1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance event support for the System z CPU-measurement Sampling Facility
4 *
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7 */
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
19 #include <linux/mm.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
22 #include <asm/irq.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
25 #include <linux/io.h>
26
27 /* Perf PMU definitions for the sampling facility */
28 #define PERF_CPUM_SF_MAX_CTR 2
29 #define PERF_EVENT_CPUM_SF 0xB0000UL /* Event: Basic-sampling */
30 #define PERF_EVENT_CPUM_SF_DIAG 0xBD000UL /* Event: Combined-sampling */
31 #define PERF_CPUM_SF_BASIC_MODE 0x0001 /* Basic-sampling flag */
32 #define PERF_CPUM_SF_DIAG_MODE 0x0002 /* Diagnostic-sampling flag */
33 #define PERF_CPUM_SF_FREQ_MODE 0x0008 /* Sampling with frequency */
34
35 #define OVERFLOW_REG(hwc) ((hwc)->extra_reg.config)
36 #define SFB_ALLOC_REG(hwc) ((hwc)->extra_reg.alloc)
37 #define TEAR_REG(hwc) ((hwc)->last_tag)
38 #define SAMPL_RATE(hwc) ((hwc)->event_base)
39 #define SAMPL_FLAGS(hwc) ((hwc)->config_base)
40 #define SAMPL_DIAG_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_DIAG_MODE)
41 #define SAMPL_FREQ_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_FREQ_MODE)
42
43 /* Minimum number of sample-data-block-tables:
44 * At least one table is required for the sampling buffer structure.
45 * A single table contains up to 511 pointers to sample-data-blocks.
46 */
47 #define CPUM_SF_MIN_SDBT 1
48
49 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
50 * A table contains SDB pointers (8 bytes) and one table-link entry
51 * that points to the origin of the next SDBT.
52 */
53 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
54
55 /* Maximum page offset for an SDBT table-link entry:
56 * If this page offset is reached, a table-link entry to the next SDBT
57 * must be added.
58 */
59 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
require_table_link(const void * sdbt)60 static inline int require_table_link(const void *sdbt)
61 {
62 return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
63 }
64
65 /* Minimum and maximum sampling buffer sizes:
66 *
67 * This number represents the maximum size of the sampling buffer taking
68 * the number of sample-data-block-tables into account. Note that these
69 * numbers apply to the basic-sampling function only.
70 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
71 * the diagnostic-sampling function is active.
72 *
73 * Sampling buffer size Buffer characteristics
74 * ---------------------------------------------------
75 * 64KB == 16 pages (4KB per page)
76 * 1 page for SDB-tables
77 * 15 pages for SDBs
78 *
79 * 32MB == 8192 pages (4KB per page)
80 * 16 pages for SDB-tables
81 * 8176 pages for SDBs
82 */
83 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
84 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
85 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
86
87 struct sf_buffer {
88 unsigned long *sdbt; /* Sample-data-block-table origin */
89 /* buffer characteristics (required for buffer increments) */
90 unsigned long num_sdb; /* Number of sample-data-blocks */
91 unsigned long num_sdbt; /* Number of sample-data-block-tables */
92 unsigned long *tail; /* last sample-data-block-table */
93 };
94
95 struct aux_buffer {
96 struct sf_buffer sfb;
97 unsigned long head; /* index of SDB of buffer head */
98 unsigned long alert_mark; /* index of SDB of alert request position */
99 unsigned long empty_mark; /* mark of SDB not marked full */
100 unsigned long *sdb_index; /* SDB address for fast lookup */
101 unsigned long *sdbt_index; /* SDBT address for fast lookup */
102 };
103
104 struct cpu_hw_sf {
105 /* CPU-measurement sampling information block */
106 struct hws_qsi_info_block qsi;
107 /* CPU-measurement sampling control block */
108 struct hws_lsctl_request_block lsctl;
109 struct sf_buffer sfb; /* Sampling buffer */
110 unsigned int flags; /* Status flags */
111 struct perf_event *event; /* Scheduled perf event */
112 struct perf_output_handle handle; /* AUX buffer output handle */
113 };
114 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
115
116 /* Debug feature */
117 static debug_info_t *sfdbg;
118
119 /* Sampling control helper functions */
freq_to_sample_rate(struct hws_qsi_info_block * qsi,unsigned long freq)120 static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi,
121 unsigned long freq)
122 {
123 return (USEC_PER_SEC / freq) * qsi->cpu_speed;
124 }
125
sample_rate_to_freq(struct hws_qsi_info_block * qsi,unsigned long rate)126 static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi,
127 unsigned long rate)
128 {
129 return USEC_PER_SEC * qsi->cpu_speed / rate;
130 }
131
132 /* Return pointer to trailer entry of an sample data block */
trailer_entry_ptr(unsigned long v)133 static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v)
134 {
135 void *ret;
136
137 ret = (void *)v;
138 ret += PAGE_SIZE;
139 ret -= sizeof(struct hws_trailer_entry);
140
141 return ret;
142 }
143
144 /*
145 * Return true if the entry in the sample data block table (sdbt)
146 * is a link to the next sdbt
147 */
is_link_entry(unsigned long * s)148 static inline int is_link_entry(unsigned long *s)
149 {
150 return *s & 0x1UL ? 1 : 0;
151 }
152
153 /* Return pointer to the linked sdbt */
get_next_sdbt(unsigned long * s)154 static inline unsigned long *get_next_sdbt(unsigned long *s)
155 {
156 return phys_to_virt(*s & ~0x1UL);
157 }
158
159 /*
160 * sf_disable() - Switch off sampling facility
161 */
sf_disable(void)162 static void sf_disable(void)
163 {
164 struct hws_lsctl_request_block sreq;
165
166 memset(&sreq, 0, sizeof(sreq));
167 lsctl(&sreq);
168 }
169
170 /*
171 * sf_buffer_available() - Check for an allocated sampling buffer
172 */
sf_buffer_available(struct cpu_hw_sf * cpuhw)173 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
174 {
175 return !!cpuhw->sfb.sdbt;
176 }
177
178 /*
179 * deallocate sampling facility buffer
180 */
free_sampling_buffer(struct sf_buffer * sfb)181 static void free_sampling_buffer(struct sf_buffer *sfb)
182 {
183 unsigned long *sdbt, *curr;
184
185 if (!sfb->sdbt)
186 return;
187
188 sdbt = sfb->sdbt;
189 curr = sdbt;
190
191 /* Free the SDBT after all SDBs are processed... */
192 while (1) {
193 if (!*curr || !sdbt)
194 break;
195
196 /* Process table-link entries */
197 if (is_link_entry(curr)) {
198 curr = get_next_sdbt(curr);
199 if (sdbt)
200 free_page((unsigned long)sdbt);
201
202 /* If the origin is reached, sampling buffer is freed */
203 if (curr == sfb->sdbt)
204 break;
205 else
206 sdbt = curr;
207 } else {
208 /* Process SDB pointer */
209 if (*curr) {
210 free_page((unsigned long)phys_to_virt(*curr));
211 curr++;
212 }
213 }
214 }
215
216 memset(sfb, 0, sizeof(*sfb));
217 }
218
alloc_sample_data_block(unsigned long * sdbt,gfp_t gfp_flags)219 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
220 {
221 struct hws_trailer_entry *te;
222 unsigned long sdb;
223
224 /* Allocate and initialize sample-data-block */
225 sdb = get_zeroed_page(gfp_flags);
226 if (!sdb)
227 return -ENOMEM;
228 te = trailer_entry_ptr(sdb);
229 te->header.a = 1;
230
231 /* Link SDB into the sample-data-block-table */
232 *sdbt = virt_to_phys((void *)sdb);
233
234 return 0;
235 }
236
237 /*
238 * realloc_sampling_buffer() - extend sampler memory
239 *
240 * Allocates new sample-data-blocks and adds them to the specified sampling
241 * buffer memory.
242 *
243 * Important: This modifies the sampling buffer and must be called when the
244 * sampling facility is disabled.
245 *
246 * Returns zero on success, non-zero otherwise.
247 */
realloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb,gfp_t gfp_flags)248 static int realloc_sampling_buffer(struct sf_buffer *sfb,
249 unsigned long num_sdb, gfp_t gfp_flags)
250 {
251 int i, rc;
252 unsigned long *new, *tail, *tail_prev = NULL;
253
254 if (!sfb->sdbt || !sfb->tail)
255 return -EINVAL;
256
257 if (!is_link_entry(sfb->tail))
258 return -EINVAL;
259
260 /* Append to the existing sampling buffer, overwriting the table-link
261 * register.
262 * The tail variables always points to the "tail" (last and table-link)
263 * entry in an SDB-table.
264 */
265 tail = sfb->tail;
266
267 /* Do a sanity check whether the table-link entry points to
268 * the sampling buffer origin.
269 */
270 if (sfb->sdbt != get_next_sdbt(tail)) {
271 debug_sprintf_event(sfdbg, 3, "%s buffer not linked origin %#lx tail %#lx\n",
272 __func__, (unsigned long)sfb->sdbt,
273 (unsigned long)tail);
274 return -EINVAL;
275 }
276
277 /* Allocate remaining SDBs */
278 rc = 0;
279 for (i = 0; i < num_sdb; i++) {
280 /* Allocate a new SDB-table if it is full. */
281 if (require_table_link(tail)) {
282 new = (unsigned long *)get_zeroed_page(gfp_flags);
283 if (!new) {
284 rc = -ENOMEM;
285 break;
286 }
287 sfb->num_sdbt++;
288 /* Link current page to tail of chain */
289 *tail = virt_to_phys((void *)new) + 1;
290 tail_prev = tail;
291 tail = new;
292 }
293
294 /* Allocate a new sample-data-block.
295 * If there is not enough memory, stop the realloc process
296 * and simply use what was allocated. If this is a temporary
297 * issue, a new realloc call (if required) might succeed.
298 */
299 rc = alloc_sample_data_block(tail, gfp_flags);
300 if (rc) {
301 /* Undo last SDBT. An SDBT with no SDB at its first
302 * entry but with an SDBT entry instead can not be
303 * handled by the interrupt handler code.
304 * Avoid this situation.
305 */
306 if (tail_prev) {
307 sfb->num_sdbt--;
308 free_page((unsigned long)new);
309 tail = tail_prev;
310 }
311 break;
312 }
313 sfb->num_sdb++;
314 tail++;
315 tail_prev = new = NULL; /* Allocated at least one SBD */
316 }
317
318 /* Link sampling buffer to its origin */
319 *tail = virt_to_phys(sfb->sdbt) + 1;
320 sfb->tail = tail;
321
322 return rc;
323 }
324
325 /*
326 * allocate_sampling_buffer() - allocate sampler memory
327 *
328 * Allocates and initializes a sampling buffer structure using the
329 * specified number of sample-data-blocks (SDB). For each allocation,
330 * a 4K page is used. The number of sample-data-block-tables (SDBT)
331 * are calculated from SDBs.
332 * Also set the ALERT_REQ mask in each SDBs trailer.
333 *
334 * Returns zero on success, non-zero otherwise.
335 */
alloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb)336 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
337 {
338 int rc;
339
340 if (sfb->sdbt)
341 return -EINVAL;
342
343 /* Allocate the sample-data-block-table origin */
344 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
345 if (!sfb->sdbt)
346 return -ENOMEM;
347 sfb->num_sdb = 0;
348 sfb->num_sdbt = 1;
349
350 /* Link the table origin to point to itself to prepare for
351 * realloc_sampling_buffer() invocation.
352 */
353 sfb->tail = sfb->sdbt;
354 *sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1;
355
356 /* Allocate requested number of sample-data-blocks */
357 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
358 if (rc)
359 free_sampling_buffer(sfb);
360 return rc;
361 }
362
sfb_set_limits(unsigned long min,unsigned long max)363 static void sfb_set_limits(unsigned long min, unsigned long max)
364 {
365 struct hws_qsi_info_block si;
366
367 CPUM_SF_MIN_SDB = min;
368 CPUM_SF_MAX_SDB = max;
369
370 memset(&si, 0, sizeof(si));
371 qsi(&si);
372 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
373 }
374
sfb_max_limit(struct hw_perf_event * hwc)375 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
376 {
377 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
378 : CPUM_SF_MAX_SDB;
379 }
380
sfb_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)381 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
382 struct hw_perf_event *hwc)
383 {
384 if (!sfb->sdbt)
385 return SFB_ALLOC_REG(hwc);
386 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
387 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
388 return 0;
389 }
390
sfb_account_allocs(unsigned long num,struct hw_perf_event * hwc)391 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
392 {
393 /* Limit the number of SDBs to not exceed the maximum */
394 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
395 if (num)
396 SFB_ALLOC_REG(hwc) += num;
397 }
398
sfb_init_allocs(unsigned long num,struct hw_perf_event * hwc)399 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
400 {
401 SFB_ALLOC_REG(hwc) = 0;
402 sfb_account_allocs(num, hwc);
403 }
404
deallocate_buffers(struct cpu_hw_sf * cpuhw)405 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
406 {
407 if (cpuhw->sfb.sdbt)
408 free_sampling_buffer(&cpuhw->sfb);
409 }
410
allocate_buffers(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)411 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
412 {
413 unsigned long n_sdb, freq;
414
415 /* Calculate sampling buffers using 4K pages
416 *
417 * 1. The sampling size is 32 bytes for basic sampling. This size
418 * is the same for all machine types. Diagnostic
419 * sampling uses auxlilary data buffer setup which provides the
420 * memory for SDBs using linux common code auxiliary trace
421 * setup.
422 *
423 * 2. Function alloc_sampling_buffer() sets the Alert Request
424 * Control indicator to trigger a measurement-alert to harvest
425 * sample-data-blocks (SDB). This is done per SDB. This
426 * measurement alert interrupt fires quick enough to handle
427 * one SDB, on very high frequency and work loads there might
428 * be 2 to 3 SBDs available for sample processing.
429 * Currently there is no need for setup alert request on every
430 * n-th page. This is counterproductive as one IRQ triggers
431 * a very high number of samples to be processed at one IRQ.
432 *
433 * 3. Use the sampling frequency as input.
434 * Compute the number of SDBs and ensure a minimum
435 * of CPUM_SF_MIN_SDB. Depending on frequency add some more
436 * SDBs to handle a higher sampling rate.
437 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
438 * (one SDB) for every 10000 HZ frequency increment.
439 *
440 * 4. Compute the number of sample-data-block-tables (SDBT) and
441 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
442 * to 511 SDBs).
443 */
444 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
445 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
446
447 /* If there is already a sampling buffer allocated, it is very likely
448 * that the sampling facility is enabled too. If the event to be
449 * initialized requires a greater sampling buffer, the allocation must
450 * be postponed. Changing the sampling buffer requires the sampling
451 * facility to be in the disabled state. So, account the number of
452 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
453 * before the event is started.
454 */
455 sfb_init_allocs(n_sdb, hwc);
456 if (sf_buffer_available(cpuhw))
457 return 0;
458
459 return alloc_sampling_buffer(&cpuhw->sfb,
460 sfb_pending_allocs(&cpuhw->sfb, hwc));
461 }
462
min_percent(unsigned int percent,unsigned long base,unsigned long min)463 static unsigned long min_percent(unsigned int percent, unsigned long base,
464 unsigned long min)
465 {
466 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
467 }
468
compute_sfb_extent(unsigned long ratio,unsigned long base)469 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
470 {
471 /* Use a percentage-based approach to extend the sampling facility
472 * buffer. Accept up to 5% sample data loss.
473 * Vary the extents between 1% to 5% of the current number of
474 * sample-data-blocks.
475 */
476 if (ratio <= 5)
477 return 0;
478 if (ratio <= 25)
479 return min_percent(1, base, 1);
480 if (ratio <= 50)
481 return min_percent(1, base, 1);
482 if (ratio <= 75)
483 return min_percent(2, base, 2);
484 if (ratio <= 100)
485 return min_percent(3, base, 3);
486 if (ratio <= 250)
487 return min_percent(4, base, 4);
488
489 return min_percent(5, base, 8);
490 }
491
sfb_account_overflows(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)492 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
493 struct hw_perf_event *hwc)
494 {
495 unsigned long ratio, num;
496
497 if (!OVERFLOW_REG(hwc))
498 return;
499
500 /* The sample_overflow contains the average number of sample data
501 * that has been lost because sample-data-blocks were full.
502 *
503 * Calculate the total number of sample data entries that has been
504 * discarded. Then calculate the ratio of lost samples to total samples
505 * per second in percent.
506 */
507 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
508 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
509
510 /* Compute number of sample-data-blocks */
511 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
512 if (num)
513 sfb_account_allocs(num, hwc);
514
515 OVERFLOW_REG(hwc) = 0;
516 }
517
518 /* extend_sampling_buffer() - Extend sampling buffer
519 * @sfb: Sampling buffer structure (for local CPU)
520 * @hwc: Perf event hardware structure
521 *
522 * Use this function to extend the sampling buffer based on the overflow counter
523 * and postponed allocation extents stored in the specified Perf event hardware.
524 *
525 * Important: This function disables the sampling facility in order to safely
526 * change the sampling buffer structure. Do not call this function
527 * when the PMU is active.
528 */
extend_sampling_buffer(struct sf_buffer * sfb,struct hw_perf_event * hwc)529 static void extend_sampling_buffer(struct sf_buffer *sfb,
530 struct hw_perf_event *hwc)
531 {
532 unsigned long num;
533
534 num = sfb_pending_allocs(sfb, hwc);
535 if (!num)
536 return;
537
538 /* Disable the sampling facility to reset any states and also
539 * clear pending measurement alerts.
540 */
541 sf_disable();
542
543 /* Extend the sampling buffer.
544 * This memory allocation typically happens in an atomic context when
545 * called by perf. Because this is a reallocation, it is fine if the
546 * new SDB-request cannot be satisfied immediately.
547 */
548 realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
549 }
550
551 /* Number of perf events counting hardware events */
552 static refcount_t num_events;
553 /* Used to avoid races in calling reserve/release_cpumf_hardware */
554 static DEFINE_MUTEX(pmc_reserve_mutex);
555
556 #define PMC_INIT 0
557 #define PMC_RELEASE 1
setup_pmc_cpu(void * flags)558 static void setup_pmc_cpu(void *flags)
559 {
560 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
561
562 switch (*((int *)flags)) {
563 case PMC_INIT:
564 memset(cpuhw, 0, sizeof(*cpuhw));
565 qsi(&cpuhw->qsi);
566 cpuhw->flags |= PMU_F_RESERVED;
567 sf_disable();
568 break;
569 case PMC_RELEASE:
570 cpuhw->flags &= ~PMU_F_RESERVED;
571 sf_disable();
572 deallocate_buffers(cpuhw);
573 break;
574 }
575 }
576
release_pmc_hardware(void)577 static void release_pmc_hardware(void)
578 {
579 int flags = PMC_RELEASE;
580
581 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
582 on_each_cpu(setup_pmc_cpu, &flags, 1);
583 }
584
reserve_pmc_hardware(void)585 static void reserve_pmc_hardware(void)
586 {
587 int flags = PMC_INIT;
588
589 on_each_cpu(setup_pmc_cpu, &flags, 1);
590 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
591 }
592
hw_perf_event_destroy(struct perf_event * event)593 static void hw_perf_event_destroy(struct perf_event *event)
594 {
595 /* Release PMC if this is the last perf event */
596 if (refcount_dec_and_mutex_lock(&num_events, &pmc_reserve_mutex)) {
597 release_pmc_hardware();
598 mutex_unlock(&pmc_reserve_mutex);
599 }
600 }
601
hw_init_period(struct hw_perf_event * hwc,u64 period)602 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
603 {
604 hwc->sample_period = period;
605 hwc->last_period = hwc->sample_period;
606 local64_set(&hwc->period_left, hwc->sample_period);
607 }
608
hw_limit_rate(const struct hws_qsi_info_block * si,unsigned long rate)609 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
610 unsigned long rate)
611 {
612 return clamp_t(unsigned long, rate,
613 si->min_sampl_rate, si->max_sampl_rate);
614 }
615
cpumsf_pid_type(struct perf_event * event,u32 pid,enum pid_type type)616 static u32 cpumsf_pid_type(struct perf_event *event,
617 u32 pid, enum pid_type type)
618 {
619 struct task_struct *tsk;
620
621 /* Idle process */
622 if (!pid)
623 goto out;
624
625 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
626 pid = -1;
627 if (tsk) {
628 /*
629 * Only top level events contain the pid namespace in which
630 * they are created.
631 */
632 if (event->parent)
633 event = event->parent;
634 pid = __task_pid_nr_ns(tsk, type, event->ns);
635 /*
636 * See also 1d953111b648
637 * "perf/core: Don't report zero PIDs for exiting tasks".
638 */
639 if (!pid && !pid_alive(tsk))
640 pid = -1;
641 }
642 out:
643 return pid;
644 }
645
cpumsf_output_event_pid(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)646 static void cpumsf_output_event_pid(struct perf_event *event,
647 struct perf_sample_data *data,
648 struct pt_regs *regs)
649 {
650 u32 pid;
651 struct perf_event_header header;
652 struct perf_output_handle handle;
653
654 /*
655 * Obtain the PID from the basic-sampling data entry and
656 * correct the data->tid_entry.pid value.
657 */
658 pid = data->tid_entry.pid;
659
660 /* Protect callchain buffers, tasks */
661 rcu_read_lock();
662
663 perf_prepare_sample(data, event, regs);
664 perf_prepare_header(&header, data, event, regs);
665 if (perf_output_begin(&handle, data, event, header.size))
666 goto out;
667
668 /* Update the process ID (see also kernel/events/core.c) */
669 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
670 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
671
672 perf_output_sample(&handle, &header, data, event);
673 perf_output_end(&handle);
674 out:
675 rcu_read_unlock();
676 }
677
getrate(bool freq,unsigned long sample,struct hws_qsi_info_block * si)678 static unsigned long getrate(bool freq, unsigned long sample,
679 struct hws_qsi_info_block *si)
680 {
681 unsigned long rate;
682
683 if (freq) {
684 rate = freq_to_sample_rate(si, sample);
685 rate = hw_limit_rate(si, rate);
686 } else {
687 /* The min/max sampling rates specifies the valid range
688 * of sample periods. If the specified sample period is
689 * out of range, limit the period to the range boundary.
690 */
691 rate = hw_limit_rate(si, sample);
692
693 /* The perf core maintains a maximum sample rate that is
694 * configurable through the sysctl interface. Ensure the
695 * sampling rate does not exceed this value. This also helps
696 * to avoid throttling when pushing samples with
697 * perf_event_overflow().
698 */
699 if (sample_rate_to_freq(si, rate) >
700 sysctl_perf_event_sample_rate) {
701 rate = 0;
702 }
703 }
704 return rate;
705 }
706
707 /* The sampling information (si) contains information about the
708 * min/max sampling intervals and the CPU speed. So calculate the
709 * correct sampling interval and avoid the whole period adjust
710 * feedback loop.
711 *
712 * Since the CPU Measurement sampling facility can not handle frequency
713 * calculate the sampling interval when frequency is specified using
714 * this formula:
715 * interval := cpu_speed * 1000000 / sample_freq
716 *
717 * Returns errno on bad input and zero on success with parameter interval
718 * set to the correct sampling rate.
719 *
720 * Note: This function turns off freq bit to avoid calling function
721 * perf_adjust_period(). This causes frequency adjustment in the common
722 * code part which causes tremendous variations in the counter values.
723 */
__hw_perf_event_init_rate(struct perf_event * event,struct hws_qsi_info_block * si)724 static int __hw_perf_event_init_rate(struct perf_event *event,
725 struct hws_qsi_info_block *si)
726 {
727 struct perf_event_attr *attr = &event->attr;
728 struct hw_perf_event *hwc = &event->hw;
729 unsigned long rate;
730
731 if (attr->freq) {
732 if (!attr->sample_freq)
733 return -EINVAL;
734 rate = getrate(attr->freq, attr->sample_freq, si);
735 attr->freq = 0; /* Don't call perf_adjust_period() */
736 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
737 } else {
738 rate = getrate(attr->freq, attr->sample_period, si);
739 if (!rate)
740 return -EINVAL;
741 }
742 attr->sample_period = rate;
743 SAMPL_RATE(hwc) = rate;
744 hw_init_period(hwc, SAMPL_RATE(hwc));
745 return 0;
746 }
747
__hw_perf_event_init(struct perf_event * event)748 static int __hw_perf_event_init(struct perf_event *event)
749 {
750 struct cpu_hw_sf *cpuhw;
751 struct hws_qsi_info_block si;
752 struct perf_event_attr *attr = &event->attr;
753 struct hw_perf_event *hwc = &event->hw;
754 int cpu, err = 0;
755
756 /* Reserve CPU-measurement sampling facility */
757 mutex_lock(&pmc_reserve_mutex);
758 if (!refcount_inc_not_zero(&num_events)) {
759 reserve_pmc_hardware();
760 refcount_set(&num_events, 1);
761 }
762 event->destroy = hw_perf_event_destroy;
763
764 /* Access per-CPU sampling information (query sampling info) */
765 /*
766 * The event->cpu value can be -1 to count on every CPU, for example,
767 * when attaching to a task. If this is specified, use the query
768 * sampling info from the current CPU, otherwise use event->cpu to
769 * retrieve the per-CPU information.
770 * Later, cpuhw indicates whether to allocate sampling buffers for a
771 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
772 */
773 memset(&si, 0, sizeof(si));
774 cpuhw = NULL;
775 if (event->cpu == -1) {
776 qsi(&si);
777 } else {
778 /* Event is pinned to a particular CPU, retrieve the per-CPU
779 * sampling structure for accessing the CPU-specific QSI.
780 */
781 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
782 si = cpuhw->qsi;
783 }
784
785 /* Check sampling facility authorization and, if not authorized,
786 * fall back to other PMUs. It is safe to check any CPU because
787 * the authorization is identical for all configured CPUs.
788 */
789 if (!si.as) {
790 err = -ENOENT;
791 goto out;
792 }
793
794 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
795 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
796 err = -EBUSY;
797 goto out;
798 }
799
800 /* Always enable basic sampling */
801 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
802
803 /* Check if diagnostic sampling is requested. Deny if the required
804 * sampling authorization is missing.
805 */
806 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
807 if (!si.ad) {
808 err = -EPERM;
809 goto out;
810 }
811 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
812 }
813
814 err = __hw_perf_event_init_rate(event, &si);
815 if (err)
816 goto out;
817
818 /* Use AUX buffer. No need to allocate it by ourself */
819 if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
820 return 0;
821
822 /* Allocate the per-CPU sampling buffer using the CPU information
823 * from the event. If the event is not pinned to a particular
824 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
825 * buffers for each online CPU.
826 */
827 if (cpuhw)
828 /* Event is pinned to a particular CPU */
829 err = allocate_buffers(cpuhw, hwc);
830 else {
831 /* Event is not pinned, allocate sampling buffer on
832 * each online CPU
833 */
834 for_each_online_cpu(cpu) {
835 cpuhw = &per_cpu(cpu_hw_sf, cpu);
836 err = allocate_buffers(cpuhw, hwc);
837 if (err)
838 break;
839 }
840 }
841
842 /* If PID/TID sampling is active, replace the default overflow
843 * handler to extract and resolve the PIDs from the basic-sampling
844 * data entries.
845 */
846 if (event->attr.sample_type & PERF_SAMPLE_TID)
847 if (is_default_overflow_handler(event))
848 event->overflow_handler = cpumsf_output_event_pid;
849 out:
850 mutex_unlock(&pmc_reserve_mutex);
851 return err;
852 }
853
is_callchain_event(struct perf_event * event)854 static bool is_callchain_event(struct perf_event *event)
855 {
856 u64 sample_type = event->attr.sample_type;
857
858 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
859 PERF_SAMPLE_STACK_USER);
860 }
861
cpumsf_pmu_event_init(struct perf_event * event)862 static int cpumsf_pmu_event_init(struct perf_event *event)
863 {
864 int err;
865
866 /* No support for taken branch sampling */
867 /* No support for callchain, stacks and registers */
868 if (has_branch_stack(event) || is_callchain_event(event))
869 return -EOPNOTSUPP;
870
871 switch (event->attr.type) {
872 case PERF_TYPE_RAW:
873 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
874 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
875 return -ENOENT;
876 break;
877 case PERF_TYPE_HARDWARE:
878 /* Support sampling of CPU cycles in addition to the
879 * counter facility. However, the counter facility
880 * is more precise and, hence, restrict this PMU to
881 * sampling events only.
882 */
883 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
884 return -ENOENT;
885 if (!is_sampling_event(event))
886 return -ENOENT;
887 break;
888 default:
889 return -ENOENT;
890 }
891
892 /* Force reset of idle/hv excludes regardless of what the
893 * user requested.
894 */
895 if (event->attr.exclude_hv)
896 event->attr.exclude_hv = 0;
897 if (event->attr.exclude_idle)
898 event->attr.exclude_idle = 0;
899
900 err = __hw_perf_event_init(event);
901 return err;
902 }
903
cpumsf_pmu_enable(struct pmu * pmu)904 static void cpumsf_pmu_enable(struct pmu *pmu)
905 {
906 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
907 struct hw_perf_event *hwc;
908 int err;
909
910 if (cpuhw->flags & PMU_F_ENABLED)
911 return;
912
913 if (cpuhw->flags & PMU_F_ERR_MASK)
914 return;
915
916 /* Check whether to extent the sampling buffer.
917 *
918 * Two conditions trigger an increase of the sampling buffer for a
919 * perf event:
920 * 1. Postponed buffer allocations from the event initialization.
921 * 2. Sampling overflows that contribute to pending allocations.
922 *
923 * Note that the extend_sampling_buffer() function disables the sampling
924 * facility, but it can be fully re-enabled using sampling controls that
925 * have been saved in cpumsf_pmu_disable().
926 */
927 if (cpuhw->event) {
928 hwc = &cpuhw->event->hw;
929 if (!(SAMPL_DIAG_MODE(hwc))) {
930 /*
931 * Account number of overflow-designated
932 * buffer extents
933 */
934 sfb_account_overflows(cpuhw, hwc);
935 extend_sampling_buffer(&cpuhw->sfb, hwc);
936 }
937 /* Rate may be adjusted with ioctl() */
938 cpuhw->lsctl.interval = SAMPL_RATE(hwc);
939 }
940
941 /* (Re)enable the PMU and sampling facility */
942 cpuhw->flags |= PMU_F_ENABLED;
943 barrier();
944
945 err = lsctl(&cpuhw->lsctl);
946 if (err) {
947 cpuhw->flags &= ~PMU_F_ENABLED;
948 pr_err("Loading sampling controls failed: op 1 err %i\n", err);
949 return;
950 }
951
952 /* Load current program parameter */
953 lpp(&get_lowcore()->lpp);
954 }
955
cpumsf_pmu_disable(struct pmu * pmu)956 static void cpumsf_pmu_disable(struct pmu *pmu)
957 {
958 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
959 struct hws_lsctl_request_block inactive;
960 struct hws_qsi_info_block si;
961 int err;
962
963 if (!(cpuhw->flags & PMU_F_ENABLED))
964 return;
965
966 if (cpuhw->flags & PMU_F_ERR_MASK)
967 return;
968
969 /* Switch off sampling activation control */
970 inactive = cpuhw->lsctl;
971 inactive.cs = 0;
972 inactive.cd = 0;
973
974 err = lsctl(&inactive);
975 if (err) {
976 pr_err("Loading sampling controls failed: op 2 err %i\n", err);
977 return;
978 }
979
980 /*
981 * Save state of TEAR and DEAR register contents.
982 * TEAR/DEAR values are valid only if the sampling facility is
983 * enabled. Note that cpumsf_pmu_disable() might be called even
984 * for a disabled sampling facility because cpumsf_pmu_enable()
985 * controls the enable/disable state.
986 */
987 qsi(&si);
988 if (si.es) {
989 cpuhw->lsctl.tear = si.tear;
990 cpuhw->lsctl.dear = si.dear;
991 }
992
993 cpuhw->flags &= ~PMU_F_ENABLED;
994 }
995
996 /* perf_exclude_event() - Filter event
997 * @event: The perf event
998 * @regs: pt_regs structure
999 * @sde_regs: Sample-data-entry (sde) regs structure
1000 *
1001 * Filter perf events according to their exclude specification.
1002 *
1003 * Return non-zero if the event shall be excluded.
1004 */
perf_exclude_event(struct perf_event * event,struct pt_regs * regs,struct perf_sf_sde_regs * sde_regs)1005 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1006 struct perf_sf_sde_regs *sde_regs)
1007 {
1008 if (event->attr.exclude_user && user_mode(regs))
1009 return 1;
1010 if (event->attr.exclude_kernel && !user_mode(regs))
1011 return 1;
1012 if (event->attr.exclude_guest && sde_regs->in_guest)
1013 return 1;
1014 if (event->attr.exclude_host && !sde_regs->in_guest)
1015 return 1;
1016 return 0;
1017 }
1018
1019 /* perf_push_sample() - Push samples to perf
1020 * @event: The perf event
1021 * @sample: Hardware sample data
1022 *
1023 * Use the hardware sample data to create perf event sample. The sample
1024 * is the pushed to the event subsystem and the function checks for
1025 * possible event overflows. If an event overflow occurs, the PMU is
1026 * stopped.
1027 *
1028 * Return non-zero if an event overflow occurred.
1029 */
perf_push_sample(struct perf_event * event,struct hws_basic_entry * basic)1030 static int perf_push_sample(struct perf_event *event,
1031 struct hws_basic_entry *basic)
1032 {
1033 int overflow;
1034 struct pt_regs regs;
1035 struct perf_sf_sde_regs *sde_regs;
1036 struct perf_sample_data data;
1037
1038 /* Setup perf sample */
1039 perf_sample_data_init(&data, 0, event->hw.last_period);
1040
1041 /* Setup pt_regs to look like an CPU-measurement external interrupt
1042 * using the Program Request Alert code. The regs.int_parm_long
1043 * field which is unused contains additional sample-data-entry related
1044 * indicators.
1045 */
1046 memset(®s, 0, sizeof(regs));
1047 regs.int_code = 0x1407;
1048 regs.int_parm = CPU_MF_INT_SF_PRA;
1049 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long;
1050
1051 psw_bits(regs.psw).ia = basic->ia;
1052 psw_bits(regs.psw).dat = basic->T;
1053 psw_bits(regs.psw).wait = basic->W;
1054 psw_bits(regs.psw).pstate = basic->P;
1055 psw_bits(regs.psw).as = basic->AS;
1056
1057 /*
1058 * Use the hardware provided configuration level to decide if the
1059 * sample belongs to a guest or host. If that is not available,
1060 * fall back to the following heuristics:
1061 * A non-zero guest program parameter always indicates a guest
1062 * sample. Some early samples or samples from guests without
1063 * lpp usage would be misaccounted to the host. We use the asn
1064 * value as an addon heuristic to detect most of these guest samples.
1065 * If the value differs from 0xffff (the host value), we assume to
1066 * be a KVM guest.
1067 */
1068 switch (basic->CL) {
1069 case 1: /* logical partition */
1070 sde_regs->in_guest = 0;
1071 break;
1072 case 2: /* virtual machine */
1073 sde_regs->in_guest = 1;
1074 break;
1075 default: /* old machine, use heuristics */
1076 if (basic->gpp || basic->prim_asn != 0xffff)
1077 sde_regs->in_guest = 1;
1078 break;
1079 }
1080
1081 /*
1082 * Store the PID value from the sample-data-entry to be
1083 * processed and resolved by cpumsf_output_event_pid().
1084 */
1085 data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1086
1087 overflow = 0;
1088 if (perf_exclude_event(event, ®s, sde_regs))
1089 goto out;
1090 if (perf_event_overflow(event, &data, ®s)) {
1091 overflow = 1;
1092 event->pmu->stop(event, 0);
1093 }
1094 perf_event_update_userpage(event);
1095 out:
1096 return overflow;
1097 }
1098
perf_event_count_update(struct perf_event * event,u64 count)1099 static void perf_event_count_update(struct perf_event *event, u64 count)
1100 {
1101 local64_add(count, &event->count);
1102 }
1103
1104 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1105 * @event: The perf event
1106 * @sdbt: Sample-data-block table
1107 * @overflow: Event overflow counter
1108 *
1109 * Walks through a sample-data-block and collects sampling data entries that are
1110 * then pushed to the perf event subsystem. Depending on the sampling function,
1111 * there can be either basic-sampling or combined-sampling data entries. A
1112 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1113 * data entry. The sampling function is determined by the flags in the perf
1114 * event hardware structure. The function always works with a combined-sampling
1115 * data entry but ignores the the diagnostic portion if it is not available.
1116 *
1117 * Note that the implementation focuses on basic-sampling data entries and, if
1118 * such an entry is not valid, the entire combined-sampling data entry is
1119 * ignored.
1120 *
1121 * The overflow variables counts the number of samples that has been discarded
1122 * due to a perf event overflow.
1123 */
hw_collect_samples(struct perf_event * event,unsigned long * sdbt,unsigned long long * overflow)1124 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1125 unsigned long long *overflow)
1126 {
1127 struct hws_trailer_entry *te;
1128 struct hws_basic_entry *sample;
1129
1130 te = trailer_entry_ptr((unsigned long)sdbt);
1131 sample = (struct hws_basic_entry *)sdbt;
1132 while ((unsigned long *)sample < (unsigned long *)te) {
1133 /* Check for an empty sample */
1134 if (!sample->def || sample->LS)
1135 break;
1136
1137 /* Update perf event period */
1138 perf_event_count_update(event, SAMPL_RATE(&event->hw));
1139
1140 /* Check whether sample is valid */
1141 if (sample->def == 0x0001) {
1142 /* If an event overflow occurred, the PMU is stopped to
1143 * throttle event delivery. Remaining sample data is
1144 * discarded.
1145 */
1146 if (!*overflow) {
1147 /* Check whether sample is consistent */
1148 if (sample->I == 0 && sample->W == 0) {
1149 /* Deliver sample data to perf */
1150 *overflow = perf_push_sample(event,
1151 sample);
1152 }
1153 } else
1154 /* Count discarded samples */
1155 *overflow += 1;
1156 } else {
1157 /* Sample slot is not yet written or other record.
1158 *
1159 * This condition can occur if the buffer was reused
1160 * from a combined basic- and diagnostic-sampling.
1161 * If only basic-sampling is then active, entries are
1162 * written into the larger diagnostic entries.
1163 * This is typically the case for sample-data-blocks
1164 * that are not full. Stop processing if the first
1165 * invalid format was detected.
1166 */
1167 if (!te->header.f)
1168 break;
1169 }
1170
1171 /* Reset sample slot and advance to next sample */
1172 sample->def = 0;
1173 sample++;
1174 }
1175 }
1176
1177 /* hw_perf_event_update() - Process sampling buffer
1178 * @event: The perf event
1179 * @flush_all: Flag to also flush partially filled sample-data-blocks
1180 *
1181 * Processes the sampling buffer and create perf event samples.
1182 * The sampling buffer position are retrieved and saved in the TEAR_REG
1183 * register of the specified perf event.
1184 *
1185 * Only full sample-data-blocks are processed. Specify the flush_all flag
1186 * to also walk through partially filled sample-data-blocks.
1187 */
hw_perf_event_update(struct perf_event * event,int flush_all)1188 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1189 {
1190 unsigned long long event_overflow, sampl_overflow, num_sdb;
1191 union hws_trailer_header old, prev, new;
1192 struct hw_perf_event *hwc = &event->hw;
1193 struct hws_trailer_entry *te;
1194 unsigned long *sdbt, sdb;
1195 int done;
1196
1197 /*
1198 * AUX buffer is used when in diagnostic sampling mode.
1199 * No perf events/samples are created.
1200 */
1201 if (SAMPL_DIAG_MODE(hwc))
1202 return;
1203
1204 sdbt = (unsigned long *)TEAR_REG(hwc);
1205 done = event_overflow = sampl_overflow = num_sdb = 0;
1206 while (!done) {
1207 /* Get the trailer entry of the sample-data-block */
1208 sdb = (unsigned long)phys_to_virt(*sdbt);
1209 te = trailer_entry_ptr(sdb);
1210
1211 /* Leave loop if no more work to do (block full indicator) */
1212 if (!te->header.f) {
1213 done = 1;
1214 if (!flush_all)
1215 break;
1216 }
1217
1218 /* Check the sample overflow count */
1219 if (te->header.overflow)
1220 /* Account sample overflows and, if a particular limit
1221 * is reached, extend the sampling buffer.
1222 * For details, see sfb_account_overflows().
1223 */
1224 sampl_overflow += te->header.overflow;
1225
1226 /* Collect all samples from a single sample-data-block and
1227 * flag if an (perf) event overflow happened. If so, the PMU
1228 * is stopped and remaining samples will be discarded.
1229 */
1230 hw_collect_samples(event, (unsigned long *)sdb, &event_overflow);
1231 num_sdb++;
1232
1233 /* Reset trailer (using compare-double-and-swap) */
1234 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1235 do {
1236 old.val = prev.val;
1237 new.val = prev.val;
1238 new.f = 0;
1239 new.a = 1;
1240 new.overflow = 0;
1241 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1242 } while (prev.val != old.val);
1243
1244 /* Advance to next sample-data-block */
1245 sdbt++;
1246 if (is_link_entry(sdbt))
1247 sdbt = get_next_sdbt(sdbt);
1248
1249 /* Update event hardware registers */
1250 TEAR_REG(hwc) = (unsigned long)sdbt;
1251
1252 /* Stop processing sample-data if all samples of the current
1253 * sample-data-block were flushed even if it was not full.
1254 */
1255 if (flush_all && done)
1256 break;
1257 }
1258
1259 /* Account sample overflows in the event hardware structure */
1260 if (sampl_overflow)
1261 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1262 sampl_overflow, 1 + num_sdb);
1263
1264 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1265 * the interrupt rate to an upper limit. Roughly 1000 samples per
1266 * task tick.
1267 * Hitting this limit results in a large number
1268 * of throttled REF_REPORT_THROTTLE entries and the samples
1269 * are dropped.
1270 * Slightly increase the interval to avoid hitting this limit.
1271 */
1272 if (event_overflow)
1273 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1274 }
1275
aux_sdb_index(struct aux_buffer * aux,unsigned long i)1276 static inline unsigned long aux_sdb_index(struct aux_buffer *aux,
1277 unsigned long i)
1278 {
1279 return i % aux->sfb.num_sdb;
1280 }
1281
aux_sdb_num(unsigned long start,unsigned long end)1282 static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end)
1283 {
1284 return end >= start ? end - start + 1 : 0;
1285 }
1286
aux_sdb_num_alert(struct aux_buffer * aux)1287 static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux)
1288 {
1289 return aux_sdb_num(aux->head, aux->alert_mark);
1290 }
1291
aux_sdb_num_empty(struct aux_buffer * aux)1292 static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux)
1293 {
1294 return aux_sdb_num(aux->head, aux->empty_mark);
1295 }
1296
1297 /*
1298 * Get trailer entry by index of SDB.
1299 */
aux_sdb_trailer(struct aux_buffer * aux,unsigned long index)1300 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1301 unsigned long index)
1302 {
1303 unsigned long sdb;
1304
1305 index = aux_sdb_index(aux, index);
1306 sdb = aux->sdb_index[index];
1307 return trailer_entry_ptr(sdb);
1308 }
1309
1310 /*
1311 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1312 * disabled. Collect the full SDBs in AUX buffer which have not reached
1313 * the point of alert indicator. And ignore the SDBs which are not
1314 * full.
1315 *
1316 * 1. Scan SDBs to see how much data is there and consume them.
1317 * 2. Remove alert indicator in the buffer.
1318 */
aux_output_end(struct perf_output_handle * handle)1319 static void aux_output_end(struct perf_output_handle *handle)
1320 {
1321 unsigned long i, range_scan, idx;
1322 struct aux_buffer *aux;
1323 struct hws_trailer_entry *te;
1324
1325 aux = perf_get_aux(handle);
1326 if (!aux)
1327 return;
1328
1329 range_scan = aux_sdb_num_alert(aux);
1330 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1331 te = aux_sdb_trailer(aux, idx);
1332 if (!te->header.f)
1333 break;
1334 }
1335 /* i is num of SDBs which are full */
1336 perf_aux_output_end(handle, i << PAGE_SHIFT);
1337
1338 /* Remove alert indicators in the buffer */
1339 te = aux_sdb_trailer(aux, aux->alert_mark);
1340 te->header.a = 0;
1341 }
1342
1343 /*
1344 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1345 * is first added to the CPU or rescheduled again to the CPU. It is called
1346 * with pmu disabled.
1347 *
1348 * 1. Reset the trailer of SDBs to get ready for new data.
1349 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1350 * head(tear/dear).
1351 */
aux_output_begin(struct perf_output_handle * handle,struct aux_buffer * aux,struct cpu_hw_sf * cpuhw)1352 static int aux_output_begin(struct perf_output_handle *handle,
1353 struct aux_buffer *aux,
1354 struct cpu_hw_sf *cpuhw)
1355 {
1356 unsigned long range, i, range_scan, idx, head, base, offset;
1357 struct hws_trailer_entry *te;
1358
1359 if (handle->head & ~PAGE_MASK)
1360 return -EINVAL;
1361
1362 aux->head = handle->head >> PAGE_SHIFT;
1363 range = (handle->size + 1) >> PAGE_SHIFT;
1364 if (range <= 1)
1365 return -ENOMEM;
1366
1367 /*
1368 * SDBs between aux->head and aux->empty_mark are already ready
1369 * for new data. range_scan is num of SDBs not within them.
1370 */
1371 if (range > aux_sdb_num_empty(aux)) {
1372 range_scan = range - aux_sdb_num_empty(aux);
1373 idx = aux->empty_mark + 1;
1374 for (i = 0; i < range_scan; i++, idx++) {
1375 te = aux_sdb_trailer(aux, idx);
1376 te->header.f = 0;
1377 te->header.a = 0;
1378 te->header.overflow = 0;
1379 }
1380 /* Save the position of empty SDBs */
1381 aux->empty_mark = aux->head + range - 1;
1382 }
1383
1384 /* Set alert indicator */
1385 aux->alert_mark = aux->head + range/2 - 1;
1386 te = aux_sdb_trailer(aux, aux->alert_mark);
1387 te->header.a = 1;
1388
1389 /* Reset hardware buffer head */
1390 head = aux_sdb_index(aux, aux->head);
1391 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1392 offset = head % CPUM_SF_SDB_PER_TABLE;
1393 cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long);
1394 cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]);
1395
1396 return 0;
1397 }
1398
1399 /*
1400 * Set alert indicator on SDB at index @alert_index while sampler is running.
1401 *
1402 * Return true if successfully.
1403 * Return false if full indicator is already set by hardware sampler.
1404 */
aux_set_alert(struct aux_buffer * aux,unsigned long alert_index,unsigned long long * overflow)1405 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1406 unsigned long long *overflow)
1407 {
1408 union hws_trailer_header old, prev, new;
1409 struct hws_trailer_entry *te;
1410
1411 te = aux_sdb_trailer(aux, alert_index);
1412 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1413 do {
1414 old.val = prev.val;
1415 new.val = prev.val;
1416 *overflow = old.overflow;
1417 if (old.f) {
1418 /*
1419 * SDB is already set by hardware.
1420 * Abort and try to set somewhere
1421 * behind.
1422 */
1423 return false;
1424 }
1425 new.a = 1;
1426 new.overflow = 0;
1427 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1428 } while (prev.val != old.val);
1429 return true;
1430 }
1431
1432 /*
1433 * aux_reset_buffer() - Scan and setup SDBs for new samples
1434 * @aux: The AUX buffer to set
1435 * @range: The range of SDBs to scan started from aux->head
1436 * @overflow: Set to overflow count
1437 *
1438 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1439 * marked as empty, check if it is already set full by the hardware sampler.
1440 * If yes, that means new data is already there before we can set an alert
1441 * indicator. Caller should try to set alert indicator to some position behind.
1442 *
1443 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1444 * previously and have already been consumed by user space. Reset these SDBs
1445 * (clear full indicator and alert indicator) for new data.
1446 * If aux->alert_mark fall in this area, just set it. Overflow count is
1447 * recorded while scanning.
1448 *
1449 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1450 * and ready for new samples. So scanning on this area could be skipped.
1451 *
1452 * Return true if alert indicator is set successfully and false if not.
1453 */
aux_reset_buffer(struct aux_buffer * aux,unsigned long range,unsigned long long * overflow)1454 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1455 unsigned long long *overflow)
1456 {
1457 union hws_trailer_header old, prev, new;
1458 unsigned long i, range_scan, idx;
1459 unsigned long long orig_overflow;
1460 struct hws_trailer_entry *te;
1461
1462 if (range <= aux_sdb_num_empty(aux))
1463 /*
1464 * No need to scan. All SDBs in range are marked as empty.
1465 * Just set alert indicator. Should check race with hardware
1466 * sampler.
1467 */
1468 return aux_set_alert(aux, aux->alert_mark, overflow);
1469
1470 if (aux->alert_mark <= aux->empty_mark)
1471 /*
1472 * Set alert indicator on empty SDB. Should check race
1473 * with hardware sampler.
1474 */
1475 if (!aux_set_alert(aux, aux->alert_mark, overflow))
1476 return false;
1477
1478 /*
1479 * Scan the SDBs to clear full and alert indicator used previously.
1480 * Start scanning from one SDB behind empty_mark. If the new alert
1481 * indicator fall into this range, set it.
1482 */
1483 range_scan = range - aux_sdb_num_empty(aux);
1484 idx = aux->empty_mark + 1;
1485 for (i = 0; i < range_scan; i++, idx++) {
1486 te = aux_sdb_trailer(aux, idx);
1487 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1488 do {
1489 old.val = prev.val;
1490 new.val = prev.val;
1491 orig_overflow = old.overflow;
1492 new.f = 0;
1493 new.overflow = 0;
1494 if (idx == aux->alert_mark)
1495 new.a = 1;
1496 else
1497 new.a = 0;
1498 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1499 } while (prev.val != old.val);
1500 *overflow += orig_overflow;
1501 }
1502
1503 /* Update empty_mark to new position */
1504 aux->empty_mark = aux->head + range - 1;
1505
1506 return true;
1507 }
1508
1509 /*
1510 * Measurement alert handler for diagnostic mode sampling.
1511 */
hw_collect_aux(struct cpu_hw_sf * cpuhw)1512 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1513 {
1514 struct aux_buffer *aux;
1515 int done = 0;
1516 unsigned long range = 0, size;
1517 unsigned long long overflow = 0;
1518 struct perf_output_handle *handle = &cpuhw->handle;
1519 unsigned long num_sdb;
1520
1521 aux = perf_get_aux(handle);
1522 if (!aux)
1523 return;
1524
1525 /* Inform user space new data arrived */
1526 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1527 debug_sprintf_event(sfdbg, 6, "%s #alert %ld\n", __func__,
1528 size >> PAGE_SHIFT);
1529 perf_aux_output_end(handle, size);
1530
1531 num_sdb = aux->sfb.num_sdb;
1532 while (!done) {
1533 /* Get an output handle */
1534 aux = perf_aux_output_begin(handle, cpuhw->event);
1535 if (handle->size == 0) {
1536 pr_err("The AUX buffer with %lu pages for the "
1537 "diagnostic-sampling mode is full\n",
1538 num_sdb);
1539 break;
1540 }
1541 if (!aux)
1542 return;
1543
1544 /* Update head and alert_mark to new position */
1545 aux->head = handle->head >> PAGE_SHIFT;
1546 range = (handle->size + 1) >> PAGE_SHIFT;
1547 if (range == 1)
1548 aux->alert_mark = aux->head;
1549 else
1550 aux->alert_mark = aux->head + range/2 - 1;
1551
1552 if (aux_reset_buffer(aux, range, &overflow)) {
1553 if (!overflow) {
1554 done = 1;
1555 break;
1556 }
1557 size = range << PAGE_SHIFT;
1558 perf_aux_output_end(&cpuhw->handle, size);
1559 pr_err("Sample data caused the AUX buffer with %lu "
1560 "pages to overflow\n", aux->sfb.num_sdb);
1561 } else {
1562 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1563 perf_aux_output_end(&cpuhw->handle, size);
1564 }
1565 }
1566 }
1567
1568 /*
1569 * Callback when freeing AUX buffers.
1570 */
aux_buffer_free(void * data)1571 static void aux_buffer_free(void *data)
1572 {
1573 struct aux_buffer *aux = data;
1574 unsigned long i, num_sdbt;
1575
1576 if (!aux)
1577 return;
1578
1579 /* Free SDBT. SDB is freed by the caller */
1580 num_sdbt = aux->sfb.num_sdbt;
1581 for (i = 0; i < num_sdbt; i++)
1582 free_page(aux->sdbt_index[i]);
1583
1584 kfree(aux->sdbt_index);
1585 kfree(aux->sdb_index);
1586 kfree(aux);
1587 }
1588
aux_sdb_init(unsigned long sdb)1589 static void aux_sdb_init(unsigned long sdb)
1590 {
1591 struct hws_trailer_entry *te;
1592
1593 te = trailer_entry_ptr(sdb);
1594
1595 /* Save clock base */
1596 te->clock_base = 1;
1597 te->progusage2 = tod_clock_base.tod;
1598 }
1599
1600 /*
1601 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1602 * @event: Event the buffer is setup for, event->cpu == -1 means current
1603 * @pages: Array of pointers to buffer pages passed from perf core
1604 * @nr_pages: Total pages
1605 * @snapshot: Flag for snapshot mode
1606 *
1607 * This is the callback when setup an event using AUX buffer. Perf tool can
1608 * trigger this by an additional mmap() call on the event. Unlike the buffer
1609 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1610 * the task among online cpus when it is a per-thread event.
1611 *
1612 * Return the private AUX buffer structure if success or NULL if fails.
1613 */
aux_buffer_setup(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1614 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1615 int nr_pages, bool snapshot)
1616 {
1617 struct sf_buffer *sfb;
1618 struct aux_buffer *aux;
1619 unsigned long *new, *tail;
1620 int i, n_sdbt;
1621
1622 if (!nr_pages || !pages)
1623 return NULL;
1624
1625 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1626 pr_err("AUX buffer size (%i pages) is larger than the "
1627 "maximum sampling buffer limit\n",
1628 nr_pages);
1629 return NULL;
1630 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1631 pr_err("AUX buffer size (%i pages) is less than the "
1632 "minimum sampling buffer limit\n",
1633 nr_pages);
1634 return NULL;
1635 }
1636
1637 /* Allocate aux_buffer struct for the event */
1638 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1639 if (!aux)
1640 goto no_aux;
1641 sfb = &aux->sfb;
1642
1643 /* Allocate sdbt_index for fast reference */
1644 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1645 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1646 if (!aux->sdbt_index)
1647 goto no_sdbt_index;
1648
1649 /* Allocate sdb_index for fast reference */
1650 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1651 if (!aux->sdb_index)
1652 goto no_sdb_index;
1653
1654 /* Allocate the first SDBT */
1655 sfb->num_sdbt = 0;
1656 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1657 if (!sfb->sdbt)
1658 goto no_sdbt;
1659 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1660 tail = sfb->tail = sfb->sdbt;
1661
1662 /*
1663 * Link the provided pages of AUX buffer to SDBT.
1664 * Allocate SDBT if needed.
1665 */
1666 for (i = 0; i < nr_pages; i++, tail++) {
1667 if (require_table_link(tail)) {
1668 new = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1669 if (!new)
1670 goto no_sdbt;
1671 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1672 /* Link current page to tail of chain */
1673 *tail = virt_to_phys(new) + 1;
1674 tail = new;
1675 }
1676 /* Tail is the entry in a SDBT */
1677 *tail = virt_to_phys(pages[i]);
1678 aux->sdb_index[i] = (unsigned long)pages[i];
1679 aux_sdb_init((unsigned long)pages[i]);
1680 }
1681 sfb->num_sdb = nr_pages;
1682
1683 /* Link the last entry in the SDBT to the first SDBT */
1684 *tail = virt_to_phys(sfb->sdbt) + 1;
1685 sfb->tail = tail;
1686
1687 /*
1688 * Initial all SDBs are zeroed. Mark it as empty.
1689 * So there is no need to clear the full indicator
1690 * when this event is first added.
1691 */
1692 aux->empty_mark = sfb->num_sdb - 1;
1693
1694 return aux;
1695
1696 no_sdbt:
1697 /* SDBs (AUX buffer pages) are freed by caller */
1698 for (i = 0; i < sfb->num_sdbt; i++)
1699 free_page(aux->sdbt_index[i]);
1700 kfree(aux->sdb_index);
1701 no_sdb_index:
1702 kfree(aux->sdbt_index);
1703 no_sdbt_index:
1704 kfree(aux);
1705 no_aux:
1706 return NULL;
1707 }
1708
cpumsf_pmu_read(struct perf_event * event)1709 static void cpumsf_pmu_read(struct perf_event *event)
1710 {
1711 /* Nothing to do ... updates are interrupt-driven */
1712 }
1713
1714 /* Check if the new sampling period/frequency is appropriate.
1715 *
1716 * Return non-zero on error and zero on passed checks.
1717 */
cpumsf_pmu_check_period(struct perf_event * event,u64 value)1718 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1719 {
1720 struct hws_qsi_info_block si;
1721 unsigned long rate;
1722 bool do_freq;
1723
1724 memset(&si, 0, sizeof(si));
1725 if (event->cpu == -1) {
1726 qsi(&si);
1727 } else {
1728 /* Event is pinned to a particular CPU, retrieve the per-CPU
1729 * sampling structure for accessing the CPU-specific QSI.
1730 */
1731 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1732
1733 si = cpuhw->qsi;
1734 }
1735
1736 do_freq = !!SAMPL_FREQ_MODE(&event->hw);
1737 rate = getrate(do_freq, value, &si);
1738 if (!rate)
1739 return -EINVAL;
1740
1741 event->attr.sample_period = rate;
1742 SAMPL_RATE(&event->hw) = rate;
1743 hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1744 return 0;
1745 }
1746
1747 /* Activate sampling control.
1748 * Next call of pmu_enable() starts sampling.
1749 */
cpumsf_pmu_start(struct perf_event * event,int flags)1750 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1751 {
1752 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1753
1754 if (!(event->hw.state & PERF_HES_STOPPED))
1755 return;
1756 perf_pmu_disable(event->pmu);
1757 event->hw.state = 0;
1758 cpuhw->lsctl.cs = 1;
1759 if (SAMPL_DIAG_MODE(&event->hw))
1760 cpuhw->lsctl.cd = 1;
1761 perf_pmu_enable(event->pmu);
1762 }
1763
1764 /* Deactivate sampling control.
1765 * Next call of pmu_enable() stops sampling.
1766 */
cpumsf_pmu_stop(struct perf_event * event,int flags)1767 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1768 {
1769 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1770
1771 if (event->hw.state & PERF_HES_STOPPED)
1772 return;
1773
1774 perf_pmu_disable(event->pmu);
1775 cpuhw->lsctl.cs = 0;
1776 cpuhw->lsctl.cd = 0;
1777 event->hw.state |= PERF_HES_STOPPED;
1778
1779 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1780 /* CPU hotplug off removes SDBs. No samples to extract. */
1781 if (cpuhw->flags & PMU_F_RESERVED)
1782 hw_perf_event_update(event, 1);
1783 event->hw.state |= PERF_HES_UPTODATE;
1784 }
1785 perf_pmu_enable(event->pmu);
1786 }
1787
cpumsf_pmu_add(struct perf_event * event,int flags)1788 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1789 {
1790 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1791 struct aux_buffer *aux;
1792 int err = 0;
1793
1794 if (cpuhw->flags & PMU_F_IN_USE)
1795 return -EAGAIN;
1796
1797 if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1798 return -EINVAL;
1799
1800 perf_pmu_disable(event->pmu);
1801
1802 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1803
1804 /* Set up sampling controls. Always program the sampling register
1805 * using the SDB-table start. Reset TEAR_REG event hardware register
1806 * that is used by hw_perf_event_update() to store the sampling buffer
1807 * position after samples have been flushed.
1808 */
1809 cpuhw->lsctl.s = 0;
1810 cpuhw->lsctl.h = 1;
1811 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1812 if (!SAMPL_DIAG_MODE(&event->hw)) {
1813 cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt);
1814 cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt;
1815 TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt;
1816 }
1817
1818 /* Ensure sampling functions are in the disabled state. If disabled,
1819 * switch on sampling enable control. */
1820 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1821 err = -EAGAIN;
1822 goto out;
1823 }
1824 if (SAMPL_DIAG_MODE(&event->hw)) {
1825 aux = perf_aux_output_begin(&cpuhw->handle, event);
1826 if (!aux) {
1827 err = -EINVAL;
1828 goto out;
1829 }
1830 err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1831 if (err)
1832 goto out;
1833 cpuhw->lsctl.ed = 1;
1834 }
1835 cpuhw->lsctl.es = 1;
1836
1837 /* Set in_use flag and store event */
1838 cpuhw->event = event;
1839 cpuhw->flags |= PMU_F_IN_USE;
1840
1841 if (flags & PERF_EF_START)
1842 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1843 out:
1844 perf_event_update_userpage(event);
1845 perf_pmu_enable(event->pmu);
1846 return err;
1847 }
1848
cpumsf_pmu_del(struct perf_event * event,int flags)1849 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1850 {
1851 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1852
1853 perf_pmu_disable(event->pmu);
1854 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1855
1856 cpuhw->lsctl.es = 0;
1857 cpuhw->lsctl.ed = 0;
1858 cpuhw->flags &= ~PMU_F_IN_USE;
1859 cpuhw->event = NULL;
1860
1861 if (SAMPL_DIAG_MODE(&event->hw))
1862 aux_output_end(&cpuhw->handle);
1863 perf_event_update_userpage(event);
1864 perf_pmu_enable(event->pmu);
1865 }
1866
1867 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1868 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1869
1870 /* Attribute list for CPU_SF.
1871 *
1872 * The availablitiy depends on the CPU_MF sampling facility authorization
1873 * for basic + diagnositic samples. This is determined at initialization
1874 * time by the sampling facility device driver.
1875 * If the authorization for basic samples is turned off, it should be
1876 * also turned off for diagnostic sampling.
1877 *
1878 * During initialization of the device driver, check the authorization
1879 * level for diagnostic sampling and installs the attribute
1880 * file for diagnostic sampling if necessary.
1881 *
1882 * For now install a placeholder to reference all possible attributes:
1883 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1884 * Add another entry for the final NULL pointer.
1885 */
1886 enum {
1887 SF_CYCLES_BASIC_ATTR_IDX = 0,
1888 SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1889 SF_CYCLES_ATTR_MAX
1890 };
1891
1892 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1893 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1894 };
1895
1896 PMU_FORMAT_ATTR(event, "config:0-63");
1897
1898 static struct attribute *cpumsf_pmu_format_attr[] = {
1899 &format_attr_event.attr,
1900 NULL,
1901 };
1902
1903 static struct attribute_group cpumsf_pmu_events_group = {
1904 .name = "events",
1905 .attrs = cpumsf_pmu_events_attr,
1906 };
1907
1908 static struct attribute_group cpumsf_pmu_format_group = {
1909 .name = "format",
1910 .attrs = cpumsf_pmu_format_attr,
1911 };
1912
1913 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
1914 &cpumsf_pmu_events_group,
1915 &cpumsf_pmu_format_group,
1916 NULL,
1917 };
1918
1919 static struct pmu cpumf_sampling = {
1920 .pmu_enable = cpumsf_pmu_enable,
1921 .pmu_disable = cpumsf_pmu_disable,
1922
1923 .event_init = cpumsf_pmu_event_init,
1924 .add = cpumsf_pmu_add,
1925 .del = cpumsf_pmu_del,
1926
1927 .start = cpumsf_pmu_start,
1928 .stop = cpumsf_pmu_stop,
1929 .read = cpumsf_pmu_read,
1930
1931 .attr_groups = cpumsf_pmu_attr_groups,
1932
1933 .setup_aux = aux_buffer_setup,
1934 .free_aux = aux_buffer_free,
1935
1936 .check_period = cpumsf_pmu_check_period,
1937 };
1938
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)1939 static void cpumf_measurement_alert(struct ext_code ext_code,
1940 unsigned int alert, unsigned long unused)
1941 {
1942 struct cpu_hw_sf *cpuhw;
1943
1944 if (!(alert & CPU_MF_INT_SF_MASK))
1945 return;
1946 inc_irq_stat(IRQEXT_CMS);
1947 cpuhw = this_cpu_ptr(&cpu_hw_sf);
1948
1949 /* Measurement alerts are shared and might happen when the PMU
1950 * is not reserved. Ignore these alerts in this case. */
1951 if (!(cpuhw->flags & PMU_F_RESERVED))
1952 return;
1953
1954 /* The processing below must take care of multiple alert events that
1955 * might be indicated concurrently. */
1956
1957 /* Program alert request */
1958 if (alert & CPU_MF_INT_SF_PRA) {
1959 if (cpuhw->flags & PMU_F_IN_USE)
1960 if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
1961 hw_collect_aux(cpuhw);
1962 else
1963 hw_perf_event_update(cpuhw->event, 0);
1964 else
1965 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
1966 }
1967
1968 /* Report measurement alerts only for non-PRA codes */
1969 if (alert != CPU_MF_INT_SF_PRA)
1970 debug_sprintf_event(sfdbg, 6, "%s alert %#x\n", __func__,
1971 alert);
1972
1973 /* Sampling authorization change request */
1974 if (alert & CPU_MF_INT_SF_SACA)
1975 qsi(&cpuhw->qsi);
1976
1977 /* Loss of sample data due to high-priority machine activities */
1978 if (alert & CPU_MF_INT_SF_LSDA) {
1979 pr_err("Sample data was lost\n");
1980 cpuhw->flags |= PMU_F_ERR_LSDA;
1981 sf_disable();
1982 }
1983
1984 /* Invalid sampling buffer entry */
1985 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
1986 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
1987 alert);
1988 cpuhw->flags |= PMU_F_ERR_IBE;
1989 sf_disable();
1990 }
1991 }
1992
cpusf_pmu_setup(unsigned int cpu,int flags)1993 static int cpusf_pmu_setup(unsigned int cpu, int flags)
1994 {
1995 /* Ignore the notification if no events are scheduled on the PMU.
1996 * This might be racy...
1997 */
1998 if (!refcount_read(&num_events))
1999 return 0;
2000
2001 local_irq_disable();
2002 setup_pmc_cpu(&flags);
2003 local_irq_enable();
2004 return 0;
2005 }
2006
s390_pmu_sf_online_cpu(unsigned int cpu)2007 static int s390_pmu_sf_online_cpu(unsigned int cpu)
2008 {
2009 return cpusf_pmu_setup(cpu, PMC_INIT);
2010 }
2011
s390_pmu_sf_offline_cpu(unsigned int cpu)2012 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2013 {
2014 return cpusf_pmu_setup(cpu, PMC_RELEASE);
2015 }
2016
param_get_sfb_size(char * buffer,const struct kernel_param * kp)2017 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2018 {
2019 if (!cpum_sf_avail())
2020 return -ENODEV;
2021 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2022 }
2023
param_set_sfb_size(const char * val,const struct kernel_param * kp)2024 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2025 {
2026 int rc;
2027 unsigned long min, max;
2028
2029 if (!cpum_sf_avail())
2030 return -ENODEV;
2031 if (!val || !strlen(val))
2032 return -EINVAL;
2033
2034 /* Valid parameter values: "min,max" or "max" */
2035 min = CPUM_SF_MIN_SDB;
2036 max = CPUM_SF_MAX_SDB;
2037 if (strchr(val, ','))
2038 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2039 else
2040 rc = kstrtoul(val, 10, &max);
2041
2042 if (min < 2 || min >= max || max > get_num_physpages())
2043 rc = -EINVAL;
2044 if (rc)
2045 return rc;
2046
2047 sfb_set_limits(min, max);
2048 pr_info("The sampling buffer limits have changed to: "
2049 "min %lu max %lu (diag %lu)\n",
2050 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2051 return 0;
2052 }
2053
2054 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2055 static const struct kernel_param_ops param_ops_sfb_size = {
2056 .set = param_set_sfb_size,
2057 .get = param_get_sfb_size,
2058 };
2059
2060 enum {
2061 RS_INIT_FAILURE_BSDES = 2, /* Bad basic sampling size */
2062 RS_INIT_FAILURE_ALRT = 3, /* IRQ registration failure */
2063 RS_INIT_FAILURE_PERF = 4 /* PMU registration failure */
2064 };
2065
pr_cpumsf_err(unsigned int reason)2066 static void __init pr_cpumsf_err(unsigned int reason)
2067 {
2068 pr_err("Sampling facility support for perf is not available: "
2069 "reason %#x\n", reason);
2070 }
2071
init_cpum_sampling_pmu(void)2072 static int __init init_cpum_sampling_pmu(void)
2073 {
2074 struct hws_qsi_info_block si;
2075 int err;
2076
2077 if (!cpum_sf_avail())
2078 return -ENODEV;
2079
2080 memset(&si, 0, sizeof(si));
2081 qsi(&si);
2082 if (!si.as && !si.ad)
2083 return -ENODEV;
2084
2085 if (si.bsdes != sizeof(struct hws_basic_entry)) {
2086 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2087 return -EINVAL;
2088 }
2089
2090 if (si.ad) {
2091 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2092 /* Sampling of diagnostic data authorized,
2093 * install event into attribute list of PMU device.
2094 */
2095 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2096 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2097 }
2098
2099 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2100 if (!sfdbg) {
2101 pr_err("Registering for s390dbf failed\n");
2102 return -ENOMEM;
2103 }
2104 debug_register_view(sfdbg, &debug_sprintf_view);
2105
2106 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2107 cpumf_measurement_alert);
2108 if (err) {
2109 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2110 debug_unregister(sfdbg);
2111 goto out;
2112 }
2113
2114 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2115 if (err) {
2116 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2117 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2118 cpumf_measurement_alert);
2119 debug_unregister(sfdbg);
2120 goto out;
2121 }
2122
2123 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2124 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2125 out:
2126 return err;
2127 }
2128
2129 arch_initcall(init_cpum_sampling_pmu);
2130 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2131