• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include <asm/unwind.h>
35 #include "bpf_jit.h"
36 
37 struct bpf_jit {
38 	u32 seen;		/* Flags to remember seen eBPF instructions */
39 	u16 seen_regs;		/* Mask to remember which registers are used */
40 	u32 *addrs;		/* Array with relative instruction addresses */
41 	u8 *prg_buf;		/* Start of program */
42 	int size;		/* Size of program and literal pool */
43 	int size_prg;		/* Size of program */
44 	int prg;		/* Current position in program */
45 	int lit32_start;	/* Start of 32-bit literal pool */
46 	int lit32;		/* Current position in 32-bit literal pool */
47 	int lit64_start;	/* Start of 64-bit literal pool */
48 	int lit64;		/* Current position in 64-bit literal pool */
49 	int base_ip;		/* Base address for literal pool */
50 	int exit_ip;		/* Address of exit */
51 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
52 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
53 	int tail_call_start;	/* Tail call start offset */
54 	int excnt;		/* Number of exception table entries */
55 	int prologue_plt_ret;	/* Return address for prologue hotpatch PLT */
56 	int prologue_plt;	/* Start of prologue hotpatch PLT */
57 	int kern_arena;		/* Pool offset of kernel arena address */
58 	u64 user_arena;		/* User arena address */
59 };
60 
61 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
62 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
63 #define SEEN_FUNC	BIT(2)		/* calls C functions */
64 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
65 
66 #define NVREGS		0xffc0		/* %r6-%r15 */
67 
68 /*
69  * s390 registers
70  */
71 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
72 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
73 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
74 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
75 #define REG_0		REG_W0			/* Register 0 */
76 #define REG_1		REG_W1			/* Register 1 */
77 #define REG_2		BPF_REG_1		/* Register 2 */
78 #define REG_3		BPF_REG_2		/* Register 3 */
79 #define REG_4		BPF_REG_3		/* Register 4 */
80 #define REG_7		BPF_REG_6		/* Register 7 */
81 #define REG_8		BPF_REG_7		/* Register 8 */
82 #define REG_14		BPF_REG_0		/* Register 14 */
83 
84 /*
85  * Mapping of BPF registers to s390 registers
86  */
87 static const int reg2hex[] = {
88 	/* Return code */
89 	[BPF_REG_0]	= 14,
90 	/* Function parameters */
91 	[BPF_REG_1]	= 2,
92 	[BPF_REG_2]	= 3,
93 	[BPF_REG_3]	= 4,
94 	[BPF_REG_4]	= 5,
95 	[BPF_REG_5]	= 6,
96 	/* Call saved registers */
97 	[BPF_REG_6]	= 7,
98 	[BPF_REG_7]	= 8,
99 	[BPF_REG_8]	= 9,
100 	[BPF_REG_9]	= 10,
101 	/* BPF stack pointer */
102 	[BPF_REG_FP]	= 13,
103 	/* Register for blinding */
104 	[BPF_REG_AX]	= 12,
105 	/* Work registers for s390x backend */
106 	[REG_W0]	= 0,
107 	[REG_W1]	= 1,
108 	[REG_L]		= 11,
109 	[REG_15]	= 15,
110 };
111 
reg(u32 dst_reg,u32 src_reg)112 static inline u32 reg(u32 dst_reg, u32 src_reg)
113 {
114 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
115 }
116 
reg_high(u32 reg)117 static inline u32 reg_high(u32 reg)
118 {
119 	return reg2hex[reg] << 4;
120 }
121 
reg_set_seen(struct bpf_jit * jit,u32 b1)122 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
123 {
124 	u32 r1 = reg2hex[b1];
125 
126 	if (r1 >= 6 && r1 <= 15)
127 		jit->seen_regs |= (1 << r1);
128 }
129 
130 #define REG_SET_SEEN(b1)					\
131 ({								\
132 	reg_set_seen(jit, b1);					\
133 })
134 
135 /*
136  * EMIT macros for code generation
137  */
138 
139 #define _EMIT2(op)						\
140 ({								\
141 	if (jit->prg_buf)					\
142 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
143 	jit->prg += 2;						\
144 })
145 
146 #define EMIT2(op, b1, b2)					\
147 ({								\
148 	_EMIT2((op) | reg(b1, b2));				\
149 	REG_SET_SEEN(b1);					\
150 	REG_SET_SEEN(b2);					\
151 })
152 
153 #define _EMIT4(op)						\
154 ({								\
155 	if (jit->prg_buf)					\
156 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
157 	jit->prg += 4;						\
158 })
159 
160 #define EMIT4(op, b1, b2)					\
161 ({								\
162 	_EMIT4((op) | reg(b1, b2));				\
163 	REG_SET_SEEN(b1);					\
164 	REG_SET_SEEN(b2);					\
165 })
166 
167 #define EMIT4_RRF(op, b1, b2, b3)				\
168 ({								\
169 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
170 	REG_SET_SEEN(b1);					\
171 	REG_SET_SEEN(b2);					\
172 	REG_SET_SEEN(b3);					\
173 })
174 
175 #define _EMIT4_DISP(op, disp)					\
176 ({								\
177 	unsigned int __disp = (disp) & 0xfff;			\
178 	_EMIT4((op) | __disp);					\
179 })
180 
181 #define EMIT4_DISP(op, b1, b2, disp)				\
182 ({								\
183 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
184 		    reg_high(b2) << 8, (disp));			\
185 	REG_SET_SEEN(b1);					\
186 	REG_SET_SEEN(b2);					\
187 })
188 
189 #define EMIT4_IMM(op, b1, imm)					\
190 ({								\
191 	unsigned int __imm = (imm) & 0xffff;			\
192 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
193 	REG_SET_SEEN(b1);					\
194 })
195 
196 #define EMIT4_PCREL(op, pcrel)					\
197 ({								\
198 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
199 	_EMIT4((op) | __pcrel);					\
200 })
201 
202 #define EMIT4_PCREL_RIC(op, mask, target)			\
203 ({								\
204 	int __rel = ((target) - jit->prg) / 2;			\
205 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
206 })
207 
208 #define _EMIT6(op1, op2)					\
209 ({								\
210 	if (jit->prg_buf) {					\
211 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
212 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
213 	}							\
214 	jit->prg += 6;						\
215 })
216 
217 #define _EMIT6_DISP(op1, op2, disp)				\
218 ({								\
219 	unsigned int __disp = (disp) & 0xfff;			\
220 	_EMIT6((op1) | __disp, op2);				\
221 })
222 
223 #define _EMIT6_DISP_LH(op1, op2, disp)				\
224 ({								\
225 	u32 _disp = (u32) (disp);				\
226 	unsigned int __disp_h = _disp & 0xff000;		\
227 	unsigned int __disp_l = _disp & 0x00fff;		\
228 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
229 })
230 
231 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
232 ({								\
233 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
234 		       reg_high(b3) << 8, op2, disp);		\
235 	REG_SET_SEEN(b1);					\
236 	REG_SET_SEEN(b2);					\
237 	REG_SET_SEEN(b3);					\
238 })
239 
240 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
241 ({								\
242 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
243 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
244 	       (op2) | (mask) << 12);				\
245 	REG_SET_SEEN(b1);					\
246 	REG_SET_SEEN(b2);					\
247 })
248 
249 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
250 ({								\
251 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
252 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
253 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
254 	REG_SET_SEEN(b1);					\
255 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
256 })
257 
258 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
259 ({								\
260 	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
261 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
262 	REG_SET_SEEN(b1);					\
263 	REG_SET_SEEN(b2);					\
264 })
265 
266 #define EMIT6_PCREL_RILB(op, b, target)				\
267 ({								\
268 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
269 	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
270 	REG_SET_SEEN(b);					\
271 })
272 
273 #define EMIT6_PCREL_RIL(op, target)				\
274 ({								\
275 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
276 	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
277 })
278 
279 #define EMIT6_PCREL_RILC(op, mask, target)			\
280 ({								\
281 	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
282 })
283 
284 #define _EMIT6_IMM(op, imm)					\
285 ({								\
286 	unsigned int __imm = (imm);				\
287 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
288 })
289 
290 #define EMIT6_IMM(op, b1, imm)					\
291 ({								\
292 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
293 	REG_SET_SEEN(b1);					\
294 })
295 
296 #define _EMIT_CONST_U32(val)					\
297 ({								\
298 	unsigned int ret;					\
299 	ret = jit->lit32;					\
300 	if (jit->prg_buf)					\
301 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
302 	jit->lit32 += 4;					\
303 	ret;							\
304 })
305 
306 #define EMIT_CONST_U32(val)					\
307 ({								\
308 	jit->seen |= SEEN_LITERAL;				\
309 	_EMIT_CONST_U32(val) - jit->base_ip;			\
310 })
311 
312 #define _EMIT_CONST_U64(val)					\
313 ({								\
314 	unsigned int ret;					\
315 	ret = jit->lit64;					\
316 	if (jit->prg_buf)					\
317 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
318 	jit->lit64 += 8;					\
319 	ret;							\
320 })
321 
322 #define EMIT_CONST_U64(val)					\
323 ({								\
324 	jit->seen |= SEEN_LITERAL;				\
325 	_EMIT_CONST_U64(val) - jit->base_ip;			\
326 })
327 
328 #define EMIT_ZERO(b1)						\
329 ({								\
330 	if (!fp->aux->verifier_zext) {				\
331 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
332 		EMIT4(0xb9160000, b1, b1);			\
333 		REG_SET_SEEN(b1);				\
334 	}							\
335 })
336 
337 /*
338  * Return whether this is the first pass. The first pass is special, since we
339  * don't know any sizes yet, and thus must be conservative.
340  */
is_first_pass(struct bpf_jit * jit)341 static bool is_first_pass(struct bpf_jit *jit)
342 {
343 	return jit->size == 0;
344 }
345 
346 /*
347  * Return whether this is the code generation pass. The code generation pass is
348  * special, since we should change as little as possible.
349  */
is_codegen_pass(struct bpf_jit * jit)350 static bool is_codegen_pass(struct bpf_jit *jit)
351 {
352 	return jit->prg_buf;
353 }
354 
355 /*
356  * Return whether "rel" can be encoded as a short PC-relative offset
357  */
is_valid_rel(int rel)358 static bool is_valid_rel(int rel)
359 {
360 	return rel >= -65536 && rel <= 65534;
361 }
362 
363 /*
364  * Return whether "off" can be reached using a short PC-relative offset
365  */
can_use_rel(struct bpf_jit * jit,int off)366 static bool can_use_rel(struct bpf_jit *jit, int off)
367 {
368 	return is_valid_rel(off - jit->prg);
369 }
370 
371 /*
372  * Return whether given displacement can be encoded using
373  * Long-Displacement Facility
374  */
is_valid_ldisp(int disp)375 static bool is_valid_ldisp(int disp)
376 {
377 	return disp >= -524288 && disp <= 524287;
378 }
379 
380 /*
381  * Return whether the next 32-bit literal pool entry can be referenced using
382  * Long-Displacement Facility
383  */
can_use_ldisp_for_lit32(struct bpf_jit * jit)384 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
385 {
386 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
387 }
388 
389 /*
390  * Return whether the next 64-bit literal pool entry can be referenced using
391  * Long-Displacement Facility
392  */
can_use_ldisp_for_lit64(struct bpf_jit * jit)393 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
394 {
395 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
396 }
397 
398 /*
399  * Fill whole space with illegal instructions
400  */
jit_fill_hole(void * area,unsigned int size)401 static void jit_fill_hole(void *area, unsigned int size)
402 {
403 	memset(area, 0, size);
404 }
405 
406 /*
407  * Save registers from "rs" (register start) to "re" (register end) on stack
408  */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)409 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
410 {
411 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
412 
413 	if (rs == re)
414 		/* stg %rs,off(%r15) */
415 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
416 	else
417 		/* stmg %rs,%re,off(%r15) */
418 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
419 }
420 
421 /*
422  * Restore registers from "rs" (register start) to "re" (register end) on stack
423  */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)424 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
425 {
426 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
427 
428 	if (jit->seen & SEEN_STACK)
429 		off += STK_OFF + stack_depth;
430 
431 	if (rs == re)
432 		/* lg %rs,off(%r15) */
433 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
434 	else
435 		/* lmg %rs,%re,off(%r15) */
436 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
437 }
438 
439 /*
440  * Return first seen register (from start)
441  */
get_start(u16 seen_regs,int start)442 static int get_start(u16 seen_regs, int start)
443 {
444 	int i;
445 
446 	for (i = start; i <= 15; i++) {
447 		if (seen_regs & (1 << i))
448 			return i;
449 	}
450 	return 0;
451 }
452 
453 /*
454  * Return last seen register (from start) (gap >= 2)
455  */
get_end(u16 seen_regs,int start)456 static int get_end(u16 seen_regs, int start)
457 {
458 	int i;
459 
460 	for (i = start; i < 15; i++) {
461 		if (!(seen_regs & (3 << i)))
462 			return i - 1;
463 	}
464 	return (seen_regs & (1 << 15)) ? 15 : 14;
465 }
466 
467 #define REGS_SAVE	1
468 #define REGS_RESTORE	0
469 /*
470  * Save and restore clobbered registers (6-15) on stack.
471  * We save/restore registers in chunks with gap >= 2 registers.
472  */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth,u16 extra_regs)473 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth,
474 			      u16 extra_regs)
475 {
476 	u16 seen_regs = jit->seen_regs | extra_regs;
477 	const int last = 15, save_restore_size = 6;
478 	int re = 6, rs;
479 
480 	if (is_first_pass(jit)) {
481 		/*
482 		 * We don't know yet which registers are used. Reserve space
483 		 * conservatively.
484 		 */
485 		jit->prg += (last - re + 1) * save_restore_size;
486 		return;
487 	}
488 
489 	do {
490 		rs = get_start(seen_regs, re);
491 		if (!rs)
492 			break;
493 		re = get_end(seen_regs, rs + 1);
494 		if (op == REGS_SAVE)
495 			save_regs(jit, rs, re);
496 		else
497 			restore_regs(jit, rs, re, stack_depth);
498 		re++;
499 	} while (re <= last);
500 }
501 
bpf_skip(struct bpf_jit * jit,int size)502 static void bpf_skip(struct bpf_jit *jit, int size)
503 {
504 	if (size >= 6 && !is_valid_rel(size)) {
505 		/* brcl 0xf,size */
506 		EMIT6_PCREL_RIL(0xc0f4000000, size);
507 		size -= 6;
508 	} else if (size >= 4 && is_valid_rel(size)) {
509 		/* brc 0xf,size */
510 		EMIT4_PCREL(0xa7f40000, size);
511 		size -= 4;
512 	}
513 	while (size >= 2) {
514 		/* bcr 0,%0 */
515 		_EMIT2(0x0700);
516 		size -= 2;
517 	}
518 }
519 
520 /*
521  * PLT for hotpatchable calls. The calling convention is the same as for the
522  * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
523  */
524 struct bpf_plt {
525 	char code[16];
526 	void *ret;
527 	void *target;
528 } __packed;
529 extern const struct bpf_plt bpf_plt;
530 asm(
531 	".pushsection .rodata\n"
532 	"	.balign 8\n"
533 	"bpf_plt:\n"
534 	"	lgrl %r0,bpf_plt_ret\n"
535 	"	lgrl %r1,bpf_plt_target\n"
536 	"	br %r1\n"
537 	"	.balign 8\n"
538 	"bpf_plt_ret: .quad 0\n"
539 	"bpf_plt_target: .quad 0\n"
540 	"	.popsection\n"
541 );
542 
bpf_jit_plt(struct bpf_plt * plt,void * ret,void * target)543 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
544 {
545 	memcpy(plt, &bpf_plt, sizeof(*plt));
546 	plt->ret = ret;
547 	/*
548 	 * (target == NULL) implies that the branch to this PLT entry was
549 	 * patched and became a no-op. However, some CPU could have jumped
550 	 * to this PLT entry before patching and may be still executing it.
551 	 *
552 	 * Since the intention in this case is to make the PLT entry a no-op,
553 	 * make the target point to the return label instead of NULL.
554 	 */
555 	plt->target = target ?: ret;
556 }
557 
558 /*
559  * Emit function prologue
560  *
561  * Save registers and create stack frame if necessary.
562  * See stack frame layout description in "bpf_jit.h"!
563  */
bpf_jit_prologue(struct bpf_jit * jit,struct bpf_prog * fp,u32 stack_depth)564 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
565 			     u32 stack_depth)
566 {
567 	/* No-op for hotpatching */
568 	/* brcl 0,prologue_plt */
569 	EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
570 	jit->prologue_plt_ret = jit->prg;
571 
572 	if (!bpf_is_subprog(fp)) {
573 		/* Initialize the tail call counter in the main program. */
574 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
575 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
576 	} else {
577 		/*
578 		 * Skip the tail call counter initialization in subprograms.
579 		 * Insert nops in order to have tail_call_start at a
580 		 * predictable offset.
581 		 */
582 		bpf_skip(jit, 6);
583 	}
584 	/* Tail calls have to skip above initialization */
585 	jit->tail_call_start = jit->prg;
586 	if (fp->aux->exception_cb) {
587 		/*
588 		 * Switch stack, the new address is in the 2nd parameter.
589 		 *
590 		 * Arrange the restoration of %r6-%r15 in the epilogue.
591 		 * Do not restore them now, the prog does not need them.
592 		 */
593 		/* lgr %r15,%r3 */
594 		EMIT4(0xb9040000, REG_15, REG_3);
595 		jit->seen_regs |= NVREGS;
596 	} else {
597 		/* Save registers */
598 		save_restore_regs(jit, REGS_SAVE, stack_depth,
599 				  fp->aux->exception_boundary ? NVREGS : 0);
600 	}
601 	/* Setup literal pool */
602 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
603 		if (!is_first_pass(jit) &&
604 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
605 			/* basr %l,0 */
606 			EMIT2(0x0d00, REG_L, REG_0);
607 			jit->base_ip = jit->prg;
608 		} else {
609 			/* larl %l,lit32_start */
610 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
611 			jit->base_ip = jit->lit32_start;
612 		}
613 	}
614 	/* Setup stack and backchain */
615 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
616 		/* lgr %w1,%r15 (backchain) */
617 		EMIT4(0xb9040000, REG_W1, REG_15);
618 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
619 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
620 		/* aghi %r15,-STK_OFF */
621 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
622 		/* stg %w1,152(%r15) (backchain) */
623 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
624 			      REG_15, 152);
625 	}
626 }
627 
628 /*
629  * Emit an expoline for a jump that follows
630  */
emit_expoline(struct bpf_jit * jit)631 static void emit_expoline(struct bpf_jit *jit)
632 {
633 	/* exrl %r0,.+10 */
634 	EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
635 	/* j . */
636 	EMIT4_PCREL(0xa7f40000, 0);
637 }
638 
639 /*
640  * Emit __s390_indirect_jump_r1 thunk if necessary
641  */
emit_r1_thunk(struct bpf_jit * jit)642 static void emit_r1_thunk(struct bpf_jit *jit)
643 {
644 	if (nospec_uses_trampoline()) {
645 		jit->r1_thunk_ip = jit->prg;
646 		emit_expoline(jit);
647 		/* br %r1 */
648 		_EMIT2(0x07f1);
649 	}
650 }
651 
652 /*
653  * Call r1 either directly or via __s390_indirect_jump_r1 thunk
654  */
call_r1(struct bpf_jit * jit)655 static void call_r1(struct bpf_jit *jit)
656 {
657 	if (nospec_uses_trampoline())
658 		/* brasl %r14,__s390_indirect_jump_r1 */
659 		EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
660 	else
661 		/* basr %r14,%r1 */
662 		EMIT2(0x0d00, REG_14, REG_1);
663 }
664 
665 /*
666  * Function epilogue
667  */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)668 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
669 {
670 	jit->exit_ip = jit->prg;
671 	/* Load exit code: lgr %r2,%b0 */
672 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
673 	/* Restore registers */
674 	save_restore_regs(jit, REGS_RESTORE, stack_depth, 0);
675 	if (nospec_uses_trampoline()) {
676 		jit->r14_thunk_ip = jit->prg;
677 		/* Generate __s390_indirect_jump_r14 thunk */
678 		emit_expoline(jit);
679 	}
680 	/* br %r14 */
681 	_EMIT2(0x07fe);
682 
683 	if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
684 		emit_r1_thunk(jit);
685 
686 	jit->prg = ALIGN(jit->prg, 8);
687 	jit->prologue_plt = jit->prg;
688 	if (jit->prg_buf)
689 		bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
690 			    jit->prg_buf + jit->prologue_plt_ret, NULL);
691 	jit->prg += sizeof(struct bpf_plt);
692 }
693 
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)694 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
695 {
696 	regs->psw.addr = extable_fixup(x);
697 	if (x->data != -1)
698 		regs->gprs[x->data] = 0;
699 	return true;
700 }
701 
702 /*
703  * A single BPF probe instruction
704  */
705 struct bpf_jit_probe {
706 	int prg;	/* JITed instruction offset */
707 	int nop_prg;	/* JITed nop offset */
708 	int reg;	/* Register to clear on exception */
709 	int arena_reg;	/* Register to use for arena addressing */
710 };
711 
bpf_jit_probe_init(struct bpf_jit_probe * probe)712 static void bpf_jit_probe_init(struct bpf_jit_probe *probe)
713 {
714 	probe->prg = -1;
715 	probe->nop_prg = -1;
716 	probe->reg = -1;
717 	probe->arena_reg = REG_0;
718 }
719 
720 /*
721  * Handlers of certain exceptions leave psw.addr pointing to the instruction
722  * directly after the failing one. Therefore, create two exception table
723  * entries and also add a nop in case two probing instructions come directly
724  * after each other.
725  */
bpf_jit_probe_emit_nop(struct bpf_jit * jit,struct bpf_jit_probe * probe)726 static void bpf_jit_probe_emit_nop(struct bpf_jit *jit,
727 				   struct bpf_jit_probe *probe)
728 {
729 	if (probe->prg == -1 || probe->nop_prg != -1)
730 		/* The probe is not armed or nop is already emitted. */
731 		return;
732 
733 	probe->nop_prg = jit->prg;
734 	/* bcr 0,%0 */
735 	_EMIT2(0x0700);
736 }
737 
bpf_jit_probe_load_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)738 static void bpf_jit_probe_load_pre(struct bpf_jit *jit, struct bpf_insn *insn,
739 				   struct bpf_jit_probe *probe)
740 {
741 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
742 	    BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
743 	    BPF_MODE(insn->code) != BPF_PROBE_MEM32)
744 		return;
745 
746 	if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
747 		/* lgrl %r1,kern_arena */
748 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
749 		probe->arena_reg = REG_W1;
750 	}
751 	probe->prg = jit->prg;
752 	probe->reg = reg2hex[insn->dst_reg];
753 }
754 
bpf_jit_probe_store_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)755 static void bpf_jit_probe_store_pre(struct bpf_jit *jit, struct bpf_insn *insn,
756 				    struct bpf_jit_probe *probe)
757 {
758 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM32)
759 		return;
760 
761 	/* lgrl %r1,kern_arena */
762 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
763 	probe->arena_reg = REG_W1;
764 	probe->prg = jit->prg;
765 }
766 
bpf_jit_probe_atomic_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)767 static void bpf_jit_probe_atomic_pre(struct bpf_jit *jit,
768 				     struct bpf_insn *insn,
769 				     struct bpf_jit_probe *probe)
770 {
771 	if (BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
772 		return;
773 
774 	/* lgrl %r1,kern_arena */
775 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
776 	/* agr %r1,%dst */
777 	EMIT4(0xb9080000, REG_W1, insn->dst_reg);
778 	probe->arena_reg = REG_W1;
779 	probe->prg = jit->prg;
780 }
781 
bpf_jit_probe_post(struct bpf_jit * jit,struct bpf_prog * fp,struct bpf_jit_probe * probe)782 static int bpf_jit_probe_post(struct bpf_jit *jit, struct bpf_prog *fp,
783 			      struct bpf_jit_probe *probe)
784 {
785 	struct exception_table_entry *ex;
786 	int i, prg;
787 	s64 delta;
788 	u8 *insn;
789 
790 	if (probe->prg == -1)
791 		/* The probe is not armed. */
792 		return 0;
793 	bpf_jit_probe_emit_nop(jit, probe);
794 	if (!fp->aux->extable)
795 		/* Do nothing during early JIT passes. */
796 		return 0;
797 	insn = jit->prg_buf + probe->prg;
798 	if (WARN_ON_ONCE(probe->prg + insn_length(*insn) != probe->nop_prg))
799 		/* JIT bug - gap between probe and nop instructions. */
800 		return -1;
801 	for (i = 0; i < 2; i++) {
802 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
803 			/* Verifier bug - not enough entries. */
804 			return -1;
805 		ex = &fp->aux->extable[jit->excnt];
806 		/* Add extable entries for probe and nop instructions. */
807 		prg = i == 0 ? probe->prg : probe->nop_prg;
808 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
809 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
810 			/* JIT bug - code and extable must be close. */
811 			return -1;
812 		ex->insn = delta;
813 		/*
814 		 * Land on the current instruction. Note that the extable
815 		 * infrastructure ignores the fixup field; it is handled by
816 		 * ex_handler_bpf().
817 		 */
818 		delta = jit->prg_buf + jit->prg - (u8 *)&ex->fixup;
819 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
820 			/* JIT bug - landing pad and extable must be close. */
821 			return -1;
822 		ex->fixup = delta;
823 		ex->type = EX_TYPE_BPF;
824 		ex->data = probe->reg;
825 		jit->excnt++;
826 	}
827 	return 0;
828 }
829 
830 /*
831  * Sign-extend the register if necessary
832  */
sign_extend(struct bpf_jit * jit,int r,u8 size,u8 flags)833 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
834 {
835 	if (!(flags & BTF_FMODEL_SIGNED_ARG))
836 		return 0;
837 
838 	switch (size) {
839 	case 1:
840 		/* lgbr %r,%r */
841 		EMIT4(0xb9060000, r, r);
842 		return 0;
843 	case 2:
844 		/* lghr %r,%r */
845 		EMIT4(0xb9070000, r, r);
846 		return 0;
847 	case 4:
848 		/* lgfr %r,%r */
849 		EMIT4(0xb9140000, r, r);
850 		return 0;
851 	case 8:
852 		return 0;
853 	default:
854 		return -1;
855 	}
856 }
857 
858 /*
859  * Compile one eBPF instruction into s390x code
860  *
861  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
862  * stack space for the large switch statement.
863  */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass,u32 stack_depth)864 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
865 				 int i, bool extra_pass, u32 stack_depth)
866 {
867 	struct bpf_insn *insn = &fp->insnsi[i];
868 	s32 branch_oc_off = insn->off;
869 	u32 dst_reg = insn->dst_reg;
870 	u32 src_reg = insn->src_reg;
871 	struct bpf_jit_probe probe;
872 	int last, insn_count = 1;
873 	u32 *addrs = jit->addrs;
874 	s32 imm = insn->imm;
875 	s16 off = insn->off;
876 	unsigned int mask;
877 	int err;
878 
879 	bpf_jit_probe_init(&probe);
880 
881 	switch (insn->code) {
882 	/*
883 	 * BPF_MOV
884 	 */
885 	case BPF_ALU | BPF_MOV | BPF_X:
886 		switch (insn->off) {
887 		case 0: /* DST = (u32) SRC */
888 			/* llgfr %dst,%src */
889 			EMIT4(0xb9160000, dst_reg, src_reg);
890 			if (insn_is_zext(&insn[1]))
891 				insn_count = 2;
892 			break;
893 		case 8: /* DST = (u32)(s8) SRC */
894 			/* lbr %dst,%src */
895 			EMIT4(0xb9260000, dst_reg, src_reg);
896 			/* llgfr %dst,%dst */
897 			EMIT4(0xb9160000, dst_reg, dst_reg);
898 			break;
899 		case 16: /* DST = (u32)(s16) SRC */
900 			/* lhr %dst,%src */
901 			EMIT4(0xb9270000, dst_reg, src_reg);
902 			/* llgfr %dst,%dst */
903 			EMIT4(0xb9160000, dst_reg, dst_reg);
904 			break;
905 		}
906 		break;
907 	case BPF_ALU64 | BPF_MOV | BPF_X:
908 		if (insn_is_cast_user(insn)) {
909 			int patch_brc;
910 
911 			/* ltgr %dst,%src */
912 			EMIT4(0xb9020000, dst_reg, src_reg);
913 			/* brc 8,0f */
914 			patch_brc = jit->prg;
915 			EMIT4_PCREL_RIC(0xa7040000, 8, 0);
916 			/* iihf %dst,user_arena>>32 */
917 			EMIT6_IMM(0xc0080000, dst_reg, jit->user_arena >> 32);
918 			/* 0: */
919 			if (jit->prg_buf)
920 				*(u16 *)(jit->prg_buf + patch_brc + 2) =
921 					(jit->prg - patch_brc) >> 1;
922 			break;
923 		}
924 		switch (insn->off) {
925 		case 0: /* DST = SRC */
926 			/* lgr %dst,%src */
927 			EMIT4(0xb9040000, dst_reg, src_reg);
928 			break;
929 		case 8: /* DST = (s8) SRC */
930 			/* lgbr %dst,%src */
931 			EMIT4(0xb9060000, dst_reg, src_reg);
932 			break;
933 		case 16: /* DST = (s16) SRC */
934 			/* lghr %dst,%src */
935 			EMIT4(0xb9070000, dst_reg, src_reg);
936 			break;
937 		case 32: /* DST = (s32) SRC */
938 			/* lgfr %dst,%src */
939 			EMIT4(0xb9140000, dst_reg, src_reg);
940 			break;
941 		}
942 		break;
943 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
944 		/* llilf %dst,imm */
945 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
946 		if (insn_is_zext(&insn[1]))
947 			insn_count = 2;
948 		break;
949 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
950 		/* lgfi %dst,imm */
951 		EMIT6_IMM(0xc0010000, dst_reg, imm);
952 		break;
953 	/*
954 	 * BPF_LD 64
955 	 */
956 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
957 	{
958 		/* 16 byte instruction that uses two 'struct bpf_insn' */
959 		u64 imm64;
960 
961 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
962 		/* lgrl %dst,imm */
963 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
964 		insn_count = 2;
965 		break;
966 	}
967 	/*
968 	 * BPF_ADD
969 	 */
970 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
971 		/* ar %dst,%src */
972 		EMIT2(0x1a00, dst_reg, src_reg);
973 		EMIT_ZERO(dst_reg);
974 		break;
975 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
976 		/* agr %dst,%src */
977 		EMIT4(0xb9080000, dst_reg, src_reg);
978 		break;
979 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
980 		if (imm != 0) {
981 			/* alfi %dst,imm */
982 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
983 		}
984 		EMIT_ZERO(dst_reg);
985 		break;
986 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
987 		if (!imm)
988 			break;
989 		/* agfi %dst,imm */
990 		EMIT6_IMM(0xc2080000, dst_reg, imm);
991 		break;
992 	/*
993 	 * BPF_SUB
994 	 */
995 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
996 		/* sr %dst,%src */
997 		EMIT2(0x1b00, dst_reg, src_reg);
998 		EMIT_ZERO(dst_reg);
999 		break;
1000 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
1001 		/* sgr %dst,%src */
1002 		EMIT4(0xb9090000, dst_reg, src_reg);
1003 		break;
1004 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
1005 		if (imm != 0) {
1006 			/* alfi %dst,-imm */
1007 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
1008 		}
1009 		EMIT_ZERO(dst_reg);
1010 		break;
1011 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
1012 		if (!imm)
1013 			break;
1014 		if (imm == -0x80000000) {
1015 			/* algfi %dst,0x80000000 */
1016 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
1017 		} else {
1018 			/* agfi %dst,-imm */
1019 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
1020 		}
1021 		break;
1022 	/*
1023 	 * BPF_MUL
1024 	 */
1025 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
1026 		/* msr %dst,%src */
1027 		EMIT4(0xb2520000, dst_reg, src_reg);
1028 		EMIT_ZERO(dst_reg);
1029 		break;
1030 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
1031 		/* msgr %dst,%src */
1032 		EMIT4(0xb90c0000, dst_reg, src_reg);
1033 		break;
1034 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
1035 		if (imm != 1) {
1036 			/* msfi %r5,imm */
1037 			EMIT6_IMM(0xc2010000, dst_reg, imm);
1038 		}
1039 		EMIT_ZERO(dst_reg);
1040 		break;
1041 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
1042 		if (imm == 1)
1043 			break;
1044 		/* msgfi %dst,imm */
1045 		EMIT6_IMM(0xc2000000, dst_reg, imm);
1046 		break;
1047 	/*
1048 	 * BPF_DIV / BPF_MOD
1049 	 */
1050 	case BPF_ALU | BPF_DIV | BPF_X:
1051 	case BPF_ALU | BPF_MOD | BPF_X:
1052 	{
1053 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1054 
1055 		switch (off) {
1056 		case 0: /* dst = (u32) dst {/,%} (u32) src */
1057 			/* xr %w0,%w0 */
1058 			EMIT2(0x1700, REG_W0, REG_W0);
1059 			/* lr %w1,%dst */
1060 			EMIT2(0x1800, REG_W1, dst_reg);
1061 			/* dlr %w0,%src */
1062 			EMIT4(0xb9970000, REG_W0, src_reg);
1063 			break;
1064 		case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
1065 			/* lgfr %r1,%dst */
1066 			EMIT4(0xb9140000, REG_W1, dst_reg);
1067 			/* dsgfr %r0,%src */
1068 			EMIT4(0xb91d0000, REG_W0, src_reg);
1069 			break;
1070 		}
1071 		/* llgfr %dst,%rc */
1072 		EMIT4(0xb9160000, dst_reg, rc_reg);
1073 		if (insn_is_zext(&insn[1]))
1074 			insn_count = 2;
1075 		break;
1076 	}
1077 	case BPF_ALU64 | BPF_DIV | BPF_X:
1078 	case BPF_ALU64 | BPF_MOD | BPF_X:
1079 	{
1080 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1081 
1082 		switch (off) {
1083 		case 0: /* dst = dst {/,%} src */
1084 			/* lghi %w0,0 */
1085 			EMIT4_IMM(0xa7090000, REG_W0, 0);
1086 			/* lgr %w1,%dst */
1087 			EMIT4(0xb9040000, REG_W1, dst_reg);
1088 			/* dlgr %w0,%src */
1089 			EMIT4(0xb9870000, REG_W0, src_reg);
1090 			break;
1091 		case 1: /* dst = (s64) dst {/,%} (s64) src */
1092 			/* lgr %w1,%dst */
1093 			EMIT4(0xb9040000, REG_W1, dst_reg);
1094 			/* dsgr %w0,%src */
1095 			EMIT4(0xb90d0000, REG_W0, src_reg);
1096 			break;
1097 		}
1098 		/* lgr %dst,%rc */
1099 		EMIT4(0xb9040000, dst_reg, rc_reg);
1100 		break;
1101 	}
1102 	case BPF_ALU | BPF_DIV | BPF_K:
1103 	case BPF_ALU | BPF_MOD | BPF_K:
1104 	{
1105 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1106 
1107 		if (imm == 1) {
1108 			if (BPF_OP(insn->code) == BPF_MOD)
1109 				/* lghi %dst,0 */
1110 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1111 			else
1112 				EMIT_ZERO(dst_reg);
1113 			break;
1114 		}
1115 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1116 			switch (off) {
1117 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1118 				/* xr %w0,%w0 */
1119 				EMIT2(0x1700, REG_W0, REG_W0);
1120 				/* lr %w1,%dst */
1121 				EMIT2(0x1800, REG_W1, dst_reg);
1122 				/* dl %w0,<d(imm)>(%l) */
1123 				EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1124 					      REG_L, EMIT_CONST_U32(imm));
1125 				break;
1126 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1127 				/* lgfr %r1,%dst */
1128 				EMIT4(0xb9140000, REG_W1, dst_reg);
1129 				/* dsgf %r0,<d(imm)>(%l) */
1130 				EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1131 					      REG_L, EMIT_CONST_U32(imm));
1132 				break;
1133 			}
1134 		} else {
1135 			switch (off) {
1136 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1137 				/* xr %w0,%w0 */
1138 				EMIT2(0x1700, REG_W0, REG_W0);
1139 				/* lr %w1,%dst */
1140 				EMIT2(0x1800, REG_W1, dst_reg);
1141 				/* lrl %dst,imm */
1142 				EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1143 						 _EMIT_CONST_U32(imm));
1144 				jit->seen |= SEEN_LITERAL;
1145 				/* dlr %w0,%dst */
1146 				EMIT4(0xb9970000, REG_W0, dst_reg);
1147 				break;
1148 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1149 				/* lgfr %w1,%dst */
1150 				EMIT4(0xb9140000, REG_W1, dst_reg);
1151 				/* lgfrl %dst,imm */
1152 				EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1153 						 _EMIT_CONST_U32(imm));
1154 				jit->seen |= SEEN_LITERAL;
1155 				/* dsgr %w0,%dst */
1156 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1157 				break;
1158 			}
1159 		}
1160 		/* llgfr %dst,%rc */
1161 		EMIT4(0xb9160000, dst_reg, rc_reg);
1162 		if (insn_is_zext(&insn[1]))
1163 			insn_count = 2;
1164 		break;
1165 	}
1166 	case BPF_ALU64 | BPF_DIV | BPF_K:
1167 	case BPF_ALU64 | BPF_MOD | BPF_K:
1168 	{
1169 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1170 
1171 		if (imm == 1) {
1172 			if (BPF_OP(insn->code) == BPF_MOD)
1173 				/* lhgi %dst,0 */
1174 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1175 			break;
1176 		}
1177 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1178 			switch (off) {
1179 			case 0: /* dst = dst {/,%} imm */
1180 				/* lghi %w0,0 */
1181 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1182 				/* lgr %w1,%dst */
1183 				EMIT4(0xb9040000, REG_W1, dst_reg);
1184 				/* dlg %w0,<d(imm)>(%l) */
1185 				EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1186 					      REG_L, EMIT_CONST_U64(imm));
1187 				break;
1188 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1189 				/* lgr %w1,%dst */
1190 				EMIT4(0xb9040000, REG_W1, dst_reg);
1191 				/* dsg %w0,<d(imm)>(%l) */
1192 				EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1193 					      REG_L, EMIT_CONST_U64(imm));
1194 				break;
1195 			}
1196 		} else {
1197 			switch (off) {
1198 			case 0: /* dst = dst {/,%} imm */
1199 				/* lghi %w0,0 */
1200 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1201 				/* lgr %w1,%dst */
1202 				EMIT4(0xb9040000, REG_W1, dst_reg);
1203 				/* lgrl %dst,imm */
1204 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1205 						 _EMIT_CONST_U64(imm));
1206 				jit->seen |= SEEN_LITERAL;
1207 				/* dlgr %w0,%dst */
1208 				EMIT4(0xb9870000, REG_W0, dst_reg);
1209 				break;
1210 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1211 				/* lgr %w1,%dst */
1212 				EMIT4(0xb9040000, REG_W1, dst_reg);
1213 				/* lgrl %dst,imm */
1214 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1215 						 _EMIT_CONST_U64(imm));
1216 				jit->seen |= SEEN_LITERAL;
1217 				/* dsgr %w0,%dst */
1218 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1219 				break;
1220 			}
1221 		}
1222 		/* lgr %dst,%rc */
1223 		EMIT4(0xb9040000, dst_reg, rc_reg);
1224 		break;
1225 	}
1226 	/*
1227 	 * BPF_AND
1228 	 */
1229 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1230 		/* nr %dst,%src */
1231 		EMIT2(0x1400, dst_reg, src_reg);
1232 		EMIT_ZERO(dst_reg);
1233 		break;
1234 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1235 		/* ngr %dst,%src */
1236 		EMIT4(0xb9800000, dst_reg, src_reg);
1237 		break;
1238 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1239 		/* nilf %dst,imm */
1240 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
1241 		EMIT_ZERO(dst_reg);
1242 		break;
1243 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1244 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1245 			/* ng %dst,<d(imm)>(%l) */
1246 			EMIT6_DISP_LH(0xe3000000, 0x0080,
1247 				      dst_reg, REG_0, REG_L,
1248 				      EMIT_CONST_U64(imm));
1249 		} else {
1250 			/* lgrl %w0,imm */
1251 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1252 					 _EMIT_CONST_U64(imm));
1253 			jit->seen |= SEEN_LITERAL;
1254 			/* ngr %dst,%w0 */
1255 			EMIT4(0xb9800000, dst_reg, REG_W0);
1256 		}
1257 		break;
1258 	/*
1259 	 * BPF_OR
1260 	 */
1261 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1262 		/* or %dst,%src */
1263 		EMIT2(0x1600, dst_reg, src_reg);
1264 		EMIT_ZERO(dst_reg);
1265 		break;
1266 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1267 		/* ogr %dst,%src */
1268 		EMIT4(0xb9810000, dst_reg, src_reg);
1269 		break;
1270 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1271 		/* oilf %dst,imm */
1272 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
1273 		EMIT_ZERO(dst_reg);
1274 		break;
1275 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1276 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1277 			/* og %dst,<d(imm)>(%l) */
1278 			EMIT6_DISP_LH(0xe3000000, 0x0081,
1279 				      dst_reg, REG_0, REG_L,
1280 				      EMIT_CONST_U64(imm));
1281 		} else {
1282 			/* lgrl %w0,imm */
1283 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1284 					 _EMIT_CONST_U64(imm));
1285 			jit->seen |= SEEN_LITERAL;
1286 			/* ogr %dst,%w0 */
1287 			EMIT4(0xb9810000, dst_reg, REG_W0);
1288 		}
1289 		break;
1290 	/*
1291 	 * BPF_XOR
1292 	 */
1293 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1294 		/* xr %dst,%src */
1295 		EMIT2(0x1700, dst_reg, src_reg);
1296 		EMIT_ZERO(dst_reg);
1297 		break;
1298 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1299 		/* xgr %dst,%src */
1300 		EMIT4(0xb9820000, dst_reg, src_reg);
1301 		break;
1302 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1303 		if (imm != 0) {
1304 			/* xilf %dst,imm */
1305 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1306 		}
1307 		EMIT_ZERO(dst_reg);
1308 		break;
1309 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1310 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1311 			/* xg %dst,<d(imm)>(%l) */
1312 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1313 				      dst_reg, REG_0, REG_L,
1314 				      EMIT_CONST_U64(imm));
1315 		} else {
1316 			/* lgrl %w0,imm */
1317 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1318 					 _EMIT_CONST_U64(imm));
1319 			jit->seen |= SEEN_LITERAL;
1320 			/* xgr %dst,%w0 */
1321 			EMIT4(0xb9820000, dst_reg, REG_W0);
1322 		}
1323 		break;
1324 	/*
1325 	 * BPF_LSH
1326 	 */
1327 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1328 		/* sll %dst,0(%src) */
1329 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1330 		EMIT_ZERO(dst_reg);
1331 		break;
1332 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1333 		/* sllg %dst,%dst,0(%src) */
1334 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1335 		break;
1336 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1337 		if (imm != 0) {
1338 			/* sll %dst,imm(%r0) */
1339 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1340 		}
1341 		EMIT_ZERO(dst_reg);
1342 		break;
1343 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1344 		if (imm == 0)
1345 			break;
1346 		/* sllg %dst,%dst,imm(%r0) */
1347 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1348 		break;
1349 	/*
1350 	 * BPF_RSH
1351 	 */
1352 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1353 		/* srl %dst,0(%src) */
1354 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1355 		EMIT_ZERO(dst_reg);
1356 		break;
1357 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1358 		/* srlg %dst,%dst,0(%src) */
1359 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1360 		break;
1361 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1362 		if (imm != 0) {
1363 			/* srl %dst,imm(%r0) */
1364 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1365 		}
1366 		EMIT_ZERO(dst_reg);
1367 		break;
1368 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1369 		if (imm == 0)
1370 			break;
1371 		/* srlg %dst,%dst,imm(%r0) */
1372 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1373 		break;
1374 	/*
1375 	 * BPF_ARSH
1376 	 */
1377 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1378 		/* sra %dst,%dst,0(%src) */
1379 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1380 		EMIT_ZERO(dst_reg);
1381 		break;
1382 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1383 		/* srag %dst,%dst,0(%src) */
1384 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1385 		break;
1386 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1387 		if (imm != 0) {
1388 			/* sra %dst,imm(%r0) */
1389 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1390 		}
1391 		EMIT_ZERO(dst_reg);
1392 		break;
1393 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1394 		if (imm == 0)
1395 			break;
1396 		/* srag %dst,%dst,imm(%r0) */
1397 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1398 		break;
1399 	/*
1400 	 * BPF_NEG
1401 	 */
1402 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1403 		/* lcr %dst,%dst */
1404 		EMIT2(0x1300, dst_reg, dst_reg);
1405 		EMIT_ZERO(dst_reg);
1406 		break;
1407 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1408 		/* lcgr %dst,%dst */
1409 		EMIT4(0xb9030000, dst_reg, dst_reg);
1410 		break;
1411 	/*
1412 	 * BPF_FROM_BE/LE
1413 	 */
1414 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1415 		/* s390 is big endian, therefore only clear high order bytes */
1416 		switch (imm) {
1417 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1418 			/* llghr %dst,%dst */
1419 			EMIT4(0xb9850000, dst_reg, dst_reg);
1420 			if (insn_is_zext(&insn[1]))
1421 				insn_count = 2;
1422 			break;
1423 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1424 			if (!fp->aux->verifier_zext)
1425 				/* llgfr %dst,%dst */
1426 				EMIT4(0xb9160000, dst_reg, dst_reg);
1427 			break;
1428 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1429 			break;
1430 		}
1431 		break;
1432 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1433 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1434 		switch (imm) {
1435 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1436 			/* lrvr %dst,%dst */
1437 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1438 			/* srl %dst,16(%r0) */
1439 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1440 			/* llghr %dst,%dst */
1441 			EMIT4(0xb9850000, dst_reg, dst_reg);
1442 			if (insn_is_zext(&insn[1]))
1443 				insn_count = 2;
1444 			break;
1445 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1446 			/* lrvr %dst,%dst */
1447 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1448 			if (!fp->aux->verifier_zext)
1449 				/* llgfr %dst,%dst */
1450 				EMIT4(0xb9160000, dst_reg, dst_reg);
1451 			break;
1452 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1453 			/* lrvgr %dst,%dst */
1454 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1455 			break;
1456 		}
1457 		break;
1458 	/*
1459 	 * BPF_NOSPEC (speculation barrier)
1460 	 */
1461 	case BPF_ST | BPF_NOSPEC:
1462 		break;
1463 	/*
1464 	 * BPF_ST(X)
1465 	 */
1466 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1467 	case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1468 		bpf_jit_probe_store_pre(jit, insn, &probe);
1469 		/* stcy %src,off(%dst,%arena) */
1470 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg,
1471 			      probe.arena_reg, off);
1472 		err = bpf_jit_probe_post(jit, fp, &probe);
1473 		if (err < 0)
1474 			return err;
1475 		jit->seen |= SEEN_MEM;
1476 		break;
1477 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1478 	case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1479 		bpf_jit_probe_store_pre(jit, insn, &probe);
1480 		/* sthy %src,off(%dst,%arena) */
1481 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg,
1482 			      probe.arena_reg, off);
1483 		err = bpf_jit_probe_post(jit, fp, &probe);
1484 		if (err < 0)
1485 			return err;
1486 		jit->seen |= SEEN_MEM;
1487 		break;
1488 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1489 	case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1490 		bpf_jit_probe_store_pre(jit, insn, &probe);
1491 		/* sty %src,off(%dst,%arena) */
1492 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg,
1493 			      probe.arena_reg, off);
1494 		err = bpf_jit_probe_post(jit, fp, &probe);
1495 		if (err < 0)
1496 			return err;
1497 		jit->seen |= SEEN_MEM;
1498 		break;
1499 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1500 	case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1501 		bpf_jit_probe_store_pre(jit, insn, &probe);
1502 		/* stg %src,off(%dst,%arena) */
1503 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg,
1504 			      probe.arena_reg, off);
1505 		err = bpf_jit_probe_post(jit, fp, &probe);
1506 		if (err < 0)
1507 			return err;
1508 		jit->seen |= SEEN_MEM;
1509 		break;
1510 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1511 	case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1512 		/* lhi %w0,imm */
1513 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1514 		bpf_jit_probe_store_pre(jit, insn, &probe);
1515 		/* stcy %w0,off(%dst,%arena) */
1516 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg,
1517 			      probe.arena_reg, off);
1518 		err = bpf_jit_probe_post(jit, fp, &probe);
1519 		if (err < 0)
1520 			return err;
1521 		jit->seen |= SEEN_MEM;
1522 		break;
1523 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1524 	case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1525 		/* lhi %w0,imm */
1526 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1527 		bpf_jit_probe_store_pre(jit, insn, &probe);
1528 		/* sthy %w0,off(%dst,%arena) */
1529 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg,
1530 			      probe.arena_reg, off);
1531 		err = bpf_jit_probe_post(jit, fp, &probe);
1532 		if (err < 0)
1533 			return err;
1534 		jit->seen |= SEEN_MEM;
1535 		break;
1536 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1537 	case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1538 		/* llilf %w0,imm  */
1539 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1540 		bpf_jit_probe_store_pre(jit, insn, &probe);
1541 		/* sty %w0,off(%dst,%arena) */
1542 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg,
1543 			      probe.arena_reg, off);
1544 		err = bpf_jit_probe_post(jit, fp, &probe);
1545 		if (err < 0)
1546 			return err;
1547 		jit->seen |= SEEN_MEM;
1548 		break;
1549 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1550 	case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1551 		/* lgfi %w0,imm */
1552 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1553 		bpf_jit_probe_store_pre(jit, insn, &probe);
1554 		/* stg %w0,off(%dst,%arena) */
1555 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg,
1556 			      probe.arena_reg, off);
1557 		err = bpf_jit_probe_post(jit, fp, &probe);
1558 		if (err < 0)
1559 			return err;
1560 		jit->seen |= SEEN_MEM;
1561 		break;
1562 	/*
1563 	 * BPF_ATOMIC
1564 	 */
1565 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1566 	case BPF_STX | BPF_ATOMIC | BPF_W:
1567 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1568 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1569 	{
1570 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1571 
1572 		/*
1573 		 * Unlike loads and stores, atomics have only a base register,
1574 		 * but no index register. For the non-arena case, simply use
1575 		 * %dst as a base. For the arena case, use the work register
1576 		 * %r1: first, load the arena base into it, and then add %dst
1577 		 * to it.
1578 		 */
1579 		probe.arena_reg = dst_reg;
1580 
1581 		switch (insn->imm) {
1582 #define EMIT_ATOMIC(op32, op64) do {					\
1583 	bpf_jit_probe_atomic_pre(jit, insn, &probe);			\
1584 	/* {op32|op64} {%w0|%src},%src,off(%arena) */			\
1585 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1586 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1587 		      src_reg, probe.arena_reg, off);			\
1588 	err = bpf_jit_probe_post(jit, fp, &probe);			\
1589 	if (err < 0)							\
1590 		return err;						\
1591 	if (insn->imm & BPF_FETCH) {					\
1592 		/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */	\
1593 		_EMIT2(0x07e0);						\
1594 		if (is32)                                               \
1595 			EMIT_ZERO(src_reg);				\
1596 	}								\
1597 } while (0)
1598 		case BPF_ADD:
1599 		case BPF_ADD | BPF_FETCH:
1600 			/* {laal|laalg} */
1601 			EMIT_ATOMIC(0x00fa, 0x00ea);
1602 			break;
1603 		case BPF_AND:
1604 		case BPF_AND | BPF_FETCH:
1605 			/* {lan|lang} */
1606 			EMIT_ATOMIC(0x00f4, 0x00e4);
1607 			break;
1608 		case BPF_OR:
1609 		case BPF_OR | BPF_FETCH:
1610 			/* {lao|laog} */
1611 			EMIT_ATOMIC(0x00f6, 0x00e6);
1612 			break;
1613 		case BPF_XOR:
1614 		case BPF_XOR | BPF_FETCH:
1615 			/* {lax|laxg} */
1616 			EMIT_ATOMIC(0x00f7, 0x00e7);
1617 			break;
1618 #undef EMIT_ATOMIC
1619 		case BPF_XCHG: {
1620 			struct bpf_jit_probe load_probe = probe;
1621 			int loop_start;
1622 
1623 			bpf_jit_probe_atomic_pre(jit, insn, &load_probe);
1624 			/* {ly|lg} %w0,off(%arena) */
1625 			EMIT6_DISP_LH(0xe3000000,
1626 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1627 				      load_probe.arena_reg, off);
1628 			bpf_jit_probe_emit_nop(jit, &load_probe);
1629 			/* Reuse {ly|lg}'s arena_reg for {csy|csg}. */
1630 			if (load_probe.prg != -1) {
1631 				probe.prg = jit->prg;
1632 				probe.arena_reg = load_probe.arena_reg;
1633 			}
1634 			loop_start = jit->prg;
1635 			/* 0: {csy|csg} %w0,%src,off(%arena) */
1636 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1637 				      REG_W0, src_reg, probe.arena_reg, off);
1638 			bpf_jit_probe_emit_nop(jit, &probe);
1639 			/* brc 4,0b */
1640 			EMIT4_PCREL_RIC(0xa7040000, 4, loop_start);
1641 			/* {llgfr|lgr} %src,%w0 */
1642 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1643 			/* Both probes should land here on exception. */
1644 			err = bpf_jit_probe_post(jit, fp, &load_probe);
1645 			if (err < 0)
1646 				return err;
1647 			err = bpf_jit_probe_post(jit, fp, &probe);
1648 			if (err < 0)
1649 				return err;
1650 			if (is32 && insn_is_zext(&insn[1]))
1651 				insn_count = 2;
1652 			break;
1653 		}
1654 		case BPF_CMPXCHG:
1655 			bpf_jit_probe_atomic_pre(jit, insn, &probe);
1656 			/* 0: {csy|csg} %b0,%src,off(%arena) */
1657 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1658 				      BPF_REG_0, src_reg,
1659 				      probe.arena_reg, off);
1660 			err = bpf_jit_probe_post(jit, fp, &probe);
1661 			if (err < 0)
1662 				return err;
1663 			break;
1664 		default:
1665 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1666 			return -1;
1667 		}
1668 
1669 		jit->seen |= SEEN_MEM;
1670 		break;
1671 	}
1672 	/*
1673 	 * BPF_LDX
1674 	 */
1675 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1676 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1677 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1678 		bpf_jit_probe_load_pre(jit, insn, &probe);
1679 		/* llgc %dst,off(%src,%arena) */
1680 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg,
1681 			      probe.arena_reg, off);
1682 		err = bpf_jit_probe_post(jit, fp, &probe);
1683 		if (err < 0)
1684 			return err;
1685 		jit->seen |= SEEN_MEM;
1686 		if (insn_is_zext(&insn[1]))
1687 			insn_count = 2;
1688 		break;
1689 	case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1690 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1691 		bpf_jit_probe_load_pre(jit, insn, &probe);
1692 		/* lgb %dst,off(%src) */
1693 		EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1694 		err = bpf_jit_probe_post(jit, fp, &probe);
1695 		if (err < 0)
1696 			return err;
1697 		jit->seen |= SEEN_MEM;
1698 		break;
1699 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1700 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1701 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1702 		bpf_jit_probe_load_pre(jit, insn, &probe);
1703 		/* llgh %dst,off(%src,%arena) */
1704 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg,
1705 			      probe.arena_reg, off);
1706 		err = bpf_jit_probe_post(jit, fp, &probe);
1707 		if (err < 0)
1708 			return err;
1709 		jit->seen |= SEEN_MEM;
1710 		if (insn_is_zext(&insn[1]))
1711 			insn_count = 2;
1712 		break;
1713 	case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1714 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1715 		bpf_jit_probe_load_pre(jit, insn, &probe);
1716 		/* lgh %dst,off(%src) */
1717 		EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1718 		err = bpf_jit_probe_post(jit, fp, &probe);
1719 		if (err < 0)
1720 			return err;
1721 		jit->seen |= SEEN_MEM;
1722 		break;
1723 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1724 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1725 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1726 		bpf_jit_probe_load_pre(jit, insn, &probe);
1727 		/* llgf %dst,off(%src) */
1728 		jit->seen |= SEEN_MEM;
1729 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg,
1730 			      probe.arena_reg, off);
1731 		err = bpf_jit_probe_post(jit, fp, &probe);
1732 		if (err < 0)
1733 			return err;
1734 		if (insn_is_zext(&insn[1]))
1735 			insn_count = 2;
1736 		break;
1737 	case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1738 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1739 		bpf_jit_probe_load_pre(jit, insn, &probe);
1740 		/* lgf %dst,off(%src) */
1741 		jit->seen |= SEEN_MEM;
1742 		EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1743 		err = bpf_jit_probe_post(jit, fp, &probe);
1744 		if (err < 0)
1745 			return err;
1746 		break;
1747 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1748 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1749 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1750 		bpf_jit_probe_load_pre(jit, insn, &probe);
1751 		/* lg %dst,off(%src,%arena) */
1752 		jit->seen |= SEEN_MEM;
1753 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg,
1754 			      probe.arena_reg, off);
1755 		err = bpf_jit_probe_post(jit, fp, &probe);
1756 		if (err < 0)
1757 			return err;
1758 		break;
1759 	/*
1760 	 * BPF_JMP / CALL
1761 	 */
1762 	case BPF_JMP | BPF_CALL:
1763 	{
1764 		const struct btf_func_model *m;
1765 		bool func_addr_fixed;
1766 		int j, ret;
1767 		u64 func;
1768 
1769 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1770 					    &func, &func_addr_fixed);
1771 		if (ret < 0)
1772 			return -1;
1773 
1774 		REG_SET_SEEN(BPF_REG_5);
1775 		jit->seen |= SEEN_FUNC;
1776 		/*
1777 		 * Copy the tail call counter to where the callee expects it.
1778 		 *
1779 		 * Note 1: The callee can increment the tail call counter, but
1780 		 * we do not load it back, since the x86 JIT does not do this
1781 		 * either.
1782 		 *
1783 		 * Note 2: We assume that the verifier does not let us call the
1784 		 * main program, which clears the tail call counter on entry.
1785 		 */
1786 		/* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1787 		_EMIT6(0xd203f000 | STK_OFF_TCCNT,
1788 		       0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1789 
1790 		/* Sign-extend the kfunc arguments. */
1791 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1792 			m = bpf_jit_find_kfunc_model(fp, insn);
1793 			if (!m)
1794 				return -1;
1795 
1796 			for (j = 0; j < m->nr_args; j++) {
1797 				if (sign_extend(jit, BPF_REG_1 + j,
1798 						m->arg_size[j],
1799 						m->arg_flags[j]))
1800 					return -1;
1801 			}
1802 		}
1803 
1804 		/* lgrl %w1,func */
1805 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1806 		/* %r1() */
1807 		call_r1(jit);
1808 		/* lgr %b0,%r2: load return value into %b0 */
1809 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1810 		break;
1811 	}
1812 	case BPF_JMP | BPF_TAIL_CALL: {
1813 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1814 
1815 		/*
1816 		 * Implicit input:
1817 		 *  B1: pointer to ctx
1818 		 *  B2: pointer to bpf_array
1819 		 *  B3: index in bpf_array
1820 		 *
1821 		 * if (index >= array->map.max_entries)
1822 		 *         goto out;
1823 		 */
1824 
1825 		/* llgf %w1,map.max_entries(%b2) */
1826 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1827 			      offsetof(struct bpf_array, map.max_entries));
1828 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1829 		/* clrj %b3,%w1,0xa,out */
1830 		patch_1_clrj = jit->prg;
1831 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1832 				 jit->prg);
1833 
1834 		/*
1835 		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1836 		 *         goto out;
1837 		 */
1838 
1839 		if (jit->seen & SEEN_STACK)
1840 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1841 		else
1842 			off = STK_OFF_TCCNT;
1843 		/* lhi %w0,1 */
1844 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1845 		/* laal %w1,%w0,off(%r15) */
1846 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1847 		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1848 		patch_2_clij = jit->prg;
1849 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1850 				 2, jit->prg);
1851 
1852 		/*
1853 		 * prog = array->ptrs[index];
1854 		 * if (prog == NULL)
1855 		 *         goto out;
1856 		 */
1857 
1858 		/* llgfr %r1,%b3: %r1 = (u32) index */
1859 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1860 		/* sllg %r1,%r1,3: %r1 *= 8 */
1861 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1862 		/* ltg %r1,prog(%b2,%r1) */
1863 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1864 			      REG_1, offsetof(struct bpf_array, ptrs));
1865 		/* brc 0x8,out */
1866 		patch_3_brc = jit->prg;
1867 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1868 
1869 		/*
1870 		 * Restore registers before calling function
1871 		 */
1872 		save_restore_regs(jit, REGS_RESTORE, stack_depth, 0);
1873 
1874 		/*
1875 		 * goto *(prog->bpf_func + tail_call_start);
1876 		 */
1877 
1878 		/* lg %r1,bpf_func(%r1) */
1879 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1880 			      offsetof(struct bpf_prog, bpf_func));
1881 		if (nospec_uses_trampoline()) {
1882 			jit->seen |= SEEN_FUNC;
1883 			/* aghi %r1,tail_call_start */
1884 			EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1885 			/* brcl 0xf,__s390_indirect_jump_r1 */
1886 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->r1_thunk_ip);
1887 		} else {
1888 			/* bc 0xf,tail_call_start(%r1) */
1889 			_EMIT4(0x47f01000 + jit->tail_call_start);
1890 		}
1891 		/* out: */
1892 		if (jit->prg_buf) {
1893 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1894 				(jit->prg - patch_1_clrj) >> 1;
1895 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1896 				(jit->prg - patch_2_clij) >> 1;
1897 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1898 				(jit->prg - patch_3_brc) >> 1;
1899 		}
1900 		break;
1901 	}
1902 	case BPF_JMP | BPF_EXIT: /* return b0 */
1903 		last = (i == fp->len - 1) ? 1 : 0;
1904 		if (last)
1905 			break;
1906 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1907 			/* brc 0xf, <exit> */
1908 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1909 		else
1910 			/* brcl 0xf, <exit> */
1911 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1912 		break;
1913 	/*
1914 	 * Branch relative (number of skipped instructions) to offset on
1915 	 * condition.
1916 	 *
1917 	 * Condition code to mask mapping:
1918 	 *
1919 	 * CC | Description	   | Mask
1920 	 * ------------------------------
1921 	 * 0  | Operands equal	   |	8
1922 	 * 1  | First operand low  |	4
1923 	 * 2  | First operand high |	2
1924 	 * 3  | Unused		   |	1
1925 	 *
1926 	 * For s390x relative branches: ip = ip + off_bytes
1927 	 * For BPF relative branches:	insn = insn + off_insns + 1
1928 	 *
1929 	 * For example for s390x with offset 0 we jump to the branch
1930 	 * instruction itself (loop) and for BPF with offset 0 we
1931 	 * branch to the instruction behind the branch.
1932 	 */
1933 	case BPF_JMP32 | BPF_JA: /* if (true) */
1934 		branch_oc_off = imm;
1935 		fallthrough;
1936 	case BPF_JMP | BPF_JA: /* if (true) */
1937 		mask = 0xf000; /* j */
1938 		goto branch_oc;
1939 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1940 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1941 		mask = 0x2000; /* jh */
1942 		goto branch_ks;
1943 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1944 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1945 		mask = 0x4000; /* jl */
1946 		goto branch_ks;
1947 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1948 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1949 		mask = 0xa000; /* jhe */
1950 		goto branch_ks;
1951 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1952 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1953 		mask = 0xc000; /* jle */
1954 		goto branch_ks;
1955 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1956 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1957 		mask = 0x2000; /* jh */
1958 		goto branch_ku;
1959 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1960 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1961 		mask = 0x4000; /* jl */
1962 		goto branch_ku;
1963 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1964 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1965 		mask = 0xa000; /* jhe */
1966 		goto branch_ku;
1967 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1968 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1969 		mask = 0xc000; /* jle */
1970 		goto branch_ku;
1971 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1972 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1973 		mask = 0x7000; /* jne */
1974 		goto branch_ku;
1975 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1976 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1977 		mask = 0x8000; /* je */
1978 		goto branch_ku;
1979 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1980 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1981 		mask = 0x7000; /* jnz */
1982 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1983 			/* llilf %w1,imm (load zero extend imm) */
1984 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1985 			/* nr %w1,%dst */
1986 			EMIT2(0x1400, REG_W1, dst_reg);
1987 		} else {
1988 			/* lgfi %w1,imm (load sign extend imm) */
1989 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1990 			/* ngr %w1,%dst */
1991 			EMIT4(0xb9800000, REG_W1, dst_reg);
1992 		}
1993 		goto branch_oc;
1994 
1995 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1996 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1997 		mask = 0x2000; /* jh */
1998 		goto branch_xs;
1999 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
2000 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
2001 		mask = 0x4000; /* jl */
2002 		goto branch_xs;
2003 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
2004 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
2005 		mask = 0xa000; /* jhe */
2006 		goto branch_xs;
2007 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
2008 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
2009 		mask = 0xc000; /* jle */
2010 		goto branch_xs;
2011 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
2012 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
2013 		mask = 0x2000; /* jh */
2014 		goto branch_xu;
2015 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
2016 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
2017 		mask = 0x4000; /* jl */
2018 		goto branch_xu;
2019 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
2020 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
2021 		mask = 0xa000; /* jhe */
2022 		goto branch_xu;
2023 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
2024 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
2025 		mask = 0xc000; /* jle */
2026 		goto branch_xu;
2027 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
2028 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
2029 		mask = 0x7000; /* jne */
2030 		goto branch_xu;
2031 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
2032 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
2033 		mask = 0x8000; /* je */
2034 		goto branch_xu;
2035 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
2036 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
2037 	{
2038 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2039 
2040 		mask = 0x7000; /* jnz */
2041 		/* nrk or ngrk %w1,%dst,%src */
2042 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
2043 			  REG_W1, dst_reg, src_reg);
2044 		goto branch_oc;
2045 branch_ks:
2046 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2047 		/* cfi or cgfi %dst,imm */
2048 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
2049 			  dst_reg, imm);
2050 		if (!is_first_pass(jit) &&
2051 		    can_use_rel(jit, addrs[i + off + 1])) {
2052 			/* brc mask,off */
2053 			EMIT4_PCREL_RIC(0xa7040000,
2054 					mask >> 12, addrs[i + off + 1]);
2055 		} else {
2056 			/* brcl mask,off */
2057 			EMIT6_PCREL_RILC(0xc0040000,
2058 					 mask >> 12, addrs[i + off + 1]);
2059 		}
2060 		break;
2061 branch_ku:
2062 		/* lgfi %w1,imm (load sign extend imm) */
2063 		src_reg = REG_1;
2064 		EMIT6_IMM(0xc0010000, src_reg, imm);
2065 		goto branch_xu;
2066 branch_xs:
2067 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2068 		if (!is_first_pass(jit) &&
2069 		    can_use_rel(jit, addrs[i + off + 1])) {
2070 			/* crj or cgrj %dst,%src,mask,off */
2071 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
2072 				    dst_reg, src_reg, i, off, mask);
2073 		} else {
2074 			/* cr or cgr %dst,%src */
2075 			if (is_jmp32)
2076 				EMIT2(0x1900, dst_reg, src_reg);
2077 			else
2078 				EMIT4(0xb9200000, dst_reg, src_reg);
2079 			/* brcl mask,off */
2080 			EMIT6_PCREL_RILC(0xc0040000,
2081 					 mask >> 12, addrs[i + off + 1]);
2082 		}
2083 		break;
2084 branch_xu:
2085 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2086 		if (!is_first_pass(jit) &&
2087 		    can_use_rel(jit, addrs[i + off + 1])) {
2088 			/* clrj or clgrj %dst,%src,mask,off */
2089 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
2090 				    dst_reg, src_reg, i, off, mask);
2091 		} else {
2092 			/* clr or clgr %dst,%src */
2093 			if (is_jmp32)
2094 				EMIT2(0x1500, dst_reg, src_reg);
2095 			else
2096 				EMIT4(0xb9210000, dst_reg, src_reg);
2097 			/* brcl mask,off */
2098 			EMIT6_PCREL_RILC(0xc0040000,
2099 					 mask >> 12, addrs[i + off + 1]);
2100 		}
2101 		break;
2102 branch_oc:
2103 		if (!is_first_pass(jit) &&
2104 		    can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
2105 			/* brc mask,off */
2106 			EMIT4_PCREL_RIC(0xa7040000,
2107 					mask >> 12,
2108 					addrs[i + branch_oc_off + 1]);
2109 		} else {
2110 			/* brcl mask,off */
2111 			EMIT6_PCREL_RILC(0xc0040000,
2112 					 mask >> 12,
2113 					 addrs[i + branch_oc_off + 1]);
2114 		}
2115 		break;
2116 	}
2117 	default: /* too complex, give up */
2118 		pr_err("Unknown opcode %02x\n", insn->code);
2119 		return -1;
2120 	}
2121 
2122 	return insn_count;
2123 }
2124 
2125 /*
2126  * Return whether new i-th instruction address does not violate any invariant
2127  */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)2128 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
2129 {
2130 	/* On the first pass anything goes */
2131 	if (is_first_pass(jit))
2132 		return true;
2133 
2134 	/* The codegen pass must not change anything */
2135 	if (is_codegen_pass(jit))
2136 		return jit->addrs[i] == jit->prg;
2137 
2138 	/* Passes in between must not increase code size */
2139 	return jit->addrs[i] >= jit->prg;
2140 }
2141 
2142 /*
2143  * Update the address of i-th instruction
2144  */
bpf_set_addr(struct bpf_jit * jit,int i)2145 static int bpf_set_addr(struct bpf_jit *jit, int i)
2146 {
2147 	int delta;
2148 
2149 	if (is_codegen_pass(jit)) {
2150 		delta = jit->prg - jit->addrs[i];
2151 		if (delta < 0)
2152 			bpf_skip(jit, -delta);
2153 	}
2154 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
2155 		return -1;
2156 	jit->addrs[i] = jit->prg;
2157 	return 0;
2158 }
2159 
2160 /*
2161  * Compile eBPF program into s390x code
2162  */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass,u32 stack_depth)2163 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
2164 			bool extra_pass, u32 stack_depth)
2165 {
2166 	int i, insn_count, lit32_size, lit64_size;
2167 	u64 kern_arena;
2168 
2169 	jit->lit32 = jit->lit32_start;
2170 	jit->lit64 = jit->lit64_start;
2171 	jit->prg = 0;
2172 	jit->excnt = 0;
2173 
2174 	kern_arena = bpf_arena_get_kern_vm_start(fp->aux->arena);
2175 	if (kern_arena)
2176 		jit->kern_arena = _EMIT_CONST_U64(kern_arena);
2177 	jit->user_arena = bpf_arena_get_user_vm_start(fp->aux->arena);
2178 
2179 	bpf_jit_prologue(jit, fp, stack_depth);
2180 	if (bpf_set_addr(jit, 0) < 0)
2181 		return -1;
2182 	for (i = 0; i < fp->len; i += insn_count) {
2183 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
2184 		if (insn_count < 0)
2185 			return -1;
2186 		/* Next instruction address */
2187 		if (bpf_set_addr(jit, i + insn_count) < 0)
2188 			return -1;
2189 	}
2190 	bpf_jit_epilogue(jit, stack_depth);
2191 
2192 	lit32_size = jit->lit32 - jit->lit32_start;
2193 	lit64_size = jit->lit64 - jit->lit64_start;
2194 	jit->lit32_start = jit->prg;
2195 	if (lit32_size)
2196 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
2197 	jit->lit64_start = jit->lit32_start + lit32_size;
2198 	if (lit64_size)
2199 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
2200 	jit->size = jit->lit64_start + lit64_size;
2201 	jit->size_prg = jit->prg;
2202 
2203 	if (WARN_ON_ONCE(fp->aux->extable &&
2204 			 jit->excnt != fp->aux->num_exentries))
2205 		/* Verifier bug - too many entries. */
2206 		return -1;
2207 
2208 	return 0;
2209 }
2210 
bpf_jit_needs_zext(void)2211 bool bpf_jit_needs_zext(void)
2212 {
2213 	return true;
2214 }
2215 
2216 struct s390_jit_data {
2217 	struct bpf_binary_header *header;
2218 	struct bpf_jit ctx;
2219 	int pass;
2220 };
2221 
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)2222 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2223 					       struct bpf_prog *fp)
2224 {
2225 	struct bpf_binary_header *header;
2226 	struct bpf_insn *insn;
2227 	u32 extable_size;
2228 	u32 code_size;
2229 	int i;
2230 
2231 	for (i = 0; i < fp->len; i++) {
2232 		insn = &fp->insnsi[i];
2233 
2234 		if (BPF_CLASS(insn->code) == BPF_STX &&
2235 		    BPF_MODE(insn->code) == BPF_PROBE_ATOMIC &&
2236 		    (BPF_SIZE(insn->code) == BPF_DW ||
2237 		     BPF_SIZE(insn->code) == BPF_W) &&
2238 		    insn->imm == BPF_XCHG)
2239 			/*
2240 			 * bpf_jit_insn() emits a load and a compare-and-swap,
2241 			 * both of which need to be probed.
2242 			 */
2243 			fp->aux->num_exentries += 1;
2244 	}
2245 	/* We need two entries per insn. */
2246 	fp->aux->num_exentries *= 2;
2247 
2248 	code_size = roundup(jit->size,
2249 			    __alignof__(struct exception_table_entry));
2250 	extable_size = fp->aux->num_exentries *
2251 		sizeof(struct exception_table_entry);
2252 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2253 				      8, jit_fill_hole);
2254 	if (!header)
2255 		return NULL;
2256 	fp->aux->extable = (struct exception_table_entry *)
2257 		(jit->prg_buf + code_size);
2258 	return header;
2259 }
2260 
2261 /*
2262  * Compile eBPF program "fp"
2263  */
bpf_int_jit_compile(struct bpf_prog * fp)2264 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2265 {
2266 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
2267 	struct bpf_prog *tmp, *orig_fp = fp;
2268 	struct bpf_binary_header *header;
2269 	struct s390_jit_data *jit_data;
2270 	bool tmp_blinded = false;
2271 	bool extra_pass = false;
2272 	struct bpf_jit jit;
2273 	int pass;
2274 
2275 	if (!fp->jit_requested)
2276 		return orig_fp;
2277 
2278 	tmp = bpf_jit_blind_constants(fp);
2279 	/*
2280 	 * If blinding was requested and we failed during blinding,
2281 	 * we must fall back to the interpreter.
2282 	 */
2283 	if (IS_ERR(tmp))
2284 		return orig_fp;
2285 	if (tmp != fp) {
2286 		tmp_blinded = true;
2287 		fp = tmp;
2288 	}
2289 
2290 	jit_data = fp->aux->jit_data;
2291 	if (!jit_data) {
2292 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2293 		if (!jit_data) {
2294 			fp = orig_fp;
2295 			goto out;
2296 		}
2297 		fp->aux->jit_data = jit_data;
2298 	}
2299 	if (jit_data->ctx.addrs) {
2300 		jit = jit_data->ctx;
2301 		header = jit_data->header;
2302 		extra_pass = true;
2303 		pass = jit_data->pass + 1;
2304 		goto skip_init_ctx;
2305 	}
2306 
2307 	memset(&jit, 0, sizeof(jit));
2308 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2309 	if (jit.addrs == NULL) {
2310 		fp = orig_fp;
2311 		goto free_addrs;
2312 	}
2313 	/*
2314 	 * Three initial passes:
2315 	 *   - 1/2: Determine clobbered registers
2316 	 *   - 3:   Calculate program size and addrs array
2317 	 */
2318 	for (pass = 1; pass <= 3; pass++) {
2319 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2320 			fp = orig_fp;
2321 			goto free_addrs;
2322 		}
2323 	}
2324 	/*
2325 	 * Final pass: Allocate and generate program
2326 	 */
2327 	header = bpf_jit_alloc(&jit, fp);
2328 	if (!header) {
2329 		fp = orig_fp;
2330 		goto free_addrs;
2331 	}
2332 skip_init_ctx:
2333 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2334 		bpf_jit_binary_free(header);
2335 		fp = orig_fp;
2336 		goto free_addrs;
2337 	}
2338 	if (bpf_jit_enable > 1) {
2339 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2340 		print_fn_code(jit.prg_buf, jit.size_prg);
2341 	}
2342 	if (!fp->is_func || extra_pass) {
2343 		if (bpf_jit_binary_lock_ro(header)) {
2344 			bpf_jit_binary_free(header);
2345 			fp = orig_fp;
2346 			goto free_addrs;
2347 		}
2348 	} else {
2349 		jit_data->header = header;
2350 		jit_data->ctx = jit;
2351 		jit_data->pass = pass;
2352 	}
2353 	fp->bpf_func = (void *) jit.prg_buf;
2354 	fp->jited = 1;
2355 	fp->jited_len = jit.size;
2356 
2357 	if (!fp->is_func || extra_pass) {
2358 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2359 free_addrs:
2360 		kvfree(jit.addrs);
2361 		kfree(jit_data);
2362 		fp->aux->jit_data = NULL;
2363 	}
2364 out:
2365 	if (tmp_blinded)
2366 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
2367 					   tmp : orig_fp);
2368 	return fp;
2369 }
2370 
bpf_jit_supports_kfunc_call(void)2371 bool bpf_jit_supports_kfunc_call(void)
2372 {
2373 	return true;
2374 }
2375 
bpf_jit_supports_far_kfunc_call(void)2376 bool bpf_jit_supports_far_kfunc_call(void)
2377 {
2378 	return true;
2379 }
2380 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)2381 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2382 		       void *old_addr, void *new_addr)
2383 {
2384 	struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2385 	struct {
2386 		u16 opc;
2387 		s32 disp;
2388 	} __packed insn;
2389 	char *ret;
2390 	int err;
2391 
2392 	/* Verify the branch to be patched. */
2393 	err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2394 	if (err < 0)
2395 		return err;
2396 	if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2397 		return -EINVAL;
2398 
2399 	if (t == BPF_MOD_JUMP &&
2400 	    insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2401 		/*
2402 		 * The branch already points to the destination,
2403 		 * there is no PLT.
2404 		 */
2405 	} else {
2406 		/* Verify the PLT. */
2407 		plt = ip + (insn.disp << 1);
2408 		err = copy_from_kernel_nofault(&current_plt, plt,
2409 					       sizeof(current_plt));
2410 		if (err < 0)
2411 			return err;
2412 		ret = (char *)ip + 6;
2413 		bpf_jit_plt(&expected_plt, ret, old_addr);
2414 		if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2415 			return -EINVAL;
2416 		/* Adjust the call address. */
2417 		bpf_jit_plt(&new_plt, ret, new_addr);
2418 		s390_kernel_write(&plt->target, &new_plt.target,
2419 				  sizeof(void *));
2420 	}
2421 
2422 	/* Adjust the mask of the branch. */
2423 	insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2424 	s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2425 
2426 	/* Make the new code visible to the other CPUs. */
2427 	text_poke_sync_lock();
2428 
2429 	return 0;
2430 }
2431 
2432 struct bpf_tramp_jit {
2433 	struct bpf_jit common;
2434 	int orig_stack_args_off;/* Offset of arguments placed on stack by the
2435 				 * func_addr's original caller
2436 				 */
2437 	int stack_size;		/* Trampoline stack size */
2438 	int backchain_off;	/* Offset of backchain */
2439 	int stack_args_off;	/* Offset of stack arguments for calling
2440 				 * func_addr, has to be at the top
2441 				 */
2442 	int reg_args_off;	/* Offset of register arguments for calling
2443 				 * func_addr
2444 				 */
2445 	int ip_off;		/* For bpf_get_func_ip(), has to be at
2446 				 * (ctx - 16)
2447 				 */
2448 	int arg_cnt_off;	/* For bpf_get_func_arg_cnt(), has to be at
2449 				 * (ctx - 8)
2450 				 */
2451 	int bpf_args_off;	/* Offset of BPF_PROG context, which consists
2452 				 * of BPF arguments followed by return value
2453 				 */
2454 	int retval_off;		/* Offset of return value (see above) */
2455 	int r7_r8_off;		/* Offset of saved %r7 and %r8, which are used
2456 				 * for __bpf_prog_enter() return value and
2457 				 * func_addr respectively
2458 				 */
2459 	int run_ctx_off;	/* Offset of struct bpf_tramp_run_ctx */
2460 	int tccnt_off;		/* Offset of saved tailcall counter */
2461 	int r14_off;		/* Offset of saved %r14, has to be at the
2462 				 * bottom */
2463 	int do_fexit;		/* do_fexit: label */
2464 };
2465 
load_imm64(struct bpf_jit * jit,int dst_reg,u64 val)2466 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2467 {
2468 	/* llihf %dst_reg,val_hi */
2469 	EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2470 	/* oilf %rdst_reg,val_lo */
2471 	EMIT6_IMM(0xc00d0000, dst_reg, val);
2472 }
2473 
invoke_bpf_prog(struct bpf_tramp_jit * tjit,const struct btf_func_model * m,struct bpf_tramp_link * tlink,bool save_ret)2474 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2475 			   const struct btf_func_model *m,
2476 			   struct bpf_tramp_link *tlink, bool save_ret)
2477 {
2478 	struct bpf_jit *jit = &tjit->common;
2479 	int cookie_off = tjit->run_ctx_off +
2480 			 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2481 	struct bpf_prog *p = tlink->link.prog;
2482 	int patch;
2483 
2484 	/*
2485 	 * run_ctx.cookie = tlink->cookie;
2486 	 */
2487 
2488 	/* %r0 = tlink->cookie */
2489 	load_imm64(jit, REG_W0, tlink->cookie);
2490 	/* stg %r0,cookie_off(%r15) */
2491 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2492 
2493 	/*
2494 	 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2495 	 *         goto skip;
2496 	 */
2497 
2498 	/* %r1 = __bpf_prog_enter */
2499 	load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2500 	/* %r2 = p */
2501 	load_imm64(jit, REG_2, (u64)p);
2502 	/* la %r3,run_ctx_off(%r15) */
2503 	EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2504 	/* %r1() */
2505 	call_r1(jit);
2506 	/* ltgr %r7,%r2 */
2507 	EMIT4(0xb9020000, REG_7, REG_2);
2508 	/* brcl 8,skip */
2509 	patch = jit->prg;
2510 	EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2511 
2512 	/*
2513 	 * retval = bpf_func(args, p->insnsi);
2514 	 */
2515 
2516 	/* %r1 = p->bpf_func */
2517 	load_imm64(jit, REG_1, (u64)p->bpf_func);
2518 	/* la %r2,bpf_args_off(%r15) */
2519 	EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2520 	/* %r3 = p->insnsi */
2521 	if (!p->jited)
2522 		load_imm64(jit, REG_3, (u64)p->insnsi);
2523 	/* %r1() */
2524 	call_r1(jit);
2525 	/* stg %r2,retval_off(%r15) */
2526 	if (save_ret) {
2527 		if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2528 			return -1;
2529 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2530 			      tjit->retval_off);
2531 	}
2532 
2533 	/* skip: */
2534 	if (jit->prg_buf)
2535 		*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2536 
2537 	/*
2538 	 * __bpf_prog_exit(p, start, &run_ctx);
2539 	 */
2540 
2541 	/* %r1 = __bpf_prog_exit */
2542 	load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2543 	/* %r2 = p */
2544 	load_imm64(jit, REG_2, (u64)p);
2545 	/* lgr %r3,%r7 */
2546 	EMIT4(0xb9040000, REG_3, REG_7);
2547 	/* la %r4,run_ctx_off(%r15) */
2548 	EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2549 	/* %r1() */
2550 	call_r1(jit);
2551 
2552 	return 0;
2553 }
2554 
alloc_stack(struct bpf_tramp_jit * tjit,size_t size)2555 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2556 {
2557 	int stack_offset = tjit->stack_size;
2558 
2559 	tjit->stack_size += size;
2560 	return stack_offset;
2561 }
2562 
2563 /* ABI uses %r2 - %r6 for parameter passing. */
2564 #define MAX_NR_REG_ARGS 5
2565 
2566 /* The "L" field of the "mvc" instruction is 8 bits. */
2567 #define MAX_MVC_SIZE 256
2568 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2569 
2570 /* -mfentry generates a 6-byte nop on s390x. */
2571 #define S390X_PATCH_SIZE 6
2572 
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,struct bpf_tramp_jit * tjit,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2573 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2574 					 struct bpf_tramp_jit *tjit,
2575 					 const struct btf_func_model *m,
2576 					 u32 flags,
2577 					 struct bpf_tramp_links *tlinks,
2578 					 void *func_addr)
2579 {
2580 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2581 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2582 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2583 	int nr_bpf_args, nr_reg_args, nr_stack_args;
2584 	struct bpf_jit *jit = &tjit->common;
2585 	int arg, bpf_arg_off;
2586 	int i, j;
2587 
2588 	/* Support as many stack arguments as "mvc" instruction can handle. */
2589 	nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2590 	nr_stack_args = m->nr_args - nr_reg_args;
2591 	if (nr_stack_args > MAX_NR_STACK_ARGS)
2592 		return -ENOTSUPP;
2593 
2594 	/* Return to %r14, since func_addr and %r0 are not available. */
2595 	if ((!func_addr && !(flags & BPF_TRAMP_F_ORIG_STACK)) ||
2596 	    (flags & BPF_TRAMP_F_INDIRECT))
2597 		flags |= BPF_TRAMP_F_SKIP_FRAME;
2598 
2599 	/*
2600 	 * Compute how many arguments we need to pass to BPF programs.
2601 	 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2602 	 * smaller are packed into 1 or 2 registers; larger arguments are
2603 	 * passed via pointers.
2604 	 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2605 	 * a register; larger arguments are passed via pointers.
2606 	 * We need to deal with this difference.
2607 	 */
2608 	nr_bpf_args = 0;
2609 	for (i = 0; i < m->nr_args; i++) {
2610 		if (m->arg_size[i] <= 8)
2611 			nr_bpf_args += 1;
2612 		else if (m->arg_size[i] <= 16)
2613 			nr_bpf_args += 2;
2614 		else
2615 			return -ENOTSUPP;
2616 	}
2617 
2618 	/*
2619 	 * Calculate the stack layout.
2620 	 */
2621 
2622 	/*
2623 	 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2624 	 * ABI requires, put our backchain at the end of the allocated memory.
2625 	 */
2626 	tjit->stack_size = STACK_FRAME_OVERHEAD;
2627 	tjit->backchain_off = tjit->stack_size - sizeof(u64);
2628 	tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2629 	tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2630 	tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2631 	tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2632 	tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2633 	tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2634 	tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2635 	tjit->run_ctx_off = alloc_stack(tjit,
2636 					sizeof(struct bpf_tramp_run_ctx));
2637 	tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2638 	tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2639 	/*
2640 	 * In accordance with the s390x ABI, the caller has allocated
2641 	 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2642 	 * backchain, and the rest we can use.
2643 	 */
2644 	tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2645 	tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2646 
2647 	/* lgr %r1,%r15 */
2648 	EMIT4(0xb9040000, REG_1, REG_15);
2649 	/* aghi %r15,-stack_size */
2650 	EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2651 	/* stg %r1,backchain_off(%r15) */
2652 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2653 		      tjit->backchain_off);
2654 	/* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2655 	_EMIT6(0xd203f000 | tjit->tccnt_off,
2656 	       0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2657 	/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2658 	if (nr_reg_args)
2659 		EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2660 			      REG_2 + (nr_reg_args - 1), REG_15,
2661 			      tjit->reg_args_off);
2662 	for (i = 0, j = 0; i < m->nr_args; i++) {
2663 		if (i < MAX_NR_REG_ARGS)
2664 			arg = REG_2 + i;
2665 		else
2666 			arg = tjit->orig_stack_args_off +
2667 			      (i - MAX_NR_REG_ARGS) * sizeof(u64);
2668 		bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2669 		if (m->arg_size[i] <= 8) {
2670 			if (i < MAX_NR_REG_ARGS)
2671 				/* stg %arg,bpf_arg_off(%r15) */
2672 				EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2673 					      REG_0, REG_15, bpf_arg_off);
2674 			else
2675 				/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2676 				_EMIT6(0xd207f000 | bpf_arg_off,
2677 				       0xf000 | arg);
2678 			j += 1;
2679 		} else {
2680 			if (i < MAX_NR_REG_ARGS) {
2681 				/* mvc bpf_arg_off(16,%r15),0(%arg) */
2682 				_EMIT6(0xd20ff000 | bpf_arg_off,
2683 				       reg2hex[arg] << 12);
2684 			} else {
2685 				/* lg %r1,arg(%r15) */
2686 				EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2687 					      REG_15, arg);
2688 				/* mvc bpf_arg_off(16,%r15),0(%r1) */
2689 				_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2690 			}
2691 			j += 2;
2692 		}
2693 	}
2694 	/* stmg %r7,%r8,r7_r8_off(%r15) */
2695 	EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2696 		      tjit->r7_r8_off);
2697 	/* stg %r14,r14_off(%r15) */
2698 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2699 
2700 	if (flags & BPF_TRAMP_F_ORIG_STACK) {
2701 		/*
2702 		 * The ftrace trampoline puts the return address (which is the
2703 		 * address of the original function + S390X_PATCH_SIZE) into
2704 		 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2705 		 * ftrace_init_nop() for details.
2706 		 */
2707 
2708 		/* lgr %r8,%r0 */
2709 		EMIT4(0xb9040000, REG_8, REG_0);
2710 	} else {
2711 		/* %r8 = func_addr + S390X_PATCH_SIZE */
2712 		load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2713 	}
2714 
2715 	/*
2716 	 * ip = func_addr;
2717 	 * arg_cnt = m->nr_args;
2718 	 */
2719 
2720 	if (flags & BPF_TRAMP_F_IP_ARG) {
2721 		/* %r0 = func_addr */
2722 		load_imm64(jit, REG_0, (u64)func_addr);
2723 		/* stg %r0,ip_off(%r15) */
2724 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2725 			      tjit->ip_off);
2726 	}
2727 	/* lghi %r0,nr_bpf_args */
2728 	EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2729 	/* stg %r0,arg_cnt_off(%r15) */
2730 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2731 		      tjit->arg_cnt_off);
2732 
2733 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2734 		/*
2735 		 * __bpf_tramp_enter(im);
2736 		 */
2737 
2738 		/* %r1 = __bpf_tramp_enter */
2739 		load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2740 		/* %r2 = im */
2741 		load_imm64(jit, REG_2, (u64)im);
2742 		/* %r1() */
2743 		call_r1(jit);
2744 	}
2745 
2746 	for (i = 0; i < fentry->nr_links; i++)
2747 		if (invoke_bpf_prog(tjit, m, fentry->links[i],
2748 				    flags & BPF_TRAMP_F_RET_FENTRY_RET))
2749 			return -EINVAL;
2750 
2751 	if (fmod_ret->nr_links) {
2752 		/*
2753 		 * retval = 0;
2754 		 */
2755 
2756 		/* xc retval_off(8,%r15),retval_off(%r15) */
2757 		_EMIT6(0xd707f000 | tjit->retval_off,
2758 		       0xf000 | tjit->retval_off);
2759 
2760 		for (i = 0; i < fmod_ret->nr_links; i++) {
2761 			if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2762 				return -EINVAL;
2763 
2764 			/*
2765 			 * if (retval)
2766 			 *         goto do_fexit;
2767 			 */
2768 
2769 			/* ltg %r0,retval_off(%r15) */
2770 			EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2771 				      tjit->retval_off);
2772 			/* brcl 7,do_fexit */
2773 			EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2774 		}
2775 	}
2776 
2777 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2778 		/*
2779 		 * retval = func_addr(args);
2780 		 */
2781 
2782 		/* lmg %r2,%rN,reg_args_off(%r15) */
2783 		if (nr_reg_args)
2784 			EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2785 				      REG_2 + (nr_reg_args - 1), REG_15,
2786 				      tjit->reg_args_off);
2787 		/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2788 		if (nr_stack_args)
2789 			_EMIT6(0xd200f000 |
2790 				       (nr_stack_args * sizeof(u64) - 1) << 16 |
2791 				       tjit->stack_args_off,
2792 			       0xf000 | tjit->orig_stack_args_off);
2793 		/* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2794 		_EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2795 		/* lgr %r1,%r8 */
2796 		EMIT4(0xb9040000, REG_1, REG_8);
2797 		/* %r1() */
2798 		call_r1(jit);
2799 		/* stg %r2,retval_off(%r15) */
2800 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2801 			      tjit->retval_off);
2802 
2803 		im->ip_after_call = jit->prg_buf + jit->prg;
2804 
2805 		/*
2806 		 * The following nop will be patched by bpf_tramp_image_put().
2807 		 */
2808 
2809 		/* brcl 0,im->ip_epilogue */
2810 		EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2811 	}
2812 
2813 	/* do_fexit: */
2814 	tjit->do_fexit = jit->prg;
2815 	for (i = 0; i < fexit->nr_links; i++)
2816 		if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2817 			return -EINVAL;
2818 
2819 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2820 		im->ip_epilogue = jit->prg_buf + jit->prg;
2821 
2822 		/*
2823 		 * __bpf_tramp_exit(im);
2824 		 */
2825 
2826 		/* %r1 = __bpf_tramp_exit */
2827 		load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2828 		/* %r2 = im */
2829 		load_imm64(jit, REG_2, (u64)im);
2830 		/* %r1() */
2831 		call_r1(jit);
2832 	}
2833 
2834 	/* lmg %r2,%rN,reg_args_off(%r15) */
2835 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2836 		EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2837 			      REG_2 + (nr_reg_args - 1), REG_15,
2838 			      tjit->reg_args_off);
2839 	/* lgr %r1,%r8 */
2840 	if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2841 		EMIT4(0xb9040000, REG_1, REG_8);
2842 	/* lmg %r7,%r8,r7_r8_off(%r15) */
2843 	EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2844 		      tjit->r7_r8_off);
2845 	/* lg %r14,r14_off(%r15) */
2846 	EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2847 	/* lg %r2,retval_off(%r15) */
2848 	if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2849 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2850 			      tjit->retval_off);
2851 	/* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2852 	_EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2853 	       0xf000 | tjit->tccnt_off);
2854 	/* aghi %r15,stack_size */
2855 	EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2856 	/* Emit an expoline for the following indirect jump. */
2857 	if (nospec_uses_trampoline())
2858 		emit_expoline(jit);
2859 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2860 		/* br %r14 */
2861 		_EMIT2(0x07fe);
2862 	else
2863 		/* br %r1 */
2864 		_EMIT2(0x07f1);
2865 
2866 	emit_r1_thunk(jit);
2867 
2868 	return 0;
2869 }
2870 
arch_bpf_trampoline_size(const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * orig_call)2871 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2872 			     struct bpf_tramp_links *tlinks, void *orig_call)
2873 {
2874 	struct bpf_tramp_image im;
2875 	struct bpf_tramp_jit tjit;
2876 	int ret;
2877 
2878 	memset(&tjit, 0, sizeof(tjit));
2879 
2880 	ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2881 					    tlinks, orig_call);
2882 
2883 	return ret < 0 ? ret : tjit.common.prg;
2884 }
2885 
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2886 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2887 				void *image_end, const struct btf_func_model *m,
2888 				u32 flags, struct bpf_tramp_links *tlinks,
2889 				void *func_addr)
2890 {
2891 	struct bpf_tramp_jit tjit;
2892 	int ret;
2893 
2894 	/* Compute offsets, check whether the code fits. */
2895 	memset(&tjit, 0, sizeof(tjit));
2896 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2897 					    tlinks, func_addr);
2898 
2899 	if (ret < 0)
2900 		return ret;
2901 	if (tjit.common.prg > (char *)image_end - (char *)image)
2902 		/*
2903 		 * Use the same error code as for exceeding
2904 		 * BPF_MAX_TRAMP_LINKS.
2905 		 */
2906 		return -E2BIG;
2907 
2908 	tjit.common.prg = 0;
2909 	tjit.common.prg_buf = image;
2910 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2911 					    tlinks, func_addr);
2912 
2913 	return ret < 0 ? ret : tjit.common.prg;
2914 }
2915 
bpf_jit_supports_subprog_tailcalls(void)2916 bool bpf_jit_supports_subprog_tailcalls(void)
2917 {
2918 	return true;
2919 }
2920 
bpf_jit_supports_arena(void)2921 bool bpf_jit_supports_arena(void)
2922 {
2923 	return true;
2924 }
2925 
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)2926 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2927 {
2928 	/*
2929 	 * Currently the verifier uses this function only to check which
2930 	 * atomic stores to arena are supported, and they all are.
2931 	 */
2932 	return true;
2933 }
2934 
bpf_jit_supports_exceptions(void)2935 bool bpf_jit_supports_exceptions(void)
2936 {
2937 	/*
2938 	 * Exceptions require unwinding support, which is always available,
2939 	 * because the kernel is always built with backchain.
2940 	 */
2941 	return true;
2942 }
2943 
arch_bpf_stack_walk(bool (* consume_fn)(void *,u64,u64,u64),void * cookie)2944 void arch_bpf_stack_walk(bool (*consume_fn)(void *, u64, u64, u64),
2945 			 void *cookie)
2946 {
2947 	unsigned long addr, prev_addr = 0;
2948 	struct unwind_state state;
2949 
2950 	unwind_for_each_frame(&state, NULL, NULL, 0) {
2951 		addr = unwind_get_return_address(&state);
2952 		if (!addr)
2953 			break;
2954 		/*
2955 		 * addr is a return address and state.sp is the value of %r15
2956 		 * at this address. exception_cb needs %r15 at entry to the
2957 		 * function containing addr, so take the next state.sp.
2958 		 *
2959 		 * There is no bp, and the exception_cb prog does not need one
2960 		 * to perform a quasi-longjmp. The common code requires a
2961 		 * non-zero bp, so pass sp there as well.
2962 		 */
2963 		if (prev_addr && !consume_fn(cookie, prev_addr, state.sp,
2964 					     state.sp))
2965 			break;
2966 		prev_addr = addr;
2967 	}
2968 }
2969