1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright IBM Corp. 2007
5 *
6 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8 */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/of.h>
23 #include <asm/cputable.h>
24 #include <linux/uaccess.h>
25 #include <asm/kvm_ppc.h>
26 #include <asm/cputhreads.h>
27 #include <asm/irqflags.h>
28 #include <asm/iommu.h>
29 #include <asm/switch_to.h>
30 #include <asm/xive.h>
31 #ifdef CONFIG_PPC_PSERIES
32 #include <asm/hvcall.h>
33 #include <asm/plpar_wrappers.h>
34 #endif
35 #include <asm/ultravisor.h>
36 #include <asm/setup.h>
37
38 #include "timing.h"
39 #include "../mm/mmu_decl.h"
40
41 #define CREATE_TRACE_POINTS
42 #include "trace.h"
43
44 struct kvmppc_ops *kvmppc_hv_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46 struct kvmppc_ops *kvmppc_pr_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48
49
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51 {
52 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
53 }
54
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
56 {
57 return kvm_arch_vcpu_runnable(vcpu);
58 }
59
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
61 {
62 return false;
63 }
64
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
66 {
67 return 1;
68 }
69
70 /*
71 * Common checks before entering the guest world. Call with interrupts
72 * disabled.
73 *
74 * returns:
75 *
76 * == 1 if we're ready to go into guest state
77 * <= 0 if we need to go back to the host with return value
78 */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
80 {
81 int r;
82
83 WARN_ON(irqs_disabled());
84 hard_irq_disable();
85
86 while (true) {
87 if (need_resched()) {
88 local_irq_enable();
89 cond_resched();
90 hard_irq_disable();
91 continue;
92 }
93
94 if (signal_pending(current)) {
95 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
96 vcpu->run->exit_reason = KVM_EXIT_INTR;
97 r = -EINTR;
98 break;
99 }
100
101 vcpu->mode = IN_GUEST_MODE;
102
103 /*
104 * Reading vcpu->requests must happen after setting vcpu->mode,
105 * so we don't miss a request because the requester sees
106 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
107 * before next entering the guest (and thus doesn't IPI).
108 * This also orders the write to mode from any reads
109 * to the page tables done while the VCPU is running.
110 * Please see the comment in kvm_flush_remote_tlbs.
111 */
112 smp_mb();
113
114 if (kvm_request_pending(vcpu)) {
115 /* Make sure we process requests preemptable */
116 local_irq_enable();
117 trace_kvm_check_requests(vcpu);
118 r = kvmppc_core_check_requests(vcpu);
119 hard_irq_disable();
120 if (r > 0)
121 continue;
122 break;
123 }
124
125 if (kvmppc_core_prepare_to_enter(vcpu)) {
126 /* interrupts got enabled in between, so we
127 are back at square 1 */
128 continue;
129 }
130
131 guest_enter_irqoff();
132 return 1;
133 }
134
135 /* return to host */
136 local_irq_enable();
137 return r;
138 }
139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
140
141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
143 {
144 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
145 int i;
146
147 shared->sprg0 = swab64(shared->sprg0);
148 shared->sprg1 = swab64(shared->sprg1);
149 shared->sprg2 = swab64(shared->sprg2);
150 shared->sprg3 = swab64(shared->sprg3);
151 shared->srr0 = swab64(shared->srr0);
152 shared->srr1 = swab64(shared->srr1);
153 shared->dar = swab64(shared->dar);
154 shared->msr = swab64(shared->msr);
155 shared->dsisr = swab32(shared->dsisr);
156 shared->int_pending = swab32(shared->int_pending);
157 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
158 shared->sr[i] = swab32(shared->sr[i]);
159 }
160 #endif
161
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
163 {
164 int nr = kvmppc_get_gpr(vcpu, 11);
165 int r;
166 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
167 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
168 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
169 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
170 unsigned long r2 = 0;
171
172 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
173 /* 32 bit mode */
174 param1 &= 0xffffffff;
175 param2 &= 0xffffffff;
176 param3 &= 0xffffffff;
177 param4 &= 0xffffffff;
178 }
179
180 switch (nr) {
181 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
182 {
183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
184 /* Book3S can be little endian, find it out here */
185 int shared_big_endian = true;
186 if (vcpu->arch.intr_msr & MSR_LE)
187 shared_big_endian = false;
188 if (shared_big_endian != vcpu->arch.shared_big_endian)
189 kvmppc_swab_shared(vcpu);
190 vcpu->arch.shared_big_endian = shared_big_endian;
191 #endif
192
193 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
194 /*
195 * Older versions of the Linux magic page code had
196 * a bug where they would map their trampoline code
197 * NX. If that's the case, remove !PR NX capability.
198 */
199 vcpu->arch.disable_kernel_nx = true;
200 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
201 }
202
203 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
204 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
205
206 #ifdef CONFIG_PPC_64K_PAGES
207 /*
208 * Make sure our 4k magic page is in the same window of a 64k
209 * page within the guest and within the host's page.
210 */
211 if ((vcpu->arch.magic_page_pa & 0xf000) !=
212 ((ulong)vcpu->arch.shared & 0xf000)) {
213 void *old_shared = vcpu->arch.shared;
214 ulong shared = (ulong)vcpu->arch.shared;
215 void *new_shared;
216
217 shared &= PAGE_MASK;
218 shared |= vcpu->arch.magic_page_pa & 0xf000;
219 new_shared = (void*)shared;
220 memcpy(new_shared, old_shared, 0x1000);
221 vcpu->arch.shared = new_shared;
222 }
223 #endif
224
225 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
226
227 r = EV_SUCCESS;
228 break;
229 }
230 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
231 r = EV_SUCCESS;
232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
233 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
234 #endif
235
236 /* Second return value is in r4 */
237 break;
238 case EV_HCALL_TOKEN(EV_IDLE):
239 r = EV_SUCCESS;
240 kvm_vcpu_halt(vcpu);
241 break;
242 default:
243 r = EV_UNIMPLEMENTED;
244 break;
245 }
246
247 kvmppc_set_gpr(vcpu, 4, r2);
248
249 return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
kvmppc_sanity_check(struct kvm_vcpu * vcpu)253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255 int r = false;
256
257 /* We have to know what CPU to virtualize */
258 if (!vcpu->arch.pvr)
259 goto out;
260
261 /* PAPR only works with book3s_64 */
262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263 goto out;
264
265 /* HV KVM can only do PAPR mode for now */
266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270 if (!cpu_has_feature(CPU_FTR_EMB_HV))
271 goto out;
272 #endif
273
274 r = true;
275
276 out:
277 vcpu->arch.sane = r;
278 return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
kvmppc_emulate_mmio(struct kvm_vcpu * vcpu)282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284 enum emulation_result er;
285 int r;
286
287 er = kvmppc_emulate_loadstore(vcpu);
288 switch (er) {
289 case EMULATE_DONE:
290 /* Future optimization: only reload non-volatiles if they were
291 * actually modified. */
292 r = RESUME_GUEST_NV;
293 break;
294 case EMULATE_AGAIN:
295 r = RESUME_GUEST;
296 break;
297 case EMULATE_DO_MMIO:
298 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299 /* We must reload nonvolatiles because "update" load/store
300 * instructions modify register state. */
301 /* Future optimization: only reload non-volatiles if they were
302 * actually modified. */
303 r = RESUME_HOST_NV;
304 break;
305 case EMULATE_FAIL:
306 {
307 ppc_inst_t last_inst;
308
309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
311 ppc_inst_val(last_inst));
312
313 /*
314 * Injecting a Data Storage here is a bit more
315 * accurate since the instruction that caused the
316 * access could still be a valid one.
317 */
318 if (!IS_ENABLED(CONFIG_BOOKE)) {
319 ulong dsisr = DSISR_BADACCESS;
320
321 if (vcpu->mmio_is_write)
322 dsisr |= DSISR_ISSTORE;
323
324 kvmppc_core_queue_data_storage(vcpu,
325 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
326 vcpu->arch.vaddr_accessed, dsisr);
327 } else {
328 /*
329 * BookE does not send a SIGBUS on a bad
330 * fault, so use a Program interrupt instead
331 * to avoid a fault loop.
332 */
333 kvmppc_core_queue_program(vcpu, 0);
334 }
335
336 r = RESUME_GUEST;
337 break;
338 }
339 default:
340 WARN_ON(1);
341 r = RESUME_GUEST;
342 }
343
344 return r;
345 }
346 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
347
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)348 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
349 bool data)
350 {
351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
352 struct kvmppc_pte pte;
353 int r = -EINVAL;
354
355 vcpu->stat.st++;
356
357 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
358 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
359 size);
360
361 if ((!r) || (r == -EAGAIN))
362 return r;
363
364 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
365 XLATE_WRITE, &pte);
366 if (r < 0)
367 return r;
368
369 *eaddr = pte.raddr;
370
371 if (!pte.may_write)
372 return -EPERM;
373
374 /* Magic page override */
375 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
376 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
377 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
378 void *magic = vcpu->arch.shared;
379 magic += pte.eaddr & 0xfff;
380 memcpy(magic, ptr, size);
381 return EMULATE_DONE;
382 }
383
384 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
385 return EMULATE_DO_MMIO;
386
387 return EMULATE_DONE;
388 }
389 EXPORT_SYMBOL_GPL(kvmppc_st);
390
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)391 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
392 bool data)
393 {
394 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
395 struct kvmppc_pte pte;
396 int rc = -EINVAL;
397
398 vcpu->stat.ld++;
399
400 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
401 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
402 size);
403
404 if ((!rc) || (rc == -EAGAIN))
405 return rc;
406
407 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
408 XLATE_READ, &pte);
409 if (rc)
410 return rc;
411
412 *eaddr = pte.raddr;
413
414 if (!pte.may_read)
415 return -EPERM;
416
417 if (!data && !pte.may_execute)
418 return -ENOEXEC;
419
420 /* Magic page override */
421 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
422 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
423 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
424 void *magic = vcpu->arch.shared;
425 magic += pte.eaddr & 0xfff;
426 memcpy(ptr, magic, size);
427 return EMULATE_DONE;
428 }
429
430 kvm_vcpu_srcu_read_lock(vcpu);
431 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
432 kvm_vcpu_srcu_read_unlock(vcpu);
433 if (rc)
434 return EMULATE_DO_MMIO;
435
436 return EMULATE_DONE;
437 }
438 EXPORT_SYMBOL_GPL(kvmppc_ld);
439
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)440 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
441 {
442 struct kvmppc_ops *kvm_ops = NULL;
443 int r;
444
445 /*
446 * if we have both HV and PR enabled, default is HV
447 */
448 if (type == 0) {
449 if (kvmppc_hv_ops)
450 kvm_ops = kvmppc_hv_ops;
451 else
452 kvm_ops = kvmppc_pr_ops;
453 if (!kvm_ops)
454 goto err_out;
455 } else if (type == KVM_VM_PPC_HV) {
456 if (!kvmppc_hv_ops)
457 goto err_out;
458 kvm_ops = kvmppc_hv_ops;
459 } else if (type == KVM_VM_PPC_PR) {
460 if (!kvmppc_pr_ops)
461 goto err_out;
462 kvm_ops = kvmppc_pr_ops;
463 } else
464 goto err_out;
465
466 if (!try_module_get(kvm_ops->owner))
467 return -ENOENT;
468
469 kvm->arch.kvm_ops = kvm_ops;
470 r = kvmppc_core_init_vm(kvm);
471 if (r)
472 module_put(kvm_ops->owner);
473 return r;
474 err_out:
475 return -EINVAL;
476 }
477
kvm_arch_destroy_vm(struct kvm * kvm)478 void kvm_arch_destroy_vm(struct kvm *kvm)
479 {
480 #ifdef CONFIG_KVM_XICS
481 /*
482 * We call kick_all_cpus_sync() to ensure that all
483 * CPUs have executed any pending IPIs before we
484 * continue and free VCPUs structures below.
485 */
486 if (is_kvmppc_hv_enabled(kvm))
487 kick_all_cpus_sync();
488 #endif
489
490 kvm_destroy_vcpus(kvm);
491
492 mutex_lock(&kvm->lock);
493
494 kvmppc_core_destroy_vm(kvm);
495
496 mutex_unlock(&kvm->lock);
497
498 /* drop the module reference */
499 module_put(kvm->arch.kvm_ops->owner);
500 }
501
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)502 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
503 {
504 int r;
505 /* Assume we're using HV mode when the HV module is loaded */
506 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
507
508 if (kvm) {
509 /*
510 * Hooray - we know which VM type we're running on. Depend on
511 * that rather than the guess above.
512 */
513 hv_enabled = is_kvmppc_hv_enabled(kvm);
514 }
515
516 switch (ext) {
517 #ifdef CONFIG_BOOKE
518 case KVM_CAP_PPC_BOOKE_SREGS:
519 case KVM_CAP_PPC_BOOKE_WATCHDOG:
520 case KVM_CAP_PPC_EPR:
521 #else
522 case KVM_CAP_PPC_SEGSTATE:
523 case KVM_CAP_PPC_HIOR:
524 case KVM_CAP_PPC_PAPR:
525 #endif
526 case KVM_CAP_PPC_UNSET_IRQ:
527 case KVM_CAP_PPC_IRQ_LEVEL:
528 case KVM_CAP_ENABLE_CAP:
529 case KVM_CAP_ONE_REG:
530 case KVM_CAP_IOEVENTFD:
531 case KVM_CAP_IMMEDIATE_EXIT:
532 case KVM_CAP_SET_GUEST_DEBUG:
533 r = 1;
534 break;
535 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
536 case KVM_CAP_PPC_PAIRED_SINGLES:
537 case KVM_CAP_PPC_OSI:
538 case KVM_CAP_PPC_GET_PVINFO:
539 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
540 case KVM_CAP_SW_TLB:
541 #endif
542 /* We support this only for PR */
543 r = !hv_enabled;
544 break;
545 #ifdef CONFIG_KVM_MPIC
546 case KVM_CAP_IRQ_MPIC:
547 r = 1;
548 break;
549 #endif
550
551 #ifdef CONFIG_PPC_BOOK3S_64
552 case KVM_CAP_SPAPR_TCE:
553 fallthrough;
554 case KVM_CAP_SPAPR_TCE_64:
555 case KVM_CAP_SPAPR_TCE_VFIO:
556 case KVM_CAP_PPC_RTAS:
557 case KVM_CAP_PPC_FIXUP_HCALL:
558 case KVM_CAP_PPC_ENABLE_HCALL:
559 #ifdef CONFIG_KVM_XICS
560 case KVM_CAP_IRQ_XICS:
561 #endif
562 case KVM_CAP_PPC_GET_CPU_CHAR:
563 r = 1;
564 break;
565 #ifdef CONFIG_KVM_XIVE
566 case KVM_CAP_PPC_IRQ_XIVE:
567 /*
568 * We need XIVE to be enabled on the platform (implies
569 * a POWER9 processor) and the PowerNV platform, as
570 * nested is not yet supported.
571 */
572 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
573 kvmppc_xive_native_supported();
574 break;
575 #endif
576
577 #ifdef CONFIG_HAVE_KVM_IRQCHIP
578 case KVM_CAP_IRQFD_RESAMPLE:
579 r = !xive_enabled();
580 break;
581 #endif
582
583 case KVM_CAP_PPC_ALLOC_HTAB:
584 r = hv_enabled;
585 break;
586 #endif /* CONFIG_PPC_BOOK3S_64 */
587 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
588 case KVM_CAP_PPC_SMT:
589 r = 0;
590 if (kvm) {
591 if (kvm->arch.emul_smt_mode > 1)
592 r = kvm->arch.emul_smt_mode;
593 else
594 r = kvm->arch.smt_mode;
595 } else if (hv_enabled) {
596 if (cpu_has_feature(CPU_FTR_ARCH_300))
597 r = 1;
598 else
599 r = threads_per_subcore;
600 }
601 break;
602 case KVM_CAP_PPC_SMT_POSSIBLE:
603 r = 1;
604 if (hv_enabled) {
605 if (!cpu_has_feature(CPU_FTR_ARCH_300))
606 r = ((threads_per_subcore << 1) - 1);
607 else
608 /* P9 can emulate dbells, so allow any mode */
609 r = 8 | 4 | 2 | 1;
610 }
611 break;
612 case KVM_CAP_PPC_RMA:
613 r = 0;
614 break;
615 case KVM_CAP_PPC_HWRNG:
616 r = kvmppc_hwrng_present();
617 break;
618 case KVM_CAP_PPC_MMU_RADIX:
619 r = !!(hv_enabled && radix_enabled());
620 break;
621 case KVM_CAP_PPC_MMU_HASH_V3:
622 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
623 kvmppc_hv_ops->hash_v3_possible());
624 break;
625 case KVM_CAP_PPC_NESTED_HV:
626 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
627 !kvmppc_hv_ops->enable_nested(NULL));
628 break;
629 #endif
630 case KVM_CAP_SYNC_MMU:
631 BUILD_BUG_ON(!IS_ENABLED(CONFIG_KVM_GENERIC_MMU_NOTIFIER));
632 r = 1;
633 break;
634 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
635 case KVM_CAP_PPC_HTAB_FD:
636 r = hv_enabled;
637 break;
638 #endif
639 case KVM_CAP_NR_VCPUS:
640 /*
641 * Recommending a number of CPUs is somewhat arbitrary; we
642 * return the number of present CPUs for -HV (since a host
643 * will have secondary threads "offline"), and for other KVM
644 * implementations just count online CPUs.
645 */
646 if (hv_enabled)
647 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
648 else
649 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
650 break;
651 case KVM_CAP_MAX_VCPUS:
652 r = KVM_MAX_VCPUS;
653 break;
654 case KVM_CAP_MAX_VCPU_ID:
655 r = KVM_MAX_VCPU_IDS;
656 break;
657 #ifdef CONFIG_PPC_BOOK3S_64
658 case KVM_CAP_PPC_GET_SMMU_INFO:
659 r = 1;
660 break;
661 case KVM_CAP_SPAPR_MULTITCE:
662 r = 1;
663 break;
664 case KVM_CAP_SPAPR_RESIZE_HPT:
665 r = !!hv_enabled;
666 break;
667 #endif
668 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
669 case KVM_CAP_PPC_FWNMI:
670 r = hv_enabled;
671 break;
672 #endif
673 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
674 case KVM_CAP_PPC_HTM:
675 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
676 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
677 break;
678 #endif
679 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
680 case KVM_CAP_PPC_SECURE_GUEST:
681 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
682 !kvmppc_hv_ops->enable_svm(NULL);
683 break;
684 case KVM_CAP_PPC_DAWR1:
685 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
686 !kvmppc_hv_ops->enable_dawr1(NULL));
687 break;
688 case KVM_CAP_PPC_RPT_INVALIDATE:
689 r = 1;
690 break;
691 #endif
692 case KVM_CAP_PPC_AIL_MODE_3:
693 r = 0;
694 /*
695 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
696 * The POWER9s can support it if the guest runs in hash mode,
697 * but QEMU doesn't necessarily query the capability in time.
698 */
699 if (hv_enabled) {
700 if (kvmhv_on_pseries()) {
701 if (pseries_reloc_on_exception())
702 r = 1;
703 } else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
704 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
705 r = 1;
706 }
707 }
708 break;
709 default:
710 r = 0;
711 break;
712 }
713 return r;
714
715 }
716
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)717 long kvm_arch_dev_ioctl(struct file *filp,
718 unsigned int ioctl, unsigned long arg)
719 {
720 return -EINVAL;
721 }
722
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)723 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
724 {
725 kvmppc_core_free_memslot(kvm, slot);
726 }
727
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)728 int kvm_arch_prepare_memory_region(struct kvm *kvm,
729 const struct kvm_memory_slot *old,
730 struct kvm_memory_slot *new,
731 enum kvm_mr_change change)
732 {
733 return kvmppc_core_prepare_memory_region(kvm, old, new, change);
734 }
735
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)736 void kvm_arch_commit_memory_region(struct kvm *kvm,
737 struct kvm_memory_slot *old,
738 const struct kvm_memory_slot *new,
739 enum kvm_mr_change change)
740 {
741 kvmppc_core_commit_memory_region(kvm, old, new, change);
742 }
743
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)744 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
745 struct kvm_memory_slot *slot)
746 {
747 kvmppc_core_flush_memslot(kvm, slot);
748 }
749
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)750 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
751 {
752 return 0;
753 }
754
kvmppc_decrementer_wakeup(struct hrtimer * timer)755 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
756 {
757 struct kvm_vcpu *vcpu;
758
759 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
760 kvmppc_decrementer_func(vcpu);
761
762 return HRTIMER_NORESTART;
763 }
764
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)765 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
766 {
767 int err;
768
769 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
770 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
771
772 #ifdef CONFIG_KVM_EXIT_TIMING
773 mutex_init(&vcpu->arch.exit_timing_lock);
774 #endif
775 err = kvmppc_subarch_vcpu_init(vcpu);
776 if (err)
777 return err;
778
779 err = kvmppc_core_vcpu_create(vcpu);
780 if (err)
781 goto out_vcpu_uninit;
782
783 rcuwait_init(&vcpu->arch.wait);
784 vcpu->arch.waitp = &vcpu->arch.wait;
785 return 0;
786
787 out_vcpu_uninit:
788 kvmppc_subarch_vcpu_uninit(vcpu);
789 return err;
790 }
791
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)792 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
793 {
794 }
795
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)796 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
797 {
798 /* Make sure we're not using the vcpu anymore */
799 hrtimer_cancel(&vcpu->arch.dec_timer);
800
801 switch (vcpu->arch.irq_type) {
802 case KVMPPC_IRQ_MPIC:
803 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
804 break;
805 case KVMPPC_IRQ_XICS:
806 if (xics_on_xive())
807 kvmppc_xive_cleanup_vcpu(vcpu);
808 else
809 kvmppc_xics_free_icp(vcpu);
810 break;
811 case KVMPPC_IRQ_XIVE:
812 kvmppc_xive_native_cleanup_vcpu(vcpu);
813 break;
814 }
815
816 kvmppc_core_vcpu_free(vcpu);
817
818 kvmppc_subarch_vcpu_uninit(vcpu);
819 }
820
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)821 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
822 {
823 return kvmppc_core_pending_dec(vcpu);
824 }
825
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)826 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
827 {
828 #ifdef CONFIG_BOOKE
829 /*
830 * vrsave (formerly usprg0) isn't used by Linux, but may
831 * be used by the guest.
832 *
833 * On non-booke this is associated with Altivec and
834 * is handled by code in book3s.c.
835 */
836 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
837 #endif
838 kvmppc_core_vcpu_load(vcpu, cpu);
839 }
840
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)841 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
842 {
843 kvmppc_core_vcpu_put(vcpu);
844 #ifdef CONFIG_BOOKE
845 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
846 #endif
847 }
848
849 /*
850 * irq_bypass_add_producer and irq_bypass_del_producer are only
851 * useful if the architecture supports PCI passthrough.
852 * irq_bypass_stop and irq_bypass_start are not needed and so
853 * kvm_ops are not defined for them.
854 */
kvm_arch_has_irq_bypass(void)855 bool kvm_arch_has_irq_bypass(void)
856 {
857 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
858 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
859 }
860
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)861 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
862 struct irq_bypass_producer *prod)
863 {
864 struct kvm_kernel_irqfd *irqfd =
865 container_of(cons, struct kvm_kernel_irqfd, consumer);
866 struct kvm *kvm = irqfd->kvm;
867
868 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
869 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
870
871 return 0;
872 }
873
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)874 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
875 struct irq_bypass_producer *prod)
876 {
877 struct kvm_kernel_irqfd *irqfd =
878 container_of(cons, struct kvm_kernel_irqfd, consumer);
879 struct kvm *kvm = irqfd->kvm;
880
881 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
882 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
883 }
884
885 #ifdef CONFIG_VSX
kvmppc_get_vsr_dword_offset(int index)886 static inline int kvmppc_get_vsr_dword_offset(int index)
887 {
888 int offset;
889
890 if ((index != 0) && (index != 1))
891 return -1;
892
893 #ifdef __BIG_ENDIAN
894 offset = index;
895 #else
896 offset = 1 - index;
897 #endif
898
899 return offset;
900 }
901
kvmppc_get_vsr_word_offset(int index)902 static inline int kvmppc_get_vsr_word_offset(int index)
903 {
904 int offset;
905
906 if ((index > 3) || (index < 0))
907 return -1;
908
909 #ifdef __BIG_ENDIAN
910 offset = index;
911 #else
912 offset = 3 - index;
913 #endif
914 return offset;
915 }
916
kvmppc_set_vsr_dword(struct kvm_vcpu * vcpu,u64 gpr)917 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
918 u64 gpr)
919 {
920 union kvmppc_one_reg val;
921 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
922 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
923
924 if (offset == -1)
925 return;
926
927 if (index >= 32) {
928 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
929 val.vsxval[offset] = gpr;
930 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
931 } else {
932 kvmppc_set_vsx_fpr(vcpu, index, offset, gpr);
933 }
934 }
935
kvmppc_set_vsr_dword_dump(struct kvm_vcpu * vcpu,u64 gpr)936 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
937 u64 gpr)
938 {
939 union kvmppc_one_reg val;
940 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
941
942 if (index >= 32) {
943 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
944 val.vsxval[0] = gpr;
945 val.vsxval[1] = gpr;
946 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
947 } else {
948 kvmppc_set_vsx_fpr(vcpu, index, 0, gpr);
949 kvmppc_set_vsx_fpr(vcpu, index, 1, gpr);
950 }
951 }
952
kvmppc_set_vsr_word_dump(struct kvm_vcpu * vcpu,u32 gpr)953 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
954 u32 gpr)
955 {
956 union kvmppc_one_reg val;
957 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
958
959 if (index >= 32) {
960 val.vsx32val[0] = gpr;
961 val.vsx32val[1] = gpr;
962 val.vsx32val[2] = gpr;
963 val.vsx32val[3] = gpr;
964 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
965 } else {
966 val.vsx32val[0] = gpr;
967 val.vsx32val[1] = gpr;
968 kvmppc_set_vsx_fpr(vcpu, index, 0, val.vsxval[0]);
969 kvmppc_set_vsx_fpr(vcpu, index, 1, val.vsxval[0]);
970 }
971 }
972
kvmppc_set_vsr_word(struct kvm_vcpu * vcpu,u32 gpr32)973 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
974 u32 gpr32)
975 {
976 union kvmppc_one_reg val;
977 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
978 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
979 int dword_offset, word_offset;
980
981 if (offset == -1)
982 return;
983
984 if (index >= 32) {
985 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
986 val.vsx32val[offset] = gpr32;
987 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
988 } else {
989 dword_offset = offset / 2;
990 word_offset = offset % 2;
991 val.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, index, dword_offset);
992 val.vsx32val[word_offset] = gpr32;
993 kvmppc_set_vsx_fpr(vcpu, index, dword_offset, val.vsxval[0]);
994 }
995 }
996 #endif /* CONFIG_VSX */
997
998 #ifdef CONFIG_ALTIVEC
kvmppc_get_vmx_offset_generic(struct kvm_vcpu * vcpu,int index,int element_size)999 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
1000 int index, int element_size)
1001 {
1002 int offset;
1003 int elts = sizeof(vector128)/element_size;
1004
1005 if ((index < 0) || (index >= elts))
1006 return -1;
1007
1008 if (kvmppc_need_byteswap(vcpu))
1009 offset = elts - index - 1;
1010 else
1011 offset = index;
1012
1013 return offset;
1014 }
1015
kvmppc_get_vmx_dword_offset(struct kvm_vcpu * vcpu,int index)1016 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1017 int index)
1018 {
1019 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1020 }
1021
kvmppc_get_vmx_word_offset(struct kvm_vcpu * vcpu,int index)1022 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1023 int index)
1024 {
1025 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1026 }
1027
kvmppc_get_vmx_hword_offset(struct kvm_vcpu * vcpu,int index)1028 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1029 int index)
1030 {
1031 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1032 }
1033
kvmppc_get_vmx_byte_offset(struct kvm_vcpu * vcpu,int index)1034 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1035 int index)
1036 {
1037 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1038 }
1039
1040
kvmppc_set_vmx_dword(struct kvm_vcpu * vcpu,u64 gpr)1041 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1042 u64 gpr)
1043 {
1044 union kvmppc_one_reg val;
1045 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1046 vcpu->arch.mmio_vmx_offset);
1047 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1048
1049 if (offset == -1)
1050 return;
1051
1052 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1053 val.vsxval[offset] = gpr;
1054 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1055 }
1056
kvmppc_set_vmx_word(struct kvm_vcpu * vcpu,u32 gpr32)1057 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1058 u32 gpr32)
1059 {
1060 union kvmppc_one_reg val;
1061 int offset = kvmppc_get_vmx_word_offset(vcpu,
1062 vcpu->arch.mmio_vmx_offset);
1063 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1064
1065 if (offset == -1)
1066 return;
1067
1068 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1069 val.vsx32val[offset] = gpr32;
1070 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1071 }
1072
kvmppc_set_vmx_hword(struct kvm_vcpu * vcpu,u16 gpr16)1073 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1074 u16 gpr16)
1075 {
1076 union kvmppc_one_reg val;
1077 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1078 vcpu->arch.mmio_vmx_offset);
1079 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1080
1081 if (offset == -1)
1082 return;
1083
1084 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1085 val.vsx16val[offset] = gpr16;
1086 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1087 }
1088
kvmppc_set_vmx_byte(struct kvm_vcpu * vcpu,u8 gpr8)1089 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1090 u8 gpr8)
1091 {
1092 union kvmppc_one_reg val;
1093 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1094 vcpu->arch.mmio_vmx_offset);
1095 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1096
1097 if (offset == -1)
1098 return;
1099
1100 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1101 val.vsx8val[offset] = gpr8;
1102 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1103 }
1104 #endif /* CONFIG_ALTIVEC */
1105
1106 #ifdef CONFIG_PPC_FPU
sp_to_dp(u32 fprs)1107 static inline u64 sp_to_dp(u32 fprs)
1108 {
1109 u64 fprd;
1110
1111 preempt_disable();
1112 enable_kernel_fp();
1113 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1114 : "fr0");
1115 preempt_enable();
1116 return fprd;
1117 }
1118
dp_to_sp(u64 fprd)1119 static inline u32 dp_to_sp(u64 fprd)
1120 {
1121 u32 fprs;
1122
1123 preempt_disable();
1124 enable_kernel_fp();
1125 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1126 : "fr0");
1127 preempt_enable();
1128 return fprs;
1129 }
1130
1131 #else
1132 #define sp_to_dp(x) (x)
1133 #define dp_to_sp(x) (x)
1134 #endif /* CONFIG_PPC_FPU */
1135
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu)1136 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1137 {
1138 struct kvm_run *run = vcpu->run;
1139 u64 gpr;
1140
1141 if (run->mmio.len > sizeof(gpr))
1142 return;
1143
1144 if (!vcpu->arch.mmio_host_swabbed) {
1145 switch (run->mmio.len) {
1146 case 8: gpr = *(u64 *)run->mmio.data; break;
1147 case 4: gpr = *(u32 *)run->mmio.data; break;
1148 case 2: gpr = *(u16 *)run->mmio.data; break;
1149 case 1: gpr = *(u8 *)run->mmio.data; break;
1150 }
1151 } else {
1152 switch (run->mmio.len) {
1153 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1154 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1155 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1156 case 1: gpr = *(u8 *)run->mmio.data; break;
1157 }
1158 }
1159
1160 /* conversion between single and double precision */
1161 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1162 gpr = sp_to_dp(gpr);
1163
1164 if (vcpu->arch.mmio_sign_extend) {
1165 switch (run->mmio.len) {
1166 #ifdef CONFIG_PPC64
1167 case 4:
1168 gpr = (s64)(s32)gpr;
1169 break;
1170 #endif
1171 case 2:
1172 gpr = (s64)(s16)gpr;
1173 break;
1174 case 1:
1175 gpr = (s64)(s8)gpr;
1176 break;
1177 }
1178 }
1179
1180 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1181 case KVM_MMIO_REG_GPR:
1182 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1183 break;
1184 case KVM_MMIO_REG_FPR:
1185 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1186 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1187
1188 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1189 break;
1190 #ifdef CONFIG_PPC_BOOK3S
1191 case KVM_MMIO_REG_QPR:
1192 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1193 break;
1194 case KVM_MMIO_REG_FQPR:
1195 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1196 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1197 break;
1198 #endif
1199 #ifdef CONFIG_VSX
1200 case KVM_MMIO_REG_VSX:
1201 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1202 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1203
1204 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1205 kvmppc_set_vsr_dword(vcpu, gpr);
1206 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1207 kvmppc_set_vsr_word(vcpu, gpr);
1208 else if (vcpu->arch.mmio_copy_type ==
1209 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1210 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1211 else if (vcpu->arch.mmio_copy_type ==
1212 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1213 kvmppc_set_vsr_word_dump(vcpu, gpr);
1214 break;
1215 #endif
1216 #ifdef CONFIG_ALTIVEC
1217 case KVM_MMIO_REG_VMX:
1218 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1219 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1220
1221 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1222 kvmppc_set_vmx_dword(vcpu, gpr);
1223 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1224 kvmppc_set_vmx_word(vcpu, gpr);
1225 else if (vcpu->arch.mmio_copy_type ==
1226 KVMPPC_VMX_COPY_HWORD)
1227 kvmppc_set_vmx_hword(vcpu, gpr);
1228 else if (vcpu->arch.mmio_copy_type ==
1229 KVMPPC_VMX_COPY_BYTE)
1230 kvmppc_set_vmx_byte(vcpu, gpr);
1231 break;
1232 #endif
1233 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1234 case KVM_MMIO_REG_NESTED_GPR:
1235 if (kvmppc_need_byteswap(vcpu))
1236 gpr = swab64(gpr);
1237 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1238 sizeof(gpr));
1239 break;
1240 #endif
1241 default:
1242 BUG();
1243 }
1244 }
1245
__kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)1246 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1247 unsigned int rt, unsigned int bytes,
1248 int is_default_endian, int sign_extend)
1249 {
1250 struct kvm_run *run = vcpu->run;
1251 int idx, ret;
1252 bool host_swabbed;
1253
1254 /* Pity C doesn't have a logical XOR operator */
1255 if (kvmppc_need_byteswap(vcpu)) {
1256 host_swabbed = is_default_endian;
1257 } else {
1258 host_swabbed = !is_default_endian;
1259 }
1260
1261 if (bytes > sizeof(run->mmio.data))
1262 return EMULATE_FAIL;
1263
1264 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1265 run->mmio.len = bytes;
1266 run->mmio.is_write = 0;
1267
1268 vcpu->arch.io_gpr = rt;
1269 vcpu->arch.mmio_host_swabbed = host_swabbed;
1270 vcpu->mmio_needed = 1;
1271 vcpu->mmio_is_write = 0;
1272 vcpu->arch.mmio_sign_extend = sign_extend;
1273
1274 idx = srcu_read_lock(&vcpu->kvm->srcu);
1275
1276 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1277 bytes, &run->mmio.data);
1278
1279 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1280
1281 if (!ret) {
1282 kvmppc_complete_mmio_load(vcpu);
1283 vcpu->mmio_needed = 0;
1284 return EMULATE_DONE;
1285 }
1286
1287 return EMULATE_DO_MMIO;
1288 }
1289
kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1290 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1291 unsigned int rt, unsigned int bytes,
1292 int is_default_endian)
1293 {
1294 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1295 }
1296 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1297
1298 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1299 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1300 unsigned int rt, unsigned int bytes,
1301 int is_default_endian)
1302 {
1303 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1304 }
1305
1306 #ifdef CONFIG_VSX
kvmppc_handle_vsx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int mmio_sign_extend)1307 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1308 unsigned int rt, unsigned int bytes,
1309 int is_default_endian, int mmio_sign_extend)
1310 {
1311 enum emulation_result emulated = EMULATE_DONE;
1312
1313 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1314 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1315 return EMULATE_FAIL;
1316
1317 while (vcpu->arch.mmio_vsx_copy_nums) {
1318 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1319 is_default_endian, mmio_sign_extend);
1320
1321 if (emulated != EMULATE_DONE)
1322 break;
1323
1324 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1325
1326 vcpu->arch.mmio_vsx_copy_nums--;
1327 vcpu->arch.mmio_vsx_offset++;
1328 }
1329 return emulated;
1330 }
1331 #endif /* CONFIG_VSX */
1332
kvmppc_handle_store(struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)1333 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1334 u64 val, unsigned int bytes, int is_default_endian)
1335 {
1336 struct kvm_run *run = vcpu->run;
1337 void *data = run->mmio.data;
1338 int idx, ret;
1339 bool host_swabbed;
1340
1341 /* Pity C doesn't have a logical XOR operator */
1342 if (kvmppc_need_byteswap(vcpu)) {
1343 host_swabbed = is_default_endian;
1344 } else {
1345 host_swabbed = !is_default_endian;
1346 }
1347
1348 if (bytes > sizeof(run->mmio.data))
1349 return EMULATE_FAIL;
1350
1351 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1352 run->mmio.len = bytes;
1353 run->mmio.is_write = 1;
1354 vcpu->mmio_needed = 1;
1355 vcpu->mmio_is_write = 1;
1356
1357 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1358 val = dp_to_sp(val);
1359
1360 /* Store the value at the lowest bytes in 'data'. */
1361 if (!host_swabbed) {
1362 switch (bytes) {
1363 case 8: *(u64 *)data = val; break;
1364 case 4: *(u32 *)data = val; break;
1365 case 2: *(u16 *)data = val; break;
1366 case 1: *(u8 *)data = val; break;
1367 }
1368 } else {
1369 switch (bytes) {
1370 case 8: *(u64 *)data = swab64(val); break;
1371 case 4: *(u32 *)data = swab32(val); break;
1372 case 2: *(u16 *)data = swab16(val); break;
1373 case 1: *(u8 *)data = val; break;
1374 }
1375 }
1376
1377 idx = srcu_read_lock(&vcpu->kvm->srcu);
1378
1379 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1380 bytes, &run->mmio.data);
1381
1382 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1383
1384 if (!ret) {
1385 vcpu->mmio_needed = 0;
1386 return EMULATE_DONE;
1387 }
1388
1389 return EMULATE_DO_MMIO;
1390 }
1391 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1392
1393 #ifdef CONFIG_VSX
kvmppc_get_vsr_data(struct kvm_vcpu * vcpu,int rs,u64 * val)1394 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1395 {
1396 u32 dword_offset, word_offset;
1397 union kvmppc_one_reg reg;
1398 int vsx_offset = 0;
1399 int copy_type = vcpu->arch.mmio_copy_type;
1400 int result = 0;
1401
1402 switch (copy_type) {
1403 case KVMPPC_VSX_COPY_DWORD:
1404 vsx_offset =
1405 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1406
1407 if (vsx_offset == -1) {
1408 result = -1;
1409 break;
1410 }
1411
1412 if (rs < 32) {
1413 *val = kvmppc_get_vsx_fpr(vcpu, rs, vsx_offset);
1414 } else {
1415 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval);
1416 *val = reg.vsxval[vsx_offset];
1417 }
1418 break;
1419
1420 case KVMPPC_VSX_COPY_WORD:
1421 vsx_offset =
1422 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1423
1424 if (vsx_offset == -1) {
1425 result = -1;
1426 break;
1427 }
1428
1429 if (rs < 32) {
1430 dword_offset = vsx_offset / 2;
1431 word_offset = vsx_offset % 2;
1432 reg.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, rs, dword_offset);
1433 *val = reg.vsx32val[word_offset];
1434 } else {
1435 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval);
1436 *val = reg.vsx32val[vsx_offset];
1437 }
1438 break;
1439
1440 default:
1441 result = -1;
1442 break;
1443 }
1444
1445 return result;
1446 }
1447
kvmppc_handle_vsx_store(struct kvm_vcpu * vcpu,int rs,unsigned int bytes,int is_default_endian)1448 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1449 int rs, unsigned int bytes, int is_default_endian)
1450 {
1451 u64 val;
1452 enum emulation_result emulated = EMULATE_DONE;
1453
1454 vcpu->arch.io_gpr = rs;
1455
1456 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1457 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1458 return EMULATE_FAIL;
1459
1460 while (vcpu->arch.mmio_vsx_copy_nums) {
1461 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1462 return EMULATE_FAIL;
1463
1464 emulated = kvmppc_handle_store(vcpu,
1465 val, bytes, is_default_endian);
1466
1467 if (emulated != EMULATE_DONE)
1468 break;
1469
1470 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1471
1472 vcpu->arch.mmio_vsx_copy_nums--;
1473 vcpu->arch.mmio_vsx_offset++;
1474 }
1475
1476 return emulated;
1477 }
1478
kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu * vcpu)1479 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1480 {
1481 struct kvm_run *run = vcpu->run;
1482 enum emulation_result emulated = EMULATE_FAIL;
1483 int r;
1484
1485 vcpu->arch.paddr_accessed += run->mmio.len;
1486
1487 if (!vcpu->mmio_is_write) {
1488 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1489 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1490 } else {
1491 emulated = kvmppc_handle_vsx_store(vcpu,
1492 vcpu->arch.io_gpr, run->mmio.len, 1);
1493 }
1494
1495 switch (emulated) {
1496 case EMULATE_DO_MMIO:
1497 run->exit_reason = KVM_EXIT_MMIO;
1498 r = RESUME_HOST;
1499 break;
1500 case EMULATE_FAIL:
1501 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1502 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1503 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1504 r = RESUME_HOST;
1505 break;
1506 default:
1507 r = RESUME_GUEST;
1508 break;
1509 }
1510 return r;
1511 }
1512 #endif /* CONFIG_VSX */
1513
1514 #ifdef CONFIG_ALTIVEC
kvmppc_handle_vmx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1515 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1516 unsigned int rt, unsigned int bytes, int is_default_endian)
1517 {
1518 enum emulation_result emulated = EMULATE_DONE;
1519
1520 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1521 return EMULATE_FAIL;
1522
1523 while (vcpu->arch.mmio_vmx_copy_nums) {
1524 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1525 is_default_endian, 0);
1526
1527 if (emulated != EMULATE_DONE)
1528 break;
1529
1530 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1531 vcpu->arch.mmio_vmx_copy_nums--;
1532 vcpu->arch.mmio_vmx_offset++;
1533 }
1534
1535 return emulated;
1536 }
1537
kvmppc_get_vmx_dword(struct kvm_vcpu * vcpu,int index,u64 * val)1538 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1539 {
1540 union kvmppc_one_reg reg;
1541 int vmx_offset = 0;
1542 int result = 0;
1543
1544 vmx_offset =
1545 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1546
1547 if (vmx_offset == -1)
1548 return -1;
1549
1550 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1551 *val = reg.vsxval[vmx_offset];
1552
1553 return result;
1554 }
1555
kvmppc_get_vmx_word(struct kvm_vcpu * vcpu,int index,u64 * val)1556 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1557 {
1558 union kvmppc_one_reg reg;
1559 int vmx_offset = 0;
1560 int result = 0;
1561
1562 vmx_offset =
1563 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1564
1565 if (vmx_offset == -1)
1566 return -1;
1567
1568 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1569 *val = reg.vsx32val[vmx_offset];
1570
1571 return result;
1572 }
1573
kvmppc_get_vmx_hword(struct kvm_vcpu * vcpu,int index,u64 * val)1574 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1575 {
1576 union kvmppc_one_reg reg;
1577 int vmx_offset = 0;
1578 int result = 0;
1579
1580 vmx_offset =
1581 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1582
1583 if (vmx_offset == -1)
1584 return -1;
1585
1586 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1587 *val = reg.vsx16val[vmx_offset];
1588
1589 return result;
1590 }
1591
kvmppc_get_vmx_byte(struct kvm_vcpu * vcpu,int index,u64 * val)1592 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1593 {
1594 union kvmppc_one_reg reg;
1595 int vmx_offset = 0;
1596 int result = 0;
1597
1598 vmx_offset =
1599 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1600
1601 if (vmx_offset == -1)
1602 return -1;
1603
1604 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1605 *val = reg.vsx8val[vmx_offset];
1606
1607 return result;
1608 }
1609
kvmppc_handle_vmx_store(struct kvm_vcpu * vcpu,unsigned int rs,unsigned int bytes,int is_default_endian)1610 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1611 unsigned int rs, unsigned int bytes, int is_default_endian)
1612 {
1613 u64 val = 0;
1614 unsigned int index = rs & KVM_MMIO_REG_MASK;
1615 enum emulation_result emulated = EMULATE_DONE;
1616
1617 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1618 return EMULATE_FAIL;
1619
1620 vcpu->arch.io_gpr = rs;
1621
1622 while (vcpu->arch.mmio_vmx_copy_nums) {
1623 switch (vcpu->arch.mmio_copy_type) {
1624 case KVMPPC_VMX_COPY_DWORD:
1625 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1626 return EMULATE_FAIL;
1627
1628 break;
1629 case KVMPPC_VMX_COPY_WORD:
1630 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1631 return EMULATE_FAIL;
1632 break;
1633 case KVMPPC_VMX_COPY_HWORD:
1634 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1635 return EMULATE_FAIL;
1636 break;
1637 case KVMPPC_VMX_COPY_BYTE:
1638 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1639 return EMULATE_FAIL;
1640 break;
1641 default:
1642 return EMULATE_FAIL;
1643 }
1644
1645 emulated = kvmppc_handle_store(vcpu, val, bytes,
1646 is_default_endian);
1647 if (emulated != EMULATE_DONE)
1648 break;
1649
1650 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1651 vcpu->arch.mmio_vmx_copy_nums--;
1652 vcpu->arch.mmio_vmx_offset++;
1653 }
1654
1655 return emulated;
1656 }
1657
kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu * vcpu)1658 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1659 {
1660 struct kvm_run *run = vcpu->run;
1661 enum emulation_result emulated = EMULATE_FAIL;
1662 int r;
1663
1664 vcpu->arch.paddr_accessed += run->mmio.len;
1665
1666 if (!vcpu->mmio_is_write) {
1667 emulated = kvmppc_handle_vmx_load(vcpu,
1668 vcpu->arch.io_gpr, run->mmio.len, 1);
1669 } else {
1670 emulated = kvmppc_handle_vmx_store(vcpu,
1671 vcpu->arch.io_gpr, run->mmio.len, 1);
1672 }
1673
1674 switch (emulated) {
1675 case EMULATE_DO_MMIO:
1676 run->exit_reason = KVM_EXIT_MMIO;
1677 r = RESUME_HOST;
1678 break;
1679 case EMULATE_FAIL:
1680 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1681 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1682 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1683 r = RESUME_HOST;
1684 break;
1685 default:
1686 r = RESUME_GUEST;
1687 break;
1688 }
1689 return r;
1690 }
1691 #endif /* CONFIG_ALTIVEC */
1692
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1693 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1694 {
1695 int r = 0;
1696 union kvmppc_one_reg val;
1697 int size;
1698
1699 size = one_reg_size(reg->id);
1700 if (size > sizeof(val))
1701 return -EINVAL;
1702
1703 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1704 if (r == -EINVAL) {
1705 r = 0;
1706 switch (reg->id) {
1707 #ifdef CONFIG_ALTIVEC
1708 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1709 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1710 r = -ENXIO;
1711 break;
1712 }
1713 kvmppc_get_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1714 break;
1715 case KVM_REG_PPC_VSCR:
1716 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1717 r = -ENXIO;
1718 break;
1719 }
1720 val = get_reg_val(reg->id, kvmppc_get_vscr(vcpu));
1721 break;
1722 case KVM_REG_PPC_VRSAVE:
1723 val = get_reg_val(reg->id, kvmppc_get_vrsave(vcpu));
1724 break;
1725 #endif /* CONFIG_ALTIVEC */
1726 default:
1727 r = -EINVAL;
1728 break;
1729 }
1730 }
1731
1732 if (r)
1733 return r;
1734
1735 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1736 r = -EFAULT;
1737
1738 return r;
1739 }
1740
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1741 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1742 {
1743 int r;
1744 union kvmppc_one_reg val;
1745 int size;
1746
1747 size = one_reg_size(reg->id);
1748 if (size > sizeof(val))
1749 return -EINVAL;
1750
1751 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1752 return -EFAULT;
1753
1754 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1755 if (r == -EINVAL) {
1756 r = 0;
1757 switch (reg->id) {
1758 #ifdef CONFIG_ALTIVEC
1759 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1760 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1761 r = -ENXIO;
1762 break;
1763 }
1764 kvmppc_set_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1765 break;
1766 case KVM_REG_PPC_VSCR:
1767 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1768 r = -ENXIO;
1769 break;
1770 }
1771 kvmppc_set_vscr(vcpu, set_reg_val(reg->id, val));
1772 break;
1773 case KVM_REG_PPC_VRSAVE:
1774 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1775 r = -ENXIO;
1776 break;
1777 }
1778 kvmppc_set_vrsave(vcpu, set_reg_val(reg->id, val));
1779 break;
1780 #endif /* CONFIG_ALTIVEC */
1781 default:
1782 r = -EINVAL;
1783 break;
1784 }
1785 }
1786
1787 return r;
1788 }
1789
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1790 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1791 {
1792 struct kvm_run *run = vcpu->run;
1793 int r;
1794
1795 vcpu_load(vcpu);
1796
1797 if (vcpu->mmio_needed) {
1798 vcpu->mmio_needed = 0;
1799 if (!vcpu->mmio_is_write)
1800 kvmppc_complete_mmio_load(vcpu);
1801 #ifdef CONFIG_VSX
1802 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1803 vcpu->arch.mmio_vsx_copy_nums--;
1804 vcpu->arch.mmio_vsx_offset++;
1805 }
1806
1807 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1808 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1809 if (r == RESUME_HOST) {
1810 vcpu->mmio_needed = 1;
1811 goto out;
1812 }
1813 }
1814 #endif
1815 #ifdef CONFIG_ALTIVEC
1816 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1817 vcpu->arch.mmio_vmx_copy_nums--;
1818 vcpu->arch.mmio_vmx_offset++;
1819 }
1820
1821 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1822 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1823 if (r == RESUME_HOST) {
1824 vcpu->mmio_needed = 1;
1825 goto out;
1826 }
1827 }
1828 #endif
1829 } else if (vcpu->arch.osi_needed) {
1830 u64 *gprs = run->osi.gprs;
1831 int i;
1832
1833 for (i = 0; i < 32; i++)
1834 kvmppc_set_gpr(vcpu, i, gprs[i]);
1835 vcpu->arch.osi_needed = 0;
1836 } else if (vcpu->arch.hcall_needed) {
1837 int i;
1838
1839 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1840 for (i = 0; i < 9; ++i)
1841 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1842 vcpu->arch.hcall_needed = 0;
1843 #ifdef CONFIG_BOOKE
1844 } else if (vcpu->arch.epr_needed) {
1845 kvmppc_set_epr(vcpu, run->epr.epr);
1846 vcpu->arch.epr_needed = 0;
1847 #endif
1848 }
1849
1850 kvm_sigset_activate(vcpu);
1851
1852 if (!vcpu->wants_to_run)
1853 r = -EINTR;
1854 else
1855 r = kvmppc_vcpu_run(vcpu);
1856
1857 kvm_sigset_deactivate(vcpu);
1858
1859 #ifdef CONFIG_ALTIVEC
1860 out:
1861 #endif
1862
1863 /*
1864 * We're already returning to userspace, don't pass the
1865 * RESUME_HOST flags along.
1866 */
1867 if (r > 0)
1868 r = 0;
1869
1870 vcpu_put(vcpu);
1871 return r;
1872 }
1873
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1874 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1875 {
1876 if (irq->irq == KVM_INTERRUPT_UNSET) {
1877 kvmppc_core_dequeue_external(vcpu);
1878 return 0;
1879 }
1880
1881 kvmppc_core_queue_external(vcpu, irq);
1882
1883 kvm_vcpu_kick(vcpu);
1884
1885 return 0;
1886 }
1887
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1888 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1889 struct kvm_enable_cap *cap)
1890 {
1891 int r;
1892
1893 if (cap->flags)
1894 return -EINVAL;
1895
1896 switch (cap->cap) {
1897 case KVM_CAP_PPC_OSI:
1898 r = 0;
1899 vcpu->arch.osi_enabled = true;
1900 break;
1901 case KVM_CAP_PPC_PAPR:
1902 r = 0;
1903 vcpu->arch.papr_enabled = true;
1904 break;
1905 case KVM_CAP_PPC_EPR:
1906 r = 0;
1907 if (cap->args[0])
1908 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1909 else
1910 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1911 break;
1912 #ifdef CONFIG_BOOKE
1913 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1914 r = 0;
1915 vcpu->arch.watchdog_enabled = true;
1916 break;
1917 #endif
1918 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1919 case KVM_CAP_SW_TLB: {
1920 struct kvm_config_tlb cfg;
1921 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1922
1923 r = -EFAULT;
1924 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1925 break;
1926
1927 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1928 break;
1929 }
1930 #endif
1931 #ifdef CONFIG_KVM_MPIC
1932 case KVM_CAP_IRQ_MPIC: {
1933 struct fd f;
1934 struct kvm_device *dev;
1935
1936 r = -EBADF;
1937 f = fdget(cap->args[0]);
1938 if (!fd_file(f))
1939 break;
1940
1941 r = -EPERM;
1942 dev = kvm_device_from_filp(fd_file(f));
1943 if (dev)
1944 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1945
1946 fdput(f);
1947 break;
1948 }
1949 #endif
1950 #ifdef CONFIG_KVM_XICS
1951 case KVM_CAP_IRQ_XICS: {
1952 struct fd f;
1953 struct kvm_device *dev;
1954
1955 r = -EBADF;
1956 f = fdget(cap->args[0]);
1957 if (!fd_file(f))
1958 break;
1959
1960 r = -EPERM;
1961 dev = kvm_device_from_filp(fd_file(f));
1962 if (dev) {
1963 if (xics_on_xive())
1964 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1965 else
1966 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1967 }
1968
1969 fdput(f);
1970 break;
1971 }
1972 #endif /* CONFIG_KVM_XICS */
1973 #ifdef CONFIG_KVM_XIVE
1974 case KVM_CAP_PPC_IRQ_XIVE: {
1975 struct fd f;
1976 struct kvm_device *dev;
1977
1978 r = -EBADF;
1979 f = fdget(cap->args[0]);
1980 if (!fd_file(f))
1981 break;
1982
1983 r = -ENXIO;
1984 if (!xive_enabled()) {
1985 fdput(f);
1986 break;
1987 }
1988
1989 r = -EPERM;
1990 dev = kvm_device_from_filp(fd_file(f));
1991 if (dev)
1992 r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1993 cap->args[1]);
1994
1995 fdput(f);
1996 break;
1997 }
1998 #endif /* CONFIG_KVM_XIVE */
1999 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2000 case KVM_CAP_PPC_FWNMI:
2001 r = -EINVAL;
2002 if (!is_kvmppc_hv_enabled(vcpu->kvm))
2003 break;
2004 r = 0;
2005 vcpu->kvm->arch.fwnmi_enabled = true;
2006 break;
2007 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
2008 default:
2009 r = -EINVAL;
2010 break;
2011 }
2012
2013 if (!r)
2014 r = kvmppc_sanity_check(vcpu);
2015
2016 return r;
2017 }
2018
kvm_arch_intc_initialized(struct kvm * kvm)2019 bool kvm_arch_intc_initialized(struct kvm *kvm)
2020 {
2021 #ifdef CONFIG_KVM_MPIC
2022 if (kvm->arch.mpic)
2023 return true;
2024 #endif
2025 #ifdef CONFIG_KVM_XICS
2026 if (kvm->arch.xics || kvm->arch.xive)
2027 return true;
2028 #endif
2029 return false;
2030 }
2031
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2032 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2033 struct kvm_mp_state *mp_state)
2034 {
2035 return -EINVAL;
2036 }
2037
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2038 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2039 struct kvm_mp_state *mp_state)
2040 {
2041 return -EINVAL;
2042 }
2043
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2044 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2045 unsigned int ioctl, unsigned long arg)
2046 {
2047 struct kvm_vcpu *vcpu = filp->private_data;
2048 void __user *argp = (void __user *)arg;
2049
2050 if (ioctl == KVM_INTERRUPT) {
2051 struct kvm_interrupt irq;
2052 if (copy_from_user(&irq, argp, sizeof(irq)))
2053 return -EFAULT;
2054 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2055 }
2056 return -ENOIOCTLCMD;
2057 }
2058
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2059 long kvm_arch_vcpu_ioctl(struct file *filp,
2060 unsigned int ioctl, unsigned long arg)
2061 {
2062 struct kvm_vcpu *vcpu = filp->private_data;
2063 void __user *argp = (void __user *)arg;
2064 long r;
2065
2066 switch (ioctl) {
2067 case KVM_ENABLE_CAP:
2068 {
2069 struct kvm_enable_cap cap;
2070 r = -EFAULT;
2071 if (copy_from_user(&cap, argp, sizeof(cap)))
2072 goto out;
2073 vcpu_load(vcpu);
2074 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2075 vcpu_put(vcpu);
2076 break;
2077 }
2078
2079 case KVM_SET_ONE_REG:
2080 case KVM_GET_ONE_REG:
2081 {
2082 struct kvm_one_reg reg;
2083 r = -EFAULT;
2084 if (copy_from_user(®, argp, sizeof(reg)))
2085 goto out;
2086 if (ioctl == KVM_SET_ONE_REG)
2087 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
2088 else
2089 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
2090 break;
2091 }
2092
2093 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2094 case KVM_DIRTY_TLB: {
2095 struct kvm_dirty_tlb dirty;
2096 r = -EFAULT;
2097 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2098 goto out;
2099 vcpu_load(vcpu);
2100 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2101 vcpu_put(vcpu);
2102 break;
2103 }
2104 #endif
2105 default:
2106 r = -EINVAL;
2107 }
2108
2109 out:
2110 return r;
2111 }
2112
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)2113 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2114 {
2115 return VM_FAULT_SIGBUS;
2116 }
2117
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)2118 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2119 {
2120 u32 inst_nop = 0x60000000;
2121 #ifdef CONFIG_KVM_BOOKE_HV
2122 u32 inst_sc1 = 0x44000022;
2123 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2124 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2125 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2126 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2127 #else
2128 u32 inst_lis = 0x3c000000;
2129 u32 inst_ori = 0x60000000;
2130 u32 inst_sc = 0x44000002;
2131 u32 inst_imm_mask = 0xffff;
2132
2133 /*
2134 * The hypercall to get into KVM from within guest context is as
2135 * follows:
2136 *
2137 * lis r0, r0, KVM_SC_MAGIC_R0@h
2138 * ori r0, KVM_SC_MAGIC_R0@l
2139 * sc
2140 * nop
2141 */
2142 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2143 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2144 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2145 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2146 #endif
2147
2148 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2149
2150 return 0;
2151 }
2152
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2153 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2154 {
2155 int ret = 0;
2156
2157 #ifdef CONFIG_KVM_MPIC
2158 ret = ret || (kvm->arch.mpic != NULL);
2159 #endif
2160 #ifdef CONFIG_KVM_XICS
2161 ret = ret || (kvm->arch.xics != NULL);
2162 ret = ret || (kvm->arch.xive != NULL);
2163 #endif
2164 smp_rmb();
2165 return ret;
2166 }
2167
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)2168 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2169 bool line_status)
2170 {
2171 if (!kvm_arch_irqchip_in_kernel(kvm))
2172 return -ENXIO;
2173
2174 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2175 irq_event->irq, irq_event->level,
2176 line_status);
2177 return 0;
2178 }
2179
2180
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)2181 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2182 struct kvm_enable_cap *cap)
2183 {
2184 int r;
2185
2186 if (cap->flags)
2187 return -EINVAL;
2188
2189 switch (cap->cap) {
2190 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2191 case KVM_CAP_PPC_ENABLE_HCALL: {
2192 unsigned long hcall = cap->args[0];
2193
2194 r = -EINVAL;
2195 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2196 cap->args[1] > 1)
2197 break;
2198 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2199 break;
2200 if (cap->args[1])
2201 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2202 else
2203 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2204 r = 0;
2205 break;
2206 }
2207 case KVM_CAP_PPC_SMT: {
2208 unsigned long mode = cap->args[0];
2209 unsigned long flags = cap->args[1];
2210
2211 r = -EINVAL;
2212 if (kvm->arch.kvm_ops->set_smt_mode)
2213 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2214 break;
2215 }
2216
2217 case KVM_CAP_PPC_NESTED_HV:
2218 r = -EINVAL;
2219 if (!is_kvmppc_hv_enabled(kvm) ||
2220 !kvm->arch.kvm_ops->enable_nested)
2221 break;
2222 r = kvm->arch.kvm_ops->enable_nested(kvm);
2223 break;
2224 #endif
2225 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2226 case KVM_CAP_PPC_SECURE_GUEST:
2227 r = -EINVAL;
2228 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2229 break;
2230 r = kvm->arch.kvm_ops->enable_svm(kvm);
2231 break;
2232 case KVM_CAP_PPC_DAWR1:
2233 r = -EINVAL;
2234 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2235 break;
2236 r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2237 break;
2238 #endif
2239 default:
2240 r = -EINVAL;
2241 break;
2242 }
2243
2244 return r;
2245 }
2246
2247 #ifdef CONFIG_PPC_BOOK3S_64
2248 /*
2249 * These functions check whether the underlying hardware is safe
2250 * against attacks based on observing the effects of speculatively
2251 * executed instructions, and whether it supplies instructions for
2252 * use in workarounds. The information comes from firmware, either
2253 * via the device tree on powernv platforms or from an hcall on
2254 * pseries platforms.
2255 */
2256 #ifdef CONFIG_PPC_PSERIES
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2257 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2258 {
2259 struct h_cpu_char_result c;
2260 unsigned long rc;
2261
2262 if (!machine_is(pseries))
2263 return -ENOTTY;
2264
2265 rc = plpar_get_cpu_characteristics(&c);
2266 if (rc == H_SUCCESS) {
2267 cp->character = c.character;
2268 cp->behaviour = c.behaviour;
2269 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2270 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2271 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2272 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2273 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2274 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2275 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2276 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2277 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2278 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2279 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2280 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2281 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2282 }
2283 return 0;
2284 }
2285 #else
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2286 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2287 {
2288 return -ENOTTY;
2289 }
2290 #endif
2291
have_fw_feat(struct device_node * fw_features,const char * state,const char * name)2292 static inline bool have_fw_feat(struct device_node *fw_features,
2293 const char *state, const char *name)
2294 {
2295 struct device_node *np;
2296 bool r = false;
2297
2298 np = of_get_child_by_name(fw_features, name);
2299 if (np) {
2300 r = of_property_read_bool(np, state);
2301 of_node_put(np);
2302 }
2303 return r;
2304 }
2305
kvmppc_get_cpu_char(struct kvm_ppc_cpu_char * cp)2306 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2307 {
2308 struct device_node *np, *fw_features;
2309 int r;
2310
2311 memset(cp, 0, sizeof(*cp));
2312 r = pseries_get_cpu_char(cp);
2313 if (r != -ENOTTY)
2314 return r;
2315
2316 np = of_find_node_by_name(NULL, "ibm,opal");
2317 if (np) {
2318 fw_features = of_get_child_by_name(np, "fw-features");
2319 of_node_put(np);
2320 if (!fw_features)
2321 return 0;
2322 if (have_fw_feat(fw_features, "enabled",
2323 "inst-spec-barrier-ori31,31,0"))
2324 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2325 if (have_fw_feat(fw_features, "enabled",
2326 "fw-bcctrl-serialized"))
2327 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2328 if (have_fw_feat(fw_features, "enabled",
2329 "inst-l1d-flush-ori30,30,0"))
2330 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2331 if (have_fw_feat(fw_features, "enabled",
2332 "inst-l1d-flush-trig2"))
2333 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2334 if (have_fw_feat(fw_features, "enabled",
2335 "fw-l1d-thread-split"))
2336 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2337 if (have_fw_feat(fw_features, "enabled",
2338 "fw-count-cache-disabled"))
2339 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2340 if (have_fw_feat(fw_features, "enabled",
2341 "fw-count-cache-flush-bcctr2,0,0"))
2342 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2343 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2344 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2345 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2346 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2347 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2348 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2349 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2350
2351 if (have_fw_feat(fw_features, "enabled",
2352 "speculation-policy-favor-security"))
2353 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2354 if (!have_fw_feat(fw_features, "disabled",
2355 "needs-l1d-flush-msr-pr-0-to-1"))
2356 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2357 if (!have_fw_feat(fw_features, "disabled",
2358 "needs-spec-barrier-for-bound-checks"))
2359 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2360 if (have_fw_feat(fw_features, "enabled",
2361 "needs-count-cache-flush-on-context-switch"))
2362 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2363 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2364 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2365 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2366 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2367
2368 of_node_put(fw_features);
2369 }
2370
2371 return 0;
2372 }
2373 #endif
2374
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2375 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2376 {
2377 struct kvm *kvm __maybe_unused = filp->private_data;
2378 void __user *argp = (void __user *)arg;
2379 int r;
2380
2381 switch (ioctl) {
2382 case KVM_PPC_GET_PVINFO: {
2383 struct kvm_ppc_pvinfo pvinfo;
2384 memset(&pvinfo, 0, sizeof(pvinfo));
2385 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2386 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2387 r = -EFAULT;
2388 goto out;
2389 }
2390
2391 break;
2392 }
2393 #ifdef CONFIG_SPAPR_TCE_IOMMU
2394 case KVM_CREATE_SPAPR_TCE_64: {
2395 struct kvm_create_spapr_tce_64 create_tce_64;
2396
2397 r = -EFAULT;
2398 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2399 goto out;
2400 if (create_tce_64.flags) {
2401 r = -EINVAL;
2402 goto out;
2403 }
2404 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2405 goto out;
2406 }
2407 case KVM_CREATE_SPAPR_TCE: {
2408 struct kvm_create_spapr_tce create_tce;
2409 struct kvm_create_spapr_tce_64 create_tce_64;
2410
2411 r = -EFAULT;
2412 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2413 goto out;
2414
2415 create_tce_64.liobn = create_tce.liobn;
2416 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2417 create_tce_64.offset = 0;
2418 create_tce_64.size = create_tce.window_size >>
2419 IOMMU_PAGE_SHIFT_4K;
2420 create_tce_64.flags = 0;
2421 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2422 goto out;
2423 }
2424 #endif
2425 #ifdef CONFIG_PPC_BOOK3S_64
2426 case KVM_PPC_GET_SMMU_INFO: {
2427 struct kvm_ppc_smmu_info info;
2428 struct kvm *kvm = filp->private_data;
2429
2430 memset(&info, 0, sizeof(info));
2431 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2432 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2433 r = -EFAULT;
2434 break;
2435 }
2436 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2437 struct kvm *kvm = filp->private_data;
2438
2439 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2440 break;
2441 }
2442 case KVM_PPC_CONFIGURE_V3_MMU: {
2443 struct kvm *kvm = filp->private_data;
2444 struct kvm_ppc_mmuv3_cfg cfg;
2445
2446 r = -EINVAL;
2447 if (!kvm->arch.kvm_ops->configure_mmu)
2448 goto out;
2449 r = -EFAULT;
2450 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2451 goto out;
2452 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2453 break;
2454 }
2455 case KVM_PPC_GET_RMMU_INFO: {
2456 struct kvm *kvm = filp->private_data;
2457 struct kvm_ppc_rmmu_info info;
2458
2459 r = -EINVAL;
2460 if (!kvm->arch.kvm_ops->get_rmmu_info)
2461 goto out;
2462 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2463 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2464 r = -EFAULT;
2465 break;
2466 }
2467 case KVM_PPC_GET_CPU_CHAR: {
2468 struct kvm_ppc_cpu_char cpuchar;
2469
2470 r = kvmppc_get_cpu_char(&cpuchar);
2471 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2472 r = -EFAULT;
2473 break;
2474 }
2475 case KVM_PPC_SVM_OFF: {
2476 struct kvm *kvm = filp->private_data;
2477
2478 r = 0;
2479 if (!kvm->arch.kvm_ops->svm_off)
2480 goto out;
2481
2482 r = kvm->arch.kvm_ops->svm_off(kvm);
2483 break;
2484 }
2485 default: {
2486 struct kvm *kvm = filp->private_data;
2487 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2488 }
2489 #else /* CONFIG_PPC_BOOK3S_64 */
2490 default:
2491 r = -ENOTTY;
2492 #endif
2493 }
2494 out:
2495 return r;
2496 }
2497
2498 static DEFINE_IDA(lpid_inuse);
2499 static unsigned long nr_lpids;
2500
kvmppc_alloc_lpid(void)2501 long kvmppc_alloc_lpid(void)
2502 {
2503 int lpid;
2504
2505 /* The host LPID must always be 0 (allocation starts at 1) */
2506 lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
2507 if (lpid < 0) {
2508 if (lpid == -ENOMEM)
2509 pr_err("%s: Out of memory\n", __func__);
2510 else
2511 pr_err("%s: No LPIDs free\n", __func__);
2512 return -ENOMEM;
2513 }
2514
2515 return lpid;
2516 }
2517 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2518
kvmppc_free_lpid(long lpid)2519 void kvmppc_free_lpid(long lpid)
2520 {
2521 ida_free(&lpid_inuse, lpid);
2522 }
2523 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2524
2525 /* nr_lpids_param includes the host LPID */
kvmppc_init_lpid(unsigned long nr_lpids_param)2526 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2527 {
2528 nr_lpids = nr_lpids_param;
2529 }
2530 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2531
2532 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2533
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2534 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2535 {
2536 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
2537 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
2538 }
2539
kvm_arch_create_vm_debugfs(struct kvm * kvm)2540 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
2541 {
2542 if (kvm->arch.kvm_ops->create_vm_debugfs)
2543 kvm->arch.kvm_ops->create_vm_debugfs(kvm);
2544 }
2545