_SRE_EL1_DFB |
574 				   ICC_SRE_EL1_SRE);
575 	hyp_cpu_if->used_lrs	= used_lrs;
576 
577 	for (i = 0; i < used_lrs; i++)
578 		hyp_cpu_if->vgic_lr[i] = READ_ONCE(host_cpu_if->vgic_lr[i]);
579 }
580 
sync_hyp_vgic_state(struct pkvm_hyp_vcpu * hyp_vcpu)581 static void sync_hyp_vgic_state(struct pkvm_hyp_vcpu *hyp_vcpu)
582 {
583 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
584 	struct vgic_v3_cpu_if *host_cpu_if, *hyp_cpu_if;
585 	unsigned int i;
586 
587 	host_cpu_if	= &host_vcpu->arch.vgic_cpu.vgic_v3;
588 	hyp_cpu_if	= &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3;
589 
590 	WRITE_ONCE(host_cpu_if->vgic_hcr, hyp_cpu_if->vgic_hcr);
591 
592 	for (i = 0; i < hyp_cpu_if->used_lrs; i++)
593 		WRITE_ONCE(host_cpu_if->vgic_lr[i], hyp_cpu_if->vgic_lr[i]);
594 }
595 
flush_hyp_timer_state(struct pkvm_hyp_vcpu * hyp_vcpu)596 static void flush_hyp_timer_state(struct pkvm_hyp_vcpu *hyp_vcpu)
597 {
598 	if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu))
599 		return;
600 
601 	/*
602 	 * A hyp vcpu has no offset, and sees vtime == ptime. The
603 	 * ptimer is fully emulated by EL1 and cannot be trusted.
604 	 */
605 	write_sysreg(0, cntvoff_el2);
606 	isb();
607 	write_sysreg_el0(__vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CVAL_EL0),
608 			 SYS_CNTV_CVAL);
609 	write_sysreg_el0(__vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CTL_EL0),
610 			 SYS_CNTV_CTL);
611 }
612 
sync_hyp_timer_state(struct pkvm_hyp_vcpu * hyp_vcpu)613 static void sync_hyp_timer_state(struct pkvm_hyp_vcpu *hyp_vcpu)
614 {
615 	if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu))
616 		return;
617 
618 	/*
619 	 * Preserve the vtimer state so that it is always correct,
620 	 * even if the host tries to make a mess.
621 	 */
622 	__vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CVAL_EL0) =
623 		read_sysreg_el0(SYS_CNTV_CVAL);
624 	__vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CTL_EL0) =
625 		read_sysreg_el0(SYS_CNTV_CTL);
626 }
627 
628 #define copy_sysreg(REG) do {							\
629 	BUILD_BUG_ON(REG <= __INVALID_SYSREG__);				\
630 	BUILD_BUG_ON(REG >= NR_SYS_REGS);					\
631 	to_vcpu->arch.ctxt.sys_regs[REG] = from_vcpu->arch.ctxt.sys_regs[REG];	\
632 } while (0)
633 
__copy_vcpu_state(const struct kvm_vcpu * from_vcpu,struct kvm_vcpu * to_vcpu)634 static void __copy_vcpu_state(const struct kvm_vcpu *from_vcpu,
635 			      struct kvm_vcpu *to_vcpu)
636 {
637 	int reg;
638 
639 	to_vcpu->arch.ctxt.regs		= from_vcpu->arch.ctxt.regs;
640 	to_vcpu->arch.ctxt.spsr_abt	= from_vcpu->arch.ctxt.spsr_abt;
641 	to_vcpu->arch.ctxt.spsr_und	= from_vcpu->arch.ctxt.spsr_und;
642 	to_vcpu->arch.ctxt.spsr_irq	= from_vcpu->arch.ctxt.spsr_irq;
643 	to_vcpu->arch.ctxt.spsr_fiq	= from_vcpu->arch.ctxt.spsr_fiq;
644 
645 	/*
646 	 * Copy the sysregs, but don't mess with the timer state which
647 	 * is directly handled by EL1 and is expected to be preserved.
648 	 * Note that the sysreg enum is sparse and not sorted, therefore,
649 	 * explicitly specify the registers to copy.
650 	 */
651 	copy_sysreg(MPIDR_EL1);
652 	copy_sysreg(CLIDR_EL1);
653 	copy_sysreg(CSSELR_EL1);
654 	copy_sysreg(TPIDR_EL0);
655 	copy_sysreg(TPIDRRO_EL0);
656 	copy_sysreg(TPIDR_EL1);
657 	copy_sysreg(CNTKCTL_EL1);
658 	copy_sysreg(PAR_EL1);
659 	copy_sysreg(MDCCINT_EL1);
660 	copy_sysreg(OSLSR_EL1);
661 	copy_sysreg(DISR_EL1);
662 
663 	copy_sysreg(PMCR_EL0);
664 	copy_sysreg(PMSELR_EL0);
665 	for (reg = PMEVCNTR0_EL0; reg <= PMEVCNTR30_EL0; reg++)
666 		copy_sysreg(reg);
667 	copy_sysreg(PMCCNTR_EL0);
668 	for (reg = PMEVTYPER0_EL0; reg <= PMEVTYPER30_EL0; reg++)
669 		copy_sysreg(reg);
670 	copy_sysreg(PMCCFILTR_EL0);
671 	copy_sysreg(PMCNTENSET_EL0);
672 	copy_sysreg(PMINTENSET_EL1);
673 	copy_sysreg(PMOVSSET_EL0);
674 	copy_sysreg(PMUSERENR_EL0);
675 
676 	copy_sysreg(APIAKEYLO_EL1);
677 	copy_sysreg(APIAKEYHI_EL1);
678 	copy_sysreg(APIBKEYLO_EL1);
679 	copy_sysreg(APIBKEYHI_EL1);
680 	copy_sysreg(APDAKEYLO_EL1);
681 	copy_sysreg(APDAKEYHI_EL1);
682 	copy_sysreg(APDBKEYLO_EL1);
683 	copy_sysreg(APDBKEYHI_EL1);
684 	copy_sysreg(APGAKEYLO_EL1);
685 	copy_sysreg(APGAKEYHI_EL1);
686 
687 	copy_sysreg(RGSR_EL1);
688 	copy_sysreg(GCR_EL1);
689 	copy_sysreg(TFSRE0_EL1);
690 
691 	copy_sysreg(SCTLR_EL1);
692 	copy_sysreg(ACTLR_EL1);
693 	copy_sysreg(CPACR_EL1);
694 	copy_sysreg(ZCR_EL1);
695 	copy_sysreg(TTBR0_EL1);
696 	copy_sysreg(TTBR1_EL1);
697 	copy_sysreg(TCR_EL1);
698 	copy_sysreg(TCR2_EL1);
699 	copy_sysreg(ESR_EL1);
700 	copy_sysreg(AFSR0_EL1);
701 	copy_sysreg(AFSR1_EL1);
702 	copy_sysreg(FAR_EL1);
703 	copy_sysreg(MAIR_EL1);
704 	copy_sysreg(VBAR_EL1);
705 	copy_sysreg(CONTEXTIDR_EL1);
706 	copy_sysreg(AMAIR_EL1);
707 	copy_sysreg(MDSCR_EL1);
708 	copy_sysreg(ELR_EL1);
709 	copy_sysreg(SP_EL1);
710 	copy_sysreg(SPSR_EL1);
711 	copy_sysreg(TFSR_EL1);
712 
713 	copy_sysreg(PIR_EL1);
714 	copy_sysreg(PIRE0_EL1);
715 }
716 
__sync_hyp_vcpu(struct pkvm_hyp_vcpu * hyp_vcpu)717 static void __sync_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
718 {
719 	__copy_vcpu_state(&hyp_vcpu->vcpu, hyp_vcpu->host_vcpu);
720 }
721 
__flush_hyp_vcpu(struct pkvm_hyp_vcpu * hyp_vcpu)722 static void __flush_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
723 {
724 	__copy_vcpu_state(hyp_vcpu->host_vcpu, &hyp_vcpu->vcpu);
725 }
726 
flush_debug_state(struct pkvm_hyp_vcpu * hyp_vcpu)727 static void flush_debug_state(struct pkvm_hyp_vcpu *hyp_vcpu)
728 {
729 	struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
730 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
731 	u64 mdcr_el2 = READ_ONCE(host_vcpu->arch.mdcr_el2);
732 
733 	/*
734 	 * Propagate the monitor debug configuration of the vcpu from host.
735 	 * Preserve HPMN, which is set-up by some knowledgeable bootcode.
736 	 * Ensure that MDCR_EL2_E2PB_MASK and MDCR_EL2_E2TB_MASK are clear,
737 	 * as guests should not be able to access profiling and trace buffers.
738 	 * Ensure that RES0 bits are clear.
739 	 */
740 	mdcr_el2 &= ~(MDCR_EL2_RES0 |
741 		      MDCR_EL2_HPMN_MASK |
742 		      (MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT) |
743 		      (MDCR_EL2_E2TB_MASK << MDCR_EL2_E2TB_SHIFT));
744 	vcpu->arch.mdcr_el2 = read_sysreg(mdcr_el2) & MDCR_EL2_HPMN_MASK;
745 	vcpu->arch.mdcr_el2 |= mdcr_el2;
746 
747 	vcpu->arch.pmu = host_vcpu->arch.pmu;
748 	vcpu->guest_debug = READ_ONCE(host_vcpu->guest_debug);
749 
750 	if (!kvm_vcpu_needs_debug_regs(vcpu))
751 		return;
752 
753 	__vcpu_save_guest_debug_regs(vcpu);
754 
755 	/* Switch debug_ptr to the external_debug_state if done by the host. */
756 	if (kern_hyp_va(READ_ONCE(host_vcpu->arch.debug_ptr)) ==
757 	    &host_vcpu->arch.external_debug_state)
758 		vcpu->arch.debug_ptr = &host_vcpu->arch.external_debug_state;
759 
760 	/* Propagate any special handling for single step from host. */
761 	vcpu_write_sys_reg(vcpu, vcpu_read_sys_reg(host_vcpu, MDSCR_EL1),
762 						   MDSCR_EL1);
763 	*vcpu_cpsr(vcpu) = *vcpu_cpsr(host_vcpu);
764 }
765 
sync_debug_state(struct pkvm_hyp_vcpu * hyp_vcpu)766 static void sync_debug_state(struct pkvm_hyp_vcpu *hyp_vcpu)
767 {
768 	struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
769 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
770 
771 	if (!kvm_vcpu_needs_debug_regs(vcpu))
772 		return;
773 
774 	__vcpu_restore_guest_debug_regs(vcpu);
775 	vcpu_write_sys_reg(host_vcpu, vcpu_read_sys_reg(vcpu, MDSCR_EL1),
776 						   MDSCR_EL1);
777 	*vcpu_cpsr(host_vcpu) = *vcpu_cpsr(vcpu);
778 
779 	vcpu->arch.debug_ptr = &host_vcpu->arch.vcpu_debug_state;
780 }
781 
__flush_hyp_reqs(struct pkvm_hyp_vcpu * hyp_vcpu)782 static void __flush_hyp_reqs(struct pkvm_hyp_vcpu *hyp_vcpu)
783 {
784 	struct kvm_hyp_req *hyp_req = hyp_vcpu->vcpu.arch.hyp_reqs;
785 
786 	hyp_req->type = KVM_HYP_LAST_REQ;
787 
788 	/* One of the request might have been TYPE_MEM/DEST_VCPU_MEMCACHE */
789 	pkvm_refill_memcache(hyp_vcpu);
790 }
791 
flush_hyp_vcpu(struct pkvm_hyp_vcpu * hyp_vcpu)792 static void flush_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
793 {
794 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
795 	hyp_entry_exit_handler_fn ec_handler;
796 	u8 esr_ec;
797 
798 	fpsimd_sve_flush();
799 
800 	/*
801 	 * If we deal with a non-protected guest and the state is potentially
802 	 * dirty (from a host perspective), copy the state back into the hyp
803 	 * vcpu.
804 	 */
805 	if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) {
806 		if (vcpu_get_flag(host_vcpu, PKVM_HOST_STATE_DIRTY))
807 			__flush_hyp_vcpu(hyp_vcpu);
808 
809 		hyp_vcpu->vcpu.arch.iflags = READ_ONCE(host_vcpu->arch.iflags);
810 		flush_debug_state(hyp_vcpu);
811 
812 		hyp_vcpu->vcpu.arch.hcr_el2 &= ~(HCR_TWI | HCR_TWE);
813 		hyp_vcpu->vcpu.arch.hcr_el2 |= READ_ONCE(host_vcpu->arch.hcr_el2) &
814 							 (HCR_TWI | HCR_TWE);
815 	}
816 
817 	hyp_vcpu->vcpu.arch.vsesr_el2 = host_vcpu->arch.vsesr_el2;
818 
819 	flush_hyp_vgic_state(hyp_vcpu);
820 	flush_hyp_timer_state(hyp_vcpu);
821 
822 	switch (ARM_EXCEPTION_CODE(hyp_vcpu->exit_code)) {
823 	case ARM_EXCEPTION_IRQ:
824 	case ARM_EXCEPTION_EL1_SERROR:
825 	case ARM_EXCEPTION_IL:
826 		break;
827 	case ARM_EXCEPTION_TRAP:
828 		esr_ec = ESR_ELx_EC(kvm_vcpu_get_esr(&hyp_vcpu->vcpu));
829 
830 		if (pkvm_hyp_vcpu_is_protected(hyp_vcpu))
831 			ec_handler = entry_hyp_pvm_handlers[esr_ec];
832 		else
833 			ec_handler = entry_hyp_vm_handlers[esr_ec];
834 
835 		if (ec_handler)
836 			ec_handler(hyp_vcpu);
837 		break;
838 	case ARM_EXCEPTION_HYP_REQ:
839 		__flush_hyp_reqs(hyp_vcpu);
840 		break;
841 	default:
842 		BUG();
843 	}
844 
845 	hyp_vcpu->exit_code = 0;
846 }
847 
sync_hyp_vcpu(struct pkvm_hyp_vcpu * hyp_vcpu,u64 * exit_code)848 static void sync_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu, u64 *exit_code)
849 {
850 	struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
851 	hyp_entry_exit_handler_fn ec_handler;
852 	u8 esr_ec;
853 
854 	fpsimd_sve_sync(&hyp_vcpu->vcpu);
855 
856 	if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu))
857 		sync_debug_state(hyp_vcpu);
858 
859 	/*
860 	 * Don't sync the vcpu GPR/sysreg state after a run. Instead,
861 	 * leave it in the hyp vCPU until someone actually requires it.
862 	 */
863 	sync_hyp_vgic_state(hyp_vcpu);
864 	sync_hyp_timer_state(hyp_vcpu);
865 
866 	switch (ARM_EXCEPTION_CODE(*exit_code)) {
867 	case ARM_EXCEPTION_IRQ:
868 	case ARM_EXCEPTION_HYP_REQ:
869 		break;
870 	case ARM_EXCEPTION_TRAP:
871 		esr_ec = ESR_ELx_EC(kvm_vcpu_get_esr(&hyp_vcpu->vcpu));
872 
873 		if (pkvm_hyp_vcpu_is_protected(hyp_vcpu))
874 			ec_handler = exit_hyp_pvm_handlers[esr_ec];
875 		else
876 			ec_handler = exit_hyp_vm_handlers[esr_ec];
877 
878 		if (ec_handler) {
879 			ec_handler(hyp_vcpu);
880 		} else {
881 			/*
882 			 * If we have no handler we should not be punting this
883 			 * trap to Host, as it will have no sync'ed context to
884 			 * handle (for example: ESR_EL2).
885 			 */
886 			vcpu_illegal_trap(&hyp_vcpu->vcpu, exit_code);
887 		}
888 		break;
889 	case ARM_EXCEPTION_EL1_SERROR:
890 	case ARM_EXCEPTION_IL:
891 		break;
892 	default:
893 		BUG();
894 	}
895 
896 	if (pkvm_hyp_vcpu_is_protected(hyp_vcpu))
897 		vcpu_clear_flag(host_vcpu, PC_UPDATE_REQ);
898 	else
899 		host_vcpu->arch.iflags = hyp_vcpu->vcpu.arch.iflags;
900 
901 	hyp_vcpu->exit_code = *exit_code;
902 }
903 
handle___pkvm_vcpu_load(struct kvm_cpu_context * host_ctxt)904 static void handle___pkvm_vcpu_load(struct kvm_cpu_context *host_ctxt)
905 {
906 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
907 	DECLARE_REG(unsigned int, vcpu_idx, host_ctxt, 2);
908 	DECLARE_REG(u64, hcr_el2, host_ctxt, 3);
909 	struct pkvm_hyp_vcpu *hyp_vcpu;
910 	int __percpu *last_vcpu_ran;
911 	int *last_ran;
912 
913 	if (!is_protected_kvm_enabled())
914 		return;
915 
916 	hyp_vcpu = pkvm_load_hyp_vcpu(handle, vcpu_idx);
917 	if (!hyp_vcpu)
918 		return;
919 
920 	/*
921 	 * Guarantee that both TLBs and I-cache are private to each vcpu. If a
922 	 * vcpu from the same VM has previously run on the same physical CPU,
923 	 * nuke the relevant contexts.
924 	 */
925 	last_vcpu_ran = hyp_vcpu->vcpu.arch.hw_mmu->last_vcpu_ran;
926 	last_ran = (__force int *) &last_vcpu_ran[hyp_smp_processor_id()];
927 	if (*last_ran != hyp_vcpu->vcpu.vcpu_id) {
928 		__kvm_flush_cpu_context(hyp_vcpu->vcpu.arch.hw_mmu);
929 		*last_ran = hyp_vcpu->vcpu.vcpu_id;
930 	}
931 
932 	if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) {
933 		/* Propagate WFx trapping flags */
934 		hyp_vcpu->vcpu.arch.hcr_el2 &= ~(HCR_TWE | HCR_TWI);
935 		hyp_vcpu->vcpu.arch.hcr_el2 |= hcr_el2 & (HCR_TWE | HCR_TWI);
936 	}
937 }
938 
handle___pkvm_vcpu_put(struct kvm_cpu_context * host_ctxt)939 static void handle___pkvm_vcpu_put(struct kvm_cpu_context *host_ctxt)
940 {
941 	struct pkvm_hyp_vcpu *hyp_vcpu;
942 
943 	if (!is_protected_kvm_enabled())
944 		return;
945 
946 	hyp_vcpu = pkvm_get_loaded_hyp_vcpu();
947 	if (hyp_vcpu) {
948 		struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
949 
950 		if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu) &&
951 		    !vcpu_get_flag(host_vcpu, PKVM_HOST_STATE_DIRTY)) {
952 			__sync_hyp_vcpu(hyp_vcpu);
953 		}
954 
955 		pkvm_put_hyp_vcpu(hyp_vcpu);
956 	}
957 }
958 
handle___pkvm_vcpu_sync_state(struct kvm_cpu_context * host_ctxt)959 static void handle___pkvm_vcpu_sync_state(struct kvm_cpu_context *host_ctxt)
960 {
961 	struct pkvm_hyp_vcpu *hyp_vcpu;
962 
963 	if (!is_protected_kvm_enabled())
964 		return;
965 
966 	hyp_vcpu = pkvm_get_loaded_hyp_vcpu();
967 	if (!hyp_vcpu || pkvm_hyp_vcpu_is_protected(hyp_vcpu))
968 		return;
969 
970 	__sync_hyp_vcpu(hyp_vcpu);
971 }
972 
__get_host_hyp_vcpus(struct kvm_vcpu * arg,struct pkvm_hyp_vcpu ** hyp_vcpup)973 static struct kvm_vcpu *__get_host_hyp_vcpus(struct kvm_vcpu *arg,
974 					     struct pkvm_hyp_vcpu **hyp_vcpup)
975 {
976 	struct kvm_vcpu *host_vcpu = kern_hyp_va(arg);
977 	struct pkvm_hyp_vcpu *hyp_vcpu = NULL;
978 
979 	if (unlikely(is_protected_kvm_enabled())) {
980 		hyp_vcpu = pkvm_get_loaded_hyp_vcpu();
981 
982 		if (!hyp_vcpu || hyp_vcpu->host_vcpu != host_vcpu) {
983 			hyp_vcpu = NULL;
984 			host_vcpu = NULL;
985 		}
986 	}
987 
988 	*hyp_vcpup = hyp_vcpu;
989 	return host_vcpu;
990 }
991 
992 #define get_host_hyp_vcpus(ctxt, regnr, hyp_vcpup)			\
993 	({								\
994 		DECLARE_REG(struct kvm_vcpu *, __vcpu, ctxt, regnr);	\
995 		__get_host_hyp_vcpus(__vcpu, hyp_vcpup);		\
996 	})
997 
998 #define get_host_hyp_vcpus_from_vgic_v3_cpu_if(ctxt, regnr, hyp_vcpup)		\
999 	({									\
1000 		DECLARE_REG(struct vgic_v3_cpu_if *, cif, ctxt, regnr); 	\
1001 		struct kvm_vcpu *__vcpu = container_of(cif,			\
1002 						       struct kvm_vcpu,		\
1003 						       arch.vgic_cpu.vgic_v3);	\
1004 										\
1005 		__get_host_hyp_vcpus(__vcpu, hyp_vcpup);			\
1006 	})
1007 
handle___kvm_vcpu_run(struct kvm_cpu_context * host_ctxt)1008 static void handle___kvm_vcpu_run(struct kvm_cpu_context *host_ctxt)
1009 {
1010 	struct pkvm_hyp_vcpu *hyp_vcpu;
1011 	struct kvm_vcpu *host_vcpu;
1012 	u64 ret = ARM_EXCEPTION_IL;
1013 
1014 	host_vcpu = get_host_hyp_vcpus(host_ctxt, 1, &hyp_vcpu);
1015 
1016 	if (!host_vcpu)
1017 		goto out;
1018 
1019 	if (unlikely(hyp_vcpu)) {
1020 		/*
1021 		 * KVM (and pKVM) doesn't support SME guests for now, and
1022 		 * ensures that SME features aren't enabled in pstate when
1023 		 * loading a vcpu. Therefore, if SME features enabled the host
1024 		 * is misbehaving.
1025 		 */
1026 		if (unlikely(system_supports_sme() && read_sysreg_s(SYS_SVCR)))
1027 			goto out;
1028 
1029 		if (hyp_vcpu->power_state == PSCI_0_2_AFFINITY_LEVEL_ON_PENDING)
1030 			pkvm_reset_vcpu(hyp_vcpu);
1031 
1032 		if (unlikely(hyp_vcpu->power_state != PSCI_0_2_AFFINITY_LEVEL_ON))
1033 			goto out;
1034 
1035 		flush_hyp_vcpu(hyp_vcpu);
1036 		ret = __kvm_vcpu_run(&hyp_vcpu->vcpu);
1037 		sync_hyp_vcpu(hyp_vcpu, &ret);
1038 	} else {
1039 		/* The host is fully trusted, run its vCPU directly. */
1040 		fpsimd_lazy_switch_to_guest(host_vcpu);
1041 		ret = __kvm_vcpu_run(host_vcpu);
1042 		fpsimd_lazy_switch_to_host(host_vcpu);
1043 	}
1044 out:
1045 	cpu_reg(host_ctxt, 1) =  ret;
1046 }
1047 
handle___pkvm_host_donate_guest(struct kvm_cpu_context * host_ctxt)1048 static void handle___pkvm_host_donate_guest(struct kvm_cpu_context *host_ctxt)
1049 {
1050 	DECLARE_REG(u64, pfn, host_ctxt, 1);
1051 	DECLARE_REG(u64, gfn, host_ctxt, 2);
1052 	DECLARE_REG(u64, nr_pages, host_ctxt, 3);
1053 	struct pkvm_hyp_vcpu *hyp_vcpu;
1054 	int ret = -EINVAL;
1055 
1056 	if (!is_protected_kvm_enabled())
1057 		goto out;
1058 
1059 	hyp_vcpu = pkvm_get_loaded_hyp_vcpu();
1060 	if (!hyp_vcpu || !pkvm_hyp_vcpu_is_protected(hyp_vcpu))
1061 		goto out;
1062 
1063 	ret = pkvm_refill_memcache(hyp_vcpu);
1064 	if (ret)
1065 		goto out;
1066 
1067 	ret = __pkvm_host_donate_guest(pfn, gfn, hyp_vcpu, nr_pages);
1068 out:
1069 	cpu_reg(host_ctxt, 1) =  ret;
1070 }
1071 
handle___pkvm_host_donate_guest_sglist(struct kvm_cpu_context * host_ctxt)1072 static void handle___pkvm_host_donate_guest_sglist(struct kvm_cpu_context *host_ctxt)
1073 {
1074 	struct pkvm_hyp_vcpu *hyp_vcpu;
1075 	int ret = -EINVAL;
1076 
1077 	if (!is_protected_kvm_enabled())
1078 		goto out;
1079 
1080 	hyp_vcpu = pkvm_get_loaded_hyp_vcpu();
1081 	if (!hyp_vcpu || !pkvm_hyp_vcpu_is_protected(hyp_vcpu))
1082 		goto out;
1083 
1084 	ret = pkvm_refill_memcache(hyp_vcpu);
1085 	if (ret)
1086 		goto out;
1087 
1088 	ret = __pkvm_host_donate_sglist_guest(hyp_vcpu);
1089 
1090 out:
1091 	cpu_reg(host_ctxt, 1) =  ret;
1092 }
1093 
handle___pkvm_host_share_guest(struct kvm_cpu_context * host_ctxt)1094 static void handle___pkvm_host_share_guest(struct kvm_cpu_context *host_ctxt)
1095 {
1096 	DECLARE_REG(u64, pfn, host_ctxt, 1);
1097 	DECLARE_REG(u64, gfn, host_ctxt, 2);
1098 	DECLARE_REG(enum kvm_pgtable_prot, prot, host_ctxt, 3);
1099 	DECLARE_REG(u64, nr_pages, host_ctxt, 4);
1100 	struct pkvm_hyp_vcpu *hyp_vcpu;
1101 	int ret = -EINVAL;
1102 
1103 	if (!is_protected_kvm_enabled())
1104 		goto out;
1105 
1106 	hyp_vcpu = pkvm_get_loaded_hyp_vcpu();
1107 	if (!hyp_vcpu || pkvm_hyp_vcpu_is_protected(hyp_vcpu))
1108 		goto out;
1109 
1110 	ret = pkvm_refill_memcache(hyp_vcpu);
1111 	if (ret)
1112 		goto out;
1113 
1114 	ret = __pkvm_host_share_guest(pfn, gfn, hyp_vcpu, prot, nr_pages);
1115 out:
1116 	cpu_reg(host_ctxt, 1) =  ret;
1117 }
1118 
handle___pkvm_host_unshare_guest(struct kvm_cpu_context * host_ctxt)1119 static void handle___pkvm_host_unshare_guest(struct kvm_cpu_context *host_ctxt)
1120 {
1121 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
1122 	DECLARE_REG(u64, gfn, host_ctxt, 2);
1123 	DECLARE_REG(u64, nr_pages, host_ctxt, 3);
1124 	struct pkvm_hyp_vm *hyp_vm;
1125 	int ret = -EINVAL;
1126 
1127 	if (!is_protected_kvm_enabled())
1128 		goto out;
1129 
1130 	hyp_vm = get_np_pkvm_hyp_vm(handle);
1131 	if (!hyp_vm)
1132 		goto out;
1133 
1134 	ret = __pkvm_host_unshare_guest(gfn, hyp_vm, nr_pages);
1135 	put_pkvm_hyp_vm(hyp_vm);
1136 out:
1137 	cpu_reg(host_ctxt, 1) =  ret;
1138 }
1139 
handle___pkvm_host_relax_perms_guest(struct kvm_cpu_context * host_ctxt)1140 static void handle___pkvm_host_relax_perms_guest(struct kvm_cpu_context *host_ctxt)
1141 {
1142 	DECLARE_REG(u64, gfn, host_ctxt, 1);
1143 	DECLARE_REG(enum kvm_pgtable_prot, prot, host_ctxt, 2);
1144 	struct pkvm_hyp_vcpu *hyp_vcpu;
1145 	int ret = -EINVAL;
1146 
1147 	if (!is_protected_kvm_enabled())
1148 		goto out;
1149 
1150 	hyp_vcpu = pkvm_get_loaded_hyp_vcpu();
1151 	if (!hyp_vcpu || pkvm_hyp_vcpu_is_protected(hyp_vcpu))
1152 		goto out;
1153 
1154 	ret = __pkvm_host_relax_perms_guest(gfn, hyp_vcpu, prot);
1155 out:
1156 	cpu_reg(host_ctxt, 1) = ret;
1157 }
1158 
handle___pkvm_host_wrprotect_guest(struct kvm_cpu_context * host_ctxt)1159 static void handle___pkvm_host_wrprotect_guest(struct kvm_cpu_context *host_ctxt)
1160 {
1161 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
1162 	DECLARE_REG(u64, gfn, host_ctxt, 2);
1163 	DECLARE_REG(u64, size, host_ctxt, 3);
1164 	struct pkvm_hyp_vm *hyp_vm;
1165 	int ret = -EINVAL;
1166 
1167 	if (!is_protected_kvm_enabled())
1168 		goto out;
1169 
1170 	hyp_vm = get_pkvm_hyp_vm(handle);
1171 	if (!hyp_vm)
1172 		goto out;
1173 
1174 	ret = __pkvm_host_wrprotect_guest(gfn, hyp_vm, size);
1175 	put_pkvm_hyp_vm(hyp_vm);
1176 out:
1177 	cpu_reg(host_ctxt, 1) = ret;
1178 }
1179 
handle___pkvm_host_test_clear_young_guest(struct kvm_cpu_context * host_ctxt)1180 static void handle___pkvm_host_test_clear_young_guest(struct kvm_cpu_context *host_ctxt)
1181 {
1182 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
1183 	DECLARE_REG(u64, gfn, host_ctxt, 2);
1184 	DECLARE_REG(u64, size, host_ctxt, 3);
1185 	DECLARE_REG(bool, mkold, host_ctxt, 4);
1186 	struct pkvm_hyp_vm *hyp_vm;
1187 	int ret = -EINVAL;
1188 
1189 	if (!is_protected_kvm_enabled())
1190 		goto out;
1191 
1192 	hyp_vm = get_np_pkvm_hyp_vm(handle);
1193 	if (!hyp_vm)
1194 		goto out;
1195 
1196 	ret = __pkvm_host_test_clear_young_guest(gfn, size, mkold, hyp_vm);
1197 	put_pkvm_hyp_vm(hyp_vm);
1198 out:
1199 	cpu_reg(host_ctxt, 1) = ret;
1200 }
1201 
handle___pkvm_host_mkyoung_guest(struct kvm_cpu_context * host_ctxt)1202 static void handle___pkvm_host_mkyoung_guest(struct kvm_cpu_context *host_ctxt)
1203 {
1204 	DECLARE_REG(u64, gfn, host_ctxt, 1);
1205 	struct pkvm_hyp_vcpu *hyp_vcpu;
1206 	kvm_pte_t pte = 0;
1207 
1208 	if (!is_protected_kvm_enabled())
1209 		goto out;
1210 
1211 	hyp_vcpu = pkvm_get_loaded_hyp_vcpu();
1212 	if (!hyp_vcpu || pkvm_hyp_vcpu_is_protected(hyp_vcpu))
1213 		goto out;
1214 
1215 	pte = __pkvm_host_mkyoung_guest(gfn, hyp_vcpu);
1216 out:
1217 	cpu_reg(host_ctxt, 1) =  pte;
1218 }
1219 
handle___pkvm_host_split_guest(struct kvm_cpu_context * host_ctxt)1220 static void handle___pkvm_host_split_guest(struct kvm_cpu_context *host_ctxt)
1221 {
1222 	DECLARE_REG(u64, gfn, host_ctxt, 1);
1223 	DECLARE_REG(u64, size, host_ctxt, 2);
1224 	struct pkvm_hyp_vcpu *hyp_vcpu;
1225 	int ret = -EINVAL;
1226 
1227 	if (!is_protected_kvm_enabled())
1228 		goto out;
1229 
1230 	hyp_vcpu = pkvm_get_loaded_hyp_vcpu();
1231 	if (!hyp_vcpu)
1232 		goto out;
1233 
1234 	if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu))
1235 		goto out;
1236 
1237 	ret = __pkvm_host_split_guest(gfn, size, hyp_vcpu);
1238 
1239 out:
1240 	cpu_reg(host_ctxt, 1) = ret;
1241 }
1242 
handle___kvm_adjust_pc(struct kvm_cpu_context * host_ctxt)1243 static void handle___kvm_adjust_pc(struct kvm_cpu_context *host_ctxt)
1244 {
1245 	struct pkvm_hyp_vcpu *hyp_vcpu;
1246 	struct kvm_vcpu *host_vcpu;
1247 
1248 	host_vcpu = get_host_hyp_vcpus(host_ctxt, 1, &hyp_vcpu);
1249 	if (!host_vcpu)
1250 		return;
1251 
1252 	if (hyp_vcpu) {
1253 		/* This only applies to non-protected VMs */
1254 		if (pkvm_hyp_vcpu_is_protected(hyp_vcpu))
1255 			return;
1256 
1257 		__kvm_adjust_pc(&hyp_vcpu->vcpu);
1258 	} else {
1259 		__kvm_adjust_pc(host_vcpu);
1260 	}
1261 }
1262 
handle___kvm_flush_vm_context(struct kvm_cpu_context * host_ctxt)1263 static void handle___kvm_flush_vm_context(struct kvm_cpu_context *host_ctxt)
1264 {
1265 	__kvm_flush_vm_context();
1266 }
1267 
handle___kvm_tlb_flush_vmid_ipa(struct kvm_cpu_context * host_ctxt)1268 static void handle___kvm_tlb_flush_vmid_ipa(struct kvm_cpu_context *host_ctxt)
1269 {
1270 	DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
1271 	DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2);
1272 	DECLARE_REG(int, level, host_ctxt, 3);
1273 
1274 	__kvm_tlb_flush_vmid_ipa(kern_hyp_va(mmu), ipa, level);
1275 }
1276 
handle___kvm_tlb_flush_vmid_ipa_nsh(struct kvm_cpu_context * host_ctxt)1277 static void handle___kvm_tlb_flush_vmid_ipa_nsh(struct kvm_cpu_context *host_ctxt)
1278 {
1279 	DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
1280 	DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2);
1281 	DECLARE_REG(int, level, host_ctxt, 3);
1282 
1283 	__kvm_tlb_flush_vmid_ipa_nsh(kern_hyp_va(mmu), ipa, level);
1284 }
1285 
1286 static void
handle___kvm_tlb_flush_vmid_range(struct kvm_cpu_context * host_ctxt)1287 handle___kvm_tlb_flush_vmid_range(struct kvm_cpu_context *host_ctxt)
1288 {
1289 	DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
1290 	DECLARE_REG(phys_addr_t, start, host_ctxt, 2);
1291 	DECLARE_REG(unsigned long, pages, host_ctxt, 3);
1292 
1293 	__kvm_tlb_flush_vmid_range(kern_hyp_va(mmu), start, pages);
1294 }
1295 
handle___kvm_tlb_flush_vmid(struct kvm_cpu_context * host_ctxt)1296 static void handle___kvm_tlb_flush_vmid(struct kvm_cpu_context *host_ctxt)
1297 {
1298 	DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
1299 
1300 	__kvm_tlb_flush_vmid(kern_hyp_va(mmu));
1301 }
1302 
handle___pkvm_tlb_flush_vmid(struct kvm_cpu_context * host_ctxt)1303 static void handle___pkvm_tlb_flush_vmid(struct kvm_cpu_context *host_ctxt)
1304 {
1305 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
1306 	struct pkvm_hyp_vm *hyp_vm;
1307 
1308 	if (!is_protected_kvm_enabled())
1309 		return;
1310 
1311 	hyp_vm = get_pkvm_hyp_vm(handle);
1312 	if (!hyp_vm)
1313 		return;
1314 
1315 	__kvm_tlb_flush_vmid(&hyp_vm->kvm.arch.mmu);
1316 	put_pkvm_hyp_vm(hyp_vm);
1317 }
1318 
handle___kvm_flush_cpu_context(struct kvm_cpu_context * host_ctxt)1319 static void handle___kvm_flush_cpu_context(struct kvm_cpu_context *host_ctxt)
1320 {
1321 	DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
1322 
1323 	__kvm_flush_cpu_context(kern_hyp_va(mmu));
1324 }
1325 
handle___kvm_timer_set_cntvoff(struct kvm_cpu_context * host_ctxt)1326 static void handle___kvm_timer_set_cntvoff(struct kvm_cpu_context *host_ctxt)
1327 {
1328 	__kvm_timer_set_cntvoff(cpu_reg(host_ctxt, 1));
1329 }
1330 
handle___kvm_enable_ssbs(struct kvm_cpu_context * host_ctxt)1331 static void handle___kvm_enable_ssbs(struct kvm_cpu_context *host_ctxt)
1332 {
1333 	u64 tmp;
1334 
1335 	tmp = read_sysreg_el2(SYS_SCTLR);
1336 	tmp |= SCTLR_ELx_DSSBS;
1337 	write_sysreg_el2(tmp, SYS_SCTLR);
1338 }
1339 
handle___vgic_v3_get_gic_config(struct kvm_cpu_context * host_ctxt)1340 static void handle___vgic_v3_get_gic_config(struct kvm_cpu_context *host_ctxt)
1341 {
1342 	cpu_reg(host_ctxt, 1) = __vgic_v3_get_gic_config();
1343 }
1344 
handle___vgic_v3_init_lrs(struct kvm_cpu_context * host_ctxt)1345 static void handle___vgic_v3_init_lrs(struct kvm_cpu_context *host_ctxt)
1346 {
1347 	__vgic_v3_init_lrs();
1348 }
1349 
handle___kvm_get_mdcr_el2(struct kvm_cpu_context * host_ctxt)1350 static void handle___kvm_get_mdcr_el2(struct kvm_cpu_context *host_ctxt)
1351 {
1352 	cpu_reg(host_ctxt, 1) = __kvm_get_mdcr_el2();
1353 }
1354 
handle___vgic_v3_save_vmcr_aprs(struct kvm_cpu_context * host_ctxt)1355 static void handle___vgic_v3_save_vmcr_aprs(struct kvm_cpu_context *host_ctxt)
1356 {
1357 	struct pkvm_hyp_vcpu *hyp_vcpu;
1358 	struct kvm_vcpu *host_vcpu;
1359 
1360 	host_vcpu = get_host_hyp_vcpus_from_vgic_v3_cpu_if(host_ctxt, 1,
1361 							   &hyp_vcpu);
1362 	if (!host_vcpu)
1363 		return;
1364 
1365 	if (unlikely(hyp_vcpu)) {
1366 		struct vgic_v3_cpu_if *hyp_cpu_if, *host_cpu_if;
1367 		int i;
1368 
1369 		hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3;
1370 		__vgic_v3_save_vmcr_aprs(hyp_cpu_if);
1371 
1372 		host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3;
1373 		host_cpu_if->vgic_vmcr = hyp_cpu_if->vgic_vmcr;
1374 		for (i = 0; i < ARRAY_SIZE(host_cpu_if->vgic_ap0r); i++) {
1375 			host_cpu_if->vgic_ap0r[i] = hyp_cpu_if->vgic_ap0r[i];
1376 			host_cpu_if->vgic_ap1r[i] = hyp_cpu_if->vgic_ap1r[i];
1377 		}
1378 	} else {
1379 		__vgic_v3_save_vmcr_aprs(&host_vcpu->arch.vgic_cpu.vgic_v3);
1380 	}
1381 }
1382 
handle___vgic_v3_restore_vmcr_aprs(struct kvm_cpu_context * host_ctxt)1383 static void handle___vgic_v3_restore_vmcr_aprs(struct kvm_cpu_context *host_ctxt)
1384 {
1385 	struct pkvm_hyp_vcpu *hyp_vcpu;
1386 	struct kvm_vcpu *host_vcpu;
1387 
1388 	host_vcpu = get_host_hyp_vcpus_from_vgic_v3_cpu_if(host_ctxt, 1,
1389 							   &hyp_vcpu);
1390 	if (!host_vcpu)
1391 		return;
1392 
1393 	if (unlikely(hyp_vcpu)) {
1394 		struct vgic_v3_cpu_if *hyp_cpu_if, *host_cpu_if;
1395 		int i;
1396 
1397 		hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3;
1398 		host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3;
1399 
1400 		hyp_cpu_if->vgic_vmcr = host_cpu_if->vgic_vmcr;
1401 		/* Should be a one-off */
1402 		hyp_cpu_if->vgic_sre = (ICC_SRE_EL1_DIB |
1403 					ICC_SRE_EL1_DFB |
1404 					ICC_SRE_EL1_SRE);
1405 		for (i = 0; i < ARRAY_SIZE(host_cpu_if->vgic_ap0r); i++) {
1406 			hyp_cpu_if->vgic_ap0r[i] = host_cpu_if->vgic_ap0r[i];
1407 			hyp_cpu_if->vgic_ap1r[i] = host_cpu_if->vgic_ap1r[i];
1408 		}
1409 
1410 		__vgic_v3_restore_vmcr_aprs(hyp_cpu_if);
1411 	} else {
1412 		__vgic_v3_restore_vmcr_aprs(&host_vcpu->arch.vgic_cpu.vgic_v3);
1413 	}
1414 }
1415 
handle___pkvm_init(struct kvm_cpu_context * host_ctxt)1416 static void handle___pkvm_init(struct kvm_cpu_context *host_ctxt)
1417 {
1418 	DECLARE_REG(phys_addr_t, phys, host_ctxt, 1);
1419 	DECLARE_REG(unsigned long, size, host_ctxt, 2);
1420 	DECLARE_REG(unsigned long, nr_cpus, host_ctxt, 3);
1421 	DECLARE_REG(unsigned long *, per_cpu_base, host_ctxt, 4);
1422 	DECLARE_REG(u32, hyp_va_bits, host_ctxt, 5);
1423 
1424 	/*
1425 	 * __pkvm_init() will return only if an error occurred, otherwise it
1426 	 * will tail-call in __pkvm_init_finalise() which will have to deal
1427 	 * with the host context directly.
1428 	 */
1429 	cpu_reg(host_ctxt, 1) = __pkvm_init(phys, size, nr_cpus, per_cpu_base,
1430 					    hyp_va_bits);
1431 }
1432 
handle___pkvm_cpu_set_vector(struct kvm_cpu_context * host_ctxt)1433 static void handle___pkvm_cpu_set_vector(struct kvm_cpu_context *host_ctxt)
1434 {
1435 	DECLARE_REG(enum arm64_hyp_spectre_vector, slot, host_ctxt, 1);
1436 
1437 	cpu_reg(host_ctxt, 1) = pkvm_cpu_set_vector(slot);
1438 }
1439 
handle___pkvm_host_share_hyp(struct kvm_cpu_context * host_ctxt)1440 static void handle___pkvm_host_share_hyp(struct kvm_cpu_context *host_ctxt)
1441 {
1442 	DECLARE_REG(u64, pfn, host_ctxt, 1);
1443 
1444 	cpu_reg(host_ctxt, 1) = __pkvm_host_share_hyp(pfn);
1445 }
1446 
handle___pkvm_host_unshare_hyp(struct kvm_cpu_context * host_ctxt)1447 static void handle___pkvm_host_unshare_hyp(struct kvm_cpu_context *host_ctxt)
1448 {
1449 	DECLARE_REG(u64, pfn, host_ctxt, 1);
1450 
1451 	cpu_reg(host_ctxt, 1) = __pkvm_host_unshare_hyp(pfn);
1452 }
1453 
handle___pkvm_reclaim_dying_guest_page(struct kvm_cpu_context * host_ctxt)1454 static void handle___pkvm_reclaim_dying_guest_page(struct kvm_cpu_context *host_ctxt)
1455 {
1456 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
1457 	DECLARE_REG(u64, pfn, host_ctxt, 2);
1458 	DECLARE_REG(u64, gfn, host_ctxt, 3);
1459 	DECLARE_REG(u64, order, host_ctxt, 4);
1460 
1461 	cpu_reg(host_ctxt, 1) =
1462 		__pkvm_reclaim_dying_guest_page(handle, pfn, gfn, order);
1463 }
1464 
handle___pkvm_reclaim_dying_guest_ffa_resources(struct kvm_cpu_context * host_ctxt)1465 static void handle___pkvm_reclaim_dying_guest_ffa_resources(struct kvm_cpu_context *host_ctxt)
1466 {
1467 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
1468 
1469 	cpu_reg(host_ctxt, 1) = __pkvm_reclaim_dying_guest_ffa_resources(handle);
1470 }
1471 
handle___pkvm_notify_guest_vm_avail(struct kvm_cpu_context * host_ctxt)1472 static void handle___pkvm_notify_guest_vm_avail(struct kvm_cpu_context *host_ctxt)
1473 {
1474 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
1475 
1476 	cpu_reg(host_ctxt, 1) = __pkvm_notify_guest_vm_avail(handle);
1477 }
1478 
handle___pkvm_create_private_mapping(struct kvm_cpu_context * host_ctxt)1479 static void handle___pkvm_create_private_mapping(struct kvm_cpu_context *host_ctxt)
1480 {
1481 	DECLARE_REG(phys_addr_t, phys, host_ctxt, 1);
1482 	DECLARE_REG(size_t, size, host_ctxt, 2);
1483 	DECLARE_REG(enum kvm_pgtable_prot, prot, host_ctxt, 3);
1484 
1485 	/*
1486 	 * __pkvm_create_private_mapping() populates a pointer with the
1487 	 * hypervisor start address of the allocation.
1488 	 *
1489 	 * However, handle___pkvm_create_private_mapping() hypercall crosses the
1490 	 * EL1/EL2 boundary so the pointer would not be valid in this context.
1491 	 *
1492 	 * Instead pass the allocation address as the return value (or return
1493 	 * ERR_PTR() on failure).
1494 	 */
1495 	unsigned long haddr;
1496 	int err = __pkvm_create_private_mapping(phys, size, prot, &haddr);
1497 
1498 	if (err)
1499 		haddr = (unsigned long)ERR_PTR(err);
1500 
1501 	cpu_reg(host_ctxt, 1) = haddr;
1502 }
1503 
handle___pkvm_prot_finalize(struct kvm_cpu_context * host_ctxt)1504 static void handle___pkvm_prot_finalize(struct kvm_cpu_context *host_ctxt)
1505 {
1506 	cpu_reg(host_ctxt, 1) = __pkvm_prot_finalize();
1507 }
1508 
handle___pkvm_init_vm(struct kvm_cpu_context * host_ctxt)1509 static void handle___pkvm_init_vm(struct kvm_cpu_context *host_ctxt)
1510 {
1511 	DECLARE_REG(struct kvm *, host_kvm, host_ctxt, 1);
1512 	DECLARE_REG(unsigned long, pgd_hva, host_ctxt, 2);
1513 
1514 	host_kvm = kern_hyp_va(host_kvm);
1515 	cpu_reg(host_ctxt, 1) = __pkvm_init_vm(host_kvm, pgd_hva);
1516 	cpu_reg(host_ctxt, 3) = hyp_alloc_missing_donations();
1517 }
1518 
handle___pkvm_init_vcpu(struct kvm_cpu_context * host_ctxt)1519 static void handle___pkvm_init_vcpu(struct kvm_cpu_context *host_ctxt)
1520 {
1521 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
1522 	DECLARE_REG(struct kvm_vcpu *, host_vcpu, host_ctxt, 2);
1523 
1524 	host_vcpu = kern_hyp_va(host_vcpu);
1525 	cpu_reg(host_ctxt, 1) = __pkvm_init_vcpu(handle, host_vcpu);
1526 	cpu_reg(host_ctxt, 3) = hyp_alloc_missing_donations();
1527 }
1528 
handle___pkvm_start_teardown_vm(struct kvm_cpu_context * host_ctxt)1529 static void handle___pkvm_start_teardown_vm(struct kvm_cpu_context *host_ctxt)
1530 {
1531 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
1532 
1533 	cpu_reg(host_ctxt, 1) = __pkvm_start_teardown_vm(handle);
1534 }
1535 
handle___pkvm_finalize_teardown_vm(struct kvm_cpu_context * host_ctxt)1536 static void handle___pkvm_finalize_teardown_vm(struct kvm_cpu_context *host_ctxt)
1537 {
1538 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
1539 
1540 	cpu_reg(host_ctxt, 1) = __pkvm_finalize_teardown_vm(handle);
1541 }
1542 
handle___pkvm_update_clock_tracing(struct kvm_cpu_context * host_ctxt)1543 static void handle___pkvm_update_clock_tracing(struct kvm_cpu_context *host_ctxt)
1544 {
1545 	DECLARE_REG(u32, mult, host_ctxt, 1);
1546 	DECLARE_REG(u32, shift, host_ctxt, 2);
1547 	DECLARE_REG(u64, epoch_ns, host_ctxt, 3);
1548 	DECLARE_REG(u64, epoch_cyc, host_ctxt, 4);
1549 
1550 	__pkvm_update_clock_tracing(mult, shift, epoch_ns, epoch_cyc);
1551 
1552 	cpu_reg(host_ctxt, 1) = 0;
1553 }
1554 
handle___pkvm_load_tracing(struct kvm_cpu_context * host_ctxt)1555 static void handle___pkvm_load_tracing(struct kvm_cpu_context *host_ctxt)
1556 {
1557 	 DECLARE_REG(unsigned long, desc_hva, host_ctxt, 1);
1558 	 DECLARE_REG(size_t, desc_size, host_ctxt, 2);
1559 
1560 	 cpu_reg(host_ctxt, 1) = __pkvm_load_tracing(desc_hva, desc_size);
1561 	 cpu_reg(host_ctxt, 3) = hyp_alloc_missing_donations();
1562 }
1563 
handle___pkvm_teardown_tracing(struct kvm_cpu_context * host_ctxt)1564 static void handle___pkvm_teardown_tracing(struct kvm_cpu_context *host_ctxt)
1565 {
1566 	__pkvm_teardown_tracing();
1567 
1568 	cpu_reg(host_ctxt, 1) = 0;
1569 }
1570 
handle___pkvm_enable_tracing(struct kvm_cpu_context * host_ctxt)1571 static void handle___pkvm_enable_tracing(struct kvm_cpu_context *host_ctxt)
1572 {
1573 	DECLARE_REG(bool, enable, host_ctxt, 1);
1574 
1575 	cpu_reg(host_ctxt, 1) = __pkvm_enable_tracing(enable);
1576 }
1577 
handle___pkvm_reset_tracing(struct kvm_cpu_context * host_ctxt)1578 static void handle___pkvm_reset_tracing(struct kvm_cpu_context *host_ctxt)
1579 {
1580 	DECLARE_REG(unsigned int, cpu, host_ctxt, 1);
1581 
1582 	cpu_reg(host_ctxt, 1) = __pkvm_reset_tracing(cpu);
1583 }
1584 
handle___pkvm_swap_reader_tracing(struct kvm_cpu_context * host_ctxt)1585 static void handle___pkvm_swap_reader_tracing(struct kvm_cpu_context *host_ctxt)
1586 {
1587 	DECLARE_REG(unsigned int, cpu, host_ctxt, 1);
1588 
1589 	cpu_reg(host_ctxt, 1) = __pkvm_swap_reader_tracing(cpu);
1590 }
1591 
handle___pkvm_enable_event(struct kvm_cpu_context * host_ctxt)1592 static void handle___pkvm_enable_event(struct kvm_cpu_context *host_ctxt)
1593 {
1594 	DECLARE_REG(unsigned short, id, host_ctxt, 1);
1595 	DECLARE_REG(bool, enable, host_ctxt, 2);
1596 
1597 	cpu_reg(host_ctxt, 1) = __pkvm_enable_event(id, enable);
1598 }
1599 
handle___pkvm_selftest_event(struct kvm_cpu_context * host_ctxt)1600 static void handle___pkvm_selftest_event(struct kvm_cpu_context *host_ctxt)
1601 {
1602 	int smc_ret = SMCCC_RET_NOT_SUPPORTED, ret = -EOPNOTSUPP;
1603 
1604 #ifdef CONFIG_PKVM_SELFTESTS
1605 	trace_selftest();
1606 	smc_ret = SMCCC_RET_SUCCESS;
1607 	ret = 0;
1608 #endif
1609 	cpu_reg(host_ctxt, 0) = smc_ret;
1610 	cpu_reg(host_ctxt, 1) = ret;
1611 }
1612 
handle___pkvm_sync_ftrace(struct kvm_cpu_context * host_ctxt)1613 static void handle___pkvm_sync_ftrace(struct kvm_cpu_context *host_ctxt)
1614 {
1615 	DECLARE_REG(unsigned long, host_func_pg, host_ctxt, 1);
1616 
1617 	cpu_reg(host_ctxt, 1) = __pkvm_sync_ftrace(host_func_pg);
1618 }
1619 
handle___pkvm_disable_ftrace(struct kvm_cpu_context * host_ctxt)1620 static void handle___pkvm_disable_ftrace(struct kvm_cpu_context *host_ctxt)
1621 {
1622 	cpu_reg(host_ctxt, 1) = __pkvm_disable_ftrace();
1623 }
1624 
handle___pkvm_alloc_module_va(struct kvm_cpu_context * host_ctxt)1625 static void handle___pkvm_alloc_module_va(struct kvm_cpu_context *host_ctxt)
1626 {
1627 	DECLARE_REG(u64, nr_pages, host_ctxt, 1);
1628 
1629 	cpu_reg(host_ctxt, 1) = (u64)__pkvm_alloc_module_va(nr_pages);
1630 }
1631 
handle___pkvm_map_module_page(struct kvm_cpu_context * host_ctxt)1632 static void handle___pkvm_map_module_page(struct kvm_cpu_context *host_ctxt)
1633 {
1634 	DECLARE_REG(u64, pfn, host_ctxt, 1);
1635 	DECLARE_REG(void *, va, host_ctxt, 2);
1636 	DECLARE_REG(enum kvm_pgtable_prot, prot, host_ctxt, 3);
1637 
1638 	cpu_reg(host_ctxt, 1) = (u64)__pkvm_map_module_page(pfn, va, prot, false);
1639 }
1640 
handle___pkvm_unmap_module_page(struct kvm_cpu_context * host_ctxt)1641 static void handle___pkvm_unmap_module_page(struct kvm_cpu_context *host_ctxt)
1642 {
1643 	DECLARE_REG(u64, pfn, host_ctxt, 1);
1644 	DECLARE_REG(void *, va, host_ctxt, 2);
1645 
1646 	__pkvm_unmap_module_page(pfn, va);
1647 }
1648 
handle___pkvm_init_module(struct kvm_cpu_context * host_ctxt)1649 static void handle___pkvm_init_module(struct kvm_cpu_context *host_ctxt)
1650 {
1651 	DECLARE_REG(void *, host_mod, host_ctxt, 1);
1652 
1653 	cpu_reg(host_ctxt, 1) = __pkvm_init_module(host_mod);
1654 }
1655 
handle___pkvm_register_hcall(struct kvm_cpu_context * host_ctxt)1656 static void handle___pkvm_register_hcall(struct kvm_cpu_context *host_ctxt)
1657 {
1658 	DECLARE_REG(unsigned long, hfn_hyp_va, host_ctxt, 1);
1659 
1660 	cpu_reg(host_ctxt, 1) = __pkvm_register_hcall(hfn_hyp_va);
1661 }
1662 
handle___pkvm_hyp_alloc_mgt_refill(struct kvm_cpu_context * host_ctxt)1663 static void handle___pkvm_hyp_alloc_mgt_refill(struct kvm_cpu_context *host_ctxt)
1664 {
1665 	DECLARE_REG(unsigned long, id, host_ctxt, 1);
1666 	DECLARE_REG(phys_addr_t, phys, host_ctxt, 2);
1667 	DECLARE_REG(unsigned long, nr_pages, host_ctxt, 3);
1668 	struct kvm_hyp_memcache mc = {
1669 		.head		= phys,
1670 		.nr_pages	= nr_pages,
1671 	};
1672 
1673 	cpu_reg(host_ctxt, 1) = hyp_alloc_mgt_refill(id, &mc);
1674 	cpu_reg(host_ctxt, 2) = mc.head;
1675 	cpu_reg(host_ctxt, 3) = mc.nr_pages;
1676 }
1677 
handle___pkvm_hyp_alloc_mgt_reclaimable(struct kvm_cpu_context * host_ctxt)1678 static void handle___pkvm_hyp_alloc_mgt_reclaimable(struct kvm_cpu_context *host_ctxt)
1679 {
1680 	cpu_reg(host_ctxt, 1) = hyp_alloc_mgt_reclaimable();
1681 }
1682 
handle___pkvm_hyp_alloc_mgt_reclaim(struct kvm_cpu_context * host_ctxt)1683 static void handle___pkvm_hyp_alloc_mgt_reclaim(struct kvm_cpu_context *host_ctxt)
1684 {
1685 	DECLARE_REG(int, target, host_ctxt, 1);
1686 	struct kvm_hyp_memcache mc = {
1687 		.head		= 0,
1688 		.nr_pages	= 0,
1689 	};
1690 
1691 	hyp_alloc_mgt_reclaim(&mc, target);
1692 
1693 	cpu_reg(host_ctxt, 1) = mc.head;
1694 	cpu_reg(host_ctxt, 2) = mc.nr_pages;
1695 }
1696 
handle___pkvm_host_iommu_alloc_domain(struct kvm_cpu_context * host_ctxt)1697 static void handle___pkvm_host_iommu_alloc_domain(struct kvm_cpu_context *host_ctxt)
1698 {
1699 	int ret;
1700 	DECLARE_REG(pkvm_handle_t, domain, host_ctxt, 1);
1701 	DECLARE_REG(int, type, host_ctxt, 2);
1702 
1703 	ret = kvm_iommu_alloc_domain(domain, type);
1704 	hyp_reqs_smccc_encode(ret, host_ctxt, this_cpu_ptr(&host_hyp_reqs));
1705 }
1706 
handle___pkvm_host_iommu_free_domain(struct kvm_cpu_context * host_ctxt)1707 static void handle___pkvm_host_iommu_free_domain(struct kvm_cpu_context *host_ctxt)
1708 {
1709 	int ret;
1710 	DECLARE_REG(pkvm_handle_t, domain, host_ctxt, 1);
1711 
1712 	ret = kvm_iommu_free_domain(domain);
1713 	hyp_reqs_smccc_encode(ret, host_ctxt, this_cpu_ptr(&host_hyp_reqs));
1714 }
1715 
handle___pkvm_host_iommu_attach_dev(struct kvm_cpu_context * host_ctxt)1716 static void handle___pkvm_host_iommu_attach_dev(struct kvm_cpu_context *host_ctxt)
1717 {
1718 	int ret;
1719 	DECLARE_REG(pkvm_handle_t, iommu, host_ctxt, 1);
1720 	DECLARE_REG(pkvm_handle_t, domain, host_ctxt, 2);
1721 	DECLARE_REG(unsigned int, endpoint, host_ctxt, 3);
1722 	DECLARE_REG(unsigned int, pasid, host_ctxt, 4);
1723 	DECLARE_REG(unsigned int, pasid_bits, host_ctxt, 5);
1724 	DECLARE_REG(unsigned long, flags, host_ctxt, 6);
1725 
1726 	ret = kvm_iommu_attach_dev(iommu, domain, endpoint,
1727 				   pasid, pasid_bits, flags);
1728 	hyp_reqs_smccc_encode(ret, host_ctxt, this_cpu_ptr(&host_hyp_reqs));
1729 }
1730 
handle___pkvm_host_iommu_detach_dev(struct kvm_cpu_context * host_ctxt)1731 static void handle___pkvm_host_iommu_detach_dev(struct kvm_cpu_context *host_ctxt)
1732 {
1733 	int ret;
1734 	DECLARE_REG(pkvm_handle_t, iommu, host_ctxt, 1);
1735 	DECLARE_REG(pkvm_handle_t, domain, host_ctxt, 2);
1736 	DECLARE_REG(unsigned int, endpoint, host_ctxt, 3);
1737 	DECLARE_REG(unsigned int, pasid, host_ctxt, 4);
1738 
1739 	ret = kvm_iommu_detach_dev(iommu, domain, endpoint, pasid);
1740 	hyp_reqs_smccc_encode(ret, host_ctxt, this_cpu_ptr(&host_hyp_reqs));
1741 }
1742 
handle___pkvm_host_iommu_map_pages(struct kvm_cpu_context * host_ctxt)1743 static void handle___pkvm_host_iommu_map_pages(struct kvm_cpu_context *host_ctxt)
1744 {
1745 	int ret;
1746 	unsigned long mapped;
1747 	DECLARE_REG(pkvm_handle_t, domain, host_ctxt, 1);
1748 	DECLARE_REG(unsigned long, iova, host_ctxt, 2);
1749 	DECLARE_REG(phys_addr_t, paddr, host_ctxt, 3);
1750 	DECLARE_REG(size_t, pgsize, host_ctxt, 4);
1751 	DECLARE_REG(size_t, pgcount, host_ctxt, 5);
1752 	DECLARE_REG(unsigned int, prot, host_ctxt, 6);
1753 
1754 	ret = kvm_iommu_map_pages(domain, iova, paddr,
1755 				  pgsize, pgcount, prot, &mapped);
1756 	cpu_reg(host_ctxt, 0) = ret;
1757 	hyp_reqs_smccc_encode(mapped, host_ctxt, this_cpu_ptr(&host_hyp_reqs));
1758 }
1759 
handle___pkvm_host_iommu_unmap_pages(struct kvm_cpu_context * host_ctxt)1760 static void handle___pkvm_host_iommu_unmap_pages(struct kvm_cpu_context *host_ctxt)
1761 {
1762 	unsigned long ret;
1763 	DECLARE_REG(pkvm_handle_t, domain, host_ctxt, 1);
1764 	DECLARE_REG(unsigned long, iova, host_ctxt, 2);
1765 	DECLARE_REG(size_t, pgsize, host_ctxt, 3);
1766 	DECLARE_REG(size_t, pgcount, host_ctxt, 4);
1767 
1768 	ret = kvm_iommu_unmap_pages(domain, iova,
1769 				    pgsize, pgcount);
1770 	hyp_reqs_smccc_encode(ret, host_ctxt, this_cpu_ptr(&host_hyp_reqs));
1771 }
1772 
handle___pkvm_host_iommu_iova_to_phys(struct kvm_cpu_context * host_ctxt)1773 static void handle___pkvm_host_iommu_iova_to_phys(struct kvm_cpu_context *host_ctxt)
1774 {
1775 	DECLARE_REG(pkvm_handle_t, domain, host_ctxt, 1);
1776 	DECLARE_REG(unsigned long, iova, host_ctxt, 2);
1777 
1778 	cpu_reg(host_ctxt, 1) = kvm_iommu_iova_to_phys(domain, iova);
1779 }
1780 
handle___pkvm_host_hvc_pd(struct kvm_cpu_context * host_ctxt)1781 static void handle___pkvm_host_hvc_pd(struct kvm_cpu_context *host_ctxt)
1782 {
1783 	DECLARE_REG(u64, device_id, host_ctxt, 1);
1784 	DECLARE_REG(u64, on, host_ctxt, 2);
1785 
1786 	cpu_reg(host_ctxt, 1) = pkvm_host_hvc_pd(device_id, on);
1787 }
1788 
handle___pkvm_iommu_init(struct kvm_cpu_context * host_ctxt)1789 static void handle___pkvm_iommu_init(struct kvm_cpu_context *host_ctxt)
1790 {
1791 	DECLARE_REG(struct kvm_iommu_ops *, ops, host_ctxt, 1);
1792 	DECLARE_REG(unsigned long, mc_head, host_ctxt, 2);
1793 	DECLARE_REG(unsigned long, nr_pages, host_ctxt, 3);
1794 	struct kvm_hyp_memcache mc = {.head = mc_head, .nr_pages = nr_pages};
1795 
1796 	cpu_reg(host_ctxt, 1) = kvm_iommu_init(ops, &mc);
1797 }
1798 
handle___pkvm_ptdump(struct kvm_cpu_context * host_ctxt)1799 static void handle___pkvm_ptdump(struct kvm_cpu_context *host_ctxt)
1800 {
1801 	DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
1802 	DECLARE_REG(enum pkvm_ptdump_ops, op, host_ctxt, 2);
1803 	DECLARE_REG(struct pkvm_ptdump_log_hdr *, log, host_ctxt, 3);
1804 
1805 	if (op == PKVM_PTDUMP_GET_LEVEL || op == PKVM_PTDUMP_GET_RANGE)
1806 		cpu_reg(host_ctxt, 1) = __pkvm_ptdump_get_config(handle, op);
1807 	else if (op == PKVM_PTDUMP_WALK_RANGE)
1808 		cpu_reg(host_ctxt, 1) = __pkvm_ptdump_walk_range(handle, log);
1809 	else
1810 		cpu_reg(host_ctxt, 0) = SMCCC_RET_NOT_SUPPORTED;
1811 }
1812 
handle___pkvm_devices_init(struct kvm_cpu_context * host_ctxt)1813 static void handle___pkvm_devices_init(struct kvm_cpu_context *host_ctxt)
1814 {
1815 	/*
1816 	 * Devices must be initialised after the IOMMUs driver is initialised.
1817 	 * We do this in a separate HVC to avoid complexity.
1818 	 */
1819 	cpu_reg(host_ctxt, 1) = pkvm_init_devices();
1820 }
1821 
handle___pkvm_host_iommu_map_sg(struct kvm_cpu_context * host_ctxt)1822 static void handle___pkvm_host_iommu_map_sg(struct kvm_cpu_context *host_ctxt)
1823 {
1824 	unsigned long ret;
1825 	DECLARE_REG(pkvm_handle_t, domain, host_ctxt, 1);
1826 	DECLARE_REG(unsigned long, iova, host_ctxt, 2);
1827 	DECLARE_REG(struct kvm_iommu_sg *, sg, host_ctxt, 3);
1828 	DECLARE_REG(unsigned int, nent, host_ctxt, 4);
1829 	DECLARE_REG(unsigned int, prot, host_ctxt, 5);
1830 
1831 	ret = kvm_iommu_map_sg(domain, iova, kern_hyp_va(sg), nent, prot);
1832 	hyp_reqs_smccc_encode(ret, host_ctxt, this_cpu_ptr(&host_hyp_reqs));
1833 }
1834 
handle___pkvm_host_donate_hyp_mmio(struct kvm_cpu_context * host_ctxt)1835 static void handle___pkvm_host_donate_hyp_mmio(struct kvm_cpu_context *host_ctxt)
1836 {
1837 	DECLARE_REG(u64, pfn, host_ctxt, 1);
1838 	DECLARE_REG(u64, nr_pages, host_ctxt, 2);
1839 
1840 	if (!is_protected_kvm_enabled())
1841 		return;
1842 
1843 	cpu_reg(host_ctxt, 1) = pkvm_device_hyp_assign_mmio(pfn, nr_pages);
1844 }
1845 
handle___pkvm_host_reclaim_hyp_mmio(struct kvm_cpu_context * host_ctxt)1846 static void handle___pkvm_host_reclaim_hyp_mmio(struct kvm_cpu_context *host_ctxt)
1847 {
1848 	DECLARE_REG(u64, pfn, host_ctxt, 1);
1849 	DECLARE_REG(u64, nr_pages, host_ctxt, 2);
1850 
1851 	if (!is_protected_kvm_enabled())
1852 		return;
1853 
1854 	cpu_reg(host_ctxt, 1) = pkvm_device_reclaim_mmio(pfn, nr_pages);
1855 }
1856 
handle___pkvm_host_map_guest_mmio(struct kvm_cpu_context * host_ctxt)1857 static void handle___pkvm_host_map_guest_mmio(struct kvm_cpu_context *host_ctxt)
1858 {
1859 	DECLARE_REG(u64, pfn, host_ctxt, 1);
1860 	DECLARE_REG(u64, gfn, host_ctxt, 2);
1861 	struct pkvm_hyp_vcpu *hyp_vcpu;
1862 	int ret = -EINVAL;
1863 
1864 	if (!is_protected_kvm_enabled())
1865 		goto out;
1866 
1867 	hyp_vcpu = pkvm_get_loaded_hyp_vcpu();
1868 	if (!hyp_vcpu)
1869 		goto out;
1870 
1871 	if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu))
1872 		goto out;
1873 
1874 	/* Top-up our per-vcpu memcache from the host's */
1875 	ret = pkvm_refill_memcache(hyp_vcpu);
1876 	if (ret)
1877 		goto out;
1878 
1879 	ret = pkvm_host_map_guest_mmio(hyp_vcpu, pfn, gfn);
1880 
1881 out:
1882 	cpu_reg(host_ctxt, 1) = ret;
1883 }
1884 
handle___pkvm_pviommu_attach(struct kvm_cpu_context * host_ctxt)1885 static void handle___pkvm_pviommu_attach(struct kvm_cpu_context *host_ctxt)
1886 {
1887 	DECLARE_REG(struct kvm *, host_kvm, host_ctxt, 1);
1888 	DECLARE_REG(int, pviommu, host_ctxt, 2);
1889 
1890 	cpu_reg(host_ctxt, 1) = pkvm_pviommu_attach(host_kvm, pviommu);
1891 }
1892 
handle___pkvm_pviommu_add_vsid(struct kvm_cpu_context * host_ctxt)1893 static void handle___pkvm_pviommu_add_vsid(struct kvm_cpu_context *host_ctxt)
1894 {
1895 	DECLARE_REG(struct kvm *, host_kvm, host_ctxt, 1);
1896 	DECLARE_REG(pkvm_handle_t, pviommu, host_ctxt, 2);
1897 	DECLARE_REG(pkvm_handle_t, iommu, host_ctxt, 3);
1898 	DECLARE_REG(pkvm_handle_t, sid, host_ctxt, 4);
1899 	DECLARE_REG(pkvm_handle_t, vsid, host_ctxt, 5);
1900 
1901 	cpu_reg(host_ctxt, 1) = pkvm_pviommu_add_vsid(host_kvm, pviommu, iommu, sid, vsid);
1902 }
1903 
handle___pkvm_host_get_ffa_version(struct kvm_cpu_context * host_ctxt)1904 static void handle___pkvm_host_get_ffa_version(struct kvm_cpu_context *host_ctxt)
1905 {
1906 	cpu_reg(host_ctxt, 1) = ffa_get_hypervisor_version();
1907 }
1908 
1909 typedef void (*hcall_t)(struct kvm_cpu_context *);
1910 
1911 #define HANDLE_FUNC(x)	[__KVM_HOST_SMCCC_FUNC_##x] = (hcall_t)handle_##x
1912 
1913 static const hcall_t host_hcall[] = {
1914 	/* ___kvm_hyp_init */
1915 	HANDLE_FUNC(__kvm_get_mdcr_el2),
1916 	HANDLE_FUNC(__pkvm_init),
1917 	HANDLE_FUNC(__pkvm_create_private_mapping),
1918 	HANDLE_FUNC(__pkvm_cpu_set_vector),
1919 	HANDLE_FUNC(__kvm_enable_ssbs),
1920 	HANDLE_FUNC(__vgic_v3_init_lrs),
1921 	HANDLE_FUNC(__vgic_v3_get_gic_config),
1922 	HANDLE_FUNC(__kvm_flush_vm_context),
1923 	HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa),
1924 	HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa_nsh),
1925 	HANDLE_FUNC(__kvm_tlb_flush_vmid),
1926 	HANDLE_FUNC(__kvm_tlb_flush_vmid_range),
1927 	HANDLE_FUNC(__kvm_flush_cpu_context),
1928 	HANDLE_FUNC(__pkvm_alloc_module_va),
1929 	HANDLE_FUNC(__pkvm_map_module_page),
1930 	HANDLE_FUNC(__pkvm_unmap_module_page),
1931 	HANDLE_FUNC(__pkvm_init_module),
1932 	HANDLE_FUNC(__pkvm_register_hcall),
1933 	HANDLE_FUNC(__pkvm_iommu_init),
1934 	HANDLE_FUNC(__pkvm_devices_init),
1935 	HANDLE_FUNC(__pkvm_prot_finalize),
1936 
1937 	HANDLE_FUNC(__pkvm_host_share_hyp),
1938 	HANDLE_FUNC(__pkvm_host_unshare_hyp),
1939 	HANDLE_FUNC(__pkvm_host_donate_guest),
1940 	HANDLE_FUNC(__pkvm_host_donate_guest_sglist),
1941 	HANDLE_FUNC(__pkvm_host_share_guest),
1942 	HANDLE_FUNC(__pkvm_host_unshare_guest),
1943 	HANDLE_FUNC(__pkvm_host_relax_perms_guest),
1944 	HANDLE_FUNC(__pkvm_host_wrprotect_guest),
1945 	HANDLE_FUNC(__pkvm_host_test_clear_young_guest),
1946 	HANDLE_FUNC(__pkvm_host_mkyoung_guest),
1947 	HANDLE_FUNC(__pkvm_host_split_guest),
1948 	HANDLE_FUNC(__kvm_adjust_pc),
1949 	HANDLE_FUNC(__kvm_vcpu_run),
1950 	HANDLE_FUNC(__kvm_timer_set_cntvoff),
1951 	HANDLE_FUNC(__vgic_v3_save_vmcr_aprs),
1952 	HANDLE_FUNC(__vgic_v3_restore_vmcr_aprs),
1953 	HANDLE_FUNC(__pkvm_init_vm),
1954 	HANDLE_FUNC(__pkvm_init_vcpu),
1955 	HANDLE_FUNC(__pkvm_start_teardown_vm),
1956 	HANDLE_FUNC(__pkvm_finalize_teardown_vm),
1957 	HANDLE_FUNC(__pkvm_reclaim_dying_guest_page),
1958 	HANDLE_FUNC(__pkvm_reclaim_dying_guest_ffa_resources),
1959 	HANDLE_FUNC(__pkvm_notify_guest_vm_avail),
1960 	HANDLE_FUNC(__pkvm_vcpu_load),
1961 	HANDLE_FUNC(__pkvm_vcpu_put),
1962 	HANDLE_FUNC(__pkvm_vcpu_sync_state),
1963 	HANDLE_FUNC(__pkvm_update_clock_tracing),
1964 	HANDLE_FUNC(__pkvm_load_tracing),
1965 	HANDLE_FUNC(__pkvm_teardown_tracing),
1966 	HANDLE_FUNC(__pkvm_enable_tracing),
1967 	HANDLE_FUNC(__pkvm_reset_tracing),
1968 	HANDLE_FUNC(__pkvm_swap_reader_tracing),
1969 	HANDLE_FUNC(__pkvm_enable_event),
1970 	HANDLE_FUNC(__pkvm_selftest_event),
1971 	HANDLE_FUNC(__pkvm_sync_ftrace),
1972 	HANDLE_FUNC(__pkvm_disable_ftrace),
1973 	HANDLE_FUNC(__pkvm_tlb_flush_vmid),
1974 	HANDLE_FUNC(__pkvm_hyp_alloc_mgt_refill),
1975 	HANDLE_FUNC(__pkvm_hyp_alloc_mgt_reclaimable),
1976 	HANDLE_FUNC(__pkvm_hyp_alloc_mgt_reclaim),
1977 	HANDLE_FUNC(__pkvm_host_iommu_alloc_domain),
1978 	HANDLE_FUNC(__pkvm_host_iommu_free_domain),
1979 	HANDLE_FUNC(__pkvm_host_iommu_attach_dev),
1980 	HANDLE_FUNC(__pkvm_host_iommu_detach_dev),
1981 	HANDLE_FUNC(__pkvm_host_iommu_map_pages),
1982 	HANDLE_FUNC(__pkvm_host_iommu_unmap_pages),
1983 	HANDLE_FUNC(__pkvm_host_iommu_iova_to_phys),
1984 	HANDLE_FUNC(__pkvm_host_hvc_pd),
1985 	HANDLE_FUNC(__pkvm_ptdump),
1986 	HANDLE_FUNC(__pkvm_host_iommu_map_sg),
1987 	HANDLE_FUNC(__pkvm_host_donate_hyp_mmio),
1988 	HANDLE_FUNC(__pkvm_host_reclaim_hyp_mmio),
1989 	HANDLE_FUNC(__pkvm_host_map_guest_mmio),
1990 	HANDLE_FUNC(__pkvm_pviommu_attach),
1991 	HANDLE_FUNC(__pkvm_pviommu_add_vsid),
1992 	HANDLE_FUNC(__pkvm_host_get_ffa_version),
1993 };
1994 
handle_host_hcall(struct kvm_cpu_context * host_ctxt)1995 static void handle_host_hcall(struct kvm_cpu_context *host_ctxt)
1996 {
1997 	DECLARE_REG(unsigned long, id, host_ctxt, 0);
1998 	unsigned long hcall_min = 0;
1999 	hcall_t hfn;
2000 
2001 	/*
2002 	 * If pKVM has been initialised then reject any calls to the
2003 	 * early "privileged" hypercalls. Note that we cannot reject
2004 	 * calls to __pkvm_prot_finalize for two reasons: (1) The static
2005 	 * key used to determine initialisation must be toggled prior to
2006 	 * finalisation and (2) finalisation is performed on a per-CPU
2007 	 * basis. This is all fine, however, since __pkvm_prot_finalize
2008 	 * returns -EPERM after the first call for a given CPU.
2009 	 */
2010 	if (static_branch_unlikely(&kvm_protected_mode_initialized))
2011 		hcall_min = __KVM_HOST_SMCCC_FUNC___pkvm_prot_finalize;
2012 
2013 	id &= ~ARM_SMCCC_CALL_HINTS;
2014 	id -= KVM_HOST_SMCCC_ID(0);
2015 
2016 	if (handle_host_dynamic_hcall(&host_ctxt->regs, id) == HCALL_HANDLED)
2017 		goto end;
2018 
2019 	if (unlikely(id < hcall_min || id >= ARRAY_SIZE(host_hcall)))
2020 		goto inval;
2021 
2022 	hfn = host_hcall[id];
2023 	if (unlikely(!hfn))
2024 		goto inval;
2025 
2026 	cpu_reg(host_ctxt, 0) = SMCCC_RET_SUCCESS;
2027 	hfn(host_ctxt);
2028 end:
2029 	trace_host_hcall(id, 0);
2030 
2031 	return;
2032 inval:
2033 	trace_host_hcall(id, 1);
2034 	cpu_reg(host_ctxt, 0) = SMCCC_RET_NOT_SUPPORTED;
2035 }
2036 
handle_host_smc(struct kvm_cpu_context * host_ctxt)2037 static void handle_host_smc(struct kvm_cpu_context *host_ctxt)
2038 {
2039 	DECLARE_REG(u64, func_id, host_ctxt, 0);
2040 	bool handled;
2041 
2042 	func_id &= ~ARM_SMCCC_CALL_HINTS;
2043 
2044 	handled = kvm_host_psci_handler(host_ctxt, func_id);
2045 	if (!handled)
2046 		handled = kvm_host_ffa_handler(host_ctxt, func_id);
2047 	if (!handled)
2048 		handled = kvm_host_scmi_handler(host_ctxt);
2049 	if (!handled)
2050 		handled = module_handle_host_smc(&host_ctxt->regs);
2051 	if (!handled) {
2052 		__hyp_exit();
2053 		__kvm_hyp_host_forward_smc(host_ctxt);
2054 		__hyp_enter();
2055 	}
2056 
2057 	trace_host_smc(func_id, !handled);
2058 
2059 	/* SMC was trapped, move ELR past the current PC. */
2060 	kvm_skip_host_instr();
2061 }
2062 
handle_trap(struct kvm_cpu_context * host_ctxt)2063 void handle_trap(struct kvm_cpu_context *host_ctxt)
2064 {
2065 	u64 esr = read_sysreg_el2(SYS_ESR);
2066 
2067 	__hyp_enter();
2068 
2069 	switch (ESR_ELx_EC(esr)) {
2070 	case ESR_ELx_EC_HVC64:
2071 		handle_host_hcall(host_ctxt);
2072 		break;
2073 	case ESR_ELx_EC_SMC64:
2074 		handle_host_smc(host_ctxt);
2075 		break;
2076 	case ESR_ELx_EC_IABT_LOW:
2077 	case ESR_ELx_EC_DABT_LOW:
2078 		handle_host_mem_abort(host_ctxt);
2079 		break;
2080 	default:
2081 		BUG_ON(!READ_ONCE(default_trap_handler) || !default_trap_handler(&host_ctxt->regs));
2082 	}
2083 
2084 	__hyp_exit();
2085 }
2086