1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
4
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/smp.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/semaphore.h>
11 #include <linux/thread_info.h>
12 #include <linux/init.h>
13 #include <linux/uaccess.h>
14 #include <linux/workqueue.h>
15 #include <linux/delay.h>
16 #include <linux/cpuhotplug.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/msr.h>
20 #include <asm/bugs.h>
21 #include <asm/cpu.h>
22 #include <asm/intel-family.h>
23 #include <asm/microcode.h>
24 #include <asm/hwcap2.h>
25 #include <asm/elf.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/cmdline.h>
28 #include <asm/traps.h>
29 #include <asm/resctrl.h>
30 #include <asm/numa.h>
31 #include <asm/thermal.h>
32
33 #ifdef CONFIG_X86_64
34 #include <linux/topology.h>
35 #endif
36
37 #include "cpu.h"
38
39 #ifdef CONFIG_X86_LOCAL_APIC
40 #include <asm/mpspec.h>
41 #include <asm/apic.h>
42 #endif
43
44 enum split_lock_detect_state {
45 sld_off = 0,
46 sld_warn,
47 sld_fatal,
48 sld_ratelimit,
49 };
50
51 /*
52 * Default to sld_off because most systems do not support split lock detection.
53 * sld_state_setup() will switch this to sld_warn on systems that support
54 * split lock/bus lock detect, unless there is a command line override.
55 */
56 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
57 static u64 msr_test_ctrl_cache __ro_after_init;
58
59 /*
60 * With a name like MSR_TEST_CTL it should go without saying, but don't touch
61 * MSR_TEST_CTL unless the CPU is one of the whitelisted models. Writing it
62 * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
63 */
64 static bool cpu_model_supports_sld __ro_after_init;
65
66 /*
67 * Processors which have self-snooping capability can handle conflicting
68 * memory type across CPUs by snooping its own cache. However, there exists
69 * CPU models in which having conflicting memory types still leads to
70 * unpredictable behavior, machine check errors, or hangs. Clear this
71 * feature to prevent its use on machines with known erratas.
72 */
check_memory_type_self_snoop_errata(struct cpuinfo_x86 * c)73 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
74 {
75 switch (c->x86_vfm) {
76 case INTEL_CORE_YONAH:
77 case INTEL_CORE2_MEROM:
78 case INTEL_CORE2_MEROM_L:
79 case INTEL_CORE2_PENRYN:
80 case INTEL_CORE2_DUNNINGTON:
81 case INTEL_NEHALEM:
82 case INTEL_NEHALEM_G:
83 case INTEL_NEHALEM_EP:
84 case INTEL_NEHALEM_EX:
85 case INTEL_WESTMERE:
86 case INTEL_WESTMERE_EP:
87 case INTEL_SANDYBRIDGE:
88 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
89 }
90 }
91
92 static bool ring3mwait_disabled __read_mostly;
93
ring3mwait_disable(char * __unused)94 static int __init ring3mwait_disable(char *__unused)
95 {
96 ring3mwait_disabled = true;
97 return 1;
98 }
99 __setup("ring3mwait=disable", ring3mwait_disable);
100
probe_xeon_phi_r3mwait(struct cpuinfo_x86 * c)101 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
102 {
103 /*
104 * Ring 3 MONITOR/MWAIT feature cannot be detected without
105 * cpu model and family comparison.
106 */
107 if (c->x86 != 6)
108 return;
109 switch (c->x86_vfm) {
110 case INTEL_XEON_PHI_KNL:
111 case INTEL_XEON_PHI_KNM:
112 break;
113 default:
114 return;
115 }
116
117 if (ring3mwait_disabled)
118 return;
119
120 set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
121 this_cpu_or(msr_misc_features_shadow,
122 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
123
124 if (c == &boot_cpu_data)
125 ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
126 }
127
128 /*
129 * Early microcode releases for the Spectre v2 mitigation were broken.
130 * Information taken from;
131 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
132 * - https://kb.vmware.com/s/article/52345
133 * - Microcode revisions observed in the wild
134 * - Release note from 20180108 microcode release
135 */
136 struct sku_microcode {
137 u32 vfm;
138 u8 stepping;
139 u32 microcode;
140 };
141 static const struct sku_microcode spectre_bad_microcodes[] = {
142 { INTEL_KABYLAKE, 0x0B, 0x80 },
143 { INTEL_KABYLAKE, 0x0A, 0x80 },
144 { INTEL_KABYLAKE, 0x09, 0x80 },
145 { INTEL_KABYLAKE_L, 0x0A, 0x80 },
146 { INTEL_KABYLAKE_L, 0x09, 0x80 },
147 { INTEL_SKYLAKE_X, 0x03, 0x0100013e },
148 { INTEL_SKYLAKE_X, 0x04, 0x0200003c },
149 { INTEL_BROADWELL, 0x04, 0x28 },
150 { INTEL_BROADWELL_G, 0x01, 0x1b },
151 { INTEL_BROADWELL_D, 0x02, 0x14 },
152 { INTEL_BROADWELL_D, 0x03, 0x07000011 },
153 { INTEL_BROADWELL_X, 0x01, 0x0b000025 },
154 { INTEL_HASWELL_L, 0x01, 0x21 },
155 { INTEL_HASWELL_G, 0x01, 0x18 },
156 { INTEL_HASWELL, 0x03, 0x23 },
157 { INTEL_HASWELL_X, 0x02, 0x3b },
158 { INTEL_HASWELL_X, 0x04, 0x10 },
159 { INTEL_IVYBRIDGE_X, 0x04, 0x42a },
160 /* Observed in the wild */
161 { INTEL_SANDYBRIDGE_X, 0x06, 0x61b },
162 { INTEL_SANDYBRIDGE_X, 0x07, 0x712 },
163 };
164
bad_spectre_microcode(struct cpuinfo_x86 * c)165 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
166 {
167 int i;
168
169 /*
170 * We know that the hypervisor lie to us on the microcode version so
171 * we may as well hope that it is running the correct version.
172 */
173 if (cpu_has(c, X86_FEATURE_HYPERVISOR))
174 return false;
175
176 for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
177 if (c->x86_vfm == spectre_bad_microcodes[i].vfm &&
178 c->x86_stepping == spectre_bad_microcodes[i].stepping)
179 return (c->microcode <= spectre_bad_microcodes[i].microcode);
180 }
181 return false;
182 }
183
184 #define MSR_IA32_TME_ACTIVATE 0x982
185
186 /* Helpers to access TME_ACTIVATE MSR */
187 #define TME_ACTIVATE_LOCKED(x) (x & 0x1)
188 #define TME_ACTIVATE_ENABLED(x) (x & 0x2)
189
190 #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */
191
detect_tme_early(struct cpuinfo_x86 * c)192 static void detect_tme_early(struct cpuinfo_x86 *c)
193 {
194 u64 tme_activate;
195 int keyid_bits;
196
197 rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
198
199 if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
200 pr_info_once("x86/tme: not enabled by BIOS\n");
201 clear_cpu_cap(c, X86_FEATURE_TME);
202 return;
203 }
204 pr_info_once("x86/tme: enabled by BIOS\n");
205 keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
206 if (!keyid_bits)
207 return;
208
209 /*
210 * KeyID bits are set by BIOS and can be present regardless
211 * of whether the kernel is using them. They effectively lower
212 * the number of physical address bits.
213 *
214 * Update cpuinfo_x86::x86_phys_bits accordingly.
215 */
216 c->x86_phys_bits -= keyid_bits;
217 pr_info_once("x86/mktme: BIOS enabled: x86_phys_bits reduced by %d\n",
218 keyid_bits);
219 }
220
intel_unlock_cpuid_leafs(struct cpuinfo_x86 * c)221 void intel_unlock_cpuid_leafs(struct cpuinfo_x86 *c)
222 {
223 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
224 return;
225
226 if (c->x86 < 6 || (c->x86 == 6 && c->x86_model < 0xd))
227 return;
228
229 /*
230 * The BIOS can have limited CPUID to leaf 2, which breaks feature
231 * enumeration. Unlock it and update the maximum leaf info.
232 */
233 if (msr_clear_bit(MSR_IA32_MISC_ENABLE, MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0)
234 c->cpuid_level = cpuid_eax(0);
235 }
236
early_init_intel(struct cpuinfo_x86 * c)237 static void early_init_intel(struct cpuinfo_x86 *c)
238 {
239 u64 misc_enable;
240
241 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
242 (c->x86 == 0x6 && c->x86_model >= 0x0e))
243 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
244
245 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
246 c->microcode = intel_get_microcode_revision();
247
248 /* Now if any of them are set, check the blacklist and clear the lot */
249 if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
250 cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
251 cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
252 cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
253 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
254 setup_clear_cpu_cap(X86_FEATURE_IBRS);
255 setup_clear_cpu_cap(X86_FEATURE_IBPB);
256 setup_clear_cpu_cap(X86_FEATURE_STIBP);
257 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
258 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
259 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
260 setup_clear_cpu_cap(X86_FEATURE_SSBD);
261 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
262 }
263
264 /*
265 * Atom erratum AAE44/AAF40/AAG38/AAH41:
266 *
267 * A race condition between speculative fetches and invalidating
268 * a large page. This is worked around in microcode, but we
269 * need the microcode to have already been loaded... so if it is
270 * not, recommend a BIOS update and disable large pages.
271 */
272 if (c->x86_vfm == INTEL_ATOM_BONNELL && c->x86_stepping <= 2 &&
273 c->microcode < 0x20e) {
274 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
275 clear_cpu_cap(c, X86_FEATURE_PSE);
276 }
277
278 #ifdef CONFIG_X86_64
279 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
280 #else
281 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
282 if (c->x86 == 15 && c->x86_cache_alignment == 64)
283 c->x86_cache_alignment = 128;
284 #endif
285
286 /* CPUID workaround for 0F33/0F34 CPU */
287 if (c->x86 == 0xF && c->x86_model == 0x3
288 && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
289 c->x86_phys_bits = 36;
290
291 /*
292 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
293 * with P/T states and does not stop in deep C-states.
294 *
295 * It is also reliable across cores and sockets. (but not across
296 * cabinets - we turn it off in that case explicitly.)
297 */
298 if (c->x86_power & (1 << 8)) {
299 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
300 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
301 }
302
303 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
304 switch (c->x86_vfm) {
305 case INTEL_ATOM_SALTWELL_MID:
306 case INTEL_ATOM_SALTWELL_TABLET:
307 case INTEL_ATOM_SILVERMONT_MID:
308 case INTEL_ATOM_AIRMONT_NP:
309 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
310 break;
311 }
312
313 /*
314 * PAT is broken on early family 6 CPUs, the last of which
315 * is "Yonah" where the erratum is named "AN7":
316 *
317 * Page with PAT (Page Attribute Table) Set to USWC
318 * (Uncacheable Speculative Write Combine) While
319 * Associated MTRR (Memory Type Range Register) Is UC
320 * (Uncacheable) May Consolidate to UC
321 *
322 * Disable PAT and fall back to MTRR on these CPUs.
323 */
324 if (c->x86_vfm >= INTEL_PENTIUM_PRO &&
325 c->x86_vfm <= INTEL_CORE_YONAH)
326 clear_cpu_cap(c, X86_FEATURE_PAT);
327
328 /*
329 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
330 * clear the fast string and enhanced fast string CPU capabilities.
331 */
332 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
333 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
334 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
335 pr_info("Disabled fast string operations\n");
336 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
337 setup_clear_cpu_cap(X86_FEATURE_ERMS);
338 }
339 }
340
341 /*
342 * Intel Quark Core DevMan_001.pdf section 6.4.11
343 * "The operating system also is required to invalidate (i.e., flush)
344 * the TLB when any changes are made to any of the page table entries.
345 * The operating system must reload CR3 to cause the TLB to be flushed"
346 *
347 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
348 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
349 * to be modified.
350 */
351 if (c->x86_vfm == INTEL_QUARK_X1000) {
352 pr_info("Disabling PGE capability bit\n");
353 setup_clear_cpu_cap(X86_FEATURE_PGE);
354 }
355
356 check_memory_type_self_snoop_errata(c);
357
358 /*
359 * Adjust the number of physical bits early because it affects the
360 * valid bits of the MTRR mask registers.
361 */
362 if (cpu_has(c, X86_FEATURE_TME))
363 detect_tme_early(c);
364 }
365
bsp_init_intel(struct cpuinfo_x86 * c)366 static void bsp_init_intel(struct cpuinfo_x86 *c)
367 {
368 resctrl_cpu_detect(c);
369 }
370
371 #ifdef CONFIG_X86_32
372 /*
373 * Early probe support logic for ppro memory erratum #50
374 *
375 * This is called before we do cpu ident work
376 */
377
ppro_with_ram_bug(void)378 int ppro_with_ram_bug(void)
379 {
380 /* Uses data from early_cpu_detect now */
381 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
382 boot_cpu_data.x86 == 6 &&
383 boot_cpu_data.x86_model == 1 &&
384 boot_cpu_data.x86_stepping < 8) {
385 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
386 return 1;
387 }
388 return 0;
389 }
390
intel_smp_check(struct cpuinfo_x86 * c)391 static void intel_smp_check(struct cpuinfo_x86 *c)
392 {
393 /* calling is from identify_secondary_cpu() ? */
394 if (!c->cpu_index)
395 return;
396
397 /*
398 * Mask B, Pentium, but not Pentium MMX
399 */
400 if (c->x86 == 5 &&
401 c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
402 c->x86_model <= 3) {
403 /*
404 * Remember we have B step Pentia with bugs
405 */
406 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
407 "with B stepping processors.\n");
408 }
409 }
410
411 static int forcepae;
forcepae_setup(char * __unused)412 static int __init forcepae_setup(char *__unused)
413 {
414 forcepae = 1;
415 return 1;
416 }
417 __setup("forcepae", forcepae_setup);
418
intel_workarounds(struct cpuinfo_x86 * c)419 static void intel_workarounds(struct cpuinfo_x86 *c)
420 {
421 #ifdef CONFIG_X86_F00F_BUG
422 /*
423 * All models of Pentium and Pentium with MMX technology CPUs
424 * have the F0 0F bug, which lets nonprivileged users lock up the
425 * system. Announce that the fault handler will be checking for it.
426 * The Quark is also family 5, but does not have the same bug.
427 */
428 clear_cpu_bug(c, X86_BUG_F00F);
429 if (c->x86 == 5 && c->x86_model < 9) {
430 static int f00f_workaround_enabled;
431
432 set_cpu_bug(c, X86_BUG_F00F);
433 if (!f00f_workaround_enabled) {
434 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
435 f00f_workaround_enabled = 1;
436 }
437 }
438 #endif
439
440 /*
441 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
442 * model 3 mask 3
443 */
444 if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
445 clear_cpu_cap(c, X86_FEATURE_SEP);
446
447 /*
448 * PAE CPUID issue: many Pentium M report no PAE but may have a
449 * functionally usable PAE implementation.
450 * Forcefully enable PAE if kernel parameter "forcepae" is present.
451 */
452 if (forcepae) {
453 pr_warn("PAE forced!\n");
454 set_cpu_cap(c, X86_FEATURE_PAE);
455 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
456 }
457
458 /*
459 * P4 Xeon erratum 037 workaround.
460 * Hardware prefetcher may cause stale data to be loaded into the cache.
461 */
462 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
463 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
464 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
465 pr_info("CPU: C0 stepping P4 Xeon detected.\n");
466 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
467 }
468 }
469
470 /*
471 * See if we have a good local APIC by checking for buggy Pentia,
472 * i.e. all B steppings and the C2 stepping of P54C when using their
473 * integrated APIC (see 11AP erratum in "Pentium Processor
474 * Specification Update").
475 */
476 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
477 (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
478 set_cpu_bug(c, X86_BUG_11AP);
479
480
481 #ifdef CONFIG_X86_INTEL_USERCOPY
482 /*
483 * Set up the preferred alignment for movsl bulk memory moves
484 */
485 switch (c->x86) {
486 case 4: /* 486: untested */
487 break;
488 case 5: /* Old Pentia: untested */
489 break;
490 case 6: /* PII/PIII only like movsl with 8-byte alignment */
491 movsl_mask.mask = 7;
492 break;
493 case 15: /* P4 is OK down to 8-byte alignment */
494 movsl_mask.mask = 7;
495 break;
496 }
497 #endif
498
499 intel_smp_check(c);
500 }
501 #else
intel_workarounds(struct cpuinfo_x86 * c)502 static void intel_workarounds(struct cpuinfo_x86 *c)
503 {
504 }
505 #endif
506
srat_detect_node(struct cpuinfo_x86 * c)507 static void srat_detect_node(struct cpuinfo_x86 *c)
508 {
509 #ifdef CONFIG_NUMA
510 unsigned node;
511 int cpu = smp_processor_id();
512
513 /* Don't do the funky fallback heuristics the AMD version employs
514 for now. */
515 node = numa_cpu_node(cpu);
516 if (node == NUMA_NO_NODE || !node_online(node)) {
517 /* reuse the value from init_cpu_to_node() */
518 node = cpu_to_node(cpu);
519 }
520 numa_set_node(cpu, node);
521 #endif
522 }
523
init_cpuid_fault(struct cpuinfo_x86 * c)524 static void init_cpuid_fault(struct cpuinfo_x86 *c)
525 {
526 u64 msr;
527
528 if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
529 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
530 set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
531 }
532 }
533
init_intel_misc_features(struct cpuinfo_x86 * c)534 static void init_intel_misc_features(struct cpuinfo_x86 *c)
535 {
536 u64 msr;
537
538 if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
539 return;
540
541 /* Clear all MISC features */
542 this_cpu_write(msr_misc_features_shadow, 0);
543
544 /* Check features and update capabilities and shadow control bits */
545 init_cpuid_fault(c);
546 probe_xeon_phi_r3mwait(c);
547
548 msr = this_cpu_read(msr_misc_features_shadow);
549 wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
550 }
551
552 static void split_lock_init(void);
553 static void bus_lock_init(void);
554
init_intel(struct cpuinfo_x86 * c)555 static void init_intel(struct cpuinfo_x86 *c)
556 {
557 early_init_intel(c);
558
559 intel_workarounds(c);
560
561 init_intel_cacheinfo(c);
562
563 if (c->cpuid_level > 9) {
564 unsigned eax = cpuid_eax(10);
565 /* Check for version and the number of counters */
566 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
567 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
568 }
569
570 if (cpu_has(c, X86_FEATURE_XMM2))
571 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
572
573 if (boot_cpu_has(X86_FEATURE_DS)) {
574 unsigned int l1, l2;
575
576 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
577 if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
578 set_cpu_cap(c, X86_FEATURE_BTS);
579 if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
580 set_cpu_cap(c, X86_FEATURE_PEBS);
581 }
582
583 if (boot_cpu_has(X86_FEATURE_CLFLUSH) &&
584 (c->x86_vfm == INTEL_CORE2_DUNNINGTON ||
585 c->x86_vfm == INTEL_NEHALEM_EX ||
586 c->x86_vfm == INTEL_WESTMERE_EX))
587 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
588
589 if (boot_cpu_has(X86_FEATURE_MWAIT) &&
590 (c->x86_vfm == INTEL_ATOM_GOLDMONT ||
591 c->x86_vfm == INTEL_LUNARLAKE_M))
592 set_cpu_bug(c, X86_BUG_MONITOR);
593
594 #ifdef CONFIG_X86_64
595 if (c->x86 == 15)
596 c->x86_cache_alignment = c->x86_clflush_size * 2;
597 if (c->x86 == 6)
598 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
599 #else
600 /*
601 * Names for the Pentium II/Celeron processors
602 * detectable only by also checking the cache size.
603 * Dixon is NOT a Celeron.
604 */
605 if (c->x86 == 6) {
606 unsigned int l2 = c->x86_cache_size;
607 char *p = NULL;
608
609 switch (c->x86_model) {
610 case 5:
611 if (l2 == 0)
612 p = "Celeron (Covington)";
613 else if (l2 == 256)
614 p = "Mobile Pentium II (Dixon)";
615 break;
616
617 case 6:
618 if (l2 == 128)
619 p = "Celeron (Mendocino)";
620 else if (c->x86_stepping == 0 || c->x86_stepping == 5)
621 p = "Celeron-A";
622 break;
623
624 case 8:
625 if (l2 == 128)
626 p = "Celeron (Coppermine)";
627 break;
628 }
629
630 if (p)
631 strcpy(c->x86_model_id, p);
632 }
633
634 if (c->x86 == 15)
635 set_cpu_cap(c, X86_FEATURE_P4);
636 if (c->x86 == 6)
637 set_cpu_cap(c, X86_FEATURE_P3);
638 #endif
639
640 /* Work around errata */
641 srat_detect_node(c);
642
643 init_ia32_feat_ctl(c);
644
645 init_intel_misc_features(c);
646
647 split_lock_init();
648 bus_lock_init();
649
650 intel_init_thermal(c);
651 }
652
653 #ifdef CONFIG_X86_32
intel_size_cache(struct cpuinfo_x86 * c,unsigned int size)654 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
655 {
656 /*
657 * Intel PIII Tualatin. This comes in two flavours.
658 * One has 256kb of cache, the other 512. We have no way
659 * to determine which, so we use a boottime override
660 * for the 512kb model, and assume 256 otherwise.
661 */
662 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
663 size = 256;
664
665 /*
666 * Intel Quark SoC X1000 contains a 4-way set associative
667 * 16K cache with a 16 byte cache line and 256 lines per tag
668 */
669 if ((c->x86 == 5) && (c->x86_model == 9))
670 size = 16;
671 return size;
672 }
673 #endif
674
675 #define TLB_INST_4K 0x01
676 #define TLB_INST_4M 0x02
677 #define TLB_INST_2M_4M 0x03
678
679 #define TLB_INST_ALL 0x05
680 #define TLB_INST_1G 0x06
681
682 #define TLB_DATA_4K 0x11
683 #define TLB_DATA_4M 0x12
684 #define TLB_DATA_2M_4M 0x13
685 #define TLB_DATA_4K_4M 0x14
686
687 #define TLB_DATA_1G 0x16
688 #define TLB_DATA_1G_2M_4M 0x17
689
690 #define TLB_DATA0_4K 0x21
691 #define TLB_DATA0_4M 0x22
692 #define TLB_DATA0_2M_4M 0x23
693
694 #define STLB_4K 0x41
695 #define STLB_4K_2M 0x42
696
697 /*
698 * All of leaf 0x2's one-byte TLB descriptors implies the same number of
699 * entries for their respective TLB types. The 0x63 descriptor is an
700 * exception: it implies 4 dTLB entries for 1GB pages 32 dTLB entries
701 * for 2MB or 4MB pages. Encode descriptor 0x63 dTLB entry count for
702 * 2MB/4MB pages here, as its count for dTLB 1GB pages is already at the
703 * intel_tlb_table[] mapping.
704 */
705 #define TLB_0x63_2M_4M_ENTRIES 32
706
707 static const struct _tlb_table intel_tlb_table[] = {
708 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
709 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
710 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
711 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
712 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
713 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
714 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" },
715 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
716 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
717 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
718 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
719 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
720 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
721 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
722 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
723 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
724 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
725 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
726 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
727 { 0x63, TLB_DATA_1G_2M_4M, 4, " TLB_DATA 1 GByte pages, 4-way set associative"
728 " (plus 32 entries TLB_DATA 2 MByte or 4 MByte pages, not encoded here)" },
729 { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" },
730 { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
731 { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" },
732 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
733 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
734 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
735 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
736 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
737 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
738 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
739 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
740 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
741 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
742 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
743 { 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
744 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
745 { 0x00, 0, 0 }
746 };
747
intel_tlb_lookup(const unsigned char desc)748 static void intel_tlb_lookup(const unsigned char desc)
749 {
750 unsigned char k;
751 if (desc == 0)
752 return;
753
754 /* look up this descriptor in the table */
755 for (k = 0; intel_tlb_table[k].descriptor != desc &&
756 intel_tlb_table[k].descriptor != 0; k++)
757 ;
758
759 if (intel_tlb_table[k].tlb_type == 0)
760 return;
761
762 switch (intel_tlb_table[k].tlb_type) {
763 case STLB_4K:
764 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
765 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
766 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
767 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
768 break;
769 case STLB_4K_2M:
770 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
771 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
772 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
773 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
774 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
775 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
776 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
777 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
778 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
779 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
780 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
781 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
782 break;
783 case TLB_INST_ALL:
784 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
785 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
786 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
787 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
788 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
789 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
790 break;
791 case TLB_INST_4K:
792 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
793 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
794 break;
795 case TLB_INST_4M:
796 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
797 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
798 break;
799 case TLB_INST_2M_4M:
800 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
801 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
802 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
803 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
804 break;
805 case TLB_DATA_4K:
806 case TLB_DATA0_4K:
807 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
808 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
809 break;
810 case TLB_DATA_4M:
811 case TLB_DATA0_4M:
812 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
813 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
814 break;
815 case TLB_DATA_2M_4M:
816 case TLB_DATA0_2M_4M:
817 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
818 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
819 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
820 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
821 break;
822 case TLB_DATA_4K_4M:
823 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
824 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
825 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
826 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
827 break;
828 case TLB_DATA_1G_2M_4M:
829 if (tlb_lld_2m[ENTRIES] < TLB_0x63_2M_4M_ENTRIES)
830 tlb_lld_2m[ENTRIES] = TLB_0x63_2M_4M_ENTRIES;
831 if (tlb_lld_4m[ENTRIES] < TLB_0x63_2M_4M_ENTRIES)
832 tlb_lld_4m[ENTRIES] = TLB_0x63_2M_4M_ENTRIES;
833 fallthrough;
834 case TLB_DATA_1G:
835 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
836 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
837 break;
838 }
839 }
840
intel_detect_tlb(struct cpuinfo_x86 * c)841 static void intel_detect_tlb(struct cpuinfo_x86 *c)
842 {
843 int i, j, n;
844 unsigned int regs[4];
845 unsigned char *desc = (unsigned char *)regs;
846
847 if (c->cpuid_level < 2)
848 return;
849
850 /* Number of times to iterate */
851 n = cpuid_eax(2) & 0xFF;
852
853 for (i = 0 ; i < n ; i++) {
854 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
855
856 /* If bit 31 is set, this is an unknown format */
857 for (j = 0 ; j < 4 ; j++)
858 if (regs[j] & (1 << 31))
859 regs[j] = 0;
860
861 /* Byte 0 is level count, not a descriptor */
862 for (j = 1 ; j < 16 ; j++)
863 intel_tlb_lookup(desc[j]);
864 }
865 }
866
867 static const struct cpu_dev intel_cpu_dev = {
868 .c_vendor = "Intel",
869 .c_ident = { "GenuineIntel" },
870 #ifdef CONFIG_X86_32
871 .legacy_models = {
872 { .family = 4, .model_names =
873 {
874 [0] = "486 DX-25/33",
875 [1] = "486 DX-50",
876 [2] = "486 SX",
877 [3] = "486 DX/2",
878 [4] = "486 SL",
879 [5] = "486 SX/2",
880 [7] = "486 DX/2-WB",
881 [8] = "486 DX/4",
882 [9] = "486 DX/4-WB"
883 }
884 },
885 { .family = 5, .model_names =
886 {
887 [0] = "Pentium 60/66 A-step",
888 [1] = "Pentium 60/66",
889 [2] = "Pentium 75 - 200",
890 [3] = "OverDrive PODP5V83",
891 [4] = "Pentium MMX",
892 [7] = "Mobile Pentium 75 - 200",
893 [8] = "Mobile Pentium MMX",
894 [9] = "Quark SoC X1000",
895 }
896 },
897 { .family = 6, .model_names =
898 {
899 [0] = "Pentium Pro A-step",
900 [1] = "Pentium Pro",
901 [3] = "Pentium II (Klamath)",
902 [4] = "Pentium II (Deschutes)",
903 [5] = "Pentium II (Deschutes)",
904 [6] = "Mobile Pentium II",
905 [7] = "Pentium III (Katmai)",
906 [8] = "Pentium III (Coppermine)",
907 [10] = "Pentium III (Cascades)",
908 [11] = "Pentium III (Tualatin)",
909 }
910 },
911 { .family = 15, .model_names =
912 {
913 [0] = "Pentium 4 (Unknown)",
914 [1] = "Pentium 4 (Willamette)",
915 [2] = "Pentium 4 (Northwood)",
916 [4] = "Pentium 4 (Foster)",
917 [5] = "Pentium 4 (Foster)",
918 }
919 },
920 },
921 .legacy_cache_size = intel_size_cache,
922 #endif
923 .c_detect_tlb = intel_detect_tlb,
924 .c_early_init = early_init_intel,
925 .c_bsp_init = bsp_init_intel,
926 .c_init = init_intel,
927 .c_x86_vendor = X86_VENDOR_INTEL,
928 };
929
930 cpu_dev_register(intel_cpu_dev);
931
932 #undef pr_fmt
933 #define pr_fmt(fmt) "x86/split lock detection: " fmt
934
935 static const struct {
936 const char *option;
937 enum split_lock_detect_state state;
938 } sld_options[] __initconst = {
939 { "off", sld_off },
940 { "warn", sld_warn },
941 { "fatal", sld_fatal },
942 { "ratelimit:", sld_ratelimit },
943 };
944
945 static struct ratelimit_state bld_ratelimit;
946
947 static unsigned int sysctl_sld_mitigate = 1;
948 static DEFINE_SEMAPHORE(buslock_sem, 1);
949
950 #ifdef CONFIG_PROC_SYSCTL
951 static struct ctl_table sld_sysctls[] = {
952 {
953 .procname = "split_lock_mitigate",
954 .data = &sysctl_sld_mitigate,
955 .maxlen = sizeof(unsigned int),
956 .mode = 0644,
957 .proc_handler = proc_douintvec_minmax,
958 .extra1 = SYSCTL_ZERO,
959 .extra2 = SYSCTL_ONE,
960 },
961 };
962
sld_mitigate_sysctl_init(void)963 static int __init sld_mitigate_sysctl_init(void)
964 {
965 register_sysctl_init("kernel", sld_sysctls);
966 return 0;
967 }
968
969 late_initcall(sld_mitigate_sysctl_init);
970 #endif
971
match_option(const char * arg,int arglen,const char * opt)972 static inline bool match_option(const char *arg, int arglen, const char *opt)
973 {
974 int len = strlen(opt), ratelimit;
975
976 if (strncmp(arg, opt, len))
977 return false;
978
979 /*
980 * Min ratelimit is 1 bus lock/sec.
981 * Max ratelimit is 1000 bus locks/sec.
982 */
983 if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
984 ratelimit > 0 && ratelimit <= 1000) {
985 ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
986 ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
987 return true;
988 }
989
990 return len == arglen;
991 }
992
split_lock_verify_msr(bool on)993 static bool split_lock_verify_msr(bool on)
994 {
995 u64 ctrl, tmp;
996
997 if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
998 return false;
999 if (on)
1000 ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1001 else
1002 ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1003 if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1004 return false;
1005 rdmsrl(MSR_TEST_CTRL, tmp);
1006 return ctrl == tmp;
1007 }
1008
sld_state_setup(void)1009 static void __init sld_state_setup(void)
1010 {
1011 enum split_lock_detect_state state = sld_warn;
1012 char arg[20];
1013 int i, ret;
1014
1015 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1016 !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1017 return;
1018
1019 ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1020 arg, sizeof(arg));
1021 if (ret >= 0) {
1022 for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1023 if (match_option(arg, ret, sld_options[i].option)) {
1024 state = sld_options[i].state;
1025 break;
1026 }
1027 }
1028 }
1029 sld_state = state;
1030 }
1031
__split_lock_setup(void)1032 static void __init __split_lock_setup(void)
1033 {
1034 if (!split_lock_verify_msr(false)) {
1035 pr_info("MSR access failed: Disabled\n");
1036 return;
1037 }
1038
1039 rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1040
1041 if (!split_lock_verify_msr(true)) {
1042 pr_info("MSR access failed: Disabled\n");
1043 return;
1044 }
1045
1046 /* Restore the MSR to its cached value. */
1047 wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1048
1049 setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1050 }
1051
1052 /*
1053 * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1054 * is not implemented as one thread could undo the setting of the other
1055 * thread immediately after dropping the lock anyway.
1056 */
sld_update_msr(bool on)1057 static void sld_update_msr(bool on)
1058 {
1059 u64 test_ctrl_val = msr_test_ctrl_cache;
1060
1061 if (on)
1062 test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1063
1064 wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1065 }
1066
split_lock_init(void)1067 static void split_lock_init(void)
1068 {
1069 /*
1070 * #DB for bus lock handles ratelimit and #AC for split lock is
1071 * disabled.
1072 */
1073 if (sld_state == sld_ratelimit) {
1074 split_lock_verify_msr(false);
1075 return;
1076 }
1077
1078 if (cpu_model_supports_sld)
1079 split_lock_verify_msr(sld_state != sld_off);
1080 }
1081
__split_lock_reenable_unlock(struct work_struct * work)1082 static void __split_lock_reenable_unlock(struct work_struct *work)
1083 {
1084 sld_update_msr(true);
1085 up(&buslock_sem);
1086 }
1087
1088 static DECLARE_DELAYED_WORK(sl_reenable_unlock, __split_lock_reenable_unlock);
1089
__split_lock_reenable(struct work_struct * work)1090 static void __split_lock_reenable(struct work_struct *work)
1091 {
1092 sld_update_msr(true);
1093 }
1094 static DECLARE_DELAYED_WORK(sl_reenable, __split_lock_reenable);
1095
1096 /*
1097 * If a CPU goes offline with pending delayed work to re-enable split lock
1098 * detection then the delayed work will be executed on some other CPU. That
1099 * handles releasing the buslock_sem, but because it executes on a
1100 * different CPU probably won't re-enable split lock detection. This is a
1101 * problem on HT systems since the sibling CPU on the same core may then be
1102 * left running with split lock detection disabled.
1103 *
1104 * Unconditionally re-enable detection here.
1105 */
splitlock_cpu_offline(unsigned int cpu)1106 static int splitlock_cpu_offline(unsigned int cpu)
1107 {
1108 sld_update_msr(true);
1109
1110 return 0;
1111 }
1112
split_lock_warn(unsigned long ip)1113 static void split_lock_warn(unsigned long ip)
1114 {
1115 struct delayed_work *work;
1116 int cpu;
1117
1118 if (!current->reported_split_lock)
1119 pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1120 current->comm, current->pid, ip);
1121 current->reported_split_lock = 1;
1122
1123 if (sysctl_sld_mitigate) {
1124 /*
1125 * misery factor #1:
1126 * sleep 10ms before trying to execute split lock.
1127 */
1128 if (msleep_interruptible(10) > 0)
1129 return;
1130 /*
1131 * Misery factor #2:
1132 * only allow one buslocked disabled core at a time.
1133 */
1134 if (down_interruptible(&buslock_sem) == -EINTR)
1135 return;
1136 work = &sl_reenable_unlock;
1137 } else {
1138 work = &sl_reenable;
1139 }
1140
1141 cpu = get_cpu();
1142 schedule_delayed_work_on(cpu, work, 2);
1143
1144 /* Disable split lock detection on this CPU to make progress */
1145 sld_update_msr(false);
1146 put_cpu();
1147 }
1148
handle_guest_split_lock(unsigned long ip)1149 bool handle_guest_split_lock(unsigned long ip)
1150 {
1151 if (sld_state == sld_warn) {
1152 split_lock_warn(ip);
1153 return true;
1154 }
1155
1156 pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1157 current->comm, current->pid,
1158 sld_state == sld_fatal ? "fatal" : "bogus", ip);
1159
1160 current->thread.error_code = 0;
1161 current->thread.trap_nr = X86_TRAP_AC;
1162 force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1163 return false;
1164 }
1165 EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1166
bus_lock_init(void)1167 static void bus_lock_init(void)
1168 {
1169 u64 val;
1170
1171 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1172 return;
1173
1174 rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
1175
1176 if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1177 (sld_state == sld_warn || sld_state == sld_fatal)) ||
1178 sld_state == sld_off) {
1179 /*
1180 * Warn and fatal are handled by #AC for split lock if #AC for
1181 * split lock is supported.
1182 */
1183 val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1184 } else {
1185 val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
1186 }
1187
1188 wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
1189 }
1190
handle_user_split_lock(struct pt_regs * regs,long error_code)1191 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1192 {
1193 if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1194 return false;
1195 split_lock_warn(regs->ip);
1196 return true;
1197 }
1198
handle_bus_lock(struct pt_regs * regs)1199 void handle_bus_lock(struct pt_regs *regs)
1200 {
1201 switch (sld_state) {
1202 case sld_off:
1203 break;
1204 case sld_ratelimit:
1205 /* Enforce no more than bld_ratelimit bus locks/sec. */
1206 while (!__ratelimit(&bld_ratelimit))
1207 msleep(20);
1208 /* Warn on the bus lock. */
1209 fallthrough;
1210 case sld_warn:
1211 pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
1212 current->comm, current->pid, regs->ip);
1213 break;
1214 case sld_fatal:
1215 force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1216 break;
1217 }
1218 }
1219
1220 /*
1221 * CPU models that are known to have the per-core split-lock detection
1222 * feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1223 */
1224 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1225 X86_MATCH_VFM(INTEL_ICELAKE_X, 0),
1226 X86_MATCH_VFM(INTEL_ICELAKE_L, 0),
1227 X86_MATCH_VFM(INTEL_ICELAKE_D, 0),
1228 {}
1229 };
1230
split_lock_setup(struct cpuinfo_x86 * c)1231 static void __init split_lock_setup(struct cpuinfo_x86 *c)
1232 {
1233 const struct x86_cpu_id *m;
1234 u64 ia32_core_caps;
1235
1236 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1237 return;
1238
1239 /* Check for CPUs that have support but do not enumerate it: */
1240 m = x86_match_cpu(split_lock_cpu_ids);
1241 if (m)
1242 goto supported;
1243
1244 if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1245 return;
1246
1247 /*
1248 * Not all bits in MSR_IA32_CORE_CAPS are architectural, but
1249 * MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT is. All CPUs that set
1250 * it have split lock detection.
1251 */
1252 rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1253 if (ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)
1254 goto supported;
1255
1256 /* CPU is not in the model list and does not have the MSR bit: */
1257 return;
1258
1259 supported:
1260 cpu_model_supports_sld = true;
1261 __split_lock_setup();
1262 }
1263
sld_state_show(void)1264 static void sld_state_show(void)
1265 {
1266 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
1267 !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1268 return;
1269
1270 switch (sld_state) {
1271 case sld_off:
1272 pr_info("disabled\n");
1273 break;
1274 case sld_warn:
1275 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1276 pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
1277 if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
1278 "x86/splitlock", NULL, splitlock_cpu_offline) < 0)
1279 pr_warn("No splitlock CPU offline handler\n");
1280 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1281 pr_info("#DB: warning on user-space bus_locks\n");
1282 }
1283 break;
1284 case sld_fatal:
1285 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1286 pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
1287 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1288 pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
1289 boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
1290 " from non-WB" : "");
1291 }
1292 break;
1293 case sld_ratelimit:
1294 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1295 pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
1296 break;
1297 }
1298 }
1299
sld_setup(struct cpuinfo_x86 * c)1300 void __init sld_setup(struct cpuinfo_x86 *c)
1301 {
1302 split_lock_setup(c);
1303 sld_state_setup();
1304 sld_state_show();
1305 }
1306
1307 #define X86_HYBRID_CPU_TYPE_ID_SHIFT 24
1308
1309 /**
1310 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
1311 *
1312 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
1313 * a hybrid processor. If the processor is not hybrid, returns 0.
1314 */
get_this_hybrid_cpu_type(void)1315 u8 get_this_hybrid_cpu_type(void)
1316 {
1317 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1318 return 0;
1319
1320 return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
1321 }
1322