• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bitops.h>
4 #include <linux/elf.h>
5 #include <linux/mm.h>
6 
7 #include <linux/io.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/random.h>
11 #include <linux/topology.h>
12 #include <asm/processor.h>
13 #include <asm/apic.h>
14 #include <asm/cacheinfo.h>
15 #include <asm/cpu.h>
16 #include <asm/cpu_device_id.h>
17 #include <asm/spec-ctrl.h>
18 #include <asm/smp.h>
19 #include <asm/numa.h>
20 #include <asm/pci-direct.h>
21 #include <asm/delay.h>
22 #include <asm/debugreg.h>
23 #include <asm/resctrl.h>
24 #include <asm/sev.h>
25 
26 #ifdef CONFIG_X86_64
27 # include <asm/mmconfig.h>
28 #endif
29 
30 #include "cpu.h"
31 
rdmsrl_amd_safe(unsigned msr,unsigned long long * p)32 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
33 {
34 	u32 gprs[8] = { 0 };
35 	int err;
36 
37 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
38 		  "%s should only be used on K8!\n", __func__);
39 
40 	gprs[1] = msr;
41 	gprs[7] = 0x9c5a203a;
42 
43 	err = rdmsr_safe_regs(gprs);
44 
45 	*p = gprs[0] | ((u64)gprs[2] << 32);
46 
47 	return err;
48 }
49 
wrmsrl_amd_safe(unsigned msr,unsigned long long val)50 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
51 {
52 	u32 gprs[8] = { 0 };
53 
54 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
55 		  "%s should only be used on K8!\n", __func__);
56 
57 	gprs[0] = (u32)val;
58 	gprs[1] = msr;
59 	gprs[2] = val >> 32;
60 	gprs[7] = 0x9c5a203a;
61 
62 	return wrmsr_safe_regs(gprs);
63 }
64 
65 /*
66  *	B step AMD K6 before B 9730xxxx have hardware bugs that can cause
67  *	misexecution of code under Linux. Owners of such processors should
68  *	contact AMD for precise details and a CPU swap.
69  *
70  *	See	http://www.multimania.com/poulot/k6bug.html
71  *	and	section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
72  *		(Publication # 21266  Issue Date: August 1998)
73  *
74  *	The following test is erm.. interesting. AMD neglected to up
75  *	the chip setting when fixing the bug but they also tweaked some
76  *	performance at the same time..
77  */
78 
79 #ifdef CONFIG_X86_32
80 extern __visible void vide(void);
81 __asm__(".text\n"
82 	".globl vide\n"
83 	".type vide, @function\n"
84 	".align 4\n"
85 	"vide: ret\n");
86 #endif
87 
init_amd_k5(struct cpuinfo_x86 * c)88 static void init_amd_k5(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_32
91 /*
92  * General Systems BIOSen alias the cpu frequency registers
93  * of the Elan at 0x000df000. Unfortunately, one of the Linux
94  * drivers subsequently pokes it, and changes the CPU speed.
95  * Workaround : Remove the unneeded alias.
96  */
97 #define CBAR		(0xfffc) /* Configuration Base Address  (32-bit) */
98 #define CBAR_ENB	(0x80000000)
99 #define CBAR_KEY	(0X000000CB)
100 	if (c->x86_model == 9 || c->x86_model == 10) {
101 		if (inl(CBAR) & CBAR_ENB)
102 			outl(0 | CBAR_KEY, CBAR);
103 	}
104 #endif
105 }
106 
init_amd_k6(struct cpuinfo_x86 * c)107 static void init_amd_k6(struct cpuinfo_x86 *c)
108 {
109 #ifdef CONFIG_X86_32
110 	u32 l, h;
111 	int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
112 
113 	if (c->x86_model < 6) {
114 		/* Based on AMD doc 20734R - June 2000 */
115 		if (c->x86_model == 0) {
116 			clear_cpu_cap(c, X86_FEATURE_APIC);
117 			set_cpu_cap(c, X86_FEATURE_PGE);
118 		}
119 		return;
120 	}
121 
122 	if (c->x86_model == 6 && c->x86_stepping == 1) {
123 		const int K6_BUG_LOOP = 1000000;
124 		int n;
125 		void (*f_vide)(void);
126 		u64 d, d2;
127 
128 		pr_info("AMD K6 stepping B detected - ");
129 
130 		/*
131 		 * It looks like AMD fixed the 2.6.2 bug and improved indirect
132 		 * calls at the same time.
133 		 */
134 
135 		n = K6_BUG_LOOP;
136 		f_vide = vide;
137 		OPTIMIZER_HIDE_VAR(f_vide);
138 		d = rdtsc();
139 		while (n--)
140 			f_vide();
141 		d2 = rdtsc();
142 		d = d2-d;
143 
144 		if (d > 20*K6_BUG_LOOP)
145 			pr_cont("system stability may be impaired when more than 32 MB are used.\n");
146 		else
147 			pr_cont("probably OK (after B9730xxxx).\n");
148 	}
149 
150 	/* K6 with old style WHCR */
151 	if (c->x86_model < 8 ||
152 	   (c->x86_model == 8 && c->x86_stepping < 8)) {
153 		/* We can only write allocate on the low 508Mb */
154 		if (mbytes > 508)
155 			mbytes = 508;
156 
157 		rdmsr(MSR_K6_WHCR, l, h);
158 		if ((l&0x0000FFFF) == 0) {
159 			unsigned long flags;
160 			l = (1<<0)|((mbytes/4)<<1);
161 			local_irq_save(flags);
162 			wbinvd();
163 			wrmsr(MSR_K6_WHCR, l, h);
164 			local_irq_restore(flags);
165 			pr_info("Enabling old style K6 write allocation for %d Mb\n",
166 				mbytes);
167 		}
168 		return;
169 	}
170 
171 	if ((c->x86_model == 8 && c->x86_stepping > 7) ||
172 	     c->x86_model == 9 || c->x86_model == 13) {
173 		/* The more serious chips .. */
174 
175 		if (mbytes > 4092)
176 			mbytes = 4092;
177 
178 		rdmsr(MSR_K6_WHCR, l, h);
179 		if ((l&0xFFFF0000) == 0) {
180 			unsigned long flags;
181 			l = ((mbytes>>2)<<22)|(1<<16);
182 			local_irq_save(flags);
183 			wbinvd();
184 			wrmsr(MSR_K6_WHCR, l, h);
185 			local_irq_restore(flags);
186 			pr_info("Enabling new style K6 write allocation for %d Mb\n",
187 				mbytes);
188 		}
189 
190 		return;
191 	}
192 
193 	if (c->x86_model == 10) {
194 		/* AMD Geode LX is model 10 */
195 		/* placeholder for any needed mods */
196 		return;
197 	}
198 #endif
199 }
200 
init_amd_k7(struct cpuinfo_x86 * c)201 static void init_amd_k7(struct cpuinfo_x86 *c)
202 {
203 #ifdef CONFIG_X86_32
204 	u32 l, h;
205 
206 	/*
207 	 * Bit 15 of Athlon specific MSR 15, needs to be 0
208 	 * to enable SSE on Palomino/Morgan/Barton CPU's.
209 	 * If the BIOS didn't enable it already, enable it here.
210 	 */
211 	if (c->x86_model >= 6 && c->x86_model <= 10) {
212 		if (!cpu_has(c, X86_FEATURE_XMM)) {
213 			pr_info("Enabling disabled K7/SSE Support.\n");
214 			msr_clear_bit(MSR_K7_HWCR, 15);
215 			set_cpu_cap(c, X86_FEATURE_XMM);
216 		}
217 	}
218 
219 	/*
220 	 * It's been determined by AMD that Athlons since model 8 stepping 1
221 	 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
222 	 * As per AMD technical note 27212 0.2
223 	 */
224 	if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
225 		rdmsr(MSR_K7_CLK_CTL, l, h);
226 		if ((l & 0xfff00000) != 0x20000000) {
227 			pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
228 				l, ((l & 0x000fffff)|0x20000000));
229 			wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
230 		}
231 	}
232 
233 	/* calling is from identify_secondary_cpu() ? */
234 	if (!c->cpu_index)
235 		return;
236 
237 	/*
238 	 * Certain Athlons might work (for various values of 'work') in SMP
239 	 * but they are not certified as MP capable.
240 	 */
241 	/* Athlon 660/661 is valid. */
242 	if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
243 	    (c->x86_stepping == 1)))
244 		return;
245 
246 	/* Duron 670 is valid */
247 	if ((c->x86_model == 7) && (c->x86_stepping == 0))
248 		return;
249 
250 	/*
251 	 * Athlon 662, Duron 671, and Athlon >model 7 have capability
252 	 * bit. It's worth noting that the A5 stepping (662) of some
253 	 * Athlon XP's have the MP bit set.
254 	 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
255 	 * more.
256 	 */
257 	if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
258 	    ((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
259 	     (c->x86_model > 7))
260 		if (cpu_has(c, X86_FEATURE_MP))
261 			return;
262 
263 	/* If we get here, not a certified SMP capable AMD system. */
264 
265 	/*
266 	 * Don't taint if we are running SMP kernel on a single non-MP
267 	 * approved Athlon
268 	 */
269 	WARN_ONCE(1, "WARNING: This combination of AMD"
270 		" processors is not suitable for SMP.\n");
271 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
272 #endif
273 }
274 
275 #ifdef CONFIG_NUMA
276 /*
277  * To workaround broken NUMA config.  Read the comment in
278  * srat_detect_node().
279  */
nearby_node(int apicid)280 static int nearby_node(int apicid)
281 {
282 	int i, node;
283 
284 	for (i = apicid - 1; i >= 0; i--) {
285 		node = __apicid_to_node[i];
286 		if (node != NUMA_NO_NODE && node_online(node))
287 			return node;
288 	}
289 	for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
290 		node = __apicid_to_node[i];
291 		if (node != NUMA_NO_NODE && node_online(node))
292 			return node;
293 	}
294 	return first_node(node_online_map); /* Shouldn't happen */
295 }
296 #endif
297 
srat_detect_node(struct cpuinfo_x86 * c)298 static void srat_detect_node(struct cpuinfo_x86 *c)
299 {
300 #ifdef CONFIG_NUMA
301 	int cpu = smp_processor_id();
302 	int node;
303 	unsigned apicid = c->topo.apicid;
304 
305 	node = numa_cpu_node(cpu);
306 	if (node == NUMA_NO_NODE)
307 		node = per_cpu_llc_id(cpu);
308 
309 	/*
310 	 * On multi-fabric platform (e.g. Numascale NumaChip) a
311 	 * platform-specific handler needs to be called to fixup some
312 	 * IDs of the CPU.
313 	 */
314 	if (x86_cpuinit.fixup_cpu_id)
315 		x86_cpuinit.fixup_cpu_id(c, node);
316 
317 	if (!node_online(node)) {
318 		/*
319 		 * Two possibilities here:
320 		 *
321 		 * - The CPU is missing memory and no node was created.  In
322 		 *   that case try picking one from a nearby CPU.
323 		 *
324 		 * - The APIC IDs differ from the HyperTransport node IDs
325 		 *   which the K8 northbridge parsing fills in.  Assume
326 		 *   they are all increased by a constant offset, but in
327 		 *   the same order as the HT nodeids.  If that doesn't
328 		 *   result in a usable node fall back to the path for the
329 		 *   previous case.
330 		 *
331 		 * This workaround operates directly on the mapping between
332 		 * APIC ID and NUMA node, assuming certain relationship
333 		 * between APIC ID, HT node ID and NUMA topology.  As going
334 		 * through CPU mapping may alter the outcome, directly
335 		 * access __apicid_to_node[].
336 		 */
337 		int ht_nodeid = c->topo.initial_apicid;
338 
339 		if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
340 			node = __apicid_to_node[ht_nodeid];
341 		/* Pick a nearby node */
342 		if (!node_online(node))
343 			node = nearby_node(apicid);
344 	}
345 	numa_set_node(cpu, node);
346 #endif
347 }
348 
bsp_determine_snp(struct cpuinfo_x86 * c)349 static void bsp_determine_snp(struct cpuinfo_x86 *c)
350 {
351 #ifdef CONFIG_ARCH_HAS_CC_PLATFORM
352 	cc_vendor = CC_VENDOR_AMD;
353 
354 	if (cpu_has(c, X86_FEATURE_SEV_SNP)) {
355 		/*
356 		 * RMP table entry format is not architectural and is defined by the
357 		 * per-processor PPR. Restrict SNP support on the known CPU models
358 		 * for which the RMP table entry format is currently defined for.
359 		 */
360 		if (!cpu_has(c, X86_FEATURE_HYPERVISOR) &&
361 		    c->x86 >= 0x19 && snp_probe_rmptable_info()) {
362 			cc_platform_set(CC_ATTR_HOST_SEV_SNP);
363 		} else {
364 			setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
365 			cc_platform_clear(CC_ATTR_HOST_SEV_SNP);
366 		}
367 	}
368 #endif
369 }
370 
amd_check_tsa_microcode(void)371 static bool amd_check_tsa_microcode(void)
372 {
373 	struct cpuinfo_x86 *c = &boot_cpu_data;
374 	union zen_patch_rev p;
375 	u32 min_rev = 0;
376 
377 	p.ext_fam	= c->x86 - 0xf;
378 	p.model		= c->x86_model;
379 	p.ext_model	= c->x86_model >> 4;
380 	p.stepping	= c->x86_stepping;
381 	/* reserved bits are expected to be 0 in test below */
382 	p.__reserved	= 0;
383 
384 	if (cpu_has(c, X86_FEATURE_ZEN3) ||
385 	    cpu_has(c, X86_FEATURE_ZEN4)) {
386 		switch (p.ucode_rev >> 8) {
387 		case 0xa0011:	min_rev = 0x0a0011d7; break;
388 		case 0xa0012:	min_rev = 0x0a00123b; break;
389 		case 0xa0082:	min_rev = 0x0a00820d; break;
390 		case 0xa1011:	min_rev = 0x0a10114c; break;
391 		case 0xa1012:	min_rev = 0x0a10124c; break;
392 		case 0xa1081:	min_rev = 0x0a108109; break;
393 		case 0xa2010:	min_rev = 0x0a20102e; break;
394 		case 0xa2012:	min_rev = 0x0a201211; break;
395 		case 0xa4041:	min_rev = 0x0a404108; break;
396 		case 0xa5000:	min_rev = 0x0a500012; break;
397 		case 0xa6012:	min_rev = 0x0a60120a; break;
398 		case 0xa7041:	min_rev = 0x0a704108; break;
399 		case 0xa7052:	min_rev = 0x0a705208; break;
400 		case 0xa7080:	min_rev = 0x0a708008; break;
401 		case 0xa70c0:	min_rev = 0x0a70c008; break;
402 		case 0xaa002:	min_rev = 0x0aa00216; break;
403 		default:
404 			pr_debug("%s: ucode_rev: 0x%x, current revision: 0x%x\n",
405 				 __func__, p.ucode_rev, c->microcode);
406 			return false;
407 		}
408 	}
409 
410 	if (!min_rev)
411 		return false;
412 
413 	return c->microcode >= min_rev;
414 }
415 
tsa_init(struct cpuinfo_x86 * c)416 static void tsa_init(struct cpuinfo_x86 *c)
417 {
418 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
419 		return;
420 
421 	if (cpu_has(c, X86_FEATURE_ZEN3) ||
422 	    cpu_has(c, X86_FEATURE_ZEN4)) {
423 		if (amd_check_tsa_microcode())
424 			setup_force_cpu_cap(X86_FEATURE_VERW_CLEAR);
425 	} else {
426 		setup_force_cpu_cap(X86_FEATURE_TSA_SQ_NO);
427 		setup_force_cpu_cap(X86_FEATURE_TSA_L1_NO);
428 	}
429 }
430 
bsp_init_amd(struct cpuinfo_x86 * c)431 static void bsp_init_amd(struct cpuinfo_x86 *c)
432 {
433 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
434 
435 		if (c->x86 > 0x10 ||
436 		    (c->x86 == 0x10 && c->x86_model >= 0x2)) {
437 			u64 val;
438 
439 			rdmsrl(MSR_K7_HWCR, val);
440 			if (!(val & BIT(24)))
441 				pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
442 		}
443 	}
444 
445 	if (c->x86 == 0x15) {
446 		unsigned long upperbit;
447 		u32 cpuid, assoc;
448 
449 		cpuid	 = cpuid_edx(0x80000005);
450 		assoc	 = cpuid >> 16 & 0xff;
451 		upperbit = ((cpuid >> 24) << 10) / assoc;
452 
453 		va_align.mask	  = (upperbit - 1) & PAGE_MASK;
454 		va_align.flags    = ALIGN_VA_32 | ALIGN_VA_64;
455 
456 		/* A random value per boot for bit slice [12:upper_bit) */
457 		va_align.bits = get_random_u32() & va_align.mask;
458 	}
459 
460 	if (cpu_has(c, X86_FEATURE_MWAITX))
461 		use_mwaitx_delay();
462 
463 	if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
464 	    !boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
465 	    c->x86 >= 0x15 && c->x86 <= 0x17) {
466 		unsigned int bit;
467 
468 		switch (c->x86) {
469 		case 0x15: bit = 54; break;
470 		case 0x16: bit = 33; break;
471 		case 0x17: bit = 10; break;
472 		default: return;
473 		}
474 		/*
475 		 * Try to cache the base value so further operations can
476 		 * avoid RMW. If that faults, do not enable SSBD.
477 		 */
478 		if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
479 			setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
480 			setup_force_cpu_cap(X86_FEATURE_SSBD);
481 			x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
482 		}
483 	}
484 
485 	resctrl_cpu_detect(c);
486 
487 	/* Figure out Zen generations: */
488 	switch (c->x86) {
489 	case 0x17:
490 		switch (c->x86_model) {
491 		case 0x00 ... 0x2f:
492 		case 0x50 ... 0x5f:
493 			setup_force_cpu_cap(X86_FEATURE_ZEN1);
494 			break;
495 		case 0x30 ... 0x4f:
496 		case 0x60 ... 0x7f:
497 		case 0x90 ... 0x91:
498 		case 0xa0 ... 0xaf:
499 			setup_force_cpu_cap(X86_FEATURE_ZEN2);
500 			break;
501 		default:
502 			goto warn;
503 		}
504 		break;
505 
506 	case 0x19:
507 		switch (c->x86_model) {
508 		case 0x00 ... 0x0f:
509 		case 0x20 ... 0x5f:
510 			setup_force_cpu_cap(X86_FEATURE_ZEN3);
511 			break;
512 		case 0x10 ... 0x1f:
513 		case 0x60 ... 0xaf:
514 			setup_force_cpu_cap(X86_FEATURE_ZEN4);
515 			break;
516 		default:
517 			goto warn;
518 		}
519 		break;
520 
521 	case 0x1a:
522 		switch (c->x86_model) {
523 		case 0x00 ... 0x2f:
524 		case 0x40 ... 0x4f:
525 		case 0x60 ... 0x7f:
526 			setup_force_cpu_cap(X86_FEATURE_ZEN5);
527 			break;
528 		default:
529 			goto warn;
530 		}
531 		break;
532 
533 	default:
534 		break;
535 	}
536 
537 	bsp_determine_snp(c);
538 
539 	tsa_init(c);
540 
541 	return;
542 
543 warn:
544 	WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model);
545 }
546 
early_detect_mem_encrypt(struct cpuinfo_x86 * c)547 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
548 {
549 	u64 msr;
550 
551 	/*
552 	 * BIOS support is required for SME and SEV.
553 	 *   For SME: If BIOS has enabled SME then adjust x86_phys_bits by
554 	 *	      the SME physical address space reduction value.
555 	 *	      If BIOS has not enabled SME then don't advertise the
556 	 *	      SME feature (set in scattered.c).
557 	 *	      If the kernel has not enabled SME via any means then
558 	 *	      don't advertise the SME feature.
559 	 *   For SEV: If BIOS has not enabled SEV then don't advertise SEV and
560 	 *	      any additional functionality based on it.
561 	 *
562 	 *   In all cases, since support for SME and SEV requires long mode,
563 	 *   don't advertise the feature under CONFIG_X86_32.
564 	 */
565 	if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
566 		/* Check if memory encryption is enabled */
567 		rdmsrl(MSR_AMD64_SYSCFG, msr);
568 		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
569 			goto clear_all;
570 
571 		/*
572 		 * Always adjust physical address bits. Even though this
573 		 * will be a value above 32-bits this is still done for
574 		 * CONFIG_X86_32 so that accurate values are reported.
575 		 */
576 		c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
577 
578 		if (IS_ENABLED(CONFIG_X86_32))
579 			goto clear_all;
580 
581 		if (!sme_me_mask)
582 			setup_clear_cpu_cap(X86_FEATURE_SME);
583 
584 		rdmsrl(MSR_K7_HWCR, msr);
585 		if (!(msr & MSR_K7_HWCR_SMMLOCK))
586 			goto clear_sev;
587 
588 		return;
589 
590 clear_all:
591 		setup_clear_cpu_cap(X86_FEATURE_SME);
592 clear_sev:
593 		setup_clear_cpu_cap(X86_FEATURE_SEV);
594 		setup_clear_cpu_cap(X86_FEATURE_SEV_ES);
595 		setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
596 	}
597 }
598 
early_init_amd(struct cpuinfo_x86 * c)599 static void early_init_amd(struct cpuinfo_x86 *c)
600 {
601 	u32 dummy;
602 
603 	if (c->x86 >= 0xf)
604 		set_cpu_cap(c, X86_FEATURE_K8);
605 
606 	rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
607 
608 	/*
609 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
610 	 * with P/T states and does not stop in deep C-states
611 	 */
612 	if (c->x86_power & (1 << 8)) {
613 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
614 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
615 	}
616 
617 	/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
618 	if (c->x86_power & BIT(12))
619 		set_cpu_cap(c, X86_FEATURE_ACC_POWER);
620 
621 	/* Bit 14 indicates the Runtime Average Power Limit interface. */
622 	if (c->x86_power & BIT(14))
623 		set_cpu_cap(c, X86_FEATURE_RAPL);
624 
625 #ifdef CONFIG_X86_64
626 	set_cpu_cap(c, X86_FEATURE_SYSCALL32);
627 #else
628 	/*  Set MTRR capability flag if appropriate */
629 	if (c->x86 == 5)
630 		if (c->x86_model == 13 || c->x86_model == 9 ||
631 		    (c->x86_model == 8 && c->x86_stepping >= 8))
632 			set_cpu_cap(c, X86_FEATURE_K6_MTRR);
633 #endif
634 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
635 	/*
636 	 * ApicID can always be treated as an 8-bit value for AMD APIC versions
637 	 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we
638 	 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families
639 	 * after 16h.
640 	 */
641 	if (boot_cpu_has(X86_FEATURE_APIC)) {
642 		if (c->x86 > 0x16)
643 			set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
644 		else if (c->x86 >= 0xf) {
645 			/* check CPU config space for extended APIC ID */
646 			unsigned int val;
647 
648 			val = read_pci_config(0, 24, 0, 0x68);
649 			if ((val >> 17 & 0x3) == 0x3)
650 				set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
651 		}
652 	}
653 #endif
654 
655 	/*
656 	 * This is only needed to tell the kernel whether to use VMCALL
657 	 * and VMMCALL.  VMMCALL is never executed except under virt, so
658 	 * we can set it unconditionally.
659 	 */
660 	set_cpu_cap(c, X86_FEATURE_VMMCALL);
661 
662 	/* F16h erratum 793, CVE-2013-6885 */
663 	if (c->x86 == 0x16 && c->x86_model <= 0xf)
664 		msr_set_bit(MSR_AMD64_LS_CFG, 15);
665 
666 	early_detect_mem_encrypt(c);
667 
668 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) {
669 		if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB))
670 			setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
671 		else if (c->x86 >= 0x19 && !wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) {
672 			setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
673 			setup_force_cpu_cap(X86_FEATURE_SBPB);
674 		}
675 	}
676 }
677 
init_amd_k8(struct cpuinfo_x86 * c)678 static void init_amd_k8(struct cpuinfo_x86 *c)
679 {
680 	u32 level;
681 	u64 value;
682 
683 	/* On C+ stepping K8 rep microcode works well for copy/memset */
684 	level = cpuid_eax(1);
685 	if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
686 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
687 
688 	/*
689 	 * Some BIOSes incorrectly force this feature, but only K8 revision D
690 	 * (model = 0x14) and later actually support it.
691 	 * (AMD Erratum #110, docId: 25759).
692 	 */
693 	if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM) && !cpu_has(c, X86_FEATURE_HYPERVISOR)) {
694 		clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
695 		if (!rdmsrl_amd_safe(0xc001100d, &value)) {
696 			value &= ~BIT_64(32);
697 			wrmsrl_amd_safe(0xc001100d, value);
698 		}
699 	}
700 
701 	if (!c->x86_model_id[0])
702 		strcpy(c->x86_model_id, "Hammer");
703 
704 #ifdef CONFIG_SMP
705 	/*
706 	 * Disable TLB flush filter by setting HWCR.FFDIS on K8
707 	 * bit 6 of msr C001_0015
708 	 *
709 	 * Errata 63 for SH-B3 steppings
710 	 * Errata 122 for all steppings (F+ have it disabled by default)
711 	 */
712 	msr_set_bit(MSR_K7_HWCR, 6);
713 #endif
714 	set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
715 
716 	/*
717 	 * Check models and steppings affected by erratum 400. This is
718 	 * used to select the proper idle routine and to enable the
719 	 * check whether the machine is affected in arch_post_acpi_subsys_init()
720 	 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
721 	 */
722 	if (c->x86_model > 0x41 ||
723 	    (c->x86_model == 0x41 && c->x86_stepping >= 0x2))
724 		setup_force_cpu_bug(X86_BUG_AMD_E400);
725 }
726 
init_amd_gh(struct cpuinfo_x86 * c)727 static void init_amd_gh(struct cpuinfo_x86 *c)
728 {
729 #ifdef CONFIG_MMCONF_FAM10H
730 	/* do this for boot cpu */
731 	if (c == &boot_cpu_data)
732 		check_enable_amd_mmconf_dmi();
733 
734 	fam10h_check_enable_mmcfg();
735 #endif
736 
737 	/*
738 	 * Disable GART TLB Walk Errors on Fam10h. We do this here because this
739 	 * is always needed when GART is enabled, even in a kernel which has no
740 	 * MCE support built in. BIOS should disable GartTlbWlk Errors already.
741 	 * If it doesn't, we do it here as suggested by the BKDG.
742 	 *
743 	 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
744 	 */
745 	msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
746 
747 	/*
748 	 * On family 10h BIOS may not have properly enabled WC+ support, causing
749 	 * it to be converted to CD memtype. This may result in performance
750 	 * degradation for certain nested-paging guests. Prevent this conversion
751 	 * by clearing bit 24 in MSR_AMD64_BU_CFG2.
752 	 *
753 	 * NOTE: we want to use the _safe accessors so as not to #GP kvm
754 	 * guests on older kvm hosts.
755 	 */
756 	msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
757 
758 	set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
759 
760 	/*
761 	 * Check models and steppings affected by erratum 400. This is
762 	 * used to select the proper idle routine and to enable the
763 	 * check whether the machine is affected in arch_post_acpi_subsys_init()
764 	 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
765 	 */
766 	if (c->x86_model > 0x2 ||
767 	    (c->x86_model == 0x2 && c->x86_stepping >= 0x1))
768 		setup_force_cpu_bug(X86_BUG_AMD_E400);
769 }
770 
init_amd_ln(struct cpuinfo_x86 * c)771 static void init_amd_ln(struct cpuinfo_x86 *c)
772 {
773 	/*
774 	 * Apply erratum 665 fix unconditionally so machines without a BIOS
775 	 * fix work.
776 	 */
777 	msr_set_bit(MSR_AMD64_DE_CFG, 31);
778 }
779 
780 static bool rdrand_force;
781 
rdrand_cmdline(char * str)782 static int __init rdrand_cmdline(char *str)
783 {
784 	if (!str)
785 		return -EINVAL;
786 
787 	if (!strcmp(str, "force"))
788 		rdrand_force = true;
789 	else
790 		return -EINVAL;
791 
792 	return 0;
793 }
794 early_param("rdrand", rdrand_cmdline);
795 
clear_rdrand_cpuid_bit(struct cpuinfo_x86 * c)796 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
797 {
798 	/*
799 	 * Saving of the MSR used to hide the RDRAND support during
800 	 * suspend/resume is done by arch/x86/power/cpu.c, which is
801 	 * dependent on CONFIG_PM_SLEEP.
802 	 */
803 	if (!IS_ENABLED(CONFIG_PM_SLEEP))
804 		return;
805 
806 	/*
807 	 * The self-test can clear X86_FEATURE_RDRAND, so check for
808 	 * RDRAND support using the CPUID function directly.
809 	 */
810 	if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
811 		return;
812 
813 	msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
814 
815 	/*
816 	 * Verify that the CPUID change has occurred in case the kernel is
817 	 * running virtualized and the hypervisor doesn't support the MSR.
818 	 */
819 	if (cpuid_ecx(1) & BIT(30)) {
820 		pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
821 		return;
822 	}
823 
824 	clear_cpu_cap(c, X86_FEATURE_RDRAND);
825 	pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
826 }
827 
init_amd_jg(struct cpuinfo_x86 * c)828 static void init_amd_jg(struct cpuinfo_x86 *c)
829 {
830 	/*
831 	 * Some BIOS implementations do not restore proper RDRAND support
832 	 * across suspend and resume. Check on whether to hide the RDRAND
833 	 * instruction support via CPUID.
834 	 */
835 	clear_rdrand_cpuid_bit(c);
836 }
837 
init_amd_bd(struct cpuinfo_x86 * c)838 static void init_amd_bd(struct cpuinfo_x86 *c)
839 {
840 	u64 value;
841 
842 	/*
843 	 * The way access filter has a performance penalty on some workloads.
844 	 * Disable it on the affected CPUs.
845 	 */
846 	if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
847 		if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
848 			value |= 0x1E;
849 			wrmsrl_safe(MSR_F15H_IC_CFG, value);
850 		}
851 	}
852 
853 	/*
854 	 * Some BIOS implementations do not restore proper RDRAND support
855 	 * across suspend and resume. Check on whether to hide the RDRAND
856 	 * instruction support via CPUID.
857 	 */
858 	clear_rdrand_cpuid_bit(c);
859 }
860 
861 static const struct x86_cpu_desc erratum_1386_microcode[] = {
862 	AMD_CPU_DESC(0x17,  0x1, 0x2, 0x0800126e),
863 	AMD_CPU_DESC(0x17, 0x31, 0x0, 0x08301052),
864 	{},
865 };
866 
fix_erratum_1386(struct cpuinfo_x86 * c)867 static void fix_erratum_1386(struct cpuinfo_x86 *c)
868 {
869 	/*
870 	 * Work around Erratum 1386.  The XSAVES instruction malfunctions in
871 	 * certain circumstances on Zen1/2 uarch, and not all parts have had
872 	 * updated microcode at the time of writing (March 2023).
873 	 *
874 	 * Affected parts all have no supervisor XSAVE states, meaning that
875 	 * the XSAVEC instruction (which works fine) is equivalent.
876 	 *
877 	 * Clear the feature flag only on microcode revisions which
878 	 * don't have the fix.
879 	 */
880 	if (x86_cpu_has_min_microcode_rev(erratum_1386_microcode))
881 		return;
882 
883 	clear_cpu_cap(c, X86_FEATURE_XSAVES);
884 }
885 
init_spectral_chicken(struct cpuinfo_x86 * c)886 void init_spectral_chicken(struct cpuinfo_x86 *c)
887 {
888 #ifdef CONFIG_MITIGATION_UNRET_ENTRY
889 	u64 value;
890 
891 	/*
892 	 * On Zen2 we offer this chicken (bit) on the altar of Speculation.
893 	 *
894 	 * This suppresses speculation from the middle of a basic block, i.e. it
895 	 * suppresses non-branch predictions.
896 	 */
897 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
898 		if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) {
899 			value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT;
900 			wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value);
901 		}
902 	}
903 #endif
904 }
905 
init_amd_zen_common(void)906 static void init_amd_zen_common(void)
907 {
908 	setup_force_cpu_cap(X86_FEATURE_ZEN);
909 #ifdef CONFIG_NUMA
910 	node_reclaim_distance = 32;
911 #endif
912 }
913 
init_amd_zen1(struct cpuinfo_x86 * c)914 static void init_amd_zen1(struct cpuinfo_x86 *c)
915 {
916 	fix_erratum_1386(c);
917 
918 	/* Fix up CPUID bits, but only if not virtualised. */
919 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
920 
921 		/* Erratum 1076: CPB feature bit not being set in CPUID. */
922 		if (!cpu_has(c, X86_FEATURE_CPB))
923 			set_cpu_cap(c, X86_FEATURE_CPB);
924 	}
925 
926 	pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n");
927 	setup_force_cpu_bug(X86_BUG_DIV0);
928 
929 	/*
930 	 * Turn off the Instructions Retired free counter on machines that are
931 	 * susceptible to erratum #1054 "Instructions Retired Performance
932 	 * Counter May Be Inaccurate".
933 	 */
934 	if (c->x86_model < 0x30) {
935 		msr_clear_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
936 		clear_cpu_cap(c, X86_FEATURE_IRPERF);
937 	}
938 }
939 
cpu_has_zenbleed_microcode(void)940 static bool cpu_has_zenbleed_microcode(void)
941 {
942 	u32 good_rev = 0;
943 
944 	switch (boot_cpu_data.x86_model) {
945 	case 0x30 ... 0x3f: good_rev = 0x0830107b; break;
946 	case 0x60 ... 0x67: good_rev = 0x0860010c; break;
947 	case 0x68 ... 0x6f: good_rev = 0x08608107; break;
948 	case 0x70 ... 0x7f: good_rev = 0x08701033; break;
949 	case 0xa0 ... 0xaf: good_rev = 0x08a00009; break;
950 
951 	default:
952 		return false;
953 	}
954 
955 	if (boot_cpu_data.microcode < good_rev)
956 		return false;
957 
958 	return true;
959 }
960 
zen2_zenbleed_check(struct cpuinfo_x86 * c)961 static void zen2_zenbleed_check(struct cpuinfo_x86 *c)
962 {
963 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
964 		return;
965 
966 	if (!cpu_has(c, X86_FEATURE_AVX))
967 		return;
968 
969 	if (!cpu_has_zenbleed_microcode()) {
970 		pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n");
971 		msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
972 	} else {
973 		msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
974 	}
975 }
976 
init_amd_zen2(struct cpuinfo_x86 * c)977 static void init_amd_zen2(struct cpuinfo_x86 *c)
978 {
979 	init_spectral_chicken(c);
980 	fix_erratum_1386(c);
981 	zen2_zenbleed_check(c);
982 
983 	/* Disable RDSEED on AMD Cyan Skillfish because of an error. */
984 	if (c->x86_model == 0x47 && c->x86_stepping == 0x0) {
985 		clear_cpu_cap(c, X86_FEATURE_RDSEED);
986 		msr_clear_bit(MSR_AMD64_CPUID_FN_7, 18);
987 		pr_emerg("RDSEED is not reliable on this platform; disabling.\n");
988 	}
989 }
990 
init_amd_zen3(struct cpuinfo_x86 * c)991 static void init_amd_zen3(struct cpuinfo_x86 *c)
992 {
993 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
994 		/*
995 		 * Zen3 (Fam19 model < 0x10) parts are not susceptible to
996 		 * Branch Type Confusion, but predate the allocation of the
997 		 * BTC_NO bit.
998 		 */
999 		if (!cpu_has(c, X86_FEATURE_BTC_NO))
1000 			set_cpu_cap(c, X86_FEATURE_BTC_NO);
1001 	}
1002 }
1003 
init_amd_zen4(struct cpuinfo_x86 * c)1004 static void init_amd_zen4(struct cpuinfo_x86 *c)
1005 {
1006 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR))
1007 		msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT);
1008 
1009 	/*
1010 	 * These Zen4 SoCs advertise support for virtualized VMLOAD/VMSAVE
1011 	 * in some BIOS versions but they can lead to random host reboots.
1012 	 */
1013 	switch (c->x86_model) {
1014 	case 0x18 ... 0x1f:
1015 	case 0x60 ... 0x7f:
1016 		clear_cpu_cap(c, X86_FEATURE_V_VMSAVE_VMLOAD);
1017 		break;
1018 	}
1019 }
1020 
init_amd_zen5(struct cpuinfo_x86 * c)1021 static void init_amd_zen5(struct cpuinfo_x86 *c)
1022 {
1023 }
1024 
init_amd(struct cpuinfo_x86 * c)1025 static void init_amd(struct cpuinfo_x86 *c)
1026 {
1027 	u64 vm_cr;
1028 
1029 	early_init_amd(c);
1030 
1031 	/*
1032 	 * Bit 31 in normal CPUID used for nonstandard 3DNow ID;
1033 	 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
1034 	 */
1035 	clear_cpu_cap(c, 0*32+31);
1036 
1037 	if (c->x86 >= 0x10)
1038 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
1039 
1040 	/* AMD FSRM also implies FSRS */
1041 	if (cpu_has(c, X86_FEATURE_FSRM))
1042 		set_cpu_cap(c, X86_FEATURE_FSRS);
1043 
1044 	/* K6s reports MCEs but don't actually have all the MSRs */
1045 	if (c->x86 < 6)
1046 		clear_cpu_cap(c, X86_FEATURE_MCE);
1047 
1048 	switch (c->x86) {
1049 	case 4:    init_amd_k5(c); break;
1050 	case 5:    init_amd_k6(c); break;
1051 	case 6:	   init_amd_k7(c); break;
1052 	case 0xf:  init_amd_k8(c); break;
1053 	case 0x10: init_amd_gh(c); break;
1054 	case 0x12: init_amd_ln(c); break;
1055 	case 0x15: init_amd_bd(c); break;
1056 	case 0x16: init_amd_jg(c); break;
1057 	}
1058 
1059 	/*
1060 	 * Save up on some future enablement work and do common Zen
1061 	 * settings.
1062 	 */
1063 	if (c->x86 >= 0x17)
1064 		init_amd_zen_common();
1065 
1066 	if (boot_cpu_has(X86_FEATURE_ZEN1))
1067 		init_amd_zen1(c);
1068 	else if (boot_cpu_has(X86_FEATURE_ZEN2))
1069 		init_amd_zen2(c);
1070 	else if (boot_cpu_has(X86_FEATURE_ZEN3))
1071 		init_amd_zen3(c);
1072 	else if (boot_cpu_has(X86_FEATURE_ZEN4))
1073 		init_amd_zen4(c);
1074 	else if (boot_cpu_has(X86_FEATURE_ZEN5))
1075 		init_amd_zen5(c);
1076 
1077 	/*
1078 	 * Enable workaround for FXSAVE leak on CPUs
1079 	 * without a XSaveErPtr feature
1080 	 */
1081 	if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
1082 		set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
1083 
1084 	cpu_detect_cache_sizes(c);
1085 
1086 	srat_detect_node(c);
1087 
1088 	init_amd_cacheinfo(c);
1089 
1090 	if (cpu_has(c, X86_FEATURE_SVM)) {
1091 		rdmsrl(MSR_VM_CR, vm_cr);
1092 		if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) {
1093 			pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n");
1094 			clear_cpu_cap(c, X86_FEATURE_SVM);
1095 		}
1096 	}
1097 
1098 	if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) {
1099 		/*
1100 		 * Use LFENCE for execution serialization.  On families which
1101 		 * don't have that MSR, LFENCE is already serializing.
1102 		 * msr_set_bit() uses the safe accessors, too, even if the MSR
1103 		 * is not present.
1104 		 */
1105 		msr_set_bit(MSR_AMD64_DE_CFG,
1106 			    MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT);
1107 
1108 		/* A serializing LFENCE stops RDTSC speculation */
1109 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
1110 	}
1111 
1112 	/*
1113 	 * Family 0x12 and above processors have APIC timer
1114 	 * running in deep C states.
1115 	 */
1116 	if (c->x86 > 0x11)
1117 		set_cpu_cap(c, X86_FEATURE_ARAT);
1118 
1119 	/* 3DNow or LM implies PREFETCHW */
1120 	if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
1121 		if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
1122 			set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
1123 
1124 	/* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
1125 	if (!cpu_feature_enabled(X86_FEATURE_XENPV))
1126 		set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1127 
1128 	/* Enable the Instructions Retired free counter */
1129 	if (cpu_has(c, X86_FEATURE_IRPERF))
1130 		msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
1131 
1132 	check_null_seg_clears_base(c);
1133 
1134 	/*
1135 	 * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up
1136 	 * using the trampoline code and as part of it, MSR_EFER gets prepared there in
1137 	 * order to be replicated onto them. Regardless, set it here again, if not set,
1138 	 * to protect against any future refactoring/code reorganization which might
1139 	 * miss setting this important bit.
1140 	 */
1141 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1142 	    cpu_has(c, X86_FEATURE_AUTOIBRS))
1143 		WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS) < 0);
1144 
1145 	/* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */
1146 	clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1147 }
1148 
1149 #ifdef CONFIG_X86_32
amd_size_cache(struct cpuinfo_x86 * c,unsigned int size)1150 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
1151 {
1152 	/* AMD errata T13 (order #21922) */
1153 	if (c->x86 == 6) {
1154 		/* Duron Rev A0 */
1155 		if (c->x86_model == 3 && c->x86_stepping == 0)
1156 			size = 64;
1157 		/* Tbird rev A1/A2 */
1158 		if (c->x86_model == 4 &&
1159 			(c->x86_stepping == 0 || c->x86_stepping == 1))
1160 			size = 256;
1161 	}
1162 	return size;
1163 }
1164 #endif
1165 
cpu_detect_tlb_amd(struct cpuinfo_x86 * c)1166 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
1167 {
1168 	u32 ebx, eax, ecx, edx;
1169 	u16 mask = 0xfff;
1170 
1171 	if (c->x86 < 0xf)
1172 		return;
1173 
1174 	if (c->extended_cpuid_level < 0x80000006)
1175 		return;
1176 
1177 	cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
1178 
1179 	tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
1180 	tlb_lli_4k[ENTRIES] = ebx & mask;
1181 
1182 	/*
1183 	 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
1184 	 * characteristics from the CPUID function 0x80000005 instead.
1185 	 */
1186 	if (c->x86 == 0xf) {
1187 		cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1188 		mask = 0xff;
1189 	}
1190 
1191 	/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1192 	if (!((eax >> 16) & mask))
1193 		tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
1194 	else
1195 		tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
1196 
1197 	/* a 4M entry uses two 2M entries */
1198 	tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
1199 
1200 	/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1201 	if (!(eax & mask)) {
1202 		/* Erratum 658 */
1203 		if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
1204 			tlb_lli_2m[ENTRIES] = 1024;
1205 		} else {
1206 			cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1207 			tlb_lli_2m[ENTRIES] = eax & 0xff;
1208 		}
1209 	} else
1210 		tlb_lli_2m[ENTRIES] = eax & mask;
1211 
1212 	tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
1213 }
1214 
1215 static const struct cpu_dev amd_cpu_dev = {
1216 	.c_vendor	= "AMD",
1217 	.c_ident	= { "AuthenticAMD" },
1218 #ifdef CONFIG_X86_32
1219 	.legacy_models = {
1220 		{ .family = 4, .model_names =
1221 		  {
1222 			  [3] = "486 DX/2",
1223 			  [7] = "486 DX/2-WB",
1224 			  [8] = "486 DX/4",
1225 			  [9] = "486 DX/4-WB",
1226 			  [14] = "Am5x86-WT",
1227 			  [15] = "Am5x86-WB"
1228 		  }
1229 		},
1230 	},
1231 	.legacy_cache_size = amd_size_cache,
1232 #endif
1233 	.c_early_init   = early_init_amd,
1234 	.c_detect_tlb	= cpu_detect_tlb_amd,
1235 	.c_bsp_init	= bsp_init_amd,
1236 	.c_init		= init_amd,
1237 	.c_x86_vendor	= X86_VENDOR_AMD,
1238 };
1239 
1240 cpu_dev_register(amd_cpu_dev);
1241 
1242 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask);
1243 
1244 static unsigned int amd_msr_dr_addr_masks[] = {
1245 	MSR_F16H_DR0_ADDR_MASK,
1246 	MSR_F16H_DR1_ADDR_MASK,
1247 	MSR_F16H_DR1_ADDR_MASK + 1,
1248 	MSR_F16H_DR1_ADDR_MASK + 2
1249 };
1250 
amd_set_dr_addr_mask(unsigned long mask,unsigned int dr)1251 void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr)
1252 {
1253 	int cpu = smp_processor_id();
1254 
1255 	if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1256 		return;
1257 
1258 	if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1259 		return;
1260 
1261 	if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask)
1262 		return;
1263 
1264 	wrmsr(amd_msr_dr_addr_masks[dr], mask, 0);
1265 	per_cpu(amd_dr_addr_mask, cpu)[dr] = mask;
1266 }
1267 
amd_get_dr_addr_mask(unsigned int dr)1268 unsigned long amd_get_dr_addr_mask(unsigned int dr)
1269 {
1270 	if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1271 		return 0;
1272 
1273 	if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1274 		return 0;
1275 
1276 	return per_cpu(amd_dr_addr_mask[dr], smp_processor_id());
1277 }
1278 EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask);
1279 
zenbleed_check_cpu(void * unused)1280 static void zenbleed_check_cpu(void *unused)
1281 {
1282 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
1283 
1284 	zen2_zenbleed_check(c);
1285 }
1286 
amd_check_microcode(void)1287 void amd_check_microcode(void)
1288 {
1289 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
1290 		return;
1291 
1292 	if (cpu_feature_enabled(X86_FEATURE_ZEN2))
1293 		on_each_cpu(zenbleed_check_cpu, NULL, 1);
1294 }
1295