1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * AMD Encrypted Register State Support
4 *
5 * Author: Joerg Roedel <jroedel@suse.de>
6 */
7
8 /*
9 * misc.h needs to be first because it knows how to include the other kernel
10 * headers in the pre-decompression code in a way that does not break
11 * compilation.
12 */
13 #include "misc.h"
14
15 #include <asm/bootparam.h>
16 #include <asm/pgtable_types.h>
17 #include <asm/sev.h>
18 #include <asm/trapnr.h>
19 #include <asm/trap_pf.h>
20 #include <asm/msr-index.h>
21 #include <asm/fpu/xcr.h>
22 #include <asm/ptrace.h>
23 #include <asm/svm.h>
24 #include <asm/cpuid.h>
25
26 #include "error.h"
27 #include "../msr.h"
28
29 static struct ghcb boot_ghcb_page __aligned(PAGE_SIZE);
30 struct ghcb *boot_ghcb;
31
32 /*
33 * Copy a version of this function here - insn-eval.c can't be used in
34 * pre-decompression code.
35 */
insn_has_rep_prefix(struct insn * insn)36 static bool insn_has_rep_prefix(struct insn *insn)
37 {
38 insn_byte_t p;
39 int i;
40
41 insn_get_prefixes(insn);
42
43 for_each_insn_prefix(insn, i, p) {
44 if (p == 0xf2 || p == 0xf3)
45 return true;
46 }
47
48 return false;
49 }
50
51 /*
52 * Only a dummy for insn_get_seg_base() - Early boot-code is 64bit only and
53 * doesn't use segments.
54 */
insn_get_seg_base(struct pt_regs * regs,int seg_reg_idx)55 static unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
56 {
57 return 0UL;
58 }
59
sev_es_rd_ghcb_msr(void)60 static inline u64 sev_es_rd_ghcb_msr(void)
61 {
62 struct msr m;
63
64 boot_rdmsr(MSR_AMD64_SEV_ES_GHCB, &m);
65
66 return m.q;
67 }
68
sev_es_wr_ghcb_msr(u64 val)69 static inline void sev_es_wr_ghcb_msr(u64 val)
70 {
71 struct msr m;
72
73 m.q = val;
74 boot_wrmsr(MSR_AMD64_SEV_ES_GHCB, &m);
75 }
76
vc_decode_insn(struct es_em_ctxt * ctxt)77 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
78 {
79 char buffer[MAX_INSN_SIZE];
80 int ret;
81
82 memcpy(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
83
84 ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
85 if (ret < 0)
86 return ES_DECODE_FAILED;
87
88 return ES_OK;
89 }
90
vc_write_mem(struct es_em_ctxt * ctxt,void * dst,char * buf,size_t size)91 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
92 void *dst, char *buf, size_t size)
93 {
94 memcpy(dst, buf, size);
95
96 return ES_OK;
97 }
98
vc_read_mem(struct es_em_ctxt * ctxt,void * src,char * buf,size_t size)99 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
100 void *src, char *buf, size_t size)
101 {
102 memcpy(buf, src, size);
103
104 return ES_OK;
105 }
106
vc_ioio_check(struct es_em_ctxt * ctxt,u16 port,size_t size)107 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
108 {
109 return ES_OK;
110 }
111
fault_in_kernel_space(unsigned long address)112 static bool fault_in_kernel_space(unsigned long address)
113 {
114 return false;
115 }
116
117 #undef __init
118 #define __init
119
120 #undef __head
121 #define __head
122
123 #define __BOOT_COMPRESSED
124
125 /* Basic instruction decoding support needed */
126 #include "../../lib/inat.c"
127 #include "../../lib/insn.c"
128
129 /* Include code for early handlers */
130 #include "../../coco/sev/shared.c"
131
svsm_get_caa(void)132 static struct svsm_ca *svsm_get_caa(void)
133 {
134 return boot_svsm_caa;
135 }
136
svsm_get_caa_pa(void)137 static u64 svsm_get_caa_pa(void)
138 {
139 return boot_svsm_caa_pa;
140 }
141
svsm_perform_call_protocol(struct svsm_call * call)142 static int svsm_perform_call_protocol(struct svsm_call *call)
143 {
144 struct ghcb *ghcb;
145 int ret;
146
147 if (boot_ghcb)
148 ghcb = boot_ghcb;
149 else
150 ghcb = NULL;
151
152 do {
153 ret = ghcb ? svsm_perform_ghcb_protocol(ghcb, call)
154 : svsm_perform_msr_protocol(call);
155 } while (ret == -EAGAIN);
156
157 return ret;
158 }
159
sev_snp_enabled(void)160 bool sev_snp_enabled(void)
161 {
162 return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
163 }
164
__page_state_change(unsigned long paddr,enum psc_op op)165 static void __page_state_change(unsigned long paddr, enum psc_op op)
166 {
167 u64 val, msr;
168
169 /*
170 * If private -> shared then invalidate the page before requesting the
171 * state change in the RMP table.
172 */
173 if (op == SNP_PAGE_STATE_SHARED)
174 pvalidate_4k_page(paddr, paddr, false);
175
176 /* Save the current GHCB MSR value */
177 msr = sev_es_rd_ghcb_msr();
178
179 /* Issue VMGEXIT to change the page state in RMP table. */
180 sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
181 VMGEXIT();
182
183 /* Read the response of the VMGEXIT. */
184 val = sev_es_rd_ghcb_msr();
185 if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val))
186 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
187
188 /* Restore the GHCB MSR value */
189 sev_es_wr_ghcb_msr(msr);
190
191 /*
192 * Now that page state is changed in the RMP table, validate it so that it is
193 * consistent with the RMP entry.
194 */
195 if (op == SNP_PAGE_STATE_PRIVATE)
196 pvalidate_4k_page(paddr, paddr, true);
197 }
198
snp_set_page_private(unsigned long paddr)199 void snp_set_page_private(unsigned long paddr)
200 {
201 if (!sev_snp_enabled())
202 return;
203
204 __page_state_change(paddr, SNP_PAGE_STATE_PRIVATE);
205 }
206
snp_set_page_shared(unsigned long paddr)207 void snp_set_page_shared(unsigned long paddr)
208 {
209 if (!sev_snp_enabled())
210 return;
211
212 __page_state_change(paddr, SNP_PAGE_STATE_SHARED);
213 }
214
early_setup_ghcb(void)215 static bool early_setup_ghcb(void)
216 {
217 if (set_page_decrypted((unsigned long)&boot_ghcb_page))
218 return false;
219
220 /* Page is now mapped decrypted, clear it */
221 memset(&boot_ghcb_page, 0, sizeof(boot_ghcb_page));
222
223 boot_ghcb = &boot_ghcb_page;
224
225 /* Initialize lookup tables for the instruction decoder */
226 inat_init_tables();
227
228 /* SNP guest requires the GHCB GPA must be registered */
229 if (sev_snp_enabled())
230 snp_register_ghcb_early(__pa(&boot_ghcb_page));
231
232 return true;
233 }
234
snp_accept_memory(phys_addr_t start,phys_addr_t end)235 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
236 {
237 for (phys_addr_t pa = start; pa < end; pa += PAGE_SIZE)
238 __page_state_change(pa, SNP_PAGE_STATE_PRIVATE);
239 }
240
sev_es_shutdown_ghcb(void)241 void sev_es_shutdown_ghcb(void)
242 {
243 if (!boot_ghcb)
244 return;
245
246 if (!sev_es_check_cpu_features())
247 error("SEV-ES CPU Features missing.");
248
249 /*
250 * This denotes whether to use the GHCB MSR protocol or the GHCB
251 * shared page to perform a GHCB request. Since the GHCB page is
252 * being changed to encrypted, it can't be used to perform GHCB
253 * requests. Clear the boot_ghcb variable so that the GHCB MSR
254 * protocol is used to change the GHCB page over to an encrypted
255 * page.
256 */
257 boot_ghcb = NULL;
258
259 /*
260 * GHCB Page must be flushed from the cache and mapped encrypted again.
261 * Otherwise the running kernel will see strange cache effects when
262 * trying to use that page.
263 */
264 if (set_page_encrypted((unsigned long)&boot_ghcb_page))
265 error("Can't map GHCB page encrypted");
266
267 /*
268 * GHCB page is mapped encrypted again and flushed from the cache.
269 * Mark it non-present now to catch bugs when #VC exceptions trigger
270 * after this point.
271 */
272 if (set_page_non_present((unsigned long)&boot_ghcb_page))
273 error("Can't unmap GHCB page");
274 }
275
sev_es_ghcb_terminate(struct ghcb * ghcb,unsigned int set,unsigned int reason,u64 exit_info_2)276 static void __noreturn sev_es_ghcb_terminate(struct ghcb *ghcb, unsigned int set,
277 unsigned int reason, u64 exit_info_2)
278 {
279 u64 exit_info_1 = SVM_VMGEXIT_TERM_REASON(set, reason);
280
281 vc_ghcb_invalidate(ghcb);
282 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_TERM_REQUEST);
283 ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
284 ghcb_set_sw_exit_info_2(ghcb, exit_info_2);
285
286 sev_es_wr_ghcb_msr(__pa(ghcb));
287 VMGEXIT();
288
289 while (true)
290 asm volatile("hlt\n" : : : "memory");
291 }
292
sev_es_check_ghcb_fault(unsigned long address)293 bool sev_es_check_ghcb_fault(unsigned long address)
294 {
295 /* Check whether the fault was on the GHCB page */
296 return ((address & PAGE_MASK) == (unsigned long)&boot_ghcb_page);
297 }
298
do_boot_stage2_vc(struct pt_regs * regs,unsigned long exit_code)299 void do_boot_stage2_vc(struct pt_regs *regs, unsigned long exit_code)
300 {
301 struct es_em_ctxt ctxt;
302 enum es_result result;
303
304 if (!boot_ghcb && !early_setup_ghcb())
305 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
306
307 vc_ghcb_invalidate(boot_ghcb);
308 result = vc_init_em_ctxt(&ctxt, regs, exit_code);
309 if (result != ES_OK)
310 goto finish;
311
312 result = vc_check_opcode_bytes(&ctxt, exit_code);
313 if (result != ES_OK)
314 goto finish;
315
316 switch (exit_code) {
317 case SVM_EXIT_RDTSC:
318 case SVM_EXIT_RDTSCP:
319 result = vc_handle_rdtsc(boot_ghcb, &ctxt, exit_code);
320 break;
321 case SVM_EXIT_IOIO:
322 result = vc_handle_ioio(boot_ghcb, &ctxt);
323 break;
324 case SVM_EXIT_CPUID:
325 result = vc_handle_cpuid(boot_ghcb, &ctxt);
326 break;
327 default:
328 result = ES_UNSUPPORTED;
329 break;
330 }
331
332 finish:
333 if (result == ES_OK)
334 vc_finish_insn(&ctxt);
335 else if (result != ES_RETRY)
336 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
337 }
338
339 /*
340 * SNP_FEATURES_IMPL_REQ is the mask of SNP features that will need
341 * guest side implementation for proper functioning of the guest. If any
342 * of these features are enabled in the hypervisor but are lacking guest
343 * side implementation, the behavior of the guest will be undefined. The
344 * guest could fail in non-obvious way making it difficult to debug.
345 *
346 * As the behavior of reserved feature bits is unknown to be on the
347 * safe side add them to the required features mask.
348 */
349 #define SNP_FEATURES_IMPL_REQ (MSR_AMD64_SNP_VTOM | \
350 MSR_AMD64_SNP_REFLECT_VC | \
351 MSR_AMD64_SNP_RESTRICTED_INJ | \
352 MSR_AMD64_SNP_ALT_INJ | \
353 MSR_AMD64_SNP_DEBUG_SWAP | \
354 MSR_AMD64_SNP_VMPL_SSS | \
355 MSR_AMD64_SNP_SECURE_TSC | \
356 MSR_AMD64_SNP_VMGEXIT_PARAM | \
357 MSR_AMD64_SNP_VMSA_REG_PROT | \
358 MSR_AMD64_SNP_RESERVED_BIT13 | \
359 MSR_AMD64_SNP_RESERVED_BIT15 | \
360 MSR_AMD64_SNP_RESERVED_MASK)
361
362 /*
363 * SNP_FEATURES_PRESENT is the mask of SNP features that are implemented
364 * by the guest kernel. As and when a new feature is implemented in the
365 * guest kernel, a corresponding bit should be added to the mask.
366 */
367 #define SNP_FEATURES_PRESENT MSR_AMD64_SNP_DEBUG_SWAP
368
snp_get_unsupported_features(u64 status)369 u64 snp_get_unsupported_features(u64 status)
370 {
371 if (!(status & MSR_AMD64_SEV_SNP_ENABLED))
372 return 0;
373
374 return status & SNP_FEATURES_IMPL_REQ & ~SNP_FEATURES_PRESENT;
375 }
376
snp_check_features(void)377 void snp_check_features(void)
378 {
379 u64 unsupported;
380
381 /*
382 * Terminate the boot if hypervisor has enabled any feature lacking
383 * guest side implementation. Pass on the unsupported features mask through
384 * EXIT_INFO_2 of the GHCB protocol so that those features can be reported
385 * as part of the guest boot failure.
386 */
387 unsupported = snp_get_unsupported_features(sev_status);
388 if (unsupported) {
389 if (ghcb_version < 2 || (!boot_ghcb && !early_setup_ghcb()))
390 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
391
392 sev_es_ghcb_terminate(boot_ghcb, SEV_TERM_SET_GEN,
393 GHCB_SNP_UNSUPPORTED, unsupported);
394 }
395 }
396
397 /* Search for Confidential Computing blob in the EFI config table. */
find_cc_blob_efi(struct boot_params * bp)398 static struct cc_blob_sev_info *find_cc_blob_efi(struct boot_params *bp)
399 {
400 unsigned long cfg_table_pa;
401 unsigned int cfg_table_len;
402 int ret;
403
404 ret = efi_get_conf_table(bp, &cfg_table_pa, &cfg_table_len);
405 if (ret)
406 return NULL;
407
408 return (struct cc_blob_sev_info *)efi_find_vendor_table(bp, cfg_table_pa,
409 cfg_table_len,
410 EFI_CC_BLOB_GUID);
411 }
412
413 /*
414 * Initial set up of SNP relies on information provided by the
415 * Confidential Computing blob, which can be passed to the boot kernel
416 * by firmware/bootloader in the following ways:
417 *
418 * - via an entry in the EFI config table
419 * - via a setup_data structure, as defined by the Linux Boot Protocol
420 *
421 * Scan for the blob in that order.
422 */
find_cc_blob(struct boot_params * bp)423 static struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
424 {
425 struct cc_blob_sev_info *cc_info;
426
427 cc_info = find_cc_blob_efi(bp);
428 if (cc_info)
429 goto found_cc_info;
430
431 cc_info = find_cc_blob_setup_data(bp);
432 if (!cc_info)
433 return NULL;
434
435 found_cc_info:
436 if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
437 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
438
439 return cc_info;
440 }
441
442 /*
443 * Indicate SNP based on presence of SNP-specific CC blob. Subsequent checks
444 * will verify the SNP CPUID/MSR bits.
445 */
early_snp_init(struct boot_params * bp)446 static bool early_snp_init(struct boot_params *bp)
447 {
448 struct cc_blob_sev_info *cc_info;
449
450 if (!bp)
451 return false;
452
453 cc_info = find_cc_blob(bp);
454 if (!cc_info)
455 return false;
456
457 /*
458 * If a SNP-specific Confidential Computing blob is present, then
459 * firmware/bootloader have indicated SNP support. Verifying this
460 * involves CPUID checks which will be more reliable if the SNP
461 * CPUID table is used. See comments over snp_setup_cpuid_table() for
462 * more details.
463 */
464 setup_cpuid_table(cc_info);
465
466 /*
467 * Record the SVSM Calling Area (CA) address if the guest is not
468 * running at VMPL0. The CA will be used to communicate with the
469 * SVSM and request its services.
470 */
471 svsm_setup_ca(cc_info);
472
473 /*
474 * Pass run-time kernel a pointer to CC info via boot_params so EFI
475 * config table doesn't need to be searched again during early startup
476 * phase.
477 */
478 bp->cc_blob_address = (u32)(unsigned long)cc_info;
479
480 return true;
481 }
482
483 /*
484 * sev_check_cpu_support - Check for SEV support in the CPU capabilities
485 *
486 * Returns < 0 if SEV is not supported, otherwise the position of the
487 * encryption bit in the page table descriptors.
488 */
sev_check_cpu_support(void)489 static int sev_check_cpu_support(void)
490 {
491 unsigned int eax, ebx, ecx, edx;
492
493 /* Check for the SME/SEV support leaf */
494 eax = 0x80000000;
495 ecx = 0;
496 native_cpuid(&eax, &ebx, &ecx, &edx);
497 if (eax < 0x8000001f)
498 return -ENODEV;
499
500 /*
501 * Check for the SME/SEV feature:
502 * CPUID Fn8000_001F[EAX]
503 * - Bit 0 - Secure Memory Encryption support
504 * - Bit 1 - Secure Encrypted Virtualization support
505 * CPUID Fn8000_001F[EBX]
506 * - Bits 5:0 - Pagetable bit position used to indicate encryption
507 */
508 eax = 0x8000001f;
509 ecx = 0;
510 native_cpuid(&eax, &ebx, &ecx, &edx);
511 /* Check whether SEV is supported */
512 if (!(eax & BIT(1)))
513 return -ENODEV;
514
515 return ebx & 0x3f;
516 }
517
sev_enable(struct boot_params * bp)518 void sev_enable(struct boot_params *bp)
519 {
520 struct msr m;
521 int bitpos;
522 bool snp;
523
524 /*
525 * bp->cc_blob_address should only be set by boot/compressed kernel.
526 * Initialize it to 0 to ensure that uninitialized values from
527 * buggy bootloaders aren't propagated.
528 */
529 if (bp)
530 bp->cc_blob_address = 0;
531
532 /*
533 * Do an initial SEV capability check before early_snp_init() which
534 * loads the CPUID page and the same checks afterwards are done
535 * without the hypervisor and are trustworthy.
536 *
537 * If the HV fakes SEV support, the guest will crash'n'burn
538 * which is good enough.
539 */
540
541 if (sev_check_cpu_support() < 0)
542 return;
543
544 /*
545 * Setup/preliminary detection of SNP. This will be sanity-checked
546 * against CPUID/MSR values later.
547 */
548 snp = early_snp_init(bp);
549
550 /* Now repeat the checks with the SNP CPUID table. */
551
552 bitpos = sev_check_cpu_support();
553 if (bitpos < 0) {
554 if (snp)
555 error("SEV-SNP support indicated by CC blob, but not CPUID.");
556 return;
557 }
558
559 /* Set the SME mask if this is an SEV guest. */
560 boot_rdmsr(MSR_AMD64_SEV, &m);
561 sev_status = m.q;
562 if (!(sev_status & MSR_AMD64_SEV_ENABLED))
563 return;
564
565 /* Negotiate the GHCB protocol version. */
566 if (sev_status & MSR_AMD64_SEV_ES_ENABLED) {
567 if (!sev_es_negotiate_protocol())
568 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_PROT_UNSUPPORTED);
569 }
570
571 /*
572 * SNP is supported in v2 of the GHCB spec which mandates support for HV
573 * features.
574 */
575 if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
576 u64 hv_features;
577 int ret;
578
579 hv_features = get_hv_features();
580 if (!(hv_features & GHCB_HV_FT_SNP))
581 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
582
583 /*
584 * Enforce running at VMPL0 or with an SVSM.
585 *
586 * Use RMPADJUST (see the rmpadjust() function for a description of
587 * what the instruction does) to update the VMPL1 permissions of a
588 * page. If the guest is running at VMPL0, this will succeed. If the
589 * guest is running at any other VMPL, this will fail. Linux SNP guests
590 * only ever run at a single VMPL level so permission mask changes of a
591 * lesser-privileged VMPL are a don't-care.
592 */
593 ret = rmpadjust((unsigned long)&boot_ghcb_page, RMP_PG_SIZE_4K, 1);
594
595 /*
596 * Running at VMPL0 is not required if an SVSM is present and the hypervisor
597 * supports the required SVSM GHCB events.
598 */
599 if (ret &&
600 !(snp_vmpl && (hv_features & GHCB_HV_FT_SNP_MULTI_VMPL)))
601 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NOT_VMPL0);
602 }
603
604 if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
605 error("SEV-SNP supported indicated by CC blob, but not SEV status MSR.");
606
607 sme_me_mask = BIT_ULL(bitpos);
608 }
609
610 /*
611 * sev_get_status - Retrieve the SEV status mask
612 *
613 * Returns 0 if the CPU is not SEV capable, otherwise the value of the
614 * AMD64_SEV MSR.
615 */
sev_get_status(void)616 u64 sev_get_status(void)
617 {
618 struct msr m;
619
620 if (sev_check_cpu_support() < 0)
621 return 0;
622
623 boot_rdmsr(MSR_AMD64_SEV, &m);
624 return m.q;
625 }
626
sev_prep_identity_maps(unsigned long top_level_pgt)627 void sev_prep_identity_maps(unsigned long top_level_pgt)
628 {
629 /*
630 * The Confidential Computing blob is used very early in uncompressed
631 * kernel to find the in-memory CPUID table to handle CPUID
632 * instructions. Make sure an identity-mapping exists so it can be
633 * accessed after switchover.
634 */
635 if (sev_snp_enabled()) {
636 unsigned long cc_info_pa = boot_params_ptr->cc_blob_address;
637 struct cc_blob_sev_info *cc_info;
638
639 kernel_add_identity_map(cc_info_pa, cc_info_pa + sizeof(*cc_info));
640
641 cc_info = (struct cc_blob_sev_info *)cc_info_pa;
642 kernel_add_identity_map(cc_info->cpuid_phys, cc_info->cpuid_phys + cc_info->cpuid_len);
643 }
644
645 sev_verify_cbit(top_level_pgt);
646 }
647
early_is_sevsnp_guest(void)648 bool early_is_sevsnp_guest(void)
649 {
650 static bool sevsnp;
651
652 if (sevsnp)
653 return true;
654
655 if (!(sev_get_status() & MSR_AMD64_SEV_SNP_ENABLED))
656 return false;
657
658 sevsnp = true;
659
660 if (!snp_vmpl) {
661 unsigned int eax, ebx, ecx, edx;
662
663 /*
664 * CPUID Fn8000_001F_EAX[28] - SVSM support
665 */
666 eax = 0x8000001f;
667 ecx = 0;
668 native_cpuid(&eax, &ebx, &ecx, &edx);
669 if (eax & BIT(28)) {
670 struct msr m;
671
672 /* Obtain the address of the calling area to use */
673 boot_rdmsr(MSR_SVSM_CAA, &m);
674 boot_svsm_caa = (void *)m.q;
675 boot_svsm_caa_pa = m.q;
676
677 /*
678 * The real VMPL level cannot be discovered, but the
679 * memory acceptance routines make no use of that so
680 * any non-zero value suffices here.
681 */
682 snp_vmpl = U8_MAX;
683 }
684 }
685 return true;
686 }
687