1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30 
31 #include <asm/page.h>
32 #include <asm/fadump.h>
33 #include <asm/fadump-internal.h>
34 #include <asm/setup.h>
35 #include <asm/interrupt.h>
36 
37 /*
38  * The CPU who acquired the lock to trigger the fadump crash should
39  * wait for other CPUs to enter.
40  *
41  * The timeout is in milliseconds.
42  */
43 #define CRASH_TIMEOUT		500
44 
45 static struct fw_dump fw_dump;
46 
47 static void __init fadump_reserve_crash_area(u64 base);
48 
49 #ifndef CONFIG_PRESERVE_FA_DUMP
50 
51 static struct kobject *fadump_kobj;
52 
53 static atomic_t cpus_in_fadump;
54 static DEFINE_MUTEX(fadump_mutex);
55 
56 #define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
57 #define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
58 				 sizeof(struct fadump_memory_range))
59 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
60 static struct fadump_mrange_info
61 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
62 
63 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
64 
65 #ifdef CONFIG_CMA
66 static struct cma *fadump_cma;
67 
68 /*
69  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
70  *
71  * This function initializes CMA area from fadump reserved memory.
72  * The total size of fadump reserved memory covers for boot memory size
73  * + cpu data size + hpte size and metadata.
74  * Initialize only the area equivalent to boot memory size for CMA use.
75  * The remaining portion of fadump reserved memory will be not given
76  * to CMA and pages for those will stay reserved. boot memory size is
77  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
78  * But for some reason even if it fails we still have the memory reservation
79  * with us and we can still continue doing fadump.
80  */
fadump_cma_init(void)81 void __init fadump_cma_init(void)
82 {
83 	unsigned long long base, size;
84 	int rc;
85 
86 	if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled ||
87 			fw_dump.dump_active)
88 		return;
89 	/*
90 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
91 	 */
92 	if (fw_dump.nocma || !fw_dump.boot_memory_size)
93 		return;
94 
95 	base = fw_dump.reserve_dump_area_start;
96 	size = fw_dump.boot_memory_size;
97 
98 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma, false);
99 	if (rc) {
100 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
101 		/*
102 		 * Though the CMA init has failed we still have memory
103 		 * reservation with us. The reserved memory will be
104 		 * blocked from production system usage.  Hence return 1,
105 		 * so that we can continue with fadump.
106 		 */
107 		return;
108 	}
109 
110 	/*
111 	 *  If CMA activation fails, keep the pages reserved, instead of
112 	 *  exposing them to buddy allocator. Same as 'fadump=nocma' case.
113 	 */
114 	cma_reserve_pages_on_error(fadump_cma);
115 
116 	/*
117 	 * So we now have successfully initialized cma area for fadump.
118 	 */
119 	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
120 		"bytes of memory reserved for firmware-assisted dump\n",
121 		cma_get_size(fadump_cma),
122 		(unsigned long)cma_get_base(fadump_cma) >> 20,
123 		fw_dump.reserve_dump_area_size);
124 }
125 #endif /* CONFIG_CMA */
126 
127 /*
128  * Additional parameters meant for capture kernel are placed in a dedicated area.
129  * If this is capture kernel boot, append these parameters to bootargs.
130  */
fadump_append_bootargs(void)131 void __init fadump_append_bootargs(void)
132 {
133 	char *append_args;
134 	size_t len;
135 
136 	if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area)
137 		return;
138 
139 	if (fw_dump.param_area < fw_dump.boot_mem_top) {
140 		if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) {
141 			pr_warn("WARNING: Can't use additional parameters area!\n");
142 			fw_dump.param_area = 0;
143 			return;
144 		}
145 	}
146 
147 	append_args = (char *)fw_dump.param_area;
148 	len = strlen(boot_command_line);
149 
150 	/*
151 	 * Too late to fail even if cmdline size exceeds. Truncate additional parameters
152 	 * to cmdline size and proceed anyway.
153 	 */
154 	if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1)
155 		pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n");
156 
157 	pr_debug("Cmdline: %s\n", boot_command_line);
158 	snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args);
159 	pr_info("Updated cmdline: %s\n", boot_command_line);
160 }
161 
162 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)163 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
164 				      int depth, void *data)
165 {
166 	if (depth == 0) {
167 		early_init_dt_scan_reserved_ranges(node);
168 		return 0;
169 	}
170 
171 	if (depth != 1)
172 		return 0;
173 
174 	if (strcmp(uname, "rtas") == 0) {
175 		rtas_fadump_dt_scan(&fw_dump, node);
176 		return 1;
177 	}
178 
179 	if (strcmp(uname, "ibm,opal") == 0) {
180 		opal_fadump_dt_scan(&fw_dump, node);
181 		return 1;
182 	}
183 
184 	return 0;
185 }
186 
187 /*
188  * If fadump is registered, check if the memory provided
189  * falls within boot memory area and reserved memory area.
190  */
is_fadump_memory_area(u64 addr,unsigned long size)191 int is_fadump_memory_area(u64 addr, unsigned long size)
192 {
193 	u64 d_start, d_end;
194 
195 	if (!fw_dump.dump_registered)
196 		return 0;
197 
198 	if (!size)
199 		return 0;
200 
201 	d_start = fw_dump.reserve_dump_area_start;
202 	d_end = d_start + fw_dump.reserve_dump_area_size;
203 	if (((addr + size) > d_start) && (addr <= d_end))
204 		return 1;
205 
206 	return (addr <= fw_dump.boot_mem_top);
207 }
208 
should_fadump_crash(void)209 int should_fadump_crash(void)
210 {
211 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
212 		return 0;
213 	return 1;
214 }
215 
is_fadump_active(void)216 int is_fadump_active(void)
217 {
218 	return fw_dump.dump_active;
219 }
220 
221 /*
222  * Returns true, if there are no holes in memory area between d_start to d_end,
223  * false otherwise.
224  */
is_fadump_mem_area_contiguous(u64 d_start,u64 d_end)225 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
226 {
227 	phys_addr_t reg_start, reg_end;
228 	bool ret = false;
229 	u64 i, start, end;
230 
231 	for_each_mem_range(i, ®_start, ®_end) {
232 		start = max_t(u64, d_start, reg_start);
233 		end = min_t(u64, d_end, reg_end);
234 		if (d_start < end) {
235 			/* Memory hole from d_start to start */
236 			if (start > d_start)
237 				break;
238 
239 			if (end == d_end) {
240 				ret = true;
241 				break;
242 			}
243 
244 			d_start = end + 1;
245 		}
246 	}
247 
248 	return ret;
249 }
250 
251 /*
252  * Returns true, if there are no holes in reserved memory area,
253  * false otherwise.
254  */
is_fadump_reserved_mem_contiguous(void)255 bool is_fadump_reserved_mem_contiguous(void)
256 {
257 	u64 d_start, d_end;
258 
259 	d_start	= fw_dump.reserve_dump_area_start;
260 	d_end	= d_start + fw_dump.reserve_dump_area_size;
261 	return is_fadump_mem_area_contiguous(d_start, d_end);
262 }
263 
264 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)265 static void __init fadump_show_config(void)
266 {
267 	int i;
268 
269 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
270 			(fw_dump.fadump_supported ? "present" : "no support"));
271 
272 	if (!fw_dump.fadump_supported)
273 		return;
274 
275 	pr_debug("Fadump enabled    : %s\n",
276 				(fw_dump.fadump_enabled ? "yes" : "no"));
277 	pr_debug("Dump Active       : %s\n",
278 				(fw_dump.dump_active ? "yes" : "no"));
279 	pr_debug("Dump section sizes:\n");
280 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
281 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
282 	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
283 	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
284 	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
285 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
286 		pr_debug("[%03d] base = %llx, size = %llx\n", i,
287 			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
288 	}
289 }
290 
291 /**
292  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
293  *
294  * Function to find the largest memory size we need to reserve during early
295  * boot process. This will be the size of the memory that is required for a
296  * kernel to boot successfully.
297  *
298  * This function has been taken from phyp-assisted dump feature implementation.
299  *
300  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
301  *
302  * TODO: Come up with better approach to find out more accurate memory size
303  * that is required for a kernel to boot successfully.
304  *
305  */
fadump_calculate_reserve_size(void)306 static __init u64 fadump_calculate_reserve_size(void)
307 {
308 	u64 base, size, bootmem_min;
309 	int ret;
310 
311 	if (fw_dump.reserve_bootvar)
312 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
313 
314 	/*
315 	 * Check if the size is specified through crashkernel= cmdline
316 	 * option. If yes, then use that but ignore base as fadump reserves
317 	 * memory at a predefined offset.
318 	 */
319 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
320 				&size, &base, NULL, NULL);
321 	if (ret == 0 && size > 0) {
322 		unsigned long max_size;
323 
324 		if (fw_dump.reserve_bootvar)
325 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
326 
327 		fw_dump.reserve_bootvar = (unsigned long)size;
328 
329 		/*
330 		 * Adjust if the boot memory size specified is above
331 		 * the upper limit.
332 		 */
333 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
334 		if (fw_dump.reserve_bootvar > max_size) {
335 			fw_dump.reserve_bootvar = max_size;
336 			pr_info("Adjusted boot memory size to %luMB\n",
337 				(fw_dump.reserve_bootvar >> 20));
338 		}
339 
340 		return fw_dump.reserve_bootvar;
341 	} else if (fw_dump.reserve_bootvar) {
342 		/*
343 		 * 'fadump_reserve_mem=' is being used to reserve memory
344 		 * for firmware-assisted dump.
345 		 */
346 		return fw_dump.reserve_bootvar;
347 	}
348 
349 	/* divide by 20 to get 5% of value */
350 	size = memblock_phys_mem_size() / 20;
351 
352 	/* round it down in multiples of 256 */
353 	size = size & ~0x0FFFFFFFUL;
354 
355 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
356 	if (memory_limit && size > memory_limit)
357 		size = memory_limit;
358 
359 	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
360 	return (size > bootmem_min ? size : bootmem_min);
361 }
362 
363 /*
364  * Calculate the total memory size required to be reserved for
365  * firmware-assisted dump registration.
366  */
get_fadump_area_size(void)367 static unsigned long __init get_fadump_area_size(void)
368 {
369 	unsigned long size = 0;
370 
371 	size += fw_dump.cpu_state_data_size;
372 	size += fw_dump.hpte_region_size;
373 	/*
374 	 * Account for pagesize alignment of boot memory area destination address.
375 	 * This faciliates in mmap reading of first kernel's memory.
376 	 */
377 	size = PAGE_ALIGN(size);
378 	size += fw_dump.boot_memory_size;
379 	size += sizeof(struct fadump_crash_info_header);
380 
381 	/* This is to hold kernel metadata on platforms that support it */
382 	size += (fw_dump.ops->fadump_get_metadata_size ?
383 		 fw_dump.ops->fadump_get_metadata_size() : 0);
384 	return size;
385 }
386 
add_boot_mem_region(unsigned long rstart,unsigned long rsize)387 static int __init add_boot_mem_region(unsigned long rstart,
388 				      unsigned long rsize)
389 {
390 	int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns();
391 	int i = fw_dump.boot_mem_regs_cnt++;
392 
393 	if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) {
394 		fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns;
395 		return 0;
396 	}
397 
398 	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
399 		 i, rstart, (rstart + rsize));
400 	fw_dump.boot_mem_addr[i] = rstart;
401 	fw_dump.boot_mem_sz[i] = rsize;
402 	return 1;
403 }
404 
405 /*
406  * Firmware usually has a hard limit on the data it can copy per region.
407  * Honour that by splitting a memory range into multiple regions.
408  */
add_boot_mem_regions(unsigned long mstart,unsigned long msize)409 static int __init add_boot_mem_regions(unsigned long mstart,
410 				       unsigned long msize)
411 {
412 	unsigned long rstart, rsize, max_size;
413 	int ret = 1;
414 
415 	rstart = mstart;
416 	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
417 	while (msize) {
418 		if (msize > max_size)
419 			rsize = max_size;
420 		else
421 			rsize = msize;
422 
423 		ret = add_boot_mem_region(rstart, rsize);
424 		if (!ret)
425 			break;
426 
427 		msize -= rsize;
428 		rstart += rsize;
429 	}
430 
431 	return ret;
432 }
433 
fadump_get_boot_mem_regions(void)434 static int __init fadump_get_boot_mem_regions(void)
435 {
436 	unsigned long size, cur_size, hole_size, last_end;
437 	unsigned long mem_size = fw_dump.boot_memory_size;
438 	phys_addr_t reg_start, reg_end;
439 	int ret = 1;
440 	u64 i;
441 
442 	fw_dump.boot_mem_regs_cnt = 0;
443 
444 	last_end = 0;
445 	hole_size = 0;
446 	cur_size = 0;
447 	for_each_mem_range(i, ®_start, ®_end) {
448 		size = reg_end - reg_start;
449 		hole_size += (reg_start - last_end);
450 
451 		if ((cur_size + size) >= mem_size) {
452 			size = (mem_size - cur_size);
453 			ret = add_boot_mem_regions(reg_start, size);
454 			break;
455 		}
456 
457 		mem_size -= size;
458 		cur_size += size;
459 		ret = add_boot_mem_regions(reg_start, size);
460 		if (!ret)
461 			break;
462 
463 		last_end = reg_end;
464 	}
465 	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
466 
467 	return ret;
468 }
469 
470 /*
471  * Returns true, if the given range overlaps with reserved memory ranges
472  * starting at idx. Also, updates idx to index of overlapping memory range
473  * with the given memory range.
474  * False, otherwise.
475  */
overlaps_reserved_ranges(u64 base,u64 end,int * idx)476 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
477 {
478 	bool ret = false;
479 	int i;
480 
481 	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
482 		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
483 		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
484 
485 		if (end <= rbase)
486 			break;
487 
488 		if ((end > rbase) &&  (base < rend)) {
489 			*idx = i;
490 			ret = true;
491 			break;
492 		}
493 	}
494 
495 	return ret;
496 }
497 
498 /*
499  * Locate a suitable memory area to reserve memory for FADump. While at it,
500  * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
501  */
fadump_locate_reserve_mem(u64 base,u64 size)502 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
503 {
504 	struct fadump_memory_range *mrngs;
505 	phys_addr_t mstart, mend;
506 	int idx = 0;
507 	u64 i, ret = 0;
508 
509 	mrngs = reserved_mrange_info.mem_ranges;
510 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
511 				&mstart, &mend, NULL) {
512 		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
513 			 i, mstart, mend, base);
514 
515 		if (mstart > base)
516 			base = PAGE_ALIGN(mstart);
517 
518 		while ((mend > base) && ((mend - base) >= size)) {
519 			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
520 				ret = base;
521 				goto out;
522 			}
523 
524 			base = mrngs[idx].base + mrngs[idx].size;
525 			base = PAGE_ALIGN(base);
526 		}
527 	}
528 
529 out:
530 	return ret;
531 }
532 
fadump_reserve_mem(void)533 int __init fadump_reserve_mem(void)
534 {
535 	u64 base, size, mem_boundary, bootmem_min;
536 	int ret = 1;
537 
538 	if (!fw_dump.fadump_enabled)
539 		return 0;
540 
541 	if (!fw_dump.fadump_supported) {
542 		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
543 		goto error_out;
544 	}
545 
546 	/*
547 	 * Initialize boot memory size
548 	 * If dump is active then we have already calculated the size during
549 	 * first kernel.
550 	 */
551 	if (!fw_dump.dump_active) {
552 		fw_dump.boot_memory_size =
553 			PAGE_ALIGN(fadump_calculate_reserve_size());
554 #ifdef CONFIG_CMA
555 		if (!fw_dump.nocma) {
556 			fw_dump.boot_memory_size =
557 				ALIGN(fw_dump.boot_memory_size,
558 				      CMA_MIN_ALIGNMENT_BYTES);
559 		}
560 #endif
561 
562 		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
563 		if (fw_dump.boot_memory_size < bootmem_min) {
564 			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
565 			       fw_dump.boot_memory_size, bootmem_min);
566 			goto error_out;
567 		}
568 
569 		if (!fadump_get_boot_mem_regions()) {
570 			pr_err("Too many holes in boot memory area to enable fadump\n");
571 			goto error_out;
572 		}
573 	}
574 
575 	if (memory_limit)
576 		mem_boundary = memory_limit;
577 	else
578 		mem_boundary = memblock_end_of_DRAM();
579 
580 	base = fw_dump.boot_mem_top;
581 	size = get_fadump_area_size();
582 	fw_dump.reserve_dump_area_size = size;
583 	if (fw_dump.dump_active) {
584 		pr_info("Firmware-assisted dump is active.\n");
585 
586 #ifdef CONFIG_HUGETLB_PAGE
587 		/*
588 		 * FADump capture kernel doesn't care much about hugepages.
589 		 * In fact, handling hugepages in capture kernel is asking for
590 		 * trouble. So, disable HugeTLB support when fadump is active.
591 		 */
592 		hugetlb_disabled = true;
593 #endif
594 		/*
595 		 * If last boot has crashed then reserve all the memory
596 		 * above boot memory size so that we don't touch it until
597 		 * dump is written to disk by userspace tool. This memory
598 		 * can be released for general use by invalidating fadump.
599 		 */
600 		fadump_reserve_crash_area(base);
601 
602 		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
603 		pr_debug("Reserve dump area start address: 0x%lx\n",
604 			 fw_dump.reserve_dump_area_start);
605 	} else {
606 		/*
607 		 * Reserve memory at an offset closer to bottom of the RAM to
608 		 * minimize the impact of memory hot-remove operation.
609 		 */
610 		base = fadump_locate_reserve_mem(base, size);
611 
612 		if (!base || (base + size > mem_boundary)) {
613 			pr_err("Failed to find memory chunk for reservation!\n");
614 			goto error_out;
615 		}
616 		fw_dump.reserve_dump_area_start = base;
617 
618 		/*
619 		 * Calculate the kernel metadata address and register it with
620 		 * f/w if the platform supports.
621 		 */
622 		if (fw_dump.ops->fadump_setup_metadata &&
623 		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
624 			goto error_out;
625 
626 		if (memblock_reserve(base, size)) {
627 			pr_err("Failed to reserve memory!\n");
628 			goto error_out;
629 		}
630 
631 		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
632 			(size >> 20), base, (memblock_phys_mem_size() >> 20));
633 	}
634 
635 	return ret;
636 error_out:
637 	fw_dump.fadump_enabled = 0;
638 	fw_dump.reserve_dump_area_size = 0;
639 	return 0;
640 }
641 
642 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)643 static int __init early_fadump_param(char *p)
644 {
645 	if (!p)
646 		return 1;
647 
648 	if (strncmp(p, "on", 2) == 0)
649 		fw_dump.fadump_enabled = 1;
650 	else if (strncmp(p, "off", 3) == 0)
651 		fw_dump.fadump_enabled = 0;
652 	else if (strncmp(p, "nocma", 5) == 0) {
653 		fw_dump.fadump_enabled = 1;
654 		fw_dump.nocma = 1;
655 	}
656 
657 	return 0;
658 }
659 early_param("fadump", early_fadump_param);
660 
661 /*
662  * Look for fadump_reserve_mem= cmdline option
663  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
664  *       the sooner 'crashkernel=' parameter is accustomed to.
665  */
early_fadump_reserve_mem(char * p)666 static int __init early_fadump_reserve_mem(char *p)
667 {
668 	if (p)
669 		fw_dump.reserve_bootvar = memparse(p, &p);
670 	return 0;
671 }
672 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
673 
crash_fadump(struct pt_regs * regs,const char * str)674 void crash_fadump(struct pt_regs *regs, const char *str)
675 {
676 	unsigned int msecs;
677 	struct fadump_crash_info_header *fdh = NULL;
678 	int old_cpu, this_cpu;
679 	/* Do not include first CPU */
680 	unsigned int ncpus = num_online_cpus() - 1;
681 
682 	if (!should_fadump_crash())
683 		return;
684 
685 	/*
686 	 * old_cpu == -1 means this is the first CPU which has come here,
687 	 * go ahead and trigger fadump.
688 	 *
689 	 * old_cpu != -1 means some other CPU has already on its way
690 	 * to trigger fadump, just keep looping here.
691 	 */
692 	this_cpu = smp_processor_id();
693 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
694 
695 	if (old_cpu != -1) {
696 		atomic_inc(&cpus_in_fadump);
697 
698 		/*
699 		 * We can't loop here indefinitely. Wait as long as fadump
700 		 * is in force. If we race with fadump un-registration this
701 		 * loop will break and then we go down to normal panic path
702 		 * and reboot. If fadump is in force the first crashing
703 		 * cpu will definitely trigger fadump.
704 		 */
705 		while (fw_dump.dump_registered)
706 			cpu_relax();
707 		return;
708 	}
709 
710 	fdh = __va(fw_dump.fadumphdr_addr);
711 	fdh->crashing_cpu = crashing_cpu;
712 	crash_save_vmcoreinfo();
713 
714 	if (regs)
715 		fdh->regs = *regs;
716 	else
717 		ppc_save_regs(&fdh->regs);
718 
719 	fdh->cpu_mask = *cpu_online_mask;
720 
721 	/*
722 	 * If we came in via system reset, wait a while for the secondary
723 	 * CPUs to enter.
724 	 */
725 	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
726 		msecs = CRASH_TIMEOUT;
727 		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
728 			mdelay(1);
729 	}
730 
731 	fw_dump.ops->fadump_trigger(fdh, str);
732 }
733 
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)734 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
735 {
736 	struct elf_prstatus prstatus;
737 
738 	memset(&prstatus, 0, sizeof(prstatus));
739 	/*
740 	 * FIXME: How do i get PID? Do I really need it?
741 	 * prstatus.pr_pid = ????
742 	 */
743 	elf_core_copy_regs(&prstatus.pr_reg, regs);
744 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
745 			      &prstatus, sizeof(prstatus));
746 	return buf;
747 }
748 
fadump_update_elfcore_header(char * bufp)749 void __init fadump_update_elfcore_header(char *bufp)
750 {
751 	struct elf_phdr *phdr;
752 
753 	bufp += sizeof(struct elfhdr);
754 
755 	/* First note is a place holder for cpu notes info. */
756 	phdr = (struct elf_phdr *)bufp;
757 
758 	if (phdr->p_type == PT_NOTE) {
759 		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
760 		phdr->p_offset	= phdr->p_paddr;
761 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
762 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
763 	}
764 	return;
765 }
766 
fadump_alloc_buffer(unsigned long size)767 static void *__init fadump_alloc_buffer(unsigned long size)
768 {
769 	unsigned long count, i;
770 	struct page *page;
771 	void *vaddr;
772 
773 	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
774 	if (!vaddr)
775 		return NULL;
776 
777 	count = PAGE_ALIGN(size) / PAGE_SIZE;
778 	page = virt_to_page(vaddr);
779 	for (i = 0; i < count; i++)
780 		mark_page_reserved(page + i);
781 	return vaddr;
782 }
783 
fadump_free_buffer(unsigned long vaddr,unsigned long size)784 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
785 {
786 	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
787 }
788 
fadump_setup_cpu_notes_buf(u32 num_cpus)789 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
790 {
791 	/* Allocate buffer to hold cpu crash notes. */
792 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
793 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
794 	fw_dump.cpu_notes_buf_vaddr =
795 		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
796 	if (!fw_dump.cpu_notes_buf_vaddr) {
797 		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
798 		       fw_dump.cpu_notes_buf_size);
799 		return -ENOMEM;
800 	}
801 
802 	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
803 		 fw_dump.cpu_notes_buf_size,
804 		 fw_dump.cpu_notes_buf_vaddr);
805 	return 0;
806 }
807 
fadump_free_cpu_notes_buf(void)808 void fadump_free_cpu_notes_buf(void)
809 {
810 	if (!fw_dump.cpu_notes_buf_vaddr)
811 		return;
812 
813 	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
814 			   fw_dump.cpu_notes_buf_size);
815 	fw_dump.cpu_notes_buf_vaddr = 0;
816 	fw_dump.cpu_notes_buf_size = 0;
817 }
818 
fadump_free_mem_ranges(struct fadump_mrange_info * mrange_info)819 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
820 {
821 	if (mrange_info->is_static) {
822 		mrange_info->mem_range_cnt = 0;
823 		return;
824 	}
825 
826 	kfree(mrange_info->mem_ranges);
827 	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
828 	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
829 }
830 
831 /*
832  * Allocate or reallocate mem_ranges array in incremental units
833  * of PAGE_SIZE.
834  */
fadump_alloc_mem_ranges(struct fadump_mrange_info * mrange_info)835 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
836 {
837 	struct fadump_memory_range *new_array;
838 	u64 new_size;
839 
840 	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
841 	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
842 		 new_size, mrange_info->name);
843 
844 	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
845 	if (new_array == NULL) {
846 		pr_err("Insufficient memory for setting up %s memory ranges\n",
847 		       mrange_info->name);
848 		fadump_free_mem_ranges(mrange_info);
849 		return -ENOMEM;
850 	}
851 
852 	mrange_info->mem_ranges = new_array;
853 	mrange_info->mem_ranges_sz = new_size;
854 	mrange_info->max_mem_ranges = (new_size /
855 				       sizeof(struct fadump_memory_range));
856 	return 0;
857 }
fadump_add_mem_range(struct fadump_mrange_info * mrange_info,u64 base,u64 end)858 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
859 				       u64 base, u64 end)
860 {
861 	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
862 	bool is_adjacent = false;
863 	u64 start, size;
864 
865 	if (base == end)
866 		return 0;
867 
868 	/*
869 	 * Fold adjacent memory ranges to bring down the memory ranges/
870 	 * PT_LOAD segments count.
871 	 */
872 	if (mrange_info->mem_range_cnt) {
873 		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
874 		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
875 
876 		/*
877 		 * Boot memory area needs separate PT_LOAD segment(s) as it
878 		 * is moved to a different location at the time of crash.
879 		 * So, fold only if the region is not boot memory area.
880 		 */
881 		if ((start + size) == base && start >= fw_dump.boot_mem_top)
882 			is_adjacent = true;
883 	}
884 	if (!is_adjacent) {
885 		/* resize the array on reaching the limit */
886 		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
887 			int ret;
888 
889 			if (mrange_info->is_static) {
890 				pr_err("Reached array size limit for %s memory ranges\n",
891 				       mrange_info->name);
892 				return -ENOSPC;
893 			}
894 
895 			ret = fadump_alloc_mem_ranges(mrange_info);
896 			if (ret)
897 				return ret;
898 
899 			/* Update to the new resized array */
900 			mem_ranges = mrange_info->mem_ranges;
901 		}
902 
903 		start = base;
904 		mem_ranges[mrange_info->mem_range_cnt].base = start;
905 		mrange_info->mem_range_cnt++;
906 	}
907 
908 	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
909 	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
910 		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
911 		 start, end - 1, (end - start));
912 	return 0;
913 }
914 
fadump_init_elfcore_header(char * bufp)915 static int fadump_init_elfcore_header(char *bufp)
916 {
917 	struct elfhdr *elf;
918 
919 	elf = (struct elfhdr *) bufp;
920 	bufp += sizeof(struct elfhdr);
921 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
922 	elf->e_ident[EI_CLASS] = ELF_CLASS;
923 	elf->e_ident[EI_DATA] = ELF_DATA;
924 	elf->e_ident[EI_VERSION] = EV_CURRENT;
925 	elf->e_ident[EI_OSABI] = ELF_OSABI;
926 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
927 	elf->e_type = ET_CORE;
928 	elf->e_machine = ELF_ARCH;
929 	elf->e_version = EV_CURRENT;
930 	elf->e_entry = 0;
931 	elf->e_phoff = sizeof(struct elfhdr);
932 	elf->e_shoff = 0;
933 
934 	if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
935 		elf->e_flags = 2;
936 	else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
937 		elf->e_flags = 1;
938 	else
939 		elf->e_flags = 0;
940 
941 	elf->e_ehsize = sizeof(struct elfhdr);
942 	elf->e_phentsize = sizeof(struct elf_phdr);
943 	elf->e_phnum = 0;
944 	elf->e_shentsize = 0;
945 	elf->e_shnum = 0;
946 	elf->e_shstrndx = 0;
947 
948 	return 0;
949 }
950 
951 /*
952  * If the given physical address falls within the boot memory region then
953  * return the relocated address that points to the dump region reserved
954  * for saving initial boot memory contents.
955  */
fadump_relocate(unsigned long paddr)956 static inline unsigned long fadump_relocate(unsigned long paddr)
957 {
958 	unsigned long raddr, rstart, rend, rlast, hole_size;
959 	int i;
960 
961 	hole_size = 0;
962 	rlast = 0;
963 	raddr = paddr;
964 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
965 		rstart = fw_dump.boot_mem_addr[i];
966 		rend = rstart + fw_dump.boot_mem_sz[i];
967 		hole_size += (rstart - rlast);
968 
969 		if (paddr >= rstart && paddr < rend) {
970 			raddr += fw_dump.boot_mem_dest_addr - hole_size;
971 			break;
972 		}
973 
974 		rlast = rend;
975 	}
976 
977 	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
978 	return raddr;
979 }
980 
populate_elf_pt_load(struct elf_phdr * phdr,u64 start,u64 size,unsigned long long offset)981 static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start,
982 			     u64 size, unsigned long long offset)
983 {
984 	phdr->p_align	= 0;
985 	phdr->p_memsz	= size;
986 	phdr->p_filesz	= size;
987 	phdr->p_paddr	= start;
988 	phdr->p_offset	= offset;
989 	phdr->p_type	= PT_LOAD;
990 	phdr->p_flags	= PF_R|PF_W|PF_X;
991 	phdr->p_vaddr	= (unsigned long)__va(start);
992 }
993 
fadump_populate_elfcorehdr(struct fadump_crash_info_header * fdh)994 static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh)
995 {
996 	char *bufp;
997 	struct elfhdr *elf;
998 	struct elf_phdr *phdr;
999 	u64 boot_mem_dest_offset;
1000 	unsigned long long i, ra_start, ra_end, ra_size, mstart, mend;
1001 
1002 	bufp = (char *) fw_dump.elfcorehdr_addr;
1003 	fadump_init_elfcore_header(bufp);
1004 	elf = (struct elfhdr *)bufp;
1005 	bufp += sizeof(struct elfhdr);
1006 
1007 	/*
1008 	 * Set up ELF PT_NOTE, a placeholder for CPU notes information.
1009 	 * The notes info will be populated later by platform-specific code.
1010 	 * Hence, this PT_NOTE will always be the first ELF note.
1011 	 *
1012 	 * NOTE: Any new ELF note addition should be placed after this note.
1013 	 */
1014 	phdr = (struct elf_phdr *)bufp;
1015 	bufp += sizeof(struct elf_phdr);
1016 	phdr->p_type = PT_NOTE;
1017 	phdr->p_flags	= 0;
1018 	phdr->p_vaddr	= 0;
1019 	phdr->p_align	= 0;
1020 	phdr->p_offset	= 0;
1021 	phdr->p_paddr	= 0;
1022 	phdr->p_filesz	= 0;
1023 	phdr->p_memsz	= 0;
1024 	/* Increment number of program headers. */
1025 	(elf->e_phnum)++;
1026 
1027 	/* setup ELF PT_NOTE for vmcoreinfo */
1028 	phdr = (struct elf_phdr *)bufp;
1029 	bufp += sizeof(struct elf_phdr);
1030 	phdr->p_type	= PT_NOTE;
1031 	phdr->p_flags	= 0;
1032 	phdr->p_vaddr	= 0;
1033 	phdr->p_align	= 0;
1034 	phdr->p_paddr	= phdr->p_offset = fdh->vmcoreinfo_raddr;
1035 	phdr->p_memsz	= phdr->p_filesz = fdh->vmcoreinfo_size;
1036 	/* Increment number of program headers. */
1037 	(elf->e_phnum)++;
1038 
1039 	/*
1040 	 * Setup PT_LOAD sections. first include boot memory regions
1041 	 * and then add rest of the memory regions.
1042 	 */
1043 	boot_mem_dest_offset = fw_dump.boot_mem_dest_addr;
1044 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1045 		phdr = (struct elf_phdr *)bufp;
1046 		bufp += sizeof(struct elf_phdr);
1047 		populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i],
1048 				     fw_dump.boot_mem_sz[i],
1049 				     boot_mem_dest_offset);
1050 		/* Increment number of program headers. */
1051 		(elf->e_phnum)++;
1052 		boot_mem_dest_offset += fw_dump.boot_mem_sz[i];
1053 	}
1054 
1055 	/* Memory reserved for fadump in first kernel */
1056 	ra_start = fw_dump.reserve_dump_area_start;
1057 	ra_size = get_fadump_area_size();
1058 	ra_end = ra_start + ra_size;
1059 
1060 	phdr = (struct elf_phdr *)bufp;
1061 	for_each_mem_range(i, &mstart, &mend) {
1062 		/* Boot memory regions already added, skip them now */
1063 		if (mstart < fw_dump.boot_mem_top) {
1064 			if (mend > fw_dump.boot_mem_top)
1065 				mstart = fw_dump.boot_mem_top;
1066 			else
1067 				continue;
1068 		}
1069 
1070 		/* Handle memblock regions overlaps with fadump reserved area */
1071 		if ((ra_start < mend) && (ra_end > mstart)) {
1072 			if ((mstart < ra_start) && (mend > ra_end)) {
1073 				populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1074 				/* Increment number of program headers. */
1075 				(elf->e_phnum)++;
1076 				bufp += sizeof(struct elf_phdr);
1077 				phdr = (struct elf_phdr *)bufp;
1078 				populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1079 			} else if (mstart < ra_start) {
1080 				populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1081 			} else if (ra_end < mend) {
1082 				populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1083 			}
1084 		} else {
1085 		/* No overlap with fadump reserved memory region */
1086 			populate_elf_pt_load(phdr, mstart, mend - mstart, mstart);
1087 		}
1088 
1089 		/* Increment number of program headers. */
1090 		(elf->e_phnum)++;
1091 		bufp += sizeof(struct elf_phdr);
1092 		phdr = (struct elf_phdr *) bufp;
1093 	}
1094 }
1095 
init_fadump_header(unsigned long addr)1096 static unsigned long init_fadump_header(unsigned long addr)
1097 {
1098 	struct fadump_crash_info_header *fdh;
1099 
1100 	if (!addr)
1101 		return 0;
1102 
1103 	fdh = __va(addr);
1104 	addr += sizeof(struct fadump_crash_info_header);
1105 
1106 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1107 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1108 	fdh->version = FADUMP_HEADER_VERSION;
1109 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1110 	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1111 
1112 	/*
1113 	 * The physical address and size of vmcoreinfo are required in the
1114 	 * second kernel to prepare elfcorehdr.
1115 	 */
1116 	fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note());
1117 	fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE;
1118 
1119 
1120 	fdh->pt_regs_sz = sizeof(struct pt_regs);
1121 	/*
1122 	 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1123 	 * register data is processed while exporting the vmcore.
1124 	 */
1125 	fdh->cpu_mask = *cpu_possible_mask;
1126 	fdh->cpu_mask_sz = sizeof(struct cpumask);
1127 
1128 	return addr;
1129 }
1130 
register_fadump(void)1131 static int register_fadump(void)
1132 {
1133 	unsigned long addr;
1134 
1135 	/*
1136 	 * If no memory is reserved then we can not register for firmware-
1137 	 * assisted dump.
1138 	 */
1139 	if (!fw_dump.reserve_dump_area_size)
1140 		return -ENODEV;
1141 
1142 	addr = fw_dump.fadumphdr_addr;
1143 
1144 	/* Initialize fadump crash info header. */
1145 	addr = init_fadump_header(addr);
1146 
1147 	/* register the future kernel dump with firmware. */
1148 	pr_debug("Registering for firmware-assisted kernel dump...\n");
1149 	return fw_dump.ops->fadump_register(&fw_dump);
1150 }
1151 
fadump_cleanup(void)1152 void fadump_cleanup(void)
1153 {
1154 	if (!fw_dump.fadump_supported)
1155 		return;
1156 
1157 	/* Invalidate the registration only if dump is active. */
1158 	if (fw_dump.dump_active) {
1159 		pr_debug("Invalidating firmware-assisted dump registration\n");
1160 		fw_dump.ops->fadump_invalidate(&fw_dump);
1161 	} else if (fw_dump.dump_registered) {
1162 		/* Un-register Firmware-assisted dump if it was registered. */
1163 		fw_dump.ops->fadump_unregister(&fw_dump);
1164 	}
1165 
1166 	if (fw_dump.ops->fadump_cleanup)
1167 		fw_dump.ops->fadump_cleanup(&fw_dump);
1168 }
1169 
fadump_free_reserved_memory(unsigned long start_pfn,unsigned long end_pfn)1170 static void fadump_free_reserved_memory(unsigned long start_pfn,
1171 					unsigned long end_pfn)
1172 {
1173 	unsigned long pfn;
1174 	unsigned long time_limit = jiffies + HZ;
1175 
1176 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1177 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1178 
1179 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1180 		free_reserved_page(pfn_to_page(pfn));
1181 
1182 		if (time_after(jiffies, time_limit)) {
1183 			cond_resched();
1184 			time_limit = jiffies + HZ;
1185 		}
1186 	}
1187 }
1188 
1189 /*
1190  * Skip memory holes and free memory that was actually reserved.
1191  */
fadump_release_reserved_area(u64 start,u64 end)1192 static void fadump_release_reserved_area(u64 start, u64 end)
1193 {
1194 	unsigned long reg_spfn, reg_epfn;
1195 	u64 tstart, tend, spfn, epfn;
1196 	int i;
1197 
1198 	spfn = PHYS_PFN(start);
1199 	epfn = PHYS_PFN(end);
1200 
1201 	for_each_mem_pfn_range(i, MAX_NUMNODES, ®_spfn, ®_epfn, NULL) {
1202 		tstart = max_t(u64, spfn, reg_spfn);
1203 		tend   = min_t(u64, epfn, reg_epfn);
1204 
1205 		if (tstart < tend) {
1206 			fadump_free_reserved_memory(tstart, tend);
1207 
1208 			if (tend == epfn)
1209 				break;
1210 
1211 			spfn = tend;
1212 		}
1213 	}
1214 }
1215 
1216 /*
1217  * Sort the mem ranges in-place and merge adjacent ranges
1218  * to minimize the memory ranges count.
1219  */
sort_and_merge_mem_ranges(struct fadump_mrange_info * mrange_info)1220 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1221 {
1222 	struct fadump_memory_range *mem_ranges;
1223 	u64 base, size;
1224 	int i, j, idx;
1225 
1226 	if (!reserved_mrange_info.mem_range_cnt)
1227 		return;
1228 
1229 	/* Sort the memory ranges */
1230 	mem_ranges = mrange_info->mem_ranges;
1231 	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1232 		idx = i;
1233 		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1234 			if (mem_ranges[idx].base > mem_ranges[j].base)
1235 				idx = j;
1236 		}
1237 		if (idx != i)
1238 			swap(mem_ranges[idx], mem_ranges[i]);
1239 	}
1240 
1241 	/* Merge adjacent reserved ranges */
1242 	idx = 0;
1243 	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1244 		base = mem_ranges[i-1].base;
1245 		size = mem_ranges[i-1].size;
1246 		if (mem_ranges[i].base == (base + size))
1247 			mem_ranges[idx].size += mem_ranges[i].size;
1248 		else {
1249 			idx++;
1250 			if (i == idx)
1251 				continue;
1252 
1253 			mem_ranges[idx] = mem_ranges[i];
1254 		}
1255 	}
1256 	mrange_info->mem_range_cnt = idx + 1;
1257 }
1258 
1259 /*
1260  * Scan reserved-ranges to consider them while reserving/releasing
1261  * memory for FADump.
1262  */
early_init_dt_scan_reserved_ranges(unsigned long node)1263 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1264 {
1265 	const __be32 *prop;
1266 	int len, ret = -1;
1267 	unsigned long i;
1268 
1269 	/* reserved-ranges already scanned */
1270 	if (reserved_mrange_info.mem_range_cnt != 0)
1271 		return;
1272 
1273 	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1274 	if (!prop)
1275 		return;
1276 
1277 	/*
1278 	 * Each reserved range is an (address,size) pair, 2 cells each,
1279 	 * totalling 4 cells per range.
1280 	 */
1281 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1282 		u64 base, size;
1283 
1284 		base = of_read_number(prop + (i * 4) + 0, 2);
1285 		size = of_read_number(prop + (i * 4) + 2, 2);
1286 
1287 		if (size) {
1288 			ret = fadump_add_mem_range(&reserved_mrange_info,
1289 						   base, base + size);
1290 			if (ret < 0) {
1291 				pr_warn("some reserved ranges are ignored!\n");
1292 				break;
1293 			}
1294 		}
1295 	}
1296 
1297 	/* Compact reserved ranges */
1298 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1299 }
1300 
1301 /*
1302  * Release the memory that was reserved during early boot to preserve the
1303  * crash'ed kernel's memory contents except reserved dump area (permanent
1304  * reservation) and reserved ranges used by F/W. The released memory will
1305  * be available for general use.
1306  */
fadump_release_memory(u64 begin,u64 end)1307 static void fadump_release_memory(u64 begin, u64 end)
1308 {
1309 	u64 ra_start, ra_end, tstart;
1310 	int i, ret;
1311 
1312 	ra_start = fw_dump.reserve_dump_area_start;
1313 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1314 
1315 	/*
1316 	 * If reserved ranges array limit is hit, overwrite the last reserved
1317 	 * memory range with reserved dump area to ensure it is excluded from
1318 	 * the memory being released (reused for next FADump registration).
1319 	 */
1320 	if (reserved_mrange_info.mem_range_cnt ==
1321 	    reserved_mrange_info.max_mem_ranges)
1322 		reserved_mrange_info.mem_range_cnt--;
1323 
1324 	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1325 	if (ret != 0)
1326 		return;
1327 
1328 	/* Get the reserved ranges list in order first. */
1329 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1330 
1331 	/* Exclude reserved ranges and release remaining memory */
1332 	tstart = begin;
1333 	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1334 		ra_start = reserved_mrange_info.mem_ranges[i].base;
1335 		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1336 
1337 		if (tstart >= ra_end)
1338 			continue;
1339 
1340 		if (tstart < ra_start)
1341 			fadump_release_reserved_area(tstart, ra_start);
1342 		tstart = ra_end;
1343 	}
1344 
1345 	if (tstart < end)
1346 		fadump_release_reserved_area(tstart, end);
1347 }
1348 
fadump_free_elfcorehdr_buf(void)1349 static void fadump_free_elfcorehdr_buf(void)
1350 {
1351 	if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0)
1352 		return;
1353 
1354 	/*
1355 	 * Before freeing the memory of `elfcorehdr`, reset the global
1356 	 * `elfcorehdr_addr` to prevent modules like `vmcore` from accessing
1357 	 * invalid memory.
1358 	 */
1359 	elfcorehdr_addr = ELFCORE_ADDR_ERR;
1360 	fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size);
1361 	fw_dump.elfcorehdr_addr = 0;
1362 	fw_dump.elfcorehdr_size = 0;
1363 }
1364 
fadump_invalidate_release_mem(void)1365 static void fadump_invalidate_release_mem(void)
1366 {
1367 	mutex_lock(&fadump_mutex);
1368 	if (!fw_dump.dump_active) {
1369 		mutex_unlock(&fadump_mutex);
1370 		return;
1371 	}
1372 
1373 	fadump_cleanup();
1374 	mutex_unlock(&fadump_mutex);
1375 
1376 	fadump_free_elfcorehdr_buf();
1377 	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1378 	fadump_free_cpu_notes_buf();
1379 
1380 	/*
1381 	 * Setup kernel metadata and initialize the kernel dump
1382 	 * memory structure for FADump re-registration.
1383 	 */
1384 	if (fw_dump.ops->fadump_setup_metadata &&
1385 	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1386 		pr_warn("Failed to setup kernel metadata!\n");
1387 	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1388 }
1389 
release_mem_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1390 static ssize_t release_mem_store(struct kobject *kobj,
1391 				 struct kobj_attribute *attr,
1392 				 const char *buf, size_t count)
1393 {
1394 	int input = -1;
1395 
1396 	if (!fw_dump.dump_active)
1397 		return -EPERM;
1398 
1399 	if (kstrtoint(buf, 0, &input))
1400 		return -EINVAL;
1401 
1402 	if (input == 1) {
1403 		/*
1404 		 * Take away the '/proc/vmcore'. We are releasing the dump
1405 		 * memory, hence it will not be valid anymore.
1406 		 */
1407 #ifdef CONFIG_PROC_VMCORE
1408 		vmcore_cleanup();
1409 #endif
1410 		fadump_invalidate_release_mem();
1411 
1412 	} else
1413 		return -EINVAL;
1414 	return count;
1415 }
1416 
1417 /* Release the reserved memory and disable the FADump */
unregister_fadump(void)1418 static void __init unregister_fadump(void)
1419 {
1420 	fadump_cleanup();
1421 	fadump_release_memory(fw_dump.reserve_dump_area_start,
1422 			      fw_dump.reserve_dump_area_size);
1423 	fw_dump.fadump_enabled = 0;
1424 	kobject_put(fadump_kobj);
1425 }
1426 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1427 static ssize_t enabled_show(struct kobject *kobj,
1428 			    struct kobj_attribute *attr,
1429 			    char *buf)
1430 {
1431 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1432 }
1433 
1434 /*
1435  * /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates
1436  * to usersapce that fadump re-registration is not required on memory
1437  * hotplug events.
1438  */
hotplug_ready_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1439 static ssize_t hotplug_ready_show(struct kobject *kobj,
1440 				      struct kobj_attribute *attr,
1441 				      char *buf)
1442 {
1443 	return sprintf(buf, "%d\n", 1);
1444 }
1445 
mem_reserved_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1446 static ssize_t mem_reserved_show(struct kobject *kobj,
1447 				 struct kobj_attribute *attr,
1448 				 char *buf)
1449 {
1450 	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1451 }
1452 
registered_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1453 static ssize_t registered_show(struct kobject *kobj,
1454 			       struct kobj_attribute *attr,
1455 			       char *buf)
1456 {
1457 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1458 }
1459 
bootargs_append_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1460 static ssize_t bootargs_append_show(struct kobject *kobj,
1461 				   struct kobj_attribute *attr,
1462 				   char *buf)
1463 {
1464 	return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area));
1465 }
1466 
bootargs_append_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1467 static ssize_t bootargs_append_store(struct kobject *kobj,
1468 				   struct kobj_attribute *attr,
1469 				   const char *buf, size_t count)
1470 {
1471 	char *params;
1472 
1473 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1474 		return -EPERM;
1475 
1476 	if (count >= COMMAND_LINE_SIZE)
1477 		return -EINVAL;
1478 
1479 	/*
1480 	 * Fail here instead of handling this scenario with
1481 	 * some silly workaround in capture kernel.
1482 	 */
1483 	if (saved_command_line_len + count >= COMMAND_LINE_SIZE) {
1484 		pr_err("Appending parameters exceeds cmdline size!\n");
1485 		return -ENOSPC;
1486 	}
1487 
1488 	params = __va(fw_dump.param_area);
1489 	strscpy_pad(params, buf, COMMAND_LINE_SIZE);
1490 	/* Remove newline character at the end. */
1491 	if (params[count-1] == '\n')
1492 		params[count-1] = '\0';
1493 
1494 	return count;
1495 }
1496 
registered_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1497 static ssize_t registered_store(struct kobject *kobj,
1498 				struct kobj_attribute *attr,
1499 				const char *buf, size_t count)
1500 {
1501 	int ret = 0;
1502 	int input = -1;
1503 
1504 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1505 		return -EPERM;
1506 
1507 	if (kstrtoint(buf, 0, &input))
1508 		return -EINVAL;
1509 
1510 	mutex_lock(&fadump_mutex);
1511 
1512 	switch (input) {
1513 	case 0:
1514 		if (fw_dump.dump_registered == 0) {
1515 			goto unlock_out;
1516 		}
1517 
1518 		/* Un-register Firmware-assisted dump */
1519 		pr_debug("Un-register firmware-assisted dump\n");
1520 		fw_dump.ops->fadump_unregister(&fw_dump);
1521 		break;
1522 	case 1:
1523 		if (fw_dump.dump_registered == 1) {
1524 			/* Un-register Firmware-assisted dump */
1525 			fw_dump.ops->fadump_unregister(&fw_dump);
1526 		}
1527 		/* Register Firmware-assisted dump */
1528 		ret = register_fadump();
1529 		break;
1530 	default:
1531 		ret = -EINVAL;
1532 		break;
1533 	}
1534 
1535 unlock_out:
1536 	mutex_unlock(&fadump_mutex);
1537 	return ret < 0 ? ret : count;
1538 }
1539 
fadump_region_show(struct seq_file * m,void * private)1540 static int fadump_region_show(struct seq_file *m, void *private)
1541 {
1542 	if (!fw_dump.fadump_enabled)
1543 		return 0;
1544 
1545 	mutex_lock(&fadump_mutex);
1546 	fw_dump.ops->fadump_region_show(&fw_dump, m);
1547 	mutex_unlock(&fadump_mutex);
1548 	return 0;
1549 }
1550 
1551 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1552 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1553 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1554 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1555 static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready);
1556 static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append);
1557 
1558 static struct attribute *fadump_attrs[] = {
1559 	&enable_attr.attr,
1560 	®ister_attr.attr,
1561 	&mem_reserved_attr.attr,
1562 	&hotplug_ready_attr.attr,
1563 	NULL,
1564 };
1565 
1566 ATTRIBUTE_GROUPS(fadump);
1567 
1568 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1569 
fadump_init_files(void)1570 static void __init fadump_init_files(void)
1571 {
1572 	int rc = 0;
1573 
1574 	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1575 	if (!fadump_kobj) {
1576 		pr_err("failed to create fadump kobject\n");
1577 		return;
1578 	}
1579 
1580 	if (fw_dump.param_area) {
1581 		rc = sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr);
1582 		if (rc)
1583 			pr_err("unable to create bootargs_append sysfs file (%d)\n", rc);
1584 	}
1585 
1586 	debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1587 			    &fadump_region_fops);
1588 
1589 	if (fw_dump.dump_active) {
1590 		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1591 		if (rc)
1592 			pr_err("unable to create release_mem sysfs file (%d)\n",
1593 			       rc);
1594 	}
1595 
1596 	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1597 	if (rc) {
1598 		pr_err("sysfs group creation failed (%d), unregistering FADump",
1599 		       rc);
1600 		unregister_fadump();
1601 		return;
1602 	}
1603 
1604 	/*
1605 	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1606 	 * create symlink at old location to maintain backward compatibility.
1607 	 *
1608 	 *      - fadump_enabled -> fadump/enabled
1609 	 *      - fadump_registered -> fadump/registered
1610 	 *      - fadump_release_mem -> fadump/release_mem
1611 	 */
1612 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1613 						  "enabled", "fadump_enabled");
1614 	if (rc) {
1615 		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1616 		return;
1617 	}
1618 
1619 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1620 						  "registered",
1621 						  "fadump_registered");
1622 	if (rc) {
1623 		pr_err("unable to create fadump_registered symlink (%d)", rc);
1624 		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1625 		return;
1626 	}
1627 
1628 	if (fw_dump.dump_active) {
1629 		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1630 							  fadump_kobj,
1631 							  "release_mem",
1632 							  "fadump_release_mem");
1633 		if (rc)
1634 			pr_err("unable to create fadump_release_mem symlink (%d)",
1635 			       rc);
1636 	}
1637 	return;
1638 }
1639 
fadump_setup_elfcorehdr_buf(void)1640 static int __init fadump_setup_elfcorehdr_buf(void)
1641 {
1642 	int elf_phdr_cnt;
1643 	unsigned long elfcorehdr_size;
1644 
1645 	/*
1646 	 * Program header for CPU notes comes first, followed by one for
1647 	 * vmcoreinfo, and the remaining program headers correspond to
1648 	 * memory regions.
1649 	 */
1650 	elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory);
1651 	elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr));
1652 	elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size);
1653 
1654 	fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size);
1655 	if (!fw_dump.elfcorehdr_addr) {
1656 		pr_err("Failed to allocate %lu bytes for elfcorehdr\n",
1657 		       elfcorehdr_size);
1658 		return -ENOMEM;
1659 	}
1660 	fw_dump.elfcorehdr_size = elfcorehdr_size;
1661 	return 0;
1662 }
1663 
1664 /*
1665  * Check if the fadump header of crashed kernel is compatible with fadump kernel.
1666  *
1667  * It checks the magic number, endianness, and size of non-primitive type
1668  * members of fadump header to ensure safe dump collection.
1669  */
is_fadump_header_compatible(struct fadump_crash_info_header * fdh)1670 static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh)
1671 {
1672 	if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) {
1673 		pr_err("Old magic number, can't process the dump.\n");
1674 		return false;
1675 	}
1676 
1677 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
1678 		if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC))
1679 			pr_err("Endianness mismatch between the crashed and fadump kernels.\n");
1680 		else
1681 			pr_err("Fadump header is corrupted.\n");
1682 
1683 		return false;
1684 	}
1685 
1686 	/*
1687 	 * Dump collection is not safe if the size of non-primitive type members
1688 	 * of the fadump header do not match between crashed and fadump kernel.
1689 	 */
1690 	if (fdh->pt_regs_sz != sizeof(struct pt_regs) ||
1691 	    fdh->cpu_mask_sz != sizeof(struct cpumask)) {
1692 		pr_err("Fadump header size mismatch.\n");
1693 		return false;
1694 	}
1695 
1696 	return true;
1697 }
1698 
fadump_process(void)1699 static void __init fadump_process(void)
1700 {
1701 	struct fadump_crash_info_header *fdh;
1702 
1703 	fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr);
1704 	if (!fdh) {
1705 		pr_err("Crash info header is empty.\n");
1706 		goto err_out;
1707 	}
1708 
1709 	/* Avoid processing the dump if fadump header isn't compatible */
1710 	if (!is_fadump_header_compatible(fdh))
1711 		goto err_out;
1712 
1713 	/* Allocate buffer for elfcorehdr */
1714 	if (fadump_setup_elfcorehdr_buf())
1715 		goto err_out;
1716 
1717 	fadump_populate_elfcorehdr(fdh);
1718 
1719 	/* Let platform update the CPU notes in elfcorehdr */
1720 	if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1721 		goto err_out;
1722 
1723 	/*
1724 	 * elfcorehdr is now ready to be exported.
1725 	 *
1726 	 * set elfcorehdr_addr so that vmcore module will export the
1727 	 * elfcorehdr through '/proc/vmcore'.
1728 	 */
1729 	elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr);
1730 	return;
1731 
1732 err_out:
1733 	fadump_invalidate_release_mem();
1734 }
1735 
1736 /*
1737  * Reserve memory to store additional parameters to be passed
1738  * for fadump/capture kernel.
1739  */
fadump_setup_param_area(void)1740 void __init fadump_setup_param_area(void)
1741 {
1742 	phys_addr_t range_start, range_end;
1743 
1744 	if (!fw_dump.param_area_supported || fw_dump.dump_active)
1745 		return;
1746 
1747 	/* This memory can't be used by PFW or bootloader as it is shared across kernels */
1748 	if (early_radix_enabled()) {
1749 		/*
1750 		 * Anywhere in the upper half should be good enough as all memory
1751 		 * is accessible in real mode.
1752 		 */
1753 		range_start = memblock_end_of_DRAM() / 2;
1754 		range_end = memblock_end_of_DRAM();
1755 	} else {
1756 		/*
1757 		 * Passing additional parameters is supported for hash MMU only
1758 		 * if the first memory block size is 768MB or higher.
1759 		 */
1760 		if (ppc64_rma_size < 0x30000000)
1761 			return;
1762 
1763 		/*
1764 		 * 640 MB to 768 MB is not used by PFW/bootloader. So, try reserving
1765 		 * memory for passing additional parameters in this range to avoid
1766 		 * being stomped on by PFW/bootloader.
1767 		 */
1768 		range_start = 0x2A000000;
1769 		range_end = range_start + 0x4000000;
1770 	}
1771 
1772 	fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE,
1773 						       COMMAND_LINE_SIZE,
1774 						       range_start,
1775 						       range_end);
1776 	if (!fw_dump.param_area) {
1777 		pr_warn("WARNING: Could not setup area to pass additional parameters!\n");
1778 		return;
1779 	}
1780 
1781 	memset((void *)fw_dump.param_area, 0, COMMAND_LINE_SIZE);
1782 }
1783 
1784 /*
1785  * Prepare for firmware-assisted dump.
1786  */
setup_fadump(void)1787 int __init setup_fadump(void)
1788 {
1789 	if (!fw_dump.fadump_supported)
1790 		return 0;
1791 
1792 	fadump_init_files();
1793 	fadump_show_config();
1794 
1795 	if (!fw_dump.fadump_enabled)
1796 		return 1;
1797 
1798 	/*
1799 	 * If dump data is available then see if it is valid and prepare for
1800 	 * saving it to the disk.
1801 	 */
1802 	if (fw_dump.dump_active) {
1803 		fadump_process();
1804 	}
1805 	/* Initialize the kernel dump memory structure and register with f/w */
1806 	else if (fw_dump.reserve_dump_area_size) {
1807 		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1808 		register_fadump();
1809 	}
1810 
1811 	/*
1812 	 * In case of panic, fadump is triggered via ppc_panic_event()
1813 	 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1814 	 * lets panic() function take crash friendly path before panic
1815 	 * notifiers are invoked.
1816 	 */
1817 	crash_kexec_post_notifiers = true;
1818 
1819 	return 1;
1820 }
1821 /*
1822  * Use subsys_initcall_sync() here because there is dependency with
1823  * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1824  * is done before registering with f/w.
1825  */
1826 subsys_initcall_sync(setup_fadump);
1827 #else /* !CONFIG_PRESERVE_FA_DUMP */
1828 
1829 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)1830 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1831 				      int depth, void *data)
1832 {
1833 	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1834 		return 0;
1835 
1836 	opal_fadump_dt_scan(&fw_dump, node);
1837 	return 1;
1838 }
1839 
1840 /*
1841  * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1842  * preserve crash data. The subsequent memory preserving kernel boot
1843  * is likely to process this crash data.
1844  */
fadump_reserve_mem(void)1845 int __init fadump_reserve_mem(void)
1846 {
1847 	if (fw_dump.dump_active) {
1848 		/*
1849 		 * If last boot has crashed then reserve all the memory
1850 		 * above boot memory to preserve crash data.
1851 		 */
1852 		pr_info("Preserving crash data for processing in next boot.\n");
1853 		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1854 	} else
1855 		pr_debug("FADump-aware kernel..\n");
1856 
1857 	return 1;
1858 }
1859 #endif /* CONFIG_PRESERVE_FA_DUMP */
1860 
1861 /* Preserve everything above the base address */
fadump_reserve_crash_area(u64 base)1862 static void __init fadump_reserve_crash_area(u64 base)
1863 {
1864 	u64 i, mstart, mend, msize;
1865 
1866 	for_each_mem_range(i, &mstart, &mend) {
1867 		msize  = mend - mstart;
1868 
1869 		if ((mstart + msize) < base)
1870 			continue;
1871 
1872 		if (mstart < base) {
1873 			msize -= (base - mstart);
1874 			mstart = base;
1875 		}
1876 
1877 		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1878 			(msize >> 20), mstart);
1879 		memblock_reserve(mstart, msize);
1880 	}
1881 }
1882