1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/reset.c
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/kvm_host.h>
14 #include <linux/kvm.h>
15 #include <linux/hw_breakpoint.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19
20 #include <kvm/arm_arch_timer.h>
21
22 #include <asm/cpufeature.h>
23 #include <asm/cputype.h>
24 #include <asm/fpsimd.h>
25 #include <asm/ptrace.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_mmu.h>
30 #include <asm/kvm_nested.h>
31 #include <asm/virt.h>
32
33 /* Maximum phys_shift supported for any VM on this host */
34 static u32 __ro_after_init kvm_ipa_limit;
35 unsigned int __ro_after_init kvm_host_sve_max_vl;
36
37 unsigned int __ro_after_init kvm_sve_max_vl;
38
kvm_arm_init_sve(void)39 int __init kvm_arm_init_sve(void)
40 {
41 if (system_supports_sve()) {
42 kvm_sve_max_vl = sve_max_virtualisable_vl();
43 kvm_nvhe_sym(kvm_sve_max_vl) = kvm_sve_max_vl;
44 kvm_host_sve_max_vl = sve_max_vl();
45 kvm_nvhe_sym(kvm_host_sve_max_vl) = kvm_host_sve_max_vl;
46
47 /*
48 * The get_sve_reg()/set_sve_reg() ioctl interface will need
49 * to be extended with multiple register slice support in
50 * order to support vector lengths greater than
51 * VL_ARCH_MAX:
52 */
53 if (WARN_ON(kvm_sve_max_vl > VL_ARCH_MAX))
54 kvm_sve_max_vl = VL_ARCH_MAX;
55
56 /*
57 * Don't even try to make use of vector lengths that
58 * aren't available on all CPUs, for now:
59 */
60 if (kvm_sve_max_vl < sve_max_vl())
61 pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
62 kvm_sve_max_vl);
63 }
64
65 return 0;
66 }
67
kvm_vcpu_enable_sve(struct kvm_vcpu * vcpu)68 static void kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
69 {
70 vcpu->arch.sve_max_vl = kvm_sve_max_vl;
71
72 /*
73 * Userspace can still customize the vector lengths by writing
74 * KVM_REG_ARM64_SVE_VLS. Allocation is deferred until
75 * kvm_arm_vcpu_finalize(), which freezes the configuration.
76 */
77 set_bit(KVM_ARCH_FLAG_GUEST_HAS_SVE, &vcpu->kvm->arch.flags);
78 }
79
alloc_sve_state(struct kvm_vcpu * vcpu)80 static int alloc_sve_state(struct kvm_vcpu *vcpu)
81 {
82 size_t reg_sz = PAGE_ALIGN(vcpu_sve_state_size(vcpu));
83 void *buf;
84 int ret;
85
86 if (kvm_vm_is_protected(vcpu->kvm))
87 return 0;
88
89 buf = alloc_pages_exact(reg_sz, GFP_KERNEL_ACCOUNT);
90 if (!buf)
91 return -ENOMEM;
92
93 ret = kvm_share_hyp(buf, buf + reg_sz);
94 if (ret) {
95 kfree(buf);
96 return ret;
97 }
98
99 vcpu->arch.sve_state = buf;
100
101 return 0;
102 }
103
104 /*
105 * Finalize vcpu's maximum SVE vector length, allocating
106 * vcpu->arch.sve_state as necessary.
107 */
kvm_vcpu_finalize_sve(struct kvm_vcpu * vcpu)108 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
109 {
110 unsigned int vl;
111 int ret;
112
113 vl = vcpu->arch.sve_max_vl;
114
115 /*
116 * Responsibility for these properties is shared between
117 * kvm_arm_init_sve(), kvm_vcpu_enable_sve() and
118 * set_sve_vls(). Double-check here just to be sure:
119 */
120 if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl() ||
121 vl > VL_ARCH_MAX))
122 return -EIO;
123
124 ret = alloc_sve_state(vcpu);
125 if (ret)
126 return ret;
127
128 vcpu_set_flag(vcpu, VCPU_SVE_FINALIZED);
129 return 0;
130 }
131
kvm_arm_vcpu_finalize(struct kvm_vcpu * vcpu,int feature)132 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
133 {
134 switch (feature) {
135 case KVM_ARM_VCPU_SVE:
136 if (!vcpu_has_sve(vcpu))
137 return -EINVAL;
138
139 if (kvm_arm_vcpu_sve_finalized(vcpu))
140 return -EPERM;
141
142 return kvm_vcpu_finalize_sve(vcpu);
143 }
144
145 return -EINVAL;
146 }
147
kvm_arm_vcpu_is_finalized(struct kvm_vcpu * vcpu)148 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
149 {
150 if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
151 return false;
152
153 return true;
154 }
155
kvm_arm_vcpu_destroy(struct kvm_vcpu * vcpu)156 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
157 {
158 void *sve_state = vcpu->arch.sve_state;
159
160 kvm_unshare_hyp(vcpu, vcpu + 1);
161
162 if (sve_state) {
163 size_t reg_sz = PAGE_ALIGN(vcpu_sve_state_size(vcpu));
164
165 /* sve_allocate within the hypervisor when protected */
166 BUG_ON(kvm_vm_is_protected(vcpu->kvm));
167
168 kvm_unshare_hyp(sve_state, sve_state + reg_sz);
169 free_pages_exact(sve_state, reg_sz);
170 }
171
172 kfree(vcpu->arch.ccsidr);
173 }
174
kvm_vcpu_reset_sve(struct kvm_vcpu * vcpu)175 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
176 {
177 if (!kvm_vm_is_protected(vcpu->kvm) && vcpu_has_sve(vcpu))
178 memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
179 }
180
181 /**
182 * kvm_reset_vcpu - sets core registers and sys_regs to reset value
183 * @vcpu: The VCPU pointer
184 *
185 * This function sets the registers on the virtual CPU struct to their
186 * architecturally defined reset values, except for registers whose reset is
187 * deferred until kvm_arm_vcpu_finalize().
188 *
189 * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
190 * ioctl or as part of handling a request issued by another VCPU in the PSCI
191 * handling code. In the first case, the VCPU will not be loaded, and in the
192 * second case the VCPU will be loaded. Because this function operates purely
193 * on the memory-backed values of system registers, we want to do a full put if
194 * we were loaded (handling a request) and load the values back at the end of
195 * the function. Otherwise we leave the state alone. In both cases, we
196 * disable preemption around the vcpu reset as we would otherwise race with
197 * preempt notifiers which also call put/load.
198 */
kvm_reset_vcpu(struct kvm_vcpu * vcpu)199 void kvm_reset_vcpu(struct kvm_vcpu *vcpu)
200 {
201 struct vcpu_reset_state reset_state;
202 bool loaded;
203
204 spin_lock(&vcpu->arch.mp_state_lock);
205 reset_state = vcpu->arch.reset_state;
206 vcpu->arch.reset_state.reset = false;
207 spin_unlock(&vcpu->arch.mp_state_lock);
208
209 /* Reset PMU outside of the non-preemptible section */
210 kvm_pmu_vcpu_reset(vcpu);
211
212 preempt_disable();
213 loaded = (vcpu->cpu != -1);
214 if (loaded)
215 kvm_arch_vcpu_put(vcpu);
216
217 if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
218 if (vcpu_has_feature(vcpu, KVM_ARM_VCPU_SVE))
219 kvm_vcpu_enable_sve(vcpu);
220 } else {
221 kvm_vcpu_reset_sve(vcpu);
222 }
223
224 /* Reset core registers */
225 kvm_reset_vcpu_core(vcpu);
226
227 /* Reset system registers */
228 kvm_reset_sys_regs(vcpu);
229
230 /*
231 * Additional reset state handling that PSCI may have imposed on us.
232 * Must be done after all the sys_reg reset.
233 */
234 if (reset_state.reset)
235 kvm_reset_vcpu_psci(vcpu, &reset_state);
236
237 /* Reset timer */
238 kvm_timer_vcpu_reset(vcpu);
239
240 if (loaded)
241 kvm_arch_vcpu_load(vcpu, smp_processor_id());
242 preempt_enable();
243 }
244
kvm_get_pa_bits(struct kvm * kvm)245 u32 kvm_get_pa_bits(struct kvm *kvm)
246 {
247 /* Fixed limit until we can configure ID_AA64MMFR0.PARange */
248 return kvm_ipa_limit;
249 }
250
get_kvm_ipa_limit(void)251 u32 get_kvm_ipa_limit(void)
252 {
253 return kvm_ipa_limit;
254 }
255
kvm_set_ipa_limit(void)256 int __init kvm_set_ipa_limit(void)
257 {
258 unsigned int parange;
259 u64 mmfr0;
260
261 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
262 parange = cpuid_feature_extract_unsigned_field(mmfr0,
263 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
264 /*
265 * IPA size beyond 48 bits for 4K and 16K page size is only supported
266 * when LPA2 is available. So if we have LPA2, enable it, else cap to 48
267 * bits, in case it's reported as larger on the system.
268 */
269 if (!kvm_lpa2_is_enabled() && PAGE_SIZE != SZ_64K)
270 parange = min(parange, (unsigned int)ID_AA64MMFR0_EL1_PARANGE_48);
271
272 /*
273 * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
274 * Stage-2. If not, things will stop very quickly.
275 */
276 switch (cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_TGRAN_2_SHIFT)) {
277 case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_NONE:
278 kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
279 return -EINVAL;
280 case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_DEFAULT:
281 kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
282 break;
283 case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MAX:
284 kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
285 break;
286 default:
287 kvm_err("Unsupported value for TGRAN_2, giving up\n");
288 return -EINVAL;
289 }
290
291 kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange);
292 kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit,
293 ((kvm_ipa_limit < KVM_PHYS_SHIFT) ?
294 " (Reduced IPA size, limited VM/VMM compatibility)" : ""));
295
296 return 0;
297 }
298