• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/kfence.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/hardirq.h>
17 #include <linux/init.h>
18 #include <linux/kasan.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/page-flags.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/highmem.h>
25 #include <linux/perf_event.h>
26 #include <linux/pkeys.h>
27 #include <linux/preempt.h>
28 #include <linux/hugetlb.h>
29 #include <linux/gfp_types.h>
30 
31 #include <asm/acpi.h>
32 #include <asm/bug.h>
33 #include <asm/cmpxchg.h>
34 #include <asm/cpufeature.h>
35 #include <asm/efi.h>
36 #include <asm/exception.h>
37 #include <asm/daifflags.h>
38 #include <asm/debug-monitors.h>
39 #include <asm/esr.h>
40 #include <asm/kprobes.h>
41 #include <asm/mte.h>
42 #include <asm/processor.h>
43 #include <asm/sysreg.h>
44 #include <asm/system_misc.h>
45 #include <asm/tlbflush.h>
46 #include <asm/traps.h>
47 #include <asm/virt.h>
48 
49 #include <trace/hooks/fault.h>
50 
51 struct fault_info {
52 	int	(*fn)(unsigned long far, unsigned long esr,
53 		      struct pt_regs *regs);
54 	int	sig;
55 	int	code;
56 	const char *name;
57 };
58 
59 static const struct fault_info fault_info[];
60 static struct fault_info debug_fault_info[];
61 
esr_to_fault_info(unsigned long esr)62 static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
63 {
64 	return fault_info + (esr & ESR_ELx_FSC);
65 }
66 
esr_to_debug_fault_info(unsigned long esr)67 static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
68 {
69 	return debug_fault_info + DBG_ESR_EVT(esr);
70 }
71 
data_abort_decode(unsigned long esr)72 static void data_abort_decode(unsigned long esr)
73 {
74 	unsigned long iss2 = ESR_ELx_ISS2(esr);
75 
76 	pr_alert("Data abort info:\n");
77 
78 	if (esr & ESR_ELx_ISV) {
79 		pr_alert("  Access size = %u byte(s)\n",
80 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
81 		pr_alert("  SSE = %lu, SRT = %lu\n",
82 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
83 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
84 		pr_alert("  SF = %lu, AR = %lu\n",
85 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
86 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
87 	} else {
88 		pr_alert("  ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
89 			 esr & ESR_ELx_ISS_MASK, iss2);
90 	}
91 
92 	pr_alert("  CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
93 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
94 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
95 		 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
96 		 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
97 
98 	pr_alert("  GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
99 		 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
100 		 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
101 		 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
102 		 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
103 }
104 
mem_abort_decode(unsigned long esr)105 static void mem_abort_decode(unsigned long esr)
106 {
107 	pr_alert("Mem abort info:\n");
108 
109 	pr_alert("  ESR = 0x%016lx\n", esr);
110 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
111 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
112 		 (esr & ESR_ELx_IL) ? 32 : 16);
113 	pr_alert("  SET = %lu, FnV = %lu\n",
114 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
115 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
116 	pr_alert("  EA = %lu, S1PTW = %lu\n",
117 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
118 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
119 	pr_alert("  FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
120 		 esr_to_fault_info(esr)->name);
121 
122 	if (esr_is_data_abort(esr))
123 		data_abort_decode(esr);
124 }
125 
mm_to_pgd_phys(struct mm_struct * mm)126 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
127 {
128 	/* Either init_pg_dir or swapper_pg_dir */
129 	if (mm == &init_mm)
130 		return __pa_symbol(mm->pgd);
131 
132 	return (unsigned long)virt_to_phys(mm->pgd);
133 }
134 
135 /*
136  * Dump out the page tables associated with 'addr' in the currently active mm.
137  */
show_pte(unsigned long addr)138 static void show_pte(unsigned long addr)
139 {
140 	struct mm_struct *mm;
141 	pgd_t *pgdp;
142 	pgd_t pgd;
143 
144 	if (is_ttbr0_addr(addr)) {
145 		/* TTBR0 */
146 		mm = current->active_mm;
147 		if (mm == &init_mm) {
148 			pr_alert("[%016lx] user address but active_mm is swapper\n",
149 				 addr);
150 			return;
151 		}
152 	} else if (is_ttbr1_addr(addr)) {
153 		/* TTBR1 */
154 		mm = &init_mm;
155 	} else {
156 		pr_alert("[%016lx] address between user and kernel address ranges\n",
157 			 addr);
158 		return;
159 	}
160 
161 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
162 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
163 		 vabits_actual, mm_to_pgd_phys(mm));
164 	pgdp = pgd_offset(mm, addr);
165 	pgd = READ_ONCE(*pgdp);
166 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
167 
168 	do {
169 		p4d_t *p4dp, p4d;
170 		pud_t *pudp, pud;
171 		pmd_t *pmdp, pmd;
172 		pte_t *ptep, pte;
173 
174 		if (pgd_none(pgd) || pgd_bad(pgd))
175 			break;
176 
177 		p4dp = p4d_offset(pgdp, addr);
178 		p4d = READ_ONCE(*p4dp);
179 		pr_cont(", p4d=%016llx", p4d_val(p4d));
180 		if (p4d_none(p4d) || p4d_bad(p4d))
181 			break;
182 
183 		pudp = pud_offset(p4dp, addr);
184 		pud = READ_ONCE(*pudp);
185 		pr_cont(", pud=%016llx", pud_val(pud));
186 		if (pud_none(pud) || pud_bad(pud))
187 			break;
188 
189 		pmdp = pmd_offset(pudp, addr);
190 		pmd = READ_ONCE(*pmdp);
191 		pr_cont(", pmd=%016llx", pmd_val(pmd));
192 		if (pmd_none(pmd) || pmd_bad(pmd))
193 			break;
194 
195 		ptep = pte_offset_map(pmdp, addr);
196 		if (!ptep)
197 			break;
198 
199 		pte = __ptep_get(ptep);
200 		pr_cont(", pte=%016llx", pte_val(pte));
201 		pte_unmap(ptep);
202 	} while(0);
203 
204 	pr_cont("\n");
205 }
206 
207 /*
208  * This function sets the access flags (dirty, accessed), as well as write
209  * permission, and only to a more permissive setting.
210  *
211  * It needs to cope with hardware update of the accessed/dirty state by other
212  * agents in the system and can safely skip the __sync_icache_dcache() call as,
213  * like __set_ptes(), the PTE is never changed from no-exec to exec here.
214  *
215  * Returns whether or not the PTE actually changed.
216  */
__ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)217 int __ptep_set_access_flags(struct vm_area_struct *vma,
218 			    unsigned long address, pte_t *ptep,
219 			    pte_t entry, int dirty)
220 {
221 	pteval_t old_pteval, pteval;
222 	pte_t pte = __ptep_get(ptep);
223 
224 	if (pte_same(pte, entry))
225 		return 0;
226 
227 	/* only preserve the access flags and write permission */
228 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
229 
230 	/*
231 	 * Setting the flags must be done atomically to avoid racing with the
232 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
233 	 * be set to the most permissive (lowest value) of *ptep and entry
234 	 * (calculated as: a & b == ~(~a | ~b)).
235 	 */
236 	pte_val(entry) ^= PTE_RDONLY;
237 	pteval = pte_val(pte);
238 	do {
239 		old_pteval = pteval;
240 		pteval ^= PTE_RDONLY;
241 		pteval |= pte_val(entry);
242 		pteval ^= PTE_RDONLY;
243 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
244 	} while (pteval != old_pteval);
245 
246 	/* Invalidate a stale read-only entry */
247 	if (dirty)
248 		flush_tlb_page(vma, address);
249 	return 1;
250 }
251 
is_el1_instruction_abort(unsigned long esr)252 static bool is_el1_instruction_abort(unsigned long esr)
253 {
254 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
255 }
256 
is_el1_data_abort(unsigned long esr)257 static bool is_el1_data_abort(unsigned long esr)
258 {
259 	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
260 }
261 
is_el1_permission_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)262 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
263 					   struct pt_regs *regs)
264 {
265 	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
266 		return false;
267 
268 	if (esr_fsc_is_permission_fault(esr))
269 		return true;
270 
271 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
272 		return esr_fsc_is_translation_fault(esr) &&
273 			(regs->pstate & PSR_PAN_BIT);
274 
275 	return false;
276 }
277 
is_pkvm_stage2_abort(unsigned int esr)278 static bool is_pkvm_stage2_abort(unsigned int esr)
279 {
280 	/*
281 	 * S1PTW should only ever be set in ESR_EL1 if the pkvm hypervisor
282 	 * injected a stage-2 abort -- see host_inject_abort().
283 	 */
284 	return is_pkvm_initialized() && (esr & ESR_ELx_S1PTW);
285 }
286 
is_spurious_el1_translation_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)287 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
288 							unsigned long esr,
289 							struct pt_regs *regs)
290 {
291 	unsigned long flags;
292 	u64 par, dfsc;
293 
294 	if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr))
295 		return false;
296 
297 	if (is_pkvm_stage2_abort(esr))
298 		return false;
299 
300 	local_irq_save(flags);
301 	asm volatile("at s1e1r, %0" :: "r" (addr));
302 	isb();
303 	par = read_sysreg_par();
304 	local_irq_restore(flags);
305 
306 	/*
307 	 * If we now have a valid translation, treat the translation fault as
308 	 * spurious.
309 	 */
310 	if (!(par & SYS_PAR_EL1_F))
311 		return true;
312 
313 	/*
314 	 * If we got a different type of fault from the AT instruction,
315 	 * treat the translation fault as spurious.
316 	 */
317 	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
318 	return !esr_fsc_is_translation_fault(dfsc);
319 }
320 
die_kernel_fault(const char * msg,unsigned long addr,unsigned long esr,struct pt_regs * regs)321 static void die_kernel_fault(const char *msg, unsigned long addr,
322 			     unsigned long esr, struct pt_regs *regs)
323 {
324 	bust_spinlocks(1);
325 
326 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
327 		 addr);
328 
329 	kasan_non_canonical_hook(addr);
330 
331 	trace_android_rvh_die_kernel_fault(msg, addr, esr, regs);
332 	mem_abort_decode(esr);
333 
334 	show_pte(addr);
335 	die("Oops", regs, esr);
336 	bust_spinlocks(0);
337 	make_task_dead(SIGKILL);
338 }
339 
340 #ifdef CONFIG_KASAN_HW_TAGS
report_tag_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)341 static void report_tag_fault(unsigned long addr, unsigned long esr,
342 			     struct pt_regs *regs)
343 {
344 	/*
345 	 * SAS bits aren't set for all faults reported in EL1, so we can't
346 	 * find out access size.
347 	 */
348 	bool is_write = !!(esr & ESR_ELx_WNR);
349 	kasan_report((void *)addr, 0, is_write, regs->pc);
350 }
351 #else
352 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
report_tag_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)353 static inline void report_tag_fault(unsigned long addr, unsigned long esr,
354 				    struct pt_regs *regs) { }
355 #endif
356 
do_tag_recovery(unsigned long addr,unsigned long esr,struct pt_regs * regs)357 static void do_tag_recovery(unsigned long addr, unsigned long esr,
358 			   struct pt_regs *regs)
359 {
360 
361 	report_tag_fault(addr, esr, regs);
362 
363 	/*
364 	 * Disable MTE Tag Checking on the local CPU for the current EL.
365 	 * It will be done lazily on the other CPUs when they will hit a
366 	 * tag fault.
367 	 */
368 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
369 			 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
370 	isb();
371 }
372 
is_el1_mte_sync_tag_check_fault(unsigned long esr)373 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
374 {
375 	unsigned long fsc = esr & ESR_ELx_FSC;
376 
377 	if (!is_el1_data_abort(esr))
378 		return false;
379 
380 	if (fsc == ESR_ELx_FSC_MTE)
381 		return true;
382 
383 	return false;
384 }
385 
__do_kernel_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)386 static void __do_kernel_fault(unsigned long addr, unsigned long esr,
387 			      struct pt_regs *regs)
388 {
389 	const char *msg;
390 
391 	/*
392 	 * Are we prepared to handle this kernel fault?
393 	 * We are almost certainly not prepared to handle instruction faults.
394 	 */
395 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
396 		return;
397 
398 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
399 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
400 		return;
401 
402 	if (is_el1_mte_sync_tag_check_fault(esr)) {
403 		do_tag_recovery(addr, esr, regs);
404 
405 		return;
406 	}
407 
408 	if (is_el1_permission_fault(addr, esr, regs)) {
409 		if (esr & ESR_ELx_WNR)
410 			msg = "write to read-only memory";
411 		else if (is_el1_instruction_abort(esr))
412 			msg = "execute from non-executable memory";
413 		else
414 			msg = "read from unreadable memory";
415 	} else if (addr < PAGE_SIZE) {
416 		msg = "NULL pointer dereference";
417 	} else if (is_pkvm_stage2_abort(esr)) {
418 		msg = "access to hypervisor-protected memory";
419 	} else {
420 		if (esr_fsc_is_translation_fault(esr) &&
421 		    kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
422 			return;
423 
424 		msg = "paging request";
425 	}
426 
427 	if (efi_runtime_fixup_exception(regs, msg))
428 		return;
429 
430 	die_kernel_fault(msg, addr, esr, regs);
431 }
432 
set_thread_esr(unsigned long address,unsigned long esr)433 static void set_thread_esr(unsigned long address, unsigned long esr)
434 {
435 	current->thread.fault_address = address;
436 
437 	/*
438 	 * If the faulting address is in the kernel, we must sanitize the ESR.
439 	 * From userspace's point of view, kernel-only mappings don't exist
440 	 * at all, so we report them as level 0 translation faults.
441 	 * (This is not quite the way that "no mapping there at all" behaves:
442 	 * an alignment fault not caused by the memory type would take
443 	 * precedence over translation fault for a real access to empty
444 	 * space. Unfortunately we can't easily distinguish "alignment fault
445 	 * not caused by memory type" from "alignment fault caused by memory
446 	 * type", so we ignore this wrinkle and just return the translation
447 	 * fault.)
448 	 */
449 	if (!is_ttbr0_addr(current->thread.fault_address)) {
450 		switch (ESR_ELx_EC(esr)) {
451 		case ESR_ELx_EC_DABT_LOW:
452 			/*
453 			 * These bits provide only information about the
454 			 * faulting instruction, which userspace knows already.
455 			 * We explicitly clear bits which are architecturally
456 			 * RES0 in case they are given meanings in future.
457 			 * We always report the ESR as if the fault was taken
458 			 * to EL1 and so ISV and the bits in ISS[23:14] are
459 			 * clear. (In fact it always will be a fault to EL1.)
460 			 */
461 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
462 				ESR_ELx_CM | ESR_ELx_WNR;
463 			esr |= ESR_ELx_FSC_FAULT;
464 			break;
465 		case ESR_ELx_EC_IABT_LOW:
466 			/*
467 			 * Claim a level 0 translation fault.
468 			 * All other bits are architecturally RES0 for faults
469 			 * reported with that DFSC value, so we clear them.
470 			 */
471 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
472 			esr |= ESR_ELx_FSC_FAULT;
473 			break;
474 		default:
475 			/*
476 			 * This should never happen (entry.S only brings us
477 			 * into this code for insn and data aborts from a lower
478 			 * exception level). Fail safe by not providing an ESR
479 			 * context record at all.
480 			 */
481 			WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
482 			esr = 0;
483 			break;
484 		}
485 	}
486 
487 	current->thread.fault_code = esr;
488 }
489 
do_bad_area(unsigned long far,unsigned long esr,struct pt_regs * regs)490 static void do_bad_area(unsigned long far, unsigned long esr,
491 			struct pt_regs *regs)
492 {
493 	unsigned long addr = untagged_addr(far);
494 
495 	/*
496 	 * If we are in kernel mode at this point, we have no context to
497 	 * handle this fault with.
498 	 */
499 	if (user_mode(regs)) {
500 		const struct fault_info *inf = esr_to_fault_info(esr);
501 
502 		set_thread_esr(addr, esr);
503 		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
504 	} else {
505 		__do_kernel_fault(addr, esr, regs);
506 	}
507 }
508 
fault_from_pkey(struct vm_area_struct * vma,unsigned int mm_flags)509 static bool fault_from_pkey(struct vm_area_struct *vma, unsigned int mm_flags)
510 {
511 	if (!system_supports_poe())
512 		return false;
513 
514 	/*
515 	 * We do not check whether an Overlay fault has occurred because we
516 	 * cannot make a decision based solely on its value:
517 	 *
518 	 * - If Overlay is set, a fault did occur due to POE, but it may be
519 	 *   spurious in those cases where we update POR_EL0 without ISB (e.g.
520 	 *   on context-switch). We would then need to manually check POR_EL0
521 	 *   against vma_pkey(vma), which is exactly what
522 	 *   arch_vma_access_permitted() does.
523 	 *
524 	 * - If Overlay is not set, we may still need to report a pkey fault.
525 	 *   This is the case if an access was made within a mapping but with no
526 	 *   page mapped, and POR_EL0 forbids the access (according to
527 	 *   vma_pkey()). Such access will result in a SIGSEGV regardless
528 	 *   because core code checks arch_vma_access_permitted(), but in order
529 	 *   to report the correct error code - SEGV_PKUERR - we must handle
530 	 *   that case here.
531 	 */
532 	return !arch_vma_access_permitted(vma,
533 			mm_flags & FAULT_FLAG_WRITE,
534 			mm_flags & FAULT_FLAG_INSTRUCTION,
535 			false);
536 }
537 
is_el0_instruction_abort(unsigned long esr)538 static bool is_el0_instruction_abort(unsigned long esr)
539 {
540 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
541 }
542 
543 /*
544  * Note: not valid for EL1 DC IVAC, but we never use that such that it
545  * should fault. EL0 cannot issue DC IVAC (undef).
546  */
is_write_abort(unsigned long esr)547 static bool is_write_abort(unsigned long esr)
548 {
549 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
550 }
551 
do_page_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)552 static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
553 				   struct pt_regs *regs)
554 {
555 	const struct fault_info *inf;
556 	struct mm_struct *mm = current->mm;
557 	vm_fault_t fault;
558 	unsigned long vm_flags;
559 	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
560 	unsigned long addr = untagged_addr(far);
561 	struct vm_area_struct *vma;
562 	int si_code;
563 	int pkey = -1;
564 
565 	if (kprobe_page_fault(regs, esr))
566 		return 0;
567 
568 	/*
569 	 * If we're in an interrupt or have no user context, we must not take
570 	 * the fault.
571 	 */
572 	if (faulthandler_disabled() || !mm)
573 		goto no_context;
574 
575 	if (user_mode(regs))
576 		mm_flags |= FAULT_FLAG_USER;
577 
578 	/*
579 	 * vm_flags tells us what bits we must have in vma->vm_flags
580 	 * for the fault to be benign, __do_page_fault() would check
581 	 * vma->vm_flags & vm_flags and returns an error if the
582 	 * intersection is empty
583 	 */
584 	if (is_el0_instruction_abort(esr)) {
585 		/* It was exec fault */
586 		vm_flags = VM_EXEC;
587 		mm_flags |= FAULT_FLAG_INSTRUCTION;
588 	} else if (is_write_abort(esr)) {
589 		/* It was write fault */
590 		vm_flags = VM_WRITE;
591 		mm_flags |= FAULT_FLAG_WRITE;
592 	} else {
593 		/* It was read fault */
594 		vm_flags = VM_READ;
595 		/* Write implies read */
596 		vm_flags |= VM_WRITE;
597 		/* If EPAN is absent then exec implies read */
598 		if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
599 			vm_flags |= VM_EXEC;
600 	}
601 
602 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
603 		if (is_el1_instruction_abort(esr))
604 			die_kernel_fault("execution of user memory",
605 					 addr, esr, regs);
606 
607 		if (!search_exception_tables(regs->pc))
608 			die_kernel_fault("access to user memory outside uaccess routines",
609 					 addr, esr, regs);
610 	}
611 
612 	if (is_pkvm_stage2_abort(esr)) {
613 		if (!user_mode(regs))
614 			goto no_context;
615 		arm64_force_sig_fault(SIGSEGV, SEGV_ACCERR, far, "stage-2 fault");
616 		return 0;
617 	}
618 
619 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
620 
621 	if (!(mm_flags & FAULT_FLAG_USER))
622 		goto lock_mmap;
623 
624 	vma = lock_vma_under_rcu(mm, addr);
625 	if (!vma)
626 		goto lock_mmap;
627 
628 	if (!(vma->vm_flags & vm_flags)) {
629 		vma_end_read(vma);
630 		fault = 0;
631 		si_code = SEGV_ACCERR;
632 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
633 		goto bad_area;
634 	}
635 
636 	if (fault_from_pkey(vma, mm_flags)) {
637 		pkey = vma_pkey(vma);
638 		vma_end_read(vma);
639 		fault = 0;
640 		si_code = SEGV_PKUERR;
641 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
642 		goto bad_area;
643 	}
644 
645 	fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
646 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
647 		vma_end_read(vma);
648 
649 	if (!(fault & VM_FAULT_RETRY)) {
650 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
651 		goto done;
652 	}
653 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
654 	if (fault & VM_FAULT_MAJOR)
655 		mm_flags |= FAULT_FLAG_TRIED;
656 
657 	/* Quick path to respond to signals */
658 	if (fault_signal_pending(fault, regs)) {
659 		if (!user_mode(regs))
660 			goto no_context;
661 		return 0;
662 	}
663 lock_mmap:
664 
665 retry:
666 	vma = lock_mm_and_find_vma(mm, addr, regs);
667 	if (unlikely(!vma)) {
668 		fault = 0;
669 		si_code = SEGV_MAPERR;
670 		goto bad_area;
671 	}
672 
673 	if (!(vma->vm_flags & vm_flags)) {
674 		mmap_read_unlock(mm);
675 		fault = 0;
676 		si_code = SEGV_ACCERR;
677 		goto bad_area;
678 	}
679 
680 	if (fault_from_pkey(vma, mm_flags)) {
681 		pkey = vma_pkey(vma);
682 		mmap_read_unlock(mm);
683 		fault = 0;
684 		si_code = SEGV_PKUERR;
685 		goto bad_area;
686 	}
687 
688 	fault = handle_mm_fault(vma, addr, mm_flags, regs);
689 
690 	/* Quick path to respond to signals */
691 	if (fault_signal_pending(fault, regs)) {
692 		if (!user_mode(regs))
693 			goto no_context;
694 		return 0;
695 	}
696 
697 	/* The fault is fully completed (including releasing mmap lock) */
698 	if (fault & VM_FAULT_COMPLETED)
699 		return 0;
700 
701 	if (fault & VM_FAULT_RETRY) {
702 		mm_flags |= FAULT_FLAG_TRIED;
703 		goto retry;
704 	}
705 	mmap_read_unlock(mm);
706 
707 done:
708 	/* Handle the "normal" (no error) case first. */
709 	if (likely(!(fault & VM_FAULT_ERROR)))
710 		return 0;
711 
712 	si_code = SEGV_MAPERR;
713 bad_area:
714 	/*
715 	 * If we are in kernel mode at this point, we have no context to
716 	 * handle this fault with.
717 	 */
718 	if (!user_mode(regs))
719 		goto no_context;
720 
721 	if (fault & VM_FAULT_OOM) {
722 		/*
723 		 * We ran out of memory, call the OOM killer, and return to
724 		 * userspace (which will retry the fault, or kill us if we got
725 		 * oom-killed).
726 		 */
727 		pagefault_out_of_memory();
728 		return 0;
729 	}
730 
731 	inf = esr_to_fault_info(esr);
732 	set_thread_esr(addr, esr);
733 	if (fault & VM_FAULT_SIGBUS) {
734 		/*
735 		 * We had some memory, but were unable to successfully fix up
736 		 * this page fault.
737 		 */
738 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
739 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
740 		unsigned int lsb;
741 
742 		lsb = PAGE_SHIFT;
743 		if (fault & VM_FAULT_HWPOISON_LARGE)
744 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
745 
746 		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
747 	} else {
748 		/*
749 		 * The pkey value that we return to userspace can be different
750 		 * from the pkey that caused the fault.
751 		 *
752 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
753 		 * 2. T1   : set POR_EL0 to deny access to pkey=4, touches, page
754 		 * 3. T1   : faults...
755 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
756 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
757 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
758 		 *	     faulted on a pte with its pkey=4.
759 		 */
760 		/* Something tried to access memory that out of memory map */
761 		if (si_code == SEGV_PKUERR)
762 			arm64_force_sig_fault_pkey(far, inf->name, pkey);
763 		else
764 			arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name);
765 	}
766 
767 	return 0;
768 
769 no_context:
770 	__do_kernel_fault(addr, esr, regs);
771 	return 0;
772 }
773 
do_translation_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)774 static int __kprobes do_translation_fault(unsigned long far,
775 					  unsigned long esr,
776 					  struct pt_regs *regs)
777 {
778 	unsigned long addr = untagged_addr(far);
779 
780 	if (is_ttbr0_addr(addr))
781 		return do_page_fault(far, esr, regs);
782 
783 	do_bad_area(far, esr, regs);
784 	return 0;
785 }
786 
do_alignment_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)787 static int do_alignment_fault(unsigned long far, unsigned long esr,
788 			      struct pt_regs *regs)
789 {
790 	if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
791 	    compat_user_mode(regs))
792 		return do_compat_alignment_fixup(far, regs);
793 	do_bad_area(far, esr, regs);
794 	return 0;
795 }
796 
do_bad(unsigned long far,unsigned long esr,struct pt_regs * regs)797 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
798 {
799 	return 1; /* "fault" */
800 }
801 
do_sea(unsigned long far,unsigned long esr,struct pt_regs * regs)802 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
803 {
804 	const struct fault_info *inf;
805 	unsigned long siaddr;
806 	bool can_fixup = false;
807 
808 	trace_android_vh_try_fixup_sea(far, esr, regs, &can_fixup);
809 	if (can_fixup && fixup_exception(regs))
810 		return 0;
811 
812 	inf = esr_to_fault_info(esr);
813 
814 	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
815 		/*
816 		 * APEI claimed this as a firmware-first notification.
817 		 * Some processing deferred to task_work before ret_to_user().
818 		 */
819 		return 0;
820 	}
821 
822 	if (esr & ESR_ELx_FnV) {
823 		siaddr = 0;
824 	} else {
825 		/*
826 		 * The architecture specifies that the tag bits of FAR_EL1 are
827 		 * UNKNOWN for synchronous external aborts. Mask them out now
828 		 * so that userspace doesn't see them.
829 		 */
830 		siaddr  = untagged_addr(far);
831 	}
832 	trace_android_rvh_do_sea(siaddr, esr, regs);
833 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
834 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
835 
836 	return 0;
837 }
838 
do_tag_check_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)839 static int do_tag_check_fault(unsigned long far, unsigned long esr,
840 			      struct pt_regs *regs)
841 {
842 	/*
843 	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
844 	 * for tag check faults. Set them to corresponding bits in the untagged
845 	 * address.
846 	 */
847 	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
848 	do_bad_area(far, esr, regs);
849 	return 0;
850 }
851 
852 static const struct fault_info fault_info[] = {
853 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
854 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
855 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
856 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
857 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
858 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
859 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
860 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
861 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 0 access flag fault"	},
862 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
863 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
864 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
865 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 0 permission fault"	},
866 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
867 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
868 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
869 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
870 	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
871 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
872 	{ do_sea,		SIGKILL, SI_KERNEL,	"level -1 (translation table walk)"	},
873 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
874 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
875 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
876 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
877 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
878 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
879 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
880 	{ do_sea,		SIGKILL, SI_KERNEL,	"level -1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
881 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
882 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
883 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
884 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
885 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
886 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
887 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
888 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
889 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
890 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
891 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
892 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
893 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
894 	{ do_bad,		SIGKILL, SI_KERNEL,	"level -1 address size fault"	},
895 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
896 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level -1 translation fault"	},
897 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
898 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
899 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
900 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
901 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
902 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
903 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
904 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
905 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
906 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
907 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
908 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
909 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
910 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
911 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
912 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
913 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
914 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
915 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
916 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
917 };
918 
do_mem_abort(unsigned long far,unsigned long esr,struct pt_regs * regs)919 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
920 {
921 	const struct fault_info *inf = esr_to_fault_info(esr);
922 	unsigned long addr = untagged_addr(far);
923 
924 	if (!inf->fn(far, esr, regs))
925 		return;
926 
927 	if (!user_mode(regs))
928 		die_kernel_fault(inf->name, addr, esr, regs);
929 
930 	/*
931 	 * At this point we have an unrecognized fault type whose tag bits may
932 	 * have been defined as UNKNOWN. Therefore we only expose the untagged
933 	 * address to the signal handler.
934 	 */
935 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
936 }
937 NOKPROBE_SYMBOL(do_mem_abort);
938 
do_sp_pc_abort(unsigned long addr,unsigned long esr,struct pt_regs * regs)939 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
940 {
941 	trace_android_rvh_do_sp_pc_abort(addr, esr, regs);
942 
943 	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
944 			 addr, esr);
945 }
946 NOKPROBE_SYMBOL(do_sp_pc_abort);
947 
948 /*
949  * __refdata because early_brk64 is __init, but the reference to it is
950  * clobbered at arch_initcall time.
951  * See traps.c and debug-monitors.c:debug_traps_init().
952  */
953 static struct fault_info __refdata debug_fault_info[] = {
954 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
955 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
956 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
957 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
958 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
959 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
960 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
961 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
962 };
963 
hook_debug_fault_code(int nr,int (* fn)(unsigned long,unsigned long,struct pt_regs *),int sig,int code,const char * name)964 void __init hook_debug_fault_code(int nr,
965 				  int (*fn)(unsigned long, unsigned long, struct pt_regs *),
966 				  int sig, int code, const char *name)
967 {
968 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
969 
970 	debug_fault_info[nr].fn		= fn;
971 	debug_fault_info[nr].sig	= sig;
972 	debug_fault_info[nr].code	= code;
973 	debug_fault_info[nr].name	= name;
974 }
975 
976 /*
977  * In debug exception context, we explicitly disable preemption despite
978  * having interrupts disabled.
979  * This serves two purposes: it makes it much less likely that we would
980  * accidentally schedule in exception context and it will force a warning
981  * if we somehow manage to schedule by accident.
982  */
debug_exception_enter(struct pt_regs * regs)983 static void debug_exception_enter(struct pt_regs *regs)
984 {
985 	preempt_disable();
986 
987 	/* This code is a bit fragile.  Test it. */
988 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
989 }
990 NOKPROBE_SYMBOL(debug_exception_enter);
991 
debug_exception_exit(struct pt_regs * regs)992 static void debug_exception_exit(struct pt_regs *regs)
993 {
994 	preempt_enable_no_resched();
995 }
996 NOKPROBE_SYMBOL(debug_exception_exit);
997 
do_debug_exception(unsigned long addr_if_watchpoint,unsigned long esr,struct pt_regs * regs)998 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
999 			struct pt_regs *regs)
1000 {
1001 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
1002 	unsigned long pc = instruction_pointer(regs);
1003 
1004 	debug_exception_enter(regs);
1005 
1006 	if (user_mode(regs) && !is_ttbr0_addr(pc))
1007 		arm64_apply_bp_hardening();
1008 
1009 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
1010 		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
1011 	}
1012 
1013 	debug_exception_exit(regs);
1014 }
1015 NOKPROBE_SYMBOL(do_debug_exception);
1016 
1017 /*
1018  * Used during anonymous page fault handling.
1019  */
vma_alloc_zeroed_movable_folio(struct vm_area_struct * vma,unsigned long vaddr)1020 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
1021 						unsigned long vaddr)
1022 {
1023 	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO | __GFP_CMA;
1024 
1025 	/*
1026 	 * If the page is mapped with PROT_MTE, initialise the tags at the
1027 	 * point of allocation and page zeroing as this is usually faster than
1028 	 * separate DC ZVA and STGM.
1029 	 */
1030 	if (vma->vm_flags & VM_MTE)
1031 		flags |= __GFP_ZEROTAGS;
1032 
1033 	return vma_alloc_folio(flags, 0, vma, vaddr, false);
1034 }
1035 
tag_clear_highpage(struct page * page)1036 void tag_clear_highpage(struct page *page)
1037 {
1038 	/* Newly allocated page, shouldn't have been tagged yet */
1039 	WARN_ON_ONCE(!try_page_mte_tagging(page));
1040 	mte_zero_clear_page_tags(page_address(page));
1041 	set_page_mte_tagged(page);
1042 }
1043