1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corporation, 2018
4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5 * Paul Mackerras <paulus@ozlabs.org>
6 *
7 * Description: KVM functions specific to running nested KVM-HV guests
8 * on Book3S processors (specifically POWER9 and later).
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 #include <asm/plpar_wrappers.h>
23 #include <asm/firmware.h>
24
25 static struct patb_entry *pseries_partition_tb;
26
27 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
28 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
29
kvmhv_save_hv_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)30 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
31 {
32 struct kvmppc_vcore *vc = vcpu->arch.vcore;
33
34 hr->pcr = vc->pcr | PCR_MASK;
35 hr->dpdes = vcpu->arch.doorbell_request;
36 hr->hfscr = vcpu->arch.hfscr;
37 hr->tb_offset = vc->tb_offset;
38 hr->dawr0 = vcpu->arch.dawr0;
39 hr->dawrx0 = vcpu->arch.dawrx0;
40 hr->ciabr = vcpu->arch.ciabr;
41 hr->purr = vcpu->arch.purr;
42 hr->spurr = vcpu->arch.spurr;
43 hr->ic = vcpu->arch.ic;
44 hr->vtb = vc->vtb;
45 hr->srr0 = vcpu->arch.shregs.srr0;
46 hr->srr1 = vcpu->arch.shregs.srr1;
47 hr->sprg[0] = vcpu->arch.shregs.sprg0;
48 hr->sprg[1] = vcpu->arch.shregs.sprg1;
49 hr->sprg[2] = vcpu->arch.shregs.sprg2;
50 hr->sprg[3] = vcpu->arch.shregs.sprg3;
51 hr->pidr = vcpu->arch.pid;
52 hr->cfar = vcpu->arch.cfar;
53 hr->ppr = vcpu->arch.ppr;
54 hr->dawr1 = vcpu->arch.dawr1;
55 hr->dawrx1 = vcpu->arch.dawrx1;
56 }
57
58 /* Use noinline_for_stack due to https://llvm.org/pr49610 */
byteswap_pt_regs(struct pt_regs * regs)59 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
60 {
61 unsigned long *addr = (unsigned long *) regs;
62
63 for (; addr < ((unsigned long *) (regs + 1)); addr++)
64 *addr = swab64(*addr);
65 }
66
byteswap_hv_regs(struct hv_guest_state * hr)67 static void byteswap_hv_regs(struct hv_guest_state *hr)
68 {
69 hr->version = swab64(hr->version);
70 hr->lpid = swab32(hr->lpid);
71 hr->vcpu_token = swab32(hr->vcpu_token);
72 hr->lpcr = swab64(hr->lpcr);
73 hr->pcr = swab64(hr->pcr) | PCR_MASK;
74 hr->amor = swab64(hr->amor);
75 hr->dpdes = swab64(hr->dpdes);
76 hr->hfscr = swab64(hr->hfscr);
77 hr->tb_offset = swab64(hr->tb_offset);
78 hr->dawr0 = swab64(hr->dawr0);
79 hr->dawrx0 = swab64(hr->dawrx0);
80 hr->ciabr = swab64(hr->ciabr);
81 hr->hdec_expiry = swab64(hr->hdec_expiry);
82 hr->purr = swab64(hr->purr);
83 hr->spurr = swab64(hr->spurr);
84 hr->ic = swab64(hr->ic);
85 hr->vtb = swab64(hr->vtb);
86 hr->hdar = swab64(hr->hdar);
87 hr->hdsisr = swab64(hr->hdsisr);
88 hr->heir = swab64(hr->heir);
89 hr->asdr = swab64(hr->asdr);
90 hr->srr0 = swab64(hr->srr0);
91 hr->srr1 = swab64(hr->srr1);
92 hr->sprg[0] = swab64(hr->sprg[0]);
93 hr->sprg[1] = swab64(hr->sprg[1]);
94 hr->sprg[2] = swab64(hr->sprg[2]);
95 hr->sprg[3] = swab64(hr->sprg[3]);
96 hr->pidr = swab64(hr->pidr);
97 hr->cfar = swab64(hr->cfar);
98 hr->ppr = swab64(hr->ppr);
99 hr->dawr1 = swab64(hr->dawr1);
100 hr->dawrx1 = swab64(hr->dawrx1);
101 }
102
save_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)103 static void save_hv_return_state(struct kvm_vcpu *vcpu,
104 struct hv_guest_state *hr)
105 {
106 struct kvmppc_vcore *vc = vcpu->arch.vcore;
107
108 hr->dpdes = vcpu->arch.doorbell_request;
109 hr->purr = vcpu->arch.purr;
110 hr->spurr = vcpu->arch.spurr;
111 hr->ic = vcpu->arch.ic;
112 hr->vtb = vc->vtb;
113 hr->srr0 = vcpu->arch.shregs.srr0;
114 hr->srr1 = vcpu->arch.shregs.srr1;
115 hr->sprg[0] = vcpu->arch.shregs.sprg0;
116 hr->sprg[1] = vcpu->arch.shregs.sprg1;
117 hr->sprg[2] = vcpu->arch.shregs.sprg2;
118 hr->sprg[3] = vcpu->arch.shregs.sprg3;
119 hr->pidr = vcpu->arch.pid;
120 hr->cfar = vcpu->arch.cfar;
121 hr->ppr = vcpu->arch.ppr;
122 switch (vcpu->arch.trap) {
123 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
124 hr->hdar = vcpu->arch.fault_dar;
125 hr->hdsisr = vcpu->arch.fault_dsisr;
126 hr->asdr = vcpu->arch.fault_gpa;
127 break;
128 case BOOK3S_INTERRUPT_H_INST_STORAGE:
129 hr->asdr = vcpu->arch.fault_gpa;
130 break;
131 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
132 hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
133 (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
134 break;
135 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
136 hr->heir = vcpu->arch.emul_inst;
137 break;
138 }
139 }
140
restore_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * hr)141 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
142 {
143 struct kvmppc_vcore *vc = vcpu->arch.vcore;
144
145 vc->pcr = hr->pcr | PCR_MASK;
146 vcpu->arch.doorbell_request = hr->dpdes;
147 vcpu->arch.hfscr = hr->hfscr;
148 vcpu->arch.dawr0 = hr->dawr0;
149 vcpu->arch.dawrx0 = hr->dawrx0;
150 vcpu->arch.ciabr = hr->ciabr;
151 vcpu->arch.purr = hr->purr;
152 vcpu->arch.spurr = hr->spurr;
153 vcpu->arch.ic = hr->ic;
154 vc->vtb = hr->vtb;
155 vcpu->arch.shregs.srr0 = hr->srr0;
156 vcpu->arch.shregs.srr1 = hr->srr1;
157 vcpu->arch.shregs.sprg0 = hr->sprg[0];
158 vcpu->arch.shregs.sprg1 = hr->sprg[1];
159 vcpu->arch.shregs.sprg2 = hr->sprg[2];
160 vcpu->arch.shregs.sprg3 = hr->sprg[3];
161 vcpu->arch.pid = hr->pidr;
162 vcpu->arch.cfar = hr->cfar;
163 vcpu->arch.ppr = hr->ppr;
164 vcpu->arch.dawr1 = hr->dawr1;
165 vcpu->arch.dawrx1 = hr->dawrx1;
166 }
167
kvmhv_restore_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)168 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
169 struct hv_guest_state *hr)
170 {
171 struct kvmppc_vcore *vc = vcpu->arch.vcore;
172
173 /*
174 * This L2 vCPU might have received a doorbell while H_ENTER_NESTED was being handled.
175 * Make sure we preserve the doorbell if it was either:
176 * a) Sent after H_ENTER_NESTED was called on this vCPU (arch.doorbell_request would be 1)
177 * b) Doorbell was not handled and L2 exited for some other reason (hr->dpdes would be 1)
178 */
179 vcpu->arch.doorbell_request = vcpu->arch.doorbell_request | hr->dpdes;
180 vcpu->arch.hfscr = hr->hfscr;
181 vcpu->arch.purr = hr->purr;
182 vcpu->arch.spurr = hr->spurr;
183 vcpu->arch.ic = hr->ic;
184 vc->vtb = hr->vtb;
185 vcpu->arch.fault_dar = hr->hdar;
186 vcpu->arch.fault_dsisr = hr->hdsisr;
187 vcpu->arch.fault_gpa = hr->asdr;
188 vcpu->arch.emul_inst = hr->heir;
189 vcpu->arch.shregs.srr0 = hr->srr0;
190 vcpu->arch.shregs.srr1 = hr->srr1;
191 vcpu->arch.shregs.sprg0 = hr->sprg[0];
192 vcpu->arch.shregs.sprg1 = hr->sprg[1];
193 vcpu->arch.shregs.sprg2 = hr->sprg[2];
194 vcpu->arch.shregs.sprg3 = hr->sprg[3];
195 vcpu->arch.pid = hr->pidr;
196 vcpu->arch.cfar = hr->cfar;
197 vcpu->arch.ppr = hr->ppr;
198 }
199
kvmhv_nested_mmio_needed(struct kvm_vcpu * vcpu,u64 regs_ptr)200 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
201 {
202 /* No need to reflect the page fault to L1, we've handled it */
203 vcpu->arch.trap = 0;
204
205 /*
206 * Since the L2 gprs have already been written back into L1 memory when
207 * we complete the mmio, store the L1 memory location of the L2 gpr
208 * being loaded into by the mmio so that the loaded value can be
209 * written there in kvmppc_complete_mmio_load()
210 */
211 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
212 && (vcpu->mmio_is_write == 0)) {
213 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
214 offsetof(struct pt_regs,
215 gpr[vcpu->arch.io_gpr]);
216 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
217 }
218 }
219
kvmhv_read_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)220 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
221 struct hv_guest_state *l2_hv,
222 struct pt_regs *l2_regs,
223 u64 hv_ptr, u64 regs_ptr)
224 {
225 int size;
226
227 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
228 sizeof(l2_hv->version)))
229 return -1;
230
231 if (kvmppc_need_byteswap(vcpu))
232 l2_hv->version = swab64(l2_hv->version);
233
234 size = hv_guest_state_size(l2_hv->version);
235 if (size < 0)
236 return -1;
237
238 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
239 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
240 sizeof(struct pt_regs));
241 }
242
kvmhv_write_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)243 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
244 struct hv_guest_state *l2_hv,
245 struct pt_regs *l2_regs,
246 u64 hv_ptr, u64 regs_ptr)
247 {
248 int size;
249
250 size = hv_guest_state_size(l2_hv->version);
251 if (size < 0)
252 return -1;
253
254 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
255 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
256 sizeof(struct pt_regs));
257 }
258
load_l2_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * l2_hv,const struct hv_guest_state * l1_hv,u64 * lpcr)259 static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
260 const struct hv_guest_state *l2_hv,
261 const struct hv_guest_state *l1_hv, u64 *lpcr)
262 {
263 struct kvmppc_vcore *vc = vcpu->arch.vcore;
264 u64 mask;
265
266 restore_hv_regs(vcpu, l2_hv);
267
268 /*
269 * Don't let L1 change LPCR bits for the L2 except these:
270 */
271 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER;
272
273 /*
274 * Additional filtering is required depending on hardware
275 * and configuration.
276 */
277 *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
278 (vc->lpcr & ~mask) | (*lpcr & mask));
279
280 /*
281 * Don't let L1 enable features for L2 which we don't allow for L1,
282 * but preserve the interrupt cause field.
283 */
284 vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
285
286 /* Don't let data address watchpoint match in hypervisor state */
287 vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
288 vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
289
290 /* Don't let completed instruction address breakpt match in HV state */
291 if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
292 vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
293 }
294
kvmhv_enter_nested_guest(struct kvm_vcpu * vcpu)295 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
296 {
297 long int err, r;
298 struct kvm_nested_guest *l2;
299 struct pt_regs l2_regs, saved_l1_regs;
300 struct hv_guest_state l2_hv = {0}, saved_l1_hv;
301 struct kvmppc_vcore *vc = vcpu->arch.vcore;
302 u64 hv_ptr, regs_ptr;
303 u64 hdec_exp, lpcr;
304 s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
305
306 if (vcpu->kvm->arch.l1_ptcr == 0)
307 return H_NOT_AVAILABLE;
308
309 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
310 return H_BAD_MODE;
311
312 /* copy parameters in */
313 hv_ptr = kvmppc_get_gpr(vcpu, 4);
314 regs_ptr = kvmppc_get_gpr(vcpu, 5);
315 kvm_vcpu_srcu_read_lock(vcpu);
316 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
317 hv_ptr, regs_ptr);
318 kvm_vcpu_srcu_read_unlock(vcpu);
319 if (err)
320 return H_PARAMETER;
321
322 if (kvmppc_need_byteswap(vcpu))
323 byteswap_hv_regs(&l2_hv);
324 if (l2_hv.version > HV_GUEST_STATE_VERSION)
325 return H_P2;
326
327 if (kvmppc_need_byteswap(vcpu))
328 byteswap_pt_regs(&l2_regs);
329 if (l2_hv.vcpu_token >= NR_CPUS)
330 return H_PARAMETER;
331
332 /*
333 * L1 must have set up a suspended state to enter the L2 in a
334 * transactional state, and only in that case. These have to be
335 * filtered out here to prevent causing a TM Bad Thing in the
336 * host HRFID. We could synthesize a TM Bad Thing back to the L1
337 * here but there doesn't seem like much point.
338 */
339 if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
340 if (!MSR_TM_ACTIVE(l2_regs.msr))
341 return H_BAD_MODE;
342 } else {
343 if (l2_regs.msr & MSR_TS_MASK)
344 return H_BAD_MODE;
345 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
346 return H_BAD_MODE;
347 }
348
349 /* translate lpid */
350 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
351 if (!l2)
352 return H_PARAMETER;
353 if (!l2->l1_gr_to_hr) {
354 mutex_lock(&l2->tlb_lock);
355 kvmhv_update_ptbl_cache(l2);
356 mutex_unlock(&l2->tlb_lock);
357 }
358
359 /* save l1 values of things */
360 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
361 saved_l1_regs = vcpu->arch.regs;
362 kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
363
364 /* convert TB values/offsets to host (L0) values */
365 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
366 vc->tb_offset += l2_hv.tb_offset;
367 vcpu->arch.dec_expires += l2_hv.tb_offset;
368
369 /* set L1 state to L2 state */
370 vcpu->arch.nested = l2;
371 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
372 vcpu->arch.nested_hfscr = l2_hv.hfscr;
373 vcpu->arch.regs = l2_regs;
374
375 /* Guest must always run with ME enabled, HV disabled. */
376 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
377
378 lpcr = l2_hv.lpcr;
379 load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
380
381 vcpu->arch.ret = RESUME_GUEST;
382 vcpu->arch.trap = 0;
383 do {
384 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
385 } while (is_kvmppc_resume_guest(r));
386
387 /* save L2 state for return */
388 l2_regs = vcpu->arch.regs;
389 l2_regs.msr = vcpu->arch.shregs.msr;
390 delta_purr = vcpu->arch.purr - l2_hv.purr;
391 delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
392 delta_ic = vcpu->arch.ic - l2_hv.ic;
393 delta_vtb = vc->vtb - l2_hv.vtb;
394 save_hv_return_state(vcpu, &l2_hv);
395
396 /* restore L1 state */
397 vcpu->arch.nested = NULL;
398 vcpu->arch.regs = saved_l1_regs;
399 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
400 /* set L1 MSR TS field according to L2 transaction state */
401 if (l2_regs.msr & MSR_TS_MASK)
402 vcpu->arch.shregs.msr |= MSR_TS_S;
403 vc->tb_offset = saved_l1_hv.tb_offset;
404 /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */
405 vcpu->arch.dec_expires -= l2_hv.tb_offset;
406 restore_hv_regs(vcpu, &saved_l1_hv);
407 vcpu->arch.purr += delta_purr;
408 vcpu->arch.spurr += delta_spurr;
409 vcpu->arch.ic += delta_ic;
410 vc->vtb += delta_vtb;
411
412 kvmhv_put_nested(l2);
413
414 /* copy l2_hv_state and regs back to guest */
415 if (kvmppc_need_byteswap(vcpu)) {
416 byteswap_hv_regs(&l2_hv);
417 byteswap_pt_regs(&l2_regs);
418 }
419 kvm_vcpu_srcu_read_lock(vcpu);
420 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
421 hv_ptr, regs_ptr);
422 kvm_vcpu_srcu_read_unlock(vcpu);
423 if (err)
424 return H_AUTHORITY;
425
426 if (r == -EINTR)
427 return H_INTERRUPT;
428
429 if (vcpu->mmio_needed) {
430 kvmhv_nested_mmio_needed(vcpu, regs_ptr);
431 return H_TOO_HARD;
432 }
433
434 return vcpu->arch.trap;
435 }
436
437 unsigned long nested_capabilities;
438
kvmhv_nested_init(void)439 long kvmhv_nested_init(void)
440 {
441 long int ptb_order;
442 unsigned long ptcr, host_capabilities;
443 long rc;
444
445 if (!kvmhv_on_pseries())
446 return 0;
447 if (!radix_enabled())
448 return -ENODEV;
449
450 rc = plpar_guest_get_capabilities(0, &host_capabilities);
451 if (rc == H_SUCCESS) {
452 unsigned long capabilities = 0;
453
454 if (cpu_has_feature(CPU_FTR_ARCH_31))
455 capabilities |= H_GUEST_CAP_POWER10;
456 if (cpu_has_feature(CPU_FTR_ARCH_300))
457 capabilities |= H_GUEST_CAP_POWER9;
458
459 nested_capabilities = capabilities & host_capabilities;
460 rc = plpar_guest_set_capabilities(0, nested_capabilities);
461 if (rc != H_SUCCESS) {
462 pr_err("kvm-hv: Could not configure parent hypervisor capabilities (rc=%ld)",
463 rc);
464 return -ENODEV;
465 }
466
467 static_branch_enable(&__kvmhv_is_nestedv2);
468 return 0;
469 }
470
471 pr_info("kvm-hv: nestedv2 get capabilities hcall failed, falling back to nestedv1 (rc=%ld)\n",
472 rc);
473 /* Partition table entry is 1<<4 bytes in size, hence the 4. */
474 ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4;
475 /* Minimum partition table size is 1<<12 bytes */
476 if (ptb_order < 12)
477 ptb_order = 12;
478 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
479 GFP_KERNEL);
480 if (!pseries_partition_tb) {
481 pr_err("kvm-hv: failed to allocated nested partition table\n");
482 return -ENOMEM;
483 }
484
485 ptcr = __pa(pseries_partition_tb) | (ptb_order - 12);
486 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
487 if (rc != H_SUCCESS) {
488 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
489 rc);
490 kfree(pseries_partition_tb);
491 pseries_partition_tb = NULL;
492 return -ENODEV;
493 }
494
495 return 0;
496 }
497
kvmhv_nested_exit(void)498 void kvmhv_nested_exit(void)
499 {
500 /*
501 * N.B. the kvmhv_on_pseries() test is there because it enables
502 * the compiler to remove the call to plpar_hcall_norets()
503 * when CONFIG_PPC_PSERIES=n.
504 */
505 if (kvmhv_on_pseries() && pseries_partition_tb) {
506 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
507 kfree(pseries_partition_tb);
508 pseries_partition_tb = NULL;
509 }
510 }
511
kvmhv_flush_lpid(u64 lpid)512 void kvmhv_flush_lpid(u64 lpid)
513 {
514 long rc;
515
516 if (!kvmhv_on_pseries()) {
517 radix__flush_all_lpid(lpid);
518 return;
519 }
520
521 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
522 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
523 lpid, TLBIEL_INVAL_SET_LPID);
524 else
525 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
526 H_RPTI_TYPE_NESTED |
527 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
528 H_RPTI_TYPE_PAT,
529 H_RPTI_PAGE_ALL, 0, -1UL);
530 if (rc)
531 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
532 }
533
kvmhv_set_ptbl_entry(u64 lpid,u64 dw0,u64 dw1)534 void kvmhv_set_ptbl_entry(u64 lpid, u64 dw0, u64 dw1)
535 {
536 if (!kvmhv_on_pseries()) {
537 mmu_partition_table_set_entry(lpid, dw0, dw1, true);
538 return;
539 }
540
541 if (kvmhv_is_nestedv1()) {
542 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
543 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
544 /* L0 will do the necessary barriers */
545 kvmhv_flush_lpid(lpid);
546 }
547
548 if (kvmhv_is_nestedv2())
549 kvmhv_nestedv2_set_ptbl_entry(lpid, dw0, dw1);
550 }
551
kvmhv_set_nested_ptbl(struct kvm_nested_guest * gp)552 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
553 {
554 unsigned long dw0;
555
556 dw0 = PATB_HR | radix__get_tree_size() |
557 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
558 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
559 }
560
561 /*
562 * Handle the H_SET_PARTITION_TABLE hcall.
563 * r4 = guest real address of partition table + log_2(size) - 12
564 * (formatted as for the PTCR).
565 */
kvmhv_set_partition_table(struct kvm_vcpu * vcpu)566 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
567 {
568 struct kvm *kvm = vcpu->kvm;
569 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
570 int srcu_idx;
571 long ret = H_SUCCESS;
572
573 srcu_idx = srcu_read_lock(&kvm->srcu);
574 /* Check partition size and base address. */
575 if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT ||
576 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
577 ret = H_PARAMETER;
578 srcu_read_unlock(&kvm->srcu, srcu_idx);
579 if (ret == H_SUCCESS)
580 kvm->arch.l1_ptcr = ptcr;
581
582 return ret;
583 }
584
585 /*
586 * Handle the H_COPY_TOFROM_GUEST hcall.
587 * r4 = L1 lpid of nested guest
588 * r5 = pid
589 * r6 = eaddr to access
590 * r7 = to buffer (L1 gpa)
591 * r8 = from buffer (L1 gpa)
592 * r9 = n bytes to copy
593 */
kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu * vcpu)594 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
595 {
596 struct kvm_nested_guest *gp;
597 int l1_lpid = kvmppc_get_gpr(vcpu, 4);
598 int pid = kvmppc_get_gpr(vcpu, 5);
599 gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
600 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
601 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
602 void *buf;
603 unsigned long n = kvmppc_get_gpr(vcpu, 9);
604 bool is_load = !!gp_to;
605 long rc;
606
607 if (gp_to && gp_from) /* One must be NULL to determine the direction */
608 return H_PARAMETER;
609
610 if (eaddr & (0xFFFUL << 52))
611 return H_PARAMETER;
612
613 buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
614 if (!buf)
615 return H_NO_MEM;
616
617 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
618 if (!gp) {
619 rc = H_PARAMETER;
620 goto out_free;
621 }
622
623 mutex_lock(&gp->tlb_lock);
624
625 if (is_load) {
626 /* Load from the nested guest into our buffer */
627 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
628 eaddr, buf, NULL, n);
629 if (rc)
630 goto not_found;
631
632 /* Write what was loaded into our buffer back to the L1 guest */
633 kvm_vcpu_srcu_read_lock(vcpu);
634 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
635 kvm_vcpu_srcu_read_unlock(vcpu);
636 if (rc)
637 goto not_found;
638 } else {
639 /* Load the data to be stored from the L1 guest into our buf */
640 kvm_vcpu_srcu_read_lock(vcpu);
641 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
642 kvm_vcpu_srcu_read_unlock(vcpu);
643 if (rc)
644 goto not_found;
645
646 /* Store from our buffer into the nested guest */
647 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
648 eaddr, NULL, buf, n);
649 if (rc)
650 goto not_found;
651 }
652
653 out_unlock:
654 mutex_unlock(&gp->tlb_lock);
655 kvmhv_put_nested(gp);
656 out_free:
657 kfree(buf);
658 return rc;
659 not_found:
660 rc = H_NOT_FOUND;
661 goto out_unlock;
662 }
663
664 /*
665 * Reload the partition table entry for a guest.
666 * Caller must hold gp->tlb_lock.
667 */
kvmhv_update_ptbl_cache(struct kvm_nested_guest * gp)668 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
669 {
670 int ret;
671 struct patb_entry ptbl_entry;
672 unsigned long ptbl_addr;
673 struct kvm *kvm = gp->l1_host;
674
675 ret = -EFAULT;
676 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
677 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) {
678 int srcu_idx = srcu_read_lock(&kvm->srcu);
679 ret = kvm_read_guest(kvm, ptbl_addr,
680 &ptbl_entry, sizeof(ptbl_entry));
681 srcu_read_unlock(&kvm->srcu, srcu_idx);
682 }
683 if (ret) {
684 gp->l1_gr_to_hr = 0;
685 gp->process_table = 0;
686 } else {
687 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
688 gp->process_table = be64_to_cpu(ptbl_entry.patb1);
689 }
690 kvmhv_set_nested_ptbl(gp);
691 }
692
kvmhv_vm_nested_init(struct kvm * kvm)693 void kvmhv_vm_nested_init(struct kvm *kvm)
694 {
695 idr_init(&kvm->arch.kvm_nested_guest_idr);
696 }
697
__find_nested(struct kvm * kvm,int lpid)698 static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid)
699 {
700 return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid);
701 }
702
__prealloc_nested(struct kvm * kvm,int lpid)703 static bool __prealloc_nested(struct kvm *kvm, int lpid)
704 {
705 if (idr_alloc(&kvm->arch.kvm_nested_guest_idr,
706 NULL, lpid, lpid + 1, GFP_KERNEL) != lpid)
707 return false;
708 return true;
709 }
710
__add_nested(struct kvm * kvm,int lpid,struct kvm_nested_guest * gp)711 static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp)
712 {
713 if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid))
714 WARN_ON(1);
715 }
716
__remove_nested(struct kvm * kvm,int lpid)717 static void __remove_nested(struct kvm *kvm, int lpid)
718 {
719 idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid);
720 }
721
kvmhv_alloc_nested(struct kvm * kvm,unsigned int lpid)722 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
723 {
724 struct kvm_nested_guest *gp;
725 long shadow_lpid;
726
727 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
728 if (!gp)
729 return NULL;
730 gp->l1_host = kvm;
731 gp->l1_lpid = lpid;
732 mutex_init(&gp->tlb_lock);
733 gp->shadow_pgtable = pgd_alloc(kvm->mm);
734 if (!gp->shadow_pgtable)
735 goto out_free;
736 shadow_lpid = kvmppc_alloc_lpid();
737 if (shadow_lpid < 0)
738 goto out_free2;
739 gp->shadow_lpid = shadow_lpid;
740 gp->radix = 1;
741
742 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
743
744 return gp;
745
746 out_free2:
747 pgd_free(kvm->mm, gp->shadow_pgtable);
748 out_free:
749 kfree(gp);
750 return NULL;
751 }
752
753 /*
754 * Free up any resources allocated for a nested guest.
755 */
kvmhv_release_nested(struct kvm_nested_guest * gp)756 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
757 {
758 struct kvm *kvm = gp->l1_host;
759
760 if (gp->shadow_pgtable) {
761 /*
762 * No vcpu is using this struct and no call to
763 * kvmhv_get_nested can find this struct,
764 * so we don't need to hold kvm->mmu_lock.
765 */
766 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
767 gp->shadow_lpid);
768 pgd_free(kvm->mm, gp->shadow_pgtable);
769 }
770 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
771 kvmppc_free_lpid(gp->shadow_lpid);
772 kfree(gp);
773 }
774
kvmhv_remove_nested(struct kvm_nested_guest * gp)775 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
776 {
777 struct kvm *kvm = gp->l1_host;
778 int lpid = gp->l1_lpid;
779 long ref;
780
781 spin_lock(&kvm->mmu_lock);
782 if (gp == __find_nested(kvm, lpid)) {
783 __remove_nested(kvm, lpid);
784 --gp->refcnt;
785 }
786 ref = gp->refcnt;
787 spin_unlock(&kvm->mmu_lock);
788 if (ref == 0)
789 kvmhv_release_nested(gp);
790 }
791
792 /*
793 * Free up all nested resources allocated for this guest.
794 * This is called with no vcpus of the guest running, when
795 * switching the guest to HPT mode or when destroying the
796 * guest.
797 */
kvmhv_release_all_nested(struct kvm * kvm)798 void kvmhv_release_all_nested(struct kvm *kvm)
799 {
800 int lpid;
801 struct kvm_nested_guest *gp;
802 struct kvm_nested_guest *freelist = NULL;
803 struct kvm_memory_slot *memslot;
804 int srcu_idx, bkt;
805
806 spin_lock(&kvm->mmu_lock);
807 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
808 __remove_nested(kvm, lpid);
809 if (--gp->refcnt == 0) {
810 gp->next = freelist;
811 freelist = gp;
812 }
813 }
814 idr_destroy(&kvm->arch.kvm_nested_guest_idr);
815 /* idr is empty and may be reused at this point */
816 spin_unlock(&kvm->mmu_lock);
817 while ((gp = freelist) != NULL) {
818 freelist = gp->next;
819 kvmhv_release_nested(gp);
820 }
821
822 srcu_idx = srcu_read_lock(&kvm->srcu);
823 kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
824 kvmhv_free_memslot_nest_rmap(memslot);
825 srcu_read_unlock(&kvm->srcu, srcu_idx);
826 }
827
828 /* caller must hold gp->tlb_lock */
kvmhv_flush_nested(struct kvm_nested_guest * gp)829 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
830 {
831 struct kvm *kvm = gp->l1_host;
832
833 spin_lock(&kvm->mmu_lock);
834 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
835 spin_unlock(&kvm->mmu_lock);
836 kvmhv_flush_lpid(gp->shadow_lpid);
837 kvmhv_update_ptbl_cache(gp);
838 if (gp->l1_gr_to_hr == 0)
839 kvmhv_remove_nested(gp);
840 }
841
kvmhv_get_nested(struct kvm * kvm,int l1_lpid,bool create)842 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
843 bool create)
844 {
845 struct kvm_nested_guest *gp, *newgp;
846
847 if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
848 return NULL;
849
850 spin_lock(&kvm->mmu_lock);
851 gp = __find_nested(kvm, l1_lpid);
852 if (gp)
853 ++gp->refcnt;
854 spin_unlock(&kvm->mmu_lock);
855
856 if (gp || !create)
857 return gp;
858
859 newgp = kvmhv_alloc_nested(kvm, l1_lpid);
860 if (!newgp)
861 return NULL;
862
863 if (!__prealloc_nested(kvm, l1_lpid)) {
864 kvmhv_release_nested(newgp);
865 return NULL;
866 }
867
868 spin_lock(&kvm->mmu_lock);
869 gp = __find_nested(kvm, l1_lpid);
870 if (!gp) {
871 __add_nested(kvm, l1_lpid, newgp);
872 ++newgp->refcnt;
873 gp = newgp;
874 newgp = NULL;
875 }
876 ++gp->refcnt;
877 spin_unlock(&kvm->mmu_lock);
878
879 if (newgp)
880 kvmhv_release_nested(newgp);
881
882 return gp;
883 }
884
kvmhv_put_nested(struct kvm_nested_guest * gp)885 void kvmhv_put_nested(struct kvm_nested_guest *gp)
886 {
887 struct kvm *kvm = gp->l1_host;
888 long ref;
889
890 spin_lock(&kvm->mmu_lock);
891 ref = --gp->refcnt;
892 spin_unlock(&kvm->mmu_lock);
893 if (ref == 0)
894 kvmhv_release_nested(gp);
895 }
896
find_kvm_nested_guest_pte(struct kvm * kvm,unsigned long lpid,unsigned long ea,unsigned * hshift)897 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
898 unsigned long ea, unsigned *hshift)
899 {
900 struct kvm_nested_guest *gp;
901 pte_t *pte;
902
903 gp = __find_nested(kvm, lpid);
904 if (!gp)
905 return NULL;
906
907 VM_WARN(!spin_is_locked(&kvm->mmu_lock),
908 "%s called with kvm mmu_lock not held \n", __func__);
909 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
910
911 return pte;
912 }
913
kvmhv_n_rmap_is_equal(u64 rmap_1,u64 rmap_2)914 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
915 {
916 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
917 RMAP_NESTED_GPA_MASK));
918 }
919
kvmhv_insert_nest_rmap(struct kvm * kvm,unsigned long * rmapp,struct rmap_nested ** n_rmap)920 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
921 struct rmap_nested **n_rmap)
922 {
923 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
924 struct rmap_nested *cursor;
925 u64 rmap, new_rmap = (*n_rmap)->rmap;
926
927 /* Are there any existing entries? */
928 if (!(*rmapp)) {
929 /* No -> use the rmap as a single entry */
930 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
931 return;
932 }
933
934 /* Do any entries match what we're trying to insert? */
935 for_each_nest_rmap_safe(cursor, entry, &rmap) {
936 if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
937 return;
938 }
939
940 /* Do we need to create a list or just add the new entry? */
941 rmap = *rmapp;
942 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
943 *rmapp = 0UL;
944 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
945 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
946 (*n_rmap)->list.next = (struct llist_node *) rmap;
947
948 /* Set NULL so not freed by caller */
949 *n_rmap = NULL;
950 }
951
kvmhv_update_nest_rmap_rc(struct kvm * kvm,u64 n_rmap,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long mask)952 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
953 unsigned long clr, unsigned long set,
954 unsigned long hpa, unsigned long mask)
955 {
956 unsigned long gpa;
957 unsigned int shift, lpid;
958 pte_t *ptep;
959
960 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
961 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
962
963 /* Find the pte */
964 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
965 /*
966 * If the pte is present and the pfn is still the same, update the pte.
967 * If the pfn has changed then this is a stale rmap entry, the nested
968 * gpa actually points somewhere else now, and there is nothing to do.
969 * XXX A future optimisation would be to remove the rmap entry here.
970 */
971 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
972 __radix_pte_update(ptep, clr, set);
973 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
974 }
975 }
976
977 /*
978 * For a given list of rmap entries, update the rc bits in all ptes in shadow
979 * page tables for nested guests which are referenced by the rmap list.
980 */
kvmhv_update_nest_rmap_rc_list(struct kvm * kvm,unsigned long * rmapp,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long nbytes)981 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
982 unsigned long clr, unsigned long set,
983 unsigned long hpa, unsigned long nbytes)
984 {
985 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
986 struct rmap_nested *cursor;
987 unsigned long rmap, mask;
988
989 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
990 return;
991
992 mask = PTE_RPN_MASK & ~(nbytes - 1);
993 hpa &= mask;
994
995 for_each_nest_rmap_safe(cursor, entry, &rmap)
996 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
997 }
998
kvmhv_remove_nest_rmap(struct kvm * kvm,u64 n_rmap,unsigned long hpa,unsigned long mask)999 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
1000 unsigned long hpa, unsigned long mask)
1001 {
1002 struct kvm_nested_guest *gp;
1003 unsigned long gpa;
1004 unsigned int shift, lpid;
1005 pte_t *ptep;
1006
1007 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
1008 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
1009 gp = __find_nested(kvm, lpid);
1010 if (!gp)
1011 return;
1012
1013 /* Find and invalidate the pte */
1014 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
1015 /* Don't spuriously invalidate ptes if the pfn has changed */
1016 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
1017 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1018 }
1019
kvmhv_remove_nest_rmap_list(struct kvm * kvm,unsigned long * rmapp,unsigned long hpa,unsigned long mask)1020 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
1021 unsigned long hpa, unsigned long mask)
1022 {
1023 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
1024 struct rmap_nested *cursor;
1025 unsigned long rmap;
1026
1027 for_each_nest_rmap_safe(cursor, entry, &rmap) {
1028 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
1029 kfree(cursor);
1030 }
1031 }
1032
1033 /* called with kvm->mmu_lock held */
kvmhv_remove_nest_rmap_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,unsigned long gpa,unsigned long hpa,unsigned long nbytes)1034 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
1035 const struct kvm_memory_slot *memslot,
1036 unsigned long gpa, unsigned long hpa,
1037 unsigned long nbytes)
1038 {
1039 unsigned long gfn, end_gfn;
1040 unsigned long addr_mask;
1041
1042 if (!memslot)
1043 return;
1044 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1045 end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1046
1047 addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1048 hpa &= addr_mask;
1049
1050 for (; gfn < end_gfn; gfn++) {
1051 unsigned long *rmap = &memslot->arch.rmap[gfn];
1052 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1053 }
1054 }
1055
kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot * free)1056 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1057 {
1058 unsigned long page;
1059
1060 for (page = 0; page < free->npages; page++) {
1061 unsigned long rmap, *rmapp = &free->arch.rmap[page];
1062 struct rmap_nested *cursor;
1063 struct llist_node *entry;
1064
1065 entry = llist_del_all((struct llist_head *) rmapp);
1066 for_each_nest_rmap_safe(cursor, entry, &rmap)
1067 kfree(cursor);
1068 }
1069 }
1070
kvmhv_invalidate_shadow_pte(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,long gpa,int * shift_ret)1071 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1072 struct kvm_nested_guest *gp,
1073 long gpa, int *shift_ret)
1074 {
1075 struct kvm *kvm = vcpu->kvm;
1076 bool ret = false;
1077 pte_t *ptep;
1078 int shift;
1079
1080 spin_lock(&kvm->mmu_lock);
1081 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1082 if (!shift)
1083 shift = PAGE_SHIFT;
1084 if (ptep && pte_present(*ptep)) {
1085 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1086 ret = true;
1087 }
1088 spin_unlock(&kvm->mmu_lock);
1089
1090 if (shift_ret)
1091 *shift_ret = shift;
1092 return ret;
1093 }
1094
get_ric(unsigned int instr)1095 static inline int get_ric(unsigned int instr)
1096 {
1097 return (instr >> 18) & 0x3;
1098 }
1099
get_prs(unsigned int instr)1100 static inline int get_prs(unsigned int instr)
1101 {
1102 return (instr >> 17) & 0x1;
1103 }
1104
get_r(unsigned int instr)1105 static inline int get_r(unsigned int instr)
1106 {
1107 return (instr >> 16) & 0x1;
1108 }
1109
get_lpid(unsigned long r_val)1110 static inline int get_lpid(unsigned long r_val)
1111 {
1112 return r_val & 0xffffffff;
1113 }
1114
get_is(unsigned long r_val)1115 static inline int get_is(unsigned long r_val)
1116 {
1117 return (r_val >> 10) & 0x3;
1118 }
1119
get_ap(unsigned long r_val)1120 static inline int get_ap(unsigned long r_val)
1121 {
1122 return (r_val >> 5) & 0x7;
1123 }
1124
get_epn(unsigned long r_val)1125 static inline long get_epn(unsigned long r_val)
1126 {
1127 return r_val >> 12;
1128 }
1129
kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu * vcpu,int lpid,int ap,long epn)1130 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1131 int ap, long epn)
1132 {
1133 struct kvm *kvm = vcpu->kvm;
1134 struct kvm_nested_guest *gp;
1135 long npages;
1136 int shift, shadow_shift;
1137 unsigned long addr;
1138
1139 shift = ap_to_shift(ap);
1140 addr = epn << 12;
1141 if (shift < 0)
1142 /* Invalid ap encoding */
1143 return -EINVAL;
1144
1145 addr &= ~((1UL << shift) - 1);
1146 npages = 1UL << (shift - PAGE_SHIFT);
1147
1148 gp = kvmhv_get_nested(kvm, lpid, false);
1149 if (!gp) /* No such guest -> nothing to do */
1150 return 0;
1151 mutex_lock(&gp->tlb_lock);
1152
1153 /* There may be more than one host page backing this single guest pte */
1154 do {
1155 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1156
1157 npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1158 addr += 1UL << shadow_shift;
1159 } while (npages > 0);
1160
1161 mutex_unlock(&gp->tlb_lock);
1162 kvmhv_put_nested(gp);
1163 return 0;
1164 }
1165
kvmhv_emulate_tlbie_lpid(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,int ric)1166 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1167 struct kvm_nested_guest *gp, int ric)
1168 {
1169 struct kvm *kvm = vcpu->kvm;
1170
1171 mutex_lock(&gp->tlb_lock);
1172 switch (ric) {
1173 case 0:
1174 /* Invalidate TLB */
1175 spin_lock(&kvm->mmu_lock);
1176 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1177 gp->shadow_lpid);
1178 kvmhv_flush_lpid(gp->shadow_lpid);
1179 spin_unlock(&kvm->mmu_lock);
1180 break;
1181 case 1:
1182 /*
1183 * Invalidate PWC
1184 * We don't cache this -> nothing to do
1185 */
1186 break;
1187 case 2:
1188 /* Invalidate TLB, PWC and caching of partition table entries */
1189 kvmhv_flush_nested(gp);
1190 break;
1191 default:
1192 break;
1193 }
1194 mutex_unlock(&gp->tlb_lock);
1195 }
1196
kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu * vcpu,int ric)1197 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1198 {
1199 struct kvm *kvm = vcpu->kvm;
1200 struct kvm_nested_guest *gp;
1201 int lpid;
1202
1203 spin_lock(&kvm->mmu_lock);
1204 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
1205 spin_unlock(&kvm->mmu_lock);
1206 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1207 spin_lock(&kvm->mmu_lock);
1208 }
1209 spin_unlock(&kvm->mmu_lock);
1210 }
1211
kvmhv_emulate_priv_tlbie(struct kvm_vcpu * vcpu,unsigned int instr,unsigned long rsval,unsigned long rbval)1212 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1213 unsigned long rsval, unsigned long rbval)
1214 {
1215 struct kvm *kvm = vcpu->kvm;
1216 struct kvm_nested_guest *gp;
1217 int r, ric, prs, is, ap;
1218 int lpid;
1219 long epn;
1220 int ret = 0;
1221
1222 ric = get_ric(instr);
1223 prs = get_prs(instr);
1224 r = get_r(instr);
1225 lpid = get_lpid(rsval);
1226 is = get_is(rbval);
1227
1228 /*
1229 * These cases are invalid and are not handled:
1230 * r != 1 -> Only radix supported
1231 * prs == 1 -> Not HV privileged
1232 * ric == 3 -> No cluster bombs for radix
1233 * is == 1 -> Partition scoped translations not associated with pid
1234 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1235 */
1236 if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1237 ((!is) && (ric == 1 || ric == 2)))
1238 return -EINVAL;
1239
1240 switch (is) {
1241 case 0:
1242 /*
1243 * We know ric == 0
1244 * Invalidate TLB for a given target address
1245 */
1246 epn = get_epn(rbval);
1247 ap = get_ap(rbval);
1248 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1249 break;
1250 case 2:
1251 /* Invalidate matching LPID */
1252 gp = kvmhv_get_nested(kvm, lpid, false);
1253 if (gp) {
1254 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1255 kvmhv_put_nested(gp);
1256 }
1257 break;
1258 case 3:
1259 /* Invalidate ALL LPIDs */
1260 kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1261 break;
1262 default:
1263 ret = -EINVAL;
1264 break;
1265 }
1266
1267 return ret;
1268 }
1269
1270 /*
1271 * This handles the H_TLB_INVALIDATE hcall.
1272 * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1273 * (r6) rB contents.
1274 */
kvmhv_do_nested_tlbie(struct kvm_vcpu * vcpu)1275 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1276 {
1277 int ret;
1278
1279 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1280 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1281 if (ret)
1282 return H_PARAMETER;
1283 return H_SUCCESS;
1284 }
1285
do_tlb_invalidate_nested_all(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long ric)1286 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1287 unsigned long lpid, unsigned long ric)
1288 {
1289 struct kvm *kvm = vcpu->kvm;
1290 struct kvm_nested_guest *gp;
1291
1292 gp = kvmhv_get_nested(kvm, lpid, false);
1293 if (gp) {
1294 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1295 kvmhv_put_nested(gp);
1296 }
1297 return H_SUCCESS;
1298 }
1299
1300 /*
1301 * Number of pages above which we invalidate the entire LPID rather than
1302 * flush individual pages.
1303 */
1304 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1305
do_tlb_invalidate_nested_tlb(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long pg_sizes,unsigned long start,unsigned long end)1306 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1307 unsigned long lpid,
1308 unsigned long pg_sizes,
1309 unsigned long start,
1310 unsigned long end)
1311 {
1312 int ret = H_P4;
1313 unsigned long addr, nr_pages;
1314 struct mmu_psize_def *def;
1315 unsigned long psize, ap, page_size;
1316 bool flush_lpid;
1317
1318 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1319 def = &mmu_psize_defs[psize];
1320 if (!(pg_sizes & def->h_rpt_pgsize))
1321 continue;
1322
1323 nr_pages = (end - start) >> def->shift;
1324 flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1325 if (flush_lpid)
1326 return do_tlb_invalidate_nested_all(vcpu, lpid,
1327 RIC_FLUSH_TLB);
1328 addr = start;
1329 ap = mmu_get_ap(psize);
1330 page_size = 1UL << def->shift;
1331 do {
1332 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1333 get_epn(addr));
1334 if (ret)
1335 return H_P4;
1336 addr += page_size;
1337 } while (addr < end);
1338 }
1339 return ret;
1340 }
1341
1342 /*
1343 * Performs partition-scoped invalidations for nested guests
1344 * as part of H_RPT_INVALIDATE hcall.
1345 */
do_h_rpt_invalidate_pat(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1346 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1347 unsigned long type, unsigned long pg_sizes,
1348 unsigned long start, unsigned long end)
1349 {
1350 /*
1351 * If L2 lpid isn't valid, we need to return H_PARAMETER.
1352 *
1353 * However, nested KVM issues a L2 lpid flush call when creating
1354 * partition table entries for L2. This happens even before the
1355 * corresponding shadow lpid is created in HV which happens in
1356 * H_ENTER_NESTED call. Since we can't differentiate this case from
1357 * the invalid case, we ignore such flush requests and return success.
1358 */
1359 if (!__find_nested(vcpu->kvm, lpid))
1360 return H_SUCCESS;
1361
1362 /*
1363 * A flush all request can be handled by a full lpid flush only.
1364 */
1365 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1366 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1367
1368 /*
1369 * We don't need to handle a PWC flush like process table here,
1370 * because intermediate partition scoped table in nested guest doesn't
1371 * really have PWC. Only level we have PWC is in L0 and for nested
1372 * invalidate at L0 we always do kvm_flush_lpid() which does
1373 * radix__flush_all_lpid(). For range invalidate at any level, we
1374 * are not removing the higher level page tables and hence there is
1375 * no PWC invalidate needed.
1376 *
1377 * if (type & H_RPTI_TYPE_PWC) {
1378 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1379 * if (ret)
1380 * return H_P4;
1381 * }
1382 */
1383
1384 if (start == 0 && end == -1)
1385 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1386
1387 if (type & H_RPTI_TYPE_TLB)
1388 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1389 start, end);
1390 return H_SUCCESS;
1391 }
1392
1393 /* Used to convert a nested guest real address to a L1 guest real address */
kvmhv_translate_addr_nested(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,unsigned long dsisr,struct kvmppc_pte * gpte_p)1394 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1395 struct kvm_nested_guest *gp,
1396 unsigned long n_gpa, unsigned long dsisr,
1397 struct kvmppc_pte *gpte_p)
1398 {
1399 u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1400 int ret;
1401
1402 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1403 &fault_addr);
1404
1405 if (ret) {
1406 /* We didn't find a pte */
1407 if (ret == -EINVAL) {
1408 /* Unsupported mmu config */
1409 flags |= DSISR_UNSUPP_MMU;
1410 } else if (ret == -ENOENT) {
1411 /* No translation found */
1412 flags |= DSISR_NOHPTE;
1413 } else if (ret == -EFAULT) {
1414 /* Couldn't access L1 real address */
1415 flags |= DSISR_PRTABLE_FAULT;
1416 vcpu->arch.fault_gpa = fault_addr;
1417 } else {
1418 /* Unknown error */
1419 return ret;
1420 }
1421 goto forward_to_l1;
1422 } else {
1423 /* We found a pte -> check permissions */
1424 if (dsisr & DSISR_ISSTORE) {
1425 /* Can we write? */
1426 if (!gpte_p->may_write) {
1427 flags |= DSISR_PROTFAULT;
1428 goto forward_to_l1;
1429 }
1430 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1431 /* Can we execute? */
1432 if (!gpte_p->may_execute) {
1433 flags |= SRR1_ISI_N_G_OR_CIP;
1434 goto forward_to_l1;
1435 }
1436 } else {
1437 /* Can we read? */
1438 if (!gpte_p->may_read && !gpte_p->may_write) {
1439 flags |= DSISR_PROTFAULT;
1440 goto forward_to_l1;
1441 }
1442 }
1443 }
1444
1445 return 0;
1446
1447 forward_to_l1:
1448 vcpu->arch.fault_dsisr = flags;
1449 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1450 vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1451 vcpu->arch.shregs.msr |= flags;
1452 }
1453 return RESUME_HOST;
1454 }
1455
kvmhv_handle_nested_set_rc(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,struct kvmppc_pte gpte,unsigned long dsisr)1456 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1457 struct kvm_nested_guest *gp,
1458 unsigned long n_gpa,
1459 struct kvmppc_pte gpte,
1460 unsigned long dsisr)
1461 {
1462 struct kvm *kvm = vcpu->kvm;
1463 bool writing = !!(dsisr & DSISR_ISSTORE);
1464 u64 pgflags;
1465 long ret;
1466
1467 /* Are the rc bits set in the L1 partition scoped pte? */
1468 pgflags = _PAGE_ACCESSED;
1469 if (writing)
1470 pgflags |= _PAGE_DIRTY;
1471 if (pgflags & ~gpte.rc)
1472 return RESUME_HOST;
1473
1474 spin_lock(&kvm->mmu_lock);
1475 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1476 ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1477 gpte.raddr, kvm->arch.lpid);
1478 if (!ret) {
1479 ret = -EINVAL;
1480 goto out_unlock;
1481 }
1482
1483 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1484 ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1485 n_gpa, gp->l1_lpid);
1486 if (!ret)
1487 ret = -EINVAL;
1488 else
1489 ret = 0;
1490
1491 out_unlock:
1492 spin_unlock(&kvm->mmu_lock);
1493 return ret;
1494 }
1495
kvmppc_radix_level_to_shift(int level)1496 static inline int kvmppc_radix_level_to_shift(int level)
1497 {
1498 switch (level) {
1499 case 2:
1500 return PUD_SHIFT;
1501 case 1:
1502 return PMD_SHIFT;
1503 default:
1504 return PAGE_SHIFT;
1505 }
1506 }
1507
kvmppc_radix_shift_to_level(int shift)1508 static inline int kvmppc_radix_shift_to_level(int shift)
1509 {
1510 if (shift == PUD_SHIFT)
1511 return 2;
1512 if (shift == PMD_SHIFT)
1513 return 1;
1514 if (shift == PAGE_SHIFT)
1515 return 0;
1516 WARN_ON_ONCE(1);
1517 return 0;
1518 }
1519
1520 /* called with gp->tlb_lock held */
__kvmhv_nested_page_fault(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp)1521 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1522 struct kvm_nested_guest *gp)
1523 {
1524 struct kvm *kvm = vcpu->kvm;
1525 struct kvm_memory_slot *memslot;
1526 struct rmap_nested *n_rmap;
1527 struct kvmppc_pte gpte;
1528 pte_t pte, *pte_p;
1529 unsigned long mmu_seq;
1530 unsigned long dsisr = vcpu->arch.fault_dsisr;
1531 unsigned long ea = vcpu->arch.fault_dar;
1532 unsigned long *rmapp;
1533 unsigned long n_gpa, gpa, gfn, perm = 0UL;
1534 unsigned int shift, l1_shift, level;
1535 bool writing = !!(dsisr & DSISR_ISSTORE);
1536 bool kvm_ro = false;
1537 long int ret;
1538
1539 if (!gp->l1_gr_to_hr) {
1540 kvmhv_update_ptbl_cache(gp);
1541 if (!gp->l1_gr_to_hr)
1542 return RESUME_HOST;
1543 }
1544
1545 /* Convert the nested guest real address into a L1 guest real address */
1546
1547 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1548 if (!(dsisr & DSISR_PRTABLE_FAULT))
1549 n_gpa |= ea & 0xFFF;
1550 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1551
1552 /*
1553 * If the hardware found a translation but we don't now have a usable
1554 * translation in the l1 partition-scoped tree, remove the shadow pte
1555 * and let the guest retry.
1556 */
1557 if (ret == RESUME_HOST &&
1558 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1559 DSISR_BAD_COPYPASTE)))
1560 goto inval;
1561 if (ret)
1562 return ret;
1563
1564 /* Failed to set the reference/change bits */
1565 if (dsisr & DSISR_SET_RC) {
1566 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1567 if (ret == RESUME_HOST)
1568 return ret;
1569 if (ret)
1570 goto inval;
1571 dsisr &= ~DSISR_SET_RC;
1572 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1573 DSISR_PROTFAULT)))
1574 return RESUME_GUEST;
1575 }
1576
1577 /*
1578 * We took an HISI or HDSI while we were running a nested guest which
1579 * means we have no partition scoped translation for that. This means
1580 * we need to insert a pte for the mapping into our shadow_pgtable.
1581 */
1582
1583 l1_shift = gpte.page_shift;
1584 if (l1_shift < PAGE_SHIFT) {
1585 /* We don't support l1 using a page size smaller than our own */
1586 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1587 l1_shift, PAGE_SHIFT);
1588 return -EINVAL;
1589 }
1590 gpa = gpte.raddr;
1591 gfn = gpa >> PAGE_SHIFT;
1592
1593 /* 1. Get the corresponding host memslot */
1594
1595 memslot = gfn_to_memslot(kvm, gfn);
1596 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1597 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1598 /* unusual error -> reflect to the guest as a DSI */
1599 kvmppc_core_queue_data_storage(vcpu,
1600 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1601 ea, dsisr);
1602 return RESUME_GUEST;
1603 }
1604
1605 /* passthrough of emulated MMIO case */
1606 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1607 }
1608 if (memslot->flags & KVM_MEM_READONLY) {
1609 if (writing) {
1610 /* Give the guest a DSI */
1611 kvmppc_core_queue_data_storage(vcpu,
1612 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1613 ea, DSISR_ISSTORE | DSISR_PROTFAULT);
1614 return RESUME_GUEST;
1615 }
1616 kvm_ro = true;
1617 }
1618
1619 /* 2. Find the host pte for this L1 guest real address */
1620
1621 /* Used to check for invalidations in progress */
1622 mmu_seq = kvm->mmu_invalidate_seq;
1623 smp_rmb();
1624
1625 /* See if can find translation in our partition scoped tables for L1 */
1626 pte = __pte(0);
1627 spin_lock(&kvm->mmu_lock);
1628 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1629 if (!shift)
1630 shift = PAGE_SHIFT;
1631 if (pte_p)
1632 pte = *pte_p;
1633 spin_unlock(&kvm->mmu_lock);
1634
1635 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1636 /* No suitable pte found -> try to insert a mapping */
1637 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1638 writing, kvm_ro, &pte, &level);
1639 if (ret == -EAGAIN)
1640 return RESUME_GUEST;
1641 else if (ret)
1642 return ret;
1643 shift = kvmppc_radix_level_to_shift(level);
1644 }
1645 /* Align gfn to the start of the page */
1646 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1647
1648 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1649
1650 /* The permissions is the combination of the host and l1 guest ptes */
1651 perm |= gpte.may_read ? 0UL : _PAGE_READ;
1652 perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1653 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1654 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1655 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1656 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1657 pte = __pte(pte_val(pte) & ~perm);
1658
1659 /* What size pte can we insert? */
1660 if (shift > l1_shift) {
1661 u64 mask;
1662 unsigned int actual_shift = PAGE_SHIFT;
1663 if (PMD_SHIFT < l1_shift)
1664 actual_shift = PMD_SHIFT;
1665 mask = (1UL << shift) - (1UL << actual_shift);
1666 pte = __pte(pte_val(pte) | (gpa & mask));
1667 shift = actual_shift;
1668 }
1669 level = kvmppc_radix_shift_to_level(shift);
1670 n_gpa &= ~((1UL << shift) - 1);
1671
1672 /* 4. Insert the pte into our shadow_pgtable */
1673
1674 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1675 if (!n_rmap)
1676 return RESUME_GUEST; /* Let the guest try again */
1677 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1678 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1679 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1680 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1681 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1682 kfree(n_rmap);
1683 if (ret == -EAGAIN)
1684 ret = RESUME_GUEST; /* Let the guest try again */
1685
1686 return ret;
1687
1688 inval:
1689 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1690 return RESUME_GUEST;
1691 }
1692
kvmhv_nested_page_fault(struct kvm_vcpu * vcpu)1693 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1694 {
1695 struct kvm_nested_guest *gp = vcpu->arch.nested;
1696 long int ret;
1697
1698 mutex_lock(&gp->tlb_lock);
1699 ret = __kvmhv_nested_page_fault(vcpu, gp);
1700 mutex_unlock(&gp->tlb_lock);
1701 return ret;
1702 }
1703
kvmhv_nested_next_lpid(struct kvm * kvm,int lpid)1704 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1705 {
1706 int ret = lpid + 1;
1707
1708 spin_lock(&kvm->mmu_lock);
1709 if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret))
1710 ret = -1;
1711 spin_unlock(&kvm->mmu_lock);
1712
1713 return ret;
1714 }
1715