1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - 64BIT
11 *
12 * Copyright IBM Corp. 2012,2015
13 *
14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
16 */
17
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include <asm/unwind.h>
35 #include "bpf_jit.h"
36
37 struct bpf_jit {
38 u32 seen; /* Flags to remember seen eBPF instructions */
39 u16 seen_regs; /* Mask to remember which registers are used */
40 u32 *addrs; /* Array with relative instruction addresses */
41 u8 *prg_buf; /* Start of program */
42 int size; /* Size of program and literal pool */
43 int size_prg; /* Size of program */
44 int prg; /* Current position in program */
45 int lit32_start; /* Start of 32-bit literal pool */
46 int lit32; /* Current position in 32-bit literal pool */
47 int lit64_start; /* Start of 64-bit literal pool */
48 int lit64; /* Current position in 64-bit literal pool */
49 int base_ip; /* Base address for literal pool */
50 int exit_ip; /* Address of exit */
51 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
52 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
53 int tail_call_start; /* Tail call start offset */
54 int excnt; /* Number of exception table entries */
55 int prologue_plt_ret; /* Return address for prologue hotpatch PLT */
56 int prologue_plt; /* Start of prologue hotpatch PLT */
57 int kern_arena; /* Pool offset of kernel arena address */
58 u64 user_arena; /* User arena address */
59 };
60
61 #define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
62 #define SEEN_LITERAL BIT(1) /* code uses literals */
63 #define SEEN_FUNC BIT(2) /* calls C functions */
64 #define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
65
66 #define NVREGS 0xffc0 /* %r6-%r15 */
67
68 /*
69 * s390 registers
70 */
71 #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
72 #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
73 #define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
74 #define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
75 #define REG_0 REG_W0 /* Register 0 */
76 #define REG_1 REG_W1 /* Register 1 */
77 #define REG_2 BPF_REG_1 /* Register 2 */
78 #define REG_3 BPF_REG_2 /* Register 3 */
79 #define REG_4 BPF_REG_3 /* Register 4 */
80 #define REG_7 BPF_REG_6 /* Register 7 */
81 #define REG_8 BPF_REG_7 /* Register 8 */
82 #define REG_14 BPF_REG_0 /* Register 14 */
83
84 /*
85 * Mapping of BPF registers to s390 registers
86 */
87 static const int reg2hex[] = {
88 /* Return code */
89 [BPF_REG_0] = 14,
90 /* Function parameters */
91 [BPF_REG_1] = 2,
92 [BPF_REG_2] = 3,
93 [BPF_REG_3] = 4,
94 [BPF_REG_4] = 5,
95 [BPF_REG_5] = 6,
96 /* Call saved registers */
97 [BPF_REG_6] = 7,
98 [BPF_REG_7] = 8,
99 [BPF_REG_8] = 9,
100 [BPF_REG_9] = 10,
101 /* BPF stack pointer */
102 [BPF_REG_FP] = 13,
103 /* Register for blinding */
104 [BPF_REG_AX] = 12,
105 /* Work registers for s390x backend */
106 [REG_W0] = 0,
107 [REG_W1] = 1,
108 [REG_L] = 11,
109 [REG_15] = 15,
110 };
111
reg(u32 dst_reg,u32 src_reg)112 static inline u32 reg(u32 dst_reg, u32 src_reg)
113 {
114 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
115 }
116
reg_high(u32 reg)117 static inline u32 reg_high(u32 reg)
118 {
119 return reg2hex[reg] << 4;
120 }
121
reg_set_seen(struct bpf_jit * jit,u32 b1)122 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
123 {
124 u32 r1 = reg2hex[b1];
125
126 if (r1 >= 6 && r1 <= 15)
127 jit->seen_regs |= (1 << r1);
128 }
129
130 #define REG_SET_SEEN(b1) \
131 ({ \
132 reg_set_seen(jit, b1); \
133 })
134
135 /*
136 * EMIT macros for code generation
137 */
138
139 #define _EMIT2(op) \
140 ({ \
141 if (jit->prg_buf) \
142 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
143 jit->prg += 2; \
144 })
145
146 #define EMIT2(op, b1, b2) \
147 ({ \
148 _EMIT2((op) | reg(b1, b2)); \
149 REG_SET_SEEN(b1); \
150 REG_SET_SEEN(b2); \
151 })
152
153 #define _EMIT4(op) \
154 ({ \
155 if (jit->prg_buf) \
156 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
157 jit->prg += 4; \
158 })
159
160 #define EMIT4(op, b1, b2) \
161 ({ \
162 _EMIT4((op) | reg(b1, b2)); \
163 REG_SET_SEEN(b1); \
164 REG_SET_SEEN(b2); \
165 })
166
167 #define EMIT4_RRF(op, b1, b2, b3) \
168 ({ \
169 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
170 REG_SET_SEEN(b1); \
171 REG_SET_SEEN(b2); \
172 REG_SET_SEEN(b3); \
173 })
174
175 #define _EMIT4_DISP(op, disp) \
176 ({ \
177 unsigned int __disp = (disp) & 0xfff; \
178 _EMIT4((op) | __disp); \
179 })
180
181 #define EMIT4_DISP(op, b1, b2, disp) \
182 ({ \
183 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
184 reg_high(b2) << 8, (disp)); \
185 REG_SET_SEEN(b1); \
186 REG_SET_SEEN(b2); \
187 })
188
189 #define EMIT4_IMM(op, b1, imm) \
190 ({ \
191 unsigned int __imm = (imm) & 0xffff; \
192 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
193 REG_SET_SEEN(b1); \
194 })
195
196 #define EMIT4_PCREL(op, pcrel) \
197 ({ \
198 long __pcrel = ((pcrel) >> 1) & 0xffff; \
199 _EMIT4((op) | __pcrel); \
200 })
201
202 #define EMIT4_PCREL_RIC(op, mask, target) \
203 ({ \
204 int __rel = ((target) - jit->prg) / 2; \
205 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
206 })
207
208 #define _EMIT6(op1, op2) \
209 ({ \
210 if (jit->prg_buf) { \
211 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
212 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
213 } \
214 jit->prg += 6; \
215 })
216
217 #define _EMIT6_DISP(op1, op2, disp) \
218 ({ \
219 unsigned int __disp = (disp) & 0xfff; \
220 _EMIT6((op1) | __disp, op2); \
221 })
222
223 #define _EMIT6_DISP_LH(op1, op2, disp) \
224 ({ \
225 u32 _disp = (u32) (disp); \
226 unsigned int __disp_h = _disp & 0xff000; \
227 unsigned int __disp_l = _disp & 0x00fff; \
228 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
229 })
230
231 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
232 ({ \
233 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
234 reg_high(b3) << 8, op2, disp); \
235 REG_SET_SEEN(b1); \
236 REG_SET_SEEN(b2); \
237 REG_SET_SEEN(b3); \
238 })
239
240 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
241 ({ \
242 unsigned int rel = (int)((target) - jit->prg) / 2; \
243 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
244 (op2) | (mask) << 12); \
245 REG_SET_SEEN(b1); \
246 REG_SET_SEEN(b2); \
247 })
248
249 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
250 ({ \
251 unsigned int rel = (int)((target) - jit->prg) / 2; \
252 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
253 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
254 REG_SET_SEEN(b1); \
255 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
256 })
257
258 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
259 ({ \
260 int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2; \
261 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
262 REG_SET_SEEN(b1); \
263 REG_SET_SEEN(b2); \
264 })
265
266 #define EMIT6_PCREL_RILB(op, b, target) \
267 ({ \
268 unsigned int rel = (int)((target) - jit->prg) / 2; \
269 _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
270 REG_SET_SEEN(b); \
271 })
272
273 #define EMIT6_PCREL_RIL(op, target) \
274 ({ \
275 unsigned int rel = (int)((target) - jit->prg) / 2; \
276 _EMIT6((op) | rel >> 16, rel & 0xffff); \
277 })
278
279 #define EMIT6_PCREL_RILC(op, mask, target) \
280 ({ \
281 EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \
282 })
283
284 #define _EMIT6_IMM(op, imm) \
285 ({ \
286 unsigned int __imm = (imm); \
287 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
288 })
289
290 #define EMIT6_IMM(op, b1, imm) \
291 ({ \
292 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
293 REG_SET_SEEN(b1); \
294 })
295
296 #define _EMIT_CONST_U32(val) \
297 ({ \
298 unsigned int ret; \
299 ret = jit->lit32; \
300 if (jit->prg_buf) \
301 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
302 jit->lit32 += 4; \
303 ret; \
304 })
305
306 #define EMIT_CONST_U32(val) \
307 ({ \
308 jit->seen |= SEEN_LITERAL; \
309 _EMIT_CONST_U32(val) - jit->base_ip; \
310 })
311
312 #define _EMIT_CONST_U64(val) \
313 ({ \
314 unsigned int ret; \
315 ret = jit->lit64; \
316 if (jit->prg_buf) \
317 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
318 jit->lit64 += 8; \
319 ret; \
320 })
321
322 #define EMIT_CONST_U64(val) \
323 ({ \
324 jit->seen |= SEEN_LITERAL; \
325 _EMIT_CONST_U64(val) - jit->base_ip; \
326 })
327
328 #define EMIT_ZERO(b1) \
329 ({ \
330 if (!fp->aux->verifier_zext) { \
331 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
332 EMIT4(0xb9160000, b1, b1); \
333 REG_SET_SEEN(b1); \
334 } \
335 })
336
337 /*
338 * Return whether this is the first pass. The first pass is special, since we
339 * don't know any sizes yet, and thus must be conservative.
340 */
is_first_pass(struct bpf_jit * jit)341 static bool is_first_pass(struct bpf_jit *jit)
342 {
343 return jit->size == 0;
344 }
345
346 /*
347 * Return whether this is the code generation pass. The code generation pass is
348 * special, since we should change as little as possible.
349 */
is_codegen_pass(struct bpf_jit * jit)350 static bool is_codegen_pass(struct bpf_jit *jit)
351 {
352 return jit->prg_buf;
353 }
354
355 /*
356 * Return whether "rel" can be encoded as a short PC-relative offset
357 */
is_valid_rel(int rel)358 static bool is_valid_rel(int rel)
359 {
360 return rel >= -65536 && rel <= 65534;
361 }
362
363 /*
364 * Return whether "off" can be reached using a short PC-relative offset
365 */
can_use_rel(struct bpf_jit * jit,int off)366 static bool can_use_rel(struct bpf_jit *jit, int off)
367 {
368 return is_valid_rel(off - jit->prg);
369 }
370
371 /*
372 * Return whether given displacement can be encoded using
373 * Long-Displacement Facility
374 */
is_valid_ldisp(int disp)375 static bool is_valid_ldisp(int disp)
376 {
377 return disp >= -524288 && disp <= 524287;
378 }
379
380 /*
381 * Return whether the next 32-bit literal pool entry can be referenced using
382 * Long-Displacement Facility
383 */
can_use_ldisp_for_lit32(struct bpf_jit * jit)384 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
385 {
386 return is_valid_ldisp(jit->lit32 - jit->base_ip);
387 }
388
389 /*
390 * Return whether the next 64-bit literal pool entry can be referenced using
391 * Long-Displacement Facility
392 */
can_use_ldisp_for_lit64(struct bpf_jit * jit)393 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
394 {
395 return is_valid_ldisp(jit->lit64 - jit->base_ip);
396 }
397
398 /*
399 * Fill whole space with illegal instructions
400 */
jit_fill_hole(void * area,unsigned int size)401 static void jit_fill_hole(void *area, unsigned int size)
402 {
403 memset(area, 0, size);
404 }
405
406 /*
407 * Save registers from "rs" (register start) to "re" (register end) on stack
408 */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)409 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
410 {
411 u32 off = STK_OFF_R6 + (rs - 6) * 8;
412
413 if (rs == re)
414 /* stg %rs,off(%r15) */
415 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
416 else
417 /* stmg %rs,%re,off(%r15) */
418 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
419 }
420
421 /*
422 * Restore registers from "rs" (register start) to "re" (register end) on stack
423 */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)424 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
425 {
426 u32 off = STK_OFF_R6 + (rs - 6) * 8;
427
428 if (jit->seen & SEEN_STACK)
429 off += STK_OFF + stack_depth;
430
431 if (rs == re)
432 /* lg %rs,off(%r15) */
433 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
434 else
435 /* lmg %rs,%re,off(%r15) */
436 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
437 }
438
439 /*
440 * Return first seen register (from start)
441 */
get_start(u16 seen_regs,int start)442 static int get_start(u16 seen_regs, int start)
443 {
444 int i;
445
446 for (i = start; i <= 15; i++) {
447 if (seen_regs & (1 << i))
448 return i;
449 }
450 return 0;
451 }
452
453 /*
454 * Return last seen register (from start) (gap >= 2)
455 */
get_end(u16 seen_regs,int start)456 static int get_end(u16 seen_regs, int start)
457 {
458 int i;
459
460 for (i = start; i < 15; i++) {
461 if (!(seen_regs & (3 << i)))
462 return i - 1;
463 }
464 return (seen_regs & (1 << 15)) ? 15 : 14;
465 }
466
467 #define REGS_SAVE 1
468 #define REGS_RESTORE 0
469 /*
470 * Save and restore clobbered registers (6-15) on stack.
471 * We save/restore registers in chunks with gap >= 2 registers.
472 */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth,u16 extra_regs)473 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth,
474 u16 extra_regs)
475 {
476 u16 seen_regs = jit->seen_regs | extra_regs;
477 const int last = 15, save_restore_size = 6;
478 int re = 6, rs;
479
480 if (is_first_pass(jit)) {
481 /*
482 * We don't know yet which registers are used. Reserve space
483 * conservatively.
484 */
485 jit->prg += (last - re + 1) * save_restore_size;
486 return;
487 }
488
489 do {
490 rs = get_start(seen_regs, re);
491 if (!rs)
492 break;
493 re = get_end(seen_regs, rs + 1);
494 if (op == REGS_SAVE)
495 save_regs(jit, rs, re);
496 else
497 restore_regs(jit, rs, re, stack_depth);
498 re++;
499 } while (re <= last);
500 }
501
bpf_skip(struct bpf_jit * jit,int size)502 static void bpf_skip(struct bpf_jit *jit, int size)
503 {
504 if (size >= 6 && !is_valid_rel(size)) {
505 /* brcl 0xf,size */
506 EMIT6_PCREL_RIL(0xc0f4000000, size);
507 size -= 6;
508 } else if (size >= 4 && is_valid_rel(size)) {
509 /* brc 0xf,size */
510 EMIT4_PCREL(0xa7f40000, size);
511 size -= 4;
512 }
513 while (size >= 2) {
514 /* bcr 0,%0 */
515 _EMIT2(0x0700);
516 size -= 2;
517 }
518 }
519
520 /*
521 * PLT for hotpatchable calls. The calling convention is the same as for the
522 * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
523 */
524 struct bpf_plt {
525 char code[16];
526 void *ret;
527 void *target;
528 } __packed;
529 extern const struct bpf_plt bpf_plt;
530 asm(
531 ".pushsection .rodata\n"
532 " .balign 8\n"
533 "bpf_plt:\n"
534 " lgrl %r0,bpf_plt_ret\n"
535 " lgrl %r1,bpf_plt_target\n"
536 " br %r1\n"
537 " .balign 8\n"
538 "bpf_plt_ret: .quad 0\n"
539 "bpf_plt_target: .quad 0\n"
540 " .popsection\n"
541 );
542
bpf_jit_plt(struct bpf_plt * plt,void * ret,void * target)543 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
544 {
545 memcpy(plt, &bpf_plt, sizeof(*plt));
546 plt->ret = ret;
547 /*
548 * (target == NULL) implies that the branch to this PLT entry was
549 * patched and became a no-op. However, some CPU could have jumped
550 * to this PLT entry before patching and may be still executing it.
551 *
552 * Since the intention in this case is to make the PLT entry a no-op,
553 * make the target point to the return label instead of NULL.
554 */
555 plt->target = target ?: ret;
556 }
557
558 /*
559 * Emit function prologue
560 *
561 * Save registers and create stack frame if necessary.
562 * See stack frame layout description in "bpf_jit.h"!
563 */
bpf_jit_prologue(struct bpf_jit * jit,struct bpf_prog * fp,u32 stack_depth)564 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
565 u32 stack_depth)
566 {
567 /* No-op for hotpatching */
568 /* brcl 0,prologue_plt */
569 EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
570 jit->prologue_plt_ret = jit->prg;
571
572 if (!bpf_is_subprog(fp)) {
573 /* Initialize the tail call counter in the main program. */
574 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
575 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
576 } else {
577 /*
578 * Skip the tail call counter initialization in subprograms.
579 * Insert nops in order to have tail_call_start at a
580 * predictable offset.
581 */
582 bpf_skip(jit, 6);
583 }
584 /* Tail calls have to skip above initialization */
585 jit->tail_call_start = jit->prg;
586 if (fp->aux->exception_cb) {
587 /*
588 * Switch stack, the new address is in the 2nd parameter.
589 *
590 * Arrange the restoration of %r6-%r15 in the epilogue.
591 * Do not restore them now, the prog does not need them.
592 */
593 /* lgr %r15,%r3 */
594 EMIT4(0xb9040000, REG_15, REG_3);
595 jit->seen_regs |= NVREGS;
596 } else {
597 /* Save registers */
598 save_restore_regs(jit, REGS_SAVE, stack_depth,
599 fp->aux->exception_boundary ? NVREGS : 0);
600 }
601 /* Setup literal pool */
602 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
603 if (!is_first_pass(jit) &&
604 is_valid_ldisp(jit->size - (jit->prg + 2))) {
605 /* basr %l,0 */
606 EMIT2(0x0d00, REG_L, REG_0);
607 jit->base_ip = jit->prg;
608 } else {
609 /* larl %l,lit32_start */
610 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
611 jit->base_ip = jit->lit32_start;
612 }
613 }
614 /* Setup stack and backchain */
615 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
616 /* lgr %w1,%r15 (backchain) */
617 EMIT4(0xb9040000, REG_W1, REG_15);
618 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
619 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
620 /* aghi %r15,-STK_OFF */
621 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
622 /* stg %w1,152(%r15) (backchain) */
623 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
624 REG_15, 152);
625 }
626 }
627
628 /*
629 * Emit an expoline for a jump that follows
630 */
emit_expoline(struct bpf_jit * jit)631 static void emit_expoline(struct bpf_jit *jit)
632 {
633 /* exrl %r0,.+10 */
634 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
635 /* j . */
636 EMIT4_PCREL(0xa7f40000, 0);
637 }
638
639 /*
640 * Emit __s390_indirect_jump_r1 thunk if necessary
641 */
emit_r1_thunk(struct bpf_jit * jit)642 static void emit_r1_thunk(struct bpf_jit *jit)
643 {
644 if (nospec_uses_trampoline()) {
645 jit->r1_thunk_ip = jit->prg;
646 emit_expoline(jit);
647 /* br %r1 */
648 _EMIT2(0x07f1);
649 }
650 }
651
652 /*
653 * Call r1 either directly or via __s390_indirect_jump_r1 thunk
654 */
call_r1(struct bpf_jit * jit)655 static void call_r1(struct bpf_jit *jit)
656 {
657 if (nospec_uses_trampoline())
658 /* brasl %r14,__s390_indirect_jump_r1 */
659 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
660 else
661 /* basr %r14,%r1 */
662 EMIT2(0x0d00, REG_14, REG_1);
663 }
664
665 /*
666 * Function epilogue
667 */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)668 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
669 {
670 jit->exit_ip = jit->prg;
671 /* Load exit code: lgr %r2,%b0 */
672 EMIT4(0xb9040000, REG_2, BPF_REG_0);
673 /* Restore registers */
674 save_restore_regs(jit, REGS_RESTORE, stack_depth, 0);
675 if (nospec_uses_trampoline()) {
676 jit->r14_thunk_ip = jit->prg;
677 /* Generate __s390_indirect_jump_r14 thunk */
678 emit_expoline(jit);
679 }
680 /* br %r14 */
681 _EMIT2(0x07fe);
682
683 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
684 emit_r1_thunk(jit);
685
686 jit->prg = ALIGN(jit->prg, 8);
687 jit->prologue_plt = jit->prg;
688 if (jit->prg_buf)
689 bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
690 jit->prg_buf + jit->prologue_plt_ret, NULL);
691 jit->prg += sizeof(struct bpf_plt);
692 }
693
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)694 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
695 {
696 regs->psw.addr = extable_fixup(x);
697 if (x->data != -1)
698 regs->gprs[x->data] = 0;
699 return true;
700 }
701
702 /*
703 * A single BPF probe instruction
704 */
705 struct bpf_jit_probe {
706 int prg; /* JITed instruction offset */
707 int nop_prg; /* JITed nop offset */
708 int reg; /* Register to clear on exception */
709 int arena_reg; /* Register to use for arena addressing */
710 };
711
bpf_jit_probe_init(struct bpf_jit_probe * probe)712 static void bpf_jit_probe_init(struct bpf_jit_probe *probe)
713 {
714 probe->prg = -1;
715 probe->nop_prg = -1;
716 probe->reg = -1;
717 probe->arena_reg = REG_0;
718 }
719
720 /*
721 * Handlers of certain exceptions leave psw.addr pointing to the instruction
722 * directly after the failing one. Therefore, create two exception table
723 * entries and also add a nop in case two probing instructions come directly
724 * after each other.
725 */
bpf_jit_probe_emit_nop(struct bpf_jit * jit,struct bpf_jit_probe * probe)726 static void bpf_jit_probe_emit_nop(struct bpf_jit *jit,
727 struct bpf_jit_probe *probe)
728 {
729 if (probe->prg == -1 || probe->nop_prg != -1)
730 /* The probe is not armed or nop is already emitted. */
731 return;
732
733 probe->nop_prg = jit->prg;
734 /* bcr 0,%0 */
735 _EMIT2(0x0700);
736 }
737
bpf_jit_probe_load_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)738 static void bpf_jit_probe_load_pre(struct bpf_jit *jit, struct bpf_insn *insn,
739 struct bpf_jit_probe *probe)
740 {
741 if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
742 BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
743 BPF_MODE(insn->code) != BPF_PROBE_MEM32)
744 return;
745
746 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
747 /* lgrl %r1,kern_arena */
748 EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
749 probe->arena_reg = REG_W1;
750 }
751 probe->prg = jit->prg;
752 probe->reg = reg2hex[insn->dst_reg];
753 }
754
bpf_jit_probe_store_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)755 static void bpf_jit_probe_store_pre(struct bpf_jit *jit, struct bpf_insn *insn,
756 struct bpf_jit_probe *probe)
757 {
758 if (BPF_MODE(insn->code) != BPF_PROBE_MEM32)
759 return;
760
761 /* lgrl %r1,kern_arena */
762 EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
763 probe->arena_reg = REG_W1;
764 probe->prg = jit->prg;
765 }
766
bpf_jit_probe_atomic_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)767 static void bpf_jit_probe_atomic_pre(struct bpf_jit *jit,
768 struct bpf_insn *insn,
769 struct bpf_jit_probe *probe)
770 {
771 if (BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
772 return;
773
774 /* lgrl %r1,kern_arena */
775 EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
776 /* agr %r1,%dst */
777 EMIT4(0xb9080000, REG_W1, insn->dst_reg);
778 probe->arena_reg = REG_W1;
779 probe->prg = jit->prg;
780 }
781
bpf_jit_probe_post(struct bpf_jit * jit,struct bpf_prog * fp,struct bpf_jit_probe * probe)782 static int bpf_jit_probe_post(struct bpf_jit *jit, struct bpf_prog *fp,
783 struct bpf_jit_probe *probe)
784 {
785 struct exception_table_entry *ex;
786 int i, prg;
787 s64 delta;
788 u8 *insn;
789
790 if (probe->prg == -1)
791 /* The probe is not armed. */
792 return 0;
793 bpf_jit_probe_emit_nop(jit, probe);
794 if (!fp->aux->extable)
795 /* Do nothing during early JIT passes. */
796 return 0;
797 insn = jit->prg_buf + probe->prg;
798 if (WARN_ON_ONCE(probe->prg + insn_length(*insn) != probe->nop_prg))
799 /* JIT bug - gap between probe and nop instructions. */
800 return -1;
801 for (i = 0; i < 2; i++) {
802 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
803 /* Verifier bug - not enough entries. */
804 return -1;
805 ex = &fp->aux->extable[jit->excnt];
806 /* Add extable entries for probe and nop instructions. */
807 prg = i == 0 ? probe->prg : probe->nop_prg;
808 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
809 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
810 /* JIT bug - code and extable must be close. */
811 return -1;
812 ex->insn = delta;
813 /*
814 * Land on the current instruction. Note that the extable
815 * infrastructure ignores the fixup field; it is handled by
816 * ex_handler_bpf().
817 */
818 delta = jit->prg_buf + jit->prg - (u8 *)&ex->fixup;
819 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
820 /* JIT bug - landing pad and extable must be close. */
821 return -1;
822 ex->fixup = delta;
823 ex->type = EX_TYPE_BPF;
824 ex->data = probe->reg;
825 jit->excnt++;
826 }
827 return 0;
828 }
829
830 /*
831 * Sign-extend the register if necessary
832 */
sign_extend(struct bpf_jit * jit,int r,u8 size,u8 flags)833 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
834 {
835 if (!(flags & BTF_FMODEL_SIGNED_ARG))
836 return 0;
837
838 switch (size) {
839 case 1:
840 /* lgbr %r,%r */
841 EMIT4(0xb9060000, r, r);
842 return 0;
843 case 2:
844 /* lghr %r,%r */
845 EMIT4(0xb9070000, r, r);
846 return 0;
847 case 4:
848 /* lgfr %r,%r */
849 EMIT4(0xb9140000, r, r);
850 return 0;
851 case 8:
852 return 0;
853 default:
854 return -1;
855 }
856 }
857
858 /*
859 * Compile one eBPF instruction into s390x code
860 *
861 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
862 * stack space for the large switch statement.
863 */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass,u32 stack_depth)864 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
865 int i, bool extra_pass, u32 stack_depth)
866 {
867 struct bpf_insn *insn = &fp->insnsi[i];
868 s32 branch_oc_off = insn->off;
869 u32 dst_reg = insn->dst_reg;
870 u32 src_reg = insn->src_reg;
871 struct bpf_jit_probe probe;
872 int last, insn_count = 1;
873 u32 *addrs = jit->addrs;
874 s32 imm = insn->imm;
875 s16 off = insn->off;
876 unsigned int mask;
877 int err;
878
879 bpf_jit_probe_init(&probe);
880
881 switch (insn->code) {
882 /*
883 * BPF_MOV
884 */
885 case BPF_ALU | BPF_MOV | BPF_X:
886 switch (insn->off) {
887 case 0: /* DST = (u32) SRC */
888 /* llgfr %dst,%src */
889 EMIT4(0xb9160000, dst_reg, src_reg);
890 if (insn_is_zext(&insn[1]))
891 insn_count = 2;
892 break;
893 case 8: /* DST = (u32)(s8) SRC */
894 /* lbr %dst,%src */
895 EMIT4(0xb9260000, dst_reg, src_reg);
896 /* llgfr %dst,%dst */
897 EMIT4(0xb9160000, dst_reg, dst_reg);
898 break;
899 case 16: /* DST = (u32)(s16) SRC */
900 /* lhr %dst,%src */
901 EMIT4(0xb9270000, dst_reg, src_reg);
902 /* llgfr %dst,%dst */
903 EMIT4(0xb9160000, dst_reg, dst_reg);
904 break;
905 }
906 break;
907 case BPF_ALU64 | BPF_MOV | BPF_X:
908 if (insn_is_cast_user(insn)) {
909 int patch_brc;
910
911 /* ltgr %dst,%src */
912 EMIT4(0xb9020000, dst_reg, src_reg);
913 /* brc 8,0f */
914 patch_brc = jit->prg;
915 EMIT4_PCREL_RIC(0xa7040000, 8, 0);
916 /* iihf %dst,user_arena>>32 */
917 EMIT6_IMM(0xc0080000, dst_reg, jit->user_arena >> 32);
918 /* 0: */
919 if (jit->prg_buf)
920 *(u16 *)(jit->prg_buf + patch_brc + 2) =
921 (jit->prg - patch_brc) >> 1;
922 break;
923 }
924 switch (insn->off) {
925 case 0: /* DST = SRC */
926 /* lgr %dst,%src */
927 EMIT4(0xb9040000, dst_reg, src_reg);
928 break;
929 case 8: /* DST = (s8) SRC */
930 /* lgbr %dst,%src */
931 EMIT4(0xb9060000, dst_reg, src_reg);
932 break;
933 case 16: /* DST = (s16) SRC */
934 /* lghr %dst,%src */
935 EMIT4(0xb9070000, dst_reg, src_reg);
936 break;
937 case 32: /* DST = (s32) SRC */
938 /* lgfr %dst,%src */
939 EMIT4(0xb9140000, dst_reg, src_reg);
940 break;
941 }
942 break;
943 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
944 /* llilf %dst,imm */
945 EMIT6_IMM(0xc00f0000, dst_reg, imm);
946 if (insn_is_zext(&insn[1]))
947 insn_count = 2;
948 break;
949 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
950 /* lgfi %dst,imm */
951 EMIT6_IMM(0xc0010000, dst_reg, imm);
952 break;
953 /*
954 * BPF_LD 64
955 */
956 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
957 {
958 /* 16 byte instruction that uses two 'struct bpf_insn' */
959 u64 imm64;
960
961 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
962 /* lgrl %dst,imm */
963 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
964 insn_count = 2;
965 break;
966 }
967 /*
968 * BPF_ADD
969 */
970 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
971 /* ar %dst,%src */
972 EMIT2(0x1a00, dst_reg, src_reg);
973 EMIT_ZERO(dst_reg);
974 break;
975 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
976 /* agr %dst,%src */
977 EMIT4(0xb9080000, dst_reg, src_reg);
978 break;
979 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
980 if (imm != 0) {
981 /* alfi %dst,imm */
982 EMIT6_IMM(0xc20b0000, dst_reg, imm);
983 }
984 EMIT_ZERO(dst_reg);
985 break;
986 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
987 if (!imm)
988 break;
989 /* agfi %dst,imm */
990 EMIT6_IMM(0xc2080000, dst_reg, imm);
991 break;
992 /*
993 * BPF_SUB
994 */
995 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
996 /* sr %dst,%src */
997 EMIT2(0x1b00, dst_reg, src_reg);
998 EMIT_ZERO(dst_reg);
999 break;
1000 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
1001 /* sgr %dst,%src */
1002 EMIT4(0xb9090000, dst_reg, src_reg);
1003 break;
1004 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
1005 if (imm != 0) {
1006 /* alfi %dst,-imm */
1007 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
1008 }
1009 EMIT_ZERO(dst_reg);
1010 break;
1011 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
1012 if (!imm)
1013 break;
1014 if (imm == -0x80000000) {
1015 /* algfi %dst,0x80000000 */
1016 EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
1017 } else {
1018 /* agfi %dst,-imm */
1019 EMIT6_IMM(0xc2080000, dst_reg, -imm);
1020 }
1021 break;
1022 /*
1023 * BPF_MUL
1024 */
1025 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
1026 /* msr %dst,%src */
1027 EMIT4(0xb2520000, dst_reg, src_reg);
1028 EMIT_ZERO(dst_reg);
1029 break;
1030 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
1031 /* msgr %dst,%src */
1032 EMIT4(0xb90c0000, dst_reg, src_reg);
1033 break;
1034 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
1035 if (imm != 1) {
1036 /* msfi %r5,imm */
1037 EMIT6_IMM(0xc2010000, dst_reg, imm);
1038 }
1039 EMIT_ZERO(dst_reg);
1040 break;
1041 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
1042 if (imm == 1)
1043 break;
1044 /* msgfi %dst,imm */
1045 EMIT6_IMM(0xc2000000, dst_reg, imm);
1046 break;
1047 /*
1048 * BPF_DIV / BPF_MOD
1049 */
1050 case BPF_ALU | BPF_DIV | BPF_X:
1051 case BPF_ALU | BPF_MOD | BPF_X:
1052 {
1053 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1054
1055 switch (off) {
1056 case 0: /* dst = (u32) dst {/,%} (u32) src */
1057 /* xr %w0,%w0 */
1058 EMIT2(0x1700, REG_W0, REG_W0);
1059 /* lr %w1,%dst */
1060 EMIT2(0x1800, REG_W1, dst_reg);
1061 /* dlr %w0,%src */
1062 EMIT4(0xb9970000, REG_W0, src_reg);
1063 break;
1064 case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
1065 /* lgfr %r1,%dst */
1066 EMIT4(0xb9140000, REG_W1, dst_reg);
1067 /* dsgfr %r0,%src */
1068 EMIT4(0xb91d0000, REG_W0, src_reg);
1069 break;
1070 }
1071 /* llgfr %dst,%rc */
1072 EMIT4(0xb9160000, dst_reg, rc_reg);
1073 if (insn_is_zext(&insn[1]))
1074 insn_count = 2;
1075 break;
1076 }
1077 case BPF_ALU64 | BPF_DIV | BPF_X:
1078 case BPF_ALU64 | BPF_MOD | BPF_X:
1079 {
1080 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1081
1082 switch (off) {
1083 case 0: /* dst = dst {/,%} src */
1084 /* lghi %w0,0 */
1085 EMIT4_IMM(0xa7090000, REG_W0, 0);
1086 /* lgr %w1,%dst */
1087 EMIT4(0xb9040000, REG_W1, dst_reg);
1088 /* dlgr %w0,%src */
1089 EMIT4(0xb9870000, REG_W0, src_reg);
1090 break;
1091 case 1: /* dst = (s64) dst {/,%} (s64) src */
1092 /* lgr %w1,%dst */
1093 EMIT4(0xb9040000, REG_W1, dst_reg);
1094 /* dsgr %w0,%src */
1095 EMIT4(0xb90d0000, REG_W0, src_reg);
1096 break;
1097 }
1098 /* lgr %dst,%rc */
1099 EMIT4(0xb9040000, dst_reg, rc_reg);
1100 break;
1101 }
1102 case BPF_ALU | BPF_DIV | BPF_K:
1103 case BPF_ALU | BPF_MOD | BPF_K:
1104 {
1105 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1106
1107 if (imm == 1) {
1108 if (BPF_OP(insn->code) == BPF_MOD)
1109 /* lghi %dst,0 */
1110 EMIT4_IMM(0xa7090000, dst_reg, 0);
1111 else
1112 EMIT_ZERO(dst_reg);
1113 break;
1114 }
1115 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1116 switch (off) {
1117 case 0: /* dst = (u32) dst {/,%} (u32) imm */
1118 /* xr %w0,%w0 */
1119 EMIT2(0x1700, REG_W0, REG_W0);
1120 /* lr %w1,%dst */
1121 EMIT2(0x1800, REG_W1, dst_reg);
1122 /* dl %w0,<d(imm)>(%l) */
1123 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1124 REG_L, EMIT_CONST_U32(imm));
1125 break;
1126 case 1: /* dst = (s32) dst {/,%} (s32) imm */
1127 /* lgfr %r1,%dst */
1128 EMIT4(0xb9140000, REG_W1, dst_reg);
1129 /* dsgf %r0,<d(imm)>(%l) */
1130 EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1131 REG_L, EMIT_CONST_U32(imm));
1132 break;
1133 }
1134 } else {
1135 switch (off) {
1136 case 0: /* dst = (u32) dst {/,%} (u32) imm */
1137 /* xr %w0,%w0 */
1138 EMIT2(0x1700, REG_W0, REG_W0);
1139 /* lr %w1,%dst */
1140 EMIT2(0x1800, REG_W1, dst_reg);
1141 /* lrl %dst,imm */
1142 EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1143 _EMIT_CONST_U32(imm));
1144 jit->seen |= SEEN_LITERAL;
1145 /* dlr %w0,%dst */
1146 EMIT4(0xb9970000, REG_W0, dst_reg);
1147 break;
1148 case 1: /* dst = (s32) dst {/,%} (s32) imm */
1149 /* lgfr %w1,%dst */
1150 EMIT4(0xb9140000, REG_W1, dst_reg);
1151 /* lgfrl %dst,imm */
1152 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1153 _EMIT_CONST_U32(imm));
1154 jit->seen |= SEEN_LITERAL;
1155 /* dsgr %w0,%dst */
1156 EMIT4(0xb90d0000, REG_W0, dst_reg);
1157 break;
1158 }
1159 }
1160 /* llgfr %dst,%rc */
1161 EMIT4(0xb9160000, dst_reg, rc_reg);
1162 if (insn_is_zext(&insn[1]))
1163 insn_count = 2;
1164 break;
1165 }
1166 case BPF_ALU64 | BPF_DIV | BPF_K:
1167 case BPF_ALU64 | BPF_MOD | BPF_K:
1168 {
1169 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1170
1171 if (imm == 1) {
1172 if (BPF_OP(insn->code) == BPF_MOD)
1173 /* lhgi %dst,0 */
1174 EMIT4_IMM(0xa7090000, dst_reg, 0);
1175 break;
1176 }
1177 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1178 switch (off) {
1179 case 0: /* dst = dst {/,%} imm */
1180 /* lghi %w0,0 */
1181 EMIT4_IMM(0xa7090000, REG_W0, 0);
1182 /* lgr %w1,%dst */
1183 EMIT4(0xb9040000, REG_W1, dst_reg);
1184 /* dlg %w0,<d(imm)>(%l) */
1185 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1186 REG_L, EMIT_CONST_U64(imm));
1187 break;
1188 case 1: /* dst = (s64) dst {/,%} (s64) imm */
1189 /* lgr %w1,%dst */
1190 EMIT4(0xb9040000, REG_W1, dst_reg);
1191 /* dsg %w0,<d(imm)>(%l) */
1192 EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1193 REG_L, EMIT_CONST_U64(imm));
1194 break;
1195 }
1196 } else {
1197 switch (off) {
1198 case 0: /* dst = dst {/,%} imm */
1199 /* lghi %w0,0 */
1200 EMIT4_IMM(0xa7090000, REG_W0, 0);
1201 /* lgr %w1,%dst */
1202 EMIT4(0xb9040000, REG_W1, dst_reg);
1203 /* lgrl %dst,imm */
1204 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1205 _EMIT_CONST_U64(imm));
1206 jit->seen |= SEEN_LITERAL;
1207 /* dlgr %w0,%dst */
1208 EMIT4(0xb9870000, REG_W0, dst_reg);
1209 break;
1210 case 1: /* dst = (s64) dst {/,%} (s64) imm */
1211 /* lgr %w1,%dst */
1212 EMIT4(0xb9040000, REG_W1, dst_reg);
1213 /* lgrl %dst,imm */
1214 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1215 _EMIT_CONST_U64(imm));
1216 jit->seen |= SEEN_LITERAL;
1217 /* dsgr %w0,%dst */
1218 EMIT4(0xb90d0000, REG_W0, dst_reg);
1219 break;
1220 }
1221 }
1222 /* lgr %dst,%rc */
1223 EMIT4(0xb9040000, dst_reg, rc_reg);
1224 break;
1225 }
1226 /*
1227 * BPF_AND
1228 */
1229 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1230 /* nr %dst,%src */
1231 EMIT2(0x1400, dst_reg, src_reg);
1232 EMIT_ZERO(dst_reg);
1233 break;
1234 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1235 /* ngr %dst,%src */
1236 EMIT4(0xb9800000, dst_reg, src_reg);
1237 break;
1238 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1239 /* nilf %dst,imm */
1240 EMIT6_IMM(0xc00b0000, dst_reg, imm);
1241 EMIT_ZERO(dst_reg);
1242 break;
1243 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1244 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1245 /* ng %dst,<d(imm)>(%l) */
1246 EMIT6_DISP_LH(0xe3000000, 0x0080,
1247 dst_reg, REG_0, REG_L,
1248 EMIT_CONST_U64(imm));
1249 } else {
1250 /* lgrl %w0,imm */
1251 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1252 _EMIT_CONST_U64(imm));
1253 jit->seen |= SEEN_LITERAL;
1254 /* ngr %dst,%w0 */
1255 EMIT4(0xb9800000, dst_reg, REG_W0);
1256 }
1257 break;
1258 /*
1259 * BPF_OR
1260 */
1261 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1262 /* or %dst,%src */
1263 EMIT2(0x1600, dst_reg, src_reg);
1264 EMIT_ZERO(dst_reg);
1265 break;
1266 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1267 /* ogr %dst,%src */
1268 EMIT4(0xb9810000, dst_reg, src_reg);
1269 break;
1270 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1271 /* oilf %dst,imm */
1272 EMIT6_IMM(0xc00d0000, dst_reg, imm);
1273 EMIT_ZERO(dst_reg);
1274 break;
1275 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1276 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1277 /* og %dst,<d(imm)>(%l) */
1278 EMIT6_DISP_LH(0xe3000000, 0x0081,
1279 dst_reg, REG_0, REG_L,
1280 EMIT_CONST_U64(imm));
1281 } else {
1282 /* lgrl %w0,imm */
1283 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1284 _EMIT_CONST_U64(imm));
1285 jit->seen |= SEEN_LITERAL;
1286 /* ogr %dst,%w0 */
1287 EMIT4(0xb9810000, dst_reg, REG_W0);
1288 }
1289 break;
1290 /*
1291 * BPF_XOR
1292 */
1293 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1294 /* xr %dst,%src */
1295 EMIT2(0x1700, dst_reg, src_reg);
1296 EMIT_ZERO(dst_reg);
1297 break;
1298 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1299 /* xgr %dst,%src */
1300 EMIT4(0xb9820000, dst_reg, src_reg);
1301 break;
1302 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1303 if (imm != 0) {
1304 /* xilf %dst,imm */
1305 EMIT6_IMM(0xc0070000, dst_reg, imm);
1306 }
1307 EMIT_ZERO(dst_reg);
1308 break;
1309 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1310 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1311 /* xg %dst,<d(imm)>(%l) */
1312 EMIT6_DISP_LH(0xe3000000, 0x0082,
1313 dst_reg, REG_0, REG_L,
1314 EMIT_CONST_U64(imm));
1315 } else {
1316 /* lgrl %w0,imm */
1317 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1318 _EMIT_CONST_U64(imm));
1319 jit->seen |= SEEN_LITERAL;
1320 /* xgr %dst,%w0 */
1321 EMIT4(0xb9820000, dst_reg, REG_W0);
1322 }
1323 break;
1324 /*
1325 * BPF_LSH
1326 */
1327 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1328 /* sll %dst,0(%src) */
1329 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1330 EMIT_ZERO(dst_reg);
1331 break;
1332 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1333 /* sllg %dst,%dst,0(%src) */
1334 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1335 break;
1336 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1337 if (imm != 0) {
1338 /* sll %dst,imm(%r0) */
1339 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1340 }
1341 EMIT_ZERO(dst_reg);
1342 break;
1343 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1344 if (imm == 0)
1345 break;
1346 /* sllg %dst,%dst,imm(%r0) */
1347 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1348 break;
1349 /*
1350 * BPF_RSH
1351 */
1352 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1353 /* srl %dst,0(%src) */
1354 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1355 EMIT_ZERO(dst_reg);
1356 break;
1357 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1358 /* srlg %dst,%dst,0(%src) */
1359 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1360 break;
1361 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1362 if (imm != 0) {
1363 /* srl %dst,imm(%r0) */
1364 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1365 }
1366 EMIT_ZERO(dst_reg);
1367 break;
1368 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1369 if (imm == 0)
1370 break;
1371 /* srlg %dst,%dst,imm(%r0) */
1372 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1373 break;
1374 /*
1375 * BPF_ARSH
1376 */
1377 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1378 /* sra %dst,%dst,0(%src) */
1379 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1380 EMIT_ZERO(dst_reg);
1381 break;
1382 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1383 /* srag %dst,%dst,0(%src) */
1384 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1385 break;
1386 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1387 if (imm != 0) {
1388 /* sra %dst,imm(%r0) */
1389 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1390 }
1391 EMIT_ZERO(dst_reg);
1392 break;
1393 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1394 if (imm == 0)
1395 break;
1396 /* srag %dst,%dst,imm(%r0) */
1397 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1398 break;
1399 /*
1400 * BPF_NEG
1401 */
1402 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1403 /* lcr %dst,%dst */
1404 EMIT2(0x1300, dst_reg, dst_reg);
1405 EMIT_ZERO(dst_reg);
1406 break;
1407 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1408 /* lcgr %dst,%dst */
1409 EMIT4(0xb9030000, dst_reg, dst_reg);
1410 break;
1411 /*
1412 * BPF_FROM_BE/LE
1413 */
1414 case BPF_ALU | BPF_END | BPF_FROM_BE:
1415 /* s390 is big endian, therefore only clear high order bytes */
1416 switch (imm) {
1417 case 16: /* dst = (u16) cpu_to_be16(dst) */
1418 /* llghr %dst,%dst */
1419 EMIT4(0xb9850000, dst_reg, dst_reg);
1420 if (insn_is_zext(&insn[1]))
1421 insn_count = 2;
1422 break;
1423 case 32: /* dst = (u32) cpu_to_be32(dst) */
1424 if (!fp->aux->verifier_zext)
1425 /* llgfr %dst,%dst */
1426 EMIT4(0xb9160000, dst_reg, dst_reg);
1427 break;
1428 case 64: /* dst = (u64) cpu_to_be64(dst) */
1429 break;
1430 }
1431 break;
1432 case BPF_ALU | BPF_END | BPF_FROM_LE:
1433 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1434 switch (imm) {
1435 case 16: /* dst = (u16) cpu_to_le16(dst) */
1436 /* lrvr %dst,%dst */
1437 EMIT4(0xb91f0000, dst_reg, dst_reg);
1438 /* srl %dst,16(%r0) */
1439 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1440 /* llghr %dst,%dst */
1441 EMIT4(0xb9850000, dst_reg, dst_reg);
1442 if (insn_is_zext(&insn[1]))
1443 insn_count = 2;
1444 break;
1445 case 32: /* dst = (u32) cpu_to_le32(dst) */
1446 /* lrvr %dst,%dst */
1447 EMIT4(0xb91f0000, dst_reg, dst_reg);
1448 if (!fp->aux->verifier_zext)
1449 /* llgfr %dst,%dst */
1450 EMIT4(0xb9160000, dst_reg, dst_reg);
1451 break;
1452 case 64: /* dst = (u64) cpu_to_le64(dst) */
1453 /* lrvgr %dst,%dst */
1454 EMIT4(0xb90f0000, dst_reg, dst_reg);
1455 break;
1456 }
1457 break;
1458 /*
1459 * BPF_NOSPEC (speculation barrier)
1460 */
1461 case BPF_ST | BPF_NOSPEC:
1462 break;
1463 /*
1464 * BPF_ST(X)
1465 */
1466 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1467 case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1468 bpf_jit_probe_store_pre(jit, insn, &probe);
1469 /* stcy %src,off(%dst,%arena) */
1470 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg,
1471 probe.arena_reg, off);
1472 err = bpf_jit_probe_post(jit, fp, &probe);
1473 if (err < 0)
1474 return err;
1475 jit->seen |= SEEN_MEM;
1476 break;
1477 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1478 case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1479 bpf_jit_probe_store_pre(jit, insn, &probe);
1480 /* sthy %src,off(%dst,%arena) */
1481 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg,
1482 probe.arena_reg, off);
1483 err = bpf_jit_probe_post(jit, fp, &probe);
1484 if (err < 0)
1485 return err;
1486 jit->seen |= SEEN_MEM;
1487 break;
1488 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1489 case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1490 bpf_jit_probe_store_pre(jit, insn, &probe);
1491 /* sty %src,off(%dst,%arena) */
1492 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg,
1493 probe.arena_reg, off);
1494 err = bpf_jit_probe_post(jit, fp, &probe);
1495 if (err < 0)
1496 return err;
1497 jit->seen |= SEEN_MEM;
1498 break;
1499 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1500 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1501 bpf_jit_probe_store_pre(jit, insn, &probe);
1502 /* stg %src,off(%dst,%arena) */
1503 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg,
1504 probe.arena_reg, off);
1505 err = bpf_jit_probe_post(jit, fp, &probe);
1506 if (err < 0)
1507 return err;
1508 jit->seen |= SEEN_MEM;
1509 break;
1510 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1511 case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1512 /* lhi %w0,imm */
1513 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1514 bpf_jit_probe_store_pre(jit, insn, &probe);
1515 /* stcy %w0,off(%dst,%arena) */
1516 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg,
1517 probe.arena_reg, off);
1518 err = bpf_jit_probe_post(jit, fp, &probe);
1519 if (err < 0)
1520 return err;
1521 jit->seen |= SEEN_MEM;
1522 break;
1523 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1524 case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1525 /* lhi %w0,imm */
1526 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1527 bpf_jit_probe_store_pre(jit, insn, &probe);
1528 /* sthy %w0,off(%dst,%arena) */
1529 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg,
1530 probe.arena_reg, off);
1531 err = bpf_jit_probe_post(jit, fp, &probe);
1532 if (err < 0)
1533 return err;
1534 jit->seen |= SEEN_MEM;
1535 break;
1536 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1537 case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1538 /* llilf %w0,imm */
1539 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1540 bpf_jit_probe_store_pre(jit, insn, &probe);
1541 /* sty %w0,off(%dst,%arena) */
1542 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg,
1543 probe.arena_reg, off);
1544 err = bpf_jit_probe_post(jit, fp, &probe);
1545 if (err < 0)
1546 return err;
1547 jit->seen |= SEEN_MEM;
1548 break;
1549 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1550 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1551 /* lgfi %w0,imm */
1552 EMIT6_IMM(0xc0010000, REG_W0, imm);
1553 bpf_jit_probe_store_pre(jit, insn, &probe);
1554 /* stg %w0,off(%dst,%arena) */
1555 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg,
1556 probe.arena_reg, off);
1557 err = bpf_jit_probe_post(jit, fp, &probe);
1558 if (err < 0)
1559 return err;
1560 jit->seen |= SEEN_MEM;
1561 break;
1562 /*
1563 * BPF_ATOMIC
1564 */
1565 case BPF_STX | BPF_ATOMIC | BPF_DW:
1566 case BPF_STX | BPF_ATOMIC | BPF_W:
1567 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1568 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1569 {
1570 bool is32 = BPF_SIZE(insn->code) == BPF_W;
1571
1572 /*
1573 * Unlike loads and stores, atomics have only a base register,
1574 * but no index register. For the non-arena case, simply use
1575 * %dst as a base. For the arena case, use the work register
1576 * %r1: first, load the arena base into it, and then add %dst
1577 * to it.
1578 */
1579 probe.arena_reg = dst_reg;
1580
1581 switch (insn->imm) {
1582 #define EMIT_ATOMIC(op32, op64) do { \
1583 bpf_jit_probe_atomic_pre(jit, insn, &probe); \
1584 /* {op32|op64} {%w0|%src},%src,off(%arena) */ \
1585 EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1586 (insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1587 src_reg, probe.arena_reg, off); \
1588 err = bpf_jit_probe_post(jit, fp, &probe); \
1589 if (err < 0) \
1590 return err; \
1591 if (insn->imm & BPF_FETCH) { \
1592 /* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */ \
1593 _EMIT2(0x07e0); \
1594 if (is32) \
1595 EMIT_ZERO(src_reg); \
1596 } \
1597 } while (0)
1598 case BPF_ADD:
1599 case BPF_ADD | BPF_FETCH:
1600 /* {laal|laalg} */
1601 EMIT_ATOMIC(0x00fa, 0x00ea);
1602 break;
1603 case BPF_AND:
1604 case BPF_AND | BPF_FETCH:
1605 /* {lan|lang} */
1606 EMIT_ATOMIC(0x00f4, 0x00e4);
1607 break;
1608 case BPF_OR:
1609 case BPF_OR | BPF_FETCH:
1610 /* {lao|laog} */
1611 EMIT_ATOMIC(0x00f6, 0x00e6);
1612 break;
1613 case BPF_XOR:
1614 case BPF_XOR | BPF_FETCH:
1615 /* {lax|laxg} */
1616 EMIT_ATOMIC(0x00f7, 0x00e7);
1617 break;
1618 #undef EMIT_ATOMIC
1619 case BPF_XCHG: {
1620 struct bpf_jit_probe load_probe = probe;
1621 int loop_start;
1622
1623 bpf_jit_probe_atomic_pre(jit, insn, &load_probe);
1624 /* {ly|lg} %w0,off(%arena) */
1625 EMIT6_DISP_LH(0xe3000000,
1626 is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1627 load_probe.arena_reg, off);
1628 bpf_jit_probe_emit_nop(jit, &load_probe);
1629 /* Reuse {ly|lg}'s arena_reg for {csy|csg}. */
1630 if (load_probe.prg != -1) {
1631 probe.prg = jit->prg;
1632 probe.arena_reg = load_probe.arena_reg;
1633 }
1634 loop_start = jit->prg;
1635 /* 0: {csy|csg} %w0,%src,off(%arena) */
1636 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1637 REG_W0, src_reg, probe.arena_reg, off);
1638 bpf_jit_probe_emit_nop(jit, &probe);
1639 /* brc 4,0b */
1640 EMIT4_PCREL_RIC(0xa7040000, 4, loop_start);
1641 /* {llgfr|lgr} %src,%w0 */
1642 EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1643 /* Both probes should land here on exception. */
1644 err = bpf_jit_probe_post(jit, fp, &load_probe);
1645 if (err < 0)
1646 return err;
1647 err = bpf_jit_probe_post(jit, fp, &probe);
1648 if (err < 0)
1649 return err;
1650 if (is32 && insn_is_zext(&insn[1]))
1651 insn_count = 2;
1652 break;
1653 }
1654 case BPF_CMPXCHG:
1655 bpf_jit_probe_atomic_pre(jit, insn, &probe);
1656 /* 0: {csy|csg} %b0,%src,off(%arena) */
1657 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1658 BPF_REG_0, src_reg,
1659 probe.arena_reg, off);
1660 err = bpf_jit_probe_post(jit, fp, &probe);
1661 if (err < 0)
1662 return err;
1663 break;
1664 default:
1665 pr_err("Unknown atomic operation %02x\n", insn->imm);
1666 return -1;
1667 }
1668
1669 jit->seen |= SEEN_MEM;
1670 break;
1671 }
1672 /*
1673 * BPF_LDX
1674 */
1675 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1676 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1677 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1678 bpf_jit_probe_load_pre(jit, insn, &probe);
1679 /* llgc %dst,off(%src,%arena) */
1680 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg,
1681 probe.arena_reg, off);
1682 err = bpf_jit_probe_post(jit, fp, &probe);
1683 if (err < 0)
1684 return err;
1685 jit->seen |= SEEN_MEM;
1686 if (insn_is_zext(&insn[1]))
1687 insn_count = 2;
1688 break;
1689 case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1690 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1691 bpf_jit_probe_load_pre(jit, insn, &probe);
1692 /* lgb %dst,off(%src) */
1693 EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1694 err = bpf_jit_probe_post(jit, fp, &probe);
1695 if (err < 0)
1696 return err;
1697 jit->seen |= SEEN_MEM;
1698 break;
1699 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1700 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1701 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1702 bpf_jit_probe_load_pre(jit, insn, &probe);
1703 /* llgh %dst,off(%src,%arena) */
1704 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg,
1705 probe.arena_reg, off);
1706 err = bpf_jit_probe_post(jit, fp, &probe);
1707 if (err < 0)
1708 return err;
1709 jit->seen |= SEEN_MEM;
1710 if (insn_is_zext(&insn[1]))
1711 insn_count = 2;
1712 break;
1713 case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1714 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1715 bpf_jit_probe_load_pre(jit, insn, &probe);
1716 /* lgh %dst,off(%src) */
1717 EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1718 err = bpf_jit_probe_post(jit, fp, &probe);
1719 if (err < 0)
1720 return err;
1721 jit->seen |= SEEN_MEM;
1722 break;
1723 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1724 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1725 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1726 bpf_jit_probe_load_pre(jit, insn, &probe);
1727 /* llgf %dst,off(%src) */
1728 jit->seen |= SEEN_MEM;
1729 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg,
1730 probe.arena_reg, off);
1731 err = bpf_jit_probe_post(jit, fp, &probe);
1732 if (err < 0)
1733 return err;
1734 if (insn_is_zext(&insn[1]))
1735 insn_count = 2;
1736 break;
1737 case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1738 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1739 bpf_jit_probe_load_pre(jit, insn, &probe);
1740 /* lgf %dst,off(%src) */
1741 jit->seen |= SEEN_MEM;
1742 EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1743 err = bpf_jit_probe_post(jit, fp, &probe);
1744 if (err < 0)
1745 return err;
1746 break;
1747 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1748 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1749 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1750 bpf_jit_probe_load_pre(jit, insn, &probe);
1751 /* lg %dst,off(%src,%arena) */
1752 jit->seen |= SEEN_MEM;
1753 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg,
1754 probe.arena_reg, off);
1755 err = bpf_jit_probe_post(jit, fp, &probe);
1756 if (err < 0)
1757 return err;
1758 break;
1759 /*
1760 * BPF_JMP / CALL
1761 */
1762 case BPF_JMP | BPF_CALL:
1763 {
1764 const struct btf_func_model *m;
1765 bool func_addr_fixed;
1766 int j, ret;
1767 u64 func;
1768
1769 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1770 &func, &func_addr_fixed);
1771 if (ret < 0)
1772 return -1;
1773
1774 REG_SET_SEEN(BPF_REG_5);
1775 jit->seen |= SEEN_FUNC;
1776 /*
1777 * Copy the tail call counter to where the callee expects it.
1778 *
1779 * Note 1: The callee can increment the tail call counter, but
1780 * we do not load it back, since the x86 JIT does not do this
1781 * either.
1782 *
1783 * Note 2: We assume that the verifier does not let us call the
1784 * main program, which clears the tail call counter on entry.
1785 */
1786 /* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1787 _EMIT6(0xd203f000 | STK_OFF_TCCNT,
1788 0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1789
1790 /* Sign-extend the kfunc arguments. */
1791 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1792 m = bpf_jit_find_kfunc_model(fp, insn);
1793 if (!m)
1794 return -1;
1795
1796 for (j = 0; j < m->nr_args; j++) {
1797 if (sign_extend(jit, BPF_REG_1 + j,
1798 m->arg_size[j],
1799 m->arg_flags[j]))
1800 return -1;
1801 }
1802 }
1803
1804 /* lgrl %w1,func */
1805 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1806 /* %r1() */
1807 call_r1(jit);
1808 /* lgr %b0,%r2: load return value into %b0 */
1809 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1810 break;
1811 }
1812 case BPF_JMP | BPF_TAIL_CALL: {
1813 int patch_1_clrj, patch_2_clij, patch_3_brc;
1814
1815 /*
1816 * Implicit input:
1817 * B1: pointer to ctx
1818 * B2: pointer to bpf_array
1819 * B3: index in bpf_array
1820 *
1821 * if (index >= array->map.max_entries)
1822 * goto out;
1823 */
1824
1825 /* llgf %w1,map.max_entries(%b2) */
1826 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1827 offsetof(struct bpf_array, map.max_entries));
1828 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1829 /* clrj %b3,%w1,0xa,out */
1830 patch_1_clrj = jit->prg;
1831 EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1832 jit->prg);
1833
1834 /*
1835 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1836 * goto out;
1837 */
1838
1839 if (jit->seen & SEEN_STACK)
1840 off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1841 else
1842 off = STK_OFF_TCCNT;
1843 /* lhi %w0,1 */
1844 EMIT4_IMM(0xa7080000, REG_W0, 1);
1845 /* laal %w1,%w0,off(%r15) */
1846 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1847 /* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1848 patch_2_clij = jit->prg;
1849 EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1850 2, jit->prg);
1851
1852 /*
1853 * prog = array->ptrs[index];
1854 * if (prog == NULL)
1855 * goto out;
1856 */
1857
1858 /* llgfr %r1,%b3: %r1 = (u32) index */
1859 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1860 /* sllg %r1,%r1,3: %r1 *= 8 */
1861 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1862 /* ltg %r1,prog(%b2,%r1) */
1863 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1864 REG_1, offsetof(struct bpf_array, ptrs));
1865 /* brc 0x8,out */
1866 patch_3_brc = jit->prg;
1867 EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1868
1869 /*
1870 * Restore registers before calling function
1871 */
1872 save_restore_regs(jit, REGS_RESTORE, stack_depth, 0);
1873
1874 /*
1875 * goto *(prog->bpf_func + tail_call_start);
1876 */
1877
1878 /* lg %r1,bpf_func(%r1) */
1879 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1880 offsetof(struct bpf_prog, bpf_func));
1881 if (nospec_uses_trampoline()) {
1882 jit->seen |= SEEN_FUNC;
1883 /* aghi %r1,tail_call_start */
1884 EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1885 /* brcl 0xf,__s390_indirect_jump_r1 */
1886 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->r1_thunk_ip);
1887 } else {
1888 /* bc 0xf,tail_call_start(%r1) */
1889 _EMIT4(0x47f01000 + jit->tail_call_start);
1890 }
1891 /* out: */
1892 if (jit->prg_buf) {
1893 *(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1894 (jit->prg - patch_1_clrj) >> 1;
1895 *(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1896 (jit->prg - patch_2_clij) >> 1;
1897 *(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1898 (jit->prg - patch_3_brc) >> 1;
1899 }
1900 break;
1901 }
1902 case BPF_JMP | BPF_EXIT: /* return b0 */
1903 last = (i == fp->len - 1) ? 1 : 0;
1904 if (last)
1905 break;
1906 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1907 /* brc 0xf, <exit> */
1908 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1909 else
1910 /* brcl 0xf, <exit> */
1911 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1912 break;
1913 /*
1914 * Branch relative (number of skipped instructions) to offset on
1915 * condition.
1916 *
1917 * Condition code to mask mapping:
1918 *
1919 * CC | Description | Mask
1920 * ------------------------------
1921 * 0 | Operands equal | 8
1922 * 1 | First operand low | 4
1923 * 2 | First operand high | 2
1924 * 3 | Unused | 1
1925 *
1926 * For s390x relative branches: ip = ip + off_bytes
1927 * For BPF relative branches: insn = insn + off_insns + 1
1928 *
1929 * For example for s390x with offset 0 we jump to the branch
1930 * instruction itself (loop) and for BPF with offset 0 we
1931 * branch to the instruction behind the branch.
1932 */
1933 case BPF_JMP32 | BPF_JA: /* if (true) */
1934 branch_oc_off = imm;
1935 fallthrough;
1936 case BPF_JMP | BPF_JA: /* if (true) */
1937 mask = 0xf000; /* j */
1938 goto branch_oc;
1939 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1940 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1941 mask = 0x2000; /* jh */
1942 goto branch_ks;
1943 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1944 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1945 mask = 0x4000; /* jl */
1946 goto branch_ks;
1947 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1948 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1949 mask = 0xa000; /* jhe */
1950 goto branch_ks;
1951 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1952 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1953 mask = 0xc000; /* jle */
1954 goto branch_ks;
1955 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1956 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1957 mask = 0x2000; /* jh */
1958 goto branch_ku;
1959 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1960 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1961 mask = 0x4000; /* jl */
1962 goto branch_ku;
1963 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1964 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1965 mask = 0xa000; /* jhe */
1966 goto branch_ku;
1967 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1968 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1969 mask = 0xc000; /* jle */
1970 goto branch_ku;
1971 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1972 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1973 mask = 0x7000; /* jne */
1974 goto branch_ku;
1975 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1976 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1977 mask = 0x8000; /* je */
1978 goto branch_ku;
1979 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1980 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1981 mask = 0x7000; /* jnz */
1982 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1983 /* llilf %w1,imm (load zero extend imm) */
1984 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1985 /* nr %w1,%dst */
1986 EMIT2(0x1400, REG_W1, dst_reg);
1987 } else {
1988 /* lgfi %w1,imm (load sign extend imm) */
1989 EMIT6_IMM(0xc0010000, REG_W1, imm);
1990 /* ngr %w1,%dst */
1991 EMIT4(0xb9800000, REG_W1, dst_reg);
1992 }
1993 goto branch_oc;
1994
1995 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1996 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1997 mask = 0x2000; /* jh */
1998 goto branch_xs;
1999 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
2000 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
2001 mask = 0x4000; /* jl */
2002 goto branch_xs;
2003 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
2004 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
2005 mask = 0xa000; /* jhe */
2006 goto branch_xs;
2007 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
2008 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
2009 mask = 0xc000; /* jle */
2010 goto branch_xs;
2011 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
2012 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
2013 mask = 0x2000; /* jh */
2014 goto branch_xu;
2015 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
2016 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
2017 mask = 0x4000; /* jl */
2018 goto branch_xu;
2019 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
2020 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
2021 mask = 0xa000; /* jhe */
2022 goto branch_xu;
2023 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
2024 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
2025 mask = 0xc000; /* jle */
2026 goto branch_xu;
2027 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
2028 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
2029 mask = 0x7000; /* jne */
2030 goto branch_xu;
2031 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
2032 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
2033 mask = 0x8000; /* je */
2034 goto branch_xu;
2035 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
2036 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
2037 {
2038 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2039
2040 mask = 0x7000; /* jnz */
2041 /* nrk or ngrk %w1,%dst,%src */
2042 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
2043 REG_W1, dst_reg, src_reg);
2044 goto branch_oc;
2045 branch_ks:
2046 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2047 /* cfi or cgfi %dst,imm */
2048 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
2049 dst_reg, imm);
2050 if (!is_first_pass(jit) &&
2051 can_use_rel(jit, addrs[i + off + 1])) {
2052 /* brc mask,off */
2053 EMIT4_PCREL_RIC(0xa7040000,
2054 mask >> 12, addrs[i + off + 1]);
2055 } else {
2056 /* brcl mask,off */
2057 EMIT6_PCREL_RILC(0xc0040000,
2058 mask >> 12, addrs[i + off + 1]);
2059 }
2060 break;
2061 branch_ku:
2062 /* lgfi %w1,imm (load sign extend imm) */
2063 src_reg = REG_1;
2064 EMIT6_IMM(0xc0010000, src_reg, imm);
2065 goto branch_xu;
2066 branch_xs:
2067 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2068 if (!is_first_pass(jit) &&
2069 can_use_rel(jit, addrs[i + off + 1])) {
2070 /* crj or cgrj %dst,%src,mask,off */
2071 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
2072 dst_reg, src_reg, i, off, mask);
2073 } else {
2074 /* cr or cgr %dst,%src */
2075 if (is_jmp32)
2076 EMIT2(0x1900, dst_reg, src_reg);
2077 else
2078 EMIT4(0xb9200000, dst_reg, src_reg);
2079 /* brcl mask,off */
2080 EMIT6_PCREL_RILC(0xc0040000,
2081 mask >> 12, addrs[i + off + 1]);
2082 }
2083 break;
2084 branch_xu:
2085 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2086 if (!is_first_pass(jit) &&
2087 can_use_rel(jit, addrs[i + off + 1])) {
2088 /* clrj or clgrj %dst,%src,mask,off */
2089 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
2090 dst_reg, src_reg, i, off, mask);
2091 } else {
2092 /* clr or clgr %dst,%src */
2093 if (is_jmp32)
2094 EMIT2(0x1500, dst_reg, src_reg);
2095 else
2096 EMIT4(0xb9210000, dst_reg, src_reg);
2097 /* brcl mask,off */
2098 EMIT6_PCREL_RILC(0xc0040000,
2099 mask >> 12, addrs[i + off + 1]);
2100 }
2101 break;
2102 branch_oc:
2103 if (!is_first_pass(jit) &&
2104 can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
2105 /* brc mask,off */
2106 EMIT4_PCREL_RIC(0xa7040000,
2107 mask >> 12,
2108 addrs[i + branch_oc_off + 1]);
2109 } else {
2110 /* brcl mask,off */
2111 EMIT6_PCREL_RILC(0xc0040000,
2112 mask >> 12,
2113 addrs[i + branch_oc_off + 1]);
2114 }
2115 break;
2116 }
2117 default: /* too complex, give up */
2118 pr_err("Unknown opcode %02x\n", insn->code);
2119 return -1;
2120 }
2121
2122 return insn_count;
2123 }
2124
2125 /*
2126 * Return whether new i-th instruction address does not violate any invariant
2127 */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)2128 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
2129 {
2130 /* On the first pass anything goes */
2131 if (is_first_pass(jit))
2132 return true;
2133
2134 /* The codegen pass must not change anything */
2135 if (is_codegen_pass(jit))
2136 return jit->addrs[i] == jit->prg;
2137
2138 /* Passes in between must not increase code size */
2139 return jit->addrs[i] >= jit->prg;
2140 }
2141
2142 /*
2143 * Update the address of i-th instruction
2144 */
bpf_set_addr(struct bpf_jit * jit,int i)2145 static int bpf_set_addr(struct bpf_jit *jit, int i)
2146 {
2147 int delta;
2148
2149 if (is_codegen_pass(jit)) {
2150 delta = jit->prg - jit->addrs[i];
2151 if (delta < 0)
2152 bpf_skip(jit, -delta);
2153 }
2154 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
2155 return -1;
2156 jit->addrs[i] = jit->prg;
2157 return 0;
2158 }
2159
2160 /*
2161 * Compile eBPF program into s390x code
2162 */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass,u32 stack_depth)2163 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
2164 bool extra_pass, u32 stack_depth)
2165 {
2166 int i, insn_count, lit32_size, lit64_size;
2167 u64 kern_arena;
2168
2169 jit->lit32 = jit->lit32_start;
2170 jit->lit64 = jit->lit64_start;
2171 jit->prg = 0;
2172 jit->excnt = 0;
2173
2174 kern_arena = bpf_arena_get_kern_vm_start(fp->aux->arena);
2175 if (kern_arena)
2176 jit->kern_arena = _EMIT_CONST_U64(kern_arena);
2177 jit->user_arena = bpf_arena_get_user_vm_start(fp->aux->arena);
2178
2179 bpf_jit_prologue(jit, fp, stack_depth);
2180 if (bpf_set_addr(jit, 0) < 0)
2181 return -1;
2182 for (i = 0; i < fp->len; i += insn_count) {
2183 insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
2184 if (insn_count < 0)
2185 return -1;
2186 /* Next instruction address */
2187 if (bpf_set_addr(jit, i + insn_count) < 0)
2188 return -1;
2189 }
2190 bpf_jit_epilogue(jit, stack_depth);
2191
2192 lit32_size = jit->lit32 - jit->lit32_start;
2193 lit64_size = jit->lit64 - jit->lit64_start;
2194 jit->lit32_start = jit->prg;
2195 if (lit32_size)
2196 jit->lit32_start = ALIGN(jit->lit32_start, 4);
2197 jit->lit64_start = jit->lit32_start + lit32_size;
2198 if (lit64_size)
2199 jit->lit64_start = ALIGN(jit->lit64_start, 8);
2200 jit->size = jit->lit64_start + lit64_size;
2201 jit->size_prg = jit->prg;
2202
2203 if (WARN_ON_ONCE(fp->aux->extable &&
2204 jit->excnt != fp->aux->num_exentries))
2205 /* Verifier bug - too many entries. */
2206 return -1;
2207
2208 return 0;
2209 }
2210
bpf_jit_needs_zext(void)2211 bool bpf_jit_needs_zext(void)
2212 {
2213 return true;
2214 }
2215
2216 struct s390_jit_data {
2217 struct bpf_binary_header *header;
2218 struct bpf_jit ctx;
2219 int pass;
2220 };
2221
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)2222 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2223 struct bpf_prog *fp)
2224 {
2225 struct bpf_binary_header *header;
2226 struct bpf_insn *insn;
2227 u32 extable_size;
2228 u32 code_size;
2229 int i;
2230
2231 for (i = 0; i < fp->len; i++) {
2232 insn = &fp->insnsi[i];
2233
2234 if (BPF_CLASS(insn->code) == BPF_STX &&
2235 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC &&
2236 (BPF_SIZE(insn->code) == BPF_DW ||
2237 BPF_SIZE(insn->code) == BPF_W) &&
2238 insn->imm == BPF_XCHG)
2239 /*
2240 * bpf_jit_insn() emits a load and a compare-and-swap,
2241 * both of which need to be probed.
2242 */
2243 fp->aux->num_exentries += 1;
2244 }
2245 /* We need two entries per insn. */
2246 fp->aux->num_exentries *= 2;
2247
2248 code_size = roundup(jit->size,
2249 __alignof__(struct exception_table_entry));
2250 extable_size = fp->aux->num_exentries *
2251 sizeof(struct exception_table_entry);
2252 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2253 8, jit_fill_hole);
2254 if (!header)
2255 return NULL;
2256 fp->aux->extable = (struct exception_table_entry *)
2257 (jit->prg_buf + code_size);
2258 return header;
2259 }
2260
2261 /*
2262 * Compile eBPF program "fp"
2263 */
bpf_int_jit_compile(struct bpf_prog * fp)2264 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2265 {
2266 u32 stack_depth = round_up(fp->aux->stack_depth, 8);
2267 struct bpf_prog *tmp, *orig_fp = fp;
2268 struct bpf_binary_header *header;
2269 struct s390_jit_data *jit_data;
2270 bool tmp_blinded = false;
2271 bool extra_pass = false;
2272 struct bpf_jit jit;
2273 int pass;
2274
2275 if (!fp->jit_requested)
2276 return orig_fp;
2277
2278 tmp = bpf_jit_blind_constants(fp);
2279 /*
2280 * If blinding was requested and we failed during blinding,
2281 * we must fall back to the interpreter.
2282 */
2283 if (IS_ERR(tmp))
2284 return orig_fp;
2285 if (tmp != fp) {
2286 tmp_blinded = true;
2287 fp = tmp;
2288 }
2289
2290 jit_data = fp->aux->jit_data;
2291 if (!jit_data) {
2292 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2293 if (!jit_data) {
2294 fp = orig_fp;
2295 goto out;
2296 }
2297 fp->aux->jit_data = jit_data;
2298 }
2299 if (jit_data->ctx.addrs) {
2300 jit = jit_data->ctx;
2301 header = jit_data->header;
2302 extra_pass = true;
2303 pass = jit_data->pass + 1;
2304 goto skip_init_ctx;
2305 }
2306
2307 memset(&jit, 0, sizeof(jit));
2308 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2309 if (jit.addrs == NULL) {
2310 fp = orig_fp;
2311 goto free_addrs;
2312 }
2313 /*
2314 * Three initial passes:
2315 * - 1/2: Determine clobbered registers
2316 * - 3: Calculate program size and addrs array
2317 */
2318 for (pass = 1; pass <= 3; pass++) {
2319 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2320 fp = orig_fp;
2321 goto free_addrs;
2322 }
2323 }
2324 /*
2325 * Final pass: Allocate and generate program
2326 */
2327 header = bpf_jit_alloc(&jit, fp);
2328 if (!header) {
2329 fp = orig_fp;
2330 goto free_addrs;
2331 }
2332 skip_init_ctx:
2333 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2334 bpf_jit_binary_free(header);
2335 fp = orig_fp;
2336 goto free_addrs;
2337 }
2338 if (bpf_jit_enable > 1) {
2339 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2340 print_fn_code(jit.prg_buf, jit.size_prg);
2341 }
2342 if (!fp->is_func || extra_pass) {
2343 if (bpf_jit_binary_lock_ro(header)) {
2344 bpf_jit_binary_free(header);
2345 fp = orig_fp;
2346 goto free_addrs;
2347 }
2348 } else {
2349 jit_data->header = header;
2350 jit_data->ctx = jit;
2351 jit_data->pass = pass;
2352 }
2353 fp->bpf_func = (void *) jit.prg_buf;
2354 fp->jited = 1;
2355 fp->jited_len = jit.size;
2356
2357 if (!fp->is_func || extra_pass) {
2358 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2359 free_addrs:
2360 kvfree(jit.addrs);
2361 kfree(jit_data);
2362 fp->aux->jit_data = NULL;
2363 }
2364 out:
2365 if (tmp_blinded)
2366 bpf_jit_prog_release_other(fp, fp == orig_fp ?
2367 tmp : orig_fp);
2368 return fp;
2369 }
2370
bpf_jit_supports_kfunc_call(void)2371 bool bpf_jit_supports_kfunc_call(void)
2372 {
2373 return true;
2374 }
2375
bpf_jit_supports_far_kfunc_call(void)2376 bool bpf_jit_supports_far_kfunc_call(void)
2377 {
2378 return true;
2379 }
2380
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)2381 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2382 void *old_addr, void *new_addr)
2383 {
2384 struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2385 struct {
2386 u16 opc;
2387 s32 disp;
2388 } __packed insn;
2389 char *ret;
2390 int err;
2391
2392 /* Verify the branch to be patched. */
2393 err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2394 if (err < 0)
2395 return err;
2396 if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2397 return -EINVAL;
2398
2399 if (t == BPF_MOD_JUMP &&
2400 insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2401 /*
2402 * The branch already points to the destination,
2403 * there is no PLT.
2404 */
2405 } else {
2406 /* Verify the PLT. */
2407 plt = ip + (insn.disp << 1);
2408 err = copy_from_kernel_nofault(¤t_plt, plt,
2409 sizeof(current_plt));
2410 if (err < 0)
2411 return err;
2412 ret = (char *)ip + 6;
2413 bpf_jit_plt(&expected_plt, ret, old_addr);
2414 if (memcmp(¤t_plt, &expected_plt, sizeof(current_plt)))
2415 return -EINVAL;
2416 /* Adjust the call address. */
2417 bpf_jit_plt(&new_plt, ret, new_addr);
2418 s390_kernel_write(&plt->target, &new_plt.target,
2419 sizeof(void *));
2420 }
2421
2422 /* Adjust the mask of the branch. */
2423 insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2424 s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2425
2426 /* Make the new code visible to the other CPUs. */
2427 text_poke_sync_lock();
2428
2429 return 0;
2430 }
2431
2432 struct bpf_tramp_jit {
2433 struct bpf_jit common;
2434 int orig_stack_args_off;/* Offset of arguments placed on stack by the
2435 * func_addr's original caller
2436 */
2437 int stack_size; /* Trampoline stack size */
2438 int backchain_off; /* Offset of backchain */
2439 int stack_args_off; /* Offset of stack arguments for calling
2440 * func_addr, has to be at the top
2441 */
2442 int reg_args_off; /* Offset of register arguments for calling
2443 * func_addr
2444 */
2445 int ip_off; /* For bpf_get_func_ip(), has to be at
2446 * (ctx - 16)
2447 */
2448 int arg_cnt_off; /* For bpf_get_func_arg_cnt(), has to be at
2449 * (ctx - 8)
2450 */
2451 int bpf_args_off; /* Offset of BPF_PROG context, which consists
2452 * of BPF arguments followed by return value
2453 */
2454 int retval_off; /* Offset of return value (see above) */
2455 int r7_r8_off; /* Offset of saved %r7 and %r8, which are used
2456 * for __bpf_prog_enter() return value and
2457 * func_addr respectively
2458 */
2459 int run_ctx_off; /* Offset of struct bpf_tramp_run_ctx */
2460 int tccnt_off; /* Offset of saved tailcall counter */
2461 int r14_off; /* Offset of saved %r14, has to be at the
2462 * bottom */
2463 int do_fexit; /* do_fexit: label */
2464 };
2465
load_imm64(struct bpf_jit * jit,int dst_reg,u64 val)2466 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2467 {
2468 /* llihf %dst_reg,val_hi */
2469 EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2470 /* oilf %rdst_reg,val_lo */
2471 EMIT6_IMM(0xc00d0000, dst_reg, val);
2472 }
2473
invoke_bpf_prog(struct bpf_tramp_jit * tjit,const struct btf_func_model * m,struct bpf_tramp_link * tlink,bool save_ret)2474 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2475 const struct btf_func_model *m,
2476 struct bpf_tramp_link *tlink, bool save_ret)
2477 {
2478 struct bpf_jit *jit = &tjit->common;
2479 int cookie_off = tjit->run_ctx_off +
2480 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2481 struct bpf_prog *p = tlink->link.prog;
2482 int patch;
2483
2484 /*
2485 * run_ctx.cookie = tlink->cookie;
2486 */
2487
2488 /* %r0 = tlink->cookie */
2489 load_imm64(jit, REG_W0, tlink->cookie);
2490 /* stg %r0,cookie_off(%r15) */
2491 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2492
2493 /*
2494 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2495 * goto skip;
2496 */
2497
2498 /* %r1 = __bpf_prog_enter */
2499 load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2500 /* %r2 = p */
2501 load_imm64(jit, REG_2, (u64)p);
2502 /* la %r3,run_ctx_off(%r15) */
2503 EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2504 /* %r1() */
2505 call_r1(jit);
2506 /* ltgr %r7,%r2 */
2507 EMIT4(0xb9020000, REG_7, REG_2);
2508 /* brcl 8,skip */
2509 patch = jit->prg;
2510 EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2511
2512 /*
2513 * retval = bpf_func(args, p->insnsi);
2514 */
2515
2516 /* %r1 = p->bpf_func */
2517 load_imm64(jit, REG_1, (u64)p->bpf_func);
2518 /* la %r2,bpf_args_off(%r15) */
2519 EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2520 /* %r3 = p->insnsi */
2521 if (!p->jited)
2522 load_imm64(jit, REG_3, (u64)p->insnsi);
2523 /* %r1() */
2524 call_r1(jit);
2525 /* stg %r2,retval_off(%r15) */
2526 if (save_ret) {
2527 if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2528 return -1;
2529 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2530 tjit->retval_off);
2531 }
2532
2533 /* skip: */
2534 if (jit->prg_buf)
2535 *(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2536
2537 /*
2538 * __bpf_prog_exit(p, start, &run_ctx);
2539 */
2540
2541 /* %r1 = __bpf_prog_exit */
2542 load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2543 /* %r2 = p */
2544 load_imm64(jit, REG_2, (u64)p);
2545 /* lgr %r3,%r7 */
2546 EMIT4(0xb9040000, REG_3, REG_7);
2547 /* la %r4,run_ctx_off(%r15) */
2548 EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2549 /* %r1() */
2550 call_r1(jit);
2551
2552 return 0;
2553 }
2554
alloc_stack(struct bpf_tramp_jit * tjit,size_t size)2555 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2556 {
2557 int stack_offset = tjit->stack_size;
2558
2559 tjit->stack_size += size;
2560 return stack_offset;
2561 }
2562
2563 /* ABI uses %r2 - %r6 for parameter passing. */
2564 #define MAX_NR_REG_ARGS 5
2565
2566 /* The "L" field of the "mvc" instruction is 8 bits. */
2567 #define MAX_MVC_SIZE 256
2568 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2569
2570 /* -mfentry generates a 6-byte nop on s390x. */
2571 #define S390X_PATCH_SIZE 6
2572
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,struct bpf_tramp_jit * tjit,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2573 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2574 struct bpf_tramp_jit *tjit,
2575 const struct btf_func_model *m,
2576 u32 flags,
2577 struct bpf_tramp_links *tlinks,
2578 void *func_addr)
2579 {
2580 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2581 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2582 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2583 int nr_bpf_args, nr_reg_args, nr_stack_args;
2584 struct bpf_jit *jit = &tjit->common;
2585 int arg, bpf_arg_off;
2586 int i, j;
2587
2588 /* Support as many stack arguments as "mvc" instruction can handle. */
2589 nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2590 nr_stack_args = m->nr_args - nr_reg_args;
2591 if (nr_stack_args > MAX_NR_STACK_ARGS)
2592 return -ENOTSUPP;
2593
2594 /* Return to %r14, since func_addr and %r0 are not available. */
2595 if ((!func_addr && !(flags & BPF_TRAMP_F_ORIG_STACK)) ||
2596 (flags & BPF_TRAMP_F_INDIRECT))
2597 flags |= BPF_TRAMP_F_SKIP_FRAME;
2598
2599 /*
2600 * Compute how many arguments we need to pass to BPF programs.
2601 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2602 * smaller are packed into 1 or 2 registers; larger arguments are
2603 * passed via pointers.
2604 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2605 * a register; larger arguments are passed via pointers.
2606 * We need to deal with this difference.
2607 */
2608 nr_bpf_args = 0;
2609 for (i = 0; i < m->nr_args; i++) {
2610 if (m->arg_size[i] <= 8)
2611 nr_bpf_args += 1;
2612 else if (m->arg_size[i] <= 16)
2613 nr_bpf_args += 2;
2614 else
2615 return -ENOTSUPP;
2616 }
2617
2618 /*
2619 * Calculate the stack layout.
2620 */
2621
2622 /*
2623 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2624 * ABI requires, put our backchain at the end of the allocated memory.
2625 */
2626 tjit->stack_size = STACK_FRAME_OVERHEAD;
2627 tjit->backchain_off = tjit->stack_size - sizeof(u64);
2628 tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2629 tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2630 tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2631 tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2632 tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2633 tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2634 tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2635 tjit->run_ctx_off = alloc_stack(tjit,
2636 sizeof(struct bpf_tramp_run_ctx));
2637 tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2638 tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2639 /*
2640 * In accordance with the s390x ABI, the caller has allocated
2641 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2642 * backchain, and the rest we can use.
2643 */
2644 tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2645 tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2646
2647 /* lgr %r1,%r15 */
2648 EMIT4(0xb9040000, REG_1, REG_15);
2649 /* aghi %r15,-stack_size */
2650 EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2651 /* stg %r1,backchain_off(%r15) */
2652 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2653 tjit->backchain_off);
2654 /* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2655 _EMIT6(0xd203f000 | tjit->tccnt_off,
2656 0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2657 /* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2658 if (nr_reg_args)
2659 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2660 REG_2 + (nr_reg_args - 1), REG_15,
2661 tjit->reg_args_off);
2662 for (i = 0, j = 0; i < m->nr_args; i++) {
2663 if (i < MAX_NR_REG_ARGS)
2664 arg = REG_2 + i;
2665 else
2666 arg = tjit->orig_stack_args_off +
2667 (i - MAX_NR_REG_ARGS) * sizeof(u64);
2668 bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2669 if (m->arg_size[i] <= 8) {
2670 if (i < MAX_NR_REG_ARGS)
2671 /* stg %arg,bpf_arg_off(%r15) */
2672 EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2673 REG_0, REG_15, bpf_arg_off);
2674 else
2675 /* mvc bpf_arg_off(8,%r15),arg(%r15) */
2676 _EMIT6(0xd207f000 | bpf_arg_off,
2677 0xf000 | arg);
2678 j += 1;
2679 } else {
2680 if (i < MAX_NR_REG_ARGS) {
2681 /* mvc bpf_arg_off(16,%r15),0(%arg) */
2682 _EMIT6(0xd20ff000 | bpf_arg_off,
2683 reg2hex[arg] << 12);
2684 } else {
2685 /* lg %r1,arg(%r15) */
2686 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2687 REG_15, arg);
2688 /* mvc bpf_arg_off(16,%r15),0(%r1) */
2689 _EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2690 }
2691 j += 2;
2692 }
2693 }
2694 /* stmg %r7,%r8,r7_r8_off(%r15) */
2695 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2696 tjit->r7_r8_off);
2697 /* stg %r14,r14_off(%r15) */
2698 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2699
2700 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2701 /*
2702 * The ftrace trampoline puts the return address (which is the
2703 * address of the original function + S390X_PATCH_SIZE) into
2704 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2705 * ftrace_init_nop() for details.
2706 */
2707
2708 /* lgr %r8,%r0 */
2709 EMIT4(0xb9040000, REG_8, REG_0);
2710 } else {
2711 /* %r8 = func_addr + S390X_PATCH_SIZE */
2712 load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2713 }
2714
2715 /*
2716 * ip = func_addr;
2717 * arg_cnt = m->nr_args;
2718 */
2719
2720 if (flags & BPF_TRAMP_F_IP_ARG) {
2721 /* %r0 = func_addr */
2722 load_imm64(jit, REG_0, (u64)func_addr);
2723 /* stg %r0,ip_off(%r15) */
2724 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2725 tjit->ip_off);
2726 }
2727 /* lghi %r0,nr_bpf_args */
2728 EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2729 /* stg %r0,arg_cnt_off(%r15) */
2730 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2731 tjit->arg_cnt_off);
2732
2733 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2734 /*
2735 * __bpf_tramp_enter(im);
2736 */
2737
2738 /* %r1 = __bpf_tramp_enter */
2739 load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2740 /* %r2 = im */
2741 load_imm64(jit, REG_2, (u64)im);
2742 /* %r1() */
2743 call_r1(jit);
2744 }
2745
2746 for (i = 0; i < fentry->nr_links; i++)
2747 if (invoke_bpf_prog(tjit, m, fentry->links[i],
2748 flags & BPF_TRAMP_F_RET_FENTRY_RET))
2749 return -EINVAL;
2750
2751 if (fmod_ret->nr_links) {
2752 /*
2753 * retval = 0;
2754 */
2755
2756 /* xc retval_off(8,%r15),retval_off(%r15) */
2757 _EMIT6(0xd707f000 | tjit->retval_off,
2758 0xf000 | tjit->retval_off);
2759
2760 for (i = 0; i < fmod_ret->nr_links; i++) {
2761 if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2762 return -EINVAL;
2763
2764 /*
2765 * if (retval)
2766 * goto do_fexit;
2767 */
2768
2769 /* ltg %r0,retval_off(%r15) */
2770 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2771 tjit->retval_off);
2772 /* brcl 7,do_fexit */
2773 EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2774 }
2775 }
2776
2777 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2778 /*
2779 * retval = func_addr(args);
2780 */
2781
2782 /* lmg %r2,%rN,reg_args_off(%r15) */
2783 if (nr_reg_args)
2784 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2785 REG_2 + (nr_reg_args - 1), REG_15,
2786 tjit->reg_args_off);
2787 /* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2788 if (nr_stack_args)
2789 _EMIT6(0xd200f000 |
2790 (nr_stack_args * sizeof(u64) - 1) << 16 |
2791 tjit->stack_args_off,
2792 0xf000 | tjit->orig_stack_args_off);
2793 /* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2794 _EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2795 /* lgr %r1,%r8 */
2796 EMIT4(0xb9040000, REG_1, REG_8);
2797 /* %r1() */
2798 call_r1(jit);
2799 /* stg %r2,retval_off(%r15) */
2800 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2801 tjit->retval_off);
2802
2803 im->ip_after_call = jit->prg_buf + jit->prg;
2804
2805 /*
2806 * The following nop will be patched by bpf_tramp_image_put().
2807 */
2808
2809 /* brcl 0,im->ip_epilogue */
2810 EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2811 }
2812
2813 /* do_fexit: */
2814 tjit->do_fexit = jit->prg;
2815 for (i = 0; i < fexit->nr_links; i++)
2816 if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2817 return -EINVAL;
2818
2819 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2820 im->ip_epilogue = jit->prg_buf + jit->prg;
2821
2822 /*
2823 * __bpf_tramp_exit(im);
2824 */
2825
2826 /* %r1 = __bpf_tramp_exit */
2827 load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2828 /* %r2 = im */
2829 load_imm64(jit, REG_2, (u64)im);
2830 /* %r1() */
2831 call_r1(jit);
2832 }
2833
2834 /* lmg %r2,%rN,reg_args_off(%r15) */
2835 if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2836 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2837 REG_2 + (nr_reg_args - 1), REG_15,
2838 tjit->reg_args_off);
2839 /* lgr %r1,%r8 */
2840 if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2841 EMIT4(0xb9040000, REG_1, REG_8);
2842 /* lmg %r7,%r8,r7_r8_off(%r15) */
2843 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2844 tjit->r7_r8_off);
2845 /* lg %r14,r14_off(%r15) */
2846 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2847 /* lg %r2,retval_off(%r15) */
2848 if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2849 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2850 tjit->retval_off);
2851 /* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2852 _EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2853 0xf000 | tjit->tccnt_off);
2854 /* aghi %r15,stack_size */
2855 EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2856 /* Emit an expoline for the following indirect jump. */
2857 if (nospec_uses_trampoline())
2858 emit_expoline(jit);
2859 if (flags & BPF_TRAMP_F_SKIP_FRAME)
2860 /* br %r14 */
2861 _EMIT2(0x07fe);
2862 else
2863 /* br %r1 */
2864 _EMIT2(0x07f1);
2865
2866 emit_r1_thunk(jit);
2867
2868 return 0;
2869 }
2870
arch_bpf_trampoline_size(const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * orig_call)2871 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2872 struct bpf_tramp_links *tlinks, void *orig_call)
2873 {
2874 struct bpf_tramp_image im;
2875 struct bpf_tramp_jit tjit;
2876 int ret;
2877
2878 memset(&tjit, 0, sizeof(tjit));
2879
2880 ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2881 tlinks, orig_call);
2882
2883 return ret < 0 ? ret : tjit.common.prg;
2884 }
2885
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2886 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2887 void *image_end, const struct btf_func_model *m,
2888 u32 flags, struct bpf_tramp_links *tlinks,
2889 void *func_addr)
2890 {
2891 struct bpf_tramp_jit tjit;
2892 int ret;
2893
2894 /* Compute offsets, check whether the code fits. */
2895 memset(&tjit, 0, sizeof(tjit));
2896 ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2897 tlinks, func_addr);
2898
2899 if (ret < 0)
2900 return ret;
2901 if (tjit.common.prg > (char *)image_end - (char *)image)
2902 /*
2903 * Use the same error code as for exceeding
2904 * BPF_MAX_TRAMP_LINKS.
2905 */
2906 return -E2BIG;
2907
2908 tjit.common.prg = 0;
2909 tjit.common.prg_buf = image;
2910 ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2911 tlinks, func_addr);
2912
2913 return ret < 0 ? ret : tjit.common.prg;
2914 }
2915
bpf_jit_supports_subprog_tailcalls(void)2916 bool bpf_jit_supports_subprog_tailcalls(void)
2917 {
2918 return true;
2919 }
2920
bpf_jit_supports_arena(void)2921 bool bpf_jit_supports_arena(void)
2922 {
2923 return true;
2924 }
2925
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)2926 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2927 {
2928 /*
2929 * Currently the verifier uses this function only to check which
2930 * atomic stores to arena are supported, and they all are.
2931 */
2932 return true;
2933 }
2934
bpf_jit_supports_exceptions(void)2935 bool bpf_jit_supports_exceptions(void)
2936 {
2937 /*
2938 * Exceptions require unwinding support, which is always available,
2939 * because the kernel is always built with backchain.
2940 */
2941 return true;
2942 }
2943
arch_bpf_stack_walk(bool (* consume_fn)(void *,u64,u64,u64),void * cookie)2944 void arch_bpf_stack_walk(bool (*consume_fn)(void *, u64, u64, u64),
2945 void *cookie)
2946 {
2947 unsigned long addr, prev_addr = 0;
2948 struct unwind_state state;
2949
2950 unwind_for_each_frame(&state, NULL, NULL, 0) {
2951 addr = unwind_get_return_address(&state);
2952 if (!addr)
2953 break;
2954 /*
2955 * addr is a return address and state.sp is the value of %r15
2956 * at this address. exception_cb needs %r15 at entry to the
2957 * function containing addr, so take the next state.sp.
2958 *
2959 * There is no bp, and the exception_cb prog does not need one
2960 * to perform a quasi-longjmp. The common code requires a
2961 * non-zero bp, so pass sp there as well.
2962 */
2963 if (prev_addr && !consume_fn(cookie, prev_addr, state.sp,
2964 state.sp))
2965 break;
2966 prev_addr = addr;
2967 }
2968 }
2969