• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/math.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
32 #include <linux/hugetlb.h>
33 #include <linux/acpi_iort.h>
34 #include <linux/kmemleak.h>
35 #include <linux/execmem.h>
36 
37 #include <asm/boot.h>
38 #include <asm/fixmap.h>
39 #include <asm/kasan.h>
40 #include <asm/kernel-pgtable.h>
41 #include <asm/kvm_host.h>
42 #include <asm/memory.h>
43 #include <asm/numa.h>
44 #include <asm/sections.h>
45 #include <asm/setup.h>
46 #include <linux/sizes.h>
47 #include <asm/tlb.h>
48 #include <asm/alternative.h>
49 #include <asm/xen/swiotlb-xen.h>
50 
51 /*
52  * We need to be able to catch inadvertent references to memstart_addr
53  * that occur (potentially in generic code) before arm64_memblock_init()
54  * executes, which assigns it its actual value. So use a default value
55  * that cannot be mistaken for a real physical address.
56  */
57 s64 memstart_addr __ro_after_init = -1;
58 EXPORT_SYMBOL(memstart_addr);
59 
60 /*
61  * If the corresponding config options are enabled, we create both ZONE_DMA
62  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
63  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
64  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
65  * otherwise it is empty.
66  */
67 phys_addr_t __ro_after_init arm64_dma_phys_limit;
68 
69 /*
70  * Provide a run-time mean of disabling ZONE_DMA32 if it is enabled via
71  * CONFIG_ZONE_DMA32.
72  */
73 static bool disable_dma32 __ro_after_init;
74 
75 /*
76  * To make optimal use of block mappings when laying out the linear
77  * mapping, round down the base of physical memory to a size that can
78  * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
79  * (64k granule), or a multiple that can be mapped using contiguous bits
80  * in the page tables: 32 * PMD_SIZE (16k granule)
81  */
82 #if defined(CONFIG_ARM64_4K_PAGES)
83 #define ARM64_MEMSTART_SHIFT		PUD_SHIFT
84 #elif defined(CONFIG_ARM64_16K_PAGES)
85 #define ARM64_MEMSTART_SHIFT		CONT_PMD_SHIFT
86 #else
87 #define ARM64_MEMSTART_SHIFT		PMD_SHIFT
88 #endif
89 
90 /*
91  * sparsemem vmemmap imposes an additional requirement on the alignment of
92  * memstart_addr, due to the fact that the base of the vmemmap region
93  * has a direct correspondence, and needs to appear sufficiently aligned
94  * in the virtual address space.
95  */
96 #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
97 #define ARM64_MEMSTART_ALIGN	(1UL << SECTION_SIZE_BITS)
98 #else
99 #define ARM64_MEMSTART_ALIGN	(1UL << ARM64_MEMSTART_SHIFT)
100 #endif
101 
arch_reserve_crashkernel(void)102 static void __init arch_reserve_crashkernel(void)
103 {
104 	unsigned long long low_size = 0;
105 	unsigned long long crash_base, crash_size;
106 	char *cmdline = boot_command_line;
107 	bool high = false;
108 	int ret;
109 
110 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
111 		return;
112 
113 	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
114 				&crash_size, &crash_base,
115 				&low_size, &high);
116 	if (ret)
117 		return;
118 
119 	reserve_crashkernel_generic(cmdline, crash_size, crash_base,
120 				    low_size, high);
121 }
122 
max_zone_phys(phys_addr_t zone_limit)123 static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
124 {
125 	return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
126 }
127 
zone_sizes_init(void)128 static void __init zone_sizes_init(void)
129 {
130 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
131 	phys_addr_t __maybe_unused acpi_zone_dma_limit;
132 	phys_addr_t __maybe_unused dt_zone_dma_limit;
133 	phys_addr_t __maybe_unused dma32_phys_limit =
134 		max_zone_phys(DMA_BIT_MASK(32));
135 
136 #ifdef CONFIG_ZONE_DMA
137 	acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
138 	dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
139 	zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
140 	/*
141 	 * Information we get from firmware (e.g. DT dma-ranges) describe DMA
142 	 * bus constraints. Devices using DMA might have their own limitations.
143 	 * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
144 	 * DMA zone on platforms that have RAM there.
145 	 */
146 	if (memblock_start_of_DRAM() < U32_MAX)
147 		zone_dma_limit = min(zone_dma_limit, U32_MAX);
148 	arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
149 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
150 #endif
151 #ifdef CONFIG_ZONE_DMA32
152 	if (!disable_dma32) {
153 		max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
154 		if (!arm64_dma_phys_limit)
155 			arm64_dma_phys_limit = dma32_phys_limit;
156 	}
157 #endif
158 	if (!arm64_dma_phys_limit)
159 		arm64_dma_phys_limit = PHYS_MASK + 1;
160 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
161 
162 	free_area_init(max_zone_pfns);
163 }
164 
early_disable_dma32(char * buf)165 static int __init early_disable_dma32(char *buf)
166 {
167 	if (!buf)
168 		return -EINVAL;
169 
170 	if (!strcmp(buf, "on"))
171 		disable_dma32 = true;
172 
173 	return 0;
174 }
175 early_param("disable_dma32", early_disable_dma32);
176 
pfn_is_map_memory(unsigned long pfn)177 int pfn_is_map_memory(unsigned long pfn)
178 {
179 	phys_addr_t addr = PFN_PHYS(pfn);
180 
181 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
182 	if (PHYS_PFN(addr) != pfn)
183 		return 0;
184 
185 	return memblock_is_map_memory(addr);
186 }
187 EXPORT_SYMBOL(pfn_is_map_memory);
188 
189 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
190 
191 /*
192  * Limit the memory size that was specified via FDT.
193  */
early_mem(char * p)194 static int __init early_mem(char *p)
195 {
196 	if (!p)
197 		return 1;
198 
199 	memory_limit = memparse(p, &p) & PAGE_MASK;
200 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
201 
202 	return 0;
203 }
204 early_param("mem", early_mem);
205 
arm64_memblock_init(void)206 void __init arm64_memblock_init(void)
207 {
208 	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
209 
210 	/*
211 	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
212 	 * be limited in their ability to support a linear map that exceeds 51
213 	 * bits of VA space, depending on the placement of the ID map. Given
214 	 * that the placement of the ID map may be randomized, let's simply
215 	 * limit the kernel's linear map to 51 bits as well if we detect this
216 	 * configuration.
217 	 */
218 	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
219 	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
220 		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
221 		linear_region_size = min_t(u64, linear_region_size, BIT(51));
222 	}
223 
224 	/* Remove memory above our supported physical address size */
225 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
226 
227 	/*
228 	 * Select a suitable value for the base of physical memory.
229 	 */
230 	memstart_addr = round_down(memblock_start_of_DRAM(),
231 				   ARM64_MEMSTART_ALIGN);
232 
233 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
234 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
235 
236 	/*
237 	 * Remove the memory that we will not be able to cover with the
238 	 * linear mapping. Take care not to clip the kernel which may be
239 	 * high in memory.
240 	 */
241 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
242 			__pa_symbol(_end)), ULLONG_MAX);
243 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
244 		/* ensure that memstart_addr remains sufficiently aligned */
245 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
246 					 ARM64_MEMSTART_ALIGN);
247 		memblock_remove(0, memstart_addr);
248 	}
249 
250 	/*
251 	 * If we are running with a 52-bit kernel VA config on a system that
252 	 * does not support it, we have to place the available physical
253 	 * memory in the 48-bit addressable part of the linear region, i.e.,
254 	 * we have to move it upward. Since memstart_addr represents the
255 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
256 	 */
257 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
258 		memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
259 
260 	/*
261 	 * Apply the memory limit if it was set. Since the kernel may be loaded
262 	 * high up in memory, add back the kernel region that must be accessible
263 	 * via the linear mapping.
264 	 */
265 	if (memory_limit != PHYS_ADDR_MAX) {
266 		memblock_mem_limit_remove_map(memory_limit);
267 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
268 	}
269 
270 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
271 		/*
272 		 * Add back the memory we just removed if it results in the
273 		 * initrd to become inaccessible via the linear mapping.
274 		 * Otherwise, this is a no-op
275 		 */
276 		u64 base = phys_initrd_start & PAGE_MASK;
277 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
278 
279 		/*
280 		 * We can only add back the initrd memory if we don't end up
281 		 * with more memory than we can address via the linear mapping.
282 		 * It is up to the bootloader to position the kernel and the
283 		 * initrd reasonably close to each other (i.e., within 32 GB of
284 		 * each other) so that all granule/#levels combinations can
285 		 * always access both.
286 		 */
287 		if (WARN(base < memblock_start_of_DRAM() ||
288 			 base + size > memblock_start_of_DRAM() +
289 				       linear_region_size,
290 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
291 			phys_initrd_size = 0;
292 		} else {
293 			memblock_add(base, size);
294 			memblock_clear_nomap(base, size);
295 			memblock_reserve(base, size);
296 		}
297 	}
298 
299 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
300 		extern u16 memstart_offset_seed;
301 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
302 		int parange = cpuid_feature_extract_unsigned_field(
303 					mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
304 		s64 range = linear_region_size -
305 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
306 
307 		/*
308 		 * If the size of the linear region exceeds, by a sufficient
309 		 * margin, the size of the region that the physical memory can
310 		 * span, randomize the linear region as well.
311 		 */
312 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
313 			range /= ARM64_MEMSTART_ALIGN;
314 			memstart_addr -= ARM64_MEMSTART_ALIGN *
315 					 ((range * memstart_offset_seed) >> 16);
316 		}
317 	}
318 
319 	/*
320 	 * Register the kernel text, kernel data, initrd, and initial
321 	 * pagetables with memblock.
322 	 */
323 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
324 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
325 		/* the generic initrd code expects virtual addresses */
326 		initrd_start = __phys_to_virt(phys_initrd_start);
327 		initrd_end = initrd_start + phys_initrd_size;
328 	}
329 
330 	early_init_fdt_scan_reserved_mem();
331 
332 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
333 }
334 
bootmem_init(void)335 void __init bootmem_init(void)
336 {
337 	unsigned long min, max;
338 
339 	min = PFN_UP(memblock_start_of_DRAM());
340 	max = PFN_DOWN(memblock_end_of_DRAM());
341 
342 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
343 
344 	max_pfn = max_low_pfn = max;
345 	min_low_pfn = min;
346 
347 	arch_numa_init();
348 
349 	/*
350 	 * must be done after arch_numa_init() which calls numa_init() to
351 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
352 	 * while allocating required CMA size across online nodes.
353 	 */
354 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
355 	arm64_hugetlb_cma_reserve();
356 #endif
357 
358 	kvm_hyp_reserve();
359 
360 	/*
361 	 * sparse_init() tries to allocate memory from memblock, so must be
362 	 * done after the fixed reservations
363 	 */
364 	sparse_init();
365 	zone_sizes_init();
366 
367 	/*
368 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
369 	 */
370 	dma_contiguous_reserve(arm64_dma_phys_limit);
371 
372 	/*
373 	 * request_standard_resources() depends on crashkernel's memory being
374 	 * reserved, so do it here.
375 	 */
376 	arch_reserve_crashkernel();
377 
378 	memblock_dump_all();
379 }
380 
381 /*
382  * mem_init() marks the free areas in the mem_map and tells us how much memory
383  * is free.  This is done after various parts of the system have claimed their
384  * memory after the kernel image.
385  */
mem_init(void)386 void __init mem_init(void)
387 {
388 	bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
389 
390 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
391 		/*
392 		 * If no bouncing needed for ZONE_DMA, reduce the swiotlb
393 		 * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
394 		 */
395 		unsigned long size =
396 			DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
397 		swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
398 		swiotlb = true;
399 	}
400 
401 	swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
402 
403 	/* this will put all unused low memory onto the freelists */
404 	memblock_free_all();
405 
406 	/*
407 	 * Check boundaries twice: Some fundamental inconsistencies can be
408 	 * detected at build time already.
409 	 */
410 #ifdef CONFIG_COMPAT
411 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
412 #endif
413 
414 	/*
415 	 * Selected page table levels should match when derived from
416 	 * scratch using the virtual address range and page size.
417 	 */
418 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
419 		     CONFIG_PGTABLE_LEVELS);
420 
421 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
422 		extern int sysctl_overcommit_memory;
423 		/*
424 		 * On a machine this small we won't get anywhere without
425 		 * overcommit, so turn it on by default.
426 		 */
427 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
428 	}
429 }
430 
free_initmem(void)431 void free_initmem(void)
432 {
433 	void *lm_init_begin = lm_alias(__init_begin);
434 	void *lm_init_end = lm_alias(__init_end);
435 
436 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE));
437 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE));
438 
439 	/* Delete __init region from memblock.reserved. */
440 	memblock_free(lm_init_begin, lm_init_end - lm_init_begin);
441 
442 	free_reserved_area(lm_init_begin, lm_init_end,
443 			   POISON_FREE_INITMEM, "unused kernel");
444 	/*
445 	 * Unmap the __init region but leave the VM area in place. This
446 	 * prevents the region from being reused for kernel modules, which
447 	 * is not supported by kallsyms.
448 	 */
449 	vunmap_range((u64)__init_begin, (u64)__init_end);
450 }
451 
dump_mem_limit(void)452 void dump_mem_limit(void)
453 {
454 	if (memory_limit != PHYS_ADDR_MAX) {
455 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
456 	} else {
457 		pr_emerg("Memory Limit: none\n");
458 	}
459 }
460 
461 #ifdef CONFIG_EXECMEM
462 static u64 module_direct_base __ro_after_init = 0;
463 static u64 module_plt_base __ro_after_init = 0;
464 
465 /*
466  * Choose a random page-aligned base address for a window of 'size' bytes which
467  * entirely contains the interval [start, end - 1].
468  */
random_bounding_box(u64 size,u64 start,u64 end)469 static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
470 {
471 	u64 max_pgoff, pgoff;
472 
473 	if ((end - start) >= size)
474 		return 0;
475 
476 	max_pgoff = (size - (end - start)) / PAGE_SIZE;
477 	pgoff = get_random_u32_inclusive(0, max_pgoff);
478 
479 	return start - pgoff * PAGE_SIZE;
480 }
481 
482 /*
483  * Modules may directly reference data and text anywhere within the kernel
484  * image and other modules. References using PREL32 relocations have a +/-2G
485  * range, and so we need to ensure that the entire kernel image and all modules
486  * fall within a 2G window such that these are always within range.
487  *
488  * Modules may directly branch to functions and code within the kernel text,
489  * and to functions and code within other modules. These branches will use
490  * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
491  * that the entire kernel text and all module text falls within a 128M window
492  * such that these are always within range. With PLTs, we can expand this to a
493  * 2G window.
494  *
495  * We chose the 128M region to surround the entire kernel image (rather than
496  * just the text) as using the same bounds for the 128M and 2G regions ensures
497  * by construction that we never select a 128M region that is not a subset of
498  * the 2G region. For very large and unusual kernel configurations this means
499  * we may fall back to PLTs where they could have been avoided, but this keeps
500  * the logic significantly simpler.
501  */
module_init_limits(void)502 static int __init module_init_limits(void)
503 {
504 	u64 kernel_end = (u64)_end;
505 	u64 kernel_start = (u64)_text;
506 	u64 kernel_size = kernel_end - kernel_start;
507 
508 	/*
509 	 * The default modules region is placed immediately below the kernel
510 	 * image, and is large enough to use the full 2G relocation range.
511 	 */
512 	BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
513 	BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
514 
515 	if (!kaslr_enabled()) {
516 		if (kernel_size < SZ_128M)
517 			module_direct_base = kernel_end - SZ_128M;
518 		if (kernel_size < SZ_2G)
519 			module_plt_base = kernel_end - SZ_2G;
520 	} else {
521 		u64 min = kernel_start;
522 		u64 max = kernel_end;
523 
524 		if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
525 			pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
526 		} else {
527 			module_direct_base = random_bounding_box(SZ_128M, min, max);
528 			if (module_direct_base) {
529 				min = module_direct_base;
530 				max = module_direct_base + SZ_128M;
531 			}
532 		}
533 
534 		module_plt_base = random_bounding_box(SZ_2G, min, max);
535 	}
536 
537 	pr_info("%llu pages in range for non-PLT usage",
538 		module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
539 	pr_info("%llu pages in range for PLT usage",
540 		module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
541 
542 	return 0;
543 }
544 
545 static struct execmem_info execmem_info __ro_after_init;
546 
execmem_arch_setup(void)547 struct execmem_info __init *execmem_arch_setup(void)
548 {
549 	unsigned long fallback_start = 0, fallback_end = 0;
550 	unsigned long start = 0, end = 0;
551 
552 	module_init_limits();
553 
554 	/*
555 	 * Where possible, prefer to allocate within direct branch range of the
556 	 * kernel such that no PLTs are necessary.
557 	 */
558 	if (module_direct_base) {
559 		start = module_direct_base;
560 		end = module_direct_base + SZ_128M;
561 
562 		if (module_plt_base) {
563 			fallback_start = module_plt_base;
564 			fallback_end = module_plt_base + SZ_2G;
565 		}
566 	} else if (module_plt_base) {
567 		start = module_plt_base;
568 		end = module_plt_base + SZ_2G;
569 	}
570 
571 	execmem_info = (struct execmem_info){
572 		.ranges = {
573 			[EXECMEM_DEFAULT] = {
574 				.start	= start,
575 				.end	= end,
576 				.pgprot	= PAGE_KERNEL,
577 				.alignment = 1,
578 				.fallback_start	= fallback_start,
579 				.fallback_end	= fallback_end,
580 			},
581 			[EXECMEM_KPROBES] = {
582 				.start	= VMALLOC_START,
583 				.end	= VMALLOC_END,
584 				.pgprot	= PAGE_KERNEL_ROX,
585 				.alignment = 1,
586 			},
587 			[EXECMEM_BPF] = {
588 				.start	= VMALLOC_START,
589 				.end	= VMALLOC_END,
590 				.pgprot	= PAGE_KERNEL,
591 				.alignment = 1,
592 			},
593 		},
594 	};
595 
596 	return &execmem_info;
597 }
598 #endif /* CONFIG_EXECMEM */
599